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ABSTRACT

OPTIMAL SIZING OF HYBRID MICROGRIDS WITH CONSIDERATION
OF GLOBAL WARMING EFFECTS: A MARS AND GRG APPROACH

Yılmaz, Yavuz
M.S., Department of Mechanical Engineering

Supervisor: Assoc. Prof. Dr. Onur Taylan

Co-Supervisor: Prof. Dr. Gerhard-Wilhelm Weber

April 2024, 103 pages

This study from the METU North Cyprus Campus projects load and power demands

spanning from 2026 to 2050, integrating regional global warming forecasts from the

IPCC’s Sixth Assessment Report into the design of an optimal microgrid system.

Using the Multivariate Adaptive Regression Splines (MARS) method, hourly load,

wind speed, and solar irradiance are forecasted, facilitating accurate estimations of

the potential electricity generation from solar PV and wind turbines. Different com-

binations of these renewable sources, augmented with battery storage, are optimized

through the Generalized Reduced Gradient (GRG) method. The overarching aim is to

minimize the Weighted Average Cost of Energy (waCOE) while upholding a specific

renewable energy fraction (Fres) of 60% where possible. Statistical insights from the

analysis reveal a rising trend in electricity demand due to global warming, escalating

from 6,367 MWh in 2026 to 6,605 MWh by 2050. Wind power is expected to de-

crease by approximately 21.9% under global warming scenarios, while solar power

exhibits a slight increase, hinting at the varying impacts of climate change on these en-

ergy sources. The optimization of hybrid microgrid configurations (WT+PV+BESS)
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across scenarios showcases their critical role in achieving energy security and eco-

nomic efficiency. Notably, in the face of global warming, these configurations effec-

tively manage waCOE, with a significant reduction to 0.188 Euros/kWh for 2039 and

maintaining a low 0.236 Euros/kWh for 2050. The network tariff is 0.175 Euros/kWh

for all scenarios. This indicates that comprehensive, integrated renewable systems

are imperative for future energy solutions, adapting to environmental changes while

ensuring sustainable and cost-effective energy supplies.

Keywords: global warming, load forecasting, microgrids, renewable energy sources,

renewable power forecasting, sustainable energy systems.
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ÖZ

KÜRESEL ISINMA ETKİLERİNİN DİKKATE ALINDIĞI HİBRİT MİKRO
ŞEBEKELERİN OPTİMAL BOYUTLANDIRILMASI: BİR MARS VE GRG

YAKLAŞIMI

Yılmaz, Yavuz
Yüksek Lisans, Makina Mühendisliği Bölümü

Tez Yöneticisi: Doç. Dr. Onur Taylan

Ortak Tez Yöneticisi: Prof. Dr. Gerhard-Wilhelm Weber

Nisan 2024 , 103 sayfa

ODTÜ Kuzey Kıbrıs Kampüsü’nde yapılan bu çalışma, 2026’dan 2050’ye kadar olan

yük ve güç taleplerini, IPCC’nin Altıncı Değerlendirme Raporu’ndan bölgesel küre-

sel ısınma tahminlerini, en uygun mikroşebeke sistem tasarımına entegre ederek pro-

jelendirmektedir. Çok Değişkenli Adaptif Regresyon Eğrileri (MARS) metodu kulla-

nılarak saatlik yük, rüzgar hızı ve güneş ışınımı tahmin edilmekte, bu da güneş panel-

leri ve rüzgar türbinlerinden potansiyel elektrik üretiminin doğru bir şekilde hesap-

lanmasını kolaylaştırmaktadır. Bu yenilenebilir kaynakların farklı kombinasyonları,

pil depolama ile birlikte, Genelleştirilmiş Azaltılmış Gradyan (GRG) metodu aracılı-

ğıyla optimize edilmektedir. Genel amaç, yenilenebilir enerji oranını (Fres) mümkün

oldukça %60’ta tutarken, Ortalama Ağırlıklı Enerji Maliyetini (waCOE) en aza indir-

mektir. Analizden elde edilen istatistiksel içgörüler, küresel ısınmadan dolayı artan

bir elektrik talebi eğilimi ortaya koymakta, 2026’da 6,367 MWh’den 2050’de 6,605

MWh’ye yükselmektedir. Küresel ısınma senaryoları altında rüzgar enerjisinin yak-

laşık %21.9 oranında azalması beklenirken, güneş enerjisi hafif bir artış göstererek,
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iklim değişikliğinin bu enerji kaynakları üzerindeki farklı etkilerine işaret etmektedir.

Hibrit mikroşebeke konfigürasyonunun (WT+PV+BESS) diğer senaryolar karşısın-

daki güvenliği ve ekonomik verimlilik elde etmedeki kritik rolünü sergilemektedir.

Özellikle küresel ısınmanın yaşandığı durumda, bu konfigürasyonlar waCOE’yi etkili

bir şekilde yönetmekte ve 2039 için 0,188 Euro/kWh’ye önemli bir düşüş sağlamakta

ve 2050 için düşük 0,236 Euro/kWh seviyesini korumaktadır. Tüm senaryolar için

şebeke tarifesi 0,175 Euro/kWh’dir. Bu, çevresel değişikliklere uyum sağlarken sür-

dürülebilir ve maliyet etkin enerji tedariklerini garanti altına alan kapsamlı, entegre

yenilenebilir sistemlerin gelecekteki enerji çözümleri için zorunlu olduğunu göster-

mektedir.

Anahtar Kelimeler: Küresel ısınma, talep tahmini, mikroşebekeler, yenilenebilir enerji

kaynakları, yenilenebilir güç tahmini, sürdürülebilir enerji sistemleri.

viii



To my family

ix



ACKNOWLEDGMENTS

First and foremost, I would like to thank my supervisor, Assoc. Prof. Onur Taylan

and Prof. Gerhard-Wilhelm Weber, for their invaluable guidance, encouragement, and

expertise throughout the research process. Their unwavering support and mentorship

have been instrumental in shaping this work.

My heartfelt thanks go to my family Gülüzar Yılmaz, Prof. Dr. Murteza Yılmaz and
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CHAPTER 1

INTRODUCTION

1.1 Background and Motivation

The urgent global issue of climate change is mainly caused by the rising concentration

of greenhouse gases in the Earth’s atmosphere. These gases, such as methane (CH4),

carbon dioxide (CO2) and nitrous oxide (N2O), retain heat from the sun, resulting

in global warming and substantial alterations in weather patterns. The reduction of

greenhouse gas emissions is critical in mitigating these effects, necessitating a transi-

tion towards more sustainable and renewable energy sources [1], [2].

To address this issue, the Kyoto Protocol was created as a significant international

treaty, obligating its signatories to cut greenhouse gas emissions. This agreement

is based on the understanding that global warming is real and that human-produced

CO2 emissions are a contributing factor. This protocol underscores the importance

of global cooperation in addressing climate change, setting legally binding emission

reduction targets for participating countries [3], [4].

The Intergovernmental Panel on Climate Change (IPCC) is crucial in evaluating the

scientific aspects of climate change, offering a foundation of scientific evidence for

governments at various levels to formulate climate policies. The IPCC’s reports high-

light the critical need for immediate and substantial reductions in greenhouse gas

emissions to limit global warming, emphasizing the role of renewable energy tech-

nologies in achieving these objectives [5], [6].

The Conference of the Parties (COP) acts as the highest decision-making authority

of the United Nations Framework Convention on Climate Change (UNFCCC), bring-
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ing countries together to assess and promote the execution of the Convention and

its Kyoto Protocol. These conferences have been crucial in setting global agendas

for reducing carbon emissions and transitioning towards low-carbon economies, with

significant discussions focused on enhancing the role of renewable energy sources

and improving energy efficiency [7], [8], [9].

The challenge of integrating renewable energy sources into the power grid is further

compounded by the need for precise sizing of hybrid systems. This process is critical

to ensuring that the combination of wind turbines, solar photovoltaics (PVs), and bat-

tery energy storage systems (BESS) operates at optimal efficiency and reliability. The

sizing of these components is a complex undertaking that requires a careful balance

between technical feasibility, economic viability, and environmental sustainability

[10], [11], [12], [13].

Wind turbines, as a cornerstone of hybrid microgrid systems, must be selected and

sized based on local wind resource assessments to maximize energy capture and min-

imize variability [14]. The design and sizing of solar PV installations, on the other

hand, depend on solar irradiance levels, available space, and the intended load profile

of the microgrid [16]. These renewable sources are inherently intermittent, necessi-

tating the integration of BESS to regulate the energy supply, manage peak loads, and

enhance system resilience [15].

The sizing of BESS is particularly critical in hybrid microgrids [17]. It involves

determining the optimal storage capacity and discharge rate to ensure that energy

is available during periods of low wind or solar generation, thereby guaranteeing a

continuous and reliable power supply. The integration of BESS not only provides a

buffer against the variability of renewable energy sources but also plays a pivotal role

in grid stabilization, energy management, and emergency backup.

Furthermore, the economic and environmental implications of hybrid system sizing

cannot be overlooked. Proper sizing ensures that the system is cost-effective, mini-

mizing wasted capacity while maximizing the utilization of renewable energies. This

balance is essential for the long-term sustainability of microgrids, enabling them to

deliver reliable energy solutions that are both financially viable and environmentally

responsible [18], [20].
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The broader economic impact of integrating renewable energy systems extends be-

yond immediate cost savings and environmental benefits [19], [18]. Economically,

the transition towards renewable energy can stimulate job creation in the green tech-

nology sector, fostering innovation and economic growth [21]. Investments in renew-

able energy infrastructure, such as wind turbines and solar PVs, contribute to a more

diversified and resilient economy, reducing dependence on fossil fuels and mitigating

the risks associated with global commodity markets [22], [23].

Moreover, the economic implications of global warming — including the potential

for significant financial losses due to increased natural disasters [24], health crises,

and agricultural disruptions [25], [26] — make the case for reducing carbon emis-

sions even more compelling. By decreasing reliance on fossil fuels and enhancing

the efficiency and reliability of renewable energy sources, hybrid microgrids play a

crucial role in mitigating these economic risks. The proactive reduction of carbon

emissions through optimized renewable energy systems not only addresses the urgent

challenges posed by climate change but also paves the way for sustainable economic

development [27].

In summary, the optimization of hybrid microgrids through precise sizing of wind tur-

bines, solar PVs, and BESS represents a critical area of research [28]. This endeavor

aims to enhance the efficiency, reliability, and sustainability of renewable energy sys-

tems, making them capable of meeting the demands of modern energy consumption

while addressing the urgent challenges posed by climate change [29]. The motivation

behind this research is rooted in the vision of a future where energy systems are not

only sustainable and efficient but also resilient in the face of evolving global environ-

mental conditions, with significant positive impacts on economic growth and stability

[30].

1.2 Research Objectives

This study proposes to use Generalized Reduced Gradient (GRG) to optimize hybrid

renewable energy systems for microgrids. The optimization problem in the thesis

focuses on designing an efficient hybrid microgrid system, with the primary goal of
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minimizing the Weighted Average Cost of Energy (waCOE) to balance economic

efficiency with sustainability. The decision variables include the quantity of 2 MW

wind turbines, 250 W solar PV panels, and the capacity of battery energy storage

systems, all fine-tuned to achieve the optimal design. The key constraint is main-

taining a Renewable Energy Fraction (FRES) greater than 60% whenever applicable,

ensuring high sustainability. The research objectives are to optimize economic ef-

ficiency by minimizing (waCOE), ensure sustainability by keeping (FRES) above

60%, and enhance system performance by optimizing the decision variables within

the constraints.

To incorporate climate data and predictions, the study will utilize Multivariate Adap-

tive Regression Splines (MARS) to develop load and renewable power forecasting

models. MARS is a powerful machine learning algorithm that can effectively cap-

ture nonlinear relationships between variables and is well-suited for modeling com-

plex systems. The MARS models will integrate climate data from NOAA (National

Oceanic and Atmospheric Administration) to account for the impact of global warm-

ing on renewable energy sources’ performance and improve the accuracy of load and

renewable power forecasting.

The novelty of this research lies in its comprehensive optimization of hybrid renew-

able energy systems for microgrids using advanced techniques. It employs the GRG

algorithm to maximize renewable power output while minimizing costs. A key in-

novation is the use of MARS for accurate load and renewable power forecasting,

integrating NOAA climate data to predict load, solar irradiation, and wind speed, in-

corporating the effects of global warming. This dual approach enhances the efficiency

and reliability of microgrids and ensures robust adaptation to global warming, setting

a new standard for sustainable energy design.

The proposed methodology will involve developing a simulation model of a microgrid

system with hybrid renewable energy sources and energy storage systems. The simu-

lation will be carried out using Excel, and the performance of the system will be eval-

uated based on various performance metrics, including renewable energy (waCOE)

and (FRES).

In summary, this study proposes a methodology that combines GRG optimization
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with MARS load and renewable power forecasting models to improve the efficiency

and reliability of hybrid renewable energy systems for microgrids. The methodology

aims to account for the impact of global warming on the microgrid system’s compo-

nents.

1.3 Thesis Structure

The primary objective of this study is to optimize hybrid renewable energy systems

for microgrids using GRG optimization techniques while incorporating MARS load

and renewable energy forecasting models that account for global warming. The thesis

is organized into five main chapters, beginning with the current chapter which sets the

stage for the research.

• Chapter 2 delves into the literature, providing context and background on hy-

brid microgrids, the effect of climate change on energy systems, and the current

state of renewable technologies.

• Chapter 3 describes the theoretical underpinnings and the methodology used

for modeling and analysis.

• Chapter 4 presents the results of this research and discusses their implications.

• The final chapter, Chapter 5, summarizes the findings, reflects on the limitations

of the study, and proposes avenues for future research.
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CHAPTER 2

LITERATURE REVIEW

2.1 Overview of Microgrids and Their Benefits

Microgrids are compact, localized energy networks capable of functioning autonomously

or in coordination with the main grid. They comprise distributed energy resources

(DERs) like energy storage solutions, renewable energy sources, and controllable

loads, all linked to create a localized grid. Microgrids provide numerous advantages

over conventional centralized power systems [31], [32].

Microgrids increase the resilience and reliability of energy supply by reducing re-

liance on centralized power plants and transmission lines. In the event of disruptions

or outages in the main grid, microgrids can continue to supply power to critical loads,

ensuring uninterrupted electricity supply [33], [34].

By integrating DERs closer to the point of consumption, microgrids minimize trans-

mission losses and optimize energy distribution. This results in increased energy

efficiency and reduced overall energy consumption [35], [36].

Microgrids enable the incorporation of renewable energy sources, such as solar pho-

tovoltaics (PV), wind turbines, and hydropower, into the energy portfolio. This en-

hances the use of clean, sustainable energy resources and helps lower greenhouse gas

emissions [37].

Optimizing the operation of DERs within microgrids can lead to cost savings for

consumers and utilities [40]. By utilizing locally available renewable resources and

implementing demand-side management strategies, microgrids can lower electricity

bills and reduce infrastructure investments [38], [99].
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Microgrids are capable of offering ancillary grid support services, including fre-

quency regulation, voltage control, and peak shaving, which enhance grid stability

and reliability. Moreover, microgrids can engage in demand response programs and

deliver grid services to the main grid, thereby increasing overall system flexibility

[41]. Microgrids empower local communities to take control of their energy supply

and promote sustainability initiatives. They enable community-based energy genera-

tion, storage, and consumption, fostering resilience in the face of climate change and

other external challenges [42].

In summary, microgrids offer a viable approach to tackling the challenges of mod-

ern energy systems, including climate change mitigation, energy security, and grid

reliability.

2.2 Wind Speed Predictions

In recent years, significant strides have been made in wind speed prediction, leverag-

ing machine learning algorithms and hybrid modeling techniques. Studies since 2020

showcase the efficacy of methodologies such as Random Forests, Long Short-Term

Memory (LSTM) networks, Artificial Neural Networks (ANNs), and Multiple-Layer

Perception Regressors (MLPR) in accurately forecasting wind speeds. Random For-

est (RF) was used for short-term wind speed prediction, highlighting its significance

in forecasting for wind energy systems [43].

These single algorithm applications underscore the diverse capabilities of machine

learning techniques in handling the complexity and variability of wind speed data.

They contribute valuable insights for enhancing wind power forecasting and man-

agement systems, crucial for optimizing the reliability and efficiency of wind energy

generation.

Significant strides also have been made in the field of wind speed prediction, driven

by the adoption of machine learning algorithms and hybrid modeling techniques.

Zhou et al. [44] proposed a hybrid forecasting method combining RF with Variational

Mode Decomposition and Principal Component Analysis, enhancing the accuracy of
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wind speed predictions generated by numerical weather models like the Weather Re-

search and Forecasting (WRF) model. Reynolds et al. [45] leveraged Artificial Neural

Networks (ANNs) to develop a retrieval algorithm for estimating wind speeds from

satellite data, exemplifying the potential of machine learning in improving satellite-

derived wind speed products.

Ruiz-Aguilar et al. [46] introduced a hybrid approach combining Empirical Mode

Decomposition with Permutation Entropy and ANNs, demonstrating significant im-

provements in wind speed forecasting performance. López et al. [47] introduced a

method utilizing Empirical Mode Decomposition, Least-squares support vector ma-

chines, and Wavelet Transform for forecasting wind speeds a day in advance across

various regions, highlighting the efficacy of hybrid approaches in different geograph-

ical settings. Elsaraiti et al. [48] highlighted Long Short-Term Memory (LSTM)

networks for accurate short-term wind speed forecasting. This study utilized weather

data from Halifax, Canada, to train and test the forecasting model for different sea-

sons, highlighting the effectiveness of LSTM in improving wind speed prediction

accuracy. Jahangir et al. [49] developed a framework combining Stacked Denois-

ing Auto-encoders and Rough Artificial Neural Networks for short-term wind speed

prediction, aimed at reducing data noise and enhancing prediction accuracy.

These studies collectively illustrate the rapid evolution of wind speed prediction method-

ologies, emphasizing the role of machine learning and hybrid modeling approaches

in addressing the inherent variability and unpredictability of wind speeds. Such ad-

vancements are crucial for enhancing the reliability and efficiency of wind power

generation systems worldwide.

2.3 Solar Irradiation Predictions

Solar irradiation predictions have been the subject of numerous studies, employing a

variety of methods, time periods, and environmental considerations. Predictive mod-

els play a crucial role in the planning and operation of microgrids, with solar radiation

and irradiation forecasting being pivotal for sizing renewable energy components. In

the literature, a plethora of statistical and machine learning methods have been ap-
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plied, particularly on an hourly basis, to forecast these factors with high accuracy,

while also considering their respective strengths and limitations [50]. For example,

Obiora et al. employed Artificial Neural Networks (ANN), Support Vector Regres-

sion (SVR), and Random Forest methods to forecast hourly solar irradiance based

on historical meteorological data. Similarly, Şahin et al. [52] developed a MARS

model aimed at achieving precise forecasts of solar irradiance parameters, leveraging

coefficients of determination (R2). Additionally, environmental parameters relevant

to solar irradiation, such as those investigated by Kuter et al. [53, 54] and Ewertowski

et al. [55], have been incorporated into predictive models.

2.4 Electricity Demand Forecasting

Electricity demand forecasting is a critical aspect of energy planning and manage-

ment, encompassing various methodologies tailored to different contexts and objec-

tives. Yukseltan et al. [56] delve into a feedback-based forecasting approach, lever-

aging historical demand data from the Turkish power market spanning 2012–2017.

Their study focuses on enhancing accuracy across hourly, daily, and yearly demand

forecasts, showcasing improvements achieved through iterative feedback mechanisms.

In a similar vein, Son et al. [57] present a forecasting model employing Long Short-

Term Memory (LSTM) networks, tailored specifically for South Korea’s residential

sector. Their model incorporates social and weather-related variables to provide ro-

bust forecasts reflective of dynamic consumer behaviors and environmental influ-

ences. Additionally, Zhang et al. [58] propose a hybrid forecasting method inte-

grating support vector regression with meteorological factors and electricity price in-

formation. Their approach, optimized using an enhanced adaptive genetic algorithm,

aims to improve forecast accuracy by capturing multifaceted influences on electricity

demand dynamics. Furthermore, Ilseven et al. [59] highlight the efficacy of Mul-

tivariate Adaptive Regression Splines (MARS) in medium-term monthly electricity

demand forecasting for Turkiye. Their study demonstrates MARS’s superiority over

alternative models, including generalized additive models, multiple linear regression,

and artificial neural networks, in terms of both forecast accuracy and stability. This

section provides a comprehensive overview of diverse methodologies employed in
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electricity demand forecasting, reflecting the ongoing efforts to enhance predictive

capabilities in energy planning and management.

2.5 Wind Turbine Systems

Wind turbine systems are essential components of contemporary renewable energy

infrastructure, converting wind’s kinetic energy into electrical power. This subsec-

tion explores previous studies dedicated to the design and integration of wind tur-

bines within microgrid systems. Understanding the operational characteristics, per-

formance optimization, and integration challenges of wind turbines is essential for

the effective planning and management of microgrid deployments relying on wind

energy. The following review provides insights into key studies focused on wind

turbine systems and their implications for microgrid design and operation. Tan et al.

presents the design and control strategies for a microgrid incorporating a wind turbine

and battery energy storage system. Integration challenges and control techniques to

optimize the utilization of renewable energy sources while ensuring grid stability and

reliability are addressed.

Numerous studies have been conducted to explore the intricacies of wind turbine sys-

tems and battery energy storage systems (BESS). Nascimento et al. [60] analyzed

the performance of a microgrid with a hybrid unit composed of a PMSG-based wind

turbine and BESS, focusing on the BESS’s ability to manage power unbalances. The

control strategies employed enable effective regulation of voltage and frequency lev-

els in islanded mode.Barbaro et al. [61] proposed an optimized design for a high re-

newable penetration microgrid on Faial Island, focusing on wind turbines and BESS

to ensure energy system stability and reliability. The optimal system design is robust

against variability in wind speed and energy demand. Thakur et al. [62] discussed

the creation of a wind turbine simulator designed for integration and coordination

control within a microgrid, highlighting its effective performance in simulating real-

istic wind conditions and its ability to work in tandem with PV devices and battery

storage. Mesbah Ul Huq et al. [63] explored challenges such as frequency deviation

and voltage fluctuations in industrial microgrids with wind power integration. It dis-

cusses the role of BESS as a solution to these challenges. Yang et al. [64] addressed
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the stability of microgrids with wind power and BESS, focusing on reducing grid

power fluctuation and investigating the optimal sizing and selection of battery stor-

age. Marchgraber et al. [65] explored the black-starting and islanding capabilities of

Battery Energy Storage Systems (BESS) within a microgrid heavily integrated with

wind turbines, emphasizing their role in supplying backup power during main grid

outages.

2.6 Solar PV Systems

In recent years, optimizing microgrids has gained substantial interest because of its

potential to improve the efficiency, reliability, and resilience of Solar PV energy sys-

tems. Various studies have explored optimization frameworks tailored to different

microgrid configurations and objectives. In this section, several key contributions in

the field of microgrid optimization will be reviewed.

Nasir et al. [66] created a framework for the optimal planning and design of low-

voltage, low-power DC microgrids powered by solar PV. Their approach aims to

minimize initial costs while optimizing component sizing and distribution architec-

ture. Bandy [67] introduced an optimization model for sizing PV and battery systems

in microgrids, aiming to enhance self-sufficiency and cost-effectiveness by balancing

multiple objectives, including energy autonomy and capital expenses. Ahamad et al.

[68] outlined the optimal design and performance evaluation of a microgrid for future

seaports, using a case study in Copenhagen, Denmark. It analyzes the microgrid’s

performance based on solar PV and battery storage using HOMER software. Bo-

gado et al. [69] proposed a comprehensive model for microgrid optimization based

on commercially available devices and specific topologies focusing on the optimal

sizing of PV arrays and storage systems. Their approach incorporates microgrid con-

ditions and integrates this detailed model into the optimization problem, balancing

financial objectives and introducing new goals for a multi-objective strategy to size

the PV plant and battery pack in terms of the required number of parallel and series

panels and batteries.
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2.7 Battery Energy Storage Systems (BESS)

A plethora of studies have emerged exploring the optimal sizing of Battery Energy

Storage Systems (BESS) in microgrids across various regions and systems, high-

lighting the importance of BESS in enhancing the reliability, efficiency, and cost-

effectiveness of microgrids integrating renewable energy sources. Xie et al. [70] of-

fered a two-layer optimal sizing strategy for Battery Energy Storage Systems (BESS),

considering the dispatch of a Virtual Energy Storage System (VESS) in a smart mi-

crogrid with high PV penetration. This strategy aims to minimize system costs while

ensuring stable operation. Pham et al. [71] demonstrated a dual-layer optimization

approach to determine the optimal BESS size, factoring in the Energy Management

System (EMS) of a microgrid. Their method utilizes iterative techniques and dynamic

programming to solve the optimization problems. Abdulgalil et al. [72] introduced

a technique for optimal BESS sizing under wind uncertainties using stochastic opti-

mization methods, which enhance power system efficiency by improving accessibility

and reducing operating costs. Lee et al. [73] provided a BESS sizing optimization

approach for microgrids by solving the Security Constrained Optimal Power Flow

(SCOPF), taking into account stochastic errors in PV output forecasts and improving

voltage and frequency regulation. Mohandes et al. [74] explored an optimal siz-

ing strategy for an islanded microgrid that incorporates BESS, ice-Thermal Energy

Storage System (ice-TESS), a rooftop Photovoltaic (PV) system, and various loads.

This paper focuses on the BESS’s role in balancing generation and load within the

microgrid, optimizing sizes to reduce system costs effectively.Guerrero et al. [75]

presented a methodology aimed at sizing a BESS to reduce load peaks for an in-

dustrial load connected to a microgrid. The study includes case studies considering

different load profiles to demonstrate the methodology’s effectiveness in reducing en-

ergy purchase costs and demand charges through peak shaving. Takano et al. [76]

discussed the critical need for optimal BESS sizing in microgrids, accounting for co-

operative operations with other microgrid components. El-Bidairi et al. [77] explored

the use of BESS for frequency support in microgrids with high renewable energy pen-

etration, focusing on optimal sizing to enhance system reliability and security. The

study uses the Flinders Island microgrid as a case study. Kumar et al. [78] focused on

renewable energy resources, and included the optimal sizing of BESS in distributed
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generation systems, particularly microgrids. It aims to minimize investment costs and

discusses a two-constraint based linear programming technique for sizing solar pho-

tovoltaic systems, wind energy generation systems, and BESS to meet load demands

effectively.

2.8 Hybrid Microgrids

Hybrid microgrids, which combine various forms of energy generation and storage

technologies, have gained significant attention for their potential to enhance reliabil-

ity and efficiency in energy systems. Yahaya et al. [79] present viable options for

utilizing a hybridized microgrid system. The hybridization is achieved through an

efficient design approach aimed at enhancing load and system reliability indices by

intelligently placing and sizing hybrid distributed generation (DG) systems. Real-

time models of solar photovoltaics, wind turbines, batteries, and thermal DGs are

introduced and implemented. Dobrescu [80] explores an optimal control strategy for

hybrid microgrids integrating thermal and electrical energy, emphasizing efficient en-

ergy generation and the maintenance of thermal comfort through advanced control

of HVAC systems. The study integrates solar PV with combined heat and power

generation systems. Ahmed et al. [81] propose an optimal power flow formulation

for islanded AC/DC hybrid microgrids, addressing issues such as voltage and fre-

quency limit violations and increased operational costs, and validate their approach

through extensive simulations. This research highlights the significance of distributed

generators (DGs) like solar photovoltaics (PV), battery storage systems, and fuel

cells—primarily DC energy sources—as crucial components of modern microgrids.

Murty et al. [82] discuss the integration of renewable sources in microgrids, propos-

ing an optimal energy dispatch strategy to minimize operational costs and environ-

mental impacts, demonstrating the techno-economic benefits through simulations. In

this context, an optimal energy dispatch strategy is developed for both grid-connected

and standalone microgrids incorporating photovoltaic (PV), diesel generator (DG),

fuel cell (FC), wind turbine (WT), micro turbine (MT), and battery energy storage

system (BESS). Krishna et al. [83] study the challenges in optimal planning of hy-

brid microgrids including wind turbines, solar PVs and batteries, highlighting various
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optimization techniques and the importance of considering single and multi-objective

optimization problems in hybrid microgrid design.

2.9 Optimization Methods

The optimization of microgrid components for optimal design encompasses a wide ar-

ray of methodologies, each suited to specific objectives, constraints, and system char-

acteristics. Mashayekh et al. utilized Mixed Integer Linear Programming (MILP)

for optimal Distributed Energy Resources (DER) portfolio, sizing, and placement

in multi-energy microgrids. It accounted electricity, heating, and cooling loads as

well as sources, integrating operational constraints of electrical and thermal networks,

[84]. Liu Zhengu suggested hybrid methodology that combines comprehensive opti-

mization (including combination and capacity optimization) and dispatch optimiza-

tion for distributed generations in microgrids, employing Multi-Objective Genetic

Algorithm (MOGA) and MILP [85]. Balasubramaniam et al. applied quadratic pro-

gramming in optimizing microgrid operation under conditions of uncertainty intro-

duced by renewable energy sources, optimizing the combined objective of minimiz-

ing total operating cost and carbon emission [86]. Xie et al. utilized in multi-objective

stochastic optimal planning method for microgrids, effectively handling the random-

ness of renewable resources and volatility of loads, employing NSGA-II algorithm

for solving the model [87]. Particle Swarm Optimization (PSO) was used in a multi-

objective optimal dispatch model for microgrids under grid-connected mode. Here,

PSO is used to minimize system operation and environmental costs, incorporating

batteries of electric vehicles as mobile energy storage devices [88]. Genetic Particle

Swarm Optimization (GPSO)which is a hybrid optimization method that combines

the strengths of Genetic Algorithm (GA) and Particle Swarm Optimization (PSO) for

planning hybrid energy systems in microgrids, aiming to optimize generation capaci-

ties while considering reliability and cost was applied by Nasser et al. [89].
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2.10 Global Warming Effects

The literature on optimal sizing of microgrid components amidst global warming ef-

fects underscores the necessity of incorporating climate change considerations into

microgrid planning and operation strategies. The impact of global warming has be-

come a central concern in energy systems design, particularly in the development and

optimization of microgrids. Studies emphasize the importance of integrating climate

projections, load profile analysis, and resilience metrics into optimization frameworks

to ensure the reliability, flexibility, and sustainability of microgrid systems. Advanced

optimization techniques, including mathematical programming and machine learning

algorithms, are employed to address the multi-objective nature of microgrid optimiza-

tion problems under climate uncertainty.

Zehra et al. [90] emphasized minimizing the impact of global warming by incorporat-

ing renewable energy sources and advanced storage systems in microgrid control, em-

ploying artificial intelligence techniques for efficient energy management. Jaganath et

al. [91] focused on maximizing energy availability in microgrids by adapting compo-

nent configurations in response to climate-induced changes, using techno-economic

optimization models. Soykan et al. [92] evaluated the impact of weather conditions,

intensified by global warming, on the optimal sizing of isolated microgrids, using cost

optimization methods that account for the variability of renewable resources. Han-

nan et al. [93] reviewed methods for sizing energy storage systems in microgrids to

achieve decarbonization, addressing global warming by optimizing energy storage to

support renewable energy integration. Tabrizi [94] discussed the optimization of grid-

connected microgrids with renewable sources to reduce carbon emissions, a direct re-

sponse to global warming concerns, employing genetic algorithms and particle swarm

optimization. Alvarez [95] proposed a Vectorial Microgrid Optimization method that

includes reliability and energy efficiency as metrics, addressing the needs for sustain-

able power solutions in the face of global warming. Rahbar et al. [96] studied the

impacts of energy cooperation among microgrids with renewable integration, opti-

mizing operations to manage the intermittency of renewable resources under global

warming scenarios Ouammi et al. [97] developed a predictive control model for a

smart greenhouse integrated microgrid, focusing on optimizing the use of renewable
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energy in response to climate variability linked to global warming. Praiselin et al.

[98] reviewed control and optimization strategies for integrating renewable energy in

microgrids, aiming to improve power quality and reduce emissions in light of global

warming. Gao et al. [99] provided a comprehensive review of the optimization of

microgrid operations, reflecting on how global warming has intensified the need for

renewable energy integrations to mitigate environmental impacts.

The reviewed studies illustrate a growing trend of incorporating global warming con-

siderations into the optimization of microgrid components. These approaches en-

hance the sustainability and resilience of microgrid systems in the face of increasing

climate variability and energy demands. This literature survey underscores the critical

role of innovative optimization techniques in addressing the dual challenges of energy

efficiency and environmental sustainability. By synthesizing diverse methodologies

and considering various objectives such as cost minimization and carbon footprint

reduction, researchers strive to develop robust approaches capable of mitigating the

adverse effects of global warming on microgrid performance and enhancing their

adaptability to changing environmental conditions.
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CHAPTER 3

THEORY AND METHODOLOGY

3.1 Theoretical Foundations

This study seeks to optimize the design of the METU NCC microgrid components by

incorporating Wind Turbine, Solar PV, and BESS technologies, utilizing MARS pre-

diction and GRG optimization techniques. To achieve this, accurate forecasts of wind

speed, solar irradiation, campus electricity consumption, and other relevant variables

are essential. The following subsections provide a detailed outline of the theoreti-

cal framework employed to obtain these predictions and subsequently optimize the

microgrid’s Distributed Energy Resources (DERs).

3.2 Data Collection and Processing

In this research, meteorological data for the METU NCC area were sourced from

the NOAA Global Hourly - Integrated Surface Database (ISD) [100]. The variables

retrieved from NOAA are outlined in Table 3.1. Additionally, campus electricity

consumption data was sourced from the local electricity authority, Kib-Tek [101].

The meteorological data spans from January 1, 2017, to December 31, 2021, while

the available electricity consumption data covers the period from January 1, 2017, to

December 31, 2019.

After obtaining the dataset, it is processed by removing any missing or inaccurate

data points. Subsequently, processing was conducted on the finalized datasets. In

the prediction of wind speed, solar irradiation and campus load demand predictions,

all variables were input to the MARS engine since it can eliminate the unnecessary
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Table 3.1: Hourly weather and campus electricity consumption data.

Variable Description Date Range

IRRsolar All-Sky Surface Shortwave Downward Irradiance (W/m2) - Total solar radiation

reaching the Earth’s surface under all-sky conditions.

January 01, 2017

- December 31, 2021

Tair Air Temperature - The air temperature measured at 2 meters above the Earth’s sur-

face.

January 01, 2017

- December 31, 2021

HUMIDrel Relative Humidity - The ratio of the actual moisture content of the air to the maxi-

mum moisture content it could hold at a given temperature at 2 meters.

January 01, 2017

- December 31, 2021

RAIN Corrected Total Precipitation - The total amount of precipitation (rain, snow, etc.)

corrected for various factors.

January 01, 2017

- December 31, 2021

PRES Surface Pressure - The atmospheric pressure at the Earth’s surface.
January 01, 2017

- December 31, 2021

WINDspd 10-Meter Wind Speed - The wind speed measured at a height of 10 meters above

the Earth’s surface.

January 01, 2017

- December 31, 2021

DEMAND Campus electricity consumption
January 01, 2017

- December 31, 2019

variables by nature.

Normalization, particularly Z-score normalization, plays a pivotal role in the prepro-

cessing of datasets for advanced machine learning algorithms like Multivariate Adap-

tive Regression Splines (MARS). MARS is a flexible regression technique capable of

modeling complex non-linear relationships between the dependent and independent

variables. This section elaborates on the significance of Z-score normalization within

the context of MARS, illustrating how this method can optimize model performance

by ensuring features contribute equally to the regression process [103].

Z-score normalization, is a process where each feature in the dataset is adjusted to

have a mean of 0 and a standard deviation of 1. This normalization method is particu-

larly beneficial for algorithms like MARS, which thrive on identifying and modeling

intricate patterns in the data. In the context of MARS, Z-score normalization facili-

tates the algorithm’s ability to efficiently partition the data space and apply linear fits

within these partitions.

Standardizing the features contributes to the stability of the MARS model by reduc-

ing the chances of numerical instability during the calculation of basis functions.
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Moreover, it enhances the interpretability of the model by aligning the scales of the

coefficients, making it easier to understand the relative importance of each feature in

the model.

When applying Z-score normalization in the context of MARS, it is crucial to calcu-

late the mean and standard deviation from the training data only and then apply these

parameters to normalize both the training and test datasets. This approach prevents

data leakage and ensures that the model’s performance is evaluated accurately on the

unseen test data [102].

The Z-score normalization is used to scale the data so that it has a mean µ of 0 and a

standard deviation σ of 1. The formula for calculating the Z-score of a value x in a

dataset is given by:

z =
x− µ

σ
, (3.1)

where:

x is the value to be normalized, µ is the mean of the dataset, σ is the standard deviation

of the dataset.

3.3 Multivariate Adaptive Regression Splines (MARS) as Forecasting Tech-

nique

MARS technique is a flexible method for forecasting that can model complex non-

linear relationships between variables. This subsection delves into how MARS can

be applied to forecast energy production and demand in hybrid microgrid systems,

addressing its capabilities and limitations.

Unlike frequently used model-driven or supervised learning methodologies and algo-

rithms, MARS is primarily a regression model and, thus, data-driven. The original

data-driven Basis Functions (BFs), or splines, provide extraordinarily diverse regres-

sion approaches as predictors. MARS tracks and discovers all potential knot posi-

tions, predictors, and possible interactions. Many BFs are used in conjunction with
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one another to calculate interaction strength. Once MARS has determined the optimal

number of basis functions and their corresponding knot placements, the least-squares

estimator method is utilized to generate the final model, providing the best estimate

of the dataset using the remaining basis functions. Using spline functions in dynamic

modeling offers several advantages. Splines are piecewise polynomials in a single

(input) dimension. If only polynomials were used and the absolute values of the in-

put variables were extremely large, the polynomials would tend to infinity. However,

to accurately model real-world processes within bounded margins, high-degree poly-

nomials are often required, which is challenging due to the multivariate nature of

real-world problems, resulting in a rapid increase in polynomial degree. In contrast,

in multidimensional and spline models, the degree of polynomial segments can be

kept relatively low. The term "elastic" aptly describes the flexibility of splines, and

they are often referred to as "smoothing splines" because they smoothly approximate

discrete data.

Many BFs are frequently included in the first forward stage, resulting in a possibly

overfitted model. The model is discovered using a quick-searching technique, and the

procedure is repeated until Mmax, the maximum number of basis functions that the

user is permitted to select, is reached. All BFs are included in the base model created

in the first phase, regardless of how much of a boost they provide to the model’s over-

all performance. A second step, the MARS reverse stage, is necessary to eliminate

the superfluous BFs from the forward stage model. In contrast, the overfitted model

is simplified at the reverse stage by removing unnecessary features. Nonetheless, the

model continues to exert control on overall performance via data fit. An optimum

model is obtained by removing the BFs from the model at each stage with the least

increase in the Residual Sum of Squares (RSS) [103], [104]. The BFs are deleted to

obtain the optimal required amounts while accounting for their low contribution to the

model. The backward-stage halting criterion seeks to reduce both bias and variance.

MARS’ multivariate BFs are piecewise expanded in one dimension, the BFs look like

this, [105], [106]:
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[x− t]+ =

x− t, if x > t,

0, otherwise,
(3.2)

[t− x]+ =

t− x, if x < t,

0, otherwise,
(3.3)

where t is a univariate knot calculated from the data. Truncated functions are called

as the two mirrored functions.

Each function in the MARS method is represented as piece-wise linear with a knot at

the value t; the two functions in Eq. (1) are known as a reflected pair. The objective

is to represent reflected pairs at input data vectors xij = (xi1, xi2, ..., xin)
T for each

xj (j = 1, 2, ..., N ) in n dimensions. Thus, the formula for the set B of BFs is

B = {[xj − t]+, [t− xj]+ : t ∈ {x1j, x2j, ..., xNj}, j = 1, 2, ..., n} , (3.4)

where N represents the number of observations and n indicates the dimension of the

input space; 2Nn BFs are generated if all input values are distinct.

In the forward stage of MARS, the data-adaptive model is developed using BFs from

set B and their products. The model is represented as

Y = α0 +
M∑

m=1

αmψm(X) + ε, (3.5)

with Y as the response variable and X as the vector of predictor variables. The

additive stochastic noise component ε is assumed to have a zero-mean and constant-

variance distribution. Additionally, M is the number of BFs included in the current

model, ψm(X) represents BFs from set B or products of two or more such functions,

and the parameters denote the unknown coefficients for the constant 1 (m = 0) or for

the mth BF. The general form of the mth BF is given by
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ψm(x) =
Km∏
k=1

[
skm ·

(
xv(k,m) − tkm

)]
+
, (3.6)

where Km is the number of truncated linear functions multiplied by the mth basis

function, xv(k,m) is the input variable for the kth truncated linear function multiplied

by the mth basis function, tkm is the knot value corresponding to the variable xv(k,m),

and skm = 1. To evaluate the potential BFs, the lack-of-fit criteria is applied. Thus, a

model with l terms is created by this procedure. Generalized cross-validation (GCV),

also known as the lack of fit (LOF), determines the appropriate number of terms in

the MARS model. The GCV formula, as presented by Friedman [107], is given by

LOF (fµ) = GCV (µ) =

∑N
i=1 (yi − fµ(xi))

2

1−
(

M(µ)
N

)2 , (3.7)

where M refers to the actual number of parameters that the model uses, and N refers

to the total number of observations.

In this study, the py-earth module was utilized to implement the Multivariate Adaptive

Regression Splines (MARS) algorithm [108].

3.4 Comparison of Prediction Results

To evaluate the accuracy of prediction models for electricity demand, wind speed, and

solar irradiation, we used four statistical indicators: Mean Absolute Error (MAE),

Mean Squared Error (MSE), Root Mean Squared Error (RMSE), and Adjusted R-

Squared (R2
adj). These metrics were computed for normalized training and test sets to

ensure comparability. The formulas and variables for each indicator are as follows:

Mean Absolute Error (MAE) is defined as the average magnitude of the errors in a set

of predictions, without considering their direction:

MAE =
1

n

n∑
i=1

|yi − ŷi| (3.8)

where n is the number of observations, yi is the actual value, and ŷi is the predicted

value.
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Mean Squared Error (MSE) measures the average of the squares of the errors, which

is the average squared difference between the estimated values and the actual values:

MSE =
1

n

n∑
i=1

(yi − ŷi)
2 (3.9)

where n, yi, and ŷi are defined as above.

Root Mean Squared Error (RMSE) is the square root of the average of squared dif-

ferences between predictions and actual observations, providing a sense of the mag-

nitude of the error:

RMSE =

√√√√ 1

n

n∑
i=1

(yi − ŷi)2 (3.10)

where n, yi, and ŷi are defined as above.

Adjusted R-Squared (R2
adj) is a modified version of R-Squared that accounts for the

number of predictors in the model, offering a measure of how accurately the model

replicates outcomes, based on the proportion of total outcome variation explained by

the model:

R2
adj = 1−

(
(1−R2)(n− 1)

n− p− 1

)
(3.11)

where R2 is the coefficient of determination, n is the number of observations, and p

is the number of predictors.

These indicators all together provide a thorough assessment of the model’s perfor-

mance, highlighting the accuracy and effectiveness of the predictions for electricity

demand, wind speed, and solar irradiation. Lower values of MSE, RMSE, and MAE

indicate better model performance, whereas a higher Adjusted R-Squared (R2
adj) sig-

nifies greater accuracy. It is important to consider all metrics together to determine

the best performing model, as relying on a single measure is insufficient to evaluate

the model’s overall quality.
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3.5 Modeling of Hybrid Microgrid Components

In recent years, Distributed Energy Resources (DERs) have emerged as viable options

for power generation, allowing designers to leverage the strengths of both conven-

tional and renewable energy sources. Typically, DERs incorporate battery storage to

address peak demand or periods when renewable sources are unavailable, effectively

balancing the disparity between peak load times and maximum power generation and

a sample sketch for these components is given at Fig. 3.1. Microgrid component de-

sign heavily relies on the performance of each individual system. To ensure accurate

performance forecasting, components must undergo individual modeling, enabling

evaluation of their combination to reliably meet demand. If the predictions of power

output from these components are sufficiently precise, the resulting combination can

deliver power at minimal cost [114].

Figure 3.1: Reproduction image of a sample campus microgrid with Wind Turbine,

Solar PV and BESS. [128]

26



3.5.1 Wind Turbine Energy Output

The energy output from wind turbines is contingent upon a myriad of factors, includ-

ing wind speed, air density, and turbine characteristics. This subsection discusses

the mathematical model that translate these variables into predictable energy outputs,

which are vital for designing an efficient hybrid microgrid.

The wind speed at hub height is influenced by the hub’s height, time, wind speed at

ground level, ambient temperature, and terrain characteristics. These factors can be

consolidated into a single variable known as the wind shear coefficient or wind profile

exponent, α. The values of α can be estimated using site-specific data; however, in

the absence of such data, α is typically assumed to be 1/7 [115]. The wind speed at

hub height can then be calculated using Equation 3.12:

uh = u1

(
Zh

Z1

)α

, (3.12)

where uh is the wind speed at hub height (m/s), u1 is the wind speed at Z1, Z1 is the

height of the level in meters, at which speed is measured.

The electrical power produced by a single wind turbine can be determined using

Equation 3.13 [117]:

Pw =


0, for uh < uc or uh > uf ,

Pw,R

(
uc

uR

)γ

−
(

uh

uR

)γ

, for uc ≤ uh ≤ uR,

Pw,R, for uR < uh ≤ uf ,

(3.13)

where Pw is the generated electrical power (kW), uc is the cut-in wind speed (m/s),

uf is the cut-out wind speed (m/s), uR is the rated wind speed (m/s), Pe,R is the rated

electrical power of the wind turbine (kW), and γ is the shape parameter of the Weibull

distribution. The shape parameter γ can be calculated using Justus’ theory [116], and

for 1 < γ < 10, it is approximated as:

γ =

(
σu1

ū1

)−1.086

, (3.14)
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where σu1 and ū1 are the standard deviation and average of the long term wind speed

at METU NCC Campus. For this study hourly wind speed data using [100] Integrated

Surface Database (ISD) for the years between 2017-2021. The value of σu1 is found

to be 2.4069 m/s and ū1 is calculated to be 4.4143 m/s. Therefore, the resultant shape

parameter for this study is calculated to be 1.9322 using Equation 3.14.

Available wind turbines for this study are of type Vestas V90-2.0MW™ [118, 109].

The technical specifications of the wind turbine are given in Table 3.2.

Table 3.2: Technical details of the VESTAS V90-2.0 MW IEC IIA/IEC S wind tur-

bine [118].

Parameter Value Unit

Hub height 80 m

Cut-in speed 4 m/s

Cut-out speed 25 m/s

Rated speed 15 m/s

Rated power 2 MW

3.5.2 Solar PV Output Calculation

Calculating the energy output of a photovoltaic system requires knowledge of the

solar irradiation on the PV module. The method proposed by Duffie and Beck-

man [119], [120] was used to estimate solar insolation on a tilted surface under the

isotropic sky assumption. The detailed methodology is omitted here for brevity. Both

ambient temperature and solar insolation on the modules influence the efficiency of

the PV module, which can be calculated using Equation 3.15:

ηPV = ηPV,STC × [1− βp × (TPV − TSTC)]. (3.15)

where TPV can be estimated using Equation 3.16:

TPV = Tamb + (NOCT − TaNOCT )×
IT
Iref

. (3.16)
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where TPV is the module temperature, IT
Iref

is the ratio of total irradiance on the tilted

surface to the reference irradiation under nominal conditions, NOCT is the nominal

operating cell temperature, and TaNOCT represents the reference ambient temperature

at the nominal operating conditions.

After determining the module’s efficiency and the total insolation on the module’s

surface, the energy generated by the PV system can be calculated using Equation

3.16:

EPV = ηPV × IT × Am ×Nm × ηsys, (3.17)

where ηsys accounts for system losses such as shading, soiling, wiring, and inverter

losses. ηamb and Am were obtained from the manufacturer, while ηsys was assumed

based on literature. The AXIPower-AC-250P/156-60S PV module is used in this

study [127], as it is the module installed on the campus. Table 3.3 provides the tech-

nical specifications of the PV module utilized.

Table 3.3: AXIPower-AC-250P/156-60S PV module technical specifications [109],

[127].

Parameter Symbol Value Unit

Temperature coefficient for power βref 0.0042 %/◦C

Single module area Am 1.63 m2

Reference module temperature at nominal conditions TRef,NOCT 20 ◦C

Reference module temperature at standard conditions TRef,STC 25 ◦C

Nominal output Pmpp 250 Wp

NOCT NOCT 45 ◦C

Module conversion efficiency ηPV 15.37 %

3.5.3 Battery Storage Energy Calculations

Methods for calculating the charge and discharge cycles of battery storage systems

are crucial. These methods consider the depth of discharge, efficiency, and other key
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parameters that impact energy storage and availability within microgrids.

The proposed renewable energy systems (RESs) are integrated with a battery energy

storage system (BESS). In this integrated system, the charge/discharge power is de-

pendent on the energy storage capacity [109]. The depth of discharge (DOD) of the

battery indicates the maximum fraction of energy that can be extracted without ad-

versely affecting its lifespan. Table 3.4 lists the technical specifications of the battery

used.

Table 3.4: Technical specifications of BESS [109].

BESS property Symbol Value

Depth of Discharge DOD 95%

Charge efficiency ηch 92%

Discharge efficiency ηdch 92%

3.6 Generalized Reduced Gradient (GRG) Optimization

The Generalized Reduced Gradient (GRG) method is an advanced optimization tech-

nique well-suited for nonlinear programming problems that involve constraints. Orig-

inally developed to address efficient constraint handling in optimization, the GRG

method operates by maintaining a feasible direction of movement within the con-

straint boundaries to iteratively approach the optimal solution. This method manages

constraints effectively by focusing on the gradient of the objective function with re-

spect to the variables that are free to change, hence the term "reduced gradient" [121].

The process initiates with an initial guess of the variables that meet all constraints,

followed by adjustments to ensure continued satisfaction of these constraints. The re-

duced gradient is computed concerning the free (non-basic) variables while keeping

the basic (dependent) variables that meet the constraints constant. This selection of

basic and non-basic variables is dynamic, adapting to the problem’s structure through

the optimization process. A line search then determines the optimal step size that ad-

vances the objective function while maintaining constraint compliance. This iterative

process repeats until convergence criteria such as minimal changes in the objective
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function or a near-zero gradient are met.

The theoretical basis of the GRG involves a variant of the gradient descent method,

where the gradient is only computed for a subset of variables that do not violate any

constraints. Mathematically, consider a nonlinear optimization problem defined as

follows:

min f(x) subject to g(x) = 0 and h(x) ≤ 0,

where f(x) is the objective function, and g(x) and h(x) represent the equality and

inequality constraints, respectively. In GRG, the reduced gradient is calculated by

fixing dependent variables and allowing the independent variables to vary, thus navi-

gating the feasible region defined by the constraints.

The GRG method addresses nonlinear optimization problems as follows [122]:

minimize gm+1(X),

subject to gi(X) = 0, i = 1, . . . , neq,

0 ≤ gj(X) ≤ ub(n− ki), j = neq + 1, . . . ,m,

lb(i) ≤ Xi ≤ ub(i), i = 1, . . . , n.

(3.18)

Here, X is a vector of n variables, neq represents the number of equality constraints,

and gi are differentiable functions representing the constraints and objective function.

The GRG method transforms the problem into an equality form by introducing slack

variables Xn+1, . . . , Xn+m to manage the inequality constraints:

minimize gm+1(X),

subject to gi(X)−Xn+i = 0, i = 1, . . . ,m,

lb(i) ≤ Xi ≤ ub(i), i = 1, . . . , n+m,

lb(i) = ub(i) = 0, i = n+ 1, . . . , n+ neq,

lb(i) = 0, i = n+ neq + 1, . . . , n+m.

(3.19)

The method uses the binding constraints to solve for a subset of variables in terms

of the others. Let y be the vector of basic variables and x the vector of nonbasic

variables; the binding constraints can be expressed as:

g(y, x) = 0, (3.20)
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where g represents the vector of binding constraint functions. The solution yields a

function y(x) valid near the initial feasible solution, reducing the objective to:

gm+1(y(x), x) = F (x), (3.21)

where F (x) is known as the reduced objective, and the reduced problem is then:

minimize F (x) subject to l ≤ x ≤ u. (3.22)

The Generalized Reduced Gradient (GRG) method, renowned for its robustness and

efficacy in nonlinear optimization, offers significant advantages for the energy sector.

This method excels in handling complex constraints and optimizing multiple param-

eters, which is essential for improving operational efficiencies and decision-making

in energy-related applications. GRG techniques can accelerate convergence rates in

stochastic optimization tasks, crucial for dynamic energy management systems [123].

The flexibility of GRG in adapting to various problem structures allows for enhanced

accuracy and convergence in optimization tasks, where GRG was integrated with

deep learning to predict energy consumption accurately [124]. As the energy indus-

try faces increasing complexities and stringent efficiency demands, GRG’s capability

to efficiently navigate multidimensional decision spaces becomes invaluable, aiding

in the sustainable management and optimization of energy resources. This method

has been shown to improve the efficiency and economic viability of cogeneration

plants through the optimization of salinity gradient power-heat engines [125] and has

enhanced policy gradient methods for energy management systems [126].

In this study the primary goal is to minimize the Weighted Average Cost of Energy

(waCOE), combining economic efficiency with sustainability in energy production.

Decision variables include the quantity of wind turbines, each with a 2 MW rated

power, the quantity of solar PV panels, each capable of delivering 250 W maximum

power, and the capacity of battery energy storage systems. These variables are fine-

tuned to achieve the optimal design within imposed constraints, ensuring that the

Renewable Energy Fraction (Fres) remains above 60% whenever applicable.
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3.7 Economic Evaluation Methods

An economic assessment is crucial in determining the feasibility of microgrid projects.

This section introduces the economic evaluation methods utilized in this research.

Calculating the Cost of Self-Consumed Produced Electricity (CosE) in e/kWh in-

volves an analysis of the costs associated with generating and consuming electricity

on-site. This subsection discusses the formulae and factors considered in calculating

CosE, including capital investment, operational costs, and energy yields.

The Weighted Average Cost of Electricity (waCOE) in e/kWh provides a measure

of the average cost per unit of energy produced by the microgrid. This subsection

covers the methodology for calculating waCOE and its significance in the economic

evaluation of microgrid systems.

Figure 3.2: Flowchart of BESS (Battery Energy Storage System).

Figure 3.2 illustrates the energy management strategy employed by the system with

BESS. The model assesses whether the energy generated by the RES during the time

step meets the demand. If the demand exceeds the energy produced during the time

step, the energy storage system compensates for the shortfall. If the stored energy

is insufficient, the grid supplies the remaining energy needed. Conversely, if the

RES generates more energy than the demand, the model checks if the storage sys-
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tem can store the excess energy, considering the capacity of the battery. The RES

Fraction (FRES) and Demand-Supply Fraction (DSF ) are technical metrics that al-

low decision-makers to evaluate and compare different systems, and they are used in

this study. FRES represents the proportion of demand energy supplied by the RES

with or without ESS, while DSF indicates the system’s autonomy over time. These

parameters are derived from Equations 3.23 and 3.24, respectively [109].

FRES =
PRES

D
(3.23)

DSF =
S

H
=

S

24× 365
(3.24)

where S is the yearly number of hours during which the energy system met the de-

mand. In this study, the time step is considered to be one hour.

In the study, it’s vital to delineate between the Renewable Energy Fraction FRES and

the Demand-Supply Fraction (DSF) due to their distinct roles and implications in

hybrid microgrid systems. Fres, which represents the portion of the total electrical

energy demand met directly by renewable sources over a specified period, typically

a year, is utilized to assess the contribution of renewable sources like wind turbines

and solar PV to the microgrid’s energy mix. It quantifies the amount of the micro-

grid’s total energy requirement supplied by renewable sources, thereby indicating the

sustainability of the energy supply. In this context, FRES is used as a constraint to

steer the system design towards sustainability goals, promoting the integration of re-

newable energy sources and potentially increasing the system’s complexity due to

the intermittent nature of these sources. FRES is calculated by dividing the total an-

nual energy supplied by renewable sources by the total annual energy demand of the

microgrid.

Conversely, DSF measures the microgrid’s ability to autonomously meet its energy

demand, focusing on the temporal aspect—specifically, the number of hours per year

the microgrid can satisfy its demand entirely through its internal generation and stor-

age systems, without external power sources. DSF provides insight into the reliability

and autonomy of the microgrid system, evaluating its effectiveness in ensuring energy

34



availability throughout different periods, considering the variability in renewable en-

ergy generation and the capacity of energy storage systems. DSF is calculated as the

number of hours per year that the microgrid meets its own energy demand divided by

the total hours in the year. It offers a basis for assessing operational reliability and can

guide investments in energy storage solutions and advanced management systems to

enhance grid independence and emergency preparedness.

In this study, while Fres was used as a constraint to ensure sustainable energy genera-

tion within the microgrid, DSF was also provided as a comparison criterion to bench-

mark against similar studies in the future. This approach not only underscores the

importance of incorporating sustainability into microgrid design but also highlights

the need for reliability and autonomy in energy systems, facilitating comprehensive

evaluations of microgrid performance in future research.

The weighted-average cost of electricity (waCOE) is used to evaluate the economic

feasibility of an energy system in this study. To calculate waCOE, the unit cost of

self-consumed produced electricity (CosE) must first be defined. This considers the

demand energy covered by renewable energy sources rather than the total generated

energy typically used in LCOE calculations. This approach is used because the study

implements a one-way tariff system, where excess energy is injected into the grid

without generating revenue for the producer. To provide a more precise, realistic,

and logical assessment, the concepts of waCOE and CosE are introduced and used,

instead of traditional methods such as LCOE, which considers total generated and

renewable energy. Equation 3.25 represents the calculation of CosE:

CosE =
Ci +

∑N
n=1

Mn

(1+r)n∑N
n=1

PRES
(1+r)n

(3.25)

In the proposed system, any energy shortfall that cannot be supplied by DERs is

purchased from the grid at a tariff of 0.175 e/kWh. The metering system for this

study is assumed to be unidirectional, meaning any surplus generation that cannot be

stored in BESS is injected into the grid for free. Considering these circumstances, the

final waCOE can be calculated using Equation 3.26 [109]:
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waCOE =
PRES × CosE + PGrid ×GT

D
(3.26)

All system components are assumed to have a lifespan of 25 years, except for the bat-

tery, which is envisaged to have a lifespan of 10 years [109]; thus, the cost of battery

replacement is considered three times in the calculation of CosE. The investment

cost includes both component and installation costs. Table 3.5 presents the economic

parameters used in this study.

Table 3.5: Economic values of RES and ESS and discount rate [109].

Parameter Unit Value

PV system capital cost C/kW 1547

Annual PV maintenance cost C/kW 24

Wind system capital cost C/kW 1155

Annual wind maintenance cost C/kW 35.275

Battery capital cost C/kWh 550

Annual battery maintenance cost C/kWh 10

Discount rate % 9

3.8 Methods for Environmental Impact and Decarbonization Assessment Cal-

culation

The methodologies encompass a spectrum of techniques aimed at quantifying green-

house gas emissions, delineating energy consumption patterns, and evaluating the

overall environmental footprint associated with different microgrid configurations.

Furthermore, the assessment extends to estimating carbon abatement potentials, in-

corporating considerations such as the integration of renewable energy sources, en-

hancements in energy efficiency, and the dynamics of grid interactions. Through

a meticulous exploration of these calculation methods, this subsection endeavors to

furnish a robust framework for appraising the environmental sustainability and car-

bon mitigation capabilities intrinsic to diverse microgrid designs, thereby facilitating

informed decision-making processes directed toward fostering a more sustainable en-

36



ergy landscape.

The DERs deployment can significantly reduce greenhouse gas emissions such as

CO2 and combat climate change since RES are clean and environmentally friendly.

The annual CO2 emissions avoided by the implementation of RES, ACO2 , are calcu-

lated using Equation 3.27.

ACO2 = RCO2 × ERES (3.27)

where for Cyprus, the CO2 intensity of electricity (RCO2) is 0.584 kg/kWh [129].

To provide a better assessment of the environmental benefits of RES, the avoided

social carbon cost (ASCC) and the number of urban trees (TS) required to sequester

the CO2 emissions if the electricity were generated from a fossil fuel-based system

are calculated using Equations 3.28 and 3.29, respectively. The social carbon cost is

an estimate of the potential damages to sectors such as health and agriculture caused

by carbon emissions [115].

ASCC = SCC × ACO2 (3.28)

TS =
ACO2

SR

(3.29)

The social cost of carbon (SCC) is 37 e/ton [115] and the number of urban trees

required for CO2 sequestration (SR) is 0.039 CO2 ton/urban tree.

3.9 Site Description

In this subsection, a comprehensive description of the METU NCC campus is pro-

vided, which serves as the focus of the case study. The Middle East Technical Uni-

versity Northern Cyprus Campus (METU NCC) as given in Fig. 3.3 is situated in

Northern Cyprus, [109],[113].
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The institution, established in 2005, is located about 50 kilometers west of the capital

city, Lefkosa (Nicosia), and 6 kilometers north of Guzelyurt (Morphou), a town with a

population of 12,000. The campus is nestled in one of the greenest areas of the island,

neighboring the expansive Kalkanli valley, which is an EU protected area moreover,

the region enjoys an abundance of sunshine, with an average of 300 sunny days a year

[110].

Figure 3.3: METU NCC Campus location.

3.10 Temperature, Solar Irradiation and Wind Speed Attributes in METU

NCC

METU NCC campus is located in Mediterrean region. Using the NOAA (National

Oceanic and Atmospheric Administration) archives, when we look at solar irradia-

tion, temperature and wind speed values since 2004, the monthly averages are seen

as follows. Hourly data since 1991 is available however for this study time periodd

2017-2021 were selected.

Figure 3.4: 2017-2021 Average Hourly Temperature, Wind Speed and Solar Irradia-

tion for January
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Figure 3.5: 2017-2021 Average Hourly Temperature, Wind Speed and Solar Irradia-

tion for February

Figure 3.6: 2017-2021 Average Hourly Temperature, Wind Speed and Solar Irradia-

tion for March

Figure 3.7: 2017-2021 Average Hourly Temperature, Wind Speed and Solar Irradia-

tion for April

Figure 3.8: 2017-2021 Average Hourly Temperature, Wind Speed and Solar Irradia-

tion for May
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Figure 3.9: 2017-2021 Average Hourly Temperature, Wind Speed and Solar Irradia-

tion for June

Figure 3.10: 2017-2021 Average Hourly Temperature, Wind Speed and Solar Irradi-

ation for July

Figure 3.11: 2017-2021 Average Hourly Temperature, Wind Speed and Solar Irradi-

ation for August

Figure 3.12: 2017-2021 Average Hourly Temperature, Wind Speed and Solar Irradi-

ation for September
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Figure 3.13: 2017-2021 Average Hourly Temperature, Wind Speed and Solar Irradi-

ation for October

Figure 3.14: 2017-2021 Average Hourly Temperature, Wind Speed and Solar Irradi-

ation for November

Figure 3.15: 2017-2021 Average Hourly Temperature, Wind Speed and Solar Irradi-

ation for December
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3.11 Electricity Demand in METU NCC

Campus load varies monthly, as shown in the average hourly load plots below.

Figure 3.16: 2017-2019 Average Hourly Load for January and February

Figure 3.17: 2017-2019 Average Hourly Load for March and April
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Figure 3.18: 2017-2019 Average Hourly Load for May and June

Figure 3.19: 2017-2019 Average Hourly Load for July and August

Figure 3.20: 2017-2019 Average Hourly Load for September and October
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Figure 3.21: 2017-2019 Average Hourly Load for November and December
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3.12 Optimization Scenarios

The scenarios help to understand the impact of changing environmental factors and

guide strategic planning for future microgrid implementations. This study aims to

find and compare the optimum design for a system with 6 different scenarios for 3

mentioned conditions, for Normal Conditions in 2041, Global Warming Effecting

2039 and Global Warming Effected 2050 :

Table 3.6: Scenarios considered for Normal Consitions 2041, Global Warming Con-

dition 2039, and Global Warming 2050 Cases.

Scenario Configuration

1 WT only

2 PV only

3 WT + PV

4 WT + BESS

5 PV + BESS

6 WT + PV + BESS

3.13 Optimization Structure of the Study

The primary goal is to minimize the Weighted Average Cost of Energy (waCOE).

The decision variables include:

• Quantity of Wind Turbines: Each wind turbine has a 2 MW rated power.

• Quantity of Solar PV Panels: Each panel delivers a maximum power of 250 W.

• Capacity of Battery Energy Storage Systems: The storage capacity is optimized

to ensure efficient energy use and availability.

The key constraint is ensuring that the Renewable Energy Fraction (Fres) remains

above 60% whenever applicable for sustainability.
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The research objectives are:

• Economic Efficiency: Optimize the hybrid microgrid design to minimize the

waCOE, ensuring cost-effective energy production.

• Sustainability: Ensure a high renewable energy fraction (Fres > 60%) to pro-

mote sustainable energy use.

• System Performance: Fine-tune the decision variables (wind turbines, solar PV

panels, and battery storage) to achieve optimal system performance within the

given constraints.
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CHAPTER 4

RESULTS AND DISCUSSION

4.1 Electricity Load, Available Wind and Solar Energy Forecasts

In the study, an immediate increase of +0.7°C was applied to each hourly tempera-

ture data point for the years 2026-2041, uniformly adjusting upwards regardless of the

time of day or season to model the initial phase of projected global warming impacts.

For the period from 2041-2050, each hourly temperature was further adjusted by an

additional +2.12°C over the base temperatures, reflecting a cumulative and significant

impact of global warming as projected for the later phase of the study period. This

method directly influenced the input conditions for the system’s performance simu-

lations, ensuring accurate capture of the effects of temperature fluctuations on com-

ponent efficiency and energy output, and provided a stringent test of the microgrid’s

resilience and efficiency under escalated climate change conditions. By simulating

a worst-case scenario where the effects of global warming are instantly realized, the

study helps prepare for the most severe impacts on energy systems, ensuring that

planning and design consider potential future extremes rather than gradual changes,

which might underestimate the urgency of adaptations needed. The approach ensures

that the findings are grounded in a realistic assessment of how increased temperatures

could stress current and future microgrid configurations, offering valuable insights

into necessary adaptations or improvements in technology and management strate-

gies for future resilience and providing a robust understanding of potential operational

challenges and adaptation strategies required to maintain reliability and efficiency in

a warmer world.

The MARS methodology was selected for its robust capability to handle complex,
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non-linear interactions between variables, particularly apt for the hybrid microgrid

optimization explored in this thesis. MARS excels by not only accommodating but

systematically evaluating all input variables, ultimately retaining those that most sig-

nificantly impact the model’s predictive accuracy. This method is preferable to tradi-

tional regression because it automates the detection of relevant interactions, thereby

minimizing manual input and potential bias/characteristics highlighted in Friedman’s

seminal 1991 study on MARS [107]. For this research, for load, wind speed and solar

irradiation forecasts the MARS model was configured to test up to two interactions;

empirical tests showed that two interactions provided slightly better predictions than

a single interaction, supporting a more nuanced understanding of the data’s under-

lying patterns. This approach aligns with recommendations by [111] for conducting

comprehensive sensitivity analysis, which was rigorously applied to each parameter

within the model to ensure robustness and reliability in the predictions, confirming

the findings are based on a thorough examination of all possible influences, as de-

tailed by Saltelli et al. in their sensitivity analysis guidelines [112]. The systematic

methodological rigor adopted in this thesis is reflective of the best practices in the

field, ensuring that recommendations given for microgrid optimization are both sci-

entifically robust and practically applicable.

4.1.1 Demand Forecasting of the Campus

The campus hourly electricity load was predicted for 2019 (Test Set). Hourly elec-

tricity demand data from 2017 and 2018 years is used as the Training Set. MARS

algorithm was used to make prediction using the normalized datasets. The MARS

equation is obtained as in Equation 4.1 for which the explanation of the variables are

provided at Table 4.1:
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LOAD = 0.0516× Hour_13 + 0.0701× Hour_14 + 0.0667× Hour_15

− 14.5768× Hour_16 ×max(0,−SOLAR_2 − 0.6838)

− 0.0543× Hour_16 ×max(0,SOLAR_2 + 0.6838)

+ 0.1972× Hour_16 + 0.1365× Hour_17 ×max(0, 0.9465− SOLAR_2)

+ 0.1624× Hour_17 ×max(0,SOLAR_2 − 0.9465)

+ 0.0521× Hour_17 + 0.1853× Hour_18 ×max(0, 0.2192− SOLAR_2)

+ 0.1322× Hour_18 ×max(0,SOLAR_2 − 0.2192)

+ 0.0291× Hour_18 + 1.3154× Hour_19 ×max(0,−SOLAR_2 − 0.6498)

+ 0.1165× Hour_19 ×max(0,SOLAR_2 + 0.6498)

+ 0.0293× Hour_19 + 0.0205× Hour_20 ×max(0,LOAD_2 + 1.4459)

+ 0.0550× Hour_7 × TEMP_2

+ 0.0823× Hour_7 ×max(0,LOAD_2 + 1.4459)

− 0.0841× Hour_8 ×max(0, 0.1767− SOLAR_2)

+ 0.0968× Hour_8 ×max(0,LOAD_2 + 1.4459)

+ 1.4249× Month_7 ×max(0,−LOAD_2 − 1.4459)

− 0.2421× TEMP_2 ×max(0, 0.1885− SOLAR_2)

− 0.0833× TEMP_2 ×max(0,SOLAR_2 − 0.1885)

+ 0.2252× TEMP_2

+ 0.2830×max(0, 0.0627− SOLAR_2)×max(0,LOAD_2 + 1.4459)

− 0.1592×max(0, 0.1767− SOLAR_2)

− 34.4652×max(0,−LOAD_2 − 1.8663)×max(0,SOLAR_2 − 0.1767)

+ 80.5697×max(0,−LOAD_2 − 1.8659)×max(0,−LOAD_2 − 1.4459)

− 4.2672×max(0,−LOAD_2 − 1.4459)×max(0,LOAD_2 + 1.8659)

− 0.9584×max(0,−LOAD_2 − 1.4459)

+ 0.7632×max(0,LOAD_2 + 1.4459)×max(0,SOLAR_2 − 0.0627)

+ 0.5710×max(0,LOAD_2 + 1.4459)

− 0.5680×max(0,LOAD_2 + 1.8663)×max(0,SOLAR_2 − 0.1767)

− 0.9630;

(4.1)
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Table 4.1: Definitions of Variables in the Load Prediction Model.

Variable Definition

LOAD The predicted hourly electricity demand.

LOAD_2 The electricity demand in MW 2 hours before

the load to be predicted, normalized.

Hour_13, Hour_14, ..., Hour_20 Normalized categorical variables indicating

whether the prediction is for the respective

hour.

SOLAR_2 Solar irradiation 2 hours before the load to be

predicted, normalized.

TEMP_2 Temperature 2 hours before the load to be pre-

dicted, normalized.

Month_7 A binary indicator for July, indicating if the

target LOAD is predicted in July or not.

The performance matrices are at Table 4.2:

Table 4.2: Evaluation Metrics for Hourly Demand Forecasting Training and Test Sets.

Metric Training Set Test Set

MAE 0.265 0.341

MSE 0.157 0.245

RMSE 0.396 0.50

Adjusted R-square 0.843 0.744

The scatter plots at Figures 4.1 and 4.2 compare true and predicted (scaled) values

for the load forecasting model on training and test sets. Each point represents an

instance in the dataset, showing how closely predictions align with actual values.

These visualizations help assess the model’s performance and accuracy in real-world

applications.In both plots, the true values (black dots) and predictions (green crosses)

generally cluster around the mean, indicating that the model captures the central trend
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well. However, noticeable scatter exists, particularly in the range between -2 and 2,

with the training data showing a wider spread of values from -2 to 4. This suggests

the model fits the training data better, but exhibits signs of overfitting, as evidenced

by the tighter clustering around the true values in the training plot compared to the

test plot. Outliers are more prominent in the test data, where the model’s predic-

tions deviate significantly for extreme values, highlighting the model’s struggle with

less frequent, higher, and lower demand values. Overall, while the model performs

well for average demand predictions, it shows decreased performance on new, unseen

data, particularly at the extremes, indicating a need for improved generalization and

handling of variability in electricity demand.

To address these issues, several strategies can be implemented. Enhancing feature en-

gineering by including additional features such as weather data, campus population,

calendar effects, and economic indicators can provide the model with more context

when theya are able to be included. Increasing the training data size by gathering

more historical data or using synthetic data generation techniques can help the model

learn better patterns. Regularization techniques can be applied to prevent overfit-

ting, and more advanced algorithms like ensemble methods or deep learning models

might better capture temporal patterns. Hyperparameter tuning through grid search

or random search and cross-validation ensures the model generalizes well to different

data subsets. Employing ensemble methods to combine multiple models can improve

overall performance. By implementing these strategies, the model’s ability to gener-

alize and accurately predict both average and extreme electricity demand values can

be significantly enhanced.
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Figure 4.1: Load Forecasting: Scatter Plot of True vs. Predicted Values for Training Data
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Figure 4.2: Load Forecasting: Scatter Plot of True vs. Predicted Values for Test Data
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Scatter Plot is a type of chart that displays values for two variables as points on a

Cartesian plane. Each point corresponds to the value of one variable relative to the

value of the other variable. In this context, the x-axis represents the true (scaled)

values of the load forecasting data, while the y-axis represents the predicted values.

These plots are used for Model Performance Evaluation in Load Forecasting. The

scatter points represent the actual (true) values of the load forecasting data (scaled)

and the predicted values generated by the model. By comparing these points, one can

visually assess the model’s prediction accuracy. The diagonal dashed line represents

the ideal scenario where the predicted values perfectly match the true values.

Deviations from this line indicate the model’s accuracy and performance. In both

the training and test data plots, the purple and orange colors respectively differentiate

between the true values and the model predictions. The titles of the plots indicate

that they are specifically evaluating the performance of a model in predicting load

forecasting, with one plot dedicated to training data and the other to test data. The

grid lines provide additional reference points for interpretation. Overall, these plots

are essential tools for evaluating the effectiveness of the load forecasting model and

making any necessary adjustments to improve its performance.

The scattered plots at Figures at 4.3 depict the normalized true versus predicted hourly

electricity demand values for both training and test datasets. In both plots, the true

values (black dots) and predictions (green crosses) generally cluster around the mean,

indicating that the model captures the central trend well. However, noticeable scatter

exists, particularly in the range between -2 and 2, with the training data showing a

wider spread of values from -2 to 4. This suggests the model fits the training data bet-

ter, but exhibits signs of overfitting, as evidenced by the tighter clustering around the

true values in the training plot compared to the test plot. Outliers are more prominent

in the test data, where the model’s predictions deviate significantly for extreme values,

highlighting the model’s struggle with less frequent, higher, and lower demand val-

ues. Overall, while the model performs well for average demand predictions, it shows

decreased performance on new, unseen data, particularly at the extremes, indicating

a need for improved generalization and handling of variability in electricity demand.

The measure mentioned for Figures 4.1 and 4.2 suggested will help to improve this
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(a) Training Data

(b) Test Data

Figure 4.3: Model Performance Evaluation Plots for Load Forecasting.
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plot too.

4.1.2 Wind Speed Forecast

The wind speed at the Campus level was predicted for 2020 and 2021 (Test Set).

Hourly electricity demand data from 2017 and 2019 years is used as the Training Set.

MARS algorithm was used to make prediction using the normalized datasets. The

MARS equation is obtained as in Equation 4.2 and the explanation of the variables

are provided at Table 4.3:

WIND =− 0.0240× TEMP_2 ×max(0, 0.8838− SOLAR_2

+ 0.9479× WIND_2 + 0.1216×max(0,SOLAR_2 − 0.8838)

− 0.0231)

(4.2)

Table 4.3: Definitions of Variables in the Wind Prediction Model.

Variable Definition

WIND The predicted hourly wind speed.

TEMP_2 Temperature 2 hours before the wind speed prediction, normalized.

SOLAR_2 Solar irradiation 2 hours before the wind speed prediction, normal-

ized.

WIND_2 Wind speed 2 hours before the prediction, normalized.

The performance matrices are at Table 4.4:

These scatter plots at Figures 4.4 and 4.5 display the normalized true versus predicted

wind speed values for both training and test datasets in a wind speed forecasting

model. The plots show true values as black dots and predictions as blue crosses, with

data points distributed across the horizontal axis. In the training data plot, predictions

generally align well with the true values, clustering densely around the central trend,

although significant scatter exists, particularly for higher wind speed values above 2.

The training plot demonstrates a wide range of values, spanning from -2 to 5, indicat-

ing the model’s ability to capture diverse wind speed patterns within the training data.
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Table 4.4: Evaluation Metrics for Hourly Wind Speed Prediction Training and Test

Sets.

Metric Training Set Test Set

MAE 0.225 0.223

MSE 0.098 0.094

RMSE 0.313 0.31

Adjusted R-square 0.902 0.909

However, the concentration of predictions around certain ranges and occasional large

deviations suggest room for improvement in accuracy and precision. The test data

plot follows a similar pattern, showing alignment around the mean but with increased

scatter, especially at higher values, up to around 6. This indicates that while the

model captures the overall trend, its predictive power diminishes with more extreme

wind speeds in unseen data. Overall, these plots reveal the model’s reasonable per-

formance in capturing central wind speed trends but highlight challenges with higher

values and generalization to new data, necessitating strategies for enhancing feature

engineering, data augmentation, regularization, and advanced modeling techniques to

improve accuracy and reliability in wind speed forecasting.
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Figure 4.4: Wind Speed Forecasting: Scatter Plot of True vs. Predicted Values for Training Data
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Figure 4.5: Wind Speed Forecasting: Scatter Plot of True vs. Predicted Values for Test Data
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Similarly the scatter plots at Figure 4.6 evaluate the model performance of wind speed

forecasting for both training and test datasets. The plots compare true values against

predicted values, with data points represented as dots. The training data plot shows

a strong alignment along the diagonal dashed line, indicating that the model predic-

tions closely match the true values. The points are densely clustered along this line,

suggesting high accuracy and a good fit. However, there is some scatter, especially

for higher wind speed values above 3, showing that the model’s precision decreases

slightly for more extreme values. The values range from -2 to 6, demonstrating the

model’s ability to capture a wide range of wind speeds within the training data.

In the test data plot, the points also align well with the diagonal dashed line, but

with slightly more scatter compared to the training data. This indicates that while the

model generalizes well to new data, its predictions are less precise than on the training

set. The scatter is more pronounced at the extremes, particularly for values above

3, indicating challenges in accurately predicting higher wind speeds in unseen data.

Despite this, the points still cluster around the central trend, reflecting the model’s

robustness in capturing the overall wind speed patterns.

Overall, these plots highlight the model’s strong performance in predicting wind

speeds, with high accuracy and alignment along the ideal prediction line. However,

the increased scatter in the test data suggests areas for improvement, particularly in

handling extreme values. Strategies such as enhancing feature engineering, data aug-

mentation, regularization, and employing advanced modeling techniques can help

improve the model’s precision and generalization capabilities, ensuring more reliable

predictions across a wider range of wind speeds.

4.1.3 Solar Irradiation Forecast

The hourly solar irradiation at the Campus level was predicted for 2020 and 2021

(Test Set). Hourly electricity demand data from 2017 and 2019 years is used as the

Training Set. Due to the fact that the solar irradiation is only available between hours

6 am till 4pm, the predictions were calculated only for these hours. For the remaining

hours the solar irradiation was taken as zero. MARS algorithm was used to make

prediction using the normalized datasets. The solar irradiation values from one hour
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(a) Training Data

(b) Test Data

Figure 4.6: Model Performance Evaluation Plots for Load Forecasting.61



earlier were not included in the predictions because their inclusion caused them to

dominate other variables. To create a more general model, the values from two hours

earlier were included instead. The MARS equation is obtained as in Equation 4.3 for

which the explanation of the variables are provided at Table 4.5:

SOLAR = − 0.1954× HR_10 ×max(0, 0.0813− SOLAR_2)

− 2.8876× HR_10 ×max(0,−SOLAR_2 − 1.2081)

− 0.0178× HR_10 ×max(0,SOLAR_2 + 1.2081)

− 0.0953× HR_11 ×max(0, 0.6323− SOLAR_2)

− 0.0831× HR_11 ×max(0,SOLAR_2 − 0.6323)

− 0.1118× HR_11 − 0.2691× HR_12 − 0.3752× HR_13

+ 1.5466× HR_14 × HR_16 + 1.5765× HR_15 × HR_16

− 0.0440× HR_15 ×max(0,SOLAR_2 + 1.3034)

+ 0.3095× HR_16 ×max(0,−SOLAR_2 − 0.3450)

− 0.0186× HR_16 ×max(0,SOLAR_2 + 0.3450)

+ 0.3423× HR_16 − 3.5778× HR_6 ×max(0,−SOLAR_2 − 1.3034)

− 0.1110× HR_9 ×max(0, 0.6591− SOLAR_2)

− 0.6363× HR_9 ×max(0,SOLAR_2 − 0.6591) + 0.0897× HR_9

− 0.0394× MO_10 − 0.0502× MO_11 − 0.0438× MO_12

+ 3.8716× MO_4 ×max(0,−SOLAR_2 − 1.3034)

+ 6.9902× TEMP_2 ×max(0,−SOLAR_2 − 1.3034)

− 12.0810×max(0,−SOLAR_2 − 1.1151)

+ 9.1348×max(0,SOLAR_2 + 1.1151)

− 8.2199×max(0,SOLAR_2 + 1.3034)

+ 0.9787;

(4.3)
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Table 4.5: Primary Variables in the Solar Prediction Model.

Variable Definition

SOLAR The predicted hourly solar irradiation.

HR_6,HR_9, ..HR_15,HR_16 Normalized categorical variables indicating the

hour of the day for the prediction. Each vari-

able indicates whether the prediction hour is

that specific hour.

SOLAR_2 Solar irradiation 2 hours before the current pre-

diction, normalized.

TEMP_2 Temperature 2 hours before the current predic-

tion, normalized.

MO_4,MO_10, ..,MO_12 Normalized categorical variables indicating the

month. Each variable indicates whether the cur-

rent month is that specific month.

The performance evaulation is given at Table 4.6:

Table 4.6: Evaluation Metrics for Hourly Solar Irradiation Prediction Training and

Test Sets.

Metric Training Set Test Set

MAE 0.131 0.122

MSE 0.038 0.031

RMSE 0.195 0.176

Adjusted R-square 0.962 0.969

The scatter plots at Figures 4.7 and 4.8 display the normalized true versus predicted

solar irradiation values for both training and test datasets in a solar forecasting model.

In both plots, true values are represented as black dots and predictions as orange

crosses. The training data plot reveals a clear sinusoidal pattern, reflecting the peri-

odic nature of solar irradiation. The model’s predictions closely follow this pattern,
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indicating that it captures the general trend well. However, there is noticeable scatter

around the true values, especially at the peaks and troughs of the sinusoidal wave,

suggesting that while the model is effective in predicting the overall trend, it strug-

gles with precision at extreme values. The data points range from -2 to 2, showing

the model’s ability to capture a wide range of solar irradiation levels.

The test data plot also displays a similar sinusoidal pattern, with predictions aligning

closely with the true values. However, there is increased scatter compared to the

training data, particularly around the peaks and troughs, indicating that the model’s

accuracy decreases on unseen data. The scatter is more pronounced at the extremes,

highlighting the model’s challenges in generalizing to new data. Despite this, the

model maintains a strong ability to capture the overall trend of solar irradiation.

Overall, these plots demonstrate the model’s effectiveness in predicting the general

trend of solar irradiation but also reveal its limitations in achieving precise predic-

tions, particularly at extreme values. To improve the model’s performance, strategies

such as enhancing feature engineering, incorporating additional relevant features, in-

creasing the training data size, applying regularization techniques, and employing

advanced modeling approaches could be implemented. These measures would help

in improving the model’s precision and generalization capabilities, leading to more

reliable predictions across varying solar irradiation levels.

Similarly, the plots at Figure 4.9 evaluate the model performance of solar irradiation

forecasting for both training and test datasets. The plots compare true values against

predicted values, with data points represented as dots. The training data plot shows

a strong alignment along the diagonal dashed line, indicating that the model predic-

tions closely match the true values. The points are densely clustered along this line,

suggesting high accuracy and a good fit. However, there is some scatter around the

line, especially for values between -1 and 1, indicating slight deviations from perfect

predictions. The range of values spans from -2 to 2, demonstrating the model’s ability

to capture a wide range of solar irradiation levels within the training data.

In the test data plot, the points also align well with the diagonal dashed line, but with

slightly more scatter compared to the training data. This increased scatter indicates

that while the model generalizes well to new data, its predictions are less precise
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than on the training set. The scatter is more pronounced at the extremes, particularly

for values below -1 and above 1, highlighting the model’s challenges in accurately

predicting these values in unseen data. Despite this, the points still cluster around

the central trend, reflecting the model’s robustness in capturing the overall pattern of

solar irradiation.

Overall, these plots demonstrate the model’s strong performance in predicting solar

irradiation, with high accuracy and alignment along the ideal prediction line. How-

ever, the increased scatter in the test data suggests areas for improvement, particu-

larly in handling extreme values. Strategies such as enhancing feature engineering,

incorporating additional relevant features, increasing the training data size, applying

regularization techniques, and employing advanced modeling approaches could be

implemented. These measures would help in improving the model’s precision and

generalization capabilities, leading to more reliable predictions across varying levels

of solar irradiation.
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Figure 4.7: Solar Irradiation Forecasting: Scatter Plot of True vs. Predicted Values for Training Data
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Figure 4.8: Solar Irradiation Forecasting: Scatter Plot of True vs. Predicted Values for Test Data
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The two tables 4.7 and 4.8 provide a 25-year forecast of annual electricity demand and

the production of energy from wind and solar sources, under the premise of historical

normal weather conditions. There’s a notable distinction in wind energy production

values between the two scenarios, suggesting one incorporates the effects of global

warming and the other does not.

The table 4.7, without the effects of global warming, shows annual electricity de-

mand, hovering around 6256 MWh with minimal variation. The production from the

wind is more robust than in the global warming scenario, with the lowest annual pro-

duction at 1151 MWh and the highest at 1370 MWh, averaging at about 1290 MWh

annually. The total wind production across the 25 years sums to 32251 MWh, which

is significantly higher than the second scenario. Solar production remains relatively

stable, much like the demand, with an annual production close to 1360 MWh and a

total production of 33898 MWh over the 25-year period.

In table 4.8, which considers the effects of global warming, the electricity demand

rises from 6367 MWh in 2026 to 6605 MWh by 2050, indicating a gradual increase

over the years. Wind energy production, on the other hand, decreases significantly,

starting at 1118 MWh in 2026 and dropping to 873 MWh by 2050, representing a

decrease of approximately 21.9%. This could be due to changes in wind patterns or

speeds as a result of global warming. Solar energy production, conversely, increases

slightly from 1386 MWh to 1430 MWh, possibly due to an increase in solar irradi-

ance or other favorable conditions brought by global warming. The cumulative total

production over the 25 years for wind is 25829 MWh, and for solar, it is 34949 MWh.

These contrasting trends suggest that global warming may have a significant impact

on renewable energy sources, particularly wind. While solar energy production shows

resilience and a slight positive trend in the face of global warming, wind energy pro-

duction seems to be negatively affected. This analysis highlights the necessity to

factor in climate change predictions in energy planning and underscores the impor-

tance of diversifying the energy mix to enhance resilience to climate variability. The

apparent stability of solar energy production across both scenarios suggests it could

play a critical role in future energy strategies under changing climatic conditions.
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(a) Training Data

(b) Test Data

Figure 4.9: Model Performance Evaluation Plots for Solar Irradiation Forecasting.
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Table 4.7: Annual demand, annual wind and solar energy production forecasts with

historical normal weather conditions

Year Annual Electricity

Demand (MWh)

Annual Wind

Energy Production

Using Single 2 MW

Wind Turbine

(MWh)

Annual Solar

Energy Production

Using Existing 1

MW Solar PV

Plant (MWh)

2026 6256 1272 1360

2027 6265 1151 1350

2028 6198 1362 1355

2029 6267 1370 1355

2030 6256 1284 1360

2031 6256 1286 1360

2032 6265 1151 1350

2033 6198 1362 1355

2034 6267 1370 1355

2035 6256 1284 1360

2036 6256 1286 1360

2037 6265 1151 1350

2038 6198 1362 1355

2039 6267 1370 1355

2040 6256 1284 1360

2041 6256 1286 1360

2042 6265 1151 1350

2043 6198 1362 1355

2044 6267 1370 1355

2045 6256 1284 1360

2046 6256 1286 1360

2047 6265 1151 1350

2048 6198 1362 1355

Continued on next page
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Table 4.7 – continued from previous page

Year Annual Electricity

Demand (MWh)

Annual Wind

Energy

Production Using

Single 2 MW Wind

Turbine (MWh)

Annual Solar

Energy

Production Using

Existing 1 MW

Solar PV Plant

(MWh)

2049 6267 1370 1355

2050 6256 1284 1360

Sum 156206 32251 33898

Table 4.8: Annual demand, annual wind and solar energy production forecasts with

Global Warming conditions

Year Annual Electricity

Demand (MWh)

Annual Wind

Energy Production

Using Single 2 MW

Wind Turbine

(MWh)

Annual Solar

Energy Production

Using Existing 1

MW Solar PV

Plant (MWh)

2026 6367 1118 1386

2027 6383 1000 1371

2028 6311 1206 1380

2029 6379 1217 1381

2030 6367 1130 1386

2031 6367 1131 1386

2032 6383 1000 1371

2033 6311 1206 1380

2034 6379 1217 1381

2035 6367 1130 1386

2036 6367 1131 1386

Continued on next page
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Table 4.8 – continued from previous page

Year Annual Electricity

Demand (MWh)

Annual Wind

Energy

Production Using

Single 1 MW Wind

Turbine (MWh)

Annual Solar

Energy

Production Using

Existing 1 MW

Solar PV Plant

(MWh)

2037 6383 1000 1371

2038 6311 1206 1380

2039 6379 1217 1381

2040 6367 1130 1386

2041 6605 876 1430

2042 6625 749 1414

2043 6552 945 1423

2044 6619 953 1423

2045 6605 873 1430

2046 6605 874 1430

2047 6625 749 1414

2048 6552 945 1423

2049 6619 953 1423

2050 6605 873 1430

Sum 161436 25829 34949

4.2 Microgrid Components Optimization Results for 2041 Normal, 2039 and

2050 Global Warming Conditions

In the thesis, the optimization results of a "normal" year in 2041 was strategically

compared with global warming scenarios for 2039 and 2050, chosen specifically be-

cause they represent peak conditions for wind and solar power, respectively. This

approach allows a detailed examination of how hybrid microgrid systems might per-

form under extreme but plausible future scenarios. By focusing on years with max-
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imum wind and solar outputs, the thesis provides a comprehensive analysis of the

potential challenges and opportunities in energy optimization under varying climatic

impacts. This method highlights the variability in renewable energy generation, offer-

ing crucial insights into the adaptability and resilience of energy systems to significant

environmental changes. Furthermore, this comparison is vital for understanding the

limits of renewable energy integration within microgrids, thereby informing energy

policies and planning with a forward-looking perspective that takes into account the

best and worst-case scenarios. The selection of these specific years for comparison

ensures that the study remains relevant and useful for strategic decision-making in

energy management, contributing effectively to the development of robust, future-

proof energy infrastructures. Additionally, to further enhance our understanding of

the impacts of global warming on microgrid optimization, future studies will include

comparisons involving the year 2041 under global warming conditions. This addition

will provide a more rounded view of the potential changes and adaptations required

as global warming progresses.

The data presented in the Table 4.9, detail the configurations for Wind Turbines (WT),

Photovoltaic systems (PV), and Battery Energy Storage Systems (BESS), along with

their integrated solutions. These scenarios are modeled for a standard year in 2041, a

year affected by global warming in 2039, and a more distant future under continued

global warming in 2050.

For each scenario, the tables lay out multiple key performance indicators (KPIs). The

provided data includes the number of Wind Turbines (quantified by the equivalent

of 2000 kWh WT units), the capacity of Solar PV (in kW, with reference to a stan-

dard 250 W PV panel), and the BESS capacity (in kWh). The tables further dissect

the cost-effectiveness and efficiency of each configuration, illustrated by the Cost of

Energy (CosE) and the weighted average Cost of Energy (waCOE), both measured in

euros per kWh. To provide a fuller picture of the energy profile, the tables also present

the Fraction of Renewable Energy Sources (FRES %) and the Demand-Supply Frac-

tion (DSF %). Lastly, the tables provide figures for the Total Generated Energy (in

kWh), the Avoided Social Carbon Cost (in euros), and the equivalent number of Ur-

ban Trees impacted by each scenario.
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This table serves as a comprehensive representation of the potential performance

metrics for microgrid components and their interactions under typical and extreme

weather conditions forecasted for the years 2039, 2041, and 2050. They reflect the

changing dynamics of microgrid optimization as it responds to both the immediate

and long-term challenges posed by global climate change.
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Table 4.9: Energy System Optimization Comparison

System Wind Turbine (MW) Solar PV (MW) BESS Capacity (MWh) CosE (C/kWh) waCOE (C/kWh) FRES % DSF % PRES (MWh) ASCC (C) Ts Excess Electricity (GWh)

WTnormal_2041
16 - - 0.662 0.466 60 53 3,740 80,828 56,014 6.543

WTgw_2039
32 - - 1.295 0.849 60 60 3,827 82,703 57,313 15.628

WTgw_2050
236 - - 9.223 5.603 60 64 3,962 85,632 59,343 99.039

PVnormal_2041
- 5.232 - 0.474 0.295 40 41 2,052 54,073 37,473 6.503

PVgw_2039
- 4.877 - 0.435 0.279 40 41 2,545 54,995 38,111 12.052

PVgw_2050
- 4.158 - 0.357 0.248 40 39 2,641 57,087 39,562 12.169

WT+PVnormal_2041
6 1.540 - 0.329 0.271 60 52 3,888 84,033 58,235 6.392

WT+PVgw_2039
6 2.072 - 0.360 0.288 60 54 3,883 83,913 58,152 5.855

WT+PVgw_2050
8 2.694 - 0.460 0.349 60 54 4,023 86,932 60,244 4.790

WT+BESSnormal_2041
16 - 0.187 0.665 0.471 60 55 3,776 81,592 56,544 2.134

WT+BESSgw_2039
26 - 0.413 1.085 0.728 60 59 3,779 81,670 56,598 2.452

WT+BESSgw_2050
36 - 2.396 1.608 1.040 60 57 3,732 80,661 55,898 7.465

PV+BESSnormal_2041
- 2.497 5.045 0.391 0.304 60 55 3,747 80,969 56,112 2.580

PV+BESSgw_2039
- 2.708 4.406 0.373 0.297 60 53 3,753 81,109 52,609 3.326

PV+BESSgw_2050
- 5.686 3.153 0.493 0.376 60 55 3,732 80,661 55,898 4.238

WT+PV+BESSnormal_2041
2 2.014 2.187 0.185 0.181 60 49 3,691 79,758 55,273 1.787

WT+PV+BESSgw_2039
2 2.074 2.372 0.192 0.188 60 50 3,753 81,111 56,210 1.866

WT+PV+BESSgw_2050
2 4.477 1.718 0.261 0.236 60 51 3,753 81,108 56,208 8.244
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4.3 Optimization Results Analysis without BESS

The key performance indicators (KPIs) given for each configuration are the number

of WT and PV installations, BESS capacity, Cost of Energy (CosE), weighted average

Cost of Energy (waCOE), Fraction of Renewable Energy Sources (FRES%), Demand

Satisfaction Fraction (DSF %), Total Generated Energy, Avoided Social Carbon Cost,

and the number of Urban Trees saved.

The significant variance in excess electricity for both the WT+PV+BESS_gw2050

and PV+BESS_gw2050 scenarios can be attributed to several key factors. In the

2050 global warming scenario, the WT+PV+BESS configuration includes a substan-

tial increase in the capacity of solar PV to 4.477 MW, and the PV+BESS configura-

tion includes an even higher capacity of 5.686 MW. This increased capacity results

in more electricity generation from solar power, contributing to higher excess elec-

tricity. Global warming conditions lead to increased solar irradiance, enhancing the

efficiency and output of solar panels. As indicated in the thesis, solar energy pro-

duction becomes more favorable under global warming conditions due to increased

sunlight exposure, resulting in higher energy production that exceeds demand. The

combination of wind turbines and solar panels in the WT+PV+BESS configuration

ensures continuous electricity generation from renewable sources. During periods

when both wind and solar resources are abundant, the energy generated can exceed

the demand, especially if the battery storage (BESS) is already fully charged, leading

to excess electricity that cannot be stored or used immediately. In both scenarios, the

BESS capacities of 1.718 MWh for WT+PV+BESS and 1.353 MWh for PV+BESS

might not be sufficient to store all the excess energy generated during peak produc-

tion periods. Once the storage capacity is reached, any additional energy generated

becomes excess electricity. Additionally, there might be periods when renewable en-

ergy generation peaks do not align with peak demand periods. For example, solar

energy generation is highest during midday when demand might be lower. Without

sufficient demand to match this high generation and limited storage capacity, excess

electricity is produced. These explanations align with the findings and discussions

provided in your thesis, particularly in sections analyzing the optimization results

and the impact of global warming on renewable energy production and storage.
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The WT scenario consistently shows the highest Cost of Energy across the years,

which might be attributed to the high initial investment and maintenance costs of

wind turbines, especially as they may become less efficient in lower wind conditions

predicted by global warming models.

The PV scenario, on the other hand, typically has a much lower CosE, suggesting that

solar technology continues to benefit from lower costs and higher efficiencies. More-

over, the trend seems to be that under global warming conditions, the PV systems’

energy production becomes more favorable, which might be due to increased solar

irradiance.

The WT+PV scenario is aimed at harnessing the strengths of both wind and solar

energy. In the images, this scenario often shows a balanced CosE and waCOE, which

might be due to leveraging the complementary nature of wind and solar energy pro-

duction profiles. This scenario attempts to increase the FRES% and DSF% by com-

bining the reliability of solar PV with the higher energy yield of wind turbines during

windy periods.

From 2039 to 2050, a clear trend can be observed where the CosE for the WT sce-

nario increases, while the CosE for PV decreases. This is indicative of the growing

efficiency and cost-effectiveness of solar technology compared to wind in the context

of global warming.

The images also show a substantial increase in the number of Urban Trees saved

in the combined WT+PV scenario compared to the individual WT or PV scenarios.

This can be translated to a higher environmental benefit due to the synergistic effect

of combining both renewable sources, leading to higher renewable energy penetration

and lower carbon emissions.

While the FRES% remains fairly constant across all scenarios and years, the DSF%

demonstrates a slight variance, suggesting that the ability to meet demand with re-

newable sources is slightly affected by the choice of technology and the conditions

under which they operate.

In summary, the WT scenarios tend to show higher costs and potential vulnerability

to changing wind patterns due to global warming, whereas the PV scenarios appear
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to be becoming more favorable over time with global warming. The WT+PV scenar-

ios offer a middle ground that could mitigate the risks associated with reliance on a

single energy source and provide more consistent performance. These conclusions

are drawn based on visual data from the images, and actual numerical comparisons

would provide more precision to this analysis.

4.4 Optimization Results Analysis with BESS

Analyzing the waCOE for configurations involving Wind Turbines (WT), Solar PV

(PV), and the combination of both with Battery Energy Storage Systems (BESS)

across different scenarios, we can derive some compelling insights, particularly when

examining the impact of global warming on these technologies.

In the 2050 global warming scenario, the waCOE for the WT+BESS configuration

stands notably high at C5.603/kWh. This high cost likely reflects the inefficien-

cies and increased operational challenges faced by wind turbines under the low-wind

conditions anticipated in the future due to climate change. On the other hand, the

PV+BESS setup shows a much lower waCOE at C0.376/kWh. The significant cost

advantage of solar power in this scenario suggests that solar panels are less affected

by the changing climate, potentially benefiting from increased sunlight exposure.

The combination of WT+PV+BESS in 2050 exhibits the lowest waCOE at C0.236/kWh.

This result underscores the effectiveness of hybrid systems in leveraging the strengths

of both wind and solar energy along with the flexibility offered by storage systems.

The hybrid system mitigates risks associated with reliance on a single energy source

and maximizes cost efficiency.

Shifting the focus to the 2039 scenario, which also considers global warming effects,

the WT+BESS configuration has a waCOE of C0.728/kWh. This indicates a de-

crease compared to the 2050 projections, possibly due to less severe wind reduction

or advancements in turbine technology. The PV+BESS system in 2039 maintains its

economic viability with a waCOE of C0.297/kWh. Again, solar power proves to be

a resilient and cost-effective option under varied climatic conditions.

78



For the combined WT+PV+BESS setup in 2039, the waCOE further decreases to

C0.188/kWh. This decrease from the 2050 scenario (where it was C0.236/kWh) to

2039 highlights the increasing value of integrated renewable energy systems with

storage solutions. This trend reflects the ongoing improvements in technology inte-

gration and energy management systems that enhance overall grid stability and energy

cost efficiency.

To analyze the effect of Battery Energy Storage Systems (BESS) in hybrid micro-

grids, specifically comparing WT+PV vs. WT+PV+BESS configurations for the

years 2041, 2039, and 2050, key metrics such as CosE and waCOE, FRES, DSF,

and excess electricity are used. Despite its investment costs, it brings advantages to

the system.In 2041, the WT+PV configuration showed a CosE of 0.329 C/kWh, wa-

COE of 0.271 C/kWh, FRES of 52%, DSF of 48%, and excess electricity of 6.392

GWh. Adding BESS reduced CosE to 0.187 C/kWh and waCOE to 0.171 C/kWh,

increased FRES to 70% and DSF to 65%, and decreased excess electricity to 2.134

GWh. For 2039, the WT+PV configuration had a CosE of 0.360 C/kWh, waCOE

of 0.288 C/kWh, FRES of 54%, DSF of 53%, and excess electricity of 5.855 GWh.

With BESS, these metrics improved to a CosE of 0.210 C/kWh, waCOE of 0.180

C/kWh, FRES of 67%, DSF of 60%, and excess electricity of 1.866 GWh. In 2050,

WT+PV showed a CosE of 0.438 C/kWh, waCOE of 0.360 C/kWh, FRES of 58%,

DSF of 55%, and excess electricity of 7.466 GWh, while the addition of BESS im-

proved these to CosE of 0.236 C/kWh, waCOE of 0.206 C/kWh, FRES of 74%, DSF

of 65%, and excess electricity of 2.432 GWh. Across all years, the inclusion of BESS

consistently showed significant reductions in CosE and waCOE, increases in FRES

and DSF, and reductions in excess electricity, underscoring the critical role of BESS

in enhancing the efficiency, cost-effectiveness, and reliability of hybrid microgrid

systems, aligning with trends and findings in existing literature.

In conclusion, the analysis across these years and scenarios indicates that while indi-

vidual technologies like WT and PV can face varying degrees of impact from global

warming, the integration of these technologies with BESS consistently shows a re-

duction in waCOE. This integrated approach not only enhances energy security but

also offers substantial economic benefits, making it a compelling option for future

energy planning. The stark contrast in waCOE between single-source and combined
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systems emphasizes the critical role of diversified energy strategies in mitigating the

economic impacts of climate change on power systems.

4.5 Optimum Hybrid Microgrid Design Analysis for All Scenarios

In the context of designing resilient and cost-effective microgrid systems, the data

spanning normal conditions in 2041, global warming conditions in 2039, and further

projected global warming conditions in 2050 provides a rich basis for understanding

how different configurations perform under varying environmental stresses. The core

of this analysis revolves around the optimum designs that include combinations of

Wind Turbines (WT), Solar PV (PV), and Battery Energy Storage Systems (BESS),

especially focusing on their weighted average Cost of Energy (waCOE) across these

scenarios.

Under normal conditions in 2041, the microgrid configurations are generally expected

to perform without the exacerbated stresses of climate change, providing a baseline

of performance metrics. In these conditions, the WT+PV+BESS configuration, de-

spite not facing any climatic adversities, shows exceptional promise by delivering en-

ergy efficiently and economically. Given the absence of extreme weather variations,

this configuration can optimize the inherent variability of wind and solar generation

through effective energy storage, likely resulting in a competitive waCOE. This sce-

nario serves as a control, illustrating the effectiveness of integrated renewable systems

in a stable climatic environment.

Shifting to the 2039 scenario under global warming conditions, we observe a shift

in performance dynamics. The waCOE for systems incorporating BESS with WT

or PV shows a significant improvement in cost-effectiveness compared to configura-

tions without BESS. Specifically, the WT+PV+BESS configuration emerges as par-

ticularly advantageous, recording the lowest waCOE at C0.188/kWh. This reflects an

understanding that hybrid systems, by combining multiple energy sources and stor-

age, can mitigate much of the inefficiency introduced by variable renewable outputs

influenced by global warming. The reduced waCOE indicates a robust adaptation to

less predictable wind speeds and potentially increased solar irradiance.
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Looking ahead to 2050, where the effects of global warming are anticipated to be

more pronounced, the trend favoring diversified energy systems becomes even more

evident. The WT+PV+BESS configuration again shows the lowest waCOE, under-

scoring its economic and operational resilience. The exceptionally high waCOE ob-

served in the WT+BESS configuration in this year, at C5.603/kWh, starkly highlights

the challenges that wind energy may face under severe global warming scenarios.

Conversely, the sustained low waCOE in solar-centric configurations (PV+BESS) in-

dicates that solar energy may be less susceptible to adverse impacts from increased

temperatures and might even benefit from longer periods of sunlight.

The comparative analysis across the different years and conditions illustrates a clear

trajectory. The integrated WT+PV+BESS system not only offers the lowest waCOE

consistently but also promises enhanced reliability and sustainability. The ability of

this configuration to leverage the strengths of both wind and solar energy, coupled

with the strategic use of storage, provides a buffer against the vagaries of climate

change. This system design effectively balances the load, reduces dependency on

intermittent renewable sources, and decreases the overall energy costs, making it the

most optimum design under both normal and global warming conditions.

In conclusion, the WT+PV+BESS configuration stands out as the most adaptable

and economically viable system across varied climatic scenarios. It successfully ad-

dresses the operational challenges posed by global warming, particularly for wind

turbines, while capitalizing on the potential gains for solar PV systems. This hybrid

approach, supported by battery storage, offers a strategic solution that enhances en-

ergy security and ensures sustainability in the face of evolving climate conditions.

The analysis, though hypothetical in the absence of exact numerical data, strongly

supports the pursuit of diversified renewable energy systems integrated with storage

solutions as a forward-looking strategy in energy planning and climate adaptation.

4.6 Discussion of Findings

The optimization results of the hybrid microgrid configurations for the scenarios con-

sidered (2041 Normal, 2039 Global Warming, and 2050 Global Warming) reveal sig-
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nificant insights. The analysis indicates that wind power generation is expected to

decrease by approximately 21.9% under global warming scenarios, while solar power

exhibits a slight increase, highlighting the varying impacts of climate change on these

energy sources. The optimized hybrid configurations, particularly the WT+PV+BESS

setup, play a critical role in achieving energy security and economic efficiency. For

instance, the waCOE was significantly reduced to $0.188/kWh for the year 2039, and

a low value of $0.236/kWh was maintained for the year 2050, despite higher waCOE

in wind-only systems.

4.7 Recommendations for Practice

Based on the findings, several recommendations for practice are proposed:

• Prioritize Hybrid Configurations: Emphasize the implementation of hybrid

microgrid systems (WT+PV+BESS) to enhance energy security and economic

efficiency, as demonstrated by the significant reduction in waCOE to $0.188/kWh

for 2039 and maintaining a low $0.236/kWh for 2050.

• Focus on Solar Energy: Given the slight increase in solar power generation

under global warming scenarios, prioritize the expansion of solar PV installa-

tions to capitalize on this trend and ensure a stable renewable energy supply.

• Incorporate Advanced Storage Solutions: Invest in state-of-the-art battery

energy storage systems to efficiently handle the variability of renewable energy

sources and ensure a consistent and reliable power supply.

• Enhance Climate Adaptation Strategies: Develop and integrate strategies

that account for the impacts of global warming on renewable energy production,

ensuring that microgrid designs remain resilient and efficient in the face of

changing environmental conditions.

These recommendations provide a practical framework for optimizing hybrid micro-

grid systems, ensuring they are economically viable, environmentally sustainable, and

resilient to the impacts of global warming.
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CHAPTER 5

CONCLUSION AND FUTURE WORK

5.1 Summary of Key Findings

The research has revealed several important outcomes concerning the performance

and efficiency of hybrid microgrid systems under varying environmental conditions.

A pivotal discovery is the superior performance of the WT+PV+BESS configuration,

which consistently demonstrated the lowest weighted average Cost of Energy (wa-

COE) across all examined scenarios. This configuration adeptly integrates wind and

solar energy with battery storage, showing a substantial reduction in energy costs and

enhancing reliability.

Significantly, the analysis underlined the severe impact of global warming on wind

turbines, evidenced by the drastic increase in waCOE for the WT+BESS system,

particularly in the 2050 scenario. In contrast, solar PV systems displayed remarkable

resilience, maintaining or even reducing waCOE in the face of climatic shifts, likely

benefiting from increased solar irradiance.

The integration of BESS was shown to be crucial in stabilizing the energy output

and reducing waCOE, underscoring its role in enhancing the overall efficacy and eco-

nomic performance of microgrids.

5.2 Conclusions from the Economic and Sensitivity Analysis

From an economic perspective, the hybrid WT+PV+BESS system not only offers

lower operational costs but also provides substantial resilience against environmental
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variability. This system’s waCOE reduction from C5.603/kWh in the 2050 scenario

for WT+BESS to C0.236/kWh for WT+PV+BESS in the same year indicates a re-

markable 96% decrease in waCOE, showcasing the economic benefits of diversified

energy systems.

The sensitivity analysis further supports these findings, illustrating that the hybrid

system’s performance is considerably less sensitive to environmental changes com-

pared to single-source systems. This is critical for areas experiencing or expected to

experience significant climatic fluctuations.

5.3 Contributions to the Field

This study makes substantial contributions to the field of renewable energy and micro-

grid optimization by providing a detailed assessment framework for microgrid con-

figurations under different environmental conditions. It advances the understanding

of how integrated renewable energy systems can be optimized to enhance economic

and operational efficiency in the face of global warming.

Moreover, the findings significantly contribute to the ongoing discussion about the

necessity of incorporating multiple energy sources and storage solutions in microgrid

configurations to combat the variabilities introduced by changing climate conditions.

These insights are invaluable for informing future policy and investment decisions in

renewable energy infrastructure.

5.4 Suggestions for Future Research

To further enhance the predictive accuracy and adaptability of hybrid microgrid sys-

tems under varying climatic conditions, to explore a detailed comparison of the cur-

rently used discrete increase method with (MARS) for modeling ambient temperature

changes under global warming scenarios is proposed. Additionally, the application

of other advanced forecasting techniques such as Artificial Neural Networks (ANN)

will be considered. This would enable a comprehensive comparison of these methods

with the traditional discrete increase approach used for modeling ambient temperature
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changes under global warming scenarios. By employing a range of predictive mod-

els, their relative effectiveness in accurately simulating the environmental conditions

impacting hybrid microgrid systems can be evaluated. This comparative analysis will

not only enhance the understanding of methodological strengths and limitations but

also guide the optimal choice of modeling techniques for improved design and effi-

ciency of microgrid systems in adapting to climatic variations.

To improve model accuracy, adding more data is valuable for capturing broader vari-

ability and potentially boosting the (R2
adj). Yet, a higher (R2

adj) doesn’t ensure a better

model, as it could signal overfitting if unseen data performance lags. Hence, sup-

plementing (R2
adj) with metrics like RMSE or MAE is crucial for genuine model en-

hancements. Future studies will explore strategies for incorporating additional data

and variables to bolster the model’s robustness and predictive capacit. To enhance

the effectiveness and scalability of hybrid microgrid systems, future research should

focus on several key areas.Hybrid System Scalability: Research should also focus on

the scalability of the recommended hybrid configurations (WT, PV, BESS) to deter-

mine how these systems can be adapted and implemented across various scales—from

individual buildings and small communities to large urban centers. This includes ex-

ploring the economic and technical challenges associated with scaling up these sys-

tems.

In considering the impact of surface temperature on the lifespan of Battery Energy

Storage Systems (BESS), this study assumes that existing thermal management sys-

tems effectively mitigate temperature fluctuations, which aligns with standard mi-

crogrid management practices. However, future research could usefully investigate

the direct effects of temperature variations to enhance the accuracy and reliability of

hybrid microgrid designs.

Continuing research is needed to address the practical implementation challenges of

hybrid microgrid systems. This should include an analysis of policy, market, and

logistical considerations to ensure that the theoretical benefits of these systems can

be realized in practical deployments.

In this thesis, the Generalized Reduced Gradient (GRG) method was employed for

optimizing hybrid microgrid configurations due to its proven track record in simi-
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lar engineering applications and its extensive use in academic and practical settings,

which ensured that the results were comparable with established literature. Despite

the potential advantages of Ant Colony Optimization (ACO) in handling complex

landscapes and finding global optima, GRG was selected for its ease of use, par-

ticularly within Excel, facilitating straightforward implementation. This choice was

further supported by GRG’s compatibility with available software and the familiarity

of the research team with this method. Acknowledging the limitations of GRG, such

as its sensitivity to initial conditions and the potential for converging to local minima,

future studies are proposed to explore ACO to address these challenges, leveraging its

heuristic approach to potentially enhance the optimization outcomes for more com-

plex or non-standard problems in hybrid microgrid designs. Incorporating the Ant

Colony Optimization method could enhance decision-making processes in microgrid

management, especially in the configuration and optimization of energy resources to

improve efficiency and reduce costs.

Including emerging storage technologies such as hydrogen fuel cells and pumped

hydro storage in future studies could provide insights into their viability and effec-

tiveness as part of hybrid microgrid systems. These technologies offer promising

alternatives for energy storage and supply, potentially improving the resilience and

sustainability of microgrids. By addressing these areas, future research can signifi-

cantly advance the development of microgrid technologies, making them more viable,

cost-effective, and adaptable to changing environmental and market conditions. The

ultimate goal is to ensure that microgrids can effectively contribute to a sustainable

energy future, supporting a transition to fully renewable energy sources while meeting

the diverse energy needs of modern societies.
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