
Design tactics for tailoring transformer architectures to cybersecurity
challenges

Cigdem Avci1 • Bedir Tekinerdogan1 • Cagatay Catal2

Received: 14 August 2023 / Revised: 4 January 2024 / Accepted: 10 February 2024
� The Author(s) 2024

Abstract
In the rapidly evolving landscape of cyber threats, effective defense strategies are crucial for safeguarding sensitive

information and critical systems. Deep learning methods, notably the Transformer architecture, have shown immense

potential in addressing cybersecurity challenges. However, customizing, and adapting Transformer architectures for

cybersecurity applications presents a challenge, demanding the utilization of effective strategies to achieve optimal

performance. This study presents a comprehensive analysis of design tactics employed in tailoring Transformer archi-

tectures specifically for cybersecurity problems. Design tactics, defined as strategic solutions to architectural challenges

based on well-justified design decisions, are explored in-depth within the context of cybersecurity. By examining the

modifications and adaptations made to the original Transformer architecture, this study unveils the design decisions and

strategies crucial for successful implementation in diverse cybersecurity domains. The findings emphasize the significance

of aligning design tactics with the unique business requirements and quality factors of each specific application domain.

This study contributes valuable insights into the utilization of design tactics for customizing Transformer architectures in

cybersecurity, paving the way for enhanced defense strategies against the dynamic and evolving nature of cyber threats.

Keywords Cybersecurity � Transformer architectures � Neural networks � Design tactics

1 Introduction

The realm of cybersecurity plays a pivotal role in our

interconnected world, where the proliferation of connec-

tivity has led to a parallel evolution of cyber threats and

attacks. In this landscape, organizations and individuals

grapple with ongoing challenges to ensure the security of

software systems and the safeguarding of sensitive infor-

mation against malicious activities. The aim is to attain the

benchmarks of confidentiality, integrity, and availability.

As cyber threats advance, it becomes imperative to

enhance and adapt cybersecurity measures and strategies in

tandem with emerging technologies. The goals encom-

passed by cybersecurity span preventive, detective, and

responsive actions, encompassing the safeguarding of

software systems, networks, and data. This encompasses

aspects like authorization, authentication, and guarding

against unauthorized access, manipulation, and data

destruction. Notably, cyber-attacks can result in detrimen-

tal financial losses and reputational harm, underscoring the

pressing need for robust defense strategies capable of early

detection, mitigation, and neutralization of cyber threats.

In order to confront the cybersecurity challenges,

machine learning, which is a subfield of artificial intelli-

gence, is widely used. Consolidating algorithms, statistical

models and data, machine learning techniques identify

patterns of cyber threats and provide relevant information

in real time. As an area of machine learning, deep learning

techniques gained significant role and attention in cyber-

security field, being able to process with complex features

from unstructured data.

& Bedir Tekinerdogan

bedir.tekinerdogan@wur.nl

Cigdem Avci

cigdem.avci@wur.nl

Cagatay Catal

ccatal@qu.edu.qa

1 Wageningen University and Research, Information

Technology Group, Wageningen, The Netherlands

2 Department of Computer Science and Engineering, Qatar

University, Doha, Qatar

123

Cluster Computing
https://doi.org/10.1007/s10586-024-04355-0(0123456789().,-volV)(0123456789().,- volV)

http://crossmark.crossref.org/dialog/?doi=10.1007/s10586-024-04355-0&amp;domain=pdf
https://doi.org/10.1007/s10586-024-04355-0


In the deep learning field, the transformer architecture is

one of the effective state-of-art techniques. Initially, the

transformer architectures are used for natural language

processing tasks, consequently it is proven that transformers

are also applicable and has significant performance when

used in capturing dependencies and relations in sequences.

Apart from language processing, transformer architectures

are applicable to computer vision, time series analysis and

cybersecurity. In order to use transformer architectures,

modification and adaptation is required at the architecture

design and the implementation level for considering the

quality factors and criteria of the application domain.

To support design decisions, the notion of design tactics

have been introduced that refer to strategic approaches and

solutions employed to address specific challenges and

make informed decisions during the design and develop-

ment of a system or architecture. These design tactics are

based on well-justified design principles, often aiming to

optimize certain quality attributes or meet particular

requirements. Design tactics guide architects and designers

in making choices related to the structure, components,

interactions, and configurations of a system, ensuring that it

fulfills its intended goals and functions effectively.

Several studies have discussed specific design solutions for

designing transformer architectures, but no explicit and

comprehensive study has been performed that identifies and

synthesizes the key design tactics for tailoring transformer

architectures for cybersecurity systems. To this end, the goal

of this study is to explore and analyze the design tactics

employed in customizing Transformer architectures to

address cybersecurity challenges. By investigating the modi-

fications and adaptations made to the original Transformer

architecture, this research aims to provide comprehensive

insights into the effective utilization of design tactics.

Understanding and identifying these design tactics will

facilitate the development of tailored and efficient cyberse-

curity solutions capable of detecting, analyzing, and mitigat-

ing emerging threats. Through this exploration, the study aims

to contribute to the advancement of the field by providing

valuable knowledge and guidance in the customization of

Transformer architectures for cybersecurity applications.

The remainder of this paper is organized as follows:

Sect. 2 provides an overview of cybersecurity challenges

and the role of machine learning, particularly deep learn-

ing, in addressing these challenges. Section 3 presents the

Transformer architecture and its applications in various

domains, highlighting its potential in cybersecurity. Sec-

tion 4 delves into the concept of design tactics and their

importance in customizing Transformer architectures for

cybersecurity. Section 5 discusses specific design tactics

employed in the customization of Transformer architec-

tures for cybersecurity applications. Section 6 presents a

case study to illustrate the application of design tactics in a

real-world cybersecurity scenario. Section 7 reviews rela-

ted work in the literature. Finally, Sect. 8 concludes the

paper, summarizing the contributions and outlining

potential future research directions.

2 Background

To establish a solid foundation for subsequent discussions,

this section explores the divergences from the original

Transformer architecture and provides a comprehensive

understanding of its implications.

2.1 Cybersecurity

Cybersecurity encompasses a broad field, focused on safe-

guarding the confidentiality, integrity, and availability of

information. As technology advances and networks expand

their reach, the significance of cybersecurity grows, pro-

tecting sensitive data and software systems from potential

threats. This domain encompasses various areas, including

information security, application security, network security,

and internet security. Information security concentrates on

shielding data, curtailing unauthorized access, and uphold-

ing confidentiality. Application security seeks to fortify

software against vulnerabilities and malicious attacks. Net-

work security aims to ensure the safety of computer net-

works, detecting malware and thwarting unauthorized entry.

Internet security, on the other hand, safeguards online

communications, transactions, and activities.

Cyber threats are observed across society, affecting

individuals and organizations alike. A spectrum of issues,

from malware and social engineering to ransomware and

phishing, underscore the multifaceted challenges in

cybersecurity. The consequences of these attacks span

reputational harm, financial losses, disruption of vital ser-

vices, and even legal repercussions. Keeping pace with

evolving technological trends and the widespread impact of

cyber threats demands cybersecurity systems that are

continuously updated and enhanced. To establish effective

defenses, routine security assessments are essential.

Employing expert threat detection systems and promoting

user awareness through education are vital measures in this

pursuit. Achieving the desired level of cybersecurity

impact necessitates collaboration among stakeholders,

including private organizations, government bodies, indi-

viduals, and professionals. Establishing cooperation and

information sharing, guided by international standards and

best practices, becomes a cornerstone for developing suc-

cessful cybersecurity policies within an organization.

In recent times, artificial intelligence (AI) and machine

learning (ML) have emerged as promising assets within

cybersecurity systems. AI/ML-powered solutions enable

Cluster Computing

123



automated threat detection, anomaly recognition, and intelli-

gent response mechanisms that identify and mitigate cyber-

attacks. This technology-driven approach bolsters human

capabilities by efficiently processing vast amounts of data.

However, it’s essential to note that even with these advance-

ments, resilient systems and advanced defense strategies

remain essential, as attackers continually innovate new

techniques.

2.2 Transformer Architectures

Transformer architectures form revolutionary models in

deep learning for processing sequential data. Being applied

initially for natural language processing solutions, trans-

formers have a wide range of application domains one of

which is cybersecurity. Transformer architectures’ self-at-

tention mechanism separates it from traditional sequential

models such as recurrent neural networks (RNNs).

Self-attention mechanism enables the model to weight

the importance of the elements in a sequence while pro-

cessing the sequence simultaneously. The transformer

architecture effectively identifies long range dependencies

by capturing the global dependencies and relationships.

This leads to improved task performance for tasks that

require to have a context and relationship understanding.

Self-attention layers are the core of transformer architec-

tures. They are the enablers of the model so that each

element in the sequence can be assigned weights based on

its relevance to other elements. Self-attention enables

model to dynamically focus on important features. It

weights the features and enhances the model ability such

that the context and dependencies are captured.

A transformer architecture consists of an encoder and a

decoder component. Processing the input sequence, the

encoder generates a representation which encodes the

sequence’s contextual information. Subsequently, the new

representation which is called as the hidden state is used by

the decoder while generating an output sequence. Both the

encoder and the decoder can be formed of multiple layers,

that perform self-attention and feed forward network

operations. Positional encoding is also used in transformer

architecture for capturing the sequential order of the input

elements. With positional encoding, the model can differ-

entiate the elements considering their positions within the

sequence. Therefore, the explicit recurrence or convolution

operations are not required for transformer architectures.

To preserve the temporal characteristics of the data and

understand its sequential nature, positional information is

vital. An important advantage of the transformer architec-

ture is that it can be functioning in parallel such that all

elements in the sequence can be processed simultaneously,

which is a difference of transformer architecture from

RNNs. Functioning in parallel, the implementation

performance is improved during training and prediction

and improves efficiency for large-scale applications. The

transformer architecture is proven to have a state-of-art

performance in tasks such as classification and prediction.

Not only in natural language processing where it is initially

applied for tasks such as machine translation, sentiment

analysis, but also for tasks in image classification, object

detection and image generation it has shown to have suc-

cessful outcomes. For time series analysis, transformer

architectures are applied for forecasting, anomaly detection

and signal processing.

Transformer architectures have a significant potential for

improving cyber defense strategies in the field of cyberse-

curity. For detecting malicious patterns in network traffic,

analyzing system logs for anomaly detection, and identify-

ing patterns in cybersecurity data, transformers can be used.

With their contextual understanding ability and adaptability,

transformer architectures can be utilized for more effective

and accurate threat detection and response systems.

Following a sequence-to-sequence paradigm, the vanilla

transformer architecture consists of a stack of identical

encoders and decoders (Fig. 1). In this architecture, the

encoder blocks are composed of a multi-head self-attention

module and a position-wise feed-forward network (FFN).

The augmentation with a residual connection enables the

formation of deeper transformer models. This way the

information flows directly through the module. Afterwards,

a layer normalization module ensures improvement of

training stability and enables faster convergence [1].

The encoder layer of the transformer architecture converts

the input sequence to a continuous representation while it

preserves the learned information. The modules that the enco-

der layer consists of are the multi-headed attention module and

the fully connected network. Since the encoder can be com-

posed multiple stacked blocks, it can learn different attention

representations with distinct parameters in each block.

The vectors sequentially progress through the encoder

stack of the encoder layer. As the input vector arrives amulti-

head attention layer with the self-attention mechanism, it

flows towards residual connection and layer normalization.

A combination and normalized form of the outputs of the

multi-head attention is formed. Afterwards a feed-forward

network is applied with a residual or skip connection.

Eventually, an addition and normalization step is imple-

mented. BERT (Bidirectional Encoder Representations from

Transformers) [3] is an example of an encoder-only trans-

former. Using BERT, the capability of the transformer

encoder architecture is presented for capturing bidirectional

context in natural language processing tasks with advanced

language understanding and generation capacities.

Decoder layer also has importance for transformer

architectures from the aspect of generating output

sequences. It possesses auto-regressiveness, since as input,

Cluster Computing

123



it utilizes both the previous outputs and the output of the

encoder layer. Decoder layer forwards the input sequences

to the positional embedding layer to have the positional

embedding vectors as an output that includes the sequential

information. Afterwards these output vectors are directed

to the multi-head attention layer to calculate the attention

scores. Decoder layer can have multiple multi-headed

attention layers and for each sub-layer residual connec-

tions, feed forward layers and layer normalizations are

presented in the architecture. In this way, a decoder stack

having multiple decoder blocks with different parameters

can be formed. The shape of the input and output vectors is

sustained through the decoder stack.

While the multi-headed attention layers in decoder are

similar to the ones in encoder, they can function on dif-

ferent tasks depending on the requirements of the appli-

cation. Linear layer can be utilized for classification tasks

and the softmax function can be used to calculate the

classification probabilities. A look-ahead matrix is com-

pleted with an attention score matrix such that the decoder

layer does not condition on future input tokens. As a result,

the attention of the decoder is on the available information

at each time step. GPT-2, GPT-3 and GOPHER are

Fig. 1 Vanilla transformer architecture [2]

Cluster Computing

123



decoder-based architectures and examples of transformer

models which demonstrate decoder capabilities including

but not limited to language modelling, natural language

understanding, and text generation. Furthermore, an

example of a multimodal decoder-only transformer is

GATO (Generative Adversarial Transformer for Objects),

which facilitates visual information for tasks using images

and text [3]. Decoder-based transformer models also have

significant performance indicating the adaptability and

effectiveness of transformer architectures.

2.3 Design tactics

The concept of design tactics that is applied in this study

for transformer architectures has been adapted from soft-

ware design methods. They are high-level design decisions

to reach the identified criteria for the quality factors and

target performance [41]. The tactics are used as options for

design and cover lower-level design decisions for the

architects to meet the functionality and quality require-

ments of the system [5]. In order to address the identified

design challenges and guide the design process for

achieving the target outcomes, the design tactics are dili-

gently formed.

Design tactics are also helpful during software integra-

tion while selecting among the existing software compo-

nents [41]. Using design tactics, a systematic approach is

applied for design decision making and this way the

architects can select suitable strategies to meet the quality

requirements [6]. The well-documented design tactics are

presented as best practices and generic solutions for com-

mon design problems and constructing design patters gui-

ded by the design tactics for reuse [6].

To apply the design tactics, the trade-offs between dif-

ferent design choices, the desired quality attributes and the

constraint about the target problem shall be considered.

Implementation approaches, architectural modifications,

system behaviors adapted for optimization of performance

and effectiveness are guided by the design tactics for the

design solution.

Design tactics emerge as a key methodology in tailoring

transformer architectures catered to cybersecurity chal-

lenges. By seamlessly aligning the transformer architecture

with the requisites of cybersecurity solutions, these tactics

serve as guiding principles throughout the customization

and adaptation process. They intricately steer the modifi-

cations and refinements of transformer architectures,

meticulously steering them towards the desired cyberse-

curity outcomes and the criteria mandated by the identified

quality factors [4]. Elevating the significance, the utiliza-

tion of design tactics earmarked for transformer architec-

tures tailored to cybersecurity solutions holds tremendous

promise. Researchers and practitioners, leveraging these

tactics, can effectively construct bespoke applications

adept at not only detecting, but also scrutinizing and

defusing cyber threats. As an approach to software design,

design tactics proffer a structured and methodical route,

intricately navigating the complexities inherent in adapting

transformer architectures for cybersecurity purposes.

3 Problem statement

In the literature, various transformer architectures have

been proposed, some of which are described in [1] and [7].

The choice of a specific transformer architecture depends

on the problem at hand. Based on the identified features

and the surveys conducted in [1] and [7], transformers can

be categorized according to their implementation area and

structure. In [1], a taxonomy for transformers is introduced,

considering three perspectives: architectural modification,

pre-training, and applications. [1] highlights the improve-

ments in transformers with respect to model efficiency,

model generalization, and model adaptation. One of the

addressed challenges in [1] is the use of sparse attention

variants, which reduce computational complexity and

address overfitting by introducing structural priors on the

input data. Transformers can be used in three ways: as

encoder-decoder models, encoder-only models, and deco-

der-only models. Furthermore, [1] discusses the taxonomy

of transformers, exploring module-level, architecture-level,

and application-level variations, as well as pre-trained

models. At the module level, variations include activation

functions, capacity enlargement, dropping of the feed-for-

ward network module, module placement, substitution,

normalization-free models, sparse or linearized attention,

query prototyping, memory compression, low-rank self-

attention, attention with prior knowledge, improved multi-

head attention, absolute position attention, relative position

attention, other representations, and implicit representa-

tions. Architecture-level variations include cross-lock

connectivity, adaptive computation time, recurrency and

hierarchy, and alternative architectures [1]. Pre-trained

encoder, decoder, and encoder-decoder models are pre-

pared, and their applications can be observed in text,

vision, audio, and multi-modal data systems. In [7], the

taxonomy of the self-attention design space is presented,

focusing on self-attention in vision models. Existing

approaches based on self-attention encompass both single-

head and multi-head self-attention. Single-head self-atten-

tion includes techniques such as non-local attention,

crisscross attention, local relation nets, and attention aug-

mented CNN within convolutional neural networks

(CNNs). It also includes self-attention as a stand-alone

primitive, such as stand-alone self-attention and vector

attention. For multi-head self-attention, various design

Cluster Computing

123



approaches for vision tasks are listed, including uniform

scale vision transformers (e.g., vision transformer, data-

efficient transformer, token-to-token transformer, trans-

former-in-transformer, cross-covariance image transform-

ers), multi-scale vision transformers (e.g., pyramid vision

transformer, segformer, swin transformer, crossformer,

focal transformer), hybrid vision transformers with con-

volutions (e.g., convolutional vision transformer, compact

convolutional transformer, local vision transformer, LeVit,

ResT, NesT), and self-supervised vision transformers (e.g.,

DINO, MoCo v3, EsViT) [7]. These variations demonstrate

the diverse design possibilities and applications of self-

attention in vision models.

The systematic analysis of the reasons behind selecting a

specific transformer architecture is crucial, considering the

numerous applications available that align with the

research focus of this study. Therefore, in this study, we

aim to provide an in-depth exploration of the design tactics

used in designing transformer architectures specifically for

cybersecurity problems. As previously mentioned, design

tactics are applied to address identified quality factors. In

the context of cybersecurity, we introduce design tactics

specifically tailored for transformer architectures.

4 Research method

Our research methodology follows a domain-oriented

approach with distinct domain and application phases

[8–10]. In the domain phase, we gathered cybersecurity

domain problem categories and related quality factors and

consequences while identifying variations within the

transformer architecture design and forming a set of design

tactics. Once the domain phase reached maturity, we

moved into the application phase, where for the selected

problem, quality factors were introduced to select the rel-

evant design tactics and tailor the application implemen-

tation to create a desired research application. The

implementation process of the resulting application is

presented with a case study where the tailoring approach

for the design of the transformer architecture is discussed,

and the experimental results are presented.

To accomplish our research objectives, we followed the

outlined steps:

1. We collected studies on transformer architectures that

incorporated architectural modifications or

enhancements.

2. We identified design tactics that were specific to

transformer architectures, considering their application

in the cybersecurity domain.

3. We grouped the identified tactics according to the

categories of transformer architectures.

4. For each design tactic, we described the design

decisions made and provided the rationale behind

those decisions.

5. We defined the specific problems addressed by each

design tactic and described the corresponding

solutions.

6. We mapped each design tactic and its corresponding

adaptation/modification to the vanilla transformer

architecture, establishing a clear connection between

the original architecture and the customized variants.

By following this systematic approach, we aim to con-

tribute to the understanding of design tactics and their

application in transformer architectures for cybersecurity

problems. This research provides insights into the adapta-

tion and modification of transformer architectures, offering

valuable knowledge for researchers and practitioners

working in the field of cybersecurity and deep learning.

Table 1 lists the selected papers together with the design

tactics. In the following section, we will describe the

design tactics listed in Table 1 per selected study.

For the case study section, the research method we have

followed for data collection, model training, and validation

processes are as follows:

• Data Collection: The selection criteria for the datasets is

that the dataset shall be used successfully in a research

implementation and alpha-numerical. Datasets men-

tioned and made public by two studies have been used

[26, 27].

• Model Training: The models are run up to 10 epochs.

‘‘adam’’ (a stochastic gradient descent method) is used

as the optimizer, and ‘‘binary_crossentropy (cross-

entropy loss between true labels and predicted labels)’’

is used for the loss function.

• Validation: The datasets are split into train (75%) and

test (25%) data and the test data is used for validation

purposes. The metrics for the experiments are precision,

recall, and f1_score.

5 Design tactics for transformer
architectures

In this section we will first provide a template for

describing the design tactics for tailoring transformer

architectures for cybersecurity. This is followed by a

description of a feature model that defines the common and

variant features of the transformer architecture solutions.

Finally, we will present each of the design tactics using the

tactic template.

Cluster Computing

123



5.1 Tactic template

The selected studies serve as a basis for defining each tactic

as derived from the architecture described in the corre-

sponding research. For each design tactic, a template is

used to provide the details of the tactic in a structured way.

The template is shown in Table 2.

Each design tactic in the transformer has a unique

identifier to distinguish it from others. These tactics are

specifically designed to address various cybersecurity

problems, including:

• Web Defacement: An attack that modifies the visual

appearance of a website or web page.

• SMS Spam: Unwanted messages, particularly advertis-

ing, targeted towards text messaging or other mobile

communications services.

• Malware Detection: Identifying and mitigating harmful

software designed to damage computers, servers,

clients, or computer networks. Malware can leak

Table 1 Selected papers and tactics

# Title Tactics

1 Scalable Detection of Promotional Website Defacements in Black Hat SEO

Campaigns [11]

Tactic 1: Tag-aware bidirectional encoder (T-

BERT)

2 Lightweight URL-based phishing detection using natural language processing

transformers for mobile devices [12]

Tactic 2: Pre-trained transformer models available

for immediate use

3 A Spam Transformer Model for SMS Spam Detection [13] Tactic 3: Memory

4 Generating Fake Cyber Threat Intelligence Using Transformer-Based Models [14] Tactic 4: Pre-trained model GPT-2 with fine tuning

5 URLTran: Improving Phishing URL Detection Using Transformers [15] Tactic 5: Byte pair encoding (BPE) tokenizers

6 Training Transformers for Information Security Tasks: A Case Study on Malicious

URL Prediction [16]

Tactic 6: An auxiliary auto-regressive loss function,

balanced mixed objective training

7 Cascaded Multi-Class Network Intrusion Detection with Decision Tree and Self-

attentive Model [17]

Tactic 7: Integrating decision tree and feature

tokenizer (FT)-transformer

8 MalBERT: Using transformers for cybersecurity and malicious software detection

[18]

Tactic 8: Source code as a set of features

9 Self-supervised and interpretable anomaly detection using network transformers [19] Tactic 9: Network transformer (NeT)

10 An Accuracy-Maximization Approach for Claims Classifiers in Document Content

Analytics for Cybersecurity [20]

Tactic 10: ClaimsBert

11 Towards the evolutionary assessment of neural transformers trained on source code

[21]. Learning and evaluating contextual embedding of source code

Tactic 11: Code Understanding BERT (CuBERT)

12 Attack Tactic Identification by Transfer Learning of Language Model [22] Tactic 12: Packet embedding method-based

language model (PELAT)

13 Network Intrusion Detection via Flow-to-Image Conversion and Vision Transformer

Classification [23]

Tactic 13: Vision transformer (ViT)

14 Detection of false data injection attacks in smart grid: A secure federated deep

learning approach [24]. XTM: A Novel Transformer and LSTM-Based Model for

Detection and Localization of Formally Verified FDI Attack in Smart Grid [25]

Tactic 14: SecFed-Transformer (secure federated

learning)

Table 2 Tactic description template

Title Description

Transformer Design Tactic Name Tactic name

Cybersecurity problem The known area of application where the tactic is implemented

Quality factor Quality factors that lead the design strategy to different design tactics

Aim of Transformer Modification/Adaptation The goal of the modification/adaptation

Design decision The design decisions related to the design of the transformer architecture

Implementation Implementation issues related to the design decision

Design diagram Description of the applied tactic to the Transformer Architecture

Consequences Consequences resulting from applying the tactic

Cluster Computing

123



confidential data, grant unauthorized access, block data

access, or compromise user security and privacy.

• Data Poisoning Attack: Intentionally misclassifying

harmful samples as desired classifications, such as

marking spam emails as safe, to manipulate the

prediction behavior of a model.

• Phishing Detection: Detecting and preventing social

engineering attacks where perpetrators deceive victims

into divulging personal information or downloading

malicious software.

• Software Vulnerability: Identifying weaknesses or flaws

in software code that could be exploited by attackers to

compromise security.

• Network Attack: Interference, obstruction, compromise,

or destruction of data and computer systems through the

exploitation of computer networks.

• Network Intrusion: Unauthorized access to a computer

within a business or a permitted domain.

• Network Anomaly: Unusual behaviors or characteris-

tics in a network that are often associated with

malicious activity.

• False Data Injection Attack: Attacks that manipulate or

modify sensor measurements to affect the computing

capabilities of a control center.

To address each of the aforementioned cybersecurity

problems, specific quality factors are considered during the

design of the transformer. These quality factors can include

performance, security, scalability, maintainability, and

more. Each design tactic aims to improve one or more of

these quality factors in order to effectively tackle the

identified problem.

The ‘‘Aim of Transformer Modification/Adaptation’’

field outlines the specific goals or objectives of modifying

or adapting the transformer. It highlights the desired out-

comes or improvements that the design tactic aims to

achieve. For example, the aim might be to enhance the

security measures, improve performance efficiency, or

ensure better scalability of the transformer.

The ‘‘Implementation’’ provides the issues related to the

implementation of the identified design decisions.

The ‘‘Design Decision’’ field encompasses the decisions

made during the design process of the transformer archi-

tecture, specifically concerning the identified problem and

the relevant quality concerns. These decisions guide the

selection of suitable design approaches and techniques that

align with the design tactic’s objective. The design deci-

sions shape the overall architecture and implementation of

the transformer.

The’’Solution’’ section of each tactic describes the

specific design of the transformer architecture that

addresses the identified problem and aligns with the chosen

design decisions. It provides a detailed explanation of the

approach taken, including software design, implementation

strategies, and behavioral considerations. The solution

section highlights how the design tactic is applied to

modify or adapt the transformer effectively.

Finally, the ‘‘Consequences’’ field outlines the outcomes

that arise from applying the design tactic. It includes both

positive and negative impacts that may result from the

modification or adaptation of the transformer. Examples of

consequences could include improved security measures,

increased performance efficiency, added complexity, or

potential trade-offs between different quality factors. These

consequences help evaluate the overall impact of applying

the design tactic.

5.2 Selecting design tactics

When designing transformers for cybersecurity systems,

selecting the appropriate tactics is essential. To facilitate

the selection process, a feature model is utilized, which

provides a comprehensive representation of the mandatory

and optional features in a tree or graph format. In this

study, the feature model is prepared based on collected and

analyzed information specific to transformers in cyberse-

curity. Figure 3 showcases the feature model for the

cybersecurity system transformer, highlighting the essen-

tial elements. It serves as a visual representation of the

various features and their relationships within the trans-

former design. In order to align with existing taxonomies,

the transformer variants discussed in this study are mapped

to the variants listed in [1], which categorizes transformers

based on their application area in cybersecurity, primarily

focusing on text-based systems. This mapping aids in

understanding the specific transformer variants relevant to

cybersecurity problems. A feature model is a generic model

representation for a problem that lists the mandatory and

optional features with a tree or graph form. The feature

model presented below, that is prepared using the collected

and analyzed information within this study, shows essential

elements for transformers in cybersecurity problems. The

design tactics can be formed starting with the appropriate

tailoring of the feature model.

According to the taxonomy of transformers in [1], the

transformer application area in cybersecurity is mainly text

based systems. Below is the Table 3 that maps the trans-

former variants discussed in this study to the variants that

are listed in [1]:

In [28], another taxonomy is presented for efficient

transformers. Unlike the previous taxonomies, the catego-

rization covers recurrence, memory / down sampling,

learnable parameters, low rank / kernels, and fixed / fac-

torized / random patterns. For cybersecurity systems, we

have observed that memory and recurrence can be a vari-

ation point in transformer architecture. Furthermore,

Cluster Computing

123



according to [1] memory and recurrence can be discussed

under alternative architectures. Besides, it should be noted

that hybrid architectures can be formed by integrating

transformers with other architectures at the input or output.

5.3 List of tactics

In this section, the design tactics for transformers are listed

and discussed in detail. There are 14 identified transformer

architecture design tactics in this study which are listed in

forms using the tactic description template in Table 1 in the

following sections, named as T-BERT, Pre-trained Trans-

former Model, Memory–list of trainable parameters, Pre-

trained model GPT-2 with fine tuning, BPE tokenizers, An

auxiliary auto-regressive loss function & balanced mixed

objective training, Integrating decision tree and FT-trans-

former, Source code as a set of features, Network trans-

former (NeT), ClaimsBert, CuBERT (Code Understanding

BERT), PELAT (Packet Embedding Method Based Lan-

guage Model), Vision Transformer (ViT) and SecFed-

Transformer (secure federated learning). While tactics such

as BPE tokenizers and an auxiliary auto-regressive loss

function & balanced mixed objective training are applied

for phishing detection, there are other tactics in the known

literature, one of which is Integrating decision tree and FT-

transformer, that are applicable to the area of network

attacks. The tactics are not only categorized according to

the cybersecurity problem but also the quality factor that

the tactic is implemented for is listed in a tactic description.

The relevant quality factors to the subject are resilience,

performance, completeness, interpretability, scalability,

and accuracy.

5.3.1 T-BERT

See (Table 4).

Table 3 Mapping of

transformer variants in [1] to the

features in Fig. 2

# Transformer variant in [1] Transformer variant for cybersecurity systems

1 Module level–attention–sparse Embedding–token

2 Module level–position encoding Embedding–positional

3 Module level–attention–sparse Embedding–weighted sentence vector

4 Module level–attention–prior attention Architecture–residual connection

5 Architecture level–alternative architecture Architecture–stacking

6 N/A Input–token processing

7 N/A Output–integration with hybrid architecture

Fig. 2 Transformer for cybersecurity system feature model

Cluster Computing

123



Table 4 Tactic 1–T-BERT

Title Description

Transformer Design Tactic Name T-BERT

Cybersecurity problem Web defacement detection

Quality factor Resilience

Aim of Transformer Modification/

Adaptation

Improvement of the detection performance on a large scale

Design decision To address the issue of illicit content modifying essential tags to gain a high ranking, a design decision is

made to utilize tag-embedding and search engine indexing algorithms. The chosen approach focuses on

the text and tags within content areas (such as web pages) that are not easily visible but still impact

indexing. For this purpose, a multi-layer bidirectional transformer structure, specifically BERT

(Bidirectional Encoder Representations from Transformers), is employed [29]. BERT is known for

delivering state-of-the-art results in various natural language processing (NLP) tasks

Implementation The implementation involves a tag embedding method, potentially based on HTML tags. An open-source

BERT implementation with an encoder-based architecture is utilized. BERT employs token embedding for

each word, along with segment and position embedding, to enhance the information in the sentence

representation. By combining these three types of embedding, the sentence representation is created. For

the tag-sentence pair, the tag embedding is concatenated with the sentence vector to generate the

embedding. To represent the entire web page, an attention layer is applied

Design diagram See Fig. 3. Tag Aware Hierarchical Network

Consequences Implementing this tactic can result in improved search engine ranking and visibility, enhanced user

experience, increased protection against content manipulation, more efficient indexing, potential

computational overhead, and a dependency on the chosen BERT implementation. These consequences

should be considered when implementing the tactic to evaluate its impact and trade-offs

Fig. 3 Tag Aware Hierarchical Network

Cluster Computing

123



5.3.2 Pre-trained transformer model

See (Table 5).

5.3.3 Memory, list of trainable parameters

See (Tables 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16 and 17).

Table 5 Tactic 2–Pre-trained Transformer Model

Title Description

Transformer Design Tactic Name Pre-trained transformer model

Cybersecurity problem Malware or Phishing Detection

Quality factor Performance

Aim of Transformer Modification/

Adaptation

Extending the architectures for more specialized applications

Design decision There are many benefits of using pre-trained transformers to detect phishing websites by looking at their

URLs. Software updates are simpler than feature-based systems since pre-processing of URLs is avoided,

and they are safer to employ because phishing websites can be predicted without physically visiting the

harmful sites. The model is deployable for real-time detection and requires little training time. It can also

be utilized to run on portable devices

Implementation The tactic offers the application of pre-trained transformer models available for immediate use. BERT and

ELECTRA, having encoder-based architectures, are suitable for the implementation of this tactic

Design diagram N/A

Consequences Implementing this tactic can result in overfitting, increased protection against malware / phishing, decreased

development and implementation duration and a dependency on the chosen model implementation. These

consequences should be considered when implementing the tactic to evaluate its impact and trade-offs

Table 6 Tactic 3–Memory–list of trainable parameters

Title Description

Transformer Design Tactic Name Memory, list of trainable parameters [13]

Cybersecurity problem SMS spam detection

Quality factor Completeness

Aim of Transformer Modification/

Adaptation

Reducing the difficulty of feature extraction and data representation

Design decision Instead of using the output sequence embedding, a list of trainable parameters named as memory is used.

Since spam detection is a binary classification problem, the linear layer in the modified transformer model

for SMS spam detection has a single neuron in the final layer rather than converting the output of the

decoder stack to a vector

Implementation A list of trainable parameters named as memory is used in the solution. Output embedding layer is excluded.

Instead of a decoder stack, a single neuron is used for the final layer. Encoder-decoder transformer

architecture is applied

Design diagram Figure 4 A Spam Transformer Model for SMS Spam Detection

Consequences Implementing this tactic can result in keeping relevant important information in memory such that the

contribution to the attention is complete. The length of the memory is configurable which can have an

effect on performance

Cluster Computing

123



Table 7 Tactic 4–Pre-trained model GPT-2 with fine tuning

Title Description

Transformer Design Tactic Name Pre-trained model GPT-2 with fine tuning [14, 30]

Cybersecurity problem Data poisoning attack

Quality factor Resilience

Aim of Transformer Modification/

Adaptation

Text generation

Design decision Pre-trained transformer-based language model GPT-2 for a general task using unlabeled data has an

advantage of adaptability to new domains. Extending the architectures for more specialized applications

may require fine-tuning the general pre-trained models

Implementation The tactic proposes a model that has already been trained with pre-trained parameters rather than starting

from scratch and initializing with random weights. GPT-2, having transformer decoder blocks, can serve

as a base model for the solution

Design diagram Figure 5. GPT-2 Architecture

Consequences Implementing this tactic can result in overfitting, increased protection against data poisoning attack,

decreased development and implementation duration and a dependency on the chosen model

implementation. These consequences should be considered when implementing the tactic to evaluate its

impact and trade-offs

Fig. 4 A Spam Transformer Model for SMS Spam Detection

Cluster Computing

123



5.4 Integration of design tactics with broader
theoretical frameworks

In [31] architectural tactics for big data analytics cyber-

security systems are introduced. Among the discussed

architectural tactics, ML algorithm optimization applies to

our case. While the selected quality factor is performance

for the design tactic ML algorithm optimization, further

mapping of the design tactics identified in our study with

the architectural tactics in [31] on other quality factors can

be accomplished.

A framework for the identification of the malicious edge

device is presented in [32]. Intrusion detection is a core

component of the system architecture. For the design of the

intrusion detection components, Tactic 7 and Tactic 13 can

be considered.

6 Case study

In this section, we have applied the proposed design

method based on the design tactics for the transformer

architectures in the previous sections, for a selected

cybersecurity problem as a case study. In Sect. 5.1 we

explain the application of the identified tactics for a case

study on phishing detection. In Sect. 5.2 we discuss the

implementation of the case study.

Table 8 Tactic 5–BPE tokenizers [15]

Title Description

Transformer Design Tactic Name BPE tokenizers [15]

Cybersecurity problem Phishing Detection

Quality factor Performance

Aim of Transformer Modification/

Adaptation

Phishing URL attacks can take place on short-lived domains and URLs that differ slightly from already-

existing, trustworthy domains

Design decision Performance of the model is improved when fewer layers and a domain specific vocabulary for short lived

domains are used. Custom character level and byte-level BPE vocabularies are created

Implementation Byte Pair Encoding (BPE) tokenizers are employed instead of extracting lexical features or CNNs kernels.

Using the training URL data, custom character-level, and byte-level BPE vocabularies are developed,

resulting in two different vocabulary sizes, 1K and 10K, for URLTran_CustVoc. The BPE models aim to

strike a balance between the use of entire words and character subsequences. Encoder only BERT is used

Design diagram N/A

Consequences Implementing this tactic can result in overfitting, having a domain specific vocabulary decreases the

flexibility of a system and causes a dependency on the created vocabulary. These consequences should be

considered when implementing the tactic to evaluate its impact and trade-offs

Fig. 5 GPT-2 Architecture

Cluster Computing

123



6.1 Case study description: transformer
architectures for phishing detection

Phishing is a cyberattack technique in cyberspace where

false actors or institutions imitate ones with websites,

emails, hyperlinks, or other media aiming to deceive users

to gather their information, such as usernames and pass-

words. Phishing detection is applied with software methods

and techniques based on but not limited to, machine

learning, deep learning, information retrieval, human users,

and profile matching. This study demonstrates the appli-

cability of transformer-based machine-learning model

architectures proposed and evaluated for phishing website

detection using URL properties as features. The choice of

the phishing detection approach is influenced by quality

characteristics like efficiency and accuracy as well as the

software system architecture used for implementation. The

case study provides insights for both practitioners and

researchers for further research on transformer models and

phishing detection. Phishing detection and mitigation

techniques are widely studied, and new applications are

implemented further in pace with the advances in machine

learning, deep learning, information retrieval, human users,

profile matching, and other relevant disciplines.

Phishing is a semantic attack targeting uneducated and

naı̈ve internet users rather than software applications and

their bugs. The response rate of employees vulnerable to

phishing attacks is approximately 20%. Therefore, con-

sidering the impact of phishing attacks and the vitality of

having the appropriate system response, the study aims to

Table 9 Tactic 6–An auxiliary auto-regressive loss function & balanced mixed objective training [16]

Title Description

Transformer Design Tactic Name An auxiliary auto-regressive loss function & balanced mixed objective training [16]

Cybersecurity problem Phishing Detection

Quality factor Resilience

Aim of Transformer Modification/

Adaptation

Improving training stability

Design decision A classifier performs better and has more stable convergence characteristics when numerous correlated tasks

are optimized simultaneously. A unique loss function is utilized for dynamically rebalancing gradients of

auxiliary losses with the main task loss at each training step, aiming to increase training stability

Implementation The tactic proposes to apply joint optimization across dataset X with labels Y for both next character

prediction and malicious/beneficial classification. Regardless of the loss value, no one loss term

dominates. Encoder only BERT is used

Design diagram N/A

Consequences Pre-training with an auto regressive loss does not improve performance. Performance is improved with auto

regressive next character prediction loss

Table 10 Tactic 7–Integrating decision tree and FT-transformer [17]

Title Description

Transformer Design Tactic Name Integrating decision tree and FT-transformer [17]

Cybersecurity problem Network attack lifecycle

Quality factor Performance

Aim of Transformer Modification/

Adaptation

To lessen the negative effects of having only a little amount of high-quality labeled data on accuracy, less

inaccurate predictions on the imbalanced intrusion datasets are needed

Design decision The FT-Transformer, which generates embedding vectors for categorical and continuous features, is chosen.

A common representation space is learned using a stack of transformers

Implementation Initially, the binary classification of legitimate (normal) and malicious data is performed using the decision

tree algorithm. The malicious data is then subjected to multi-category classification using FT-transformer

to determine the nature of the attack. Encoder only BERT is used

Design diagram N/A

Consequences Due to the use of decision trees, disadvantages such as overfitting and instability can be observed when the

design tactic is implemented

Cluster Computing

123



research novel methods. Various phishing technical

approaches are listed such as spear phishing, whaling,

business email compromise, cross-site scripting, cross-site

malicious CAPTCHA attack, QRishing, social engineering,

drive-by download, malware, phishing, browser vulnera-

bilities, tab napping, typo squatting, sound squatting, 404

error manipulation, click jacking, malicious browsing

extensions, man-in-the-middle, mobile phones, GUI-

squatting, session fixation, JavaScript obfuscation. The

primary motivation of this section is to analyze the per-

formance of transformer-based architectures for phishing

detection and discuss the results in terms of applicability

considering several parameters.

For transformer architectures the defined design con-

cerns in the previous sections are crucial and for each

concern the corresponding tactic is defined. For the case of

phishing detection, a subset of these tactics is important.

We started using the vanilla transformer architecture as

the bases. As the commonly used architecture variant, we

selected an encoder-based architecture. We have used the

positional embedding as an architectural option from the

feature diagram in Fig. 3. The transformer encoding and

positional embedding implementation for video processing

in [33, 34] is adapted to the phishing detection by

enhancing the training data to a phishing dataset.

From Table 2, we can see that for phishing detection,

performance, resilience, and optimization are important

quality factors. The tactics that are listed for phishing

detection are for performance Tactic 5 BPE tokenizers, for

resilience Tactic 6 an auxiliary auto-regressive loss

Table 11 Tactic 8–Source Code as a Set of Features [18]

Title Description

Transformer Design Tactic Name Source Code as a Set of Features [18]

Cybersecurity problem Malware Detection

Quality factor Performance

Aim of Transformer Modification/

Adaptation

Resources and time are saved because the malware doesn’t need to be activated by running the code

Design decision A novel feature representation can be achieved by examining the software applications’ source code that

could be considered as a collection of features. Text classification is conducted on feature set including

information that comprises activities, intents, and permissions

Implementation To characterize malware and classify it into several representative malware categories, a BERT

(Bidirectional Encoder Representations from Transformers) model is proposed. It performs a static

analysis on the source code of Android applications using preprocessed characteristics. The hugging face

library is applied for binary classification in Transformers. Encoder only BERT is used

Design diagram N/A

Consequences Since the activation of malware is not required, using source code is less expensive in terms of resources and

time

Table 12 Tactic 9–Network Transformer (NeT) [19]

Title Description

Transformer Design Tactic Name Tactic 9–Network Transformer (NeT) [19]

Cybersecurity problem Network attack lifecycle

Quality factor Interpretability

Aim of Transformer Modification/

Adaptation

To leverage our understanding of the system as a graph, communication network

Design decision Graph features representing the computer network in a time window can be used. They provide a layered

representation of the network in a clear format

Implementation Hierarchical graph features with transformer encoder are utilized to obtain the encoded packet windows that

are used to compute the graph features. Encoder-decoder transformer is used

Design diagram Figure 6 Network Transformer Model

Consequences Using semi-supervised learning the model does not need the labelled data (from raw values to global

network graph representation). By means of the hierarchical design of network graph representation,

predictions can be backtracked and analyzed in various granularity levels

Cluster Computing

123



Table 13 Tactic-10 ClaimsBert

Title Description

Transformer Design Tactic Name Tactic 10: ClaimsBert [20]

Cybersecurity problem Cybersecurity of industrial control systems, cybersecurity assessment

Quality factor Accuracy, performance

Aim of Transformer Modification/

Adaptation

The human-readable documents are complicated for automation due to their formats and the natural

language structure

Design decision Cybersecurity claims in industrial control systems (ICS) device documents can be automatically identified

by a framework using a classification model

Implementation In this tactic, informative characteristics from transformers are extracted and then assigned to a classifier

using a feature map created by combining a pre-trained BERT language model with a convolution neural

network (CNN). BERT is used as an encoder only model

Design diagram N/A

Consequences The model uses the feature map generated via CNN which has small dimensionality so that the features are

efficiently understood by the model

Table 14 Tactic 11- CuBERT (Code Understanding BERT)

Title Description

Transformer Design Tactic Name Tactic 11: CuBERT (Code Understanding BERT) [21]

Cybersecurity problem Detecting Software Vulnerabilities

Quality factor Classification completeness

Aim of Transformer Modification/

Adaptation

To determine the models’ robustness regarding how some of the sub-concepts could result in classification

errors, the classification behavior should be compared to the defined sub-concepts and input source code

attribute

Design decision CuBert, a derivation of BERT, adjusted for processing source code instead of natural language, is applied

Implementation The tactic utilizes CuBERT tokenizer, multi-headed pointer model, pre-trained models, and pre-training

corpora is used. Encoder only BERT is used

Design diagram N/A

Consequences With shorter training and fewer labeled examples, the model has high performance

Fig. 6 Network transformer model

Cluster Computing

123



function & balanced mixed objective training and for

optimization, Tactic 2 pre-trained transformer models

available for immediate use.

However, for the specific case of this research, certain

tactics may not be applicable. Instead of using a pre-trained

transformer model (Tactic 2), a custom transformer archi-

tecture is designed and trained on selected datasets and

measure the performance results. Additionally, the use of

domain specific vocabulary (Tactic 5) is also not applicable

as the datasets are not using domain specific vocabulary

instead, they consist of numerical values. Lastly, Tactic 6 is

used for the label prediction of the training data in [16].

The data we use is already labelled therefore this part of the

tactic 6 is not applicable for our case.

6.2 Implementation

We aim to further apply the defined design tactics using an

experimental setup and discuss the results afterwards. The

vanilla transformer adaptations that are relevant for the

phishing detection problem are elaborated to leverage the

design process and consolidate the selected design tactics

with the solution in the application development process.

To build the phishing detection models and conduct our

experiments, we followed the steps below:

• Setting up the development environment

We have selected the TensorFlow transformer which

consists of a set of libraries in the area of natural language

processing. The implementation is for general usage and

can have efficient implementations with PyTorch. In order

to develop our transformer model, we use Jupiter Note-

books as the development environment, which provides

terminal, text editor and directory within one view. The

Jupyter notebook is used for data science and the code is

inside the notebook. The drawbacks of the environment are

that it does not provide a versioning system and does not

support distribution or live collaboration.

Table 15 Tactic–12 PELAT (Packet Embedding Method Based Language Model)

Title Description

Transformer Design Tactic Name Tactic 12: PELAT (Packet Embedding Method Based Language Model) [22]

Cybersecurity problem Network attack lifecycle

Quality factor Completeness

Aim of Transformer Modification/

Adaptation

Enhance the attack knowledge, reduce manual labelling burden

Design decision Semi-supervised learning is performed to generate the tactic labels of the unlabeled packets

Implementation After the transformer encoder layers, a classification layer is implemented. BERT is used

Design diagram N/A

Consequences Benefiting from the knowledge in the source domain, the effect of learning in the target domain is improved

and optimized by transfer learning

Table 16 Tactic 13–Vision Transformer (ViT)

Title Description

Transformer Design Tactic Name Tactic 13: Vision Transformer (ViT) [23]

Cybersecurity problem Network attack lifecycle

Quality factor Performance, Scalability

Aim of Transformer Modification/

Adaptation

To process a network flow pattern within a specific time interval that is converted into a two-dimensional

image

Design decision Self-attention layers are used to capture long-term dependencies. Transformer asynchronously learns

diverse interactions between spatial locations and input

Implementation Classification is achieved by using transformer encoder with a Multiple Layer Perceptron (MLP) head. For

position embedding, the flattened patches of the image are linearly projected

Design diagram N/A

Consequences The multi-class classification accuracy and feature selection is impacted negatively by the data imbalance

since some attack type data is not enough. When the data in a category is not enough, features are not

selected, and the method shows low performance

Cluster Computing

123



• Datasets

Table 18 provides information regarding the datasets.

For the dataset, the data is composed in a text file as each

line represents API calls consisting of integers as comma-

separated values. The data is used as is.

• Implementation of transformer-based models

The pseudo code of the transformer model implemen-

tation is defined in the following steps:

1. Positional embedding and transformer encoder are

used as is, as stated in [8, 9]. The pseudocode is

provided below:

Table 17 Tactic 14–SecFed-Transformer (secure federated learning)

Title Description

Transformer Design Tactic Name Tactic 14: SecFed-Transformer (secure federated learning) [24, 25]

Cybersecurity problem Network attack lifecycle

Quality factor Completeness Resilience

Aim of Transformer Modification/

Adaptation

Must thoroughly examine the relationship between various electrical quantities to discover FDIA with

varying intensities. Detection of FDIA based on transformers. Transformer-Based Distributed Detector

Design decision Transformer is utilized as a detector in the edge nodes. The multi-head self-attention mechanism enables

examination of the relationship between electrical quantities in detail. Instead of relying on the original

central workstation, the installed edge node detector at each node of the power system directly collects,

stores, and detects data

Implementation The transformer architecture’s encoder, multi-head self-attention, add&norm, and feed forward features are

employed. The measurement vector z, which includes power injections and power flows, serves as the

inputs of the transformer-based detection model, which is labeled with = 1 or = 0. The transformer model

is also trained to thoroughly extract attack features from both legitimate and compromised data, allowing

it to identify the presence of covert (false data injection attack) FDIA

Design diagram N/A

Consequences Data is collected from all nodes to train the model and the data is stored locally such that the data privacy is

preserved

Table 18 Detailed information on datasets

Dataset Details

Datasets for Phishing Websites

Detection [26]

The features reported in the datasets were taken from publicly available lists of authentic and phishing

websites

The data format was a CSV file. Only the phishing websites listed in the PhishTank directory, which have

been confirmed by numerous users, were included. We included the websites from publicly accessible,

community-labeled, and sorted lists and from the top-ranking Alexa websites as the legitimate websites.

The features in the data were taken from collections of website addresses. There are 111 features in the

data overall, 96 of which are taken directly from the website address, while the remaining 15 features

were extracted using custom Python code

Phishing Dataset for Machine

Learning [27]

This dataset, which was downloaded between January and May 2015 and May and June 2017, has 48

features that were taken from 5000 authentic websites and 5000 fraudulent websites. By utilizing the

Selenium WebDriver browser automation framework, a better feature extraction method is used that is

more accurate and reliable than the parsing method based on regular expressions. This dataset may be

helpful for phishing features analysis, quick proof of concept tests, or benchmarking phishing

classification models for anti-phishing researchers and experts

Cluster Computing

123



class PositionalEmbedding:

method: initialize

initialize properties

position_embeddings := Embedding with inputs as input_dimention as

sequence_length, output_dimention

method: call self

embedded_positions := self.position_embeddings with input as positions

return inputs + embedded_position

method: compute_mask:

mask := tensorflow.reduce_any with inputs as inputs caste“ to ”bool", -1

return mask

class TransformerEncoder:

method: initialize

initialize properties

.attention := layers.MultiHeadAttention with inputs as

number of heads, embedding dimentions, dropout as 0.3

dense_projection := keras.Sequential with inputs as

layers.Dense with inputs as dense_dimention, Gaussian Error Linear Unit

(GELU) activation function, layers.Dense with input as

embedding_dimention

layernormalization1 := normalization layer

layernormalization2 := normalization layer

method: call

if mask is not None:

mask := mask[:, tensorflow.new axis, :]

attention_output := attention with inputs as inputs, attention_mask

projection_input := layernorm1 with inputs as inputs, attention_output

projection_output := dense_projection with input as projection_input

return layernormalization2 with inputs as projection_input, projection_output

2. A functional model with sequential layers is initiated

with positional embedding and transformer encoder

[8]:
positional_embedding := PositionalEmbedding(

sequence_len25mbeddingeding_dimention), stacked with inputs

transformer_encoder := TransformerEncoder with inputs as embedding_dimention,

dense_dimention, number of heads, stacked with positional_embedding

layer := dropout layer as 0.5, stacked with transformer_encoder

outputs := dense layer as 1 unit, sigmoid activation function, stacked with layer

model := keras.Model(inputs, outputs)

compile model as adam optimizer, binary crossentropy loss, using metrics as accuracy,

f1, precision, recall

3. During training, the dropout layer initializes the input

units with 0 at a frequency equal to the rate given for

each step.

4. The model is enhanced with the addition of a dense

layer with a single output unit and ‘‘the ‘‘si’’moid’’

activation function (between 0 and 1, wi ‘‘h’’a ‘‘S’’-

shaped curve).

5. The inputs and outputs of the model are created.

6. The model updates its properties (weights, learning

rate, etc.) for the loss reduction using the optimizer. As

Cluster Computing

123



the optimizer, the stochastic gradient me ‘‘hod’’adam‘‘

is utilized.

7. For classification with two categories, the constructed

model employs ‘‘adam’’ as the optimizer and ‘‘bi-

nary_crossentropy’’ as the loss function.

8. The metrics to be gathered ‘‘are ’’acc’’ra ‘‘y‘‘,

’’f1’’core‘‘ (weighted average of the precision and reca

‘‘l), ’’preci’’ion,‘‘ ‘‘and ’’r’’call‘‘.

6.3 Application of design tactics for transformer
model adaptation

In order to further adapt our model for phishing datasets we

applied design tactics suitable for phishing datasets,

including Tactic 3 memory and Tactic 13 vision trans-

former. The associated quality factors for these tactics are

completeness and performance.

Tactic 3, originally applied for malware classification, is

applicable to our problem as both problems use binary

classification. Therefore, to adapt the vanilla transformer

using this tactic, the output embedding layer is excluded

and a single neuron is used instead of the decoder having

the inspiration from replacing the linear layer with a single

neuron. Although the justification of usage of memory

adaptation is not explained in [13], we infer that the

application of memory adaptation in this tactic serves a

similar purpose to the LSTM memory concept that aims to

effectively capture and remember information in long

sequences of data. However, our dataset consists of

numerical values, therefore, we do not have a long

sequence of data in our dataset. Considering the quality

factor completeness for the Tactic 3, an applicable criterion

can be defined as describing high level features in terms of

low-level features such that information related to the

lower-level features that form the high-level features are

captured in memory. In our case, the features are not

grouped to higher level features. Consequently, we did not

use the memory matrix adaptation.

For Tactic 13, in Vision Transformer, classification is

achieved by employing a transformer encoder with a

Multiple Layer Perceptron (MLP) head and the flattened

patches of the image are linearly projected for position

embedding. The quality factors for the tactic are perfor-

mance and scalability. In the scope of the implementation,

we consider performance as the quality factor. In our case,

we used the video transformer architecture. The criterion

on data type is alpha-numerical. Consequently, excluding

the vision adaptation from the positional encoding, and we

applied the same transformer encoder implementation of

VIT for phishing detection to conduct an experiment on the

applicability of the defined tactic to the described phishing

detection problem.

6.4 Results

Table 3 displays the outcomes of the use of transformer

models for phishing detection on dataset 1. 100 epochs are

run with the models. The optimizer ’’adam‘‘ employs the

stochastic gradient descent technique, and the loss function

is ’’binary_crossentropy (cross-entropy loss between true

labels and predicted labels)‘‘. Table 19 summarizes the

results of applying transformers for phishing detection on

the dataset 1, using the classification_report. Figure 7

presents the results of the application of the transformer-

based model on dataset in terms of the AUC (area under the

ROC curve) parameter. Figure 8 presents model accuracy.

The results of the application of transformers for

phishing detection on the dataset 2 are listed in Table 20.

Figure 9 illustrates the results of the application of the

transformer-based model on dataset measured in terms of

the AUC (area under the ROC curve) parameter (Fig. 10).

The method separates phishing data from other entries

and categorizes the chosen phishing data as phishing. The

phishing type is identified using binary classification, and

the model can be improved to simultaneously identify

numerous phishing types if necessary. The tests were car-

ried out on a macOS computer with an 8 GB memory and a

1.4 GHz quad-core Intel Core I5 processor.

A sequential model with one input and one output is the

basis upon which the Keras functional model is built. The

model may include one or more layers, depending on the

data structure. Regular neural network layer with dense

connections makes up the dense layer. During network

training, the dropout strategy is used to remove certain

neurons from the layer. For transformer-based implemen-

tation, a transformer encoder is used, with parameters such

as embedding dimension, dense dimension, and the number

of attention heads. In addition, positional encoding is

implemented to consider the order information.

Table 19 Classification report using Transformers for the dataset 1

Precision Recall f1-score Support

0 0.96 0.96 0.96 14,484

1 0.92 0.93 0.93 7676

Accuracy 0.95 22,160

Macro avg 0.94 0.95 0.94 22,160

Weighted avg 0.95 0.95 0.95 22,160

Cluster Computing

123



7 Discussion

Using two separate data sets, we performed a performance

analysis of the transformer-based models for the identifi-

cation of phishing data in the preceding section, where we

also highlighted the use of transformers in cybersecurity.

We may now respond to our original research questions

and elaborate based on this analysis.

What are the design tactics for cybersecurity architec-

tures based on transformers?

Section 4 lists design tactics for transformer-based

cybersecurity solutions. Although new tactics can be

introduced in the upcoming times, we have formed a tactic

base for this study by means of the tactics present in the

known literature. There are 14 design tactics that are listed

in Table 2. The range of the tactics start from pre-training

the transformer model to implementing a memory for

transformers. There are also domain specific transformer

architectures such as vision transformer or network

transformer.

How well do transformer-based models for phishing

prediction work?

Table 20 Classification report using Transformers for the dataset 2

Precision Recall f1-score Support

0 1.00 0.99 1.00 1249

1 0.99 1.00 1.00 1250

Accuracy 1.00 2499

Macro avg 1.00 1.00 1.00 2499

Weighted avg 1.00 1.00 1.00 2499

Fig. 7 ROC for dataset 1

Fig. 8 Transformer-based

model accuracy for the dataset 1

Cluster Computing

123



The trials showed that transformer-based models had a

dataset accuracy of about 95%. The maximum f1 score for

the dataset is 0.96, which denotes successful prediction and

recall. When the curve in the ROC graph is more closely

aligned with the diagonal, it is assumed that the accuracy of

the test is low. However, the results are within an accept-

able range, and we can conclude that transformer-based

models are indeed feasible and effective for cybersecurity

applications.

Designing a transformer model, initially, vanilla trans-

former model is considered as a solution. While this is a

valid approach, it is not mandatory to use the architecture

as is. The architectural overhead of overdesign can intro-

duce further complexity in the system that weakens the

capability of meeting the quality requirements.

As we can see in the feature model presented in Fig. 3,

optional design choices and components are available and

enables the designer to apply a flexible design strategy by

tailoring the feature model to a model instance leading to

the application architecture. In this feature model, the

variation points are shown.

Is using the design tactics for transformers effective?

The aim of studying the design tactics for transformers

is to form a structured methodology for the design of

transformer architectures. Although there are various

studies in the known literature supporting transformer

architecture design, many implementations are based on

architectures that are designed by an experimental

approach. In this study, we aimed to form a guideline for

transformer architecture design, presenting a design tactic

catalog that enables the architect to select among the

design options to obtain the desired result. For the selection

process of the relevant design tactic, we constructed a

feature diagram that has optional features to be tailored for

Fig. 10 ROC for dataset 2

Fig. 9 Transformer-based

model accuracy for the dataset 2

Cluster Computing

123



the target application architecture. The tailored feature

diagram maps to a defined design tactic which shapes the

design strategy of the transformer architecture. The overall

approach is a product line strategy which aims to design an

application architecture from a reference architecture. The

application of the design method is shown with a case in

Sect. 5. The detailed explanation of the application of the

method shows that it is applicable to the target problem and

using the proposed method with the design tactics is

effective for the target application area.

Are the identified design tactics effective?

The effectiveness of the identified design tactics could

be validated because the tactics are derived from the

studies from the known literature such that their imple-

mentation and results are already published to the com-

munity. Furthermore, the applicability of the design tactic 3

and design tactic 13 are discussed in Sect. 5.1.5. As a

result, while selected design tactics are applicable and

effective in the defined problem, their implementation

requires their adaptation to the target implementation.

What are the limitations and challenges?

The limitations and challenges for the proposed design

methodology of using design tactics for transformer

architectures in cybersecurity problems can be discussed

from the aspects of computational demands, data privacy

concerns, and adaptability to rapidly evolving threats. In

[31], the efficiency of the transformers is discussed.

Deploying the transformer models efficiently in data cen-

ters equipped with GPU is challenging due to the con-

straints of latency and throughput. Furthermore,

transformer model input dimensions can vary leading to

difficulties in optimizing services and managing the

memory. Another aspect is the data privacy. Before the

training or testing process with transformer models, the

data used shall be classified into the categories such as

sensitive, public, or private such that the data privacy

requirements are met with the relevant implementation (f.e.

encryption). Another challenge is that due to the evolving

threats, the design tactics and the transformer model

implementations shall be regularly updated.

What are the threats to validity?

This study is quantitative research and the threats to

validity are considered based on [35]. The methods used in

this research are experimentation and data analytics. The

categories of threats to validity are listed as internal and

external. The validity categories in [35] are conclusion

validity, internal validity, construct validity, external

validity. The limitations of the study of while reaching to

conclusions from the independent and dependent variable

relations are threats to conclusion validity. The indepen-

dent variable in this study is the feature diagram. The

feature diagram is formed using the selected studies from

the literature. Further relevant features could be added to

the feature diagram to extend its context as other features

emerge in the literature such that the validity of the method

could reach broader coverage within the area of cyberse-

curity problems. The dependent variables that are impacted

by the extendibility of the feature diagram are design tac-

tics catalog, since the catalog can also be updated with

design tactics including the extended features of the feature

diagram. The conclusion is affected due to the use of the

design tactics in the transformer application architecture.

According to the threats to internal validity, the change in

design tactics is expected to be solely caused by the

changes in feature diagram. Although the formation of the

design tactics is based on the derived feature diagrams of

the reference feature diagram, we cannot say that the

design tactic is fully represented by the derived feature

diagram. However, the base structure of the transformer

application architecture can be mapped to the corre-

sponding features in the relevant feature diagram. For the

construct validity, the theoretical concept is accurately

explained using the feature diagram and the design tactics.

Finally, to achieve the external validity, the application of

the method is discussed and the results of a transformer

application architecture are presented using a software

implementation in Sect. 5. The applicability and adapt-

ability of the selected design tactics is discussed and jus-

tified in Sect. 5.1.5.1. At the implementation stage of the

case study, the practitioners shall be aware of the fact that

as the style of adaptation aligned with the design tactic and

the dataset changes, the measures for the effected quality

metric can vary due to the nature of the problem and the

solution.

8 Related work

As a result of using a technique while designing an

architecture, the quality attribute model and the design are

correlated. To achieve the desired quality measures, the

parameters of the quality model driving the design shall be

described including the inputs, the characteristics of the

model elements and the independent variables. The archi-

tectural choices also drive the implementation for the

desired architectural response [36].

Transformers and their modifications are used for

cybersecurity applications in various studies. The details

regarding the description, technology, and architectures of

the transformer implementations are listed in Table 21.

Study [39] discusses transformer modifications. The

transformer modifications mentioned in [39] are light-

weight transformers, connections between transformer

blocks, adaptive computation time, recurrence relations

between transformer blocks, hierarchical transformers,

transformers with modified multi-head self-attention

Cluster Computing

123



(structure of multi-head self-attention), reducing the com-

plexity of self-attention, improving multi-head-attention,

biasing attention with priors, prototype queries, com-

pressed key-value memory, low-rank approximations,

modifications for training task efficiency (ELECTRA, T5).

9 Future research directions

The technologies are evolving, and threats are emerging in

the area of cybersecurity. Therefore, the necessity of

updating and extending the list of design tactics formed in

this study can be beneficial. The tactics can be further

discussed for other domains such as cybersecurity for

distributed systems or IoT or the scalability of the tactics

for intensive data can be an area of research. The listed

tactics can be integrated with broader cybersecurity

frameworks and guidelines. Examples for integration with

broader frameworks are provided in Sect. 5.4.

Studies for comparative analysis of other cybersecurity

architectures or methodologies can be implemented to

justify the choice of the transformer architectures. Com-

parative analysis of the presented design tactics on selected

problems can also be an area of future research. Such

studies can also analyze unique benefits or challenges of

the design tactics for the selected problem domain and

context. To develop design guidelines specific for the

selected cybersecurity problem, case studies can be con-

ducted to gather empirical evidence. Formation of such

design guidelines can strengthen the arguments for selec-

tion of the design tactic for the application.

10 Conclusion

In this study, transformer-based models for cybersecurity

architectures are discussed, and the design tactics which

aim to support architectural design decisions that can affect

the design and implementation of a cybersecurity system

are listed. Following a systematic research methodology,

relevant information on the subject and its stakeholders are

gathered, appropriate datasets are chosen, current empirical

approaches are applied, and the experiment design and

outcomes are presented. The selected configuration among

several transformer-based cybersecurity systems is used as

a case study for phishing detection. The experimental

technique and the applied methodology are finally given

and thoroughly analyzed, offering useful insights for this

field’s practitioners.

We have described 14 design tactics for transformer-

based architectures. While all of the design tactics are

equally important, we can list a few of them as Packet

Embedding Method Based Language Model [22], Code

Understanding BERT [21] and Vision Transformers [23],

named after the corresponding implementations. The

quality factors related to these design tactics are not limited

to but include performance and completeness. While the

description of the design tactic can be initiated by tailoring

the feature model, among the defined design tactics, Tactic

13 Vision Transformer and Tactic 3 Memory, list of

trainable parameters is discussed in the case study for

phishing detection. It is observed that although a tactic is

defined for a particular cybersecurity problem, it can also

be applied for another cybersecurity problem.

Table 21 Classification report using Transformers for the dataset 2

Study Details related to transformers

Detecting Cybersecurity Attacks in Internet of Things

Using

Artificial Intelligence Methods: A Systematic

Literature Review [37]

The study indicates that transformer-based models are efficient for misinformation

detection

End-to-End Transformer-Based Models in Textual-

Based NLP [38]

Transformers are used in a wide range of applications for sequence modelling

Transformers for Machine Learning: A Deep Dive

[39]

Transformer modifications: Lightweight Transformers, connections between

transformer blocks, adaptive computation time, recurrence relations between

transformer blocks, hierarchical transformers

Transformers with modified multi-head self-attention: Structure of Multi-head self-

attention, reducing the complexity of self-attention, improving multi-head-attention,

biasing attention with priors, prototype queries, compressed key-value memory, low-

rank approximations

Modifications for training task efficiency: ELECTRA, T5

Do Transformer Modifications Transfer Across

Implementations and Applications? [40]

The study discusses the reason of adoption of modifications proposed to the transformer

A survey of transformers [1] The study investigates the architecture modifications

Cluster Computing

123



Throughout this study, we understood that the design

process of transformer models can be leveraged with the

design tactics so that we can infer the modifications and

adaptations with their justifications based on the quality

factors of the problem under discussion and implement a

solid solution accordingly. The experiments are conducted

for the phishing cybersecurity problem, and we observed

that the solutions based on transformer models are appli-

cable for phishing. Moreover, the quality factors that are

relevant for the cybersecurity problems are resilience,

completeness, performance, optimization, accuracy, and

interpretability. Finally, the adaptations and modifications

are mostly applied on embedding, input, and decoder

transformer layers.

Author contributions CA: Conceptualization, Methodology, Soft-

ware, Writing-Original Draft, Writing-Review & Editing. BT: Con-

ceptualization, Methodology, Software, Writing-Original Draft,

Writing-Review & Editing, Supervision. CC: Conceptualization,

Methodology, Software, Writing-Original Draft, Writing-Review &

Editing, Supervision.

Funding The authors did not receive support from any organization

for the submitted work.

Data availability Data availability is not applicable to this article as

no new data were created or analysed in this study.

Declarations

Conflict of interest The authors have not disclosed any competing

interests.

Open Access This article is licensed under a Creative Commons

Attribution 4.0 International License, which permits use, sharing,

adaptation, distribution and reproduction in any medium or format, as

long as you give appropriate credit to the original author(s) and the

source, provide a link to the Creative Commons licence, and indicate

if changes were made. The images or other third party material in this

article are included in the article’s Creative Commons licence, unless

indicated otherwise in a credit line to the material. If material is not

included in the article’s Creative Commons licence and your intended

use is not permitted by statutory regulation or exceeds the permitted

use, you will need to obtain permission directly from the copyright

holder. To view a copy of this licence, visit http://creativecommons.

org/licenses/by/4.0/.

References

1. Lin, T., Wang, Y., Liu, X., Qiu, X.: A survey of transformers. AI

Open. 3, 111–132 (2022)

2. Dellarocas, C.: A coordination perspective on software system

design. In: Proceedings of the 9th International Conference on

Software Engineering and Knowledge Engineering, pp. 318–325.

(1997)

3. Evans, E.: Domain-driven design: tackling complexity in the

heart of software. Addison-Wesley Professional, Boston (2004)

4. Tekinerdogan, B., Verdouw, C.: Systems architecture design

pattern catalog for developing digital twins. Sensors 20(18), 5103
(2020)

5. Zhou, C., Li, Q., Li, C., Yu, J., Liu, Y., Wang, G., Sun, L.: A

comprehensive survey on pretrained foundation models: A his-

tory from bert to chatgpt. arXiv preprint https://arxiv.org/abs/

2302.09419. (2023)

6. Cruzes, D.S., Ben Othmane, L.: Threats to validity in empirical

software security research. In: Empirical research for software

security, pp. 275–300. CRC Press, Boca Raton, FL (2017)

7. Khan, S., Naseer, M., Hayat, M., Zamir, S.W., Khan, F.S., Shah,

M.: Transformers in vision: a survey. ACM comput. Surv.

(CSUR) 54(10s), 1–41 (2022)

8. Firesmith, D.: Using quality models to engineer quality require-

ments. J. Object Technol. 2(5), 67–75 (2003)

9. https://github.com/acmsigsoft/EmpiricalStandards/tree/master/

docs

10. Ullah, F., Babar, M.A.: Architectural tactics for big data cyber-

security analytics systems: a review. J. Syst. Softw. 151, 81–118
(2019)

11. Yang, R., Wang, X., Chi, C., Wang, D., He, J., Pang, S., Lau,

W.C.: Scalable detection of promotional website defacements in

black hat {SEO} campaigns. In: 30th USENIX Security Sym-

posium (USENIX Security 21), pp. 3703–3720 (2021)

12. Haynes, K., Shirazi, H., Ray, I.: Lightweight URL-based phishing

detection using natural language processing transformers for

mobile devices. Procedia Comput. Sci. 191, 127–134 (2021)

13. Liu, X., Lu, H., Nayak, A.: A spam transformer model for SMS

spam detection. IEEE Access 9, 80253–80263 (2021)

14. Ranade, P., Piplai, A., Mittal, S., Joshi, A., Finin, T.: Generating

fake cyber threat intelligence using transformer-based models. In:

2021 International Joint Conference on Neural Networks

(IJCNN) (pp. 1–9). IEEE. (2021)

15. Maneriker, P., Stokes, J.W., Lazo, E.G., Carutasu, D., Tajaddo-

dianfar, F., Gururajan, A.: URLTran: Improving Phishing URL

Detection Using Transformers. MILCOM 2021–2021 IEEE

Military Communications Conference (MILCOM), pp. 197–204.

IEEE. (2021)

16. Rudd, E.M., Abdallah, A.: Training Transformers for Information

Security Tasks: A Case Study on Malicious URL Predic-

tion. arXiv preprint https://arxiv.org/abs/2011.03040 (2020)

17. Lan, Y., Truong-Huu, T., Wu, J., Teo, S.G. Cascaded multi-class

network intrusion detection with decision tree and self-attentive

model. In: 2022 IEEE International Conference on Data Mining

Workshops (ICDMW), pp. 1–7. IEEE (2022)

18. Rahali, A., Akhloufi, M.A.: MalBERT: Using transformers for

cybersecurity and malicious software detection. arXiv preprint

https://arxiv.org/abs/2103.03806. (2021)

19. Marino, D.L., Wickramasinghe, C.S., Rieger, C., Manic, M.:

Self-supervised and interpretable anomaly detection using net-

work transformers. arXiv preprint https://arxiv.org/abs/2202.

12997. (2022)

20. Ameri, K., Hempel, M., Sharif, H., Lopez, J., Jr., Perumalla, K.:

An accuracy-maximization approach for claims classifiers in

document content analytics for cybersecurity. J. Cybersecur. Pri.

2(2), 418–443 (2022)

21. Kanade, A., Maniatis, P., Balakrishnan, G., Shi, K.: Learning and

evaluating contextual embedding of source code. In International

conference on machine learning, pp. 5110–5121. PMLR (2020)

22. Lin, L.H., Hsiao, S.W.: Attack tactic identification by transfer

learning of language model. arXiv preprint https://arxiv.org/abs/

2209.00263. (2022)

Cluster Computing

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://arxiv.org/abs/2302.09419
https://arxiv.org/abs/2302.09419
https://github.com/acmsigsoft/EmpiricalStandards/tree/master/docs
https://github.com/acmsigsoft/EmpiricalStandards/tree/master/docs
https://arxiv.org/abs/2011.03040
https://arxiv.org/abs/2103.03806
https://arxiv.org/abs/2202.12997
https://arxiv.org/abs/2202.12997
https://arxiv.org/abs/2209.00263
https://arxiv.org/abs/2209.00263


23. Ho, C.M.K., Yow, K.C., Zhu, Z., Aravamuthan, S.: Network

intrusion detection via flow-to-image conversion and vision

transformer classification. IEEE Access 10, 97780–97793 (2022)

24. Li, Y., Wei, X., Li, Y., Dong, Z., Shahidehpour, M.: Detection of

false data injection attacks in smart grid: a secure federated deep

learning approach. IEEE Trans. Smart Grid 13(6), 4862–4872
(2022)

25. Baul, A., Sarker, G.C., Sadhu, P.K., Yanambaka, V.P., Abdel-

gawad, A.: XTM: a novel transformer and LSTM-based model

for detection and localization of formally verified FDI attack in

smart grid. Electronics 12(4), 797 (2023)

26. Vrbančič, G., Fister, I., Jr., Podgorelec, V.: Datasets for phishing

websites detection. Data Brief 33, 106438 (2020)

27. https://www.kaggle.com/datasets/shashwatwork/phishing-data

set-for-machine-learning?resource=download

28. Tay, Y., Dehghani, M., Bahri, D., Metzler, D.: Efficient trans-

formers: a survey. ACM Comput. Surv. 55(6), 1–28 (2022)

29. Buccella, A., Cechich, A., Porfiri, J., Diniz Dos Santos, D.:

Taxonomy-oriented domain analysis of GIS: a case study for

paleontological software systems. ISPRS Int. J. Geo Inf. 8(6), 270
(2019)

30. Ranade, P., Joshi, A., Finin, T.: Study shows AI-generated fake

cybersecurity reports fool experts. Conversation. (2021)

31. Fang, J., Yu, Y., Zhao, C., Zhou, J.: Turbotransformers: an effi-

cient gpu serving system for transformer models. In: Proceedings

of the 26th ACM SIGPLAN Symposium on Principles and

Practice of Parallel Programming, pp. 389–402. (2021)

32. Sohal, A.S., Sandhu, R., Sood, S.K., Chang, V.: A cybersecurity

framework to identify malicious edge device in fog computing

and cloud-of-things environments. Comput. Secur. 74, 340–354
(2018)

33. https://colab.research.google.com/github/keras-team/keras-io/

blob/master/examples/vision/ipynb/video_transformers.ipynb

34. Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L.,

Gomez, A.N., Polosukhin, I.: Attention is all you need. Adv.

Neural Inf. Process. Syst., 30 (2017)

35. Bass, L., Clements, P., Kazman, R.: Software architecture in

practice. Addison-Wesley Professional, Boston (2003)

36. Vairo, T., Lecca, M., Trovatore, E., Reverberi, A., Fabiano, B.: A

Bayesian Belief Network for Local Air Quality Forecasting.

Chem. Eng. Trans. 74, 271–276 (2019). https://doi.org/10.3303/

CET1974046

37. Abdullahi, M., Baashar, Y., Alhussian, H., Alwadain, A., Aziz,

N., Capretz, L.F., Abdulkadir, S.J.: Detecting cybersecurity

attacks in internet of things using artificial intelligence methods: a

systematic literature review. Electronics 11(2), 198 (2022)

38. Rahali, A., Akhloufi, M.A.: End-to-end transformer-based models

in textual-based NLP. AI 4(1), 54–110 (2023)

39. Kamath, U., Graham, K.L., Emara, W.: Transformers for

Machine Learning: A Deep Dive. CRC Press, Boca Raton, FL

(2022)

40. Narang, S., Chung, H. W., Tay, Y., Fedus, W., Fevry, T., Matena,

M., Raffel, C.: Do transformer modifications transfer across

implementations and applications?. arXiv preprint https://arxiv.

org/abs/2102.11972 (2021)

41. Bachmann, F., Bass, L., Klein, M.: Deriving architectural tactics:

a step toward methodical architectural design. Carnegie-Mellon

Univ Pittsburgh Pa Software Engineering Inst. (2003)

Publisher’s Note Springer Nature remains neutral with regard to

jurisdictional claims in published maps and institutional affiliations.

Cigdem Avci holds a BSc and an

MSc in Computer Engineering

from Middle East Technical

University, and a PhD from

Wageningen University in The

Netherlands. She worked for

European Space Agency, Turk-

ish Aerospace and other orga-

nizations. She is a lecturer at

Middle East Technical Univer-

sity. Her research focuses on

system design, cybersecurity,

machine learning, and software

engineering.

Bedir Tekinerdogan holds the

position of full professor and

chair of the Information Tech-

nology group, as well as the

chair of the Business Section,

which encompasses five distinct

chairgroups, at Wageningen

University in The Netherlands.

He has over 25 years of expe-

rience in software/systems

engineering and information

technology. He earned both his

MSc degree (1994) and a PhD

degree (2000) in Computer

Science from the University of

Twente, The Netherlands. He was a faculty member at the University

of Twente from 2003 to 2008 before joining Bilkent University,

where he worked until 2015. At Bilkent University, he founded and

led the Bilkent Software Engineering Group to promote software

engineering research and education in Turkey. Throughout his career,

he has authored more than 400 peer-reviewed scientific papers and 10

edited books. His research collaborations extend globally, engaging in

numerous national and international projects with leading software

companies, serving as a principal researcher and chief software/sys-

tem architect. His professional interests and expertise cover a wide

array of fields such as consumer electronics, enterprise and automo-

tive systems, critical and cyber-physical infrastructures, defense, and

energy systems, to name a few. His approach to solving industrial

challenges is holistic, systemic, and interdisciplinary, leveraging his

deep knowledge in areas including software and systems architecting,

product line engineering, model-driven and aspect-oriented software

engineering, global software development, data science, and AI.

Cagatay Catal is a Full Professor
at Qatar University, Department

of Computer Science & Engi-

neering. He obtained his BSc

and MSc degrees in Computer

Engineering from Istanbul

Technical University in 2002

and 2004, respectively. He later

pursued his Ph.D. in Computer

Engineering at Yildiz Technical

University in Istanbul, com-

pleting it in 2008. From 2020 to

2021, he held the position of

Full Professor in the Depart-

ment of Computer Engineering

at Bahcesehir University in Istanbul. Prior to that, he worked for two

years as a full-time faculty member at Wageningen University &

Cluster Computing

123

https://www.kaggle.com/datasets/shashwatwork/phishing-dataset-for-machine-learning?resource=download
https://www.kaggle.com/datasets/shashwatwork/phishing-dataset-for-machine-learning?resource=download
https://colab.research.google.com/github/keras-team/keras-io/blob/master/examples/vision/ipynb/video_transformers.ipynb
https://colab.research.google.com/github/keras-team/keras-io/blob/master/examples/vision/ipynb/video_transformers.ipynb
https://doi.org/10.3303/CET1974046
https://doi.org/10.3303/CET1974046
https://arxiv.org/abs/2102.11972
https://arxiv.org/abs/2102.11972


Research (WUR) in the Netherlands. Before his time at WUR, Dr.

Catal worked for six years in the Department of Computer Engi-

neering at Istanbul Kultur University, where he served as an Associate

Professor and Head of the Department. In April 2014, he was awarded

the title of Associate Professor by the Inter-University Council of

Turkey. Before entering the academic field, Dr. Catal had 8 years of

experience at the Scientific and Technological Research Council of

Turkey (TUBITAK), Information Technologies Institute, where he

held the positions of Senior Researcher and Project Manager. His

research interests include various areas, including Artificial Intelli-

gence, Deep Learning, Large Language Models, Software Testing,

Software Architecture, and Precision Agriculture.

Cluster Computing

123


	Design tactics for tailoring transformer architectures to cybersecurity challenges
	Abstract
	Introduction
	Background
	Cybersecurity
	Transformer Architectures
	Design tactics

	Problem statement
	Research method
	Design tactics for transformer architectures
	Tactic template
	Selecting design tactics
	List of tactics
	T-BERT
	Pre-trained transformer model
	Memory, list of trainable parameters

	Integration of design tactics with broader theoretical frameworks

	Case study
	Case study description: transformer architectures for phishing detection
	Implementation
	Application of design tactics for transformer model adaptation
	Results

	Discussion
	Related work
	Future research directions
	Conclusion
	Author contributions
	Open Access
	References


