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The Morse Index for Manifolds with
Constant Sectional Curvature

Nil İpek Şirikçi

Abstract. We compute the Morse index of a critical submanifold of the
energy functional on the loop space of a manifold with constant sectional
curvature. The case of constant non-positive sectional curvature is a
known result and the case of a sphere has been proved by Klingenberg.
We adapt Klingenberg’s proof of the case of a sphere to the case of
constant sectional curvature, to obtain the possible Morse indices of
critical submanifolds of the energy functional.
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1. Introduction

The Morse index of a critical submanifold of the energy functional on the loop
space of a Riemannian manifold has been computed in the literature. It has
been computed by Klingenberg for spheres in [7] and for complex projective
spaces, quaternionic projective spaces, and Cayley projective planes in [6].
The indices for compact rank one symmetric spaces (which are spheres, real
projective spaces, complex projective spaces, quaternionic projective spaces,
and the Cayley projective plane) have been computed by Ziller [16]. The
indices for simply connected compact rank one symmetric spaces have also
been computed by Hingston [3].1

The Morse indices of the critical submanifolds of the energy functional
have been used in the literature to obtain obstruction results for the em-
beddings of Lagrangian tori (see [13]), spheres and other compact rank one
symmetric spaces (see [11]) utilizing an index relation (see [1,5,15]) involving
the Morse index. They also are used to obtain restrictions on the Maslov
class of Lagrangian submanifolds [4]. The result obtained in this paper mod-
ifies the possible Morse indices listed in [12] where the use of Morse indices

1There are also studies extending the classical Morse index theorem to semi-Riemannian
manifolds [9,10,14].
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provided an alternative proof of a nonexistence result for certain displace-
able constant sectional curvature Lagrangian submanifolds in symplectically
aspherical symplectic manifolds (M2n, ω) with n > 4 [12].2

In this paper, we adapt the proof of [7] for the case of spheres to man-
ifolds with constant sectional curvature to obtain Theorem 1.1. In Theorem
1.1, the case A ≤ 0 is a classical result, a consequence of the known more
general statement that the Morse index I is zero if Mn is a manifold of non-
positive sectional curvature. From the remaining cases, the ones not overlap-
ping with Klingenberg’s, Hingston’s and Ziller’s results are new to the best
of my knowledge.

Theorem 1.1. Let Mn be a complete Riemannian manifold of constant sec-
tional curvature A. If c(t) ∈ Λ(Mn) is a critical point of the energy functional
Eg(q) =

∫ 1

0
1
2‖q̇(t)‖2dt where q(t) ∈ Λ(Mn), then the Morse index I of the

nondegenerate critical submanifold Sc (containing c) of the energy functional
is as follows:

If A ≤ 0: I = 0.

If 0 < A: I = 0 or I = (2B + 1)(n − 1) or I = 2(D + 1)(n − 1),

where

B =

⎧
⎨

⎩

⌊√
A‖ċ‖
2π

⌋
if

√
A‖ċ‖
2π /∈ Z

√
A‖ċ‖
2π − 1 if

√
A‖ċ‖
2π ∈ Z

and

D =

⎧
⎨

⎩

⌊√
A‖ċ‖−π
2π

⌋
if

√
A‖ċ‖−π
2π /∈ Z

√
A‖ċ‖−π
2π − 1 if

√
A‖ċ‖−π
2π ∈ Z

with ‖ċ‖ denoting the length of the closed geodesic c.
Furthermore, for M = RPn, if

√
A‖ċ‖ is a nonzero even multiple of

π, then I = (2B + 1)(n − 1); if
√

A‖ċ‖ is an odd multiple of π, then I =
2(D + 1)(n − 1); and if ‖ċ‖=0, then I = 0.

For M = Sn, if ‖ċ‖=0, then I = 0; and if
√

A‖ċ‖ is nonzero, then I =
(2B + 1)(n − 1).

2. Preliminaries

The loop space Λ(Mn) is defined as the set of H1-maps of S1 into Mn (see
[3,7,16]).

The following definitions agree with their corresponding ones in [7]:

2The main theorem of [12], Theorem 1.1, still holds and its method of proof still applies
with the indices listed in this paper.
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Let c ∈ Λ(Mn) be a critical point of the energy functional Eg(q) =
∫ 1

0
1
2‖q̇(t)‖2dt, q(t) ∈ Λ(Mn). Let Ac denote the self-adjoint operator Ac :

TcΛ(Mn) −→ TcΛ(Mn) defined by the identity

< Acξ, ξ
′ >1=< ξ,AT

c ξ′ >1= D2Eg(c)(ξ, ξ′),

where one defines

< ξ, ξ >1=< ξ, ξ >0 + < ∇ξ,∇ξ >0 ,

< ξ, ξ >0=
∫

S

< ξ(t), ξ(t) > dt ,

and ∇ξ is the covariant derivative ∇ċξ.
TcΛ(Mn) has an orthogonal decomposition into subspaces T−

c Λ(Mn),
T 0

c Λ(Mn) and T+
c Λ(Mn), spanned by the eigenvectors of Ac having positive,

zero and negative eigenvalue, respectively. The dimension of T−
c Λ(Mn) is

called the (Morse) index of c and the dimension of T 0
c Λ(Mn) is called the

nullity of c.
Define the map χ : S1×Λ(Mn) → Λ(Mn) by χ(z, c) = z.c with z.c(t) =

c(t + r) where z = e2πir ∈ S1.
A closed submanifold S of Λ(Mn) is called critical if it is closed under

the S1-action χ, if Eg restricted to S is constant and if S consists entirely of
critical points of Eg.

If the index of c is the same constant for all c in a critical submanifold
S, this constant is called the (Morse) index of S. If the nullity of D2Eg(c) is
constant for all c ∈ S, then this number is called the nullity of S.

S is called a nondegenerate critical submanifold if the critical sub-
manifold S has an index and if the nullity of S is equal to the dimension
of S.

3. Known Results

Klingenberg computed the index of a critical submanifold of the energy func-
tional on the loop space of the sphere as given in the following theorem:

Theorem 3.1 ([6], p.71). The critical set CrΛSn of the energy functional
Eg(q) =

∫ 1

0
1
2‖q̇(t)‖2dt on the loop space Λ(Sn) decomposes into the non-

degenerate critical submanifolds Λ0Sn which is isomorphic to Sn and Bq

consisting of the q-fold covered great circles q = 1, 2, .... Bq is isomorphic to
the Stiefel manifold V (2, n + 1) of orthonormal 2-frames in R

n+1 and the
index of Bq is (2q − 1)(n − 1).

As stated in the introduction, the index calculated for the sphere case
in Theorem 3.1 has also been calculated for the complex projective space, the
quaternionic projective space and the Cayley projective plane by Klingenberg
in [6] and by Hingston in [3]. This is given in Theorem 3.2. The indices for
compact rank one symmetric spaces are given by Ziller in [16].
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Theorem 3.2 (p.103 of [2], p.19 of [5]). The standard metric on M is normal-
ized so that the maximal sectional curvature is 1. Then the critical set of the
energy function on ΛM consists of the critical manifolds Am of geodesics of
length 2πm, m ≥ 0. We have A0

∼= M and Am
∼= STM the unit tangent

bundle of M for m ≥ 1. By counting zeros of the Jacobi fields, one can see
that Am (m > 0) is a nondegenerate critical submanifold of index

I(Am) = (2m − 1)(a − 1) + (m − 1)(s − 1)a,

where a = n, 2, 4, or 8, respectively, for M = Sn, CPn, HPn, CaP 2 and
s = dimM

a (= 1, n, n, n = 2, respectively).

In addition, for M = RPn, the index of a nondegenerate critical sub-
manifold Am of m-fold covered geodesics for m ≥ 1 is (m − 1)(n − 1), by
Ziller [16].

4. Proof of Theorem 1.1

Let c(t) ∈ Λ(Mn) be a critical point of Eg. For a Riemannian manifold
with constant sectional curvature A, the formula of the Riemann curvature
endomorphism for X = η(t) in the tangent space TcΛ(Mn), Y = ċ and Z = ċ
is given by

R(η(t), ċ(t), ċ(t)) = A
(

< ċ(t), ċ(t) > η(t)− < η(t), ċ(t) > ċ(t)
)

(4.1)

[8]. To find the Morse index, we will count the periodic solutions of

(λ − 1)(∇2 − 1)η − (R + 1)η = 0 (4.2)

for λ < 0 [7].3

Here, we use the notation Rη = R(η(t), ċ(t), ċ(t)) 4and ∇ is the covariant
derivative on tangent bundle TM , derived from the Levi-Civita connection
[7].

When A = 0, we have R = 0, and Eq. (4.2) reduces to

(λ − 1)(∇2 − 1)η − η = 0. (4.3)

Since λ = 1 is not an eigenvalue, the equation can be written as

∇2η +
λ

1 − λ
η = 0. (4.4)

This equation has no periodic solutions when λ < 0 (p.59 of [7]); so
the dimension of the subspace of the tangent space TcΛM spanned by the
eigenvectors having negative eigenvalue, dim T−

c ΛM , for c in a nondegenerate
critical submanifold is zero.

Next, we consider A 
= 0:

3The periodic solutions of this differential equation are the eigenvectors of the self-adjoint
operator Ac (for an eigenvalue λ ∈ R).This is 2.4.4 Corollary 2 on p.58 of [5]. For Ac and

the notation used for the terms in Ac, see p.56–58 in [5].
4What we have denoted with R is denoted with Kc̃ in [7].
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We insert Eq. (4.1) in Eq. (4.2). When λ < 0, Eq. (4.2) becomes

∇2η +
(

A‖ċ‖2
1 − λ

+
λ

1 − λ

)

η − A < η, ċ >

1 − λ
ċ = 0. (4.5)

We decompose η into the tangential part, α(t)ċ(t), and the vertical part,
ξ(t)⊥ċ.

Then, the last formula decomposes into

(tan) α̈(t) +
( λ

1 − λ

)
α(t) = 0, (4.6)

(ver) ∇2ξ +
(A‖ċ‖2 + λ

1 − λ

)
ξ = 0. (4.7)

Solutions of (tan) for λ < 0:

• If λ < 0, then there are no periodic solutions. Solutions of (ver) for
λ < 0:

• If λ < −A‖ċ‖2, then there are no periodic solutions.5

• If −A‖ċ‖2 ≤ λ < 0, then we consider Eq. (4.6) on the universal cover of
M. The universal cover of a constant sectional curvature manifold with
positive A is Sn by the Killing–Hopf theorem. The general solution of
(4.6) considered on the universal cover is of the form67

ξ(t) = ξ0 cos

(√
(A‖ċ‖2 + λ)

(1 − λ)
t

)

+ ξ1sin

(√
((A‖ċ‖2 + λ)

(1 − λ)
t

)

. (4.8)

Here, if c̃ denotes a lift of c (with ‖ċ‖ = ‖ ˙̃c‖) and ΩM̃ denotes
the space of paths on the universal cover M̃ , as it is the case with ξ,
ξ0 and ξ1 also belong to Tc̃ΩM̃ and are vector fields along c̃ which are
orthogonal to ˙̃c and are induced by parallel transport.

Counting the periodic solutions to find dimT−
c ΛM

For λ < 0:

Case 1: When −A‖ċ‖2 ≤ λ < 0 is not satisfied, then there are no periodic
solutions. (This will always be the case for A < 0 and may be possible for
A > 0.)

5Equation (4.6) is of the form ∇2ξ + Eξ = 0 where E =
(

A‖ċ‖2+λ
1−λ

)
. If λ < −A‖ċ‖2,

then E < 0. Let ċ, X1, ..., Xn−1 be an orthonormal frame invariant by parallelism along a
geodesic c. If E < 0, Yi = sinh(

√−Es)Xi’s and Zi = cosh(
√−Es)Xi’s form a basis for

the solutions of ∇2ξ + Eξ = 0 that are orthogonal to ċ. (s denotes the arclength). (see
p.485–486 of [2].) Noting that these solutions are not periodic, we conclude that there are
no periodic solutions orthogonal to ċ.
6With the notation in Footnote 5, if −A‖ċ‖2 ≤ λ < 0, then E ≥ 0.If E > 0, Yi =

sin(
√

Es)Xi’s and Zi = cos(
√

Es)Xi’s form a basis for the solutions of ∇2ξ +Eξ = 0 that
are orthogonal to ċ [2]. If E = 0, then Xi’s form a basis for the solutions [2].
7For Sn with A = 1, letting A = 1 in Eq. 4.8, we obtain the same ξ(t) obtained by
Klingenberg in [7].
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Case 2: If −A‖ċ‖2 ≤ λ < 0 is satisfied (which is possible only if A > 0), the
general solution of (4.5) considered on the universal cover is

η =

[

cos

(√
(A‖ċ‖2 + λ)

(1 − λ)
t

)]

ξ0 +

[

sin

(√
(A‖ċ‖2 + λ)

(1 − λ)
t

)]

ξ1, (4.9)

where ξ0(t), ξ1(t)⊥ ˙̃c(t) and ξ0(t), ξ1(t) are induced by parallel transport.
From considering Eq. (4.1) on the universal cover, it is seen that η is

an eigenvector of R. Since R is invariant under parallel transport, parallel
transport leaves the eigenspaces of R invariant, so η(0) = ±η(1) should be
satisfied (p.7 of [16]).8

Subcase 2.1: If η(0) = η(1), then
√

(A‖ċ‖2 + λ)
(1 − λ)

= 2πp, (4.10)

where p ∈ Z should be satisfied.
Solving Eq. (4.10) for λ gives us

λ =
4π2p2 − A‖ċ‖2

1 + 4π2p2
. (4.11)

We get a bound for p coming from imposing the condition that λ < 0
in (4.11). We obtain

p <

√
A‖ċ‖
2π

. (4.12)

Equivalently,
p ≤ B, (4.13)

where

B =

⎧
⎨

⎩

⌊√
A‖ċ‖
2π

⌋
if

√
A‖ċ‖
2π /∈ Z

√
A‖ċ‖
2π − 1 if

√
A‖ċ‖
2π ∈ Z.

Using (4.10) and the condition on p of (4.13), (4.9) becomes

η = cos(2πpt)ξ0 + sin(2πpt)ξ1, (4.14)

where ξ0(t), ξ1(t)⊥ ˙̃c(t) and p ≤ B.
We will count the number of possible choices of directions for fixed p:

It is n-1 for p = 0 since η = ξ0. For p ≥ 1, it is 2(n − 1). Hence,

dimT−
c ΛM = dimT−

c̃ ΩM = (n − 1) +
B∑

p=1

2(n − 1)

= (n − 1) + B2(n − 1) = (n − 1)(2B + 1). (4.15)

8Since c(t) is a closed loop, c(0) = c(1) and the projection of η(0) and η(1) to Mn are the
same point.
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Subcase 2.2: If η(0) = −η(1), then

√
(A‖ċ‖2 + λ)

(1 − λ)
= (2p + 1)π, (4.16)

where p ∈ Z should be satisfied.
Solving Eq. (4.16) for λ gives us

λ =
(2p + 1)2π2 − A‖ċ‖2

1 + (2p + 1)2π2
. (4.17)

We get a bound for p coming from imposing the condition that λ < 0
in (4.17). We obtain

p <

√
A‖ċ‖ − π

2π
. (4.18)

Equivalently,
p ≤ D, (4.19)

where

D =

⎧
⎨

⎩

⌊√
A‖ċ‖−π
2π

⌋
if

√
A‖ċ‖−π
2π /∈ Z

√
A‖ċ‖−π
2π − 1 if

√
A‖ċ‖−π
2π ∈ Z.

Using (4.16) and the condition on p of (4.19), (4.9) becomes

η = cos
(
(2p + 1)πt

)
ξ0 + sin

(
(2p + 1)πt

)
ξ1, (4.20)

where ξ0(t), ξ1(t)⊥ ˙̃c(t) and p ≤ D.
We will count the number of possible choices of directions for fixed p:

It is 2(n − 1) for p ≥ 0. Hence,

dimT−
c ΛM =

D∑

p=0

2(n − 1) = 2(n − 1)(D + 1). (4.21)

Considering both cases (with all subcases): When A < 0, only Case 1 is
possible. When 0 < A, both Case 1 and Case 2 are possible.

Also, for M = RPn, if
√

A‖ċ‖ is an even multiple of π, c lifts to a
closed loop c̃ in the universal cover Sn, and η(0) = η(1), and if

√
A‖ċ‖ is

an odd multiple of π, c lifts to a non-closed path in the universal cover and
η(0) = −η(1). For M = Sn, for a closed geodesic,

√
A‖ċ‖ is an even multiple

of π, so η(0) = η(1). These lead to the statement. �

Example: Let M be the n-dimensional sphere with radius r in R
n+1 with the

metric induced by R
n+1. Then M has constant sectional curvature A = 1

r2 .
The closed geodesics (with positive length) have length 2πrm, where m is a
positive integer. We have

√
A‖ċ‖
2π = m ∈ Z, so B = m − 1. Hence the Morse

index of a nondegenerate critical submanifold of M is I = 0 (for the critical
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submanifold consisting of the constant loops) or I = (n − 1)(2B + 1) =
(n − 1)(2m − 1), which is consistent with the known results.

Author contributions All the work in this research article has been done by
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[5] Kerman, E., Şirikçi, N.I.: Maslov class rigidity for Lagrangian submanifolds via
Hofer’s geometry. Comment. Math. Helv. 85, 907–949 (2010)

[6] Klingenberg, W.: The space of closed curves on a projective space. Quart. J.
Math. 20(1), 11–31 (1969)

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


MJOM The Morse Index for Manifolds Page 9 of 9 139

[7] Klingenberg, W.: Lectures on Closed Geodesics. Springer, Berlin, New York
(1978)

[8] Lee, J.M.: Riemannian Manifolds: An Introduction to Curvature. Springer,
New York (1997)

[9] Musso, M., Pejsachowitz, J., Portaluri, A.: A Morse index theorem for per-
turbed geodesics on semi-Riemannian manifolds. Topol. Methods Nonlinear
Anal. 25, 69–99 (2005)

[10] Piccione, P., Tausk, D.V.: Morse index theorem in semi-Riemannian geometry.
Topology 41, 1123–1159 (2002)

[11] Sirikci ,N.I.: Obstructions to the existence of displaceable Lagrangian subman-
ifolds. Ph.D. Thesis, University of Illinois at Urbana-Champaign, USA (2012)
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