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Abstract
Assessing alternative solutions that have uncertain evaluations in conflicting multiple criteria
is not straightforward. Probabilistic models such as Bayesian networks (BNs) can effectively
model and represent the uncertainty in such problems, but they do not include built-in mech-
anisms to guide different decision makers (DMs) with varying preferences toward the final
decision. We propose a systematic approach to combine outranking methods with BNs to
provide decision support for solutionswithmultiple and conflicting criteria under uncertainty.
The proposed approach is based on Preference Ranking Organization Method for Enrich-
ment Evaluation (PROMETHEE), and it offers different levels of precision and flexibility
to the DMs in assessing the solutions. Our approach includes graphical tools and summary
metrics to enhance the presentation of its results to the DMs.We test our approach with a case
study on supplier selection where the uncertainty in supplier performances is modeled with a
BN. We demonstrate that the proposed approach can enable the joint use of multiple criteria
techniques with probabilistic modeling techniques like BNs to provide decision support in
complex environments including uncertainty.
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cerents@hacettepe.edu.tr

Melodi Cebesoy
melodicebesoy@hacettepe.edu.tr

Barbaros Yet
byet@metu.edu.tr

1 Department of Industrial Engineering, Hacettepe University, 06800 Ankara, Turkey

2 Department of Cognitive Science, Graduate School of Informatics, Middle East Technical University,
06800 Ankara, Turkey

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10479-024-06064-8&domain=pdf
http://orcid.org/0000-0002-6269-4234


Annals of Operations Research

1 Introduction

A rational decision maker (DM) under uncertainty chooses the decision alternative with the
maximum expected value. Modeling this choice requires an understanding of the DM’s pref-
erences, and reasoning with uncertainty to estimate the expected values of interest. Neither
of these tasks are trivial when multiple criteria are involved in decisions and preferences.
Usually, the criteria conflict with each other, and no solution has the best evaluations in
all of them. When uncertainty is involved, computing the joint probability distribution of
criteria evaluations is also challenging. Previous research on multicriteria decision making
(MCDM) offers various methods to deal with the former challenge (see Greco et al., 2016;
Cinelli et al., 2020), but often with limited or no support to deal with uncertainty. On the other
hand, probabilistic graphical models, in particular Bayesian Networks (BNs), offer a general
representation and powerful inference algorithms to deal with the latter. However, although
BNs have been extended to deal with simple and sequential decision making problems, there
has been little focus on providing a general approach to deal with multiple and conflicting
criteria.

This paper focuses on decision making under uncertainty by combining the advances
from the MCDM and BN domains. The main contribution of this paper is to present a
general method to provide multicriteria decision support with BNs. We propose a systematic
approach that combines outranking-type MCDM techniques with BN models. The proposed
approach keeps the decision and uncertainty models separate, thus enabling modifications in
either the uncertainty or the decision model without disturbing the other.

In particular, we extend Preference RankingOrganizationMethod for Enrichment Evalua-
tion (PROMETHEE) (Brans et al., 1986) to workwith BNs. Although there have been several
attempts to combine MCDM approaches with BNs (Barton et al., 2020; Dohale et al., 2021;
Fan et al., 2020; Kaya et al., 2023), previous studies lack a systematic and general approach to
combine PROMETHEEwith BNs. Extending the BNmodelling toolboxwith PROMETHEE
is valuable as PROMETHEE offers several advantages compared to other MCDM methods
including its flexibility in using different types of criteria, ranking procedures and prefer-
ence functions. First of all, the criteria values in a decision problem may have different data
types such as continuous, ordinal and binary. Unlike other widely-used MCDM methods
such as weighted sum and Technique for Order Preference by Similarity to Ideal Solution
(TOPSIS), PROMETHEE does not require normalization which makes it easier to work with
both continuous and discrete criteria. Secondly, PROMETHEE has different variations that
can provide complete or partial ranking of solutions. We work with PROMETHEE I and II
to provide partial and complete rankings. Thirdly, the DM can express detailed preferences
through a variety of preference functions and fine-tune those preferences with customized
indifference and preference thresholds. Furthermore, the thresholds of PROMETHEE are not
abstract values like the concordance and discordance thresholds used by the other popular
outranking method, Elimination and Choice Translating Reality (ELECTRE).

Applying outranking methods under uncertainty, such as combining PROMETHEE with
BNs, leads to partial and complete rankings that also involve uncertainty. For example,
when a complete ranking is sought with uncertain criteria evaluations, a solution can have
probabilities of being ranked the first, second and so on, rather than having a specific rank.
This uncertainty makes it challenging to interpret the results. Another contribution of this
paper is graph, plot and score-based tools to present the results of the proposed approach,
and to provide decision support in a concise way.
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Wedemonstrate the proposed approachbothwith a simple example and a supplier selection
case study that involves several suppliers and criteria. The case study pairs the proposed
approach with a BN that has been previously developed for multicriteria supplier evaluation
(Kaya&Yet, 2019). To account for the preferences of theDMs regarding the importance level
of criteria, we work with different weight elicitation techniques and evaluate the sensitivity
of the results to changes in preference weights.

In the remainder of this paper, Sect. 2 reviews the studies that handle uncertainty in
MCDM, and also studies that use BNs and MCDMmethods together. Section 3 presents the
proposed approach, and Sect. 4 applies it to the supplier selection case study. We conclude
the paper with discussions and future work in Sect. 5.

2 Related work

2.1 Handling uncertainty in MCDM

MonteCarlo Simulation (MCS) has beenwidely used for incorporating uncertainty inMCDM
problems. Previous studies usedMCS to sample from the probability distributions of weights
or criteria values. For example, Baudry et al. (2018) employed MCS in Multi Actor Multiple
Criteria Analysis to decide on a biofuel option. They used Analytic Hierarchy Process (AHP)
to derive the weights of criteria and select the best option. Betrie et al. (2013) studied the
problem of selecting alternative mine sites when criteria weights have uncertainty. They used
AHP and PROMETHEE to rank the alternatives, and uncertainty in weights was handled
by fitting probability distributions and sampling from them using MCS. Dorini et al. (2011)
focused on uncertainties in model inputs and weights of different DMs when comparing two
alternative solutions. They applied compromise programming andMCSon a case study about
comparing two sustainable electricity generation options. Baležentis and Streimikiene (2017)
used additive ratio assessment, weighted aggregated sum and TOPSIS to evaluate effective
energy planning scenarios. In their study, theymade sensitivity analysis with different criteria
weights using MCS.

Stochastic Multicriteria Acceptability Analysis (SMAA) (Lahdelma et al., 1998) is an
approach based on MCS to handle uncertain or insufficient information in multicriteria
problems. It considers probability distributions to provide measures for decision making.
SMAA does not strictly rank the solutions, but determines the ones that can be candidates for
selection. It calculates acceptability indices between 0 and 1 for the solutions, and the best
solutions are accepted as the ones with the highest acceptability indices for the top ranks.
Lahdelma and Salminen (2001) extended the SMAA approach to consider any possible rank.
This extended method, SMAA-2, aggregates rank acceptability indices with metaweights to
present an overall acceptability measure called holistic acceptability index. There are also
different versions of SMAA that are combined with other MCDM methods; readers are
referred to Pelissari et al. (2020) and Tervonen and Figueira (2008) for further information
and a detailed literature review.

Fuzzy sets and logic are used to handle vagueness and ambiguity regarding linguistic
information in decision problems (Özkan et al., 2014). Montazar et al. (2013) proposed
an approach that uses fuzzy triangular numbers and AHP in order to make performance
assessments of irrigation alternatives with fuzzy parameters. Kilic et al. (2014) performed
a two-phase decision making method to select an appropriate Enterprise Resource Planning
(ERP) system. They applied fuzzy AHP to handle varying criteria preferences, and then
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employed TOPSIS to rank the alternatives. Pitchipoo et al. (2013) introduced an integrated
model of fuzzy AHP and Grey Relational Analysis (GRA). Vagueness about criteria was
modeled with fuzzy set theory and the alternatives were ranked with the help of GRA.
Venkatesh et al. (2019) used fuzzy AHP to derive criteria weights, and fuzzy TOPSIS to find
the best supplier for humanitarian supply chains.

The readers are referred to Durbach and Stewart (2012), Broekhuizen et al. (2015) and
Pelissari et al. (2021) for more comprehensive reviews on MCDM approaches under uncer-
tainty. Since our approaches are based on PROMETHEE, we provide a more specific review
of studies that handled uncertainty in that family of methods in the next section.

2.1.1 Handling uncertainty in PROMETHEE

Early work in PROMETHEE with uncertainty focuses on modeling the uncertainty and
variation among multiple domain experts. Mareschal (1986) used PROMETHEE I and II
with the average ranking of different experts to reach the final decision in a project selection
problem. In more recent studies, Yuen and Ting (2012) proposed to use a fuzzy approach
in PROMETHEE II to cope with uncertainty in solution evaluations. Kuang et al. (2015)
used Grey Theory with PROMETHEE II to produce a ranking of alternative source water
protection strategies. Maghrabie et al. (2019) focused on problems with small amount of data
and uncertain information on criteria weights. They used maximizing deviation method and
Grey SystemsTheory to estimate theweights, and PROMETHEE II and degrees of possibility
to rank the solutions. The stochastic dominance approaches in Zhang et al. (2010) and Liu
et al. (2011) were also applied with PROMETHEE. They created dominance matrices based
on stochastic dominance degrees, and used these matrices with PROMETHEE to find the
rank order of solutions.

MCS has been a widely used approach to include uncertainty in PROMETHEE calcu-
lations too. Hyde et al. (2003) used probability distributions to model criteria weights and
performance in PROMETHEE II scores. They used MCS to run the models and reported the
probability of solutions occupying different ranks. Doumpos and Zopounidis (2010) made
sensitivity analysis of PROMETHEE II parameters and criteria preferences using MCS.
Shakhsi-Niaei et al. (2011) proposed a two-phase method for project selection where the first
phase evaluates the projects with PROMETHEE and MCS, and the second phase utilizes
MCS with integer programming to select a final project portfolio. Gervásio and Simões Da
Silva (2012) fitted probability distributions to criteria and used MCS and PROMETHEE II
to calculate the probabilities of alternatives holding possible ranks.

As discussed in the previous section, SMAA is used with uncertain data and unknown
preferences of the DMs, and different versions combined with outranking approaches are
available in the literature. Corrente et al. (2014) combined SMAA-2 with PROMETHEE
I and II methods. Their method asks the DM to provide partial preference information on
criteria and preference thresholds. For each solution i, SMAA-PROMETHEE I calculates
the frequency of solution i being preferred to every other solution k (denoted UP(i,k)) and
the frequency of solution k being preferred to i (denoted DOWN(i,k)). Taking all available
solutions into account, solutions with the highest UP and lowest DOWN values are reported
as the best ones. In addition, SMAA-PROMETHEE II provides rank acceptability indices
by deriving the probabilities of solutions occupying each rank, the central weight vector,
and the confidence factor. However, although the SMAA-PROMETHEE II method is based
on SMAA-2 rules, it does not use the holistic acceptability index of SMAA-2 or introduce
an overall measure to generate a ranking of solutions. Hubinont (2016) proposed a SMAA
version of the Geometrical Analysis for Interactive Aid (GAIA) (Brans &Mareschal, 1994),
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which was developed to project the locations of alternatives according to all criteria on a
plane. Another study proposed an extension of SMAA to work with nonmonotonic criteria
in a group decision making setting (Liao et al., 2022).

Among the studies reviewed, Gervásio and Simões Da Silva (2012) and Corrente et al.
(2014) are the most related to our approach since we also work with PROMETHEE II
formulas and calculate the probability of solutions occupying different ranks based on criteria
distributions. However, we combine PROMETHEE with BNs to evaluate the probability
of solutions being preferred to others, and use SMAA-2 rules. Additionally, our approach
provides a systematic methodology to use PROMETHEE with BNs in a comprehensive
decision making process. We present graph, plot and score-based tools to present the results,
and introduce an extension of the approach for applying data-driven outranking.

2.2 BNmodels andMCDMmethods

Influence Diagrams (IDs), which are extensions of BNs, have been proposed to deal with
decision making problems (Howard & Matheson, 2005). An ID has additional types of
nodes for decision and utility variables. The computation of IDs is more complex than
BNs as the model needs to calculate the utility distribution for all decision alternatives,
and several algorithms are available (Jensen et al., 1994; Zhang, 1998). In MCDM problems,
the preferences of the DMs can be encoded in the parameters of the utility nodes of IDs. This
requires eliciting a utility value for all states of utility nodes, or an additive or multiplicative
function for the utility nodes. For example, Watthayu and Peng (2004) built an ID for an
MCDM problem about commuting. Delcroix et al. (2013) used IDs for a recurrent MCDM
problemwhere the decision is made by a group of experts. Their model predicted both criteria
importance and distributions within the model. Barton et al. (2020) integrated multi-attribute
value functions in a BN model in order to evaluate environmental design alternatives, and
modeled the problem as an ID. Shahzad (2022) studied on IDs to overcome interdependency
and uncertainty issues of traditional MCDM problems, and used AHP to calculate utility
values of nodes. In general, the use of IDs in complexMCDM problems requires the creation
of large utility tables, which is not a straightforward task.

Combining MCDM approaches with BNs can provide more flexibility as it can exploit a
wider selection of BN inference algorithms rather than using algorithms specifically designed
for solving IDs. In this case, a suitable MCDM technique, such as sorting or ranking, can be
selected depending on the properties of the decision problem. The use of BNs with MCDM
methods in the literature is limited. As examples, Fenton and Neil (2001) illustrated how
BNs can be used to calculate posterior probability distributions and constraints that could
be paired with MCDM techniques. Mazaheri et al. (2010) used a BN of a questionnaire
to predict fuzzy preference weights of a DM, and then used a fuzzy version of TOPSIS to
recommend a decision based on the weights. Several studies combined BNs and TOPSIS
to provide decision support and risk assessment for maritime safety (Fan et al., 2020, 2023;
Yang et al., 2021). Fan et al. (2020) presented a method using BNs and TOPSIS to determine
the best strategies for preventing marine accidents. Yang et al. (2021) combined BNs and
TOPSIS to aid ship detention decision in port state control inspections. Fan et al. (2023)
used BNs and TOPSIS to assess the risk of maritime piracy and to guide prevention actions.
Accident types were treated as criteria, and accident occurrence probabilities were used as
criteria weights. Kaya and Yet (2019) worked on integrating BNs with the Decision Making
Trial and Evaluation LaboratoryMethod (DEMATEL). Kaya et al. (2023) extended the study
of Kaya and Yet (2019) to provide a ranking of suppliers based on their overall performances.
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To achieve this, they applied TOPSIS to the evaluation matrix presented by the BN model
whose causal graph was determined with DEMATEL. The evaluation matrix derived from
the BN model included deterministic criteria values, and they used AHP to derive criteria
weights. In their case study, Kaya et al. (2023) built a BN model for supplier selection
with 5 criteria. They conducted a sensitivity analysis to evaluate the effect of having missing
information regarding suppliers on the rankings obtained from their approach. Quan and Cho
(2014) used a combination of BNs and AHP to recommend television programs. BNs were
used to learn user preferences from data, and AHP was used as a weighted combination of
these preferences to make recommendations. Weight elicitation and consistency evaluation
elements of AHP were not included in the study. Dohale et al. (2021) presented a three-phase
approach to select a production system. In the first stage, decision criteria are determined
using Delphi method, and their weights are derived by Voting AHP in the second stage. In
the last stage, a BN model is constructed for each alternative using relative weights and prior
probabilities in order to calculate its selection probability.

As the reviewed studies show, previous attempts to pair MCDM approaches with BNs
are generally made for specific decision problems, and do not offer general guidelines about
how to use multicriteria techniques with BN posteriors. In addition, majority of them focus
on AHP, which is impractical for large problems, or TOPSIS, which requires normalization
of criteria values and does not enable detailed preference expressions. As opposed to those
studies, we propose a systematic method that uses the advantages of outranking techniques
in developing a general decision support framework on BN outputs.

3 Methodology

In this paper, we consider a decision problem where discrete alternatives evaluated with
multiple criteria are to be partially or fully ranked, depending on the needs of the DM. The
DM can judge the importance of criteria differently, thus criteria have importance weights.
The criteria can be measured in different types of scales such as continuous, nominal and
ordinal. In addition, we assume that the evaluations of alternatives are subject to uncertainty.
In order to provide decision support in this problem, we propose a systematic approach to
combine outranking approaches with BNs.

In Sect. 3.1, we provide background information on the methods we use in our approach.
We present our approach to combine BNs and PROMETHEE in Sects. 3.2 and 3.3, our tools
to present the results of this approach in Sect. 3.4, and an extension of this approach to data-
driven PROMETHEE in Sect. 3.5. We conclude this section with a small illustrative example
in Sect. 3.6.

3.1 Background information

This section includes technical information on BNs, PROMETHEE I and II methods, and
the weight elicitation techniques we use.

3.1.1 Bayesian networks

ABN is a probabilistic graphicalmodel that represents the conditional dependencies and joint
probability distribution of a set of variables. The graphical structure of a BN is a directed
acyclic graph in which nodes represent random variables, and edges represent direct causal
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and associational relations between those variables. When a directed edge connects nodes A
and B as in A → B, A is called the parent of B, and B is called the child of A. Each node
Xi in the BN has a local probability distribution conditioned on its parents pa(Xi ) denoted
by P(Xi |pa(Xi )). The graphical structure encodes conditional independency assertions that
enable the joint probability distribution to be defined in a compact and factorized way based
on these local probability distributions. Each node is conditionally independent of its non-
descendants given their parents. The joint probability distribution of the random variables
can be decomposed into the product of the conditional probabilities of each node given their
parents as in (1).

P(X1, . . . , Xn) �
n∏

i�1

P(Xi |pa(Xi )) (1)

Figure 1 shows a BN example where the local conditional probability distributions are
shown as probability tables. The joint probability distribution of this BN can be computed
by the product of those distributions as in (2).

(2)

P (B, C1, C2, C3, F1, F2)

� P (C3|F2) P (C2|B, F2) P (C1|F1) P (F2|B, F1) P (F1|B) P (B)

Efficient algorithms are available to compute the posterior probabilities when any subset
of the nodes is instantiated by exploiting the conditional independence assertions (Lauritzen
& Spiegelhalter, 1988).

In MCDM problems, BNs offer a suitable tool to model the causal and associational
relations, and joint probability distribution between the criteria based on a combination
of domain knowledge and data (Kaya & Yet, 2019; Yet et al., 2014). However, BNs do not
incorporateDMpreferences or decisionmaking algorithms to reach a final solution inMCDM
problems; they only compute the posterior probability distributions of their variables.

3.1.2 PROMETHEE

The PROMETHEE methodology proceeds by making pairwise comparisons between all
solutions in terms of each criterion involved in the problem. It assigns a preference value
between 0 and 1 to each comparison; and using these preference values and the importance
weights of criteria, it calculates aggregated measures of preferability of solutions. Take two
alternative solutions ai and ak , which have evaluations inmmaximization-type (without loss
of generality) criteria; ai � (ai1, ai2, ….,aim), ak � (ak1,ak2, …., akm). To determine the
preference strength of ai over ak with respect to criterion j, first the difference between their
evaluations is found by dikj � aij − akj. A preference value is assigned to this difference
using one of the six available preference functions. In Type I function, the preference value
is 1 for all positive differences. In Type II function, the preference value is 0 until a positive
indifference threshold is reached; after this threshold, the value is 1. In Type III function, the
preference value linearly increases from 0 to 1 for positive differences, and after a preference
threshold is exceeded, it remains at 1. There are three possible preference values in Type IV
function; 0, 0.5 and 1, which are determined by two thresholds. Type V function resembles
Type III in using a linear function from 0 to 1, but a threshold must be exceeded to start the
climb. Lastly, TypeVI function features a Gaussian function that goes from 0 to 1 nonlinearly.
The first three functions are the most commonly used ones. Let the preference value of ai
over ak with respect to criterion j be Pj(dikj). The aggregated preference index of ai over
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Fig. 1 Bayesian network example

ak is calculated as in (3), where wj is the weight of criterion j. PROMETHEE works with
pre-specified criteria weights that sum up to 1, so vik values are between 0 and 1. Values
closer to 0 represent weak global preference of ai over ak and values closer to 1 represent a
strong global preference of ai over ak .

vik �
m∑

j�1

Pj
(
dik j

)
w j (3)

After pairwise comparisons are conducted, PROMETHEE calculates overall preference
indices for all solutions. In the presence of n available solutions, positive flow of ai, which
implies how strongly ai outranks all other solutions, is denoted by ϕ+

i and calculated as in
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(4). Negative flow ϕ−
i of ai is calculated as in (5), and it implies how strongly other solutions

outrank ai. A solution would be considered preferable if it has high positive flow and low
negative flow.

ϕ+
i �

n∑

k�1

vik (4)

ϕ−
i �

n∑

k�1

vki (5)

There are two classic PROMETHEE methods that work with the flows calculated in (4)
and (5), PROMETHEE I and PROMETHEE II. In PROMETHEE I, ai is preferred to ak if
one of the following conditions hold:

(i) ϕ+
i > ϕ+

k and ϕ−
i < ϕ−

k

(ii) ϕ+
i � ϕ+

k and ϕ−
i < ϕ−

k

(iii) ϕ+
i > ϕ+

k and ϕ−
i � ϕ−

k

Solutions ai and ak are incomparable if one of the following conditions hold:

(i) ϕ+
i > ϕ+

k and ϕ−
i > ϕ−

k

(ii) ϕ+
i < ϕ+

k and ϕ−
i < ϕ−

k

Lastly, there is an indifference relationship between the solutions ifϕ+
i � ϕ+

k andϕ
−
i � ϕ−

k .

As a result of PROMETHEE I, it may not be possible to achieve full ranking of solu-
tions since there can be incomparability or indifference between some pairs of solutions. In
PROMETHEE II, a final score is calculated as in (6) that can be used to achieve full ranking.

ϕi � ϕ+
i − ϕ−

i (6)

This ϕi value is called the net flow of solution ai, and solutions are ranked in decreas-
ing order of their net flows; ri is the resulting rank of ai. Due to the aggregation in (6),
PROMETHEE II loses some level of outranking information given by positive and negative
flows, but this allows it to produce a full rank list.

3.1.3 Elicitation of criteria weights

Many MCDM approaches, including PROMETHEE, represent the preferences of DMs for
criteria in the form of weights, but they do not have a built-in weight derivation procedure.
Among different types ofweight derivation approaches, rank-basedmethods come forward as
simple and practical alternatives. In those methods, the DM provides an importance ranking
of criteria. These ranks are then used to calculate their weights, which are suitable to be used
in PROMETHEE. Rank sum (RS), rank reciprocal (RR) and rank order centroid (ROC) are
the most common rank-based formulas. Among those, ROC has been shown to perform best
with respect to matching the true preferences of the DM and identifying the true best solution
(Ahn, 2011; Roszkowska, 2013).

The formulas for deriving the weight of the criterion that occupies the tth importance rank
in RS, ROC and RR methods are given by (7), (8) and (9), respectively. ROC derives the
weights by minimizing the maximum error of each weight from the centroid of all possible
weights satisfying the given rank order of importance. RS assumes equal distance between
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weights of consecutive ranks while RR and ROC increase the difference between consecutive
weights as the rank positions get higher. RR puts more weight on the first rank than the other
methods.

wt (RS) � n − t + 1∑n
k�1 n − k + 1

(7)

wt (ROC) � 1

n

n∑

k�t

1

k
(8)

wt (RR) � 1/t∑n
k�1 1/k

(9)

3.2 Overview of combining PROMETHEE with BNs

Figure 2 shows an overview of the proposed approach for combiningBNs and PROMETHEE.
Under uncertainty, a solution ai is a random variable and its evaluations for criteria have a
probability distribution p(ai1, ai2, . . . , aim). We model this probability distribution in a BN
model representing the problem, and query this model to get joint probabilities of evaluations
under different conditions (Fig. 2a). For example, in a supplier selection problem, we build a
causalBNmodel of the suppliers including the criteria variables, anduse thismodel to get joint
probability of criteria evaluations under different scenarios (see Sect. 4). Criteria weights are
elicited from domain experts (Fig. 2b) and PROMETHEE operations for computing positive
and negative flows are applied on these probability distributions (Fig. 2c). These operations
result in a probability distribution of positive p

(
φ+
i

)
and negative flows p

(
φ−
i

)
. The ranking

Fig. 2 Overview of method for combining BNs and outranking MCDM approaches
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results obtained from these distributions are presented to the DM with graphs, plots and
summary metrics (Fig. 2d).

In PROMETHEE I, the preference between ai and ak is determined based on these prob-
ability distributions and a probability threshold value β.

Solutions ai and ak are incomparable if one of the following conditions holds:

(i) p(φ+
i > φ+

k ) > β and p(φ−
i > φ−

k ) > β

(ii) p(φ+
i < φ+

k ) > β and p(φ−
i < φ−

k ) > β

If solutions are not incomparable, ai is preferred to ak if the following condition holds:

(i) p(φ+
i > φ+

k ) > β or p(φ−
i < φ−

k ) > β

Otherwise, there is indifference relationship between ai and ak .
The threshold value β is defined by the DM. A typical threshold value of β � 0.5 indicates

that the condition is more likely than its inverse. Higher β values lead to more conservative
preference options.

In PROMETHEE II, the probability distributions of net flows p(φi ) are calculated with
(10).

p(φi ) � p
(
φ+
i − φ−

i

)
(10)

As a result, a solution does not have a specific rank under uncertainty; it has different rank
probabilities p(ri ) according to its net flow distribution p(φi ).

3.3 Computing positive, negative and net flow distributions from BNs

BNs are generative models. Once we have a BN model to compute the criteria evaluation
distributions, the probability distributions p

(
φ+
i

)
, p

(
φ−
i

)
and p(ri ) can be estimated by

generating samples from the BN. Various options are available to obtain samples from the
posterior distribution of a BNmodel. The posterior distribution of a BNmodel with evidence
can be calculated with exact algorithms such as junction tree, and the samples can be obtained
from this posterior. Alternatively, rejection or importance sampling can be used to generate
samples from the posteriors of an unpropagated BN. Following one of these approaches, we
get samples ais for each solution ai and sample s. The PROMETHEE formulas (3)–(5) can be
applied on those samples to calculate φ+

is and φ−
is values. In PROMETHEE I, the probability

distributions for the preference conditions can be estimated by counting the samples that
the condition holds. Let S be the set of all samples, and Sφ+

i >φ+
k
be the subset of S where

the positive flow of solution ai is greater than ak , and Sφ−
i <φ−

k
be the subset of S where the

negative flow of solution ai is less than ak .

Sφ+
i >φ+

k
� {

s ∈ S|φ+
is > φ+

ks

}
(11)

Sφ−
i <φ−

k
� {

s ∈ S|φ−
is < φ−

ks

}
(12)

We estimate the probability that ai has a higher positive flow than ak as in (13).

p̂
(
φ+
i > φ+

k

) �
∣∣∣Sφ+

i >φ+
k

∣∣∣
|S| (13)
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Similarly, the probability that ai has a smaller negative flow than ak is estimated as in
(14).

p̂
(
φ−
i < φ−

k

) �
∣∣∣Sφ−

i <φ−
k

∣∣∣
|S| (14)

In PROMETHEE II, we calculate the sample net flows φis as in (15).

φis � φ+
is − φ−

is (15)

Let ris be the rank of ai in sample s, and Srit be the subset of S where ai has the t th rank
as shown in (16).

Srit � {s ∈ S|ris � t} (16)

The probability that ai has rank t is estimated from the samples as in (17).

p̂(ri � t) �
∣∣Srit

∣∣
|S| (17)

An alternative approach to compute PROMETHEE I and II results based on BN solutions
would be to extend a BN model with the nodes representing deterministic PROMETHEE
operations in (3)–(5), and to compute the posteriors of positive, negative and net flows directly
within the BN model by using a hybrid BN algorithm such as dynamic discretization (Neil
et al., 2007). The sampling approach, however, is simpler and offers the advantage of keeping
the BN and MCDM models separate, thus allowing each model to be modified without
affecting the other.

3.4 Presenting outranking results under uncertainty

The results of PROMETHEE I and II under uncertainty can be challenging for the DM to
interpret. For example, the probability distributions of ranks can be overwhelming if there is a
large number of alternatives. In this section, we propose graphical approaches and summary
metrics (Fig. 2d) to present these results.

3.4.1 Presenting PROMETHEE I results under uncertainty

PROMETHEE I provides a partial ranking of solutions that is suitable to be presented in a
directed graph, where nodes represent solutions and edges represent preferences. If there are
multiple directed paths between two nodes ai and a j , and if one of those paths is composed
of only one edge, i.e. ai → a j , we remove this edge from the graph as it is redundant in
presenting partial ranking. Its removal will present the partial ranking in a more concise way.
In addition, the edges can be weighted in terms of the probability of the preference they
represent, with their color and width adjusted according to these weights. The algorithm for
generating the outranking graph is shown below, and an example is shown in Sect. 3.6.
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3.4.2 Presenting PROMETHEE II results under uncertainty

Combining PROMETHEE II with BNs provides the probability distributions of net flows and
solution rankings, which can be challenging to interpret. We use two graphical approaches
to present these results. Firstly, we show the cumulative distribution plots of rankings as
this highlights the dominating solutions for different ranks. Secondly, we use violin plots to
show the probability distribution of net flows. The solutions are ranked in decreasing order
of median net flows in the violin plot to highlight the ranking of solutions, and the net flow
distributions shown in the plot highlight the uncertainty regarding this ranking. Examples of
both plots are shown in Sect. 3.6.

3.4.3 Summary scores for PROMETHEE II results under uncertainty

Since PROMETHEE II under uncertainty provides a probability distribution of ranks rather
than a definite ranking, multiple solutions will be ranked the highest with different proba-
bilities in most circumstances. DMs may have different preferences; they may focus on a
specific range of ranks, or consider some rank positions similar. To account for these cases,
a weighted approach can be used to summarize the probability distribution of rankings into
a single score, θi , for each solution ai . The score θi is calculated as in (18) where ct is the
weight of the tth rank. Note that these weights are not about the importance of criteria; they
are about assigning coefficients to the probabilities for different ranks so that we can obtain
an aggregated measure.

θi �
n∑

t�1

ct pit (18)

3.5 Data-driven PROMETHEE

The proposed approach for computing PROMETHEE I and II from BN posteriors could be
naturally expanded to apply PROMETHEE on a dataset. In this approach, we assume that a
historical dataset of solutions is available, but the data-generating process of these solutions is
not modeled or available. In this case, we can use statistical tests for the hypothesis φ+

i > φ+
k .

However, conducting multiple pairwise tests between the positive and negative flows of
solutions is prone to false discoveries due to family-wise error rate. Tukey’s test corrects for
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these errors when making pairwise comparison of the means. Dunn’s test is a non-parametric
alternative for this purpose. These tests only show statistical significance of the difference,
but they do not provide information about the amount of difference between flows. Therefore,
rather than a fully automated analysis based on statistical significance, we recommend the
DMs to evaluate the confidence intervals of flow differences and assess the magnitude of the
difference alongside the statistical tests.

3.6 Simple example

This section demonstrates the proposed approach by applying it to a simple example that has
3 criteria and 4 solutions based on the BN shown in Fig. 1. In the BN, nodes C1, C2 and
C3 represent decision criteria, F1 and F2 represent the features that will be instantiated for
different solutions, B represents a latent variable that will remain unobserved for all solutions.
The feature values are instantiated for each solution and the posterior probabilities of criteria
are computed using the junction tree algorithm. Table 1 shows the instantiated feature values
and posterior criteria distributions of each solution; all criteria have 3 possible states. Our
aim is to maximize all criteria and we use Type I preference function. The criteria weights
are 0.5, 0.3 and 0.2 for C1, C2 and C3, respectively. The posterior distributions of positive,
negative and net flows are computed by generating 10,000 samples from the posterior criteria
distributions as described in Sect. 3.3.

The partial ranking of solutions is obtained by using a threshold value of β � 0.5 on
the posterior distributions of positive and negative flows as described in Sect. 3.3. Figure 3
shows the partial ranking graph prepared by the algorithm shown in Sect. 3.4.1. Solution a2
is preferred to a4, and there is no preference relation between the other solutions.

The probability distributions of rankingswere computed based on the net flowdistributions
as described in Sect. 3.3. Figure 4a shows the cumulative distribution of rankings of each
alternative. In this example, solution a1 has the first, second, third and fourth rank with

Table 1 Posterior criteria distributions of solutions

Solution Feature
1

Feature
2

Criterion 1 Criterion 2 Criterion 3

0 1 2 0 1 2 0 1 2

a1 0 0 0.50 0.30 0.20 0.37 0.30 0.33 0.70 0.20 0.10

a2 0 1 0.50 0.30 0.20 0.36 0.07 0.57 0.03 0.07 0.90

a3 1 0 0.20 0.10 0.70 0.54 0.30 0.16 0.70 0.20 0.10

a4 1 1 0.20 0.10 0.70 0.68 0.09 0.23 0.03 0.07 0.90

Fig. 3 Partial ranking of solutions

123



Annals of Operations Research

Fig. 4 a Cumulative distributions of solution rankings, b Probability distributions of net flows

0.36, 0.24, 0.22 and 0.18 probability. Solution a4 has the first, second, third and fourth rank
with 0.09, 0.17, 0.32 and 0.42 probability. Figure 4b shows the net flow distributions of the
solutions. Solution a2 has the highest mean net flow.

Figure 4a shows that a1 and a4 have the highest and lowest probability of having the highest
rank, respectively. However, this probability alone is not sufficient to rank the solutions. For
instance, even though a2 has a lower probability of being the first than a1, the probability of
it being in top two or three ranks is higher than a1. Therefore, a2 can be considered as a better
alternative for DMs who wish to consider multiple possibilities, whereas a1 can be better for
DMs who focus on the top rank and assign a relatively higher weight to the best possible
outcome. The weighted score θi described in Sect. 3.4.3 summarizes the performance of
solution ai in a single measure. Table 2 shows the weight ct of each rank t, the score θi of
each solution ai , and its rank in parentheses, for different rank weighting methods. If the DM
assigns rank weights with RS, which assumes equal distance between the weights of different
ranks, a2 will have the highest rank, followed by a1. However, suppose the DM considers
that the first rank is considerably more important than others, and uses RR or ROC, which
assigns about twice as much as weight to the first rank than the second one. In these cases,

Table 2 θi scores and rank weights with RS, ROC and RR methods

Weighting method for ranks of solutions

RS ROC RR ROC
first 2 ranks

ct c1 0.40 0.52 0.48 0.75

c2 0.30 0.27 0.24 0.25

c3 0.20 0.15 0.16 0

c4 0.10 0.06 0.12 0

θ i θ1 0.27 (2) 0.30 (1) 0.29 (1) 0.33 (1)

θ2 0.29 (1) 0.29 (2) 0.28 (2) 0.31 (2)

θ3 0.25 (3) 0.24 (3) 0.24 (3) 0.25 (3)

θ4 0.19 (4) 0.17 (4) 0.19 (4) 0.11 (4)
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a1 will have the highest rank, followed by a2. Solutions a3 and a4 has the third and fourth
rank in all weighting methods in this example.

Suppose a DM is only interested in the first N ranks that corresponds to having more
tolerance for risk than the case of considering all ranks. In this case, this DM can apply the
rank-based weighting methods for only the first N ranks and use 0 weights for the others.
This would require changing n with N in (7)–(9), and assigning 0 weights to cN+1, …, cn.
For example, the last column of Table 2 shows the weights and scores for the ROC approach
when the DM considers only the two highest ranks.

4 Case study and results

This section applies the proposed approach to a case study of supplier selection, which is an
MCDM problem that has been widely studied in the literature (see Govindan et al., 2015;
Zimmer et al., 2016; Chai & Ngai, 2020; Rashidi et al., 2020; Saputro et al., 2022; Cui et al.,
2023). We use a BN model for multicriteria supplier evaluation that was previously devel-
oped with domain experts by Kaya and Yet (2019). The BNmodel used here aims to evaluate
suppliers based on seven criteria: product quality, cost, delivery performance, quality system
certifications, flexibility, cooperation, and reputation. Among these criteria, cost and quality
system certifications can be directly observed, so alternatives’ performances are determin-
istic on these criteria. The other criteria are latent variables that are estimated by indirect
measurements. The cost criterion is minimized whereas all other criteria are maximized. All
criteria variables have five ordinal states; VL—very low, L—low,M—medium, H—high and
VH—very high. The BN model was instantiated with the data of 10 different suppliers, and
the posterior probability distributions of criteria were computed (see Table 3). The prefer-
ence functions of the criteria and the corresponding threshold values were determined with a
domain expert whowas also involved in development of the BN. For product quality, cost and
reputation, Type I function was selected. For quality system certifications, Type II function
was selected with an indifference threshold of 1. So, for this criterion, only differences of
2 levels or higher are accounted for. For delivery performance, flexibility and cooperation,
Type III function was used with preference thresholds of 3, 2 and 2 levels, respectively.

The weights of the criteria were obtained by asking the domain expert to rank the criteria
based on their importance and applying the ROC formula. As a result, the weights of product
quality, delivery performance, cost, quality system certifications, flexibility, cooperation, and
reputation were realized as 0.370, 0.228, 0.156, 0.109, 0.073, 0.044 and 0.020, respectively.
We also employed RS and RR in conducting sensitivity analysis of the weights.

We generated 1000 samples from the posteriors of the BN model, and computed the
probability distribution of positive, negative and net flows based on these samples as described
in Sect. 3.3. The partial ranking of solutions was obtained by using a threshold value of β

� 0.5 on the posterior distributions of positive and negative flows as described in Sect. 3.3.
Figure 5 shows the partial ranking graph. A directed arc from a supplier to another means
that the former one outranks the latter.

Product quality, delivery performance and cost are the most important criteria for the DM,
and the best suppliers S2 and S6 have good performances in those criteria. S3 is also a good
alternative as it has acceptable performance in all criteria. S4 and S8 cannot be differentiated
since they have advantages in different criteria. S4 is better at product quality and delivery
performance, and S8 is better at cost and delivery performance. S10 is the worst alternative
because it offers a medium-quality product (with 0.999 probability) with a very high cost.
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Fig. 5 Partial ranking of suppliers

Fig. 6 Cumulative probability distribution of supplier ranking

The probability distributions of complete supplier rankings were computed based on the
net flow distributions as described in Sect. 3.3. Figure 6 shows the cumulative distribution
of rankings of each alternative, and Fig. 7 shows the net flow distributions of the solutions.
In Fig. 6, we see that S2 and S6 both have the highest probability for the first rank, but their
plots intersect at several points in Fig. 6, showing that the best between these two alternatives
changes for different ranks. We can also see that the plot of S3, which has a lower probability
for the first rank than S2 and S6, manages to lie above the plots of these alternatives starting
from the fourth rank. Figure 7 is also helpful in comparing suppliers since it illustrates the
full distributions of net flows including density and range.

In general, we observe that suppliers have varying levels of performance throughout their
plots and it is not straightforward to achieve a final ranking of them.We compute the summary
score (θi ) of the suppliers as described in Sect. 3.6 by using RS, ROC or RR weights for
ranks. Table 4 shows these weight vector alternatives; the last three columns also show the
weights when just the first three ranks are considered by the DM. The weights for the top
three ranks are provided as an example, the DM of the problem can select a different cut-off
point as well. Table 5a, b show θi scores and rankings of the suppliers based on these rank
weights.
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Fig. 7 Probability distribution of net flows

Table 4 Rank weights for RS, ROC and RR approaches for supplier selection

Rank (t) ct (RS) ct (ROC) ct (RR) ct (RS)
first 3 ranks

ct (ROC)
first 3 ranks

ct (RR)
first 3 ranks

1 0.182 0.293 0.341 0.500 0.611 0.545

2 0.164 0.193 0.171 0.333 0.278 0.273

3 0.145 0.143 0.114 0.167 0.111 0.182

4 0.127 0.110 0.085 0.000 0.000 0.000

5 0.109 0.085 0.068 0.000 0.000 0.000

6 0.091 0.065 0.057 0.000 0.000 0.000

7 0.073 0.048 0.049 0.000 0.000 0.000

8 0.055 0.034 0.043 0.000 0.000 0.000

9 0.036 0.021 0.038 0.000 0.000 0.000

10 0.018 0.010 0.034 0.000 0.000 0.000

When we examine the ranking of the suppliers with ROC-weighted θi scores in Table 5a
as an example, we observe that S2 is the best supplier followed by S6; these are the suppliers
with the highest probabilities for the first rank. They are followed by S3 and S4 since they
have high probabilities for the first two ranks. The rest of the rank list is not straightforward
though. S8, for example, has 0 probability for occupying the first or the second rank, whereas
S1 and S5 both have positive probabilities there. However, S8 is positioned higher than S1
and S5 since it improves its performance noticeably in the lower ranks. When we compare
S5 and S7, we see that S5 has higher probabilities for the first three ranks, but S7 performs
better for the remaining four ranks and it outranks S5. Such patterns can be observed from
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Table 5 θi scores and supplier rankings based on θi scores

Rank Supplier θi (RS) Supplier θi (ROC) Supplier θi (RR)

(a) All ranks are considered

1 S6 0.143 S2 0.185 S2 0.196

2 S3 0.142 S6 0.184 S6 0.194

3 S2 0.142 S3 0.161 S3 0.153

4 S8 0.109 S4 0.093 S4 0.085

5 S4 0.101 S8 0.089 S8 0.074

6 S1 0.095 S1 0.079 S1 0.073

7 S9 0.087 S9 0.072 S9 0.067

8 S7 0.076 S7 0.058 S5 0.062

9 S5 0.069 S5 0.057 S7 0.058

10 S10 0.038 S10 0.023 S10 0.039

(b) The first three ranks are considered

1 S2 0.285 S2 0.309 S2 0.288

2 S6 0.278 S6 0.303 S6 0.285

3 S3 0.203 S3 0.200 S3 0.198

4 S4 0.073 S4 0.062 S4 0.067

5 S1 0.042 S1 0.036 S1 0.041

6 S5 0.038 S5 0.032 S5 0.040

7 S8 0.032 S9 0.023 S8 0.035

8 S9 0.030 S8 0.021 S9 0.028

9 S7 0.018 S7 0.013 S7 0.018

10 S10 0.000 S10 0.000 S10 0.000

Fig. 6. In Table 5a, we can see that the best two suppliers are S2 and S6 with ROC and
RR rank weighting methods, but S6 and S3 with RS. This is due to the fact that RS puts
less importance on the first rank than ROC and RR, and assumes equal distance between
consecutive ranks. The performance of S2 is higher than S3 at the first rank, but lower at the
second, third and fourth ranks. A conservative DM in the face of uncertainty can prefer the
RS ranking since it treats the possible outcomes more evenly. On the other hand, a DM who
is more interested in the probabilities for the first rank can choose the ranking of ROC or RR.

4.1 Data-driven outranking

The proposed approach can be used for data-driven outranking when data about previous
solutions are available as described in Sect. 3.5. We generated a dataset of 100 samples from
the BN to simulate a case of learning preferences from limited data, and analysed this dataset
assuming that the data-generating process was not known. We conducted Tukey’s Test with
95% confidence level for this purpose and tested the following hypotheses for all ai − ak
pairs.

HT1
0 : ϕ+

i � ϕ+
k
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HT2
0 : ϕ−

i � ϕ−
k

Table 6 shows the mean difference between the pairs and the corresponding confidence
intervals. The differences are calculated with the supplier in the rowminus the supplier in the
column, and the asterisk symbols show the statistically significant differences corresponding
to a p value of less than 0.05. For example, the S2-S1 cell for positive flows shows that the
mean positive flow of S2 is significantly higher than that of S1. The same cell for negative
flows shows that the mean negative flow of S2 is significantly lower than that of S1 this
time, so we conclude that S2 outranks S1. Figure 8 shows the results of this approach. In this
example, the only difference between the data-driven and model-driven outranking approach
was in the preference between S1 and S4. While S4 is preferred over S1 in partial ranking
of the suppliers obtained from the BN model, the data-driven approach was not able to
identify a statistically significant difference between the positive and negative flows of those
alternatives in the given sample as the differences were small.

4.2 Sensitivity analysis on criteria weights

Since the results of our approach, as in many MCDM methods, depend on the weights of
criteria, wemake sensitivity analysis to see if our results are robust to small changes in criteria
weights. Rather than changing the ROC weights randomly, we apply RS and RR methods to
the criteria ranking of our supplier selection expert. With RS, the weights of product quality,
delivery performance, cost, quality system certificates, flexibility, cooperation and reputation
are realized as 0.250, 0.214, 0.179, 0.143, 0.107, 0.071 and 0.036, respectively. With RR,
these weights are 0.386, 0.193, 0.129, 0.096, 0.077, 0.064 and 0.055. When we switch from
ROC to RS, the most evident difference is in the weight of product quality, which becomes
quite lower. On the other hand, when we use RR, this weight increases, and the weights of
delivery performance and cost decreases. There are some other differences as well.

Figure 9a illustrates the outranking relations of PROMETHEE I calculatedwithRS criteria
weights. With ROC weights, S2 and S6 were the best alternatives, and S8 was outranked by
S6. With RS weights, S3, S6 and S8 have a tie. There are also other differences such as
some strict preference relations turning into indifference or incomparability, or vice versa.
However, the general picture is not substantially different from Fig. 5, and there are no
reversals in outranking relations. In Fig. 9b, we see the outranking relations of the suppliers
when RR method is performed for criteria weights. This time, the best suppliers are S2, S3
and S6 together. S4 and S8 cannot outrank each other, similar to the ROC results. Different
from the ranking with ROC criteria weights, S9 outranks S1, and S7 outranks S5 in Fig. 9b.
Again, we observe that there are no substantial differences.

Since PROMETHEE II provides complete rankings rather than partial, we can compare
the similarity of its rankings with ROC and RS/RR weights for criteria using Kendall rank
correlation coefficient (Kendall’s Tau). Kendall’s Tau measures the similarity between two
rankings of the same elements. It can take values between -1 and 1; with values -1, 1 and 0
corresponding to perfectly opposite rankings, exactly the same rankings and no relationship
between the rankings, respectively. Kendall’s Tau between the rankings of ROC criteria
weights and RS criteria weights when we use RS, ROC and RR rank weights are 0.644,
0.777 and 0.777, respectively. On the other hand, when we compare the rankings of ROC
and RR criteria weights, Kendall’s Tau coefficients are 0.822, 0.777 and 0.733, respectively.
We can conclude that there is an acceptable level of similarity between the rankings with
different weighting methods, especially ROC and RR. This is expected since they both put
greater emphasis on the top ranks compared to RS.
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Fig. 8 Partial ranking of suppliers with data-driven outranking approach

Fig. 9 Outranking relation of suppliers with a RS-weights, b RR-weights

For the complete rankings provided by PROMETHEE II, we conduct further sensitivity
analysis to determine allowable ranges for criteria weights for the results to remain stable.
We use the weight stability intervals procedure by Mareschal (1988) for this task by modi-
fying it to be applicable with uncertain criteria evaluations. This procedure is developed to
find intervals for criteria weights so that the given ranks of solutions according to additive
utility functions do not change, and it can be applied with PROMETHEE II scores. It uses
the differences in criteria values between successive solutions in the rank list to find these
intervals. The details of the procedure can be seen in Mareschal (1988).

The weight stability intervals procedure can only work with a single sample, so we need to
enhance it to work for PROMETHEE II under uncertainty. Firstly, using the basic procedure,
we construct the interval of each criterion weight in each sample. Each sample produces
its separate ranking of solutions, so we arrive at 1000 intervals for each criterion weight.
Next, these intervals need to be aggregated into an overall interval for each criterion. We
form these intervals with the values that appear in at least a given percentage of all samples.
Since all the intervals in the samples are formed around the original weights, these original
weights appear in 100% of the intervals. As we move away from the original weights, the
percentage of samples that contain the value in consideration gets smaller. In line with the
logic of confidence intervals, we use 95% as the cut-off value. Taking ROC weights as the
original criteria weights, Table 7 reports the resulting aggregated intervals we obtain. These
results suggest that the weights of product quality, delivery performance, and cost should be
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Table 7 Weight stability intervals
for ROC weights Criterion ROC weight 95% Weight stability

interval

Product quality 0.370 [0.352–0.391]

Delivery performance 0.228 [0.175–0.262]

Cost 0.156 [0.119–0.196]

Quality system
certificates

0.109 [0.018–0.199]

Flexibility 0.073 [0.000–0.171]

Cooperation 0.044 [0.000–0.223]

Reputation 0.020 [0.000–0.352]

set carefully since they have relatively narrow ranges. On the other hand, the ranking list is
not so sensitive to changes in the weights of other criteria, so uncertainties in those areas can
be tolerated better.

5 Conclusions

This paper proposes a systematic approach to combine BNs and outranking approaches to
support multicriteria decision problems under uncertainty. The proposed approach is applied
to a BN model that has been developed for supporting supplier selection decisions in an
automobile manufacturer. Our approach enhances PROMETHEE I and II to provide partial
and complete ranking with the probability distributions of decision criteria obtained from
BNs. The result of partial ranking can be useful for DMs who need to stratify alternative
solutions according to their performance without forcing a strict ranking. On the other hand,
the result of complete ranking gives theDMs the chance to observe the overall performance of
the solutions, aswell as the performance in the best-case andworst-case scenarios. The results
of partial and complete rankings are shown in graphs, cumulative distribution figures, and
violin plots to demonstrate the preferences regarding solutions and the associated uncertainty
in a conciseway.We also present a summary score to summarize the performance of solutions
based on their ranking distributions.

Our approaches provide a systematic and flexible way to combine a widely used MCDM
methodwith probabilistic generativemodels such as BNs. They canworkwith different types
of criteria like continuous, nominal and ordinal. In addition, the results of the sensitivity anal-
ysis on the weights of criteria can be used to determine which criteria need the most careful
evaluation. The proposed approaches also extend to applying data-driven PROMETHEE
when only samples from solutions are available, but the data generating process is not mod-
eled.

Combining PROMETHEE and BNs overcomes major limitations of outranking-type
MCDM approaches and BNs in modeling decisions under uncertainty. Traditional outrank-
ing approaches such as PROMETHEE provide limited or no support when criteria values
involve uncertainty. BNs can model complex probability distributions in a concise way, but
are not designed for decision making problems. Extensions of BNs for decision making,
such as IDs, require elicitation of complex utility tables in decision problems with multiple
criteria. The proposed approach overcomes these limitations by having the ability to model
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complex criteria distributions in a BNmodel, and computing outranking relations from these
distributions based on DM preferences using PROMETHEE.

Limitations of our approach include dependence on the criteria weights obtained from
the DMs. We use sensitivity analysis to assess the robustness of the results to changes in the
weights. As future work, indirect and interactive elicitation approaches can be implemented
to provide more robust weight elicitation. Implementation of the proposed approach to BN
software and packages can enable a wider use of BNs for MCDM problems.
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