
Computers & Graphics (2024)

Contents lists available at ScienceDirect

Computers & Graphics

journal homepage: www.elsevier.com/locate/cag

Path Guiding for Wavefront Path Tracing: A Memory Efficient Approach for GPU Path
Tracers

Bora Yalçınera,∗, Ahmet Oğuz Akyüza

aMiddle East Technical University, Computer Engineering Department, Ankara, Turkey

A R T I C L E I N F O

Article history:
Received May 14, 2024

Keywords: Graphics Processors, Monte
Carlo Rendering, Path Tracing, Path
Guiding

A B S T R A C T

We propose a path-guiding algorithm to be incorporated into the wavefront style of
path tracers (WFPTs). As WFPTs are primarily implemented on graphics processing
units (GPUs), the proposed method aims to leverage the capabilities of the GPUs and
reduce the hierarchical data structure and memory usage typically required for such
techniques. To achieve this, our algorithm only stores the radiant exitance on a single
global sparse voxel octree (SVO) data structure. Probability density functions required
to guide the rays are generated on-the-fly using this data structure. The proposed ap-
proach reduces the scene-related persistent memory requirements compared to other
path-guiding techniques while producing similar or better results depending on scene
characteristics. To our knowledge, our algorithm is the first one that incorporates path
guiding into a WFPT.

© 2024 Elsevier B.V. All rights reserved.

1. Introduction

Path tracing family of techniques became one of the standard
methods for generating photo-realistic imagery [1]. The pri-
mary motivation to use these methods is their implementation
simplicity and generated image quality. Furthermore, recent ad-
vances in graphics hardware enable interactive implementations
of such techniques. These techniques tackle the complex recur-
sive light-transport integral by applying numeric Monte Carlo
integration, a process known as sampling.

Many sampling schemes are proposed throughout the liter-
ature that either sample sub-sections of the integral (e.g., next-
event estimation) or reflectance portion of the integral [2]. Such
sampling schemes are comparatively simpler because their data
is readily available in the initial scene definition. Other parts
of the integrand mostly depend on the layout of the elements
described in the scene. Extracting a probability field of light

∗Corresponding author: Tel.: +90-312-210-5545;
e-mail: yalciner.bora@metu.edu.tr (Bora Yalçıner),

akyuz@ceng.metu.edu.tr (Ahmet Oğuz Akyüz)

distribution over the scene is a critical component of a robust
photo-realistic image estimator. This problem is tackled by a
family of algorithms which are collectively known as path guid-
ing algorithms [3, 4, 5].

Most path-guiding methods utilize a hierarchical discretiza-
tion of the light field or a combination of analytically defined
functions that fit this light field. The generation of this prob-
ability field relies on the light transport simulation itself; thus,
path-guiding methods progressively learn this field from path
tracing either during runtime or in a preprocessing step. This
progressive nature of path guiding necessitates the usage of
highly adaptive data structures, which inherently do not suit the
GPU architecture well. Adaptive discretization, which relies
on adaptive memory management, is not a GPU-friendly op-
eration. Another problem is that such a probability field has a
large memory requirement due to its being high-dimensional.

To this end, we propose a wavefront path guiding algorithm
that is GPU-friendly and designed to fully utilize the GPU’s ca-
pabilities. Our main contributions are thus (1) on-the-fly gener-
ation of the radiant exitance field, which resides on an SVO data
structure; (2) hardware-accelerated approximate cone tracing

ar
X

iv
:2

40
5.

06
99

7v
1

 [
cs

.G
R

]
 1

1
M

ay
 2

02
4

http://www.sciencedirect.com
http://www.elsevier.com/locate/cag

2 Preprint Submitted for review /Computers & Graphics (2024)

for an efficient query of the radiant exitance, (3) GPU-friendly
parallel product path guiding scheme that utilizes warp-level in-
trinsics, and (4) a heuristic that judiciously combines generated
samples for improved final image quality.

2. Previous Work

The rendering equation is defined by the following inte-
gral [1]:

Lo(x, ωo) = Le(x, ωo) +
∫
Ω

fs(x, ωi, ωo)Li(x, ωi) cos θidωi, (1)

where the outgoing radiance Lo(x, ωo) may contribute to an-
other location xk, thus, becoming Li(xk,−ωi). As such, the
above equation can be recursively expanded, resulting in a se-
ries of chained integrals with a theoretically infinite recursion
depth. Because of that, it is not analytically integrable and is
usually evaluated by using the following Monte Carlo estima-
tor, where the emitted radiance Le(.) is typically omitted:

L̂o(x, ωo) =
1
N

N∑
i=1

fs(x, ωi, ωo)Li(x, ωi) cos θi
p(ωi|x, ωo)

. (2)

The variance of such an estimator, visually noticed as noise,
is directly related to the similarity between PDF p and the in-
tegrand. As finding a single optimal PDF is usually not prac-
tical, multiple PDFs are typically combined using multiple im-
portance sampling (MIS) [6].

The BSDF portion of the integrand, fs(.), is traditionally used
for importance sampling due to its fully or partially analytic na-
ture. Additionally, parameters required for evaluating it do not
recursively depend on other surfaces; thus, fs(.) can be directly
sampled in an efficient manner. However, fitting a density func-
tion for the incoming radiance portion of the integrand, Li(.), is
more cumbersome. Finding a plausible density function for the
incoming radiance field falls into the domain of path-guiding
algorithms.

2.1. Path Guiding

Scene radiance field is a high-dimensional data requiring
three dimensions for spatial information and two for spherical
direction information. Since the directional distribution of the
incoming radiance field is not available from the outset, most
path-guiding methods either pre-generate it [4, 7, 8, 9] or pro-
gressively learn it using already computed path chains [5, 10].

Path guiding was pioneered by the works of Lafortune et
al. [11] and Jensen [3]. These approaches utilize histogram-
based techniques, which suffer from memory scalability is-
sues when dealing with high-resolution data. Schüßler et al.
proposed a 9D Gaussian mixture model (GMM) incorporating
the incident and the previous point’s information on the path
chain [12]. Combinations of analytically defined functions for
approximating the radiance field are proposed as well [4, 13].
Product sampling, which is the sampling of not only the incom-
ing radiance but its product with BSDF, is also incorporated into
these approaches [14].

Ruppert et al. utilize a kd-tree for spatial subdivision and
a series of von Mises–Fisher distributions (vMF) for the direc-
tional portion of the field [15]. This method tackles the variance
seams that occur when a spatial portion of the data structure is
at a low-resolution state by adjusting the vMFs to the sampler
path’s point of view. Müller et al. proposed the practical path
guiding method [5]. This algorithm utilizes sparse data struc-
tures in the global radiance field’s spatial and directional por-
tions. Product extension is also proposed for this method [16].

Learning-based methods are also proposed for path guiding.
Among these, neural network techniques are either pre-trained
via generic scenes [9, 8, 17] or trained on a per-scene basis [7].
Reinforcement learning-based techniques are also used by re-
sembling this problem into Q-learning [18, 19, 20]. However,
these approaches store the directional portion of the radiance
field densely, which is not scalable in terms of memory. For
the spatial portion, point samples [19] or dense arrays [20] are
utilized. The Bayesian regression model is also applied to effi-
ciently sample light sources for improved next-event estimation
sampling [10].

There are real-time and GPU-focused path-guiding ap-
proaches as well. Derevyannykh proposed a screen space para-
metric mixture model for path guiding [21]. Due to the screen
space nature of the method, only the first bounce is guided. Dit-
tebrandt et al. propose a real-time path-guiding scheme that
utilizes compressed quad-trees and a visibility cache for light
sampling [22].

Despite several techniques being available for both CPU- and
GPU-based path guiding, to our knowledge, none of these algo-
rithms are tailored toward a WFPT style path tracer, which has
unique design requirements, as discussed next.

2.2. Wavefront Path Tracing (WFPT)

WFPT is the state-of-the-art design of the graphics device
path tracing algorithm [23]. Although API-backed, host-style
execution methods exist in the device [24], efficient warp exe-
cution mandates some form of partitioning internally.

A straightforward method for parallelizing the path tracing
algorithm on a host (i.e., CPU) system is to assign each re-
cursive random walk sequence to a single logical core. How-
ever, such parallelization is ill-suited for GPUs because each
warp executes in a lock-step fashion. Due to the random na-
ture of the walks, neighboring threads may execute different
evaluation routines (e.g., different material and shading compu-
tations), which forces the warps to serialize the execution.

The wavefront method segregates the ray casting and mate-
rial (BSDF) evaluation/sampling routines, allowing recursion to
be evaluated in a lock-step fashion. Specifically, for each recur-
sion depth, threads perform the ray-casting operation to deter-
mine the incident location. Once the evaluating locations are
found, rays are partitioned with respect to the material evalua-
tion parameters. By partitioning the rays in this way, the com-
putational routines are common among the threads, which leads
to improved performance and efficiency in execution.

The main issue with this approach is the high memory re-
quirement. This approach requires storing walk states after
each operation, which becomes increasingly burdensome as the

Preprint Submitted for review /Computers & Graphics (2024) 3

Ray
Generation

Partition
M

BxDF Batch

...

Generate Radiance
Field

Generate Radiance
Field

...

Per-ray BxDF Field

Paths that reach to
Emitter

BVH

...

Missed
Hit

...

Missed
Hit

Query Surface Position on SVO,
Running-average estimates

Marginal/Conditional
PDF Generation

BxDF Batch

BxDF Batch

BxDF Batch

Partition
P

Spatial Batch

...

Spatial Batch

Spatial Batch

Spatial Batch

ωo

N ωi

ωo

N ωi

...
...

...

L(pj,ωo)

SVOSVO

Radiant Exitance
Estimate

...

...

...

...

Radiant Exitance
Estimate

...

...

...

...

Radiant Exitance
Estimate

...

...

...

...

Radiant Exitance
Estimate

...

...

...

...

Fig. 1: The top-down view of the entire path-guiding algorithm. Blue rectangles of the image show the wavefront path tracing operations. Other colored parts are
the additional steps required for guiding the rays. Partitionp and Partitionm sections represent partitioning the rays by position and material, respectively. Device
code is executed for each spatial batch. Each batch generates an incoming radiance field, which is incorporated into the sampling scheme. Paths that reach an emitter
contribute to an approximation of the radiant exitance, which is cached on an SVO.

number of parallel walks increases. In practice, graphics de-
vices often require thousands of walks to be executed to saturate
the device, leading to a significant memory burden.

Our primary motivation to describe this proposed method
comes from this central issue. The accompanying path-guiding
methods for path tracing on graphics devices should not further
hinder the available memory or, at the very least, minimize its
impact.

3. Proposed Method

3.1. Wavefront Path Guiding

Wavefront path guiding (WFPG) introduces additional steps
to the WFPT algorithm. Before partitioning with respect to the
BSDF, rays are partitioned by position. Then, the partitioned
rays collaboratively generate an estimated radiance field, which
is utilized for path guiding. After guiding is conducted, rays
continue the WFPT steps as usual. The main overview of this
algorithm is given in Algorithm 1 and visualized in Figure 1. In
the following, we describe each part of the algorithm in detail.

3.2. Radiant Exitance Caching using Sparse Voxel Octree

Unlike other methods that store an incoming radiance field
over a spatially discretized volume, we approximate radiant ex-
itance. The main reason for this approach is to reduce memory
usage, as radiant exitance is a directionless quantity. This quan-
tity is extracted during Monte Carlo integration and cached in a
sparse voxel octree (SVO) [25, 26].

To explain the caching scheme, we resort to the recursively
expanded version of the rendering equation, in which path

Algorithm 1 Wavefront path guiding.

Input-Output
R1 = {r1, r2 . . . } ▷ Set of initial rays
B = {(p1,Rp,1), (p2,Rp,2) . . . } ▷ Position bins
M = {(m1,Rm,1), (m2,Rm,2) . . . } ▷Material bins
Start
Initially Generate rays from the camera and populate R1
for i = 1 to MaxDepth do

Bi = {(p1,Rp1), (p2,Rp2) . . . } ← Partition-S(Ri)
Ni = {(n1,Rn1), (n2,Rn2) . . . } ← Partition-M(Ri)
for all (p j,Rp j) ∈ Bi do

R j
i+1 ← GuideRays((p j,Rp j))

end for
for all (n j,Rn j) ∈ Ni do

for all rk ∈ Rn j do
EvaluateBSDF(n j, rk)

end for
end for
Ri+1 = {R1

i+1,R
2
i+1 . . . } ▷ Next set of rays

end for
for all paths that reach an emitter do

UpdateExitance(SVO)
end for

chains are explicitly written [27]:

L(p1 → p0) =
∞∑

k=1

P(p̄k), (3)

where p̄k = p0, p1, ...pk represents all points along the path of a
ray, with p0 on the image plane. The radiance that reaches p0

4 Preprint Submitted for review /Computers & Graphics (2024)

from such a path is then:

P(p̄k) =
∫
· · ·

∫
Ω︸ ︷︷ ︸

k−1

Le(pk → pk−1)

×

 k−1∏
j=1

fs(p j+1 → p j → p j−1)G(p j+1 → p j)

× dA(p2) · · · dA(pk).

(4)

where fs is the BSDF and G is the geometry term. The radiance
from the path vertex pk toward pk−1 can be extracted from the
total throughput as follows:

L(pk → pk−1) =
T (p̄n)
T (p̄k)

Le(pn → pn−1). (5)

Thus, for every path, the position pk and the throughput T (p̄k)
are stored for every depth on the path. When an emitter is found,
its radiance is backpropagated at every depth, and its local ra-
diance estimate is found. The position pk is used to query the
SVO to find the leaf voxel, and finally, these local radiance es-
timates are accumulated to approximate the radiant exitance for
that leaf. This operation corresponds to UpdateExitance(SVO)
routine in Algorithm 1.

The SVO is generated using Crassin et al.’s approach [28].
The scene is conservatively voxelized in 3D space, and voxels
are generated. After the voxelization step, the tree hierarchy is
generated using the method described by Karras et al. using
Morton code sorting [29].

Since the SVO has a limited voxel resolution, scenes with
thin objects would not be adequately represented due to the
SVO’s volumetric subdivision. To alleviate this, we approxi-
mate the surface orientation via normals. Thus, each node of the
SVO stores two surface normals, and the radiant exitance cor-
responding to each normal direction is separately stored. The
radiant exitance that is stored on the leaf nodes of the SVO is
propagated toward the inner nodes of the tree structure. In our
experiments, we found a simple bottom-up averaging scheme
to be sufficient. This information is required to query incoming
radiance using cone tracing.

To estimate normals, the surface fragment normals are ob-
tained during the voxelization process and are subjected to a
simple k-means clustering procedure with k = 2. This process
is demonstrated in Figure 2. The initial means for the algorithm
is a random vector selected from the surface elements inside
the voxel and its opposite. Through iterative refinement, these
vectors are updated to represent the two dominant directions
of the surface elements better. At the end, the first cluster’s
representative vector N⃗ and its opposite −N⃗ are selected as the
representative directions for that voxel. The motivation behind
this approach is to allow a voxel to become an omnidirectional
source. If the clustering results were directly used, certain frag-
ments whose normals point away from the dominant directions
would not make a contribution. The clustering approach also
prevents normals from canceling each other out, which could
occur if a simple average was used.

2-means clustering2-means clustering

Initial means

Candidate Surfaces on a Voxel

Surface Normals

Fig. 2: The approximate normals of the voxel are calculated by conducting a
k-means clustering with k = 2. This prevents opposite normals from canceling
each other out.

WFPG PPG Reference

Fig. 3: Normalized radiance fields of our method (WFPG) and Müller et al.’s
method (PPG). In this instance, our method produces a radiance field with a
resolution of 1282. Both methods are trained using an equal number of samples
(2048 per pixel). The reference radiance field is generated via path tracing and
has a resolution of 2562 (216 samples per pixel).

3.3. On-the-fly Generation of Local Radiance Field

To generate the incoming radiance over a surface, we utilize a
modified cone tracing approach to reduce aliasing artifacts that
would be caused by sampling the environment using infinitesi-
mally thin rays [30, 31].

Given a location on the scene, pk, the omnidirectional in-
coming radiance field L(pk, ωi) is stratified into equal solid an-
gle patches, ω. The SVO is queried for each patch by tracing
a cone towards that direction to find the incident hit position,
which can be found using different approaches. The volumet-
ric estimation proposed by Crassin et al. [31] is efficient but is
prone to light leaks. Empty space skipping cone tracing [25]

Preprint Submitted for review /Computers & Graphics (2024) 5

can also be used, but we found it to be slower compared to a
third alternative. In this alternative, we use the underlying de-
vice’s hardware-accelerated ray tracing capabilities to find the
intersection point. After the hit point is found, the radiant exi-
tance stored in the SVO is queried using the cone aperture, hit
position, and distance.

As the cone with an aperture of ω travels into the scene, the
area A of the disk at the base of the cone increases. This (pro-
jected) area can be computed by using the following formula:

A = r2ω, (6)

where r is the distance between the apex and the cone base. At
this distance, the area of the disk would be equal to πR2, with R
being the disk’s radius. As we already know the leaf voxel that
contains the intersection point, we traverse up the SVO to find
the voxel whose area is closest to the disk’s area (the square of
its side length approximates the voxel’s cross-section area). The
radiant exitance in this node is then sampled by multiplying the
corresponding voxel normal with the cone’s principal direction.

To show the effectiveness of the proposed approach, Figure 3
compares our method’s generated radiance field and that of the
practical path-guiding technique [5] together with the ground-
truth reference as seen from two different viewpoints. It can be
seen from the figures that our scheme better approximates the
actual incoming radiance field.

3.4. Positional Binning using SVO

Executing the aforementioned radiance field generation
scheme would be too costly if evaluated at every point. To
amortize this cost, we employ a binning scheme that generates
a single radiance field for nearby points. The primary assump-
tion of this approach is that similar regions of the scene would
receive similar radiance.

Our positional binning scheme is described in Algorithm 2.
Since we already have the scene’s SVO hierarchy, we utilize
that for the partitioning scheme. Each path atomically incre-
ments a value on the leaves of the SVO. Then, these values are
accumulated for each level of the SVO in a bottom-up fashion.
Two user-defined parameters, referred to as lmin and cray, are
employed to control the partitioning process. The lmin parame-
ter sets the minimum limit for the tree level up to which binning
can be performed. The cray parameter, on the other hand, deter-
mines the threshold for the number of rays considered sufficient
for each bin. A sample output for this process is shown in Fig-
ure 4.

Once binning is complete, the radiance field is generated for
each bin in a GPU-oriented manner. That is, a single device
block is utilized for each partition, and the threads on that block
simultaneously generate the radiance field. The resolution of
this radiance field is another parameter of our method. In our
experiments, we used a maximum resolution of 128× 128 (cor-
responds to 64KiB of memory) due to shared memory limita-
tions. This local radiance field is stored in the shared memory
available for each block – in other words, no persistent GPU
memory is used.

Algorithm 2 Partition-S Routine. Partition the paths that have
hit pi to series of bins b j using an SVO with the depth d.

Input
R = {r1, r2 . . .} ▷ Rays that are going to be partitioned
S VO = {(n1)1, (n1, . . .)2 . . . (n1, . . .)d} ▷ (n1)1 is the root
Output
B = {(p1,Rp1), (p2,Rp2) . . . } ▷ Pair of positions and ray sets
Buffer
I = {b1, b2 . . .} ▷ Bin id for each ray
Start
Clear B, I
for all ri ∈ R do

pi ← RayPosition(ri)
nd

i ← DescendLeaf(pi) ▷ Find the leaf node
AtomicAdd(nd

i , 1)
bi ← NodeId(nd

i)
end for
for all l ∈ SVO (in bottom-up fashion, up to lmin) do

for all nl ∈ (n . . .)l in SVO level l do
C = {c1, c2, ...c8} ▷ Node children’s path count
T ← c1 + · · · + c8
if T ≥ cray or l = lmin then

MarkNode(nl
i) ▷ This node has sufficient rays

end if
end for

end for
for all bi ∈ I do ▷ Find the node for each bin

nd
i ← ToNode(bi)

nl
i ← AscendAndFindMarked(nd

i)
bi ← NodeId(nl

i)
end for
B← Partition(I,R)

3.5. Path Guiding

The local radiance field generated after the binning process
can now be used for path guiding. To this end, we first com-
pute the probability and cumulative density functions (PDF)
and (CDF) for sampling according to these distributions. For
the sampling process, the radiance field is treated as a piece-
wise constant 2D function. Traditional inverse sampling meth-
ods can be used in parallel [32]. Each row of the 2D field is as-
signed to a single warp, which applies an inclusive scan (prefix
sum) using warp-level intrinsics to generate the CDF for each
row. The marginal portion of the CDF is calculated similarly.
For non-product path guiding (see below), the results of this ap-
proach can be used directly. The pseudocode for this phase of
our approach is shared in Algorithm 3.

3.6. Product Path Guiding

In product path guiding, we multiply the BSDF at each point
with its corresponding radiance field. The main problem that
needs to be solved is the efficient computation of this prod-
uct. For this purpose, we utilize the approach of Estevez et
al. [33], which was initially proposed for environment map-
ping. This method utilizes a two-layer hierarchical system. The
lower level is the original radiance field. The higher level is

6 Preprint Submitted for review /Computers & Graphics (2024)

cray = 128, lmin = 3 cray = 256, lmin = 3

cray = 512, lmin = 3 cray = 1024, lmin = 3

Fig. 4: False color representation for the binning process for the initial rays
coming from the camera. For each colored region, a single local radiance field
is generated. Note that the region size increases with the ray count threshold
parameter, cray.

Algorithm 3 GuideRays routine. Given a bin with partitioned
rays, generate incident radiance field, generate PDF and CDF,
and sample either using path guiding or BSDF via MIS.

Input
(p j,Rp j) ▷ Partitioned position and rays
Output
R j

i+1 ▷ Guided rays
Buffer
L(pi, ωi) ▷ Incoming Radiance Field on shared memory
PDF(ωi),CDF(ωi) ▷ PDF and CDF on shared memory
Start
po ← SelectOrigin(Rp j)
for all ωi ∈ Ω do

L(po, ωi)← ConeTrace(S VO, po, ωi)
end for
CDF(ωi), PDF(ωi)← GeneratePDF-CDF(L)
for all rk ∈ Rp j do

M ← AcquireMaterial(rk)
rknext ←MIS(PDF(wi),CDF(wi),M)

end for
R j

i+1 = {r1next . . . }

the subsampled representation of this field into the resolution
of the BSDF field. Based on the constraints of the underlying
GPU, we found using an 8 × 8 resolution appropriate for the
higher level. The process then involves element-wise multipli-
cation of the BSDF and low-resolution radiance fields. This
approach uses a different parallelization scheme compared to
the previous one. In this scheme, each warp (group of threads)
handles a single point instead of each thread. Using warp-level
intrinsics, each warp collaboratively generates a multiplied up-
per layer and samples from it.

The result is then used for the first stage of sampling, which
can be done as explained in the previous section. We then find

1 8 16 24 32
2

4

6

Sample Index

A
vg

.V
ar

ia
nc

e
(M

SE
)

Veach Door - Individual samples

4 8 12 16

0.2

0.25

0.3

0.35

Sample per Pixel (SPP)

M
ea

n
FL

IP

VeachDoor - Heuristics

Constant Linear Quadratic
One-Two Discard First PT First

Path Tracing

Fig. 5: Single sample variance of the proposed and traditional path-tracking
methods. Each sample on the graph is considered in isolation. This graph
exposes our method’s learning scheme. The general trend of the light distri-
bution is immediately learned in a couple of samples. In this example, the
benefits stabilize after about the 20th sample. The first sample of path guiding
has higher error than pure path tracing because we sample an omnidirectional
field, whereas path tracing samples a hemispherical one.

the corresponding block in the lower level (i.e., higher reso-
lution) radiance field and perform a second stage of sampling
according to the distribution in this block. For example, if the
higher and lower levels are 8×8 and 128×128 respectively, the
second sampling samples from a 16 × 16 field.

3.7. Sample Combination Heuristic
As our approach progressively learns about the radiant exi-

tance distribution, initial samples may not benefit sufficiently
from path guiding. With each primary ray sample, the dis-
tribution will be better learned, and the benefits will im-
prove. However, after a certain number of samples, the field
may saturate and only undergo incremental changes. This
section describes several heuristics that experimentally com-
bine different sampling schemes given the described behav-
ior. Given a set of N full image samples and weights S =
{(S 1,W1), (S 2,W2), . . . , (S N ,WN)}, the resulting radiance-field
of the generated image I can be computed with the given heuris-
tics function h(i) as follows:

I =

N∑
i=1

WiS ih(i)

n∑
i=1

Wih(i)
. (7)

Several heuristic functions are shown below:

h(i) =
i i < 5

5 otherwise
(Linear)

h(i) =

i2 i < 5
25 otherwise

(Quadratic)

h(i) =
1 i = 1

2 otherwise
(One-Two)

h(i) =
0 i = 1

1 otherwise
(Discard First)

Preprint Submitted for review /Computers & Graphics (2024) 7

In addition to these heuristics, we experimented with two more,
namely “Constant” and “PT First”. In the former, each sample
has constant weight, and in the latter, the first sample directly
comes from the first path-tracing sample without path guiding
being applied. The remaining samples are generated with path
guiding and are equally weighted.

The results for different combinations are shown in Figure 5.
Here, the left graph shows the mean squared error for each sam-
ple in isolation. The pink curve corresponds to pure path tracing
and the purple curve to our approach. It can seen that for the
first sample, our approach has higher error as we sample an om-
nidirectional field, whereas path tracing samples a hemispheri-
cal one. In our case, the following samples produce lower vari-
ance than path tracing as the light distribution is learned. The
benefits stabilize after a certain point. On the right-hand side of
the same figure, we show the results of different sample com-
bination heuristics with respect to the HDR-FLIP metric [34].
It can be observed that among the proposed strategies, the best
combination strategy is “PT First”, which we use for the results
produced in this paper.

Bin
Po

ω iω i

Occluder

Fig. 6: Aliasing illustration, assuming radiance field is generated over the vol-
ume represented by the green dashed square. The radiance field is generated
from a point po. The contribution of a small occluder (shaded red) could not be
captured due to the low-resolution radiance field. Cone rays miss the occluder,
and the radiant exitance of the surface behind is queried.

4. Implementation

We have implemented our algorithm using CUDA. For
hardware-accelerated ray tracing, we use the OptiX Frame-
work [35]. Our source code is publicly available in [36]. In
the following, we discuss several important implementation is-
sues.

OptiX & Shared Memory: Since OptiX does not expose
inline ray-tracing capabilities, we could not utilize the shared
memory and the device’s hardware-accelerated ray-tracing ca-
pabilities in a single kernel execution. Therefore, we use a small
persistent buffer to segregate the OptiX ray-tracing pipeline
launches with the sampling kernel launches. The allocation
amount depends on the number of processors on the device. In
our experiments, 8 to 16 MiB of memory was enough to saturate
mid to high-end GPU. This segregation is unnecessary for other
APIs, such as DXR and Vulkan, since hardware-accelerated ray

No Jitter Jitter + Gaussian

Fig. 7: Demonstration of jittering and filtering. NEE is turned off for demon-
stration purposes. Variance seams are visible without jittering. Positional and
directional jitter and Gaussian blur minimize variance seams.

tracing inside a compute shader and access to the shared mem-
ory can be done simultaneously.

Captured radiance field’s origin and aliasing: Selecting
the reference point for the radiance field generation is not sim-
ple. Directly selecting the center point of the collaborating
rays would create self-occlusions, or directly using the center
of the partitioned region would make variance seams towards
the edges of the partitioned area. Instead, we randomly select
a candidate hit location and use it as a radiance field origin at
each iteration.

Like in the real-time rendering paradigm, aliasing is an issue,
even with the cone tracing approach (Figure 6). High-frequency
illumination or occlusion could not be captured due to the rel-
atively low-resolution radiance field. To reduce this issue, we
jitter the sampling directions to capture these high-frequency
regions, at least on some iterations.

Both directional and spatial jittering minimize variance
seams. However, the radiance field we generate corresponds
precisely to the spatial location being rendered; any other rays
trailing a slightly different part of the scene would need a
slightly modified field to compensate for the difference in per-
spective. To make the generated radiance field plausible for all
the rays in the bin, we filter the radiance field using Gaussian
blur. The effects of these antialiasing approaches are illustrated
in Figure 7.

PDF Domains: For an estimator to be unbiased, the sam-
pling domain should encapsulate the sampled radiance field,
meaning that its PDF should be non-zero where the radiance
field is non-zero. Generated radiance fields are common for
groups of rays, and they are generated from a singular loca-
tion on the spatial domain; sampling for some rays would not
satisfy this unbiasedness constraint. Blurring the generated ra-
diance field alleviates this issue somewhat, but there can still be
zero values on the radiance field due to self-occlusion. Because
of that, we set a constant non-zero epsilon (ϵ = 10−2) value as
the initial value of the radiance field.

Multiple Importance Sampling (MIS): Although we ex-
plain our algorithm as if the radiance field guiding scheme
is the only sampler for the given path, in practice, traditional
next-event estimation (NEE) and BSDF sampling schemes are
combined using MIS. MIS requires the combined PDFs to be
present for calculation. To acquire the BSDF sampler’s PDF,
BSDF data needs to be accessed, which may raise an issue of
branching discrepancies between threads within a warp. How-

8 Preprint Submitted for review /Computers & Graphics (2024)

ever, due to the spatial binning scheme, nearby regions usually
have the same BSDF, and branch divergence is minimal. This
is not an issue with the product path guiding scheme since the
entire warp is responsible for a single ray.

Radiance field projection on to 2D Cartesian space. To
represent the radiance field on a 2D Cartesian grid, we utilize
concentric octahedral mapping [37]. This method is known to
give better results on lower resolutions than other classical pro-
jection techniques, such as spherical projection.

5. Results & Validation

In this section, we evaluate our method under various test
scenarios. For clarity, our method is named WFPG throughout
this section. In all tests, next-event estimation is enabled. All of
the GPU measurements are done using a 3070Ti Mobile GPU.
Lastly, we generate radiance fields in a decaying manner, mean-
ing that with each path depth, we decrease the size of the gener-
ated radiance field by two in each dimension. This is motivated
by the fact that earlier bounces make a greater contribution to
the final image due to higher throughput.

5.1. Profiling

Table 1: Single sample per pixel timings (ms) of the wavefront path guiding
stages. Each Depthn is the total computation time of our algorithm with (bot-
tom) and without (top) product path guiding for the nth bounce of a ray path.
The miscellaneous portion includes partitioning and material evaluation rou-
tines. For product path guiding, BSDF resolution is 8 × 8. The bottom row
shows the time of pure path tracing.

1920 × 1080 1280 × 1280
Sponza VeachDoor Bathroom CornellBox

WFPG lmin = 5, cray = 512, SVO = 2563

Depth1 (128 × 128)
48.29 35.76 33.78 74.46

199.67 180.66 143.37 134.88

Depth2 (64 × 64)
25.36 21.23 22.54 31.24

109.46 122.96 99.94 82.72

Depth3 (32 × 32)
16.68 16.84 14.20 12.39
76.67 107.43 79.90 56.16

Depth4 (16 × 16)
10.96 17.25 11.10 7.15
58.03 105.77 73.90 47.56

Update Exitance 4.21 4.07 6.5 4.37

Miscellaneous 75.21 70.80 102.76 48.33

Total
180.71 165.95 190.88 177.84
523.25 591.69 506.37 374.02

SVO Generation 45.45 17.81 35.54 44.39

PT 74.00 80.8 92.73 54.42

In Table 1, we share the overall timing calculations for our
algorithm. The WFPG portion shows the time spent at each
depth of our algorithm. The lightly shaded rows (top) are for
pure path guiding, and the darkly shaded ones (bottom) are for
product path guiding. The time for SVO generation, which is
done only once, is shown at the bottom. The PT row shows

the time of pure path tracing without using our method. It can
be seen that the overall cost of our path-guiding algorithm is
approximately two times of path tracing. The cost of product
path guiding is higher due to per-ray product field calculation,
multiplication, and layered sampling.

Table 2 shows several statistics of the WFPG on different
scenes. These are the bin counts, average rays per bin, and the
combined PDF and CDF memory sizes at each bounce. Dense
methods such as Dahm and Keller [19] and Kim et al. [20]
would be required to hold these dense structures in persistent
memory, whereas in our case, this memory is transient in the
sense that it is used as shared memory for each bounce and re-
leased for the next one.

Table 2: WFPG statistics for selected scenes. Parameters for our method are the
same as in Table 1. Statistics for only the first three path depths are provided.

Depth1 Depth2 Depth3

128 × 128 64 × 64 32 × 32

Sponza
(1) 2005 / 1034 2713 / 570 2604 / 444
(2) 262.8 88.9 21.3

VeachDoor
(1) 2218 / 935 2637 / 707 2859 / 602
(2) 290.7 86.41 23.42

Bathroom
(1) 1867 / 829 3158 / 444 3022 / 418
(2) 244.7 103.5 24.8

CornellBox
(1) 4861 / 337 7151 / 180 7048 / 136
(2) 637.1 234.3 57.7

(1) Bin count / avg. ray per bin
(2) Generated PDF and CDF memory (MiB)

5.2. Equal Sample/Time Comparison
In the top row of Figure 8, we compare our algorithm’s path-

guiding and product path-guiding versions with each other and
against path tracing under an equal sample scenario for five test
scenes. Two error metrics are used. For the top two rows, HDR-
FLIP [34], which is a perceptual metric, is used, and for the
bottom two rows, the Mean Square Error (MSE), which is a
numeric metric, is used. It is worth noting that we applied the
MSE metric on tone-mapped [38] frames as otherwise critical
but minor errors in dark pixels would be subjugated by rela-
tively less important but higher magnitude errors in lighter pix-
els.

In these results, the “Cornell Box” scene is a reproduction
of the original scene, while the “Cornell Enclosed” is the same
scene except that a glass enclosure surrounds the light source.
This effectively disables NEE, as no shadow ray can directly
reach the light source. The comparison of these two scenes
shows that our method performs noticeably better under indirect
illumination. This is expected as when NEE connects a scene
point to the light source, it dominates the shading of the point,
minimizing the impact of path guiding. As for the other three
scenes, both path guiding and product path guiding variants of
our method perform better than path tracing.

As our method requires extra computations that increase the
run time, we evaluate its performance under an equal time set-
ting. This is shown at the bottom row of Figure 8. Except for the

Preprint Submitted for review /Computers & Graphics (2024) 9
M

ea
n

(H
D

R
-)

FL
IP

Cornell Box Cornell Enclosed Sponza Veach Door Bathroom

4 32 64 96 128

0.1

0.2

4 32 64 96 128
0.2

0.4

0.6

4 32 64 96 128

0.2

0.4

Sample Per Pixel (SPP)
4 32 64 96 128

0.1

0.2

0.3

0.4

0.5

8 256 512 768 1,024

0.6

0.8

1 10 20 30 40

0.05

0.1

0.15

0.2

1 10 20 30 40

0.2

0.4

0.6

1 10 20 30 40

0.2

0.4

0.6

Time (seconds)
1 10 20 30 40

0.2

0.25

0.3

0.35

10 90 180 270 360
0.4

0.6

0.8

1

∆E ∼ 0.015 0.017 0.012 0.018 0.023

M
SE

(S
D

R
)

4 32 64 96 128
10−4

10−3

10−2

4 32 64 96 128

10−2

10−1

4 32 64 96 128

10−3

10−2.5

Sample Per Pixel (SPP)
4 32 64 96 128

10−2

10−1

8 256 512 768 1,024

10−1

100

4 10 20 30 40

10−4

10−3

10−2

10−1

4 10 20 30 40
10−3

10−2

10−1

4 10 20 30 40

10−3

10−2.5

Time (seconds)
4 10 20 30 40

10−2

10−1

10 90 180 270 360

10−1

100

∆E ∼ 10−5 10−5 10−5 10−5 10−5

Path Tracing WFPG MIS WFPG Product MIS

Fig. 8: Equal sample (top row) and equal time (bottom row) comparisons between the proposed method and path tracing. The results of the proposed method
are shown with product path guiding both activated and deactivated. WFPG Parameters for “Sponza Lion”, “Veach Door”, and “Bathroom” scenes are the same
as in Table 1. Due to scene simplicity, Cornell Box parameters are lmin = 4, cray = 512, and SVO = 2563. Overall, parameters are selected to generate around
2000 − 3000 bins per depth iteration consistently. ∆E represents the mean difference of our methods from the ground-truth for each scene rendered with 150000
samples to demonstrate unbiasedness.

“Cornell Box”, “Sponza”, and “Bathroom” scenes for which di-
rect lighting is dominant, our method outperforms the pure path
tracing approach.

An interesting behavior can be seen in the “Bathroom” scene.
Here, our path-guiding methods outperform regular path trac-
ing under the equal sample scenario; however, in the equal-
time setting, path tracing eventually outperforms both proposed
methods. One explanation for this is that the dominant light
sources (the filaments of the light bulbs) are very small; there-
fore, even if the rays are guided toward the voxels that contain
the light sources, they may not reach the filaments. This also
depends on the resolution of the voxels and the radiance field.
Secondly, because the mirror is perfectly specular, path guiding
using the radiant exitance information produces sub-optimal re-
sults. These combined constraints and the additional overhead

of our guiding schemes result in this slight underperformance
of our approach in the long run for this scene.

5.3. Memory Utilization Comparison

Table 3 shows the scene-related memory requirements of our
method and other state-of-the-art path-guiding methods. In our
case, the scene-related memory is the SVO memory. For Müller
et al. [5], it is the memory consumed by sd-trees. Finally, for
Ruppert et al. [15], it is the total memory of vMF coefficients
and the kd-tree. As can be seen from the table, the scene-
related memory cost of other methods increases together with
the training time due to the refinement of the data structures. On
the other hand, our method’s memory requirement is not only
smaller but also does not increase over time.

10 Preprint Submitted for review /Computers & Graphics (2024)

Camera Reference

PPG

WFPG
64 × 64

WFPG
128 × 128

2 4 8 16
Reference PDF

Fig. 9: Convergence of Müller et al.’s method and our method. The reference PDF is generated using path tracing over the red region. For our method, 64 × 64 and
128 × 128 radiance fields are generated. Müller et al.’s method uses default parameters.

Table 3: Memory requirements of different methods. WFPG method parame-
ters are lmin = 5, cray = 512 and SVO = 1283. All other methods use their
default parameters. The iterative training SPP value of Ruppert et al.’s method
is 4. For “Sponza” and “Veach Door” scenes, the resolution is 1920×1080. For
the Bathroom scene, the resolution is 1280 × 1280.

Scene-related Memory (MiB)

Depth Ours Training Müller et al. Ruppert et al.

Sp
o
n
z
a

4

16 t 19.0 3.2

3.96 32 t 26.0 5.5

64 t 37.0 20.1

V
e
a
c
h

D
o
o
r

6

32 t 40.3 7.4

1.26 64 t 56.3 14.8

128 t 77.0 30.0

B
at
h
r
o
o
m

10

128 t 83.4 15.4

2.00 256 t 121.32 31.1

512 t 167.03 63.9

In addition to the scene-related memory cost, our method
also requires path memory. In complexity notation, it can be
represented as Θ(p × d) where p is the path count, and d is
the maximum traversal depth of the paths. Both of the other
approaches are CPU-based path-guiding algorithms. However,
we can argue that their potential wavefront-style implementa-
tion on the GPU would also require the same amount of path
memory as ours.

Given that the SVO memory is the only path guiding related
data structure that we hold in persistent memory, we analyze
the effect of different SVO resolutions on render quality. This
is shown in Figure 10 for resolutions from 163 to 1283. As can
be seen from this figure, the render quality increases up to a
point but remains intact afterward. The memory usage of the
SVO also increases proportionally. In our analysis, we found
the 1283 SVO resolution to work well for all of our test scenes.

5.4. Radiance Field Validation

We compare the reference and generated radiance fields over
specific regions in different scenes to validate the generated ra-
diance field. Reference radiance fields are generated via path

163 323 643 1283

(1) 0.179 0.154 0.144 0.144
(2) 3.19 · 10−3 2.23 · 10−3 1.91 · 10−3 1.92 · 10−3

(3) 0.02 0.07 0.31 1.26

Fig. 10: Performance change with respect to SVO resolution. The row values
are as follows: (1) Mean FLIP. (2) Mean Square Error. (3) SVO Memory MiB.

tracing. Two such comparisons can be seen in Figures 3 and
9. The latter figure exposes the advantage of our method com-
pared to Müller et al.’s method. Our method does not require
adapting its directional data structure. The directional data is
dense and more or less immediately captures the radiance field;
further refinement reduces residual noise.

5.5. Product path guiding

In our experiments, low-resolution (8× 8) product path guid-
ing mostly eliminates sidedness problems that occur when rays
are partitioned around a thin reflective surface with dramatic ra-
diance differences between their sides. Due to omnidirectional
generation, rays may probabilistically select the other side of
the thin object. The “Veach Door” scene is an excellent exam-
ple, as the illumination in this scene comes from a bright light
source in the back room. As such, regular path guiding may
steer more rays toward this direction. With product path guid-
ing, however, if this direction cannot illuminate a surface due to
its normal facing away from it, rays will not be guided toward
it. In Figure 8, the scene that most benefits from product path
guiding is “Veach Door” due to this characteristic of the scene.
Despite this, in equal time comparison, the regular path guiding
appears to be still better due to the extra computations involved
in product path guiding.

However, if we slightly modify this scene by placing the
room in an omnidirectional environment map where the ma-
jority of the illumination comes from a window on the wall,
product path guiding may outperform regular path guiding even
under an equal-time setting. This is illustrated in Figure 11. It
can be seen that despite fewer rays being traced for product path

Preprint Submitted for review /Computers & Graphics (2024) 11

(a) Non-product (b) Product

(a) (b)

Runtime (60s) 404 spp 126 spp
Mean FLIP 0.467 0.310
MSE 0.027 0.009

Fig. 11: An equal-time comparison between the non-product (a) and product
(b) version of the proposed method showcasing a scenario where product path
guiding outperforms regular path guiding in equal time.

guiding, each ray “counts” more, yielding a final image with
reduced noise. Product path guiding can be helpful in these
scenarios where thin walls separate an intense illumination be-
tween two regions.

5.6. Comparison with the Literature

We conducted an equal sample comparison between Müller
et al.’s [5], Ruppert et al.’s [15], and our methods. We refrain
from conducting equal-time comparisons due to underlying ar-
chitectural differences. Moreover, to prevent renderer-based
differences from altering the results, each technique is com-
pared against the reference image of that renderer.

Results can be seen in Table 4. Comparisons provide HDR-
FLIP heat maps and mean HDR-FLIP values [34]. On the left
of the FLIP heat maps is the reference image of the Mitsuba
Renderer. The images’ mean square error (MSE) is also given
as a separate row. Both compared method parameters are run
with their default parameters. As both methods require training
and rendering samples, we set the sample count of our process
to the sum of these values.

We opted for a 2563 resolution for the SVO, although Fig-
ure 10 suggests that 1283 resolution is adequate for capturing
the radiant exitance field. This is true for the “VeachDoor”
scene, but the smaller resolution may not be sufficient on larger
scenes such as the “Sponza”. Because the memory overhead of
increasing the resolution to 2563 is insignificant, we opted for
this higher resolution for the comparisons.

For the “Bathroom” scene, Müller et al.’s and Ruppert et al.’s
methods yield very similar error scores, which are both lower
than our error score (lower is better in this case). This scene
represents a worst-case scenario for our algorithm due to the
ideal specular reflection of the mirror. As we represent the il-
lumination using radiant exitance, we guide more rays toward
the mirror, despite the fact that the light reflected off the mirror
only illuminates the perfect reflection directions.

For the “Veach Door” scene, our error score for product path
guiding lies in between the other two methods. In this scene,
our product path-guiding version outperforms the regular path-

guiding version due to the reason explained in the previous sec-
tion. Finally, for the “Sponza” scene, WFPG product path guid-
ing yields the lowest error score with a small margin.

Given that the compared methods use different renderers (an
earlier version of the Mitsuba renderer) and architectures (GPU
vs. CPU), the high degree of similarity between the algorithms
suggests that our approach demonstrates competitive perfor-
mance despite having a smaller memory impact.

6. Limitations & Future Work

There are several limitations of the proposed method, some
of which are shared by the other path-guiding methods as well.
Here, we highlight the most important ones that can be ad-
dressed by future work.

Densely generated radiance fields: Generated radiance
fields may not capture high-frequency features. These would
require a higher resolution capture, which asymptotically re-
quires O(n2) amount of work. As a future work, asymmetric
cones could be used to query the incident location. A minimal
data structure could orchestrate this approach. “Compressed
Directional Quadtree” (CDQ), proposed by Dittebrandt et al.,
can be a candidate for this [22].

Radiant exitance and highly specular objects: To mini-
mize memory footprint, we deemed it necessary to hold only
the radiant exitance in the SVO data structure. However, in
scenarios such as the “Bathroom” scene, this approach proves
insufficient, as discussed earlier. To address this issue, cones
can be bounced from specular surfaces to continue to query the
next hit location. Alternatively, the aforementioned CDQ can
be used to segment the radiant exitance on regions with high
specularity. Determination of these regions could be done at ini-
tialization time during SVO generation since it does not rely on
light interaction. The refinement of the CDQ, however, would
be performed during the runtime phase.

Volumetric subdivision of the scene: In the context of most
path-guiding methods, spatial subdivision schemes are often
volumetric. Similarly, in our case, the spatial binning scheme
is also volumetric. This creates problems when an infinitely
thin and two-sided surface occupies this volume. As discussed
in this paper, product path guiding could mitigate this issue.
Arguably, most scenes involve mostly reflective materials; a
surface-based subdivision approach would be beneficial.

Selective path guiding: Since our method generates radi-
ance fields on the fly, it would reduce computational cost to
avoid these calculations in regions that would minimally benefit
from path guiding, such as those that receive strong direct light-
ing. This optimization would dramatically improve the compu-
tation time of scenes containing mixed regions dominated by
direct and indirect illumination.

7. Conclusion

In this paper, we proposed the first GPU-oriented wavefront
style path guiding method that does not rely on dynamic mem-
ory management – an operation that does not suit the GPU ar-
chitecture. The proposed method pre-generates an SVO data

12 Preprint Submitted for review /Computers & Graphics (2024)

Table 4: The comparison between the two state-of-the-art and our path-guiding algorithms is shown. We used the default parameters of the literature methods except
for the sample counts. We set our sample count (1536) to the sum of the training and rendering sample counts used for each method. Our parameters were lmin = 5,
cray = 512, and the SVO resolution equal to 1283. The maximum path depth of the scenes were 10 for “Bathroom”, 4 for “Sponza”, and 6 for “Veach Door”.

Reference PT WFPG WFPG Product Ruppert et al. Müller et al.
1536spp 512t + 1024spp

B
at
h
r
o
o
m

O
u
r
s

M
it
su
ba

FLIP Mean 0.533 0.446 0.363 0.272 0.270
MSE 0.125 0.114 0.092 0.113 0.098

96spp 32t + 64spp

V
e
a
c
h

D
o
o
r

O
u
r
s

M
it
su
ba

FLIP Mean 0.295 0.207 0.162 0.142 0.177
MSE 0.089 0.069 0.036 0.015 0.023

48spp 16t + 32spp

C
r
y

Sp
o
n
z
a

O
u
r
s

M
it
su
ba

FLIP Mean 0.226 0.170 0.165 0.168 0.176
MSE 0.001 0.001 0.001 0.001 0.001

structure by voxelizing surfaces and refines the radiant exitance
field during rendering. This structure is then utilized to generate
PDFs to guide rays on the fly. This leads to a smaller memory
requirement than the existing methods without hampering im-
age quality. We also showed how to perform product sampling
under this setting. By sharing our source code, we hope to stim-
ulate future research for GPU path guiding, which could be vital
for real-time path tracing.

References

[1] Kajiya, JT. The rendering equation. SIGGRAPH Computer Graphics
1986;20(4):143–150.

[2] Heitz, E, d’Eon, E. Importance sampling microfacet-based bsdfs using
the distribution of visible normals. In: Proceedings of the 25th Eurograph-
ics Symposium on Rendering. EGSR ’14; Goslar, DEU: Eurographics
Association; 2014, p. 103–112.

[3] Jensen, HW. Importance driven path tracing using the photon map. In:
Rendering Techniques. 1995,.

[4] Vorba, J, Karlı́k, O, Šik, M, Ritschel, T, Křivánek, J. On-line learn-
ing of parametric mixture models for light transport simulation. ACM
Transactions on Graphics 2014;33(4).

[5] Müller, T, Gross, M, Novák, J. Practical path guiding for efficient light-
transport simulation. Computer Graphics Forum 2017;36(4):91–100.

[6] Veach, E, Guibas, LJ. Optimally combining sampling techniques for
monte carlo rendering. In: Proceedings of the 22nd Annual Confer-

Preprint Submitted for review /Computers & Graphics (2024) 13

ence on Computer Graphics and Interactive Techniques. SIGGRAPH ’95;
New York, NY, USA: Association for Computing Machinery. ISBN
0897917014; 1995, p. 419–428.

[7] Müller, T, Mcwilliams, B, Rousselle, F, Gross, M, Novák, J. Neural
importance sampling. ACM Transactions on Graphics 2019;38(5).

[8] Huo, Y, Wang, R, Zheng, R, Xu, H, Bao, H, Yoon, SE. Adaptive inci-
dent radiance field sampling and reconstruction using deep reinforcement
learning. ACM Transactions on Graphics 2020;39(1).

[9] Bako, S, Meyer, M, DeRose, T, Sen, P. Offline deep importance
sampling for monte carlo path tracing. Computer Graphics Forum 2019;.

[10] Vévoda, P, Kondapaneni, I, Křivánek, J. Bayesian online regression for
adaptive direct illumination sampling. ACM Transactions on Graphics
2018;37(4).

[11] Lafortune, EP, Willems, YD. A 5D tree to reduce the variance of monte
carlo ray tracing. In: Rendering Techniques ’95 (Proceedings of the 6th
Eurographics Workshop on Rendering). 1995, p. 11–20.

[12] Schüßler, V, Hanika, J, Jung, A, Dachsbacher, C. Path guiding with
vertex triplet distributions. Computer Graphics Forum 2022;41(4):1–15.

[13] Dodik, A, Papas, M, Öztireli, C, Müller, T. Path guiding using spatio-
directional mixture models. Computer Graphics Forum 2022;41(1):172–
189.

[14] Herholz, S, Elek, O, Vorba, J, Lensch, H, Křivánek, J. Product im-
portance sampling for light transport path guiding. Computer Graphics
Forum 2016;35(4):67–77.

[15] Ruppert, L, Herholz, S, Lensch, HPA. Robust fitting of parallax-aware
mixtures for path guiding. ACM Transactions on Graphics 2020;39(4).

[16] Diolatzis, S, Gruson, A, Jakob, W, Nowrouzezahrai, D, Drettakis,
G. Practical product path guiding using linearly transformed cosines. In
Computer Graphics Forum (Proceedings of Eurographics Symposium on
Rendering) 2020;39(4).

[17] Zhu, S, Xu, Z, Sun, T, Kuznetsov, A, Meyer, M, Jensen, HW, et al.
Photon-driven neural reconstruction for path guiding. ACM Transactions
on Graphics 2021;41(1).

[18] Sutton, RS, Barto, AG. Reinforcement Learning: An Introduction. Cam-
bridge, MA, USA: A Bradford Book; 2018. ISBN 0262039249.

[19] Dahm, K, Keller, A. Learning light transport the reinforced way. In:
ACM SIGGRAPH 2017 Talks. SIGGRAPH ’17; New York, NY, USA:
Association for Computing Machinery. ISBN 9781450350082; 2017,.

[20] Kim, J, Kim, YM. Fast and Lightweight Path Guiding Algorithm on
GPU. In: Lee, SH, Zollmann, S, Okabe, M, Wünsche, B, editors.
Pacific Graphics Short Papers, Posters, and Work-in-Progress Papers. The
Eurographics Association. ISBN 978-3-03868-162-5; 2021,.

[21] Derevyannykh, M. Real-Time Path-Guiding Based on Parametric Mix-
ture Models. In: Pelechano, N, Vanderhaeghe, D, editors. Eurographics
2022 - Short Papers. The Eurographics Association. ISBN 978-3-03868-
169-4; 2022,.

[22] Dittebrandt, A, Hanika, J, Dachsbacher, C. Temporal Sample Reuse
for Next Event Estimation and Path Guiding for Real-Time Path Tracing.
In: Dachsbacher, C, Pharr, M, editors. Eurographics Symposium on
Rendering - DL-only Track. The Eurographics Association. ISBN 978-3-
03868-117-5; 2020,.

[23] Laine, S, Karras, T, Aila, T. Megakernels considered harmful: Wave-
front path tracing on GPUs. In: Proceedings of the 5th High-Performance
Graphics Conference. HPG ’13; New York, NY, USA: Association for
Computing Machinery. ISBN 9781450321358; 2013, p. 137–143.

[24] Zheng, S, Zhou, Z, Chen, X, Yan, D, Zhang, C, Geng, Y, et al.
Luisarender: A high-performance rendering framework with layered and
unified interfaces on stream architectures. ACM Transactions on Graphics
2022;41(6).

[25] Laine, S, Karras, T. Efficient sparse voxel octrees – analysis, exten-
sions, and implementation. NVIDIA Technical Report NVR-2010-001;
NVIDIA Corporation; 2010.

[26] Crassin, C, Neyret, F, Lefebvre, S, Eisemann, E. GigaVoxels: Ray-
guided streaming for efficient and detailed voxel rendering. In: Proceed-
ings of the 2009 Symposium on Interactive 3D Graphics and Games. I3D
’09; New York, NY, USA: Association for Computing Machinery. ISBN
9781605584294; 2009, p. 15–22.

[27] Pharr, M, Jakob, W, Humphreys, G. Physically Based Rendering: From
Theory to Implementation. 3rd ed.; San Francisco, CA, USA: Morgan
Kaufmann Publishers Inc.; 2016. ISBN 0128006455.

[28] Crassin, C, Green, S. Octree-Based Sparse Voxelization Using The GPU
Hardware Rasterizer; chap. 22. CRC Press, Patrick Cozzi and Christophe

Riccio; 2012,.
[29] Karras, T. Maximizing parallelism in the construction of BVHs, octrees,

and k-d trees. In: Proceedings of the Fourth ACM SIGGRAPH / Eu-
rographics Conference on High-Performance Graphics. EGGH-HPG’12;
Goslar, DEU: Eurographics Association. ISBN 9783905674415; 2012, p.
33–37.

[30] Amanatides, J. Ray tracing with cones. ACM SIGGRAPH Computer
Graphics 1984;18(3):129–135.

[31] Crassin, C, Neyret, F, Sainz, M, Green, S, Eisemann, E. Interactive
indirect illumination using voxel cone tracing: A preview. In: Symposium
on Interactive 3D Graphics and Games. I3D ’11; New York, NY, USA:
Association for Computing Machinery. ISBN 9781450305655; 2011, p.
207.

[32] Shirley, P, Laine, S, Hart, D, Pharr, M, Clarberg, P, Haines, E, et al.
Sampling Transformations Zoo; chap. Sampling. Berkeley, CA: Apress.
ISBN 978-1-4842-4427-2; 2019, p. 223–246.

[33] Conty Estevez, A, Lecocq, P. Fast product importance sampling of en-
vironment maps. In: ACM SIGGRAPH 2018 Talks. SIGGRAPH ’18;
New York, NY, USA: Association for Computing Machinery. ISBN
9781450358200; 2018,.

[34] Andersson, P, Nilsson, J, Shirley, P, Akenine-Möller, T. Visualizing
Errors in Rendered High Dynamic Range Images. In: Theisel, H, Wim-
mer, M, editors. Eurographics 2021 - Short Papers. The Eurographics
Association. ISBN 978-3-03868-133-5; 2021,.

[35] Parker, SG, Bigler, J, Dietrich, A, Friedrich, H, Hoberock, J, Luebke,
D, et al. Optix: A general purpose ray tracing engine. ACM Transactions
on Graphics 2010;29(4).

[36] XXX, X. witheld due to double-blind review. 2024.
[37] Clarberg, P. Fast Equal-Area Mapping of the (Hemi)Sphere using SIMD.

Journal of Graphics Tools 2008;13(3):53–68.
[38] Reinhard, E, Stark, M, Shirley, P, Ferwerda, J. Photographic tone

reproduction for digital images. In: Seminal Graphics Papers: Pushing
the Boundaries, Volume 2. 2023, p. 661–670.

[39] Bitterli, B. Rendering resources. 2016. URL: https://

benedikt-bitterli.me/resources/; accessed 20 February 2024.
[40] Pharr, M, Jakob, W, Humphreys, G. Physically Based Rendering: From

Theory to Implementation. 4th ed.; Cambridge, MA, USA: The MIT
Press; 2023. ISBN 9780262374033.

[41] Jakob, W, Speierer, S, Roussel, N, Vicini, D. Dr.jit: A just-in-time com-
piler for differentiable rendering. Transactions on Graphics (Proceedings
of SIGGRAPH) 2022;41(4). doi:10.1145/3528223.3530099.

[42] Strugar, F. NVIDIA-Path-Tracing-SDK. 2024. URL: https:

//github.com/NVIDIAGameWorks/Path-Tracing-SDK; accessed 20
February 2024.

Appendix A. Validation

We share the results of an evaluation to compare the run-time
performance of our ray tracing architecture with well-known
architectures in the literature [39, 40, 41, 42]. As seen in Ta-
ble A.5, the run-time performance of our GPU-based WFPT
implementation is similar to PBRT-v4’s WFPT implementation.
Both ours and PBRT-v4’s WFPT results are somewhat slower
than megakernel-based architectures due to the implementation
overhead of manually managing path states.

Appendix B. Occupancy Analysis

We have conducted GPU resource usage of our product sam-
pling version of radiance field generation kernels. Results can
be seen in Table B.6. Shared memory utilization is at its limit
for 128 × 128 field generation kernel (68.3 KiB). Each multi-
processor has 128KiB of shared memory, of which 102KiB is
available for the user on a 3070Ti mobile GPU. Doubling the ra-
diance field resolution will quadruple the memory requirement,

https://benedikt-bitterli.me/resources/
https://benedikt-bitterli.me/resources/
http://dx.doi.org/10.1145/3528223.3530099
https://github.com/NVIDIAGameWorks/Path-Tracing-SDK
https://github.com/NVIDIAGameWorks/Path-Tracing-SDK

14 Preprint Submitted for review /Computers & Graphics (2024)

Table A.5: Comparison between different GPU-based path tracer implementa-
tions and ours using the “Kitchen” scene in 1920 × 1080 resolution. As can
be seen from the per-sample timings, wavefront path tracers have an inherent
implementation overhead compared to MegaKernel-based ones. However, our
timings are on par with well-known ray tracer architectures. The image shown
is generated by our renderer.

Renderer - Framework Type Time per sample (ms)

NVIDIA-PT-SDK (DXR) MegaKernel 40.2 (NEE On)

26.0 (NEE Off)

PBRT-v4 (CUDA) Wavefront 71.2

Mitsuba3 (CUDA) MegaKernel 48.8

Ours (CUDA) Wavefront 67.2

which will not fit into the shared memory. To achieve maxi-
mum utilization of a multiprocessor, we select a block size of
512, which results in 33% occupancy. Achieving a higher oc-
cupancy would have required simplifying the kernels, but this
is not feasible due to the complexity of the sampling routines.

Table B.6: GPU resource usage statistics of the radiance field generation ker-
nels. All kernels are launched via 512 threads per block.

Field Resolution Shared Mem. (KiB) Registers Occupancy

128 × 128 68.3 128 33%

64 × 64 19.01 128 33%

32 × 32 6.72 128 33%

	Introduction
	Previous Work
	Path Guiding
	Wavefront Path Tracing (WFPT)

	Proposed Method
	Wavefront Path Guiding
	Radiant Exitance Caching using Sparse Voxel Octree
	On-the-fly Generation of Local Radiance Field
	Positional Binning using SVO
	Path Guiding
	Product Path Guiding
	Sample Combination Heuristic

	Implementation
	Results & Validation
	Profiling
	Equal Sample/Time Comparison
	Memory Utilization Comparison
	Radiance Field Validation
	Product path guiding
	Comparison with the Literature

	Limitations & Future Work
	Conclusion
	Validation
	Occupancy Analysis

