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The Johannsen-Psaltis (JP) black hole is a phenomenologically viable metric ob-
tained by judiciously deforming the Kerr black hole such that the metric is asymp-
totically flat and causal and is consistent with the weak field, post-Newtonian tests
of gravity; however, it has additional hairs besides its mass and angular momentum.
As it deviates from the Kerr black hole in the strong coupling regime, it is a useful
metric to test the Kerr hypothesis that states that all astrophysical black holes are of
the Kerr type. Here we give a membrane description of this black hole that effectively
amounts to replacing the observable part of the black hole with a fluid with thermal
properties. A timelike membrane, a stretched horizon local in time is assumed to ex-
ist. This membrane is expected to approximate the null event horizon that is highly
non-local in time. We derive the energy-momentum tensor of the fluid and all the
transport coefficients using the action formulation to the membrane as advocated
by Parikh and Wilczek. In the fluid description, one observes that the finiteness
of the transport coefficients constrains the additional hairs of the Johannsen-Psaltis
black hole. Analytically continuing the pressure of the fluid to all values of the radial
coordinate r, one obtains interesting Van der Waals–type behavior of the pressure of
the fluid which diverges at the radius of the outer ergosphere, lending support, from
the membrane paradigm’s perspective to the claim that relativistic astrophysical jets
are produced by the ergoregion of the black hole.

I. INTRODUCTION

It is hard to make exact statements when macroscopic objects are concerned, yet we can
make an exact statement about the astrophysical black holes (about all of them !) within the
framework of general relativity: as long as they are isolated in an asymptotically flat universe,
they are described by the Kerr metric [1]. This is sometimes called the Kerr hypothesis and of
course it must be tested both in the weak field and strong field regimes. While the weak field
regime has been tested in many different observations with no compelling evidence against
the hypothesis, the strong field regime has only been recently brought into the domain of
observation with gravitational waves emitted from binary black hole collisions [2], and the
Event Horizon Telescope that captured the pictures of environments of supermassive black
holes [3, 4]. One rather remarkable property of the Kerr metric is the following: all of
its multiple moments are related to the lowest order two moments: its mass (m) and spin
(J). This fact is best explained by the Geroch-Hansen multipole moment expression [5, 6]
in the units G = c = 1: Mℓ := mℓ + isℓ = m(ia)ℓ, where m0 = m and s1 = ma = J .
This relation, sometimes dubbed as the "no-hair theorem" [7] will not be valid even for
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the slightest deviation of the metric or for any other compact object. So testing the Kerr
hypothesis would in the end boil down to testing the no-hair theorem.

Most of the deformations of the Kerr metric yield pathological results such as the exis-
tence of closed timelike curves, or naked singularities. Moreover, because of the powerful
uniqueness theorems of the Kerr black hole [8] within general relativity, it is just in vain
to modify the Kerr metric as a solution to Einstein’s equations: one must either consider
alternative theories of gravity that allow viable deformations of the Kerr metric in the strong
field regime or, perhaps better yet, without referring to any particular field equations, con-
sider phenomenological metrics that judiciously deform metric. In the literature, one can
find many works devoted to the first type of deformations, that is modified Kerr solutions
(albeit almost always approximate solutions) to modified theories of Kerr gravity, and not
so many phenomenological metrics except the ones constructed by Johannsen and Psaltis
[9, 10]. Here we shall study these metrics in the context of the membrane paradigm ap-
proach to black holes which is an effective description of the black hole in terms of a fluid
with various thermal properties. This is an exotic fluid (which may not be easily drinkable
as it has a negative bulk viscosity) that mimics the true event horizon of the black hole.
Our motivation to study the modified Kerr metric in the membrane paradigm was to un-
derstand if there are some constraints on the deformations parameters, and indeed there are
as we shall see. In some sense, the theory is still a great “experimental tool” and a viable
membrane paradigm that was quite useful in understanding various aspects of black holes
in general relativity, helping us constrain the deformation parameter, indeed a new hair, in
the parametrically deformed Kerr metric.

The layout of the paper is as follows: In Sec. II we give a detailed account of the
membrane construction using the action formalism of Parikh-Wilczek [11]; Sec. III is the
bulk of our paper: we construct the membranes for the JP metric after considering the
membrane for its static limit. The computations presented here can be applied verbatim to
any given stationary metric that forms an asymptotically flat deformation of the Kerr black
hole.

II. CONSTRUCTION OF A GRAVITATIONAL MEMBRANE

Our main goal is to construct a gravitational membrane that effectively reproduces the
observable properties of the JP metric. Since this metric is somewhat cumbersome, it pays
to first revisit the membrane paradigm in the easier context of the modified Schwarzschild
metric (that is the zero rotation limit of the JP metric) to introduce the necessary physical
ingredients. We claim no novelty in the basic construction of the membrane, the following
is a recapitulation of this already-established tool.

A. Basics of the membrane paradigm

The event horizon of a static or stationary black hole is a null hypersurface of codimen-
sion one with a degenerate metric. It is highly nonlocal in time and hence not observable
to transient observers like us and is not a tangible concept for astrophysical purposes. To
remedy this and to approximate the black hole as a local object in time, an effective de-
scription that makes use of timelike surfaces, not null surfaces is needed. For this purpose,
a “stretched horizon” or “fluid bubble,” that is, a timelike surface [12] with electrical con-
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ductivity having a resistance of 377 Ω, shear and bulk viscosities [13] arbitrarily close to
the event horizon was introduced by Damour [13]. This pragmatic point of view, that is
endowing a black hole with a timelike facade has proven to be very useful. A careful calcula-
tion on the horizon led to Ohm’s law [14], Joule’s law, and the nonrelativistic Navier-Stokes
equation [15]. Early works of Damour, followed by Thorne and Price [16] showed a way to
mimic the null horizon in a well-defined approximate way since the membrane is not null by
nature, it has a nondegenerate Lorentzian metric which allows computations local in time.
This approach to black hole dynamics was coined as the membrane paradigm of black holes
[16]. More recently [11], a proper action formulation of the membrane was given that makes
the computations rather straightforward, and hence we shall use this. See [17] for a recent
review of these ideas.

B. Quantities describing the fluid membrane

Let H be the event horizon of a stationary black hole, then there exists, by definition, a
null geodesic vector field ℓ that generates H. One can define a timelike stretched horizon Hs

arbitrarily close to this event horizon. In the Arnowitt–Deser–Misner (ADM) decomposition
of the metric [18], let N be the lapse function that can be chosen such that in the limit N → 0,
the stretched horizon goes to the true horizon, that is Hs|N→0 = H [15]. This limit in the
geometry cannot be smooth and hence N will be used as a regulator in various geometric
objects as we shall see below.

Let (M, g) be the (3+1)-dimensional total black hole spacetime and (Hs, h) be a (2+1)-
dimensional submanifold of (M, g) with the pullback metric h = ϕ∗g, which can also be
considered as the projector hµ

ν : Tp(M) −→ Tp(Hs). A spacelike cross section of Hs is
also a submanifold of dimension two, which we denote as (Σ, γ). We can do differential
geometry adapted to these two submanifolds, which boils down to a (2 + 1 + 1) splitting
of the full spacetime. Let ∇µ be the g-compatible covariant derivative and Dµ be the
h-compatible covariant derivative while Dµ be the γ-compatible covariant derivative [11].
Then, let V µ ∈ Tp(M) and nµ be a spacelike unit vector normal to Hs, then defining the
extrinsic curvature of Hs as Kσµ := hσ

µ∇σnµ, one has the identity

hσ
µ∇σV ν = DµV ν − KσµV σnν . (1)

Let uµ be the unit normal timelike vector to Hs chosen to satisfy uµnµ = 0. uµ can be
considered to be the four velocity of a fiducial observer with proper time τ . Here is the
crucial part of the discussion: for the membrane paradigm to approximate the true horizon,
a nullness constraint on the stretched horizon should be imposed; this means a change of
character of uµ and nµ in the limits

N uµ −→ ℓµ, N nµ −→ ℓµ, (2)

as N → 0, ℓµℓµ = 0.
The relations we shall use for the membrane paradigm can be summarized as [11]

ℓµℓµ = 0, nµnµ = 1, uµuµ = −1, uµnµ = 0, aµ = nγ∇γnµ = 0,

Kµνnν = 0, Kγ
µ = hγ

ν∇γnµ, lim
N→0

N uµ = ℓµ, lim
N→0

N nµ = ℓµ.

hµ
ν = δµ

ν − nµnν , γµ
ν = hµ

ν + uµuν = δµ
ν − nµnν + uµuν , uµ =

(
d

dτ

)µ

. (3)
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C. An action formalism for the membrane paradigm

Parikh and Wilczek [11] gave an action formulation of the membrane that starts by
modifying the usual variational principle

δgStotal = δg (Sin + Sout) , (4)

to
δgStotal = δg(Sin + Ssurface) + δg(Sout − Ssurface), (5)

where the surface term refers to the black hole boundary that now is represented effectively
by the membrane. The first and second parts of the action variations are assumed to be
zero individually [15].

1. The gravitational membrane

Now, we rigorously find the variation on the stretched horizon.

Sout = 1
16π

ˆ
M

d4x
√

−g R + 1
8π

˛
∂M

d3x
√

±h K, (6)

where we assumed GN = 1, c = 1 and the second term is the Gibbons-Hawking boundary
term. Using the Palatini’s identity, one has [19]

gµνδRµν = gµγ∇γ

(
gλν∇λδgµν

)
− gαβ∇µδgαβ, (7)

where δgµν can be raised and lowered as an ordinary tensor. So:
ˆ

M
d4x

√
−g gµνδRµν =

ˆ
∂M

d3x
√

−h nµ hνα (∇αδgµν − ∇µδgνα) ≡ I. (8)

We choose the normal unit vector nµ as outward pointing. Applying the Leibniz rule to the
integrand gives

I =
ˆ

∂M
d3x

√
−h hµν [(δgµα∇νnα − δgµν∇αnα) + (∇α(nαδgµν) − ∇ν(nαδgαµ))] . (9)

Using the definition of the extrinsic curvature as given in the paragraph above (1), one
finds the variation of the action as the Brown-York quasilocal stress tensor.

δS = 1
16π

ˆ
∂M

d3x
√

−h
(
Khµν − Kµν

)
δgµν . (10)

Then, one has tstretched
µν = 1

8π
(Khµν − Kµν) ∈ Tp(Hs) ⊗ Tp(Hs). On the stretched horizon

gµν |Hs = hµν .To cancel the above nonzero boundary variation term, one must add the
following:

δSsurface = −1
2

ˆ
d3x

√
−h tstretched

µν δhµν . (11)

As it happens in electrodynamics where a surface charge induces a discontinuity in the field
strength on the surface, tstretched

µν induces a discontinuity in the stretched horizon’s extrinsic
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curvature Kµν [11]. This discontinuity creates a junction on the surface that can be identified
as the Israel junction condition [20]:

tstretched
µν = 1

8π
([K]hµν − [K]µν) , (12)

where [K] = K+ −K− such that [K] is the difference between the external Universe embed-
ding of Hs. We should identify K− = 0 so that the stretched horizon interior to the black
hole side is a flat embedding. After all these considerations, one finds that tµν

stretched is not
covariantly conserved: There is a source term and the equation reads as

Dνtµν
stretched = −hµ

λT λγnγ. (13)

Hence the gravitational membrane acts like a fluid obeying Damour-Navier-Stokes equations
on the spacelike cross section of the stretched horizon [21]. One can write Kµ

ν in terms of
the surface gravity κ and extrinsic curvature kA

B of the spacelike section of Hs. To this
end, one has ∇ℓℓ = κrℓ where κr is the normalized surface gravity at the horizon, which is
related to the surface gravity κ as κr = Nκ [11].

Let KAB be the extrinsic curvature of the 2-space-like section of Hs. Then, it can be
separated into trace and traceless parts as

KAB = σAB + 1
2γABΘ, (14)

where σAB is the shear tensor. Then finally, the stretched horizon stress tensor becomes [15]

tAB
stretched = 1

8π

(
−σAB + γAB(1

2Θ + κ)
)

, (15)

which is the main formula that we shall use in what follows.

III. MEMBRANES FOR THE MODIFIED STATIC AND STATIONARY
METRICS

A. A membrane for the Schwarzschild-type geometry

Consider a spherically symmetric metric:

ds2 = −fdt2 + f−1dr2 + r2dΩ2, (16)

where f = 1 − 2m(r)
r

. We can the metric as1

ds2 = −uµuνdxµdxν + nµnνdxµdxν + γµνdxµdxν , (17)

with uµ and nµ chosen to satisfy uµuµ = −1, nµnµ = 1 while uµnµ = 0 on the stretched
horizon Hs. At the event horizon Hr→rH

, the vectors u and n should be null. We know
that m(r) can only have global hairs hence it is of the form m(r) = m − q2

2r
+ Λr3

6 . For the

1 This construction follows [22].
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sake of simplicity, let us consider the Λ = q = 0 case. Then, the event horizon is located at
rH = 2m for which f(rH) = 0.

On the 2D surface, we will use the coordinates {A, B} = {θ, ϕ} hence γAB = diag(r2, r2 sin2 θ).
The extrinsic curvature tensor for this geometry reads as

Kµν = −1
2

∂rf√
f

uµuν +
√

f

r
γµν , (18)

of which the trace is K = 1
2

∂rf√
f

+ 2
√

f

r
. In the (2 + 1 + 1) splitting of the spacetime, the

extrinsic curvature on Hs can be identified by choosing the lapse function N =
√

f as a
renormalization factor:

Kµν −→ N−1(kµν + κuµuν), (19)

where kµν = γµAγνBkAB is the extrinsic curvature of the 2D surface and κ is the surface
gravity [22].

As N → 0, the extrinsic curvature of the stretched horizon converges to the event horizon
and Kµν becomes proportional to the surface gravity. The trace of Kµν diverges since f has
a pole at r = rH .

lim
N→0

K = 1
2

∂rf√
f

∣∣∣∣∣
rH

→ Tr(N−1kµν − N−1κuµuν)|(r=rH), (20)

lim
N→0

Ktt = − 1
2

∂rf√
f

∣∣∣∣∣
rH

→ N−1κ|rH
(21)

Equations (19)–(21) can be combined to find the stress tensor in terms of given parameters:

tstretched
µν = 1

8πN

(
(Θ + κ)(γµν − uµuν) + κuµuν − (σµν + 1

2Θγµν)
)

= 1
8πN

(
(1
2Θ + κ)γµν − Θuµuν − σµν

)
. (22)

One can compare this stretched stress tensor with a viscous fluid stress tensor

tviscous
µν = N−1ρuµuν + N−1γµAγνB

(
PγAB − 2ησAB − ζΘγAB

)
(23)

+ πA(γµAuν + γνBuν),

with energy density ρ, pressure P , null geodesic expansion coefficient Θ, bulk viscosity ζ,
shear viscosity η, momentum density πA, shear tensor σAB near the event horizon. If we
identify (22) and (23) we get the following:

ρ = − 1
8π

Θ, η = 1
16π

, P = κ

8π
, ζ = − 1

16π
, πA = 0. (24)

Since we also have

tstretched
µν = 1

8π

((
1
2

∂rf√
f

+
√

f

r

)
γµν − 2

√
f

r
uµuν

)
, (25)
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we have

Θ = 2
r

f, σAB = 0, κ = ∂rf

2 . (26)

In particular, for the Schwarzschild geometry with f = (1 − 2m
r

), we have

Θ|r=rH
= 0, σAB|r=rH

= 0, κ|r=rH
= 1

4m
. (27)

We aim to generalize the static geometry as much as possible, if we restate the transport
coefficients of generic static black holes, we can classify them by choosing the metric function
f(r). Observe that the surface gravity κ, energy density ρ, pressure P , and null expansion
Θ will change for different choices of f . However, η, σAB, ζ will be a classification for
spherical horizons and will be intact for spherical horizons; in particular, the value of the
bulk viscosity is negative showing that we are dealing with an unstable fluid.

B. Doubly modified Schwarzschild metric

Johannsen-Psaltis black hole is a parametrically deviated rotating black hole; before
we work out its membrane construction, we would like to give the nonrotating version.
This is because membrane paradigm analysis in the nonrotating limit ensures an easier
detection of the transport coefficients, especially pressure according to truncation to the
correct static limit. By taking the zero angular momentum limit to the JP black hole at
hand we should be able to fix ζ = − 1

16π
condition [22]. This also implies that the nonrotating

limit of the Johannsen-Psaltis black hole should have the same surface gravity as its doubly
modified Schwarzschild counterpart. Now, we will present the doubly modified Schwarzschild
metric, we show that equality at the level of surface gravity brings another constraint on
the deformation function and relates ϵ3 ≃ α. First, let us introduce the metric and find its
transport coefficients:

ds2 = −F h dt2 + h

F g
dr2 + r2 h (dθ2 + sin θ2dϕ), (28)

where

F (r) = f(r)
g(r) , h(r) = 1 + m3ϵ3

r3 , f(r) = 1 − 2m

r
, g(r) = 1 + m3α

r3 ,

where we have a Schwarzschild-like causal structure with two seemingly distinct additional
hairs, i.e., ϵ3 and α. In the older version of the JP metric [9], one can see that the cor-
rections to the Kerr metric were realized by applying the Newman-Janis algorithm to the
modified Schwarzschild metric. Through this algorithm, the new hair is also complexified
and naturally adapted to the Kerr-like metric. However, the metric in [10], the Johannsen
metric, is already in Klein-Gordon separable form and the deformations only depend on
radial coordinate r. This gives one the freedom to choose those new deformations in such
a way that the metric has the same event horizon radius as the Kerr black hole. Hence,
currently, its static counterpart has not been given in the literature. To be able to fix the
bulk viscosity as ζ = − 1

16π
, we choose its nonrotating limit to have the Schwarzschild radius.
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One can realize that this metric has a similar causal structure as the Schwarzschild metric
with the horizon at rH = 2m as in the case of its rotating part has rH = m2 +

√
m2 − a2.

Now, we can turn the paradigm’s machinery on and find its dual fluid correspondence.
Firstly, one can directly choose its spacelike normal vector as nµ =

{
0,
√

h
gF

, 0, 0
}
. Then the

Parikh-Wilczek type decomposition reads as

uµdxµ =
√

Fhdt, nµdxµ =
√

h

gF
dr, (29)

and the 2D cross section of the black hole metric is

γµνdxµdxν = h r2dΩ2
2. (30)

The acceleration aν = nµ∇µnν vanishes

aν = nµ
(
∂µnν − Γγ

µνnγ

)
=
√

h

gF
δµ

r

(
∂µ

(√
h

gF
δr

ν

)
− Γγ

µν

(√
h

gF
δr

γ

))
= 0.

This means momentum and the shear on the horizon are trivial which is expected for a
static spacetime.

Ktt = −h∂rF + F∂rh

2
√

h
gF

, Krr = 0,

Kθθ = r (r∂rh + 2h)
2
√

h
gF

, Kϕϕ = r sin2 θ (r∂rh + 2h)
2
√

h
gF

. (31)

which reads as

Kµν =
√

g

Fh

((
F ∂rh

2h
+ F

r

)
γµν −

(
1
2∂rF − F∂rh

2h

)
uµuν

)
, (32)

of which the trace is

K =
√

gh

F

(rh∂rF + F (3r∂rh + 4h))
2rh2 . (33)

Then, the stretched horizon stress tensor (22) with σµν = 0 is

tstretched
µν = 1

8π

(
Fg

h

) 1
2
(

−
(

∂rh

h
+ 2

r

)
uµuν +

(
1
2

(
∂rh

h
+ 2

r

)
+ ∂rh

2h
+ 1

2
∂rF

F

)
γµν

)
.

Note that in the limit of no deformation, the stretched horizon stress tensor reduces to
Schwarzschild’s membrane stress tensor given as

tSchwarzschild
µν = 1

8π(F ) 1
2

(
−2F

r
uµuν +

(
F

r
+ 1

2∂rF
)

γµν

)
. (34)

By using the transport coefficients given in (24), we can proceed with the same analysis
while choosing the nullness condition as

1
N

=
√

1
Fh

, (35)
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while the expansion, the shear tensor, and the surface gravity become

Θ = √
gF

(
∂rh

h
+ 2

r

)
, σAB = 0, κ = √

gF
∂rh

2h
+ 1

2
√

g∂rF. (36)

The stretched horizon is affected by deformations. The surface gravity as a function of r
becomes

κ = αm3r3(3r − 4m) + m3ϵ3 (2αm4 + 8mr3 − 3r4) + 2mr6

2r2 (αm3 + r3)
√

αm3

r3 + 1 (m3ϵ3 + r3)
, (37)

which at the event horizon reads as

κr=2m = 1
4m

√
α
8 + 1

, (38)

restricting the deformation parameter α as α > −8. On the other hand, the null expansion
coefficient

Θr=2m = (r − 2m) (m3ϵ3 + 4r3)
2r2

√
αm3

r3 + 1 (m3ϵ3 + r3)
= 0 (39)

vanishes at the horizon as expected.

C. The latest version of Johannsen-Psaltis spacetime

The black hole introduced in [9] suffers from a violation of the strong rigidity theorem,
and carries a chaotic geodesic equation [23]. Its event horizon equation is given by a quintic
equation that is not solvable by radicals. In [9], instead of the event horizon, the authors
studied the Killing horizon which is not the same thing when strong rigidity is violated.
These problems make it hard for us to study its transport coefficients in the limit of the true
horizon. In [24], the authors reconsidered the metric given in [10] and made some judicious
choices of the metric functions. The new metric in [24] violates the strong rigidity; however,
it obeys the rotosurface theorem and the weak rigidity theorem that allow one to analyze
the black hole angular momentum and surface gravity while equating the event horizon to
the Killing horizon. In the latest work [25], the authors considered the form suggested in
[10]. This will be the metric we shall study here given in local coordinates as

ds2 = −SB
F

dt2 − 2a
Σ̃C
F

sin2 θdtdϕ + Σ̃
∆Z

dr2 + Σ̃dθ2 + Σ̃D sin2 θ

F
dϕ2, (40)

where

B = ∆ − a2B2 sin2 θ, C = (r2 + a2)AB − ∆,

D = (r2 + a2)2A2 − a2∆ sin2 θ, F =
(
(r2 + a2)A − B sin2 θ

)2
. (41)

While choosing the metric functions as

Ft =

√
S (∆ − a2B2 sin2 θ)

((a2 + r2) A − a2B sin2 θ) , Fϕ =

√
sin2 θS

(
(a2 + r2)2 A2 − a2 sin2 θ∆

)
((a2 + r2) A − a2B sin2 θ) ,

Fr =
√

S

∆Z
, ω = a sin2 θS (∆ − (a2 + r2) AB)

((a2 + r2) A − a2B sin2 θ)
√

S (∆ − a2B2 sin2 θ)
, (42)
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and functions

Σ = r2 + a2 cos2 θ, S(r, θ) = Σ +
∞∑

n=3
ϵn

(
mn

rn−2

)
, ∆ = r2 + a2 − 2mr,

A = 1 +
∞∑

n=3
αn

(
m

r

)n

, B = 1 +
∞∑

n=2
bn

(
m

r

)n

, Z = 1 +
∞∑

n=2
zn

(
m

r

)n

,

the metric deformations are kept dimensionless and for weak field tests, one needs to set
ϵ2 = α2 = 0. This form of the metric is asymptotically flat, reproduces the Newtonian
effects in the limit and satisfies the PPN constraints. We will consider only the lowest-order
deformation of the metric, not the whole summation of the deformation parameters. One
can clearly understand that the main difference between this metric and the metric in [9]
is that it has more hair introduced via deformations; however, it still has the Kerr event
radius, that is, grr|rH

= 0 with rH = m +
√

m2 + a2. In our analysis, we should consider
three different aspects:

1. We will fix the bulk viscosity of the rotating solution to be the same as the nonrotating
one, i.e., ζ = − 1

16π
.

2. All the transport coefficients of the modified black hole should reduce to those of the
Kerr black hole in the no deformation limit.

3. We should check the finiteness of the transport coefficients for all deformation param-
eters.

Using the metric functions, the generic metric can be recast as

ds2 = −F 2
t dt2 − 2ωFtdtdϕ + F 2

ϕdϕ2 + F 2
r dr2 + Σdθ2, (43)

or it can be written as [26]

ds2 = −(Ftdt2 + ωdϕ)2 + F 2
r dr2 + Σdθ2 + (F 2

ϕ + ω)dϕ2. (44)

Now, we should decompose this metric in the (2 + 1 + 1) form:

ds2 =
(
−uµuν + nµnν + γABeA

µeB
ν

)
dxµdxν . (45)

Let uµdxµ = Ftdt + ωdϕ, nµdxµ = Frdr. The structure of this metric can be put in the form
of (43) such that one can directly start to calculate the factors relevant to the membrane
description. The results for the relevant expressions are cumbersome; therefore we delegate
these to the Appendix; here, we only give the pressure in the relevant limits. The pressure
generically is of the form P (r, θ; α, z, b, a, ϵ3); and in the limit z → 0 and a → 0, it reduces
to

P|z→0,a→0 = 2mr4 (αm2(3r − 5m) + r3) + m3rϵ3 (−4αm4 + 3αm3r + 8mr3 − 3r4)
16π (αm3 + r3) (m3ϵ3 + r3) 2 ,

which at the Schwarzschild horizon, becomes

P|r→2m = 1
4m

1(
1 + ϵ3

8

) . (46)
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So, this is the pressure obtained in the nonrotating limit of the JP metric: it depends on the
deformation parameter ϵ3. On the other hand, in (38) we obtained an apparently different
value for the surface gravity when we directly did the calculation in the static black hole
metric. Therefore, ostensibly the no-rotation case and the limit of no rotation seem to yield
different results. This is not acceptable; hence, we should identify these two relations, which
necessarily fix one of the deformation parameters in terms of the other as

κnonrotating
!= κdoubly modified =⇒ 1

4m
(

ϵ3
8 + 1

) = 1
4m

√√√√ 1
α
8 + 1 ,

ϵ3 = 8
(√

1 + α

8 − 1
)

, α > −8. (47)

This identification also allows us to fix the value of the bulk viscosity to be ζ = − 1
16π

, in the
static limit of the JP black hole, while the shear viscosity is η = 1

16π
and uniquely solve the

transport coefficients for this case [22]. There are three things to note here: First, the two
additional hairs α and ϵ3 are not independent; Second, the effective membrane description
is valid only for the region ϵ3 > −8. It is interesting to note that the critical point ϵ3 = −8
was found before in a completely different context [9]. Finally the ratio ζ

η
= −1 ≤ 2

3 is
consistent with the bound computed from the AdS/CFT correspondence [27].

In Fig. 1, pressure versus the radial coordinate is plotted for all r for the JP black hole.
There is a discontinuity at the location of the ergosphere, and the pressure vanishes at the
inner and outer horizons while diverging at the central singularity. It also asymptotically
vanishes as r → ∞. To compare we have also plotted as in Fig. 2 the pressure of the fluid
for the Kerr black hole (see [22] where this plot was first given). The JP black hole and the
Kerr black hole have similar P vs r graphs: The main difference is the sign of the pressure
at the central singularity. In Fig. 3, we plotted the P vs r graph for the doubly modified
Schwarzschild black hole. It is similar to the ordinary Schwarzschild case.

Now, let us check the transport coefficient that carries the energy flux into the null
surface, i.e., the null expansion Θ. When the metric coefficients are plugged in one has:

Θ =

(
m2z
r2 + 1

)
I(r, θ)

(
2a2 (bm2 + r2) (2a2bm2 + bm2r(3r − 5m) + r3(r − m)) (a2 cos2 θ + r2)

a2r (bm2 + r2)2 − r5 csc2 θ (a2 + r(r − 2m))

+ (a2 + r(r − 2m)) (2r3 − m3ϵ3) (a2 cos2 θ + r2)
r (a2r cos2 θ + m3ϵ3 + r3) + 2r

(
a2 + r(r − 2m)

))
, (48)

where I(r, θ) = 2 (a2 cos2 θ + r2)2 and we have also included the z-deformation dependence.
On the equatorial plane, in the nonrotating limit one gets

Θθ→ π
2 ,a→0 = 1

2r4

(
m2z

r2 + 1
)(

r2(r − 2m) (2r3 − m3ϵ3)
m3ϵ3 + r3 + 2r2(r − 2m)

)
, (49)

where we now can insert (47) to the null expansion while setting the deformation parameter
z = 0:

Θθ→ π
2 ,a→0 =

(
1 − 2m

r

)


r3 −

 1
1
4

√
1

α
8 +1

− 4
m3

2
 1

1
4

√
1

α
8 +1

− 4
m3 + r3

+ 1

 . (50)
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Figure 1. First a caution about this and the other figures; strictly speaking the membrane does not
extend inside of the horizon. But it is remarkable to see that analytically continuing the pressure
to the inside of the horizon, the fluid manages to capture the important surfaces of the black
hole. For this reason, we plotted the pressure versus the radial coordinate over the whole range
up to the central singularity. This figure represents the scaled pressure as a function of the radial
coordinate r for the choices α = 1, m = 1, b = 0, a = 0.75, ϵ3 → 6

√
2 − 8. For these choices the

Kerr horizon radii read as rHouter = 1.66 while rHinner = 0.33. One can see that at the ergosphere
radius at the equator, rergosphere = 2, there is a discontinuity in the pressure. One observes that
the pressure diverges positively at the central singularity, discontinuous at the ergosphere radius
at the equatorial plane, and asymptotically zero at infinity while vanishing at both the inner and
outer event horizons.

We can check the vanishing deformation limit and limit at the critical deformation param-
eter,

Θ|α=0 = 2
(

1 − 2m

r

)
, (51)

Θ|α=−8 = 2 (r3 − 2m3)
r (4m2 + 2mr + r2) . (52)

Equation (51) is the exact behavior found for the Schwarzschild black hole [22].

IV. CONCLUSIONS AND DISCUSSIONS

Using the Parikh-Wilczek [15] action formulation, we developed a membrane description
of the Johannsen-Psaltis black hole, which is a phenomenologically viable deformation of the
Kerr metric that is amenable to test the Kerr hypothesis along with the no-hair theorem.
As alluded to in the Introduction, a membrane is an effective description of a black hole as it
appears to an outside observer. As such, it replaces the teleological concept of the black hole
event horizon (a null hypersurface), which is not possible to probe by transient observers like
us with a timelike fluid. The definition of the membrane is such that one might wonder if one
is bartering the teleological event horizon with a tautological membrane that impersonates
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Figure 2. This figure represents the Kerr black hole’s dual fluid pressure versus radial coordinate
r, for the choice m = 1, a = 0.75, the Kerr radius rHouter = 1.66 while rHinner = 0.33. One can
see that at the ergosphere radius on the equator, there is a discontinuity at rergosphere = 2. The
pressure diverges negatively at the central singularity, discontinuous at the ergosphere radius at
the equatorial plane, and is asymptotically zero at infinity while vanishing at both the inner and
outer event horizons.

Figure 3. This figure represents pressure values of the doubly modified Schwarzschild black hole
scaled with 8π when we choose m = 1, a = 0, α = 1, the Schwarzschild radius at rH = 2. As we
expected, the function is monotonically decreasing as r gets larger reaching zero at asymptotic
infinity, while positively diverging at the central singularity.

the black hole. This is not the case, but if it were the case, it would still not be so terrible
because the membrane is local in time and has proved to provide an intuitive understanding
of complicated phenomena such as the relativistic jet production by rotating black holes
and their accretion disk. In this work, we have not studied the jet-production mechanism
through the membrane paradigm, but the fact that one can construct a membrane for the
JP metric for some deformation parameters is useful. Moreover, seemingly independent



14

deformation parameters must be related for the membrane paradigm to work. We have
ruled out some deformation parameters of the JP metric via the membrane paradigm. We
have also shown that the ratio of the bulk viscosity to shear viscosity remains within the
bounds predicted by the AdS/CFT dictionary.

As we have seen here the membrane can accommodate extra hairs yet constrain the values
of these hairs. Our main task was to understand if a complicated metric such as the JP
metric can fit into the membrane description, and we have seen that this is possible. If
we analytically continue the pressure as a function of the radial coordinate r, we observe
several interesting behaviors: At the location of the ergosphere on the equator, the pressure
diverges just like the pressure of a Van der Waals gas diverges at the volume of the molecule.
Therefore, the fluid is aware of the size of the ergoregion of the black hole. This might have
interesting applications in astrophysical black holes. For example, in [28], it was shown
that the Blandford-Znajek [29] that explains the relativistic jet production of rotating black
holes with accretion discs is related to the ergosphere of the black hole and not to the event
horizon. If the jet production is to be explained by the membrane paradigm it is clear that
our construction above lends support to the computations of [28].
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VI. APPENDIX: DETAILS OF CALCULATIONS FOR THE CONSTRUCTION
OF THE MEMBRANE

The components of the extrinsic curvature of the metric (45) are found to be

Ktt = − −2S

W (r, θ)
( (

∆ − a2B2 sin2 θ
) ((

a2 + r2
)

∂rA − a2 sin2 θ∂rB + 2rA
)

+ ∂rS
((

a2 + r2
)

A − a2B sin2 θ
) (

∆ − a2B2 sin2 θ
)

+ S
((

a2 + r2
)

A − a2B sin2 θ
) (

∂r∆ − 2a2B sin2 θ∂rB
) )

, (53)

Ktϕ = Kϕt = 1
W (r, θ)((a sin2 θ(A(S((a2 + r2)B(a2 sin2 θ∂rB − (a2 + r2)∂rA)

− 2a2rB2 sin2 θ − (a2 + r2)∂r∆ + 4r∆) − (a2 + r2)∂rS(a2B2 sin2 θ + ∆)) (54)
+ 2∆S((a2 + r2)∂rA − a2 sin2 θ∂rB) + (a2 + r2)A2(S((a2 + r2)∂rB − 2rB)
+ (a2 + r2)B∂rS) − a2(a2 + r2)B2 sin2 θS∂rA + a2B sin2 θ(∆∂rS + S∂r∆)))),

Kθθ = ∂rS

2
√

S
∆Z

, Kϕϕ = 1
E(r, θ)

(
sin2 θS

((
a2 + r2

)2
A2 − a2 sin2 θ∆

))
, Krr = 0, (55)



15

where we introduced the following functions:

W (r, θ) = 2
√

S

∆Z

((
a2 + r2

)
A − a2B sin2 θ

)3
,

E(r, θ) = 2
√

S

∆Z

((
a2 + r2

)
A − a2B sin2 θ

)2
. (56)

The trace of the extrinsic curvature is given as

K = 1
R(r, θ)

(
3∆∂rS

((
a2 + r2

)
A − a2B sin2 θ

)
+ S

(
∂r∆

((
a2 + r2

)
A − a2B sin2 θ

)
− 2∆

((
a2 + r2

)
∂rA − a2 sin2 θ∂rB + 2rA

) ))
, (57)

where

R(r, θ) = 2∆S
((

a2 + r2
)

A − a2B sin2 θ
)√a2 cos2 θ + r2

∆Z
. (58)

Following the construction of a generic Kerr-like membrane paradigm algorithm, one can
find the other transport coefficients. For instance, the nonzero components of the shear
tensor turn out to be

σθθ = a2BZ (2∆∂rB − B∂r∆)
4a2B2 − 4 csc2 θ∆ , σϕϕ = −a2B∆Z (B∂r∆ − 2∆∂rB)

4 (a2B2 − csc2 θ∆)2 , (59)

and the nonzero component of the momentum becomes

πϕ = −a
∣∣(a2 + r2)A − a2B sin2 θ

∣∣
D(r, θ)

(
−
(
a2 + r2

)2
A2
(

B∆∂rZ
(
a2B2 sin2 θ − ∆

)
+ Z

(
a2B3 sin2 θ∂r∆ − 2∆2∂rB

))
+ A

(
∆
(

− 2a2
(
a2 + r2

)
B sin2 θZ∂rB

(
a2B2 sin2 θ + ∆

)
+ 4rZ

(
∆ − a2B2 sin2 θ

)2
+
(
a2 + r2

)
∂rZ

(
a4B4 sin4 θ − ∆2

))
(60)

+
(
a2 + r2

)
Z∂r∆

(
a4B4 sin4 θ + 3a2B2 sin2 θ∆ − 2∆2

))
+ ∆

(
− a4B3 sin4 θ (∆∂rZ + 3Z∂r∆) + 4a2B2 sin2 θ∆Z

(
a2 sin2 θ∂rB −

(
a2 + r2

)
∂rA

)
+ 2∆2Z

((
a2 + r2

)
∂rA − a2 sin2 θ∂rB

)
+ a2B sin2 θ∆ (∆∂rZ + 2Z∂r∆)

+ 2a4
(
a2 + r2

)
B4 sin4 θZ∂rA

))
,

where D(r, θ) = 32π∆2Z
√

S
∆Z

((a2 + r2) A − a2B sin2 θ)3
√

S (∆ − a2B2 sin2 θ).
The null-expansion is

Θ = Z

2S2

(
a2BS (B∂r∆ − 2∆∂rB)

a2B2 − csc2 θ∆ + 2∆∂rS

)
, (61)

The pressure reads as follows:

P = ∆Z

16πS2

(
− 2S ((a2 + r2) ∂rA − a2 sin2 θ∂rB + 2rA)

(a2 + r2) A − a2B sin2 θ

+ S (∂r∆ − 2a2B sin2 θ∂rB)
∆ − a2B2 sin2 θ

+ ∂rS

)
. (62)
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When the metric coefficients are plugged to (62) it becomes

P = 1
R(r, θ)

((
a2 + r(r − 2m)

)(m2z

r2 + 1
)(

1
Y (r, θ)

(
4a2bm2 sin2 θ (bm2 + r2)

r5

− 2m + 2r

)
×
(

a2 cos2 θ + m3ϵ3

r
+ r2

)
− 2

U(r, θ)

(
a2r cos2 θ + m3ϵ3 + r3

)

×
(

2a2bm2r sin2 θ − αm3
(
3a2 + r2

)
+ 2r5

)
− m3ϵ3

r2 + 2r

))
, (63)

where

R(r, θ) = 16π

(
a2 cos2 θ + m3ϵ3

r
+ r2

)2

,

Y (r, θ) = a2 sin2 θ

−
(

bm2

r2 + 1
)2
+ a2 + r(r − 2m), (64)

U(r, θ) = r2
((

a2 + r2
) (

αm3 + r3
)

− a2r sin2 θ
(
bm2 + r2

))
.
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