
1

Protecting the Future of Information: LOCO Coding
With Error Detection for DNA Data Storage

Canberk İrimağzı, Yusuf Uslan, and Ahmed Hareedy, Member, IEEE

Abstract—From the information-theoretic perspective, DNA
strands serve as a storage medium for 4-ary data over the
alphabet {A, T,G,C}. DNA data storage promises formidable
information density, long-term durability, and ease of replicabil-
ity. However, information in this intriguing storage technology
might be corrupted because of error-prone data sequences as
well as insertion, deletion, and substitution errors. Experiments
have revealed that DNA sequences with long homopolymers
and/or with low GC-content are notably more subject to errors
upon storage. In order to address this biochemical challenge,
constrained codes are proposed for usage in DNA data storage
systems, and they are studied in the literature accordingly.

This paper investigates the utilization of the recently-
introduced method for designing lexicographically-ordered con-
strained (LOCO) codes in DNA data storage to improve perfor-
mance. LOCO codes offer capacity-achievability, low complexity,
and ease of reconfigurability. This paper introduces novel con-
strained codes, namely DNA LOCO (D-LOCO) codes, over the
alphabet {A, T,G,C} with limited runs of identical symbols. Due
to their ordered structure, these codes come with an encoding-
decoding rule we derive, which provides simple and affordable
encoding-decoding algorithms. In terms of storage overhead,
the proposed encoding-decoding algorithms outperform those in
the existing literature. Our algorithms are based on small-size
adders, and therefore they are readily reconfigurable. D-LOCO
codes are intrinsically balanced, which allows us to achieve
balanced AT - and GC-content over the entire DNA strand with
minimal rate penalty. Moreover, we propose four schemes to
bridge consecutive codewords, three of which guarantee single
substitution error detection per codeword. We examine the
probability of undetecting errors over a presumed symmetric
DNA storage channel subject to substitution errors only. We also
show that D-LOCO codes are capacity-achieving and that they
offer remarkably high rates even at moderate lengths.

Index Terms—Constrained codes, low-complexity algorithms,
reconfigurable coding, LOCO codes, homopolymer run, balanc-
ing, error-detection, DNA data storage.

I. INTRODUCTION

In the current information age, DNA data storage is the
next-generation technology offered to accommodate the needs
of storing mass cold data [1]. Due to its remarkable advantage
in terms of information density, durability, and ease of repli-
cability over current commercial storage technologies, a pool
of synthetic DNA is proposed as a potential medium to store
data for archival purposes. Coding and data processing are
essential for such emerging technology in order to prevent and

This work was supported in part by the TÜBİTAK 2232-B International
Fellowship for Early Stage Researchers.

Canberk İrimağzı is with the Institute of Applied Mathematics, Middle
East Technical University (METU), 06800 Ankara, Turkey (e-mail: can-
berk.irimagzi@metu.edu.tr).

Yusuf Uslan and Ahmed Hareedy are with the Department of Electrical and
Electronics Engineering, Middle East Technical University, 06800 Ankara,
Turkey (e-mail: yusuf.uslan@metu.edu.tr; ahareedy@metu.edu.tr).

correct errors resulting from biochemical effects. To achieve
high reliability of DNA strands for a long period of time,
sequences with (i) limited runs of identical symbols and (ii)
balanced percentage of A-T and G-C nucleotides are required
to be generated for synthesis, i.e., for writing [1], [2].

Constrained codes are a class of nonlinear codes that elim-
inate a chosen set of forbidden patterns from codewords.
The use of constrained codes forbidding error-prone patterns
in accordance with channel requirements improves system
performance, and thus they have a profusion of applications.
Historically, in his seminal work of 1948 [3], Shannon showed
how to represent an infinite sequence that forbids certain data
patterns through a finite-state transition diagram (FSTD) and
defined the capacity, i.e., the highest achievable rate. In 1970,
Tang and Bahl [4] as well as Franaszek [5] introduced an
important class of constrained codes called run-length-limited
(RLL) codes. A (d, k) sequence, or an RLL sequence, is a
binary sequence with the constraint that at least d and at most
k zeros must separate consecutive ones (see Remark 10 in
the Appendix for the relation between the binary version of
D-LOCO codes and (0, k) RLL codes). Since the works [4]
and [5], advances in graph theory, numerical matrix theory,
and symbolic dynamics remarkably benefited the analysis and
design of constrained codes, especially those that are based on
finite-state machines [6].

The data storage evolution has always been associated with
advances in coding and signal processing. Here, we focus
on the value constrained coding has been bringing to various
data storage systems. In one-dimensional magnetic recording
(MR) systems, constrained codes enabled remarkable density
increases in early generations of MR devices that are based
on peak detection [7], and they are still used to improve
performance in MR systems adopting sequence detection
[8]. By forbidding detrimental two-dimensional isolation pat-
terns, constrained codes mitigate interference in modern two-
dimensional MR systems [9]–[11]. As for solid-state storage
systems, constrained codes are used to protect Flash memories
from the effect of inter-cell interference resulting from charge
propagation [12]–[15]. Constrained codes find application in
other storage systems such as optical recording devices [16]
and DNA data storage systems [17], [18], which are the
topic of this paper. The spectral analysis of constrained codes
characterizes desirable properties, such as balancing, in the
system of interest [16], [19].

The design of constrained codes by adopting lexicographic
indexing, also called enumerative coding, has started with the
work of Tang and Bahl [4] as well as that of Cover [20],
and it has been intermittently revisited in history [21]–[23].
Recently, Hareedy, Dabak, and Calderbank [24], following

ar
X

iv
:2

31
1.

08
32

5v
2 

 [
cs

.I
T

] 
 1

0 
M

ay
 2

02
4



2

the works [25], [26] by Hareedy and Calderbank, introduced
a novel technique in the field of constrained coding based
on lexicographic indexing. They presented a general method
for designing what are now called lexicographically-ordered
constrained (LOCO) codes in a systematic manner for any fi-
nite set of forbidden patterns. They provided simple formulae,
namely encoding-decoding rules, for the index of a codeword
in terms of the codeword symbols and the cardinalities of
LOCO codes having smaller lengths. In this paper, we follow
this step-by-step outline to design constrained codes for DNA
data storage with affordable encoding-decoding algorithms in
accordance with channel requirements.

LOCO codes are constrained codes having codebooks
equipped with lexicographic ordering, and thus they naturally
come with unique encoding-decoding algorithms that are
based on a rule executed by small-size adders. Therefore,
LOCO codes do not require any look-up tables. D-LOCO
codes, which are LOCO codes defined over the alphabet
{A, T,G,C} that eliminate long runs of identical symbols
and achieve AT - and GC-content balance, are proposed here
as capacity-achieving LOCO codes for DNA storage systems.
Note that the “D” in “D-LOCO” is simply for “DNA”.

A. Some Related Works

Immink and Cai [27], [28] studied constrained coding
schemes that address GC-content balance and homopolymer
run-length constraints based on look-up tables. Song et al.
[29] provided a high-rate coding scheme that produces DNA
sequences with homopolymers of length at most 3 and whose
GC-content is probabilistically proved (and empirically veri-
fied) to be close to 0.5 as a fraction. Moreover, they provided
a low-complexity encoding-decoding algorithm that is also
based on look-up tables. Improving the result in [29], Wang
et al. [30] offered an efficient coding scheme, a product of
which is a constrained code with normalized rate 0.9585 that
eliminates homopolymers of length at least 4 and that has a
guaranteed 40%−60% GC-content based on look-up tables.1

Using a sequence replacement technique, Nguyen et al.
[31] proposed low-complexity encoders that convert binary
sequences into 4-ary sequences of limited run-length ℓ and
GC-content in [0.5 − ϵ, 0.5 + ϵ], where ϵ is adaptable,
which enable correcting a single insertion, single deletion,
or single substitution error. For example, for ℓ = 4 and
40% − 60% GC-content, such DNA sequences of length
n = 100 symbols offer normalized code rate 0.91 with
no error-correction. In [32], Nguyen et al. presented non-
binary Varshamov-Tenengolts (VT) codes that are capable of
correcting a single deletion or a single insertion with linear
time encoding-decoding algorithms. For more error-correction
coding schemes with efficient decoding algorithms for DNA
data storage, see [33]–[35].

Park et al. [36] proposed an iterative decoding algorithm
based on a mapping table for a constrained code that ad-
dresses the GC-content and the maximum homopolymer
length requirements. Their method achieves normalized code

1We adopt normalized rates throughout this paper, where the actual DNA
code rates are divided by 2, since they immediately give the fraction of non-
redundant information.

rate 0.9165 and 45% − 55% GC-content range, and their
iterative encoding algorithm has a mapping table with 48 3-
tuple 4-ary entries as a building block. Liu et al. [37] proposed
a constrained coding scheme that achieves a GC-content in
[0.5 − ϵ, 0.5 + ϵ] and eliminates homopolymers of length
larger than ℓ, and whose encoding-decoding algorithms have
polynomial execution time and storage overhead. They also
offered a coding scheme that satisfies a local GC-content
constraint in order to further improve immunity against errors.

B. Our Contribution and Organization of the Paper
Our main result is designing the new D-LOCO codes for

DNA data storage with low-complexity encoding-decoding
algorithms and with desirable properties such as

– capacity-achievability,
– reconfigurability,
– low error propagation,
– parallelism,
– substitution error detection, and
– local GC-content balance.
In particular, we devise the general D-LOCO encoding-

decoding rule, which is given in Theorem 2 in Subsec-
tion III-B, after we discuss an interesting special case in
Theorem 1 in Subsection III-A. Theorem 2 provides a one-to-
one mapping from an index set to the D-LOCO code, which
is the encoding, and a one-to-one demapping from the D-
LOCO code to the index set, which is the decoding. The
encoding-decoding rule we obtain provides us with simple,
low-complexity encoding-decoding algorithms (see Section V
for algorithms). In fact, the storage overhead of our encoding-
decoding algorithms turns out to be drastically low compared
with those given in the literature (see Subsection VII-B). With
this idea of encoding-decoding, one just needs a simple adder
that converts an index (binary message) to a codeword and vice
versa. This provides the pivotal advantage of reconfigurability
of the code, which is as easy as reprogramming an adder via
a set of multiplexers. This ease of reconfigurability allows
one to adopt different coding schemes in accordance with the
requirement of the DNA data storage system at different stages
of its lifetime (see Subsection VII-C).

We also offer systematic approaches for balancing and
bridging. Our approach for balancing incurs a minimal rate
penalty that vanishes as the code length increases, which
means it is capacity-achievable. This balancing approach guar-
antees not only global GC-content balance, but also local
GC-content balance since it picks each codeword from two
possible options according to the running AT −GC disparity.
Furthermore, we suggest various bridging schemes that enable
error detection, which enhances system reliability.

In Section II, we introduce D-LOCO codes and study
their cardinality. In Section III, we derive a simple encoding-
decoding rule for D-LOCO codes forbidding runs of length
higher than 3 (Theorem 1) and then generalize this result to
D-LOCO codes forbidding runs of length higher than any fixed
value ℓ (Theorem 2). In Section IV, we propose four bridging
schemes, three of which guarantee single substitution error
detection. Assuming a (1− p, p/3, p/3, p/3)-symmetric DNA
storage channel with substitution error rate p, a careful analysis



3

of the probability of no-detection in the occurrence of multiple
substitution errors is presented. In Section V, we provide the
encoding-decoding algorithms and discuss how to balance the
DNA sequence in order to achieve close percentage of A-
T and G-C nucleotides overall. In Section VI, we compare
code rates at finite lengths when different bridging schemes
are applied, and we show that D-LOCO codes are capacity-
achieving. We conclude the paper with the complexity of
encoding-decoding algorithms and other desirable properties
of our proposed coding scheme.

II. DEFINITION AND CARDINALITY

In this section, we introduce D-LOCO codes and study their
cardinality.

Definition 1. ([24, Definition 1]) For integers ℓ ≥ 1, the D-
LOCO code Dm,ℓ is defined as the set of all codewords of
length m defined over the alphabet {A, T,G,C} that do not
contain any pattern in F = {Λℓ+1 |Λ ∈ {A, T,C,G}}. Here,
Λℓ+1 is the sequence of length ℓ+1 all of whose symbols are
Λ, and such a sequence Λℓ+1 is simply called a run of length
ℓ+ 1.

Elements of Dm,ℓ are also called F-constrained sequences
of length m, and they are ordered lexicographically.

Codewords in Dm,ℓ are ordered in an ascending manner by
following the rule A < T < G < C for any symbol, and
the symbol significance reduces from left to right. For more
illustration, consider the two arbitrary codewords c and c′ in
Dm,ℓ. We say c < c′ if and only if for the first symbol position
the two codewords differ at, c has a “less” symbol than that
of c′. This is how we define lexicographic ordering.

Notation 1. The cardinality, i.e., codebook size, of the D-
LOCO code Dm,ℓ is denoted by ND(m, ℓ). However and for
the ease of notation, we denote this cardinality by N(m)
whenever the context clarifies ℓ.

Example 1. Dm,m−1 is the set of all non-constant se-
quences of length m over the alphabet {A, T,G,C}, and
thus ND(m,m− 1) = 4m − 4; whereas Dm,1 consists of all
sequences of length m whose consecutive terms are distinct,
which means ND(m, 1) = 4 · 3m−1. Throughout the paper,
Dm,3 will be of special interest to us based on the literature
on the topic (see Subsection III-A) [29], [36].

The D-LOCO code Dm,ℓ is partitioned into 4 groups,
consisting of total 4ℓ subgroups, based on the set F of
forbidden patterns. In particular, for 1 ≤ k ≤ ℓ, we have
the following subgroups:

Subgroup A(k): Codewords starting with AkΛ, where
Λ ∈ {T,G,C} from the left,

Subgroup T(k): Codewords starting with TkΛ, where
Λ ∈ {A,G,C} from the left,

Subgroup G(k): Codewords starting with GkΛ, where
Λ ∈ {A, T,C} from the left, and

Subgroup C(k): Codewords starting with CkΛ, where
Λ ∈ {A, T,G} from the left.

This partition of the D-LOCO code Dm,ℓ is essential in
both deriving its cardinality and the encoding-decoding rule.
Let us first derive the cardinality N(m) of Dm,ℓ as a linear

combination of cardinalities of D-LOCO codes with lengths
smaller than m using the group structure above.

We now introduce three notations and illustrate their rela-
tions to each other below.

Notation 2. For 1 ≤ k ≤ ℓ and ℓ < m, let
1. NΛ1,Λ2,k(m) denote the cardinality of the set of

codewords in Dm,ℓ starting with Λ1
kΛ2, for Λ2 ∈

{A, T,G,C} \ {Λ1}, and let
2. NΛ1,k(m) denote the number of codewords c =

cm−1cm−2 . . . c1c0 in Dm,ℓ whose first k symbols from
the left are all Λ1 and cm−k−1 ̸= Λ1.
Note that we have

NΛ1,k(m) =
∑

Λ2∈{A,T,G,C}\{Λ1}

NΛ1,Λ2,k(m), (1)

for 1 ≤ k ≤ ℓ. Moreover, let
3. NΛ1

(m) denote the number of codewords in Dm,ℓ with
cm−1 = Λ1. Then, we have

NΛ1(m) =

ℓ∑
k=1

NΛ1,k(m). (2)

Proposition 1. ([27, Equation 1]) The cardinality N(m) of
the D-LOCO code Dm,ℓ, where ℓ ≥ 1, satisfies the following
recursive relation for m ≥ ℓ:

N(m) = 3N(m− 1) + 3N(m− 2) + · · ·+ 3N(m− ℓ). (3)

For 0 ≤ m ≤ ℓ,

N(0) ≜
4

3
, and N(m) = 4m for 1 ≤ m ≤ ℓ.

Proof: We first consider the case of m > ℓ. Combining
(1) and (2) with the observation that

NΛ1,Λ2,k(m) = NΛ2(m− k), (4)

we obtain

NA(m)
(2)
=

ℓ∑
k=1

NA,k(m)

(1)
=

ℓ∑
k=1

[NA,T,k(m) +NA,G,k(m) +NA,C,k(m)]

=

ℓ∑
k=1

[NT (m− k) +NG(m− k)

+NC(m− k)]. (5)

Thus, for all Λ1 ∈ {A, T,G,C}, we have

NΛ1(m) =

ℓ∑
k=1

∑
Λ2∈{A,T,G,C}\{Λ1}

NΛ2(m− k). (6)

Adding these up over the 4-ary alphabet, we obtain

N(m) = NA(m) +NT (m) +NG(m) +NC(m)

= 3

ℓ∑
k=1

[NA(m− k) +NT (m− k)

+NG(m, k) +NC(m− k)]



4

= 3

ℓ∑
k=1

N(m− k), (7)

proving the relation (3) for m > ℓ. For 1 ≤ m ≤ ℓ, Dm,ℓ

is the set of all codewords in {A, T,G,C} of length m, and
thus N(m) = 4m. Moreover, the relation (3) holds in case
m = ℓ by setting N(0) = 4/3 to complete the summation
N(ℓ) = 3

∑ℓ−1
i=1 4

ℓ−i + 4 = 4ℓ.

III. D-LOCO ENCODING-DECODING RULE

A. Encoding-Decoding Rule for ℓ = 3

Now, we derive a formula that relates the lexicographic in-
dex of a D-LOCO codeword in the codebook to the codeword
symbols. We call this formula the encoding-decoding rule of
D-LOCO codes since it is the foundation of the D-LOCO
encoding and decoding algorithms illustrated by Examples 2,
3, and 4 below.

Below, we study the encoding-decoding rule:

g : Dm,ℓ → {0, 1, . . . , ND(m, ℓ)− 1}

that gives the index of any codeword in the codebook of Dm,ℓ

that is ordered lexicographically.
In order to find the index g(c) of a codeword c =

cm−1cm−2 . . . c1c0, we first study the contribution of each
symbol ci (for 0 ≤ i ≤ m − 1) to g(c). This contribution
is denoted by gi(ci), and we have

g(c) =

m−1∑
i=0

gi(ci). (8)

In [24], gi(ci) is formulated as follows:

gi(ci) =
∑
c′i<ci

Nsymb(m, cm−1cm−2 . . . ci+1c
′
i), (9)

where Nsymb(m, cm−1cm−2 . . . ci+1c
′
i) is the number of

all codewords in Dm,ℓ that start with the sequence
s = cm−1cm−2 . . . ci+1c

′
i from the left. We will

compute Nsymb(m, cm−1cm−2 . . . ci+1c
′
i) by counting the

codewords d = c′idi−1 . . . d1d0 in Di+1,ℓ such that
cm−1cm . . . ci+1c

′
idi−1 . . . d1d0 is a codeword in Dm,ℓ. For

ease of expression, cm−1cm . . . ci+1c
′
idi−1 . . . d1d0 will be

called the wedge of s and d, and the operation itself will
be called wedging.

Throughout the remaining part of this subsection, we set ℓ =
3. Here, NΛ(m) denotes the number of all codewords in Dm,3

whose first letter is Λ, and NΛ,k(m) (for 1 ≤ k ≤ 3) denotes
the number of all codewords c = cm−1cm−2 . . . c1c0 in Dm,3

whose first k letters are all Λ and cm−k−1 ̸= Λ. Note that
using (5) and the intrinsic symmetry of the code (NA,k(m) =
NT,k(m) = NG,k(m) = NC,k(m)), we have the relation

3N(m− k) = 4NΛ,k(m), for 1 ≤ k ≤ 3. (10)

Remark 1. For Theorems 1–3, we define ci ≜ ζ, for all i >
m− 1, to represent “out of codeword bounds” (see [24]).

Theorem 1. The encoding-decoding rule g : Dm,3 →
{0, 1, . . . , N(m)− 1} is as follows:

g(c) =
3

4

m−1∑
i=0

3∑
j=1

j∑
k=1

(ai,k + ti,k + gi,k)N(i+ j − 3), (11)

where N(0) ≜ 4/3, N(−1) ≜ 0, and N(−2) ≜ 0. Moreover,
for all Π > ∆ and for each ∆ ∈ {A, T,G},

δi,1 = 1 only if ci = Π and ci+1 ̸= ∆,

δi,2 = 1 only if ci+1ci = ∆Π and ci+2 ̸= ∆,

δi,3 = 1 only if ci+2ci+1ci = ∆∆Π and ci+3 ̸= ∆, (12)

and in all other cases, δi,k = 0 for i ∈ {0, 1, . . . ,m− 1} and
k ∈ {1, 2, 3}.
Here, Π > ∆ is according to the lexicographic ordering rule,
and δ stands for the small letter in {a, t, g} corresponding to
∆ in {A, T,G}.

Proof: We study the symbol contributions gi(ci) for each
symbol ci in the alphabet {A, T,G,C}:
Case 1: If ci = A, it is clear that gi(A) = 0.
Case 2: If ci = T , then

gi(T ) = Nsymb(m, cm−1cm−2 . . . ci+1A). (13)

Case 2(a): If ci+1 ̸= A, then s = cm−1cm−2 . . . ci+1A can
be wedged with any codeword in Di+1,3 which starts with A
from the left. In other words and using (10),

Nsymb(m, cm−1cm−2 . . . ci+1A)

= NA(i+ 1)

= NA,1(i+ 1) +NA,2(i+ 1) +NA,3(i+ 1)

=
3

4
[N(i) +N(i− 1) +N(i− 2)]. (14)

Case 2(b): If ci+1 = A but ci+2 ̸= A, then s =
cm−1cm−2 . . . ci+2AA can be wedged with any codeword in
Di+1,3 belonging to Subgroup A(1) or Subgroup A(2). Thus,

Nsymb(m, cm−1cm−2 . . . ci+2AA)

= NA,1(i+ 1) +NA,2(i+ 1)

=
3

4
[N(i) +N(i− 1)]. (15)

Case 2(c): If ci+1 = ci+2 = A but ci+3 ̸= A, then s =
cm−1cm−2 . . . ci+3AAA can be wedged with any codeword
in Di+1,3 belonging to Subgroup A(1), i.e.,

Nsymb(m, cm−1cm−2 . . . ci+3AAA)

= NA,1(i+ 1) =
3

4
N(i). (16)

Since these subcases are all disjoint, we simply have

gi(T ) = Nsymb(m, cm−1cm−2 . . . ci+1A)

=
3

4

[
(ai,1 + ai,2 + ai,3)N(i)

+ (ai,1 + ai,2)N(i− 1) + ai,1N(i− 2)

]
=

3

4

3∑
j=1

j∑
k=1

ai,kN(i+ j − 3). (17)

where N(0) ≜ 4/3, N(−1) ≜ 0, and N(−2) ≜ 0. Moreover,
ai,1 = 1 only if ci = T and ci+1 ̸= A,
ai,2 = 1 only if ci+1ci = AT and ci+2 ̸= A,
ai,3 = 1 only if ci+2ci+1ci = AAT and ci+3 ̸= A, and



5

ai,k = 0 otherwise.
Case 3: If ci = G, then

gi(G) = Nsymb(m, cm−1cm−2 . . . ci+1A)

+Nsymb(m, cm−1cm−2 . . . ci+1T ). (18)

We study the term Nsymb(m, cm−1cm−2 . . . ci+1T ) in various
cases below.
Case 3(a): If ci+1 ̸= T , then s = cm−1cm−2 . . . ci+1T can be
wedged with any codeword in Di+1,3 which starts with T . In
other words,

Nsymb(m, cm−1cm−2 . . . ci+1T )

= NT (i+ 1)

= NT,1(i+ 1) +NT,2(i+ 1) +NT,3(i+ 1)

=
3

4
[N(i) +N(i− 1) +N(i− 2)]. (19)

Case 3(b): If ci+1 = T but ci+2 ̸= T , then s =
cm−1cm−2 . . . ci+2TT can be wedged with any codeword in
Di+1,3 belonging to Subgroup T(1) or Subgroup T(2). Thus,

Nsymb(m, cm−1cm−2 . . . ci+2TT )

= NT,1(i+ 1) +NT,2(i+ 1)

=
3

4
[N(i) +N(i− 1)]. (20)

Case 3(c): If ci+1 = ci+2 = T but ci+3 ̸= T , then s =
cm−1cm−2 . . . ci+3TTT can be wedged with any codeword
in Di+1,3 belonging to Subgroup T(1), i.e.,

Nsymb(m, cm−1cm−2 . . . ci+3TTT )

= NT,1(i+ 1) =
3

4
N(i). (21)

Since these subcases are all disjoint, we simply have the
expression in (22), where N(0) ≜ 4/3. Moreover,
ai,1 = 1 only if ci = G and ci+1 ̸= A,
ai,2 = 1 only if ci+1ci = AG and ci+2 ̸= A,
ai,3 = 1 only if ci+2ci+1ci = AAG and ci+3 ̸= A, and
ai,k = 0 otherwise; in addition,
ti,1 = 1 only if ci = G and ci+1 ̸= T ,
ti,2 = 1 only if ci+1ci = TG and ci+2 ̸= T ,
ti,3 = 1 only if ci+2ci+1ci = TTG and ci+3 ̸= T , and
ti,k = 0 otherwise.
Case 4: One can similarly study the symbol con-
tribution gi(ci) for ci = C and find the number
Nsymb(m, cm−1cm−2 . . . ci+1G) of codewords in Dm,3 that
start with s = cm−1cm−2 . . . ci+1G as well to obtain gi(C).

Adding all gi(ci)’s up, we obtain the encoding-decoding
rule as given in the theorem statement.

Remark 2. Note that we have stated the encoding-decoding
rule in Theorem 1 such that it aligns with its generalizations
in the next section and in the Appendix. However, in our
examples, we will use it in the form (23) where δi,k’s are
as in the statement of Theorem 1. Observe that (11) emerges
directly from substituting (3) for N(i+ 1) in (23).

Example 2. Consider the encoding-decoding rule

g : D4,3 → {0, 1, . . . , 251},

where N(−2) ≜ 0, N(−1) ≜ 0, N(0) ≜ 4/3, N(1) = 4,
N(2) = 16, N(3) = 64, and N(4) = 44 − 4 = 252. We
discuss some instances and provide a detailed explanation for
the codeword ATGC:

• For the codeword c = AAAT ∈ D4,3, we have ai,k =
ti,k = gi,k = 0 for all i ∈ {0, 1, 2, 3} and k ∈ {1, 2, 3}.
Therefore,

g(AAAT ) = g0(T ) = 0.

• For the codeword c = ATAT ∈ D4,3, we have a2,2 =
a0,2 = 1 and all other variables are zero. Therefore,

g(ATAT ) = g2(T ) + g0(T )

=
1

4
(N(3)− 3N(0))

+
1

4
(N(1)− 3N(−2)) = 15 + 1 = 16.

• For the codeword c = ATGC ∈ D4,3, we have a2,2 =
a1,1 = t1,2 = a0,1 = t0,1 = g0,2 = 1 and all other
variables are zero. Note that by (23),
1. g3(A) = 0,
2. As c3c2 = AT and c4 = ζ, a2,2 = 1 so that

g2(T ) =
a2,2
4

(N(3)−N(0)),

3. As c2c1 = TG and c3 ̸= T , a1,1 = t1,2 = 1 so that

g1(G) =
a1,1
4
N(2) +

t1,2
4

(N(2)−N(−1)), and

4. As c1c0 = GC and c2 ̸= G, a0,1 = t0,1 = g0,2 = 1
so that

g0(C) =
a0,1 + t0,1

4
N(1) +

g0,2
4

(N(1)−N(−2)).

Therefore,

g(ATGC) =
1

4
(N(3)− 3N(0))

+
1

4
N(2) +

1

4
(N(2)− 3N(−1))

+
2

4
N(1) +

1

4
(N(1)− 3N(−2))

= 15 + 4 + 4 + 2 + 1 = 26.

• For the codeword c = GGGC ∈ D4,3, we have a3,1 =
t3,1 = a2,1 = t2,1 = a1,1 = t1,1 = a0,1 = t0,1 = 1 and
all other variables are zero. Therefore,

g(GGGC) =
2

4
N(4) +

2

4
N(3)

+
2

4
N(2) +

2

4
N(1) = 168.

• For the codeword c = CCCG ∈ D4,3, we have a3,1 =
t3,1 = g3,1 = a2,1 = t2,1 = g2,1 = a1,1 = t1,1 =
g1,1 = a0,1 = t0,1 = 1 and all other variables are zero.
Therefore,

g(CCCG) =
3

4
N(4) +

3

4
N(3) +

3

4
N(2) +

2

4
N(1)

= 189 + 48 + 12 + 2 = 251.



6

gi(G) = Nsymb(m, cm−1cm−2 . . . ci+1A) +Nsymb(m, cm−1cm−2 . . . ci+1T )

=
3

4

[
(ai,1 + ti,1 + ai,2 + ti,2 + ai,3 + ti,3)N(i)

+ (ai,1 + ti,1 + ai,2 + ti,2)N(i− 1) + (ai,1 + ti,1)N(i− 2)

]
=

3

4

3∑
j=1

j∑
k=1

(ai,k + ti,k)N(i+ j − 3). (22)

g(c) =

m−1∑
i=0

[
ai,1 + ti,1 + gi,1

4
N(i+ 1) +

ai,2 + ti,2 + gi,2
4

(N(i+ 1)− 3N(i− 2))

+
3(ai,3 + ti,3 + gi,3)

4
N(i)

]
. (23)

B. Encoding-Decoding Rule for General ℓ

Below, we study the symbol contributions of each symbol
for general ℓ ≥ 1, and we obtain a formula (in terms of
cardinalities N(i)) for the encoding-decoding rule g : Dm,ℓ →
{0, 1, . . . , N(m) − 1} that gives the index of codewords in
Dm,ℓ. Recall that NΛ(m) denotes the number of all codewords
in Dm,ℓ whose first letter from the left is Λ, and NΛ,k(m)
(for 1 ≤ k ≤ l) denotes the number of all codewords in Dm,ℓ

whose first k letters are Λ and cm−k−1 ̸= Λ. Moreover, we
have the relation 3NΛ(m− k) = 4NΛ,k(m) for k ≥ 1.

Theorem 2. The encoding-decoding rule g : Dm,ℓ →
{0, 1, . . . , N(m)− 1}, for general ℓ ≥ 1, is as follows:

g(c) =
3

4

m−1∑
i=0

ℓ∑
j=1

j∑
k=1

(ai,k + ti,k + gi,k)N(i+ j − ℓ), (24)

where N(0) ≜ 4/3 and N(−1) ≜ · · · ≜ N(2 − ℓ) ≜ N(1 −
ℓ) ≜ 0. Moreover, for all Π > ∆ and for each ∆ ∈ {A, T,G},

δi,1 = 1 only if ci = Π and ci+1 ̸= ∆,

δi,k = 1 only if ci+k−1 . . . ci+1ci = ∆k−1Π and ci+k ̸= ∆,
(25)

where 2 ≤ k ≤ ℓ (these are ℓ−1 statements), and in all other
cases, δi,k = 0 for i ∈ {1, 2, . . . ,m} and k ∈ {1, 2, . . . , ℓ}.
Here, Π > ∆ is according to the lexicographic ordering rule,
and δ stands for the small letter in {a, t, g} corresponding to
∆ in {A, T,G}.

Proof: First, recall that ci ≜ ζ (a letter outside of the
alphabet), for all i > m− 1 (see Remark 1).

Symbol contributions are as follows:
Case 1: If ci = A, it is clear that gi(A) = 0.
Case 2: If ci = T , then

gi(T ) = Nsymb(m, cm−1cm−2 . . . ci+1A)

= ai,1[NA,1(i+ 1) +NA,2(i+ 1) + · · ·+NA,ℓ(i+ 1)]

+ ai,2[NA,1(i+ 1) +NA,2(i+ 1) + · · ·+NA,ℓ−1(i+ 1)]

+ . . .

+ ai,ℓ−1[NA,1(i+ 1) +NA,2(i+ 1)] + ai,ℓNA,1(i+ 1)

= (ai,1 + ai,2 + · · ·+ ai,ℓ)NA,1(i+ 1) + . . .

+ (ai,1 + ai,2)NA,ℓ−1(i+ 1) + ai,1NA,ℓ(i+ 1)

=
3

4

ℓ∑
j=1

j∑
k=1

ai,kN(i+ j − ℓ), (26)

where N(0) ≜ 4/3 and N(−1) ≜ · · · ≜ N(2 − ℓ) ≜
N(1− ℓ) ≜ 0. Moreover,
ai,1 = 1 only if ci = A and ci+1 ̸= A,
ai,k = 1 only if ci+k−1 . . . ci+1ci = Ak−1T and ci+k ̸= A
where 2 ≤ k ≤ ℓ, and
ai,k = 0 otherwise.
Case 3 and Case 4: One can similarly study and
find the numbers Nsymb(m, cm−1cm−2 . . . ci+1T ) and
Nsymb(m, cm−1cm−2 . . . ci+1G) as well to obtain gi(G) and
gi(C).

Adding all gi(ci)’s up, we obtain the encoding-decoding
rule as given in the theorem statement.

Example 3. Consider the encoding-decoding rule

g : D5,4 → {0, 1, . . . , 1019}

where N(−3) ≜ N(−2) ≜ N(−1) ≜ 0, N(0) ≜ 4/3,
N(1) = 4, N(2) = 16, N(3) = 64, N(4) = 256, and
N(5) = 45−4 = 1020. We discuss some instances and provide
a detailed explanation for the codeword TAATT :

• For the codeword c = AAAAT ∈ D5,4, we have
ai,k = ti,k = gi,k = 0 for all i ∈ {0, 1, 2, 3, 4} and
k ∈ {1, 2, 3, 4}. Therefore,

g(AAAAT ) = g0(T ) = 0.

• For the codeword c = TAATT ∈ D5,4, we have a4,1 =
a1,3 = a0,1 = 1 and all other variables are zero. Note
that by (24),
1. g3(A) = g2(A) = 0,



7

2. As c4 = T and c5 = ζ, a4,1 = 1 so that

g4(T ) =
3a4,1
4

(N(4) +N(3) +N(2) +N(1)),

3. As c3c2c1 = AAT and c4 ̸= A, a1,3 = 1

g1(T ) =
3a1,3
4

(N(1) +N(0)), and

4. As c1c0 = TT and c2 ̸= T , a0,1 = 1 so that

g0(T ) =
3a0,1
4

N(0).

Therefore,

g(TAATT )

= g4(T ) + g1(T ) + g0(T )

=
3

4
(N(4) +N(3) +N(2) +N(1))

+
3

4
(N(1) +N(0)) +

3

4
N(0)

= 255 + 4 + 1 = 260.

• For the codeword c = GGGGC ∈ D5,4, we have a4,1 =
t4,1 = a3,1 = t3,1 = a2,1 = t2,1 = a1,1 = t1,1 = a0,1 =
t0,1 = 1 and all other variables are zero. Therefore,

g(GGGGC)

= g4(G) + g3(G) + g2(G) + g1(G) + g0(C)

=
3

4
(2N(4) + 2N(3) + 2N(2) + 2N(1))

+
3

4
(2N(3) + 2N(2) + 2N(1) + 2N(0))

+
3

4
(2N(2) + 2N(1) + 2N(0))

+
3

4
(2N(1) + 2N(0)) +

3

4
(2N(0))

= 510 + 128 + 32 + 8 + 2 = 680.

• For the codeword c = CATGC ∈ D5,4, we have a4,1 =
t4,1 = g4,1 = a2,2 = a1,1 = t1,2 = a0,1 = t0,1 = g0,2 =
1 and all other variables are zero. Therefore,

g(CATGC)

= g4(C) + g2(T ) + g1(G) + g0(C)

=
3

4
(3N(4) + 3N(3) + 3N(2) + 3N(1))

+
3

4
(N(2) +N(1) +N(0))

+
3

4
(2N(1) + 2N(0)) +

3

4
(3N(0))

= 765 + 16 + 8 + 3 = 792.

• For the codeword c = CCCCG ∈ D5,4, we have ai,1 =
ti,1 = gi,1 = 1, for all i ∈ {1, 2, 3, 4}, a0,1 = t0,1 = 1,
and all other variables are zero. Therefore,

g(CCCCG)

= g4(C) + g3(C) + g2(C) + g1(C) + g0(G)

=
3

4
(3N(4) + 3N(3) + 3N(2) + 3N(1))

+
3

4
(3N(3) + 3N(2) + 3N(1) + 3N(0))

+
3

4
(3N(2) + 3N(1) + 3N(0))

+
3

4
(3N(1) + 3N(0)) +

3

4
(2N(0))

= 765 + 192 + 48 + 12 + 2 = 1019.

Remark 3. We provide additional generalization of Theorem 2
in the Appendix to cover q-ary constrained codes eliminating
runs of length exceeding ℓ ≥ 1 for any q ≥ 2 (see Theorem 3).

Remark 4. The above examples illustrate the use of the
encoding-decoding rule for the decoding procedure. In the next
section, Example 4 briefly illustrates the use of the encoding-
decoding rule for the encoding procedure. For the encoding-
decoding algorithms, see Section V.

IV. BRIDGING AND ERROR DETECTION

In this section, we present our bridging schemes. Using a
single codeword for the whole DNA strand results in higher
encoding-decoding complexity and codeword-to-message error
propagation [24], [26]. Hence, it is essential while encoding
data in a DNA strand to concatenate shorter codewords in
order to prevent forbidden patterns at the transition between
consecutive codewords. This process is called bridging. Our
bridging schemes do not allow same-symbol runs of length
higher than 3, i.e., they are designed for D-LOCO codes
with ℓ ≥ 3. We note that these schemes are selected to also
enable error detection (which will be discussed in this section)
without increasing the AT − GC disparity (which will be
discussed in the next section).

A. Bridging Scheme I
This is a one-symbol bridging scheme. Let c1 and c2 be

two consecutive codewords in the DNA data stream, where c1
ends with the symbol Λ1 and c2 starts with the symbol Λ2.
We can bridge the two codewords c1 and c2 by inserting a
symbol from the set {A, T,G,C} \ {Λ1,Λ2}. Moreover, this
single bridging symbol enables encoding 1-bit of information
as follows:
(i) To encode 0 (from the input message stream), we

pick the letter having the lowest lexicographic index in
{A, T,G,C} \ {Λ1,Λ2}.

(ii) To encode 1, we pick the letter having the highest
lexicographic index in {A, T,G,C} \ {Λ1,Λ2}.

B. Bridging Scheme II
We now discuss a simple three-symbol bridging scheme,

which has two versions, to ensure single substitution error
detection per codeword. Let c1 and c2 be two consecutive
codewords, where c1 ends with the symbol Λ1 and c2 starts
with the symbol Λ2. Let also Λ3 denote the check-sum of c1,
i.e., the check-sum of the symbols in c1, where this check-sum
is computed according to the correspondence (ci ←→ ai):

A←→ 0 (mod 4), G←→ 2 (mod 4),

T ←→ 1 (mod 4), C ←→ 3 (mod 4). (27)

We define the integer (mod 4) equivalent of symbol ci accord-
ing to (27) as ai. Note that Λ3 will be updated shortly. Here,
we bridge the two codewords c1 and c2 as follows:



8

(i) Assign Λ3 as the middle bridging symbol.
(ii) Update the check-sum Λ3 by adding (mod 4) the integer

representation of the extra two message stream bits to
encode within bridging (equivalent to one extra letter in
total).

(iii) Set Λ4 to the letter having the lowest lexicographic index
in {A, T,G,C} \ {Λ1,Λ3} if the first bit to encode is 0.

(iv) Set Λ4 to the letter having the highest lexicographic index
in {A, T,G,C} \ {Λ1,Λ3} if the first bit to encode is 1.

(v) Similarly, choose Λ5 from the set {A, T,G,C}\{Λ2,Λ3}
to encode the second message stream bit.

For clarity, the sequence order is Λ1 Λ4Λ3Λ5 Λ2. This
version is called Bridging Scheme II-A. A different treatment
of Λ5 creates the second version of the scheme.

If we instead choose Λ5 as the letter having the highest
lexicographic index in the set {A, T} \ {Λ2} in case Λ3 ∈
{G,C} and in the set {G,C} \ {Λ2} in case Λ3 ∈ {A, T},
this version is called Bridging Scheme II-B. This version has
a balancing advantage (see Remark 8 in Section V for more
details). Observe that in this case, there is only 1 extra bit (say
b) encoded within bridging. Thus, Λ3 is updated by adding
(mod 4) the integer representation of the binary 2-tuple b0.

We illustrate how to apply this bridging scheme in the
following example:

Example 4. We encode the 38-bit binary message stream

b = 1010.1000.1100.1111.1010.1010.1101.1010.0111.11

into codewords in D9,3 by applying Bridging Scheme II-A (bi
denotes the ith digit of b, starting from b1 at the left):

• From Proposition 1, N(5) = 996, N(6) = 3936, N(7) =
15552, N(8) = 61452, and N(9) = 242820.

• Our rule is g : D9,3 → {0, 1, . . . , 242819} in (23), where
the message length is ⌊log2(242819)⌋ = 17. The first 17
bits form a message that corresponds to 86431 in decimal
integer. We briefly illustrate how to obtain the codeword
of index 86431 via the D-LOCO encoding-decoding rule:

– Initialize residual = 86431.
– At i = 8, 1

4N(9) ≤ residual < 2
4N(9). Con-

sequently, a8 = 1. Update residual = 86431 −
1
4N(9) = 25726.

– At i = 7, 1
4 (N(8) −N(5)) ≤ residual < 2

4N(8) =
30726. Consequently, a7 = 1. Update residual =
25726− 1

4 (N(8)−N(5)) = 11110.
– At i = 6, 2

4N(7) ≤ residual < 3
4N(7) = 11664.

Consequently, a6 = 2. Update residual = 11110 −
2
4N(7) = 3334.

After repeating this procedure until i = 0, we finally
obtain

a1 = 112321323 =⇒ c1 = TTGCGTCGC.

The bits b20–b36 form a message that corresponds to
44455 in decimal integer, and the codeword correspond-
ing to index 44455 is obtained similarly:

a2 = 023300311 =⇒ c2 = AGCCAACTT.

• Since the check-sum of the first codeword is 1 + 1+ 2+
3 + 2 + 1 + 3 + 2 + 3 (mod 4) = 2 and

b18b19 = 01←→ 1 (mod 4),

the middle bridging symbol is C, corresponding to 3.
• Given that b18 = 0 in the binary message stream, the

first bridging symbol between TTGCGTCGC and the
check-sum symbol C is A (which is the letter having the
lowest lexicographic index in {A, T,G}).

• Similarly, given that b19 = 1 in the message stream, the
third bridging symbol between AGCCAACTT and the
check-sum symbol C is G (which is the letter having the
highest lexicographic index in {T,G}).

• By computing the check-sum of the second codeword and
using b37b38, the last 3 coded symbols become CAC.

Hence, the given binary message stream is encoded as
TTGCGTCGCACGAGCCAACTTCAC. Note that if we
drop b19 and b38 from the message stream above and adopt
Bridging Scheme II-B, the resulting 36-bit message stream is
encoded as TTGCGTCGCAGTAGCCAACTTGCT.

Remark 5. Note that if the written c1 has a single substitution
error (or if an error occurs on the check-sum symbol itself),
then c1 and the check-sum Λ3 will be inconsistent, and in
this case, the error is detected. Similarly, in case there is an
error at the first or the third bridging symbol, Λ4 or Λ5, it is
again detected since the check-sum Λ3 is computed by taking
the extra information (two message stream bits) encoded in
these bridging symbols into account. This verifies the error
detection property for Bridging Scheme II-A.

Remark 6. Note that the bridging letters Λ4 and Λ5 are
used to separate the check-sum symbol from the codewords in
order for forbidden patterns not to show up at the transition.
However, one symbol is the minimum we can allocate for
the check-sum given the run-length constraint. In the next
subsection, we show how using more symbols for the check-
sum can reduce the probability of not detecting errors.

C. Bridging Scheme III
We now discuss a five-symbol bridging scheme that ensures

single substitution error detection per codeword for a D-LOCO
code forbidding runs of length at least 4, i.e., ℓ = 3, and
achieves lower probability of no-detection in case multiple er-
rors occur. Let c and d in Dm,3 be two consecutive codewords
whose length is divisible by 3, i.e., m = 3m′ for some integer
m′. Moreover, we have c = c1c2c3. Suppose c ends with
the symbol Λ1 and d starts with the symbol Λ2. Let also Λ3,i

denote the check-sum of the codeword ci for i = 1, 2, 3. Here,
we bridge the two codewords c and d as follows:
(i) Assign Λ3 ≜ Λ3,1Λ3,2Λ3,3 as the middle bridging

pattern.
(ii) Set Λ4 to the letter having the highest lexicographic index

in the set {A, T} \ {Λ1} in case Λ3,1 ∈ {G,C} and in
the set {G,C} \ {Λ1} in case Λ3,1 ∈ {A, T}.

(iii) Set Λ5 to the letter having the highest lexicographic index
in the set {A, T} \ {Λ2} in case Λ3,3 ∈ {G,C} and in
the set {G,C} \ {Λ2} in case Λ3,3 ∈ {A, T}.

For clarity, the sequence order is Λ1 Λ4Λ3,1Λ3,2Λ3,3Λ5 Λ2.

Example 5. If we drop the four bits b18, b19, b37, and b38 from
the binary message stream b in Example 4 and adopt Bridging
Scheme III, the resulting 34-bit message stream is encoded as
TTGCGTCGCGAGACAGCCAACTTCTCTC.



9

D. Probability of Not Detecting Errors

Now, we study the probability of missing substitution errors
when Bridging Schemes III and II-B are applied. The focus
is on detecting errors in codewords, check-sum symbols,
and bridging symbols within which message stream bits are
encoded. Below, we start with a simple DNA storage channel
where substitution errors dominate the error profile, which
allows us to compare the two bridging schemes.

We assume that we have a (1−p, p/3, p/3, p/3)−symmetric
DNA storage channel with symbol substitution error rate p ∈
[0, 1]. This is a channel with 4-ary input and 4-ary output such
that

P(Y = Λ|X = Λ) = 1− p and
P(Y = Λ′|X = Λ) = p/3,

for any letters Λ ∈ {A, T,G,C} and Λ′ ∈ {A, T,G,C}\{Λ}.
For example, Organick et al. performed extensive experiments
and reported substitution, deletion, and insertion rates as 4.5×
10−3, 1.5× 10−3, and 5.4× 10−4, respectively [38]. We can
see that the substitution error rate here is the dominant error
rate, and this value of 4.5× 10−3 can be considered a typical
value of p based on [38].

We start the analysis with Bridging Scheme III. Suppose we
use codewords in D3m′,ℓ and this bridging scheme is applied.
For i ∈ {1, 2, 3}, let

Ui ≜ the event that the check-sum represented by
Λ3,i is satisfied in the read codeword c = c1c2c3,

i.e., Λ3,i =

m′−1∑
k=0

ai,k (mod 4) for ci,

Ei ≜ the event that there are errors in ci or in Λ3,i,

Pi ≜ P(Ui ∧ Ei)

= the probability that there are errors in ci

or in Λ3,i but are undetected (check-sum satisfied).

Clearly, P1 = P2 = P3 for the three constituent sequences.
Next, we give upper bounds for P1.

Observe that if a single error occurs in c1 or in Λ3,1, it is
detected. Moreover, the probability of no-detection in case r
errors occur, where r ≥ 2, is at most 1/3 because the number
of error patterns at r specific locations which (i) do not affect
the check-sum and (ii) do not yield a forbidden pattern is at
most 3r−1 out of 3r possible error patterns. Thus,

P1 ≤
1

3

(
1− (1− p)m

′+1 − (m′ + 1)p(1− p)m
′
)
,

(Bound I). (28)

In fact, via a more careful analysis, we can give a closer
upper bound for P1 as follows. Observe that for r specific
locations, the integer-equivalent options of the error patterns
that will go undetected are

1-3, 2-2, 3-1 when r = 2, and

1-1-2, 1-2-1, 2-1-1, 2-3-3, 3-2-3, 3-3-2 when r = 3.

We denote this number of error-pattern options by C(r).
Since every undetected r-error pattern comes from a unique

(r − 1)-error pattern that is guaranteed to be detected (its
error check-sum is not 0 (mod 4)), we have the following
non-homogeneous linear recurrence relation

C(r) = 3r−1 − C(r − 1). (29)

The closed-form solution of this relation that satisfies C(2) =
3 can be derived using the z-transform, and it is

C(r) =
3r − 3(−1)r−1

4
. (30)

Hence, the probability of no-detection in case of r errors, r ≥
2, is at most C(r)/3r = [1 − (−1/3)r−1]/4, and we express
a closer upper bound (Bound II) for P1 in (31).

The frame-level probability Pun that there are errors in the
codeword c and/or the symbols Λ3,1Λ3,2Λ3,3 but are unde-
tected is the probability that all the check-sums are satisfied
and at least one of the events E1,E2, and E3 occurs. Thus, we
have the following expression for Pun:

Pun = P(U1 ∧ U2 ∧ U3 ∧ (E1 ∨ E2 ∨ E3))

= 3P1(1− p)2(m
′+1) + 3P 2

1 (1− p)m
′+1 + P 3

1 . (32)

As for Bridging Scheme II-B, the frame-level probability
Pun that there are errors in the coded sequence c Λ4Λ3, where
c ∈ Dm,ℓ, but are undetected can be directly bounded using
Bound II in (31) by replacing m′ + 1 by m+ 2 (these are m
symbols in c, Λ4, and Λ3).

Fig. 1 and Fig. 2 compare the upper bound on the probability
of no-detection Pun (using Bound II) of Bridging Scheme III
and Bridging Scheme II-B at various values of the channel
substitution error rate p. Fig. 1 compares the no-detection
performance of Bridging Scheme III for the code D3m′,3 with
m′ = 13 and of Bridging Scheme II-B for the code Dm,3 with
m = 21. The rates of these two codes are 0.8542 and 0.8636,
respectively. Fig. 2 compares the no-detection performance of
Bridging Scheme III for the code D3m′,3 with m′ = 21 and of
Bridging Scheme II-B for the code Dm,3 with m = 33. The
rates of these two codes are 0.9028 and 0.9044, respectively.
The choice of code lengths is such that the rates are close for
the two coding schemes being compared. Note that code rate
discussions are presented in Section VI, and this rate depends
on the D-LOCO code, its bridging, and its balancing penalty.

There are three takeaways from the two figures. First, both
bridging schemes offer notably low no-detection probabilities
for substitution error rates at or below 0.01. These error rates
are of practical importance in DNA storage systems, and we
refer the reader to [38], where Illumina NextSeq sequencing is
adopted. Second, Bridging Scheme III outperforms Bridging
Scheme II-B in terms of no-detection probability by up to 1
order of magnitude in the high substitution error rate regime.2

These error rates are common for sequencing methods such as
Oxford Nanopore sequencing [39]. Third, the gain of Bridging
Scheme III over Bridging Scheme II-B increases as the code
rate increases, i.e., as the length increases.

Observe that if a D-LOCO code is paired with an error-
correction code such that the former is the inner code (closer

2If the comparison is at fixed frame length for similar rates, this gain
becomes even higher since the frame length is 3m′+5 for Bridging Scheme III
while it is only m+ 3 for Bridging Scheme II-B.



10

P1 ≤
m′+1∑
r=2

[
1− (−1/3)r−1

4

](
m′ + 1

r

)
pr(1− p)m

′+1−r =
1

3

(
m′ + 1

2

)
p2(1− p)m

′−1 +
2

9

(
m′ + 1

3

)
p3(1− p)m

′−2

+
7

27

(
m′ + 1

4

)
p4(1− p)m

′−3 + · · ·+
[
1− (−1/3)m′

4

]
pm

′+1, (Bound II). (31)

0 0.02 0.04 0.06 0.08 0.1
Substitution error rate (p)

10-4

10-3

10-2

10-1

100

Bridging Scheme II-B
Bridging Scheme III

Fig. 1. Upper bounds on the probability of no-detection for D3m′,3 and
Bridging Scheme III versus Dm,3 and Bridging Scheme II-B, m′ = 13 and
m = 21.

0 0.02 0.04 0.06 0.08 0.1
Substitution error rate (p)

10-4

10-3

10-2

10-1

100

Bridging Scheme II-B
Bridging Scheme III

Fig. 2. Upper bounds on the probability of no-detection for D3m′,3 and
Bridging Scheme III versus Dm,3 and Bridging Scheme II-B, m′ = 21 and
m = 33.

to the channel), achieving low no-detection probability makes
the task of the error-correction decoder easier. Observe also
that Bridging Scheme III, because of the higher code length re-
quired to achieve the same rate, incurs higher storage overhead
and error propagation compared with Bridging Scheme II-B
(see the following sections, [15], and [24]). Finally, we note
that similar conclusions can also be reached for ℓ > 3.

V. ALGORITHMS AND BALANCING THE DNA SEQUENCE

In this section, we first present the encoding and decod-
ing algorithms of D-LOCO codes equipped with Bridging
Scheme I, and then discuss how to balance the GC-content of
the designed DNA sequence.

We now discuss how to balance the DNA sequence or
stream of bridged D-LOCO codewords in a way that incurs

Algorithm 1 Encoding D-LOCO Codes with Bridging
Scheme I

1: Inputs: Incoming stream of binary messages and the
highest run-length allowed ℓ.

2: Use the cardinalities ND(r, ℓ), r ∈ {ℓ + 1, ℓ + 2, . . . }
(computed offline by (3)), where ND(r, ℓ) = 4r for 0 <
r ≤ ℓ and ND(0, ℓ) = 4/3.

3: Specify m as the smallest r in Step 2 to achieve the desired
rate. Then, s = ⌊log2ND(m, ℓ)⌋.

4: for each incoming message b of length s+ 1 do
5: Compute g(c) = decimal(b).
6: Initialize residual with g(c) and ci with ζ for i ≥ m.

(ζ indicates out of codeword bounds)
7: for i ∈ {m− 1,m− 2, . . . , 0} do (in order)
8: For each χ ∈ {T,G,C}, set ci = χ (temporar-

ily), determine the coefficients ai,k, ti,k, gi,k for 1 ≤
k ≤ ℓ based on (25), and then compute M(i, j, χ) =∑j

k=1(ai,k + ti,k + gi,k) for all 1 ≤ j ≤ ℓ.
9: for χ ∈ {T,G,C} do

10: Compute contrib(i, χ) = 3
4

∑ℓ
j=1M(i, j, χ)N(i+

j − ℓ).
11: end for
12: if residual ≥ contrib(i, C) then
13: Encode ci = C.
14: else if residual ≥ contrib(i, G) then
15: Encode ci = G.
16: else if residual ≥ contrib(i, T ) then
17: Encode ci = T .
18: else
19: Encode ci = A.
20: end if
21: residual← residual− contrib(i, ci), ci ̸= A.
22: if (not first codeword) ∧ (i = m− 1) then
23: Bridge with a symbol other than cm−1 or the

right-most symbol of the previous codeword based on
the last bit of the incoming message as described in
Subsection IV-A.

24: end if
25: end for
26: end for
27: Output: Outgoing stream of bridged D-LOCO codewords.



11

Algorithm 2 Decoding D-LOCO Codes with Bridging
Scheme I

1: Inputs: Incoming stream of 4-ary D-LOCO codewords,
in addition to m and s.

2: Use the cardinalities ND(r, ℓ), r ∈ {ℓ+1, ℓ+2, . . . ,m−1}
(computed offline by (3)), where ND(r, ℓ) = 4r for 0 <
r ≤ ℓ and ND(0, ℓ) = 4/3.

3: for each incoming codeword c of length m do
4: Initialize g(c) with 0 and ci with ζ for i ≥ m. (ζ

indicates out of codeword bounds)
5: for i ∈ {m− 1,m− 2, . . . , 0} do (in order)
6: Determine the coefficients ai,k, ti,k, gi,k for 1 ≤ k ≤
ℓ based on (25).

7: Compute contrib(ci) =
3
4

∑ℓ
j=1

∑j
k=1(ai,k + ti,k +

gi,k)N(i+ j − ℓ).
8: g(c)← g(c) + contrib(ci).
9: end for

10: Compute b = binary(g(c)), which has length s.
11: Concatenate the bit encoded in the next bridging

symbol (as described in Subsection IV-A). Then, skip this
bridging symbol.

12: end for
13: Output: Outgoing stream of binary messages.

minimal rate penalty. Balancing is needed to have a GC-
content close to %50 for the DNA strand in order to achieve
high reliability of the strand synthesized [1], [2].

Definition 2. The disparity, denoted by p(c), of a codeword c
in Dm,ℓ is defined as the difference between the total number
of symbols G,C and the total number of symbols A, T , i.e.,

p(c) = |G|+ |C| − |A| − |T |, (33)

where |Λ| denotes the number of occurrences of the symbol Λ
in c. The absolute value of p(c) is called the absolute disparity
of c. The global disparity of a DNA sequence/stream of length
M consisting of K codewords ci, i in {1, 2, . . . ,K}, along
with their bridging symbols is defined as the absolute value
of the sum of disparities of all codewords and their bridging
in the DNA sequence, and it is given by

pglobal =

∣∣∣∣ K∑
i=1

p(ci) + ψ

∣∣∣∣ ∈ [0,M ], (34)

where ψ is the cumulative disparity resulting from all bridg-
ing symbols.3 The global disparity fraction is defined as
pglobal/M ∈ [0, 1]. Note that if the global disparity fraction
is in [0, 0.1], then the GC-content of the DNA sequence is
between %45 and %55 (see also [29] for further discussions
regarding the GC-content of a DNA sequence).

Observe that our bridging schemes introduced in Section IV
contribute to ensuring low global disparity fraction of the
DNA sequence. For some of our bridging schemes, the global
disparity fraction is in [0, 1

K ) as discussed in Remark 8.

3For ranges of integer variables, such as the disparity, the notation [a, b]
means {a, a+1, . . . , b} and the notation (a, b) means {a+1, a+2, . . . , b−
1}. We use [a, b] and (a, b) for brevity.

A. Balancing the D-LOCO Codes of Odd Lengths

Suppose each message is encoded into a codeword in Dm,ℓ,
where m is odd and Bridging Scheme I is applied. Note that
each sequence of odd length has necessarily nonzero disparity.
For a codeword c ∈ Dm,ℓ, let c̄ be the codeword in Dm,ℓ

obtained by replacing each A, T,G,C’s in c by C,G, T,A,
respectively. Here, c̄ will be called the complement of c as
g(c̄) + g(c) = N(m) − 1 (see also [26]). For example, the
complement of GAATC is TCCGA and vice versa. Observe
that this is possible for any c ∈ Dm,ℓ because of the intrinsic
symmetry of the D-LOCO code stemming from the intrinsic
symmetry of the set of forbidden patterns. Observe also the
relation between disparities: p(c̄) = −p(c).

Lemma 1. Using the above setup, there is a balancing proce-
dure so that a D-LOCO coded sequence of length K(m+ 1)
has global disparity in [−m − 1,m + 1], for odd m. In
particular, the order of the global disparity is O(m), and thus,
it is independent of the overall sequence length for fixed m.

Proof: We prove this by induction on K. If K = 1, the
result is immediate. For an induction hypothesis, assume that
a coded sequence s of length K(m+1) has global disparity in
[−m−1,m+1]. The (K+1)th codeword c can be replaced, if
necessary, by its complement c̄ so that it has opposite disparity
sign to the one of s (while the new bridging letter can have
any disparity). Thus, the resulting coded sequence will have
disparity in [−m−1,m+1]. The minimum (resp., maximum)
disparity is achieved, for example, if s has disparity −m− 1
(resp., m+ 1) and the new codeword along with its bridging
symbol have disparity 0. This finishes the induction argument.

Remark 7. Using the above balancing procedure, there are
two codewords to encode each message. Thus, one can use at
most “half of the D-LOCO codebook” for distinct messages,
i.e., precisely 2⌊log2(

1
2N(m))⌋-many codewords correspond to

unique messages each. Hence, our D-LOCO codes achieve the
minimum possible rate loss; specifically, the one-bit penalty
in the message length achieved by our balancing procedure
results in the minimum rate loss. Moreover, this balancing
penalty does not affect the capacity achievability of D-LOCO
codes (see Section VI in [26] for a thorough discussion).

Remark 8. We can similarly show the following:
(i) For odd m, a coded sequence of length K(m+ 3), where
Bridging Scheme II-A is applied, has global disparity in [−m−
2K − 1,m+ 2K + 1],
(ii) If we go without the extra 1-bit of information encoded in
the bridging symbol Λ5 and adopt Bridging Scheme II-B, we
can attain global disparity in the range [−m−1,m+1] for a
coded sequence of length K(m+ 3). In this case, the global
disparity fraction is in the range [0, 1

K ) and for K = 10, the
GC-content of the DNA sequence is guaranteed to be between
45% and 55%. An even better result is obtained for K = 25,
where the GC-content of the DNA sequence is guaranteed to
be between 48% and 52%.
(iii) Similarly and for odd m = 3m′, a coded sequence of
length K(m + 5) has global disparity in [−m − 1,m + 1]
when Bridging Scheme III is applied.



12

TABLE I
NORMALIZED RATES WHEN DIFFERENT BRIDGING SCHEMES ARE APPLIED AT VARIOUS LENGTHS FOR ℓ = 3

m R1 m R2 m R3 m′ R4

9 0.8500 9 0.7500 9 0.7083 5 0.7000
13 0.8929 13 0.8125 13 0.7812 7 0.7692
21 0.9318 21 0.8750 21 0.8541 11 0.8421
33 0.9559 33 0.9167 33 0.9027 17 0.8929
51 0.9712 51 0.9444 51 0.9351 21 0.9044
99 0.9800 99 0.9657 99 0.9607 33 0.9375

Capacity 0.9912 Capacity 0.9912 Capacity 0.9912 Capacity 0.9912

Observe that our disparity range is for any number of code-
words K, small, medium, or large. Therefore, our balancing
procedure not only achieves a global balancing criterion, but
also achieves a local balancing one.

VI. ACHIEVABLE RATES FOR ℓ = 3 AND LITERATURE
COMPARISON

An FSTD is a state diagram that represents the infinitude of
a sequence in which, some chosen patterns are forbidden. The
FSTD corresponding to the set F of patterns consisting of runs
of length ℓ+1 (see Definition 1) is given in Fig. 3. This FSTD
has ℓ states, and state Fj represents the case where the last
j + 1 generated symbols are Λ′Λj , where Λ ∈ {A, T,G,C}
and Λ′ ∈ {A, T,G,C} \ {Λ} arbitrarily. In particular, for ℓ =
3, state F1 represents the case where the last two generated
symbols are Λ′Λ, F2 represents the case where the last three
symbols are Λ′ΛΛ, and F3 represents the case where the last
four symbols are Λ′ΛΛΛ, where Λ ∈ {A, T,G,C} and Λ′ ∈
{A, T,G,C} \ {Λ} arbitrarily. The symbols on the directed
transition edges represent the currently generated symbols. The
adjacency matrix of the FSTD for fixed ℓ ≥ 3 is denoted by
F(ℓ), and it is of size ℓ × ℓ. The entry fh,p, 1 ≤ h, p ≤ ℓ, is
the number of times state Fh is connected to state Fp (from
Fh to Fp). Consequently,

F(ℓ) =


3
... Iℓ−1

3
3 0 · · · 0

 , (35)

where Iℓ−1 is the identity matrix of size (ℓ−1)× (ℓ−1), and

F(3) =

3 1 0
3 0 1
3 0 0

 . (36)

The characteristic polynomial of F(3) is then:

det(βI − F(3)) = β3 − 3β2 − 3β − 3. (37)

Therefore, the largest real positive eigenvalue of F(3) is
βmax = 3.9514, and the normalized capacity for ℓ = 3 is
C(3) = log4(βmax) = 0.9912.

We now discuss the finite-length rates of D-LOCO codes for
each bridging scheme we propose and with the requirement
of balancing.

• The normalized rate R1 of the D-LOCO code Dm,ℓ when
Bridging Scheme I is adopted is given by

R1 =
⌊log2( 12N(m))⌋+ 1

2(m+ 1)
=
⌊log2(N(m))⌋

2(m+ 1)
. (38)

F1 F2 F3 Fℓ
Λ Λ

Λ′

Λ′

Λ′

Λ′

Λ

Fig. 3. An FSTD of F -constrained sequences, where Λ′ ∈ {A, T,G,C} \
{Λ}. Note that Λ represents the last generated symbol at any state. Upon
entering F1, Λ is always updated to become the relevant Λ′, and Λ′ symbols
on different FSTD edges are not necessarily the same.

• The normalized rate R2 of the D-LOCO code Dm,ℓ when
Bridging Scheme II-A is adopted is given by

R2 =
⌊log2( 12N(m))⌋+ 2

2(m+ 3)
=
⌊log2(N(m))⌋+ 1

2(m+ 3)
.

(39)
• The normalized rate R3 of the D-LOCO code Dm,ℓ when

Bridging Scheme II-B is adopted is given by

R3 =
⌊log2( 12N(m))⌋+ 1

2(m+ 3)
=
⌊log2(N(m))⌋

2(m+ 3)
. (40)

• The normalized rate R4 of the D-LOCO code D3m′,ℓ

when Bridging Scheme III is adopted is given by

R4 =
⌊log2( 12N(3m′))⌋

2(3m′ + 5)
=
⌊log2(N(3m′))⌋ − 1

2(3m′ + 5)
. (41)

For balanced D-LOCO codes, Table I shows the normalized
rates at various values of m when different bridging schemes
are applied using (38)–(41).

Next, we present brief comparisons between D-LOCO codes
and other codes designed for similar goals:

1) Nguyen et al. [31] introduced constrained codes that
are capable of correcting a single error of any type
based on enumerative approach (Method A) as well as
a sequence replacement method (Method B) for DNA
data storage. While their codes from Method A are rate-
wise efficient, D-LOCO codes offer higher rates at lower
lengths and also simpler encoding-decoding compared
with their unrank-rank approach (see also [25]).

2) Improving [29], Wang et al. [30] offered an efficient
coding scheme, a product of which is a code with a
normalized rate of 0.8125 at length 8 that eliminates
homopolymers of length at least 4 and has a guaranteed
40%− 60% GC-content. This code is based on look-up
tables. The nature of our work differs from theirs mainly
in three aspects. First, we have more control over the



13

TABLE II
COMPARISON BETWEEN OUR CODING SCHEMES ELIMINATING HOMOPOLYMERS OF LENGTH ≥ 4 WITH INCREASING RATES

Strand sequence
length GC-content Single substitution

error detection
Normalized

rate Storage overhead Length and
bridging method

288 45%− 55% Yes 0.8125 703 bits m′ = 9,K = 9, III
240 45%− 55% Yes 0.8541 421 bits m = 21,K = 10, II-B
180 45%− 55% No 0.9167 273 bits m = 17,K = 10, I
324 42%− 58% Yes 0.9167 1057 bits m = 33,K = 9, II-A
220 45%− 55% No 0.9318 421 bits m = 21,K = 10, I

disparity, or equivalently the GC-content, of the DNA
sequence, both globally and locally. One can choose a
practical code length and bridging scheme to achieve
low global disparity fraction such as 0.1, equivalently
45% − 55% GC-content (see Table II), or even lower.
Second, our encoding and decoding algorithms are based
on small-size adders, offering low complexity. Third,
we also propose novel ideas for bridging to guarantee a
single substitution error detection.

3) Park et al. [36] proposed an iterative encoding algorithm
that has a mapping table with 48 3-tuple 4-ary entries as
a building block for a constrained code that addresses
the GC-content and the maximum homopolymer length
requirements. There is a similar table for the iterative
decoding algorithm as well. For instance, they achieve
a normalized code rate of 0.9165 and 45%− 55% GC-
content range. Our approach differs from theirs in terms
of encoding-decoding, and we offer local balancing as
well as substitution error detection. Moreover, the stor-
age overhead associated with their encoding-decoding
algorithms is higher than that associated with our algo-
rithms since we only need to store the cardinalities to
be used in the execution of the rule (see Section VII).

4) Liu et al. in [37] proposed a constrained coding scheme
based on the unrank-rank approach, enumerating all
constrained sequences that achieve a GC-content in
[0.5 − ϵ, 0.5 + ϵ] and do not contain homopolymers
of length larger than ℓ. Their encoding-decoding al-
gorithms have polynomial execution time and storage
overhead. They also offer a coding scheme that satisfies
a local GC-content constraint on sequence prefixes in
order to further improve immunity against errors. Since
both are constructed by employing enumerative coding
techniques, their codes and our D-LOCO codes are
capacity-achieving. Since the time complexity of the
encoding-decoding algorithms of our D-LOCO codes is
algorithmically O(m) and implementation-wise O(m2)
with respect to the code length m (see the detailed
discussion at the end of Subsection VII-B), they are at
least as efficient as those of the codes proposed in [37].
D-LOCO codes also have only O(m2) storage overhead
(see (43)). We opt to use moderate lengths in order
to mitigate codeword-to-message error propagation. We
also take finite-length features into account, such as the
effect of bridging and flooring (see (38)–(41)), while
computing our rates in Table I. Furthermore, our codes
offer substitution error-detection, reconfigurability and
efficient local balancing (see Subsection VII-E).

VII. SOME PROPERTIES OF D-LOCO CODES

We now discuss additional properties of D-LOCO codes
regarding

– capacity-achievability,
– complexity and storage,
– ease of reconfigurability,
– error propagation,
– parallelism, and
– local GC-content balance.

A. Capacity-Achievability

The normalized asymptotic rate, i.e., the normalized capac-
ity, of a constrained code having length m and forbidding the
patterns in F is

C(ℓ) = lim
m→∞

log2(N(m))

2m
, (42)

which is the base-4 logarithm of the largest real positive root
of the polynomial

xℓ − 3xℓ−1 − 3xℓ−2 − · · · − 3

(consistent with the recursive relation in Proposition 1) [3].
We note the following about D-LOCO codes:

(i) All codewords satisfying the constraint are included in the
D-LOCO codebook.
(ii) The number of added bits/symbols for bridging is inde-
pendent of m for all bridging schemes proposed.
(iii) The rate loss due to our balancing has the highest possible
vanishing rate with respect to m, which is O(1)/O(m). This
rate loss asymptotically goes to 0.

Using (i) and (ii) along with all the rate equations (38)–
(41) for all bridging schemes, we deduce that a D-LOCO code
Dm,ℓ is capacity-achieving. Using (iii) and the same set of
rate equations, we deduce that our balancing procedure has no
effect on capacity-achievability.

B. Complexity and Storage Overhead

The encoding algorithm of D-LOCO codes is based on
comparisons and subtractions, whereas the decoding algorithm
mainly uses additions. The size of the adders used to perform
these tasks is the base-2 logarithm of the maximum value g(c)
can take that corresponds to a message, and it is given by:⌊

log2

(
1

2
N(m)

)⌋
,

which is the message length (see Remark 7). Table III il-
lustrates the encoding and decoding complexity of D-LOCO



14

TABLE III
ADDER SIZES REQUIRED AT VARIOUS LENGTHS FOR ℓ = 3 WHEN

DIFFERENT BRIDGING SCHEMES ARE APPLIED

I, II-A, or II-B is applied III is applied
m Adder size m′ Adder size
9 16 bits 5 28 bits
21 40 bits 11 64 bits
33 64 bits 17 100 bits
51 100 bits 21 123 bits
99 195 bits 33 195 bits

codes through the size of the adders to be used for different
lengths and different bridging schemes adopted. For example,
for a D-LOCO code with Bridging Scheme II-A, if a rate of
0.75 is satisfactory, adders of size just 16 bits are all that is
needed. In case the rate needs to be 0.8750, adders of size
40 bits should be used. Moreover, for a D-LOCO code with
Bridging Scheme III, if a rate of 0.70 is satisfactory, small
adders of size just 28 bits are all that is needed. In case the
rate needs to be about 0.8421, adders of size 64 bits should
be used. All rates are normalized.

As for the storage overhead, we need to store the values in
{3N(i)/4 | 0 ≤ i ≤ m − 1}, for code length m, offline in
order to execute the encoding-decoding rule in (11) and also
in (24). Thus, this overhead (in bits) is expressed as follows:

storage =

m−1∑
i=0

⌈
log2

(
3

4
N(i)

)⌉
. (43)

For say m = 27 (and m′ = 9), we need to store the values in
{3N(i)/4 | 0 ≤ i ≤ 26} for encoding-decoding. This requires
only 703-bit offline memory, where we achieve a normalized
rate of 0.8125 by adopting Bridging Scheme III. The same rate
is achieved in [30] for a content-balanced RLL code at length
8 and binary message length 13, but this technique is based on
lookup tables, which incur higher complexity. Observe that all
constrained coding techniques that are based on lookup tables
incur higher storage overhead.

For m = 17, we need to store the values in {3N(i)/4 | 0 ≤
i ≤ 16} for encoding-decoding. This requires 273-bit offline
memory, where we achieve a normalized rate of 0.9167 and
global disparity fraction 0.1 (equivalently, 45% − 55% GC-
content) by adopting Bridging Scheme I for K = 10 (see
Lemma 1). Alternatively, for m = 33, we need to store the
values in {3N(i)/4 | 0 ≤ i ≤ 32} for encoding-decoding.
This requires 1057-bit offline memory, where we achieve a
normalized rate of 0.9167 and global disparity fraction

pglobal

M
=

33 + 2× 9 + 1

9(33 + 3)
= 0.1605

(equivalently, 42%− 58% GC-content) by adopting Bridging
Scheme II-A for K = 9 (see Remark 8 in Section V above).
A rate of 0.9165 along with 45% − 55% GC-content range
are achieved in [36], and their iterative encoding-decoding
algorithms are based on 48-entry mapping tables.

Observe that if the DNA storage system can afford adders of
higher sizes, our D-LOCO codes can offer notably higher rates
along with notably lower global disparity fractions compared
with the ones mentioned above.

The time complexity of the decoding (encoding) algorithm
of D-LOCO codes is algorithmically linear with respect to
the code length m, i.e., O(m). As we perform additions
(subtractions) of at most 2m-bit numbers at each iteration,
implementation-wise we offer polynomial-time complexity,
more precisely O(m2) (see Section V for encoding-decoding
algorithms as well as Table III for adder sizes).

From (43), the storage overhead is O(m2). Note that a
lookup table technique to design a constrained code of length
m for DNA storage, where all valid sequences are stored, will
have storage overhead of O(4m · m), which is remarkably
higher than O(m2).

Remark 9. Note that symbol contributions can also be com-
puted offline and used as inputs to the adder, provided that
storage overhead requirements allow that. This results in an
algorithmically linear decoder where only a single addition of
at most 2m-bit numbers is required at every iteration.

C. Reconfigurability

Just like all LOCO codes [24], D-LOCO codes are also
easily reconfigurable. In particular, the same set of adders
used to encode-decode a specific D-LOCO code can be
reconfigured to encode-decode another D-LOCO code of dif-
ferent length and/or run-length constraint. Reconfigurability
can play a pivotal role as the storage system ages and its
performance gradually degrades. For instance, we may need
to switch the run-length from ℓ to ℓ′, where ℓ′ < ℓ, in
order to address the need of an aging, more error-prone
system in which, homopolymers of shorter lengths become
detrimental. While this will result in a rate loss, it can maintain
the same level of reliability with time. Such reconfiguration
is achieved simply by changing the inputs of the adders,
i.e., the cardinalities, from {ND(i + 1 − ℓ), . . . , ND(i)} to
{ND(i+1− ℓ′), . . . , ND(i)} through multiplexers to find the
symbol contribution gi(ci). Note that the system allows this
reconfiguration since the required size of the adders gets lower
as we move from ℓ to ℓ′ < ℓ.

Provided that storage overhead requirements allow it, one
can also compute the contributions of each symbol offline
for Dm,ℓ and Dm,ℓ′ and switch from the former to the latter
through multiplexers in order to find the index of a codeword
via m additions (see Remark 9).

D. Error Propagation and Parallelism

In D-LOCO codes, error propagation does not occur from
a codeword into another. Moderate message lengths are pre-
ferred, however, in order to mitigate any possible codeword-
to-message error propagation (see also [26] and [24]). Fur-
thermore, as they have fixed length, D-LOCO codes enable
simultaneous encoding and decoding of different codewords
within the complexity margin of the system, which can re-
markably increase the speed of writing and reading.

E. Local Balancing

Definition 3. ([37, Definition 2]) A DNA sequence/stream of
length M satisfies µ-prefix validity if for every prefix S of it,



15

i.e., for every subsequence consisting of the first S-many terms
of it, 1 ≤ S ≤M , the disparity of S satisfies the inequality:

|p(S)| ≤ 2µ, (44)

for non-negative µ.
Recall that for a DNA sequence consisting of codewords in

Dm,ℓ of odd length m, when
- Bridging Scheme I and
- our balancing procedure

are applied, its global disparity is in [−m − 1,m + 1] (see
Lemma 1). Therefore, (44) is satisfied for all prefixes of length
divisible by m+ 1 if we set µ = ⌈(m+ 1)/2⌉ = (m+ 1)/2.
For the remaining lengths, we first write S as a concatenation
of S0 and S1, where S0 is the subsequence up to the last
bridging symbol, and S1 is the subsequence after the last
bridging symbol. Without loss of generality, we consider the
case of S0 having a positive disparity. Then, µ can be set to

⌈((m+ 1) + (m− 1)/2)/2⌉ = ⌈(3m+ 1)/4⌉,

where the middle term (m − 1)/2 is due to the maximum
possible contribution of S1 to the disparity of S given that the
disparity of S0 is at most m+1. Hence, such a DNA sequence
satisfies ⌈(3m+1)/4⌉-prefix validity for m ≥ 5. This remains
true if we adopt Bridging Schemes II-B or III instead (see
Remark 8(ii) and Remark 8(iii)).

VIII. CONCLUSION

We introduced D-LOCO codes, a family of constrained
codes designed for DNA data storage. D-LOCO codes are
equipped with lexicographic ordering of codewords, which
enables simple bijective mapping-demapping between an in-
dex set and the codebook. We derived the mathematical rule
governing this mapping-demapping, which leads to systematic,
reconfigurable, and low-complexity encoding and decoding
algorithms. We discussed four bridging schemes, three of
which guarantee single substitution error detection, and also
studied the probability of missing errors. We showed how
D-LOCO codes can be balanced, locally and globally, with
minimal rate loss. D-LOCO codes are capacity-achieving, and
they have remarkably high finite-length rates at affordable
complexities even with error-detection and balancing features.
Future work includes extending D-LOCO codes to forbid other
detrimental patterns as well as combining constrained codes
with error-correction codes for DNA data storage.

APPENDIX

In this appendix, we present a generalized version of D-
LOCO codes, namely GD-LOCO codes, for any alphabet size.

Definition 4. For an integer q ≥ 2, let E = {∆r | 0 ≤ r ≤
q−1} be a lexicographically-ordered alphabet with q elements
such that ∆r < ∆s for 0 ≤ r < s ≤ q − 1. For ℓ ≥ 1, the
GD-LOCO code GDm,ℓ is defined as the set of all codewords
of length m defined over E that do not contain runs of length
exceeding ℓ.

We denote the cardinality of GDm,ℓ by N(m) (instead of
NGD(m, ℓ)) for the ease of notation.

Proposition 2. ([27, Equation 1]) The cardinality N(m) of the
GD-LOCO code GDm,ℓ, where ℓ ≥ 1, satisfies the following
recursive relation for m ≥ ℓ:

N(m) = (q − 1)

ℓ∑
i=1

N(m− i). (45)

For 0 ≤ m ≤ ℓ,

N(0) ≜
q

q − 1
, and N(m) = qm for 1 ≤ m ≤ ℓ.

Theorem 3. The encoding-decoding rule g : GDm,ℓ →
{0, 1, . . . , N(m)− 1}, for general ℓ ≥ 1, is as follows:

g(c) =
q − 1

q

m−1∑
i=0

ℓ∑
j=1

j∑
k=1

( ∑
∆∈E∗

δi,k

)
N(i+ j − ℓ), (46)

where N(0) ≜ q/(q − 1), N(−1) ≜ · · · ≜ N(2 − ℓ) ≜
N(1 − ℓ) ≜ 0, and E∗ = E \ {∆q−1}. Moreover, for all
Π > ∆ and for each ∆ ∈ E \ {∆q−1},

δi,1 = 1 only if ci = Π and ci+1 ̸= ∆,

δi,k = 1 only if ci+k−1 . . . ci+1ci = ∆k−1Π and ci+k ̸= ∆,
(47)

where 2 ≤ k ≤ ℓ (these are ℓ−1 statements), and in all other
cases, δi,k = 0 for i ∈ {1, 2, . . . ,m} and k ∈ {1, 2, . . . , ℓ}.
Here, Π = ∆s > ∆ = ∆r, for some 0 ≤ r < s ≤ q − 1, is
according to the lexicographic ordering rule, and δ = δr in
{δ0, δ1, . . . , δq−2} stands for the small letter corresponding to
∆ = ∆r in {∆0,∆1, . . . ,∆q−2}.

Recall that ci ≜ ζ (a letter outside of the alphabet), for all
i > m− 1 (see Remark 1).

Remark 10. For q = 2, the alphabet E = {∆0,∆1} can be
defined as the Galois field GF(2) = {0, 1}. Lexicographically-
ordered RLL (LO-RLL) codes can be designed as shown in
[4]. For ℓ ≥ 2, define the difference vector v of a GD-
LOCO codeword c in GDm,ℓ as v = [vm−2 vm−3 . . . v0],
with vi = ci+1+ ci over GF(2), for all i ∈ {0, 1, . . . ,m−2}.
Observe that for any codeword c in GDm,ℓ, its difference
vector satisfies the (0, ℓ− 1) RLL constraint. Moreover, each
codeword in the (0, ℓ − 1) LO-RLL code of length m − 1
can be derived from a unique codeword among the GD-
LOCO codewords starting with 0 from the left in GDm,ℓ

by computing the difference vectors of all such codewords
(the difference vectors of the remaining codewords will be
duplicates). Consequently, the cardinality NRLL(m−1, ℓ−1)
of the (0, ℓ− 1) LO-RLL code is given by:

NRLL(m− 1, ℓ− 1) =
1

2
NGD(m, ℓ). (48)

This observation leads to a simple way of constructing and
indexing (0, ℓ − 1) LO-RLL codes via GD-LOCO codes with
parameters q = 2 and ℓ.

Remark 11. For q = 16, consider the GD-LOCO code
GDm,1 consisting of codewords with no identical consecutive
symbols. Note that if we convert codewords in GDm,1 to 4-ary
codewords, where each 16-ary symbol is mapped to a unique
2-tuple of 4-ary symbols, we obtain a set of 4-ary codewords



16

of length 2m that do not contain any patterns of the form
Λ1Λ2Λ1Λ2Λ1, where Λ1 and Λ2 can be the same symbol in
the alphabet of size 4. If this alphabet is {A, T,G,C}, such
4-ary coding scheme allows runs of length at most 4 and also
eliminates short tandem repeats such as AGAGAG.

ACKNOWLEDGMENT

The authors would like to thank Özge Simay Demirci and
Selin Sönmez for their assistance in carrying out this research.
Furthermore, they would like to thank the Guest Editor Prof.
Eitan Yaakobi for his effective handling of the article, and
thank the anonymous reviewers for their constructive com-
ments.

REFERENCES

[1] M. G. Ross, C. Russ, M. Costello, A. Hollinger, N. J. Lennon, R.
Hegarty, C. Nusbaum, and D. B. Jaffe , “Characterizing and measuring
bias in sequence data,” Genome Biol., vol. 14, no. 5, p. R51, May 2013.

[2] J. J. Schwartz, C. Lee, and J. Shendure, “Accurate gene synthesis
with tag-directed retrieval of sequence-verified DNA molecules,” Nat.
Methods, vol. 9, no. 9, pp. 913–915, Aug. 2012.

[3] C. E. Shannon, “A mathematical theory of communication,” Bell Sys.
Tech. J., vol. 27, Jul. 1948.

[4] D. T. Tang and R. L. Bahl, “Block codes for a class of constrained
noiseless channels,” Inf. and Control, vol. 17, no. 5, pp. 436–461, Dec.
1970.

[5] P. A. Franaszek, “Sequence-state methods for run-length-limited cod-
ing,” IBM J. Res. Develop., vol. 14, no. 4, pp. 376–383, Jul. 1970.

[6] R. Adler, D. Coppersmith, and M. Hassner, “Algorithms for sliding block
codes–An application of symbolic dynamics to information theory,”
IEEE Trans. Inf. Theory, vol. 29, no. 1, pp. 5–22, Jan. 1983.

[7] P. Siegel, “Recording codes for digital magnetic storage,” IEEE Trans.
Magn., vol. 21, no. 5, pp. 1344–1349, Sep. 1985.

[8] R. Karabed and P. H. Siegel, “Coding for higher-order partial-response
channels,” in Proc. SPIE Int. Symp. Voice, Video, and Data Commun.,
M. R. Raghuveer, S. A. Dianat, S. W. McLaughlin, and M. Hassner,
Eds., Philadelphia, PA, Oct. 1995, vol. 2605, pp. 115–126.

[9] A. Sharov and R. M. Roth, “Two-dimensional constrained coding based
on tiling,” IEEE Trans. Inf. Theory, vol. 56, no. 4, pp. 1800–1807, Apr.
2010.

[10] A. Kato and K. Zeger, “On the capacity of two-dimensional run-length
constrained channels,” IEEE Trans. Inf. Theory, vol. 45, no. 5, pp. 1527–
1540, Jul. 1999.

[11] B. Dabak, A. Hareedy, and R. Calderbank, “Non-binary constrained
codes for two-dimensional magnetic recording,” IEEE Trans. Magn.,
vol. 56, no. 11, pp. 1–10, Nov. 2020.

[12] J.-D. Lee, S.-H. Hur, and J.-D. Choi, “Effects of floating-gate interfer-
ence on NAND flash memory cell operation,” IEEE Electron Device
Lett., vol. 23, no. 5, pp. 264–266, May 2002.

[13] V. Taranalli, H. Uchikawa, and P. H. Siegel, “Error analysis and inter-
cell interference mitigation in multi-level cell flash memories,” in Proc.
IEEE Int. Conf. Commun. (ICC), London, UK, Jun. 2015, pp. 271–276.

[14] A. Hareedy, B. Dabak, and R. Calderbank, “Managing device lifecycle:
Reconfigurable constrained codes for M/T/Q/P-LC Flash memories,”
IEEE Trans. Inf. Theory, vol. 67, no. 1, pp. 282–295, Jan. 2021.

[15] A. Hareedy, S. Zheng, P. Siegel, and R. Calderbank, “Efficient con-
strained codes that enable page separation in modern Flash memories,”
IEEE Trans. Commun., vol. 71, no. 12, pp. 6834–6848, Dec. 2023.

[16] K. A. S. Immink, P. H. Siegel, and J. K. Wolf, “Codes for digital
recorders,” IEEE Trans. Inf. Theory, vol. 44, no. 6, pp. 2260–2299, Oct.
1998.

[17] X. Li, S. Zhou, and L. Zou, “Design of DNA storage coding with
enhanced constraints,” Entropy, vol. 24, no. 8, pp. 1151, Aug. 2022.

[18] R. Heckel, G. Mikutis, and R. N. Grass, “Characterization of the
DNA data storage channel,” Sci. Rep., vol. 9, no. 9663, Jul. 2019,
doi.org/10.1038/s41598-019-45832-6.

[19] J. Centers, X. Tan, A. Hareedy, and R. Calderbank, “Power spectra of
constrained codes with level-based signaling: Overcoming finite-length
challenges,” IEEE Trans. Commun., vol. 69, no. 8, pp. 4971–4986, Aug.
2021.

[20] T. Cover, “Enumerative source encoding,” IEEE Trans. Inf. Theory, vol.
19, no. 1, pp. 73–77, Jan. 1973.

[21] V. Braun and K. A. S. immink, “An enumerative coding technique for
DC-free runlength-limited sequences,” IEEE Trans. Commun., vol. 48,
no. 12, pp. 2024–2031, Dec. 2000.

[22] J. Gu and T. E. Fuja, “A new approach to constructing optimal block
codes for runlength-limited channels,” IEEE Trans. Inf. Theory, vol. 40,
no. 3, pp. 774–785, May 1994.

[23] I. F. Blake, “The enumeration of certain run length sequences,” Inf. and
Control, vol. 55, no. 1–3, pp. 222–237, Oct.–Dec. 1982.

[24] A. Hareedy, B. Dabak, and R. Calderbank, “The secret arithmetic of
patterns: A general method for designing constrained codes based on
lexicographic indexing,” IEEE Trans. Inf. Theory, vol. 68, no. 9, pp.
5747–5778, Sep. 2022.

[25] A. Hareedy and R. Calderbank, “Asymmetric LOCO codes: Constrained
codes for Flash memories,” Proc. 57th Annu. Allerton Conf. Commun.,
Control, Comput. (Allerton), Monticello, IL, USA, Sep. 2019, pp. 124–
131.

[26] A. Hareedy and R. Calderbank, “LOCO codes: Lexicographically-
ordered constrained codes,” IEEE Trans. Inf. Theory, vol. 66, no. 6,
pp. 3572–3589, Jun. 2020.

[27] K. A. S. Immink and K. Cai, “Design of capacity-approaching con-
strained codes for DNA-based storage systems,” IEEE Commun. Lett.,
vol. 22, no. 2, pp. 224–227, Feb. 2018.

[28] K. A. S. Immink and K. Cai, “Properties and constructions of con-
strained codes for DNA-based data storage,” IEEE Access, vol. 8, pp.
49523–49531, Mar. 2020.

[29] W. Song, K. Cai, M. Zhang, and C. Yuen, “Codes with run-length and
GC-content constraints for DNA-based data storage,” IEEE Commun.
Lett., vol. 22, no. 10, pp. 2004–2007, Oct. 2018.

[30] Y. Wang, M. Noor-A-Rahim, E. Gunawan, Y. L. Guan, and C. L. Poh,
“Construction of bio-constrained code for DNA data storage,” IEEE
Commun. Lett., vol. 23, no. 6, pp. 963–966, Jun. 2019.

[31] T. T. Nguyen, K. Cai, K. A. S. Immink, and H. M. Kiah, “Capacity-
approaching constrained codes with error correction for DNA-based data
storage,” IEEE Trans. Inf. Theory, vol. 67, no. 8, pp. 5602–5613, Aug.
2021.

[32] T. T. Nguyen, K. Cai, and P. H. Siegel, “Every bit counts: A new version
of non-binary VT codes with more efficient encoder,” Proc. IEEE Int.
Conf. Commun. (ICC), Rome, Italy, May–Jun. 2023, pp. 5477–5482.

[33] X. Li, M. Chen, and H. Wu, “Multiple errors correction for position-
limited DNA sequences with GC balance and no homopolymer for
DNA-based data storage,” Brief. Bioinform., vol. 24, no. 1, Jan. 2023.

[34] Z. Yan, C. Liang, and H. Wu, “A Segmented-edit error-correcting code
with re-synchronization function for DNA-based storage systems,” IEEE
Trans. Emerg. Top. Comput., vol. 11, no. 3, pp. 605–618, Jul.-Sep. 2023.

[35] Z. Yan, G. Qu, and H. Wu, “A novel soft-in soft-out decoding algorithm
for VT codes on multiple received DNA strands,” Proc. IEEE Int. Symp.
Inf. Theory (ISIT), Taipei, Taiwan, Jun. 2023, pp. 838–843.

[36] S. -J. Park, Y. Lee, and J. -S. No, “Iterative coding scheme satisfying
GC balance and run-length constraints for DNA storage with robustness
to error propagation,” J. Commun. Netw., vol. 24, no. 3, pp. 283–291,
Jun. 2022.

[37] Y. Liu, X. He, and X. Tang, “Capacity-achieving constrained codes with
GC-content and runlength limits for DNA storage,” Proc. IEEE Int.
Symp. Inf. Theory (ISIT), Espoo, Finland, Jun.–Jul. 2022, pp. 198–203.

[38] L. Organick, S. D. Ang, Y. -J. Chen, R. Lopez, S. Yekhanin, K.
Makarychev, M. Z. Racz, G. Kamath, P. Gopalan, B. Nguyen, C. N.
Takahashi, S. Newman, H. -Y. Parker, C. Rashtchian, K. Stewart, G.
Gupta, R. Carlson, J. Mulligan, D. Carmean, G. Seelig, L. Ceze, and
K. Strauss, “Random access in large-scale DNA data storage,” Nat.
Biotechnol. vol. 36. no. 3, pp. 242–258, Mar. 2018.

[39] O. Milenkovic, R. Gabrys, H. M. Kiah, and S. M. H. Tabatabaei Yazdi,
“Exabytes in a test tube,” IEEE Spectr., vol. 55, no. 5, pp. 40–45, May
2018.

Canberk İrimağzı received the B.Sc. degree in Mathematics from Koç
University, Turkey, and the M.A. degree in Mathematics from the University
of Wisconsin-Madison, USA. He is currently pursuing the Ph.D. degree in
Cryptography at the Institute of Applied Mathematics, Middle East Technical
University (METU), Turkey. His current research interests include applied
algebra, coding theory, and DNA data storage.



17

Yusuf Uslan is an undergraduate student at the Electrical and Electronics En-
gineering Department of Middle East Technical University (METU), Turkey.
His research interests include coding theory, signal processing, and DNA data
storage.

Ahmed Hareedy (Member, IEEE) is an Assistant Professor with the De-
partment of Electrical and Electronics Engineering at Middle East Technical
University (METU), Turkey. He is also an Affiliated Faculty Member with
the Institute of Applied Mathematics at METU, Turkey. He is interested in
questions in coding/information theory that are fundamental to opportunities
created by the current, unparalleled access to data and computing. He
received the Bachelor and M.S. degrees in Electronics and Communications
Engineering from Cairo University, Egypt, in 2006 and 2011, respectively.
He received the Ph.D. degree in Electrical and Computer Engineering from
the University of California, Los Angeles (UCLA), USA, in 2018. He was
a Postdoctoral Associate with the Department of Electrical and Computer

Engineering at Duke University, USA, between 2018 and 2021. He worked
with Mentor Graphics Corporation (currently, Siemens EDA) between 2006
and 2014. He worked as an Error-Correction Coding Architect with Intel
Corporation in the summers of 2015 and 2017.

Dr. Hareedy won the 2018–2019 Distinguished Ph.D. Dissertation Award
in Signals and Systems from the Department of Electrical and Computer
Engineering at UCLA. He is a recipient of the Best Paper Award from the 2015
IEEE Global Communications Conference (GLOBECOM), Selected Areas in
Communications, Data Storage Track. He won the 2017–2018 Dissertation
Year Fellowship (DYF) at UCLA. He won the 2016–2017 Electrical Engi-
neering Henry Samueli Excellence in Teaching Award for teaching Probability
and Statistics at UCLA. He is a recipient of the Memorable Paper Award
from the 2018 Non-Volatile Memories Workshop (NVMW) in the area of
devices, coding, and information theory. He is a recipient of the 2018–2019
Best Student Paper Award from the IEEE Data Storage Technical Committee
(DSTC). He has been awarded the TÜBİTAK 2232-B International Fellowship
for Early Stage Researchers in 2022. He is currently a Guest Editor of
the Special Issue on Data Storage of the IEEE BITS THE INFORMATION
THEORY MAGAZINE.


	Introduction
	Some Related Works
	Our Contribution and Organization of the Paper

	Definition and Cardinality
	D-LOCO Encoding-Decoding Rule
	Encoding-Decoding Rule for =3
	Encoding-Decoding Rule for General 

	Bridging and Error Detection
	Bridging Scheme I
	Bridging Scheme II
	Bridging Scheme III
	Probability of Not Detecting Errors

	Algorithms and Balancing the DNA Sequence
	Balancing the D-LOCO Codes of Odd Lengths

	Achievable Rates for =3 and Literature Comparison
	Some Properties of D-LOCO codes
	Capacity-Achievability
	Complexity and Storage Overhead
	Reconfigurability
	Error Propagation and Parallelism
	Local Balancing

	Conclusion
	References
	Biographies
	Canberk İrimağzı
	Yusuf Uslan
	Ahmed Hareedy


