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ABSTRACT

EFFICIENT THREE-DIMENSIONAL NEAR-FIELD IMAGING WITH
PHYSICS-INFORMED DEEP LEARNING FOR MIMO RADAR

Oral, Okyanus
M.S., Department of Electrical and Electronics Engineering

Supervisor: Assoc. Prof. Dr. S. Figen Öktem Seven

June 2024, 90 pages

Near-field radar imaging systems are used in a wide range of applications, such as

medical diagnosis, through-wall imaging, concealed weapon detection, and nonde-

structive evaluation. In this thesis, we consider the inverse problem of reconstructing

the three-dimensional (3D) complex-valued reflectivity distribution of the near-field

scene from the sparse multiple-input multiple-output (MIMO) array measurements.

Motivated by recent advances, we develop physics-informed deep learning techniques

for the image reconstruction and array optimization tasks encountered in near-field

MIMO radar imaging. Firstly, we develop a novel plug-and-play (PnP) reconstruction

method that exploits deep priors and regularization on the magnitude. Our approach

provides a unified general framework to effectively handle arbitrary regularization on

the magnitude of a complex-valued unknown and is equally applicable to other radar

image formation problems including SAR. Secondly, we focus on existing learned

direct inversion methods that enable real-time imaging and perform modifications to

improve these methods. We demonstrate the effectiveness of all developed approaches

under various compressive and noisy observation scenarios using both simulated and

experimental data. We also analyze the resolution achieved at compressive settings
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with sparse MIMO arrays. The developed methods enable not only state-of-the-art

performance for 3D real-world targets but also fast computation. Lastly, we develop

a novel method for joint optimization of MIMO arrays and reconstruction methods.

We illustrate the performance of the jointly optimized imaging system by utilizing

various reconstruction methods and different observation settings, and compare the

performance with the commonly used MIMO arrays.

Keywords: 3D Near-Field MIMO Radar Imaging, Complex-Valued Reconstruction,

Plug-and-Play Methods, Deep Learning, Joint Optimization
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ÖZ

FİZİK TABANLI DERİN ÖĞRENME TEKNİKLERİ İLE ÜÇ BOYUTLU
YAKIN ALAN MIMO RADAR GÖRÜNTÜLEME

Oral, Okyanus
Yüksek Lisans, Elektrik ve Elektronik Mühendisliği Bölümü

Tez Yöneticisi: Doç. Dr. S. Figen Öktem Seven

Haziran 2024 , 90 sayfa

Yakın alan radar görüntüleme sistemleri tıbbi teşhis ve gizli silah tespiti gibi çeşitli uy-

gulamalarda kullanılmaktadır. Bu tezde, seyrek çok-girişli çok-çıkışlı (MIMO) radar

anten dizisi ölçümlerinden yakın alan sahnesinin üç boyutlu karmaşık değerli yansıtır-

lık dağılımının geri çatılması ters problemine odaklanılmaktadır. Yakın alan MIMO

radar görüntülemesinde karşılaşılan imgenin geri çatılması ve anten dizilimi eniyi-

lemesi problemleri için, son gelişmelerden harekete geçerek, fizik tabanlı ve derin

öğrenmeye dayalı teknikler geliştiriyoruz. İlk olarak, imgenin geri çatılması problemi

için derin öğrenmeye dayalı önsel bilgilerden ve büyüklük üzerindeki düzenlileştirme-

lerden yararlanan yeni bir tak-çalıştır yöntemi geliştiriyoruz. Bu yaklaşımımız, karma-

şık değerli bilinmeyenin büyüklüğü üzerinde herhangi bir düzenlileştirme uygulaya-

bilmek için genel bir çerçeve sağlamakta ve sentetik açıklıklı radar dahil radar görün-

tülemede karşılaşılan diğer ters problemlere benzer bir şekilde uygulanabilmektedir.

İkinci olarak, mevcut imge oluşturma yöntemlerinden gerçek zamanlı görüntülemeyi

mümkün kılan öğrenilmiş direkt evirme yöntemlerine odaklanıyoruz ve bu yöntem-

leri iyileştiriyoruz. Geliştirilen tüm yaklaşımların başarımını çeşitli ölçüm senaryoları
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altında hem simüle edilmiş hem de deneysel verileri kullanarak gösteriyoruz. Ayrıca

seyrek MIMO dizileriyle sıkıştırmalı örnekleme için elde edilen çözünürlüğü de ana-

liz ediyoruz. Geliştirilen yöntemler, yalnızca üç boyutlu gerçek hedefler için en iyi

başarımı sağlamakla kalmayıp aynı zamanda hızlı hesaplanabilmektedir. Son olarak,

MIMO dizilimlerinin ve imge oluşturma yöntemlerinin aynı anda eniyilenmesi için

yeni bir yöntem geliştiriyoruz. Çeşitli imge oluşturma yöntemleri ve farklı ölçüm se-

naryoları kullanarak eniyilenmiş görüntüleme sistemlerinin başarımını gösteriyor ve

bu başarımı yaygın kullanılan MIMO dizileriyle karşılaştırıyoruz.

Anahtar Kelimeler: 3-Boyutlu Yakın Alan MIMO Radar Görüntüleme, Karmaşık De-

ğerli Geriçatım, Tak-Çalıştır Yöntemleri, Derin Öğrenme, Bileşik Eniyileme
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CHAPTER 1

INTRODUCTION

1.1 Motivation and Problem Definition

Near-field radar imaging systems are used in a wide range of applications such as

medical diagnosis, through-wall imaging, concealed weapon detection, and nonde-

structive evaluation [1–4]. Compared to the classical monostatic planar arrays with

colocated transmitter and receiver antennas, multiple-input multiple-output (MIMO)

arrays offer reduced hardware complexity and cost for high-resolution imaging ap-

plications. As a result, there has been a growing interest in using MIMO arrays for

near-field radar imaging [2–8].

Reconstructing the three-dimensional (3D) complex-valued scene reflectivity from the

sparse MIMO measurements is a highly ill-posed problem. Therefore, the reconstruc-

tion quality greatly depends on the utilized imaging algorithm and the array topology.

As a result, many studies in the literature focus on improving the reconstruction per-

formance through the development of efficient reconstruction algorithms [9–18] and

antenna array designs [5, 8, 19–24].

Traditional imaging algorithms, such as direct inversion schemes, offer low com-

putational complexity, but their performance substantially degrades in ill-posed set-

tings with limited and noisy data [9–12]. On the other hand, motivated by the com-

pressed sensing theory, the regularized reconstruction methods with sparsity priors

offer promising imaging performance in compressive settings [14–18]. However, a

common drawback of these methods is their iterative nature, resulting in longer com-

putation time than the direct inversion approaches. More importantly, hand-crafted

regularization functionals correspond to using simple image priors, which do not ac-
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curately represent the distribution of target images.

With the recent developments in deep learning, learned reconstruction methods emerged

as powerful alternatives to both regularized and direct reconstruction methods [25–

33]. These methods employ deep neural networks (DNNs) in the reconstruction pro-

cess to form images either directly from measurements or use DNNs within model-

based imaging algorithms. To reduce the information load on the utilized deep neural

networks and exploit physics-based information, the state-of-the-art learned recon-

struction methods incorporate the forward model of the imaging system into the re-

construction process. This alleviates the need to capture the physics of the imaging

system solely from statistical regularities in the data. Despite the recent success of

these methods, most of these approaches are developed for 2D and real-valued image

reconstruction problems [28, 32, 34]. In particular, there is very limited research for

physics-based deep learning methods, for 3D near-field MIMO radar imaging.

Moreover, for many applications in radar imaging, the phase of the reflectivity at a

particular point can be modeled as random and uncorrelated with the phase at other

points [35, 36]. This is due to the phase shifts that can occur when imaging rough

surfaces and also at the air/target interface due to the electrical properties of materi-

als [35]. Although this is the case, most of the existing reconstruction methods, includ-

ing deep-learning based ones, do not take into account the random phase nature of the

scene reflectivity values [17,18,37,38]. There is also no unified framework in the lit-

erature to account for the random phase when enforcing regularization [15,33,36,39].

Since array topology plays an important role in the imaging performance, there has

also been a significant effort in the literature to design and optimize antenna arrays

to yield better reconstruction quality [5, 8, 19–24, 40, 41]. In spite of this effort, there

are only a few works that systematically optimize the arrays to directly improve the

reconstruction performance. Instead, most of the existing works design the MIMO

arrays using heuristics and ad-hoc criteria [5, 19, 21, 24, 41]. Recent advancements

in computational imaging have shown that imaging performance can be improved

significantly by jointly optimizing the reconstruction algorithm and the parameters of

the observation system [20, 23, 40, 42–48]. Although there are some works in near-

field radar imaging for joint optimization [20, 23, 40], there is no comprehensive and

2



generalizable framework demonstrated for end-to-end optimization of MIMO arrays

for 3D near-field imaging.

1.2 Relevant Work

In this thesis, we consider the inverse problem of reconstructing the 3D complex-

valued reflectivity distribution of the near-field scene from the sparse radar measure-

ments. Motivated by recent advances, we develop physics-informed deep learning

techniques for the image reconstruction and array optimization tasks encountered in

this imaging problem.

Despite the recent success of plug-and-play (PnP) algorithms that exploit powerful

denoisers within regularized inversion frameworks, there is no study on PnP meth-

ods that exploit deep priors for near-field radar imaging where we encounter a 3D

complex-valued image reconstruction problem. Here, we develop a novel PnP method

to reconstruct the 3D complex-valued reflectivity distribution of the near-field scene

from sparse MIMO radar measurements. Due to the random phase nature of scene

reflectivity values in various applications, our method exploits regularization on the

magnitude. By providing a general expression for the proximal mapping associated

with such regularization functionals, we show that arbitrary regularization on magni-

tude can be efficiently enforced within our PnP framework using simple and compu-

tationally efficient update steps.

We also focus on existing learned direct inversion methods that enable real-time imag-

ing and perform modifications to improve these methods. Existing learned direct in-

version methods in the literature either perform complex-valued processing or magnitude-

only processing. To the best of our knowledge, there is no work that compared the

performance of complex-valued refinement with magnitude-only refinement to recon-

struct reflectivities involving random phase, and showed the superiority of one of them

to the other. For this reason, we also perform this comparative evaluation that has been

missing in the earlier works.

We demonstrate the effectiveness of the developed approaches under various com-

pressive and noisy observation scenarios using both simulated and experimental data.
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We also analyze the resolution offered by sparse MIMO arrays in such compressive

imaging settings.

Lastly, we develop a general framework for the joint optimization of MIMO arrays

and reconstruction methods in an end-to-end fashion. We demonstrate the developed

framework by using various reconstruction methods under different observation set-

tings. We also compare the performance of the optimized imaging systems with the

commonly used MIMO arrays.

1.3 Novelties and Contributions

The contributions and novelties of this thesis are as follows:

∙ Providing a unified PnP framework to effectively handle arbitrary regularization

on the magnitude of a complex-valued unknown involving random phase,

∙ Development of a novel deep learning-based PnP reconstruction method for 3D

complex-valued imaging with application to near-field MIMO radar imaging,

∙ End-to-end joint optimization of MIMO arrays and reconstruction methods,

∙ Improvements and comparative performance analysis on learned direct recon-

struction methods,

∙ Comprehensive experiments on synthetic 3D scenes with quantitative and qual-

itative analysis by considering various compressive and noisy observation sce-

narios,

∙ Performance evaluation with experimental measurements to demonstrate recon-

struction of 3D real-world targets, and comparison with the commonly used

direct inversion and regularized reconstruction methods.

1.4 The Outline of the Thesis

The outline of the thesis is as follows. In Chapter 2, we present the observation model

relating the near-field scene to the MIMO array measurements. This chapter also dis-
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cusses the inverse problem of reconstructing the scene reflectivity values from the

MIMO radar data and reviews the existing imaging algorithms. We present the de-

veloped plug-and-play reconstruction method for regularization on the magnitude in

Chapter 3. Here, we also provide the simulation setting and the experimental data

that are utilized throughout the thesis. Chapter 4 presents our analysis and improve-

ments for the existing learned direct inversion methods in the literature. In Chapter 5

the developed joint optimization method is presented. Lastly, we conclude the the-

sis in Chapter 6 by providing the final remarks and discussing the possible research

directions for future studies.
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CHAPTER 2

THREE-DIMENSIONAL NEAR-FIELD MIMO RADAR IMAGING

This chapter is organized as follows. In Section 2.1 we describe the working principle

of a near-field MIMO radar imaging system by providing the observation model that

relates the near-field MIMO array measurements to the reflectivity distribution of the

scene. In Section 2.2 we define the inverse problem for three-dimensional image re-

construction and provide a summary on the existing image reconstruction approaches

in the literature. Here, our goal is to provide an overview of the strengths and the

drawbacks of existing imaging algorithms, where the analyses motivate the methods

developed in this thesis.

2.1 Observation Model

Consider the general MIMO imaging setting illustrated in Fig. 2.1 with spatially dis-

tributed transmit and receive antennas on the antenna array located at 𝑧 = 0. In order

to infer the 3D reflectivity distribution of the scene, each transmit antenna, located

at 𝐫𝑇 = [𝑥𝑇 , 𝑦𝑇 , 0]𝑇 , illuminates the scene with a pulse signal and the scattered field

from the scene is measured by a receive antenna, located at 𝐫𝑅 = [𝑥𝑅, 𝑦𝑅, 0]𝑇 .

Under Born approximation, time-domain response of a single point-scatterer with re-

flectivity 𝑠(𝐫) and located at 𝐫 = [𝑥, 𝑦, 𝑧]𝑇 can be expressed as follows [9]:

𝑦̃(𝐫𝑇 , 𝐫𝑅, 𝑡) =
𝑝(𝑡 − 𝑑(𝐫𝑇 ,𝐫)

𝑐
− 𝑑(𝐫𝑅,𝐫)

𝑐
)

4𝜋 𝑑(𝐫𝑇 , 𝐫) 𝑑(𝐫𝑅, 𝐫)
𝑠(𝐫). (2.1)

Here 𝑦̃(𝐫𝑇 , 𝐫𝑅, 𝑡) denotes the time-domain measurement acquired using the transmit

and receive antenna pair located respectively at 𝐫𝑇 and 𝐫𝑅 due to a single scatterer. The

transmitted pulse is denoted by 𝑝(𝑡), and 𝑐 denotes the speed of light. The distances
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Figure 2.1: Schematic view of a near-field MIMO radar imaging system.

of the scatterer to the corresponding transmitter and receiver are given by 𝑑(𝐫𝑇 , 𝐫) =
‖𝐫𝑇 − 𝐫‖2 and 𝑑(𝐫𝑅, 𝐫) = ‖𝐫𝑅 − 𝐫‖2 respectively.

By taking 1D Fourier transform over 𝑡, the received signal due to a single scatterer can

be expressed in the temporal frequency domain as follows:

𝑦̃(𝐫𝑇 , 𝐫𝑅, 𝑘) = ℎ(𝐫𝑇 , 𝐫𝑅, 𝑘, 𝐫)𝑠(𝐫), (2.2)

where

ℎ(𝐫𝑇 , 𝐫𝑅, 𝑘, 𝐫) = 𝑝̃(𝑘) 𝑒−𝑗𝑘(𝑑(𝐫𝑇 ,𝐫)+𝑑(𝐫𝑅,𝐫))
4𝜋 𝑑(𝐫𝑇 , 𝐫) 𝑑(𝐫𝑅, 𝐫)

, (2.3)

and 𝑝̃(𝑘) is the temporal Fourier transform of the transmitted pulse with 𝑘 = 2𝜋
𝑐
𝑓 de-

noting the frequency-wavenumber whereas 𝑓 denoting the temporal frequency. Using

(2.2), the measurement, 𝑦(𝐫𝑇 , 𝐫𝑅, 𝑘), due to an extended target can be expressed as the

superposition of these responses from point-scatterers:

𝑦(𝐫𝑇 , 𝐫𝑅, 𝑘) = ∫
𝑥
∫
𝑦
∫
𝑧

ℎ(𝐫𝑇 , 𝐫𝑅, 𝑘, 𝐫)𝑠(𝐫) 𝑑𝐫. (2.4)

Since the measurements are discrete, and the image reconstruction algorithm will be

run on a computer, a discrete forward model is needed. For this, the coordinate vari-

ables are discretized based on the expected range and cross-range resolutions of the

used MIMO imaging system [9]. Then the discretized scene reflectivity values can

be related to the discrete measurements obtained using different transmitter-receiver
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pairs and frequency steps as

𝑦(𝐫𝑇𝑚 , 𝐫𝑅𝑚
, 𝑘𝑚) =

∑

𝑛
ℎ(𝐫𝑇𝑚 , 𝐫𝑅𝑚

, 𝑘𝑚, 𝐫𝑛)𝑠(𝐫𝑛). (2.5)

Here the subscript 𝑚 indicates the location of the transmitting and receiving antennas

as well as the frequency used in the 𝑚th measurement. Moreover, the subscript 𝑛

indicates the voxel number in the discretized 3D scene.

By using lexicographical ordering, the measurements and the reflectivity values of the

image voxels are put into the following vectors:

𝐲 = [𝑦(𝐫𝑇1 , 𝐫𝑅1
, 𝑘1),… , 𝑦(𝐫𝑇𝑀 , 𝐫𝑅𝑀

, 𝑘𝑀 )]𝑇 ∈ ℂ𝑀 , (2.6)

𝐬 = [𝑠(𝐫1),… , 𝑠(𝐫𝑁 )]𝑇 ∈ ℂ𝑁 , (2.7)

where 𝑀 and 𝑁 respectively represent the number of measurements and voxels. Then

using (2.5) we can express the noisy measurements in matrix-vector form as follows:

𝐲 = 𝐀𝐬 + 𝐰. (2.8)

The matrix 𝐀 ∈ ℂ𝑀×𝑁 is the observation matrix whose (𝑚, 𝑛)th element is given by

𝐀𝑚,𝑛 = ℎ(𝐫𝑇𝑚 , 𝐫𝑅𝑚
, 𝑘𝑚, 𝐫𝑛), (2.9)

which represents the contribution of the 𝑛th voxel at location 𝐫𝑛 to the 𝑚th measure-

ment taken using the transmitter at 𝐫𝑇𝑚 , receiver at 𝐫𝑅𝑚
, and frequency 𝑐

2𝜋
𝑘𝑚. Also

𝐰 ∈ ℂ𝑀 represents the additive noise vector. We assume white Gaussian noise since

it commonly holds in practical applications of interest. Hence each noise component

is uncorrelated over different voxels and has variance 𝜎2
𝑤.

2.2 Inverse Problem

In the inverse problem, the goal is to estimate the 3D complex-valued reflectivity field,

𝐬, from the acquired radar measurements, 𝐲. This corresponds to solving an under-

determined problem with sparse MIMO measurements 𝑀 ≪ 𝑁 . As a result, the

reconstruction quality greatly depends on the utilized computational imaging method.

The existing reconstruction methods in the literature can be grouped into three main

categories. These are traditional direct inversion, regularized reconstruction, and deep

learning based reconstruction methods.
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2.2.1 Traditional Direct Inversion Methods

Traditional direct inversion methods do not utilize any prior information and are solely

derived to obtain a direct solution based on the forward (observation) model expres-

sion. These methods generally involve back-projecting measurements to the image

domain and then employ a filter-like operation [9–12].

Commonly used traditional direct inversion methods for near-field radar imaging in-

clude range migration [9], back-projection [4], and Kirchhoff migration [11]. Based

on the encountered observation model, direct inversion methods can be expressed in

the following general form:

𝑠̂(𝐫𝑛) =
∑

𝑚
𝑦(𝐫𝑇𝑚 , 𝐫𝑅𝑚

, 𝑘𝑚) 𝜉(𝐫𝑛, 𝐫𝑅𝑚
, 𝐫𝑇𝑚 , 𝑘𝑚) 𝑒

𝑗𝑘(𝑑(𝐫𝑇𝑚 ,𝐫𝑛)+𝑑(𝐫𝑅𝑚 ,𝐫𝑛)) (2.10)

Here 𝜉(𝐫𝑛, 𝐫𝑅𝑚
, 𝐫𝑇𝑚 , 𝑘𝑚) is the filtering kernel expressed in the frequency wave-number

domain, which has different expressions for different methods. For example, in the

case of Kirchoff migration (KM), the filtering kernel becomes [4]

𝜉(𝐫𝑛, 𝐫𝑅𝑚
, 𝐫𝑇𝑚 , 𝑘𝑚) = 4

𝑧𝑛 − 𝑧𝑅𝑚

𝑑2(𝐫𝑅𝑚
, 𝐫𝑛)

(1 + 𝑗𝑘 𝑑(𝐫𝑅𝑚
, 𝐫𝑛))

𝑧𝑛 − 𝑧𝑇𝑚
𝑑2(𝐫𝑇𝑚 , 𝐫𝑛)

(1 + 𝑗𝑘 𝑑(𝐫𝑇𝑚 , 𝐫𝑛)).

(2.11)

KM algorithm is an analytical approximate method that accounts for scattering from

rough surfaces by using the Helmholtz–Kirchhoff integral theorem [11]. On the other

hand, in the back-projection method, measured waves at the antenna plane are prop-

agated back to the object plane by only using round-trip delays, which means there

is no filtering kernel (i.e., 𝜉 = 1) [4]. The adjoint of the forward operator is also in

the form given in (2.10) where the filtering kernel is 𝜉 = 1
4𝜋𝑑(𝐫𝑅𝑚 ,𝐫𝑛)𝑑(𝐫𝑇𝑚 ,𝐫𝑛)

. Hence, the

adjoint operation also back-propagates the measurements to the object domain with a

scale inversely proportional to the radial distance of the antenna elements [12].

Although these methods offer low computational complexity, their reconstruction per-

formance substantially degrades in ill-posed settings with limited and/or noisy data.

2.2.2 Regularized Reconstruction Methods

Regularization-based methods can yield more successful reconstructions than the tra-

ditional methods by incorporating prior information about the unknown 3D image
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cube into the reconstruction process [13–18].

A systematic approach to regularization is to incorporate the prior knowledge about

unknown solution in a deterministic or stochastic setting, and leads to a minimization

with a regularization functionall, (⋅), penalizing the solutions that do not comply

with the assumed prior information [13,17]. Under the white Gaussian noise assump-

tion, we can formulate the inverse problem by using a regularization functional as

follows

𝐬̂ = argmin
𝐬

(𝐬) subject to ‖𝐲 − 𝐀𝐬‖2 ≤ 𝜖 (2.12)

where 𝜖 is a parameter that should be chosen based on the noise variance (i.e.,
√

𝑀 ⋅ 𝜎2
𝑤).

A commonly used regularization functional is isotropic total-variation (TV) [49], which

promotes sparsity on the gradient of the image vector, and is computed by,

𝑇𝑉 (𝐬) ≜ ‖

√

|𝐃𝑥𝐬|2 + |𝐃𝑦𝐬|2 + |𝐃𝑧𝐬|2‖1, (2.13)

where 𝐃𝑥,𝐃𝑦, and 𝐃𝑧 are the matrices corresponding to discrete difference operators

along 𝑥,𝑦 and 𝑧 directions. Another widely used regularization functional is 𝓁1 norm

(𝓁1
(𝐬) ≜ ‖𝐬‖1) which promotes sparsity directly in the image domain. These com-

monly used sparsity priors are motivated by the compressed sensing theory [50] and

are shown to offer promising imaging performance at various compressive imaging

settings including radar imaging [15–18, 36, 38, 39].

Although these methods offer promising imaging performance, utilizing handcrafted

regularization functionals corresponds to exploiting simple image priors, where in-

formation about the target images is not learned. Hence, these priors are not adaptive

to the distribution of data and do not accurately represent the distribution of target

images. Moreover, sparsity-based reconstruction methods generally have iterative na-

ture obtained using variable splitting methods such as alternating direction method of

multipliers (ADMM) [51] and proximal gradient descent [49]. As a result, these meth-

ods often have longer computation time than the direct inversion approaches, which

is undesirable in real-time applications.

For near-field radar imaging, existing regularized reconstruction methods generally

enforce smoothness or sparsity on the complex-valued reflectivity distribution [17,

18,37,38]. These methods are therefore built on the assumption that the scene reflec-
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tivity has locally correlated phase and magnitude. However, for many applications, the

phase of the reflectivity at a particular point can be more accurately modeled as ran-

dom and uncorrelated with the phase at other points [35,36,39]. This is because phase

shift can occur when imaging rough surfaces and also at the air/target interface due to

the electrical properties of materials [35]. It has been observed in various related SAR

works that enforcing regularization only on the magnitude improves the performance

compared to enforcing it directly on the complex-valued reflectivity [15, 33, 36, 39].

2.2.3 Deep Learning Based Reconstruction Methods

Deep learning based reconstruction methods can be grouped into two categories, these

are learned direct inversion and learning-based regularized reconstruction approaches.

2.2.3.1 Learned Direct Inversion

Recently, reconstruction techniques that exploit deep learning have emerged as alter-

natives to the traditional direct inversion methods [25]. These methods are shown

to simultaneously achieve high reconstruction quality and low computational cost for

various imaging problems [25–28].

Learning-based direct inversion methods are aimed to perform the reconstruction di-

rectly from the measurements using a deep neural network. Hence the neural network

is trained to learn the direct mapping from the observations to the desired image solely

using training data. Although these methods yield the state-of-the-art performance for

simpler inverse problems like denoising [27], they can not provide successful results

whenever the observation model is complex, the unknown image does not look alike

observations, or there is not a lot of training data available. For this reason, commonly

an efficient approximate inverse of the forward model is first applied analytically and

these initial images are provided to the network as a warm start. Subsequently a deep

neural network is employed to refine this initial reconstruction [25–28]. A represen-

tative block diagram of learned direct inversion methods are shown in Fig.2.2. An

important advantage of learned direct inversion methods is their low computational

complexity due to their feed-forward (non-iterative) nature, which is ideal for real-time
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imaging applications.

DNN

(a) Learning-based direct inversion.

DNN

(b) An example of physics-based learned di-

rect inversion.

Figure 2.2: A representative block diagram for learned direct inversion methods.

Most of the learned direct inversion methods in the radar imaging literature are for

far-field settings in SAR/ISAR or MIMO radar imaging [20, 52–58]. In the near-field

and MIMO radar imaging context, there are only a few works for learned direct re-

construction [59, 60] from which only the work in [60] is developed for imaging 3D

extended targets with random phase.

2.2.4 Learning-Based Regularized Reconstruction

In recent years, plug-and-play (PnP) regularization became one of the most widely

used frameworks for solving computational imaging problems [28, 30, 32, 33]. The

key idea behind plug-and-play regularization is to substitute an off-the-shelf denoiser

in place of the proximal operator associated with regularization in an iterative recon-

struction framework such as ADMM. This enables the utilization of powerful pri-

ors without explicitly specifying regularization functionals, where solving the inverse

problem becomes equivalent to finding a consensus equilibrium for data-fidelity and

image-prior updates [30, 61]. A representative block diagram for the PnP methods is

shown in Fig. 2.3.

Initial works on PnP regularization methods relied on analytical priors by the use

of handcrafted denoisers such as BM3D [34, 37, 62]. However, with the rise of deep

learning and the observation that DNNs provide superior denoising performance [28],

there has been a growing interest in using learned PnP regularization approaches that

exploit deep priors [30, 32, 33] which provide state of the art performance.

To the best of our knowledge, there are no deep pior-based PnP approaches developed
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FidelityDenoiser

Figure 2.3: A representative block diagram of plug-and-play regularization. Within

an iterative optimization framework, the plugged-in denoiser replaces the proximal

mapping associated with regularization, whereas the data-fidelity block enforces the

fidelity of the reconstructions to the measurements.

for 3D near-field radar imaging. A related PnP work in SAR imaging [37] utilizes

2D analytical (but not deep) denoising priors to reconstruct 3D extended targets. This

method also does not take into account the random phase nature of the reflectivity

values and considers regularization on the complex-valued reflectivity. On the other

hand, another work from the SAR literature develops a deep prior-based PnP method

for magnitude regularization [33]. Nonetheless, this method requires an inefficient

computation to update the phase of the solutions and is developed for 2D far-field

imaging.

Another commonly utilized framework for learning-based regularized reconstruction

is algorithm unrolling, where a model-based iterative method is unrolled into an end-

to-end trainable network [28, 29, 31, 63]. Algorithm unrolling can be used for both

regularization with analytical priors, such as 𝓁1 regularization [64], or with regulariza-

tion schemes that exploit deep priors, such as PnP regularization with deep denoiser

prior [31]. Although both learned PnP- and unrolling-based approaches can yield

state-of-the-art reconstruction quality, PnP methods have the advantage of adaptabil-

ity to different imaging settings and significantly less training time.

Despite the recent success of the methods that exploit DNNs within a model-based

framework, most of these approaches have been developed for 2D or real-valued im-

age reconstruction problems [28, 30, 32–34]. Furthermore, there is no study on such

methods for near-field radar imaging where we encounter a 3D complex-valued image

reconstruction problem.
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CHAPTER 3

PLUG-AND-PLAY REGULARIZATION ON MAGNITUDE WITH DEEP

PRIORS

3.1 Introduction

In this chapter, we develop a novel and efficient PnP method for reconstructing the 3D

complex-valued reflectivity distribution of the near-field scene from sparse MIMO

measurements. Due to the random phase nature of the scene reflectivities in various

applications, we formulate the image formation problem by exploiting regularization

on the magnitude of the reflectivity function. We provide a general expression for the

proximal mapping associated with such regularization functionals operating on the

magnitude. By utilizing this expression, we develop a computationally efficient PnP

reconstruction method that consists of simple update steps. To utilize within the de-

veloped PnP framework, we also train a 3D deep denoiser that can jointly exploit range

and cross-range correlations. The source codes of this developed approach are avail-

able at https://github.com/METU-SPACE-Lab/PnP-Regularization-on-Magnitude.

Our approach provides a unified PnP framework to effectively handle arbitrary regular-

ization on the magnitude of a complex-valued unknown, which appears to be missing

in the previous related radar imaging works [15, 33]. The effectiveness of the devel-

oped learning-based PnP approach is illustrated in microwave imaging under various

compressive and noisy observation scenarios using both simulated data and experi-

mental measurements. We also compare the performance with the commonly used

traditional methods (back-projection and Kirchhoff migration), and with the sparsity-

based approaches involving 𝓁1 and TV regularization.

Some parts of this chapter have been presented in [65] and published in [66].
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Compared to the earlier works in near-field MIMO radar imaging, the developed tech-

nique not only provides state-of-the-art reconstruction performance for 3D real-world

targets, but also enables fast computation. In particular, compared to the traditional

direct inversion methods and sparsity-based approaches, the developed reconstruction

technique achieves the best reconstruction quality at compressive settings with both

simulated and experimental data.

Despite the recent success of the PnP that exploit deep priors, most of these approaches

have been developed for 2D or real-valued image reconstruction problems [28, 30,

32–34]. Furthermore, there is no study on such methods for near-field radar imaging

where we encounter a 3D complex-valued image reconstruction problem. To the best

of our knowledge, our approach is the first deep prior-based PnP approach developed

for near-field radar imaging. A related PnP work in SAR imaging [37] utilizes 2D

analytical (but not deep) denoising priors to reconstruct 3D extended targets. This ap-

proach also considers regularization on the complex-valued reflectivity. Differently,

our approach exploits regularization on the magnitude of the reflectivity due to its ran-

dom phase nature in various applications. There is also a related learned PnP approach

with magnitude regularization which has been developed for 2D (far-field) SAR imag-

ing [33]. However, this method requires an inefficient iterative computation to update

the phase. In contrast, our approach does not have a phase update step and all the other

update steps are simple and efficient to compute thanks to the closed-form expression

used for the proximal mapping. The presented closed-form expression for the proxi-

mal mapping associated with arbitrary regularization on the magnitude also provides

a generalization of the proximal mappings associated with TV and 𝓁1 regularization

on magnitude [15]. Hence our PnP framework provides a generalizable and powerful

means for effectively enforcing arbitrary regularization on magnitude, and is equally

applicable to other radar image formation problems (including SAR).

Different than the related learning-based works in near-field MIMO radar imaging [59,

60,64,67], our approach is a deep prior-based PnP approach developed for imaging 3D

extended targets. In particular, the works in [59, 60, 67] present deep learning-based

non-iterative reconstruction methods by refining an initial analytical reconstruction

using DNNs. Other learning-based work in [64] develops an unrolling-based method.

But unlike our approach, this method is not DNN-based (i.e. not deep prior-based) and
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only learns the hyperparameters (such as soft threshold and regularization parameters)

of the unrolled 𝓁1 regularization-based reconstruction algorithm.

The main contributions of this chapter can be summarized as follows:

∙ Providing a unified PnP framework to effectively handle arbitrary regularization

on the magnitude of a complex-valued unknown (involving random phase),

∙ Development of a novel deep learning-based plug-and-play reconstruction method

for 3D complex-valued imaging with application to near-field MIMO radar imag-

ing,

∙ Comprehensive experiments on synthetic 3D scenes with quantitative and qual-

itative analysis by considering various compressive and noisy observation sce-

narios,

∙ Performance evaluation with experimental measurements to demonstrate recon-

struction of 3D real-world targets, and comparison with the commonly used

direct inversion and regularized reconstruction methods.

The chapter is organized as follows. In Section 3.2 we formulate the inverse problem

by enforcing regularization on the magnitude and then develop our plug-and-play ap-

proach. The architecture of the deep denoiser utilized for learned PnP reconstruction

is also presented here. Section 3.3 presents the imaging results for various compres-

sive and noisy observation scenarios. The details of the simulated and experimental

settings considered, and the training procedure are also presented here. We conclude

the chapter by providing final remarks in Section 3.4.

3.2 Developed Plug-and-Play Reconstruction Approach

In this section, we first formulate the inverse problem by enforcing regularization on

the magnitude and then develop our plug-and-play approach using the ADMM frame-

work. The architecture of the 3D deep denoiser utilized for learned PnP reconstruction

is also presented here.
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3.2.1 Inverse Problem

Due to the random phase nature of the unknown scene reflectivities, we formulate

the inverse problem of reconstructing the scene reflectivity values, 𝐬, from the sparse

MIMO measurements, 𝐲, using a regularization functional, (| ⋅ |), that only operates

on the magnitude:

min
𝑠

(|𝐬|) subject to ‖𝐲 − 𝐀𝐬‖2 ≤ 𝜖 (3.1)

where 𝜖 is a parameter that should be chosen based on the noise variance (i.e.
√

𝑀 ⋅ 𝜎2
𝑤),

and |𝐬| denotes the magnitude of the reflectivity vector 𝐬.

3.2.2 Variable Splitting and ADMM

To solve this regularized inverse problem, we first convert the constrained problem in

(3.1) to an unconstrained one using the penalty function, 𝜄
‖𝐲−𝐯1‖2≤𝜖(.), and then apply

variable splitting as follows:

min
𝑠,𝐯1,𝐯2

(

𝜄
‖𝐲−𝐯1‖2≤𝜖(𝐯1) +(|𝐯2|)

)

(3.2)

subject to 𝐀𝐬 − 𝐯1 = 0 , 𝐬 − 𝐯2 = 0

Here the indicator function 𝜄
‖𝐲−𝐯1‖2≤𝜖(𝐯1) takes value 0 if the constraint in (3.1) is sat-

isfied and +∞ otherwise, whereas 𝐯1, 𝐯2 are the auxiliary variables.

We solve the optimization problem in (3.2) with the C-SALSA approach [68]. In

the corresponding ADMM framework [51], we first obtain the associated augmented

Lagrangian form given by

𝜌1,𝜌2(𝐬, 𝐯1, 𝐯2,𝐝1,𝐝2)

= 𝜄
‖𝐲−𝐯1‖2≤𝜖(𝐯1) +

𝜌1
2
‖𝐀𝐬 − 𝐯1 − 𝐝1‖

2
2 −

𝜌1
2
‖𝐝1‖

2
2

+(|𝐯2|) +
𝜌2
2
‖𝐬 − 𝐯2 − 𝐝2‖

2
2 −

𝜌2
2
‖𝐝2‖

2
2 (3.3)

Here 𝐝1, 𝐝2 denote the dual variables for 𝐀𝐬 and 𝐬, and 𝜌1, 𝜌2 ∈ ℝ+ are the penalty

parameters for the auxiliary variables 𝐯1 and 𝐯2. We then alternatively minimize this

augmented Lagrangian function over 𝐬, 𝐯1, and 𝐯2 to obtain the update steps for these

variables.
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Firstly, the minimization over 𝐬 corresponds to solving a least-squares problem with

the following normal equation:

(𝐀𝐻𝐀 + 𝜅𝐈)𝐬𝑙+1 = 𝐀𝐻 (𝐯𝑙1 + 𝐝𝑙
1) + 𝜅(𝐯𝑙2 + 𝐝𝑙

2) (3.4)

where the superscript 𝑙 is the iteration count, and 𝜅 ≜ 𝜌1
𝜌2

is a hyper-parameter that

needs to be adjusted. Since solving this normal equation using matrix inversion is

impractical due to the large size, we instead use few conjugate-gradient (CG) iterations

to update the scene reflectivity 𝐬.

Secondly, the minimization over 𝐯1 corresponds to the proximal operator of the penalty

function 𝜄
‖𝐲−𝐯1‖2≤𝜖(⋅), which can be computed as the projection of 𝐀𝐬𝑙+1 − 𝐝𝑙

1 onto 𝜖-

radius hyper-sphere with center 𝐲 as follows:

𝐯𝑙+11 = 𝐲 +
⎧

⎪

⎨

⎪

⎩

𝜖 𝐀𝐬𝑙+1−𝐝𝑙1−𝐲
‖𝐀𝐬𝑙+1−𝐝𝑙1−𝐲‖2

, if ‖𝐀𝐬𝑙+1 − 𝐝𝑙
1 − 𝐲‖2 > 𝜖

𝐀𝐬𝑙+1 − 𝐝𝑙
1 − 𝐲, if ‖𝐀𝐬𝑙+1 − 𝐝𝑙

1 − 𝐲‖2 ≤ 𝜖
(3.5)

Lastly, the minimization over 𝐯2 corresponds to the proximal operator for the regu-

larization function, (| ⋅ |), that operates on the magnitude of the complex-valued

vector 𝐯2:

𝐯𝑙+12 = 𝚿𝛼(|⋅|)(𝐬𝑙+1 − 𝐝𝑙
2) (3.6)

where 𝚿𝛼(|⋅|) is the respective proximal operator given by

𝚿𝛼(|⋅|)(𝐩) ≜ argmin
𝐯

(

𝛼(|𝐯|) + 1
2
‖𝐯 − 𝐩‖22

)

(3.7)

for a complex-valued vector 𝐩, with 𝛼 ≜ 1
𝜌2

determining the amount of regularization.

This update step corresponds to solving a denoising problem for a complex-valued un-

known, 𝐯, with regularization enforced on its magnitude and noisy observation given

as 𝐩. To develop a computationally efficient PnP reconstruction method that consists

of simple update steps, we provide a general expression for the solution of this de-

noising problem (equivalently, for the proximal operator in (3.7)). This will enable us

to effectively handle arbitrary regularization on the magnitude, which appears to be

missing in the previous radar imaging works.
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3.2.3 Denoising with Regularization on Magnitude

In this section, we provide a general expression for the solution of the complex-valued

denoising problem in (3.7) which involves regularization on the magnitude. For this,

we first express each complex-valued vector as a product of a diagonal phase matrix

and a magnitude vector as follows:

𝐯 = 𝚽𝐯|𝐯|, 𝐩 = 𝚽𝐩|𝐩|, (3.8)

where 𝚽𝐯 = diag(𝑒𝑗∠𝐯) and 𝚽𝐩 = diag(𝑒𝑗∠𝐩) are complex-valued unitary matrices

that contain the phase of the vectors 𝐯 and 𝐩 on their diagonals, respectively, whereas

|𝐯| and |𝐩| represent real-valued and non-negative vectors that contain the respective

magnitudes. By using these expressions, the optimization problem in (3.7) can be

viewed as a joint minimization over the magnitude and phase of 𝐯:

min
|𝐯|,∠𝐯

(

𝛼(|𝐯|) + 1
2
‖𝚽𝐯|𝐯| −𝚽𝐩|𝐩|‖22

)

(3.9)

This joint minimization problem is equivalent to

min
|𝐯|

(

min
∠𝐯

(

𝛼(|𝐯|) + 1
2
‖𝚽𝐯|𝐯| −𝚽𝐩|𝐩|‖22

))

(3.10a)

≡ min
|𝐯|

(

𝛼(|𝐯|) + min
∠𝐯

(1
2
‖𝚽𝐯|𝐯| −𝚽𝐩|𝐩|‖22

))

(3.10b)

Hence to solve this complex-valued denoising problem, our strategy is to first solve the

minimization over the phase, ∠𝐯, in closed-form, and then by substituting the optimal

phase solution, ∠𝐯̂, to the above cost function, to solve the remaining minimization

over the magnitude, |𝐯|.

For minimization over the phase, we have

∠𝐯̂ = argmin
∠𝐯

(1
2
‖𝚽𝐯|𝐯| −𝚽𝐩|𝐩|‖22

)

(3.11)

= argmin
∠𝐯

(1
2
‖𝚽𝐻

𝐩 𝚽𝐯|𝐯| − |𝐩|‖22
)

(3.12)

where the last expression follows from the unitary property of the phase matrices, i.e.

𝚽𝐻
𝐩 = 𝚽−1

𝐩 . After expanding the 𝓁2 norm expression and simplifying it using the

unitary property of phase matrices and omitting the terms that do not depend on the

phase ∠𝐯, we obtain

∠𝐯̂ = argmax
∠𝐯

(1
2

(

|𝐯|𝑇𝚽𝐩𝚽
∗
𝐯|𝐩| + |𝐩|𝑇𝚽∗

𝐩𝚽𝐯|𝐯|
))

(3.13)
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Here we also use the fact that |𝐯| and |𝐩| are real-valued and hence their Hermitian

transpose is simply equal their transpose, and since phase matrices are diagonal, their

Hermitian transpose is simply equal their conjugation. Using the diagonality of the

phase matrices, this further simplifies to

∠𝐯̂ = argmax
∠𝐯

(

|𝐩|𝑇ℜ𝔢{𝚽∗
𝐩𝚽𝐯}|𝐯|

)

. (3.14)

Hence to find the optimal phase, we need to maximize
∑𝑁

𝑛=1 |𝑝𝑛||𝑣𝑛| cos(∠𝑣𝑛 − ∠𝑝𝑛)

over all elements ∠𝑣𝑛 of the vector ∠𝐯. Since each term in this summation contains

only one element of ∠𝐯, maximization can be decoupled for each element, which

yields ∠𝑝𝑛 as the optimal value of ∠𝑣𝑛. This shows that the optimal phase, ∠𝐯̂, for the

denoising problem in (3.9) is equal to the phase of the given noisy observation 𝐩:

∠𝐯̂ = ∠𝐩. (3.15)

That is, the proximal mapping of a function that operates on the magnitude of a

complex-valued vector must directly pass the phase values of the proximal point.

After solving the minimization over the phase in closed-form, we now substitute the

optimal phase solution, ∠𝐯̂, to the cost function in (3.10b) and consider the remaining

minimization over the magnitude, |𝐯|:

|𝐯̂| = argmin
|𝐯|

(

𝛼(|𝐯|) + 1
2
‖|𝐯| − |𝐩|‖22

)

(3.16)

where we use the unitary property of the phase matrix 𝚽𝐩 as before. Note that this

expression is equivalent to the Moreau proximal mapping, 𝚿𝛼(⋅), associated with the

regularization function (⋅) and applied on the magnitude |𝐩|. Hence the optimal

magnitude |𝐯̂| for the denoising problem in (3.9) corresponds to denoising of the mag-

nitude of the noisy observation 𝐩 with noise variance 𝛼:

|𝐯̂| = 𝚿𝛼(⋅)(|𝐩|). (3.17)

For the scalar-valued case, a similar derivation is encountered in [69].

Therefore, the solution of the complex-valued denoising problem in (3.7) with mag-

nitude regularization can be computed as

𝚿𝛼(|⋅|)(𝐩) = 𝑒𝑗∠𝐩 ⊙𝚿𝛼(⋅)(|𝐩|), (3.18)
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where⊙ denotes element-wise multiplication. This corresponds to denoising the mag-

nitude of 𝐩 using the proximal (denoising) operator 𝚿𝛼(⋅) and merging the denoised

magnitude with the unprocessed phase of 𝐩. Since (3.18) decouples the magnitude

and phase solutions, it enables us to use real-valued denoisers (proximal operators)

𝚿𝛼(⋅) for the solution of the complex-valued denoising problem (in (3.7)).

3.2.4 Algorithmic Summary of the Developed Method

The steps of the developed PnP method are summarized in Algorithm 1 and illustrated

in Fig. 3.1. Each iteration of the algorithm mainly consists of four computationally

efficient update steps. The first step is the update of the image 𝐬 as given in line 4 and

carried out using few CG iterations. The second step is the update of the auxiliary

variable 𝐯1 by computing the projection given in line 6 and efficiently computed using

scaling operations. The third step is the complex-valued denoising step given in line 7

to update the auxiliary variable 𝐯2. As shown, this denoising is equivalent to directly

passing the phase but denoising the magnitude of 𝐬𝑙+1−𝐝𝑙
2 using the proximal operator

𝚿𝛼(⋅). To exploit data-driven deep priors, we use a trained denoiser as proximal

operator, as explained in the next section. The last steps are the dual-updates given in

lines 8 and 9.

Step 4: Dual UpdateStep 1: Image Update Step 3: Denoising on
MagnitudeStep 2: Projection

PnP Regularization on Magnitude

repeat...

Denoiser

Conjugate-Gradient
Iterations

Projection onto -radius 
hyper-sphere with center 

1

2

3 4

unchanged phase

magnitude

Figure 3.1: Developed PnP Method for Complex-valued Reconstruction with Regu-

larization on Magnitude.
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Algorithm 1: PnP Regularization on Magnitude for Complex-Valued Recon-

struction
1 inputs: 𝚿𝛼(⋅), 𝐲, 𝐀, 𝐬0, 𝐯02, 𝐯

0
1, 𝜖 > 0, 𝜅 > 0, 𝛼 > 0

2 𝐝0
1,𝐝

0
2 ← 𝟎, 𝑙 ← 0

3 repeat
4 𝐬𝑙+1 = (𝐀𝐻𝐀 + 𝜅𝐈)−1(𝐀𝐻 (𝐯𝑙1 + 𝐝𝑙

1) + 𝜅(𝐯𝑙2 + 𝐝𝑙
2))

5 𝐮𝑙 = 𝐀𝐬𝑙+1 − 𝐝𝑙
1

6 𝐯𝑙+11 = 𝐲 +
⎧

⎪

⎨

⎪

⎩

𝜖 𝐮𝑙−𝐲
‖𝐮𝑙−𝐲‖2

, if ‖𝐮𝑙 − 𝐲‖2 > 𝜖

𝐮𝑙 − 𝐲, if ‖𝐮𝑙 − 𝐲‖2 ≤ 𝜖

7 𝐯𝑙+12 = 𝑒𝑗∠(𝐬𝑙+1−𝐝𝑙2) ⊙𝚿𝛼(⋅)(|𝐬𝑙+1 − 𝐝𝑙
2|)

8 𝐝𝑙+1
1 = 𝐝𝑙

1 − (𝐀𝐬𝑙+1 − 𝐯𝑙+11 )

9 𝐝𝑙+1
2 = 𝐝𝑙

2 − (𝐬𝑙+1 − 𝐯𝑙+12 )

10 𝑙 ← 𝑙 + 1

11 until some stopping criterion is satisfied;

12 output: 𝐬𝑙

Note that our development is implicit about the choice of the regularizer ((| ⋅ |))

and the related proximal operator (𝚿𝛼(⋅)). Therefore, we can efficiently adopt plug-

and-play framework, which enables the utilization of powerful priors, such as deep

denoisers, in place of the proximal operator, without explicitly specifying the regular-

izer.

Moreover, our PnP approach provides a generalizable and powerful means for effi-

ciently handling arbitrary regularization on the magnitude of a complex-valued un-

known. Our approach is applicable with any forward model matrix 𝐀, and hence can

be used for other complex-valued image formation problems including SAR recon-

struction.

3.2.5 3D Deep Denoiser for Learned PnP Regularization

Following the success of convolutional neural networks (CNN) on denoising [28, 32,

70], we train and deploy a deep CNN-based denoiser for the third step of our PnP
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approach. Our denoiser is a 3D U-net developed based on the 2D U-net architecture

in [71] and is shown in Fig. 3.2. To be able to effectively handle a wide range of

noise levels, our denoiser is designed for non-blind Gaussian denoising similar to [32],

and hence takes as input also the noise level. This non-blind denoiser replaces the

proximal operator 𝚿𝛼(⋅) in line 7 of the Algorithm 1, which is used to denoise the

input magnitudes.

The proposed denoiser is a 3-level encoder-decoder architecture with repeated 3D con-

volutional blocks (C) followed by batch normalization (B) and ReLU (R). Due to 3D

processing, the denoiser can jointly exploit range and cross-range correlations. On

each level, max pooling (Max. Pool.) is used to reduce the spatial size of the input

tensor by a factor of 2 in each dimension and transposed convolution blocks (T.Conv.)

are used to increase by 2. At each decoding level, the output of the transposed convo-

lution block is concatenated with the encoder outputs. The concatenated outputs are

then fed to the respective decoding blocks. A single-channel 3D convolution block

follows the last decoding block. The number of output channels of all convolutional

blocks is indicated inside parentheses in Figure 3.2.

2 C(32)BR

Max. Pool.

2 C(128)BR

2 C(64)BR

Max. Pool.

2 C(64)BR

T.Conv.(64)

2 C(32)BR

T.Conv.(32) C(1)

Noisy Magnitudes

Noise Level Map

D
en

oi
se

d 
M

ag
ni

tu
de

s

Figure 3.2: Network architecture of the proposed 3D deep denoiser. “C”, “B”, “R”,

“Max. Pool.” and “T.Conv.” represent 3D convolution, batch normalization, ReLU ac-

tivation, max-pooling operation, and transposed convolution, respectively. The num-

ber of output channels is denoted inside parentheses. Total number of parameters is

1,357,505.

The input of our U-net is the 3D reflectivity magnitude that will be denoised and the

3D noise level map. The noise level map enables to adjust the amount of denoising

in our non-blind denoiser network and its values are set to the constant
√

𝛼 in (3.16).

The output of the U-net is the 3D denoised reflectivity magnitude.
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3.3 Experiments and Results

We now demonstrate the effectiveness of the developed learning-based PnP approach

under various compressive and noisy observation scenarios in microwave imaging.

For this, we first train the implemented denoiser using a synthetically generated large

dataset consisting of 3D extended targets. We then perform comprehensive experi-

ments on synthetic 3D scenes, and comparatively evaluate the performance with the

widely used back-projection (BP) and Kirchhoff migration (KM) algorithms, as well

as using sparsity-based regularization in the form of isotropic total-variation (TV) and

𝓁1. Lastly, we illustrate the performance with experimental measurements to demon-

strate the successful reconstruction of 3D real-world targets.

3.3.1 Training of the 3D Deep Denoiser

Because a large experimental dataset is not available for microwave imaging, we use

a synthetic dataset [60] to train our denoiser network. The utilized synthetic dataset

consists of randomly generated complex-valued image cubes of size 25×25×49. We

use 800 image cubes for training, 100 image cubes for testing, and another 100 image

cubes for validation. Each synthetic image cube is obtained by randomly generating

15 points within the cube and then applying a 3D Gaussian filter to convert these

points to a volumetric object. The magnitudes are normalized (via sigmoid function)

to 1, while adding a random phase to each image voxel from a uniform distribution

between 0 and 2𝜋.

The denoiser network replaces the proximal operator𝚿𝛼(⋅) in line 7 of the Algorithm 1

with the goal of denoising the reflectivity magnitudes. We accordingly train our deep

denoiser by minimizing the mean squared error between the 3D ground truth magni-

tudes and Gaussian noise added magnitudes on 800 training scenes. At each iteration

of training, a new Gaussian noise realization is added to each ground truth magnitude

by randomly and uniformly choosing the noise standard deviation, 𝜎𝜈, from the inter-

val [0, 0.2]. In addition, the constant noise level map is formed using this value for

noise standard deviation, i.e.
√

𝛼 = 𝜎𝜈, and concatenated to the 3D noisy magnitude.

As a result, the network learns to denoise the reflectivity magnitudes in a non-blind
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manner.

For training, we use a batch size of 16 with the maximum number of epochs set as

2000. We utilize Adam optimizer [72] with an initial learning rate of 10−3, and drop

the learning rate by a factor of 10 if the validation loss does not improve for 25 epochs.

We stop the training when the validation loss does not improve for 50 epochs. At

the end of training, we use the network weights that provide the minimum validation

loss. Training converges approximately 15 minutes on NVIDIA GeForce RTX 3080

Ti GPU using PyTorch 1.12.0 with CUDA Toolkit 11.6.0 in Python 3.10.6.

To analyze the performance of our learning-based PnP approach, we use the same

trained denoiser without any modification for both simulated and experimental data.

We now present the denoising performance of the trained DNN in comparison with

the other denoising approaches (𝓁1 and TV regularization). The average 3D peak

signal-to-noise ratio (PSNR) is computed using 100 test images for different values of

noise standard deviation 𝜎𝜈 and provided in Fig. 3.3a. Sample denoised magnitudes

are also shown in Fig. 3.3b-f. As seen, the deep denoiser significantly outperforms

other methods.

Data-driven DNN-based denoisers are currently the best choice for plug-and-play

regularization because DNNs provide state-of-the-art performance for the denoising

problem as demonstrated in various works in the literature [28]. In contrast to the ex-

isting analytical (hand-crafted) denoisers such as those based on 𝑙1 and TV regulariza-

tion, DNN-based denoisers are data-adaptive denoisers that learn how to remove the

noise for the data of interest. Since the parameters of the deep denoiser are optimized

based on the training data, prior information about the target images is learned. On

the other hand, TV and 𝓁1 regularization functions are hand-crafted and correspond

to much simpler priors.

3.3.2 Performance Analysis with Simulated Data

We first analyze the performance of the developed imaging technique at various noise

and compression levels using the synthetic scenes in the test dataset. For this, we

consider a microwave imaging setting similar to Fig. 2.1. The scene of interest has
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Figure 3.3: Denoising performance of different methods; (a) average test PSNR with

respect to noise standard deviation 𝜎𝜈, (b) ground truth magnitudes of the sample test

image, (c) noisy input magnitudes at 𝜎𝜈 = 0.2, (d)-(f) denoised outputs corresponding

to 𝓁1, 𝑇𝑉 and deep-prior based denoising and the respective PSNRs (dB).
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physical dimension of 30 cm × 30 cm × 30 cm, and its center is located 50 cm away

from the antenna array.

As MIMO array topology, commonly used Mill’s Cross array [9] is utilized. The used

planar array has a width of 0.3 m, and contains 12 transmit and 13 receive antennas,

which are uniformly spaced on the diagonals in a cross configuration as shown in

Fig. 3.4. The frequency, 𝑓 , is swept between 4 GHz and 16 GHz with uniform steps.

In an uncompressed observation setting, the expected theoretical resolution [9] is 2.5

cm in the cross-range directions, 𝑥 and 𝑦, and 1.25 cm in the down-range direction,

𝑧. With the goal of achieving these resolutions in the sparse case, we choose the im-

age voxel size as 1.25 cm along 𝑥, 𝑦 directions, and 0.625 cm along 𝑧 direction (i.e.

half of these resolutions). For the scene of interest, this results in an image cube of

25×25×49 voxels, which is same as the size of the synthetic scenes generated. Using

these synthetic image cubes with the forward model in (2.8), we simulate measure-

ments at various signal-to-noise ratios (SNR = 10 log10(
‖𝐀𝐬‖22
𝑀 ⋅𝜎2𝑤

) ) and compression

levels (CL = 1 − 𝑀
𝑁

) for our analysis.
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Figure 3.4: Mill’s Cross Array.

Before discussing the results, we provide the implementation details of the developed

learning-based PnP approach, as well as the approaches used for comparison. For all

regularization-based approaches, we enforce regularization on the reflectivity magni-

tudes and utilize the developed PnP approach in Algorithm 1 with different denoising

(proximal update) steps. In particular, as the proximal operator, 𝚿𝛼(⋅), we utilize

soft-thresholding in the case of 𝓁1 regularization and 5 iterations of Chambolle algo-
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rithm [73,74] in the case of TV regularization. Although there are methods in the liter-

ature to decide on the value 𝜌2 (or equivalently 𝛼) adaptively, these methods introduce

additional internal parameters to tune and can even negatively affect the convergence

properties of the ADMM algorithm [51]. Here we choose the regularization param-

eter 𝛼 in (3.18) by searching for its optimal value in the validation dataset between

10−5 and 10−1 in a coarse to fine fashion. For this, we first use logarithmic steps with

scale factors of 10. Once this coarse search is completed, we perform a linear search

between the two best-performing parameters to fine-tune the performance. In prac-

tice, since the parameter 𝛼 determines the amount of regularization, the selection of

its value is mostly affected by the SNR value for a spesific observation system. Hence,

in a real-world setting, its value can be determined through a prior calibration step.

Our results also showed that the performance of the tested methods is not highly sen-

sitive to the value of this regularization parameter and stays relatively constant within

a logarithmic scale.

We initialize each iterative algorithm with 𝐬0 = 𝐀𝐻𝐲
max(|𝐀𝐻𝐲|)

, and in each 𝐬-update-step,

the conjugate gradient algorithm is run for 5 iterations. TV and 𝓁1-based approaches

converge to a solution for a sufficiently large 𝜅 in (3.4). Accordingly, we choose 𝜅 =

5 ⋅104 and run the iterations until the stopping criterion is satisfied, which is when the

relative change ‖|𝐬|𝑙+1−|𝐬|𝑙‖2
‖|𝐬|𝑙‖2

drops below 5 ⋅ 10−4. Because the convergence of learned

PnP is an ongoing area of research and is not always guaranteed [75,76], we limit the

maximum number of iterations in the developed learning-based approach to 30. For

the choice of 𝜅, we search the optimal value using the validation dataset and set it

as 𝜅 = 5 ⋅ 102. Moreover, for real-world applications, automatic parameter selection

strategies similar to [77] would be highly useful during the calibration process.

To comparatively evaluate the performance of the developed approach, we first con-

sider the case with a medium SNR of 30 dB and a high compression level of 90%. This

corresponds to using 20 frequency steps between 4 and 16 GHz and is equivalent to

reconstructing the reflectivity cube with only 10% data. For the sample test image in

Fig.3.3, the reconstructions obtained with different approaches are illustrated in Fig.

3.5 using the same colormap. To quantitatively evaluate the performance, we also

provide 3D PSNR between the normalized reconstructed magnitudes, |𝐬̂|
max |𝐬̂|

, and the

ground truth magnitudes, |𝐬|, which is calculated as PSNR = 10 log10
(

1
MSE

)

where
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MSE = 1
𝑁
‖ |𝐬| − |𝐬̂|

max |𝐬̂|
‖

2
2 is the mean squared error. Although all algorithms recon-

struct a complex-valued reflectivity distribution, the reconstructed phase is not used

in this evaluation since it is random and does not contain any useful information. As

seen in Fig. 3.5, the developed learning-based approach provides the best image qual-

ity with a reconstruction closely resembling the ground truth and achieving a PSNR of

30.12 dB. On the other hand, TV reconstruction suffers from over-smoothing, whereas

𝓁1 based reconstruction contains speckle-like artifacts and an artifact cluster at the top.

The visual quality of KM and BP reconstructions are even worse with many more re-

construction artifacts due to noisy and compressed data, where KM performs slightly

better than BP.

BP KM 𝓁1 TV Proposed

(a) 20.76 dB (b) 22.08 dB (c) 25.42 dB (d) 26.13 dB (e) 30.12 dB

Figure 3.5: Sample reconstructions with 𝑀
𝑁

= 10% data (i.e. 90% compression

level) and 30 dB measurement SNR. Reconstructions obtained using different meth-

ods with their PSNR (dB) indicated underneath each figure. (Maximum projections

along each dimension and 3D rotating views are available for all reconstructions at

https://github.com/METU-SPACE-Lab/PnP-Regularization-on-Magnitude as video.)

To compare the reconstruction speed, average run-time of each method is computed

over 100 test scenes as given in Table 3.1. As seen, the developed approach is capable

of providing the best reconstruction quality with an average runtime of few seconds

and is the fastest method after the direct inversion-based approaches (which largely

fail). Moreover, TV and 𝓁1 regularized solutions take much longer time to compute.
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Table 3.1: Average Run-Time on 100 Test Scenes at 30 dB SNR and with 10% data.

BP KM 𝓁1 TV Proposed

Δ𝑡 13.4 ms 13.4 ms 29.6 s 21.2 s 3.66 s

3.3.2.1 Compression Level Analysis

We now analyze the effect of the compression level on the performance for the 30

dB SNR case. We consider compression levels of 97.5%, 95%, 92.5%, 90%, 85% and

80%, which respectively correspond to using 5, 10, 15, 20, 30, and 40 frequency steps

between 4 and 16 GHz, and are equivalent to reconstructing the reflectivity cube with

2.5%, 5%, 7.5%, 10%, 15% and 20% available data. Here the compression level of

97.5% is provided to show the breaking point of the proposed approach. For each

case, the average PSNR is computed for the 100 test scenes reconstructed and is given

in Table 3.2.

Table 3.2: Average PSNR on 100 Test Scenes for Different Amounts of Available

Data at 30 dB Measurement SNR.

𝑀
𝑁 2.5% 5% 7.5% 10% 15% 20%

Back-Projection 16.41 19.75 21.71 23.49 24.56 24.60

Kirchhoff Migration 18.43 21.18 22.95 24.51 25.41 25.42

𝓁1 Regularization 22.76 24.08 24.90 25.70 25.85 25.85

TV Regularization 19.20 22.26 24.18 26.26 26.45 26.46

Proposed Method 21.53 27.27 29.82 30.40 30.65 30.75

As seen from the table, the developed learning-based approach significantly outper-

forms the other approaches for all compression levels other than 97.5% (i.e. 2.5%

data). In particular, the average PSNR exceeds 30 dB when we perform a reconstruc-

tion with 10% or higher data. It is also interesting to observe that the performance

of the developed method at the 95% compression level (i.e. 5% data) with 27.27

dB PSNR is even better than the performance of all compared methods at the low-

est compression level (i.e. 20% data). At the 97.5% compression level with only 2.5%
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available data all methods fail to provide faithful reconstructions with PSNRs less

than 23 dB, which suggests that the information provided by this amount of data is

insufficient. As expected, all regularization-based approaches outperform the direct

inversion methods (BP and KM), especially at highly compressive settings. Moreover,

data-adaptive deep priors enable superior performance compared to hand-crafted ana-

lytical priors, TV, and 𝓁1. From these analytical priors, 𝓁1 starts to yield better perfor-

mance than TV at the compression levels higher than 90% (i.e. with less than 10% data

availability). From the direct inversion-based methods, KM consistently performs bet-

ter than BP and approaches the performance of 𝓁1 regularization at the increased data

availability rates. Because of this, from this point forward, we will omit the BP from

the visual comparisons and only present the results of KM. In general, the performance

of each method starts to increase slowly with the increased data availability rates be-

yond 15%. This suggests that the bottleneck on the measurement diversity becomes

the sparse MIMO array topology when the number of frequency steps exceeds 30.

For visual comparison, sample reconstructions obtained with 2.5%, 5%, 10%, and

20% data are also given in Fig. 3.6. As seen, for all approaches, the reconstruction

quality improves with the increasing amount of data. Moreover, we can observe that

KM is the most severely affected method by the amount of available data, and at high

compression levels its reconstruction suffers from large grating lobes. At compres-

sion levels corresponding to 5% and 2.5% data, TV reconstruction also contains large

artifacts in addition to the over-smoothing effect. On the other hand, although the

𝓁1-based method suffers from speckle-like artifacts, its performance does not change

much up until the highest compression level (corresponding to 2.5% data). For the

highest compression level, we see that 𝓁1 reconstruction is point-like and not an ex-

tended target. On the other hand, although the PSNR of the developed method is less,

it outputs an extended target that resembles the shape of the ground truth. After this

breaking point for the compression level, the proposed learning-based PnP method

yields almost artifact-free reconstructions for all other compression levels.
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𝑀
𝑁 KM 𝓁1 TV Proposed

20
%

(a) 25.02 dB (b) 25.42 dB (c) 26.10 dB (d) 31.07 dB

10
%

(e) 22.08 dB (f) 25.42 dB (g) 26.13 dB (h) 30.12 dB

5%

(i) 20.13 dB (j) 24.71 dB (k) 23.56 dB (l) 29.54 dB

2.
5%

(m) 17.09 dB (n) 22.54 dB (o) 19.98 dB (p) 21.77 dB

Figure 3.6: Sample reconstructions obtained for different amounts of available data,
𝑀
𝑁

= 2.5%,5%, 10%, 20%, at 30 dB measurement SNR. PSNR (dB) of each recon-

struction is indicated underneath.
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3.3.2.2 Noise Level Analysis

We now fix the available data to 10% and analyze the effect of SNR on the quality of

reconstructions. For this, we gradually drop the SNR from 30 dB to 0 dB with steps

of 10 dB. The average PSNR of each method is given in Table 3.3 at different SNRs.

As seen, the developed learning-based approach outperforms the other methods also

for all noise levels. In particular, the performance of the developed method even at

the lowest SNR case (i.e. 0 dB) with 28.31 dB PSNR is better than the performance

of all compared methods at the highest SNR case (i.e. 30 dB). Similar to the results

in the compression level analysis, all regularization-based approaches outperform the

direct inversion methods, and in the most ill-posed case with 0 dB SNR, 𝓁1 prior yields

better reconstruction than TV.

Table 3.3: Average PSNR on 100 Test Scenes for Different Measurement SNRs using

10% Data.

SNR 0 dB 10 dB 20 dB 30 dB

Back-Projection 22.20 23.35 23.48 23.49

Kirchhoff Migration 22.37 24.26 24.49 24.51

𝓁1 Regularization 25.40 25.69 25.70 25.70

TV Regularization 23.87 26.02 26.26 26.26

Proposed Method 28.31 29.28 30.12 30.40

In Fig. 3.7 sample reconstructions for 0 dB SNR case are given. Compared to the

reconstructions given in Fig. 3.5 for 30 dB SNR case, KM result is severely degraded

at this low SNR due to high noise amplification. On the other hand, 𝓁1 and TV-based

reconstructions still show some fidelity to the original image, but with more artifacts.

More importantly, even for this highly noisy and compressive observation setting, the

proposed learning-based PnP method is capable of providing a clean reconstruction

that maintains high fidelity to the ground truth.
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KM 𝓁1 TV Proposed

(a) 20.58 dB (b) 24.89 dB (c) 22.93 dB (d) 28.88 dB

Figure 3.7: Sample reconstructions with 𝑀
𝑁

= 10% data at 0 dB measurement SNR.

PSNR values are indicated underneath the figures.

3.3.3 Performance Analysis with Experimental Data

We now demonstrate the performance of the developed approach on real-world scenes

using experimental measurements available online [78,79]. These experimental mea-

surements were acquired for a scene that contains a toy revolver approximately 50 cm

away from a sparse MIMO array [79]. The used MIMO array has 16 transmit and 9

receive Vivaldi antennas that are distributed in a spiral configuration on the antenna

plane as shown in Fig. 3.8. The experimental measurements were recorded at 251

uniformly sampled frequencies from 1 to 26 GHz. We aim to infer the reflectivity dis-

tribution within a 30 cm× 30 cm× 30 cm image cube that contains the revolver.Similar

to [79], we choose the sampling interval as 0.5 cm along all three dimensions. This

results in an unknown image cube of 61 × 61 × 61 voxels.

0.30 0.15 0.00 0.15 0.30
x (m)

0.30

0.15

0.00

0.15

0.30

y 
(m

)

transmitter receiver

Figure 3.8: Spiral MIMO Array [79].
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Since our focus is on compressive imaging, we consider sparse frequency measure-

ments from the band of 4–16 GHz (similar to the simulated setting). In particular,

from the available data, we use 7 and 11 uniformly sampled frequencies between 4 and

16 GHz, which respectively correspond to compression ratios of 99.56% and 99.31%.

These are equivalent to reconstructing the reflectivity cube with only 0.44% and 0.69%

data, yielding to extremely compressive settings.

To reconstruct this real scene using the developed approach with deep prior as well

as with TV and 𝓁1 priors, we use the same 𝜅 parameters determined in the previous

simulated setting. For the choice of the regularization parameter 𝛼, we again perform

a search for the optimal value to obtain the best reconstruction quality. Moreover, the

parameter 𝜖 in (3.5) is empirically set to 1
√

10
‖𝑦‖2, which approximately corresponds to

measurement at 10 dB SNR. Additionally, since the maximum value of the reflectivity

magnitudes in the real scene can be different from the synthetic scenes used in training,

the reflectivity magnitude at each iteration is scaled with its maximum value prior to

entering to the denoiser (in order to fall into the range [0, 1]). Then the denoised

magnitude at the output of the denoiser is scaled back.

A photograph of the imaged toy revolver is shown in Fig. 3.9a. Note that although

this photograph provides a visual reference for comparisons, it does not represent the

ground truth reflectivity magnitudes. As an additional reference for comparisons, we

also obtain the KM reconstruction of the scene using the full frequency data available

(i.e. 251 frequency steps in the band 1-26 GHz), which corresponds to a highly over-

determined setting with 𝑀
𝑁

= 361.44% data availability. This full-data KM recon-

struction is given in Fig. 3.9b to reveal the general shape of the scene reflectivity. But

despite using all of the available data, it still contains widespread artifacts, especially

over the cross-range dimensions. This is the expected behavior of direct inversion

methods with sparse arrays due to the resulting aliasing [79].

Reconstructions obtained for two different compressive settings with 0.44% and 0.69%

data are shown in Fig. 3.10. It is seen that the developed approach with deep prior

provides the best results with the least amount of artifacts. In particular, KM recon-

structions suffer from significant grating lobes and aliasing on range direction (which

appears in the form of replication) resulting due to the sparsely sampled frequencies.
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(a) Photograph of the Toy Revolver [78, 79]

Full-Data Kirchhoff Migration

(b) (𝑀∕𝑁 =361.46%)

Figure 3.9: Imaged revolver and its reconstruction with full-data Kirchhoff Migra-

tion [78, 79] provided as visual reference. For the KM reconstruction, the left image

provides the 3D view of the image cube in linear scale, whereas the two images on the

right show front/side views in dB scale obtained by maximum projection of the image

cube onto the 𝑥 − 𝑦 and 𝑦 − 𝑧 planes, respectively.

Although not as prominent, similar replication artifacts on range direction are also

present in the results of hand-crafted regularization approaches. Most notably, TV re-

constructions fail to resolve aliasing and contain replicated silhouettes of the revolver.

While TV reconstructions perform visually better than KM, they perform poorly com-

pared to 𝓁1 regularization at these highly compressive settings (as similar with the

observations in the earlier analysis). In 𝓁1 regularized reconstructions, there are less

artifacts along the cross-range directions compared to TV, but the revolver appears

as eroded, and there are distributed speckle artifacts, which are more common along

the range direction (aligned with the locations of the aliasing artifacts in KM- and

TV-based solutions).

On the other hand, the proposed PnP approach with deep prior is capable of providing

a near-perfect reconstruction with only 0.69% data. Few aliasing artifacts occur over

the range direction at the higher compressed setting with 0.44% data. Nevertheless, in

both cases, the edges of the object are sharply reconstructed, and the frame, cylinder,

trigger guard, and muzzle of the revolver are all clearly visible. Hence the proposed

approach is much less prone to sparse sampling and aliasing, thanks to the power of

learned deep priors.
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Kirchhoff Migration (𝑀∕𝑁 = 0.44%) Kirchhoff Migration (𝑀∕𝑁 = 0.69%)

TV Regularization (𝑀∕𝑁 = 0.44%) TV Regularization (𝑀∕𝑁 = 0.69%)

𝓁1 Regularization (𝑀∕𝑁 = 0.44%) 𝓁1 Regularization (𝑀∕𝑁 = 0.69%)

Proposed Method (𝑀∕𝑁 = 0.44%) Proposed Method (𝑀∕𝑁 = 0.69%)

Figure 3.10: Reconstructions of the toy revolver, obtained with different methods at

two compressive settings using 7 (𝑀
𝑁

=0.44%) and 11 (𝑀
𝑁

=0.69%) frequency steps.

For each reconstruction, the left image provides the 3D view of the image cube in

linear scale, whereas the two images on the right show front/side views in dB scale

obtained by maximum projection of the image cube onto the 𝑥 − 𝑦 and 𝑦 − 𝑧 planes,

respectively.
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The proposed method not only provides the highest reconstruction quality but also

takes only 6 seconds (for the case with 0.44% data). Hence it is again the second fastest

method after KM which performs poorly. On the other hand, TV and 𝓁1 regularized

solutions suffer from significantly longer computation time, which are approximately

150 seconds.

Overall these real scene experiments demonstrate that the utilization of deep priors

in a plug-and-play algorithm enables state-of-the-art reconstruction quality even at

highly compressive experimental settings, while also yielding significantly reduced

run-time compared to hand-crafted analytical priors. Note that the learned prior is also

capable of representing unseen real-world objects, although the training has been per-

formed with synthetic and randomly generated much simpler extended targets. More-

over, even though this experimental observation setting (including antenna array type,

number of measurements taken, etc.) differs from the previously analyzed simulated

setting, our learning-based method can be directly used without re-training since it is

based on PnP framework (and not unrolling). Hence the proposed learning-based PnP

method is highly adaptable to experimental data and different observation settings.

3.3.3.1 Reconstruction at a Finer Spatial Resolution

We also test our approach’s performance at a finer resolution, for a datacube of size

151 × 151 × 151, within the same physical space (corresponding to 2mm resolution)

using 11 frequency steps. Since 3D rendering becomes difficult at this grid size, we

only provide the maximum projections of the obtained reconstruction in Fig. 3.11. As

seen in this figure, we do not observe any splitting behavior with increased spatial

resolution.

We expect the approach to provide similar performance at finer resolutions as long as

compression level (data availability) kept similar and finer resolution used also for the

training dataset. As the spatial resolution of the test object digresses away from the

training dataset’s resolution, the performance can inevitably be affected. However,

we still observe good performance for both with a grid size of 61 × 61 × 61 and

151 × 151 × 151, in spite of the fact that a grid size of 25 × 25 × 49 has been used for

the training dataset.
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(a) Projection onto the 𝑥 − 𝑦 plane.
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(b) Projection onto the 𝑦 − 𝑧 plane.

Figure 3.11: Reconstructed image of revolver of size 151 × 151 × 151 (with a 2mm

resolution) using 11 frequency steps .

3.4 Discussion

We have developed a novel and efficient plug-and-play approach that enables the re-

construction of 3D complex-valued images involving random phase by exploiting both

analytic and deep priors. Our approach provides a unified general framework to effec-

tively handle arbitrary regularization on the magnitude of a complex-valued unknown

and is applicable to various complex-valued image formation problems including SAR

and MIMO radar imaging with far- or near-field settings. Our development is based

on a general closed-form expression provided for the solution of a complex-valued

denoising problem with regularization on the magnitude. By utilizing this expression

in an ADMM framework, a computationally efficient PnP reconstruction method that

consists of simple update steps is obtained.

In this chapter, we applied the developed PnP method to near-field compressive MIMO

imaging for reconstruction of the 3D complex-valued scene reflectivities with random

phase nature. Within our PnP framework, we utilized a 3D deep denoiser to take

advantage of data-adaptive deep priors. To the best of our knowledge, our approach

is the first deep prior-based PnP approach demonstrated for near-field radar imaging.
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The effectiveness of our approach is illustrated under various compressive and noisy

observation scenarios in microwave imaging using both simulated and experimen-

tal data. The results show that the developed PnP approach with learned deep prior

achieves the state-of-the-art reconstruction quality at highly compressive settings with

a generalizability capability for unseen real-world objects and high adaptability to ex-

perimental data. The approach also has the advantage of reduced run-time and ap-

plicability to different observation settings without re-training due to its PnP nature.

Compared to approaches with analytical priors, it is also more robust to sparse data and

noise. We observe both with simulated and experimental data that frequency steps as

few as 10 provide sufficient measurement diversity for reconstruction of scenes with

average complexity. This is an important observation since earlier works generally

use hundreds of frequency steps for similar tasks. As expected the bandwidth is more

critical than the number of frequency samples taken within this band.

Lastly we note that although the developed PnP method is quite fast with a runtime on

the order of seconds, further acceleration and reduction in memory use can be achieved

by more efficiently computing the forward and adjoint operators, using methods like

fast multipole method (FMM) [16]. Moreover, exploring the performance of the de-

veloped method with different 3D denoiser architectures, and joint optimization of

the denoiser and MIMO array configuration may improve the reconstruction quality.

Enriching our training dataset can also help to improve the performance. Likewise,

utilizing a training dataset synthesized for a specific imaging task, such as a dataset

consisting of 3D models of concealed weapons, can allow the deep architecture to

better learn the task-oriented prior information and can improve the performance.
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CHAPTER 4

EFFICIENT PHYSICS-BASED LEARNED RECONSTRUCTION FOR

REAL-TIME IMAGING

4.1 Introduction

Existing traditional direct inversion methods in near-field MIMO radar imaging offer

fast computation but suffer from low image quality at compressive settings. On the

other hand, while regularized inversion methods can offer better reconstruction qual-

ity, they suffer from high computational cost which is undesirable in real-time appli-

cations. Recently, reconstruction techniques that exploit deep learning have emerged

as alternatives to these analytical approaches [25]. These methods are shown to simul-

taneously achieve high reconstruction quality and low computational cost for various

imaging problems [25–28].

To achieve high image quality with low computational cost, the deep two-stage (Deep2S)

and deep direct inversion (DeepDI) approaches were developed in [60] as novel deep

learning-based direct inversion methods that can be used in real-time applications.

These methods consist of two stages. In the first stage, the measurements are back-

projected to the image domain to obtain 3D intermediate reconstructions. For this,

the Deep2S approach utilizes the adjoint operation and is a physics-based approach.

On the other hand, the DeepDI approach replaces this physics-based first stage with

a fully connected layer and is a purely learning-based method. In the second stage of

both approaches, the intermediate reconstructions from the first stage are refined by a

DNN to obtain a magnitude-only reflectivity image. Different than the related learned

direct inversion methods in near-field MIMO radar that utilize 2D convolutional ker-

Some parts of this chapter have been published in [80].
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nels to process intermediate reconstructions [59], the DeepDI and Deep2S approaches

utilize CNNs that exploit 3D convolutions. This allows these approaches to exploit

range correlations more effectively, which is particularly important for reconstructing

extended 3D targets.

Although the performance of the Deep2S and DeepDI methods were tested for various

simulation settings in [60], their performance was not illustrated within an experimen-

tal setting. Here, we illustrate the performance with experimental data to demonstrate

applicability to real-world targets and measurements. Moreover, we comparatively an-

alyze the effect of complex-valued processing of intermediate reconstructions, as is the

case for some of the earlier works in the literature [55,57,58,81], with magnitude-only

processing, as used in the Deep2S approach. Additionally, we develop an extension

of the Deep2S approach and improve its performance by casting the adjoint operation

associated with the MIMO array to a fully trainable complex-valued layer, thus creat-

ing a novel hybrid approach between DeepDI and Deep2S. Furthermore, we investi-

gate the resolution achieved with the Deep2S approach at compressive MIMO imag-

ing settings and compare this to the expected theoretical resolution for the conven-

tional (non-compressive) settings. The source codes and dataset used in this chapter

are made available at https://github.com/METU-SPACE-Lab/Efficient-Learned-3D-

Near-Field-MIMO-Imaging.

The main contributions of this chapter can be summarized as follows:

∙ Comparative performance evaluation by changing magnitude-only processing

with complex-valued processing,

∙ Development of a learned reconstruction method by casting the adjoint opera-

tion associated with the MIMO array to a fully trainable complex-valued layer,

∙ Resolution analysis with sparse MIMO arrays,

∙ Performance analysis with experimental data.

This chapter is organized as follows. First, the Deep2S and DeepDI approaches are

explained in Section 4.2. Section 4.3 provides comparisons of different network archi-

tectures, where we also develop a novel hybrid approach between Deep2S and DeepDI.
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In Section 4.4 we illustrate the performance of the methods with both simulated and

experimental measurements. This section also presents resolution analysis. In Section

4.5, conclusions, and final remarks are provided.

4.2 Existing Learned Direct Inversion Methods

In this section, the Deep2S and DeepDI approaches [60] are reviewed. The main goal

of these approaches is to achieve high image quality with low computational cost so

that the methods can be used in real-time applications. Learning-based direct inver-

sion methods enable such capabilities. For this reason, the Deep2S and the DeepDI

approaches are based on learned direct reconstruction [26–28, 82, 83].

The Deep2S approach is a physics-based learned reconstruction method with a two-

stage structure as shown in Fig. 4.1a. Here the first stage is an adjoint operation that

exploits the physics-based model to provide an initial reconstruction, and the second

stage is a 3D U-Net denoiser for refinement. On the other hand, the DeepDI approach,

shown in Fig. 4.1b, replaces the physics-based first stage with a fully connected layer

and processes the real and imaginary parts of the measurements directly. Hence, this

approach aims to perform the reconstruction using only deep neural networks and does

not use the physics-based model.

Deep2S

DNN

(a) Block Diagram of the Deep2S Approach.

DeepDI

DNNFC

(b) Block Diagram of the DeepDI Approach.

"FC" denotes a single fully connected layer.

Figure 4.1: Block diagrams of the Deep2S, DeepDI approaches [60, 80].

The deep neural network utilized in [60] is illustrated in Fig. 4.2, which is similar to

the 3D deep denoiser utilized in Chapter 3. The network architecture has encoding

and decoding paths which respectively contain the repeated application of 3D convo-

lution, and 3D upconvolution blocks. The number of channels is indicated above each

block in the figure where the channels involve filters of size 3 × 3 × 3. These con-
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volutional layers are followed by batch normalization (BN) and rectified linear unit

(ReLU). While the encoding path contains 2 × 2 × 2 max-pooling layers with strides

of two to decrease the spatial size, the decoding path involves upconvolutions with

strides of 2 in each dimension to increase the spatial size. Because the input of the

network is chosen to be of size 25 × 25 × 49 voxels in x, y, and z directions, cropping

is first performed to arrive at the size 24×24×48 so that spatial size reduction can be

performed through 2 × 2 × 2 max-pooling operations. In the decoding path, there are

also concatenations with the cropped feature maps from the encoding path as shown

with the padding arrow in Fig. 4.2. Hence both the input and output of the network

are of size 25 × 25 × 49. Lastly, the output of the network is followed by a sigmoid

function to normalize the magnitudes between 0 and 1. The total number of parame-

ters in this 3D U-Net architecture is 2,873,153, which is more than twice the number

of parameters of the network in Fig. 3.2.

Figure 4.2: Block diagram of the 3D U-net used in [60, 80].

In this chapter, for a fair comparison with the results in [60], we use this original 3D

U-Net architecture.

4.3 Improvements and Modifications

In this section, we modify the Deep2S and DeepDI approaches with the goal of ana-

lyzing the effect of different architectures on the reconstruction performance.
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4.3.1 Improvement on the First Stage

As the first modification, we replace the adjoint operation in the first stage of the

Deep2S approach with a fully connected trainable layer to perform multiplication with

a learned matrix instead of adjoint matrix. Here, our goal is to analyze whether multi-

plication with a learned matrix provides better performance than multiplication with

the adjoint matrix (𝐀𝐻 ) to form the intermediate reconstruction.

Utilizing this trainable layer followed by magnitude operation as the first stage, we

obtain a hybrid approach between DeepDI and Deep2S, and call it Deep2S+, where

its block diagram is shown in Fig. 4.3. In this setting, we exploit the physics-based

information to initialize the weights of the fully trainable model, which reduces the

need for substantial training data.

Deep2S+

FC DNN

Figure 4.3: Block Diagram of the Deep2S+. "FC" denotes the trainable fully con-

nected layer, which replaces multiplication with the complex-valued adjoint matrix.

The first stage of Deep2S+ serves to project the complex-valued measurements to the

image space by performing a linear operation as follows:
[

𝐯𝑅
𝐯𝐼

]

=

[

𝐏𝑅 −𝐏𝐼

𝐏𝐼 𝐏𝑅

][

𝐲𝑅
𝐲𝐼

]

(4.1)

Here 𝐲𝑅 = ℜ{𝐲}, 𝐲𝐼 = ℑ{𝐲} ∈ ℝ𝑀 are real and imaginary components of the

measurements, 𝐏𝑅,𝐏𝐼 ∈ ℝ𝑁×𝑀 represent the real and imaginary components of the

applied matrix, and similarly 𝐯𝑅, 𝐯𝐼 are real and imaginary components of the result.

This operation simply corresponds to the multiplication of the complex-valued mea-

surements with a complex-valued matrix, and is similar to the operations used for the

construction of complex-valued convolutional neural networks [55,81]. The trainable

parameters of this layer are 𝐏𝑅 and 𝐏𝐼 . Here to exploit physics-based information, we

initialize the projection layer in the first stage using 𝐀𝐻 , i.e. by setting 𝐏𝑅 = ℜ{𝐀𝐻}

and 𝐏𝐼 = ℑ{𝐀𝐻}. Note that this initialization provides the adjoint result as output.
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Therefore, at the beginning of the training of Deep2S+, we exactly have the Deep2S,

and the goal is to improve both the first and second stages of the Deep2S through

training (hence the name Deep2S+).

Note that both DeepDI and Deep2S+ are purely DNN-based approaches. But while

the first stage of DeepDI independently processes the real and imaginary components

of the measurements to form an intermediate reconstruction for the image magni-

tude, Deep2S+ jointly processes these components (similar to Deep2S) to form a

complex-valued intermediate reconstruction (whose magnitude is then input to the

second stage). The total number of parameters in Deep2S+ approach is equal to

146,198,153 (hence 2 fold increase compared to DeepDI which has 76,013,778 num-

ber of trainalbe parameters).

4.3.2 Modification on the Second Stage

As the second modification, we provide the complex-valued intermediate reconstruc-

tions as input to the DNN instead of providing only their magnitudes. The goal here

is to investigate whether processing the complex-valued intermediate reconstructions,

as done in some of the earlier works [55, 57, 58, 81], increases the imaging quality

over only processing the magnitude. Compared to the earlier works that refine the

intermediate reconstructions in complex-valued form by either processing real and

imaginary parts as two independent channels or using complex-valued CNNs (with a

larger number of trainable parameters), the Deep2S approach simply processes only

the magnitudes of intermediate reconstructions by taking into account the random

phase nature of the reflectivities in various applications. To the best of our knowl-

edge, there is no work that compared the performance of complex-valued refinement

with magnitude-only refinement to reconstruct reflectivities involving random phase,

and showed the superiority of one of them to the other. For this reason, we perform

this comparative evaluation that has been missing in the earlier works.

To process complex-valued intermediate reconstructions, we remove the magnitude

operation from the first stage of Deep2S. Instead, we provide the complex-valued rep-

resentation as input to the 3D U-Net after normalizing it with its magnitude. The

first layer of the 3D U-Net is hence modified to accept two-channel input, which con-
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sists of the real and imaginary components of the complex-valued intermediate recon-

struction. The resulting U-Net architecture contains 2,874,017 parameters (which is

slightly larger than before). This type of complex-valued refinement is often referred

as RV-CNN in the earlier radar imaging works. Here we call this modified version of

Deep2S as CV-Deep2S (Complex-Valued Deep2S).

4.4 Analyses and Comparative Evaluation

For our analyses and simulations, we use the same simulation setting in Chapter 3,

where the scene of interest is cube-shaped with a sidelength of 0.3 m. As the sparse

MIMO array topology, we again use the same Mills Cross array in Fig. 3.4. The target

center is located approximately 0.5 m away from the 2D MIMO array in its near-field.

The frequency, 𝑓 , is swept between 4 GHz to 16 GHz with uniform steps. In the

numerical simulations, the number of frequency steps is selected as 15. Considering

the theoretical resolution for the uncompressed setting we choose the voxel size as

1.25 cm × 1.25 cm × 0.625 cm in 𝑥, 𝑦, and 𝑧 dimensions as in the previous chapter.

Therefore, the reflectivity image that we want to infer contains 25 × 25 × 49 voxels in

𝑥, 𝑦, and 𝑧 directions, respectively.

4.4.1 Training of the Deep Architectures

The training is performed using the synthetically generated dataset used in Chapter 3

with ground truth / noisy measurement pairs. We simulate noisy measurements as-

sociated with the random-phase added scenes at 30dB SNR and 15 frequency steps

using the forward model in (2.8). The implementation and training are performed

with TensorFlow [84]- Keras [85]. As the loss function, we use the mean square error

between the 3D ground truth magnitudes and the 3D reconstructed magnitudes. The

default Adam optimizer [72] is used with an initial learning rate of 10−3. The batch

size is set to 16, and the maximum number of epochs is set to 100. The early stopping

criterion is selected as 15 consecutive epochs with no drop in validation loss.

We apply transfer learning from the original pre-trained Deep2S [60] for Deep2S+ and

initialize the 3D U-Net architecture in the second stage with the pre-trained model of
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the same setting. Since the second stage of CV-Deep2S and the Deep2S architectures

differ, we train the CV-Deep2S architecture from the start.

4.4.2 Performance Analysis with Simulated Data

The average performance of DeepDI, CV-Deep2S, Deep2S, and Deep2S+ are shown

in Table 4.1. Here, in addition to the PSNR, we also compute the structural similarity

index (SSIM) [86] of the reconstructions. SSIM is a perceptual quality metric, and

similar to PSNR, a higher SSIM value indicates a better reconstruction or higher simi-

larity between the reconstructed and the ground truth images. Since the reconstructed

images are 3D, we compute the SSIM for each two-dimensional slice over the range

direction and then take its average value.

Table 4.1: Average PSNR and SSIM Values for 15 Frequency Steps at 30dB SNR for

Different Network Architectures

DeepDI CV-Deep2S Deep2S Deep2S+

23.40 / 0.81 29.80 / 0.80 29.20 / 0.93 29.40 / 0.95

As seen, the performance increase with Deep2S+ compared to DeepDI is substan-

tial, which illustrates the significance of utilizing physics-based information to give a

head-start to a fully trainable architecture. Deep2S+ also provides improvement over

Deep2S with a higher PSNR and SSIM, which shows that the training improved the

first and second stages of the Deep2S. On the other hand, although the average PSNR

of CV-Deep2S exceeds Deep2S and Deep2S+, its average SSIM is substantially lower

and even less than DeepDI. This suggests that processing the intermediate reconstruc-

tions in complex-valued form (instead of magnitude) does not yield an improvement

on the performance.

Compared to the average PSNR achived with the PnP method developed in Chapter 3,

the average reconstruction PSNR of Deep2S+ is 0.4dB lower for the same simulation

setting with 15 frequency steps and 30 dB SNR. On the other hand, this method offers

fast computation with a runtime in the order of milliseconds, whereas the developed
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PnP method has a runtime in the order of seconds, which can be critical for real-time

imaging. Moreover, while PnP method requires hyper-parameter selection, Deep2S+

do not require this. On the other hand, the developed PnP method can be used for

different imaging systems without requiring re-training while Deep2S+ requires re-

training. Hence slight performance degradation for Deep2S+ may be tolerated de-

pending on the application of interest and its requirements.

To also visually evaluate the performance, DeepDI, CV-Deep2S, Deep2S, and Deep2S+

reconstructions are illustrated in Fig. 4.4 for a sample image cube from the test dataset.

As seen, CV-Deep2S reconstruction contains artifact clusters, especially around 𝑧 =

0.57 plane, while Deep2S and Deep2S+ reconstructions are mostly artifact-free. While

the highest PSNR is achieved by CV-Deep2S for this sample image, SSIM is substan-

tially lower compared to the other two (similar to the average performance in Ta-

ble 4.1). Compared to Deep2S and CV-Deep2S, Deep2S+ better reduces the artifacts

along the z-axis arising due to under-sampling (as seen in the maximum projection

onto the 𝑦 − 𝑧 plane), but slightly suffers from over-smoothing (which might be due

to being fully adapted to the training data). These results, along with Table 4.1, sug-

gest that processing the complex-valued intermediate reconstructions does not yield

increased image quality as compared to magnitude-only processing.

4.4.3 Performance Analysis with Experimental Data

After our analysis using simulated data, we now demonstrate the performance of the

Deep2S approach with experimental measurements of the toy revolver [78, 79] used

in Chapter 3. Note that the MIMO array used for these experimental measurements,

shown in Fig. 3.8, differs from the Mills Cross array used for the simulated data.

Although this difference was not an issue for the developed PnP approach in terms

of imaging performance, a different imaging geometry from the simulations requires

re-training of the Deep2S approach for operation without a model mismatch. This

is because the DNN used in the Deep2S approach acts as an artifact remover whose

input-output relation is dependent on the MIMO array geometry.

For this experimental setting, we choose the voxel size the same as the simulated

setting (i.e. 1.25cm×1.25cm×0.625cm). Then the reflectivity image that we want
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Figure 4.4: Reconstructions of the first test image of the synthetically generated

dataset at 30 dB SNR (Number of Frequency Steps: 15, 𝑀∕𝑁 = 7.5%) using different

architectures. The PSNR (dB) and SSIM of reconstructions are indicated underneath

each figure. The first row provides the 3D view of the image cube in linear scale

whereas the second and third rows show front/side views in dB scale obtained by

maximum projection of the image cube onto the 𝑥 − 𝑦 and 𝑦 − 𝑧 planes, respectively.

(3D rotating views of these reconstructions can be found at https://github.com/METU-

SPACE-Lab/Efficient-Learned-3D-Near-Field-MIMO-Imaging as video.)
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to infer consists of 25 × 25 × 49 voxels in 𝑥, 𝑦, and 𝑧 directions, respectively. For

measurements, 15 uniform frequency steps between 4 GHz and 16 GHz are used as

before. As a result, the goal is to reconstruct the unknown reflectivity image with

∼ 7% data (𝑀∕𝑁) in this compressive MIMO imaging case.

To reconstruct from experimental data, we re-train CV-Deep2S by utilizing the 800

random phase added training images and simulating measurements with the forward

model for the used spiral array at 30dB SNR. We also re-train the Deep2S and Deep2S+

models for this measurement setting using transfer learning from the models trained

for the cross-array setting. To additionally investigate the performance of the Deep2S

with a model mismatch, we use the trained Deep2S model for the cross-array setting

without re-training for the spiral array case and call this Deep2S*.

The experimental results are shown in Fig. 4.5, where we also provide the adjoint

operation outputs to visually assess the artifacts removed from the intermediate first

stage reconstruction. As seen, the reconstruction with adjoint contain widespread vol-

ume artifacts, similar to the direct inversion results in Chapter 3. These large artifacts

are especially distributed over the cross-range dimensions, which are mainly due to

under-sampling with the sparse MIMO array and is related to spatial aliasing [79].

The adjoint result also contains significant artifacts along the range direction (espe-

cially around the 𝑧 = 0.65m and 𝑧 = 0.55m planes), which is mainly related to the

sparsely sampled 4-16 GHz frequency band. On the other hand, all of the deep learn-

ing based approaches substantially reduce these widespread artifacts present in the

adjoint reconstruction.

In particular, with Deep2S, the reconstructed revolver is clearly separated from the

scene background as desired. It provides a clean and sharp image with a very high

dynamic range and contrast, and hence yields the highest imaging quality among the

tested methods. Compared to the adjoint operation and Deep2S* involving model

mismatch, both the side-lobe artifacts and range artifacts are substantially reduced

through re-training for the spiral array setting with simulated data. This illustrates

that Deep2S has some flexibility to be used in experimental settings that are different

from the trained one; but when the amount of artifacts in the adjoint result significantly

changes compared to the trained setting, it benefits from re-training for the new obser-
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Adjoint Operation

CV-Deep2S Deep2S*

Deep2S Deep2S+

Figure 4.5: Reconstructed reflectivity magnitudes using 15 frequency steps. Deep2S*

shows the reconstruction with model mismatch, i.e. the Deep2S model that utilizes

the 3D U-Net trained on the Mill’s Cross array. For each reconstruction, the left image

provides the 3D view of the image cube in linear scale, whereas the two images on the

right show front/side views in dB scale obtained by maximum projection of the image

cube onto the 𝑥 − 𝑦 and 𝑦 − 𝑧 planes, respectively.
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vation setting, as expected. Moreover, compared to CV-Deep2S, Deep2S appears to

better preserve the shape of the revolver and also yields less artifacts. Hence similar

to the simulated case, we again observe with experimental data that directly process-

ing the complex-valued intermediate reconstructions does not provide improvement

over only processing the magnitudes, and even seems to reduce the generalizability of

the approach. Lastly, although Deep2S+ reconstruction is nearly identical to that of

Deep2S, similar to the simulated setting, we also provide its reconstruction for com-

pleteness.

4.4.4 Resolution Analysis

The resolution of a near-field MIMO imaging system is characterized in a conven-

tional observation setting for a non-sparse antenna array and non-sparse frequency

sampling [9]. However, as well-known, the reconstruction quality and resolution de-

grade in compressive settings with limited data. This is the case here since the data

is acquired with a sparse MIMO array at few frequency steps. Here we investigate

the resolution achieved with the Deep2S approach at compressive settings and com-

pare this to the expected theoretical resolution for the conventional (non-compressive)

setting. For this, firstly, we perform conditioning-based resolution analysis (similar

to [87]) using only the observation matrix, which is independent of the reconstruc-

tion method. Secondly, we consider multiple separated point targets as sample scenes

and demonstrate the resolving capability of the Deep2S approach by analyzing the

reconstructed images.

In the first analysis, we consider the conditioning of the inverse problem where the

goal is to estimate the values of multiple separated point targets whose locations are

known when 15 frequency steps are used. Note that if this problem cannot be properly

solved (owing to high condition number), the original reconstruction task of estimat-

ing both the value and location of the point targets will also not be possible to solve.

Based on this fact, we investigate the condition number of the mentioned inverse prob-

lem, which is characterized by the condition number of the submatrix obtained from

the observation matrix 𝐀 by only keeping the columns associated with the locations

of the considered point targets. For this, we consider scenes containing 2 or 4 point
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targets with different separation distances. The targets lie on the middle slice of the

image cube along the range direction, and are placed with same distance to the center

of the 𝑥−𝑦 plane (as an example, see Fig. 4.7a). The horizontal and vertical separation

of the targets are changed from 1cm to 20cm with 1cm steps. Figure 4.6 shows the

condition number of the submatrices of 𝐀 for these cases. As expected, conditioning

gets worse as the number of point targets increases, or their separation distance de-

creases. More importantly, condition number appears to saturate when the separation

distance is increased to 5-6 cm, which suggests that achievable resolution is close to

these values. This corresponds to almost 2-fold worse resolution in our compressive

setting with only ∼ 7.5% data compared to the expected theoretical resolution of the

conventional non-compressive setting (i.e. 2.5 cm).

Figure 4.6: Conditioning of the relevant submatrices of𝐀 for different number of point

sources and separation distances.

In the second analysis, we investigate the resolving capability of our approach by an-

alyzing the reconstructed images for scenes containing multiple point targets. For

this, we place 4 point targets onto the middle 𝑧 = 50cm plane, and 2 point targets

along the z axis, with different separation distances as shown in Fig. 4.7. The re-

constructions obtained for the observation setting with 30 dB SNR and 15 frequency

steps are also shown in the same figure together with the maximum value projected

2D plots of these scenes. As seen, our approach manages to resolve targets separated

by a distance of nearly 5cm along the cross range directions, and 2.5cm along the
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(a) Cross-Range Resolution Analysis at 𝑧 = 50cm plane
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(b) Range Resolution Analysis at 𝑥, 𝑦 = 0cm line.

Figure 4.7: Demonstration of resolution using point targets at SNR = 30 dB (Number

of Frequency Steps: 15). Separation distance along 𝑥/𝑦 directions (𝛿𝑥,𝑦) and along 𝑧

direction (𝛿𝑧) are indicated on the left for each row. Front/side views are shown, which

are obtained by maximum projection of the image cube onto the x-y and y-z planes,

respectively.
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range direction. Hence, similar to the conditioning-based analysis, there is almost

2-fold worse resolution in this compressive setting with only ∼ 7.5% data compared

to the expected theoretical resolution of the conventional non-compressive and noise-

free setting. However, note that these results are obtained purely based on unrealistic

scenes containing point targets, which do not exist in our training dataset that only con-

tains extended 3D targets to mimic the real-world objects. We feel the results of this

analysis may change without much change in the achievable resolution for real-world

objects by enriching the training dataset with scenes containing point targets.

4.5 Discussion

From the analyzed approaches, the Deep2S method exploits the physics-based knowl-

edge by utilizing the adjoint of the forward model in its first stage. The adjoint oper-

ation has the benefit of fast computation due to its non-iterative nature. For compari-

son, the DeepDI approach replaces the physics-based first stage with a fully connected

neural network. In this two-stage structure, the reconstruction is performed directly

from the radar measurements using only neural networks, and the observation model

is not used. To investigate whether multiplication with a learned matrix provides bet-

ter performance than multiplication with the adjoint matrix to form the intermediate

reconstructions, we developed a hybrid approach, Deep2S+. This method replaces

the adjoint operation in the first stage with a fully connected layer, which is learned

through transfer learning from the adjoint matrix. All adjustable parameters of the de-

veloped approaches are learned end-to-end, which avoids the difficulties of parameter

tuning that exist in sparsity-driven compressed sensing recovery methods.

Our comparative results demonstrate that processing the intermediate reconstructions

in complex-valued form (instead of magnitude) does not yield an improvement on the

performance. It has been observed that both Deep2S and Deep2S+ methods are ca-

pable of providing high-quality reconstructions even with highly under-sampled data

while enabling fast reconstruction, which show promise for real-time compressive

imaging applications.
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CHAPTER 5

JOINT OPTIMIZATION OF MIMO ARRAYS AND RECONSTRUCTION

METHODS

5.1 Introduction

In near-field radar imaging, reconstruction of the 3D complex-valued scene reflectivity

is commonly performed using the data acquired with sparse arrays. Consequently, the

design of the array topology greatly affects the reconstruction quality. Accordingly,

there has been a significant effort in the radar imaging literature to design and optimize

antenna arrays to yield better reconstruction quality [5, 8, 19–24].

The studies on improving or developing radar arrays for near-field imaging can be

grouped into two categories. These are heuristic [5,19,21], and metric-based designs

[8,19,20,22–24,40]. The difference between the former and the latter comes from the

design process, where the heuristic procedure evaluates the performance only after

the design is completed.

The heuristically designed arrays are commonly evaluated by their focusing perfor-

mance or by the distribution of their virtual antennas (such as element shadowing

over rotational angles) [5, 19, 21]. The optimality of these heuristic designs with re-

spect to the tested performance criteria is commonly not demonstrated [20], and as

a result open to further analysis. Consequently, as metric-based alternatives, these

performance criteria are used as ad-hoc metrics within optimization frameworks to

yield optimized designs. Most works in this category optimize parametrized antenna

positions by relying on black-box optimization methods such as evolutionary algo-

rithms [24, 41] or grid-search [22, 40]. Another systematic approach for designing

MIMO arrays is optimizing the array parameters to improve the reconstruction quality
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of a particular reconstruction algorithm evaluated on a dataset [8, 20, 23]. The strate-

gies used for this purpose include greedy search for the antenna locations [8], and

gradient-based optimization strategies to obtain a binary sampling pattern for antenna

positions [20, 23] or directly optimizing a set of antenna coordinates as continuous-

valued parameters [23].

Recent advancements in computational imaging have shown that imaging performance

can be improved significantly by jointly optimizing the reconstruction algorithm and

the parameters of the observation system in an end-to-end (E2E) fashion [20, 23, 40,

42–48]. Some of the jointly optimized systems in the literature include diffractive

lenses [42], coded apertures [44] or programmable masks [45] for computational op-

tics, subsampling patterns for undersampled MRI [46], illumination patterns for com-

putational microscopy [47], and seismic acquisition geometry for geoscience appli-

cations [48]. Similarly, there are some works in near-field radar imaging for E2E

optimization, notably [20, 23, 40].

The key challenge of E2E optimization of MIMO arrays for 3D imaging is the compu-

tational and memory requirements to store the observation model and to simulate the

measurements. Given the sheer number of voxels of the discretized 3D scene and the

number of measurements by the virtual antenna elements, the effective use of discrete

optimization methods for the antenna locations by the use of coded masks [23, 40] is

not feasible for this problem. On the other hand, optimizing a set of antenna positions

as continuous-valued parameters can provide a more viable alternative [20].

In this chapter, we develop a general efficient E2E optimization framework to jointly

optimize MIMO arrays and reconstruction methods for 3D near-field imaging. For

this, we treat the transmit and receive antenna positions as continuous-valued param-

eters and enforce them to lie within the antenna aperture. We demonstrate the gener-

ality of the developed E2E optimization framework by jointly optimizing the antenna

arrays for different reconstruction methods, such as Kirchhoff migration [11], adjoint

operation [12, 60], unrolled 𝓁1 regularization [29, 63], and Deep2S [60], which can

prove useful for different applications. Our results suggest that the optimized arrays

not only offer better reconstruction quality compared to the commonly used MIMO

arrays but also are more versatile to be used with different imaging algorithms.
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Compared to the work in [20], which develops a similar continuous valued joint op-

timization method for 2D near-field MIMO imaging, our formulation takes the aper-

ture boundaries into account and is developed for 3D imaging. While the referenced

method concentrates on joint optimization of the receiver antenna positions and the

weights of a deep learning-based direct inversion method, in our work, we perform

joint optimization for both transmit and receive antennas and demonstrate the results

using four different imaging algorithms. Additionally, instead of utilizing oversam-

pled beamforming outputs as the target images; we utilize a synthetic dataset con-

sisting of 3D extended targets. This allows us to fine-tune the system and algorithm

parameters against ground truth images, potentially achieving performance improve-

ments beyond the oversampled direct reconstruction, as demonstrated in Chapter 3.

The main contributions of this chapter can be summarized as follows:

∙ Development of a novel generic E2E optimization method for 3D near-field

radar imaging,

∙ New MIMO array configurations optimized specifically for traditional direct

reconstruction, regulized reconstruction, and deep-learning based direct inver-

sion,

∙ Performance comparisons of the commonly used MIMO arrays with different

reconstruction algorithms.

This chapter is organized as follows. In Section 5.2 we formalize the joint optimization

as a constrained minimization problem and develop our solution approach. We also

explain the reconstruction algorithms utilized within our joint optimization frame-

work here. Section 5.3 presents the implementation details and includes analyses of

the utilization of different numbers of transmitter and receiver antennas and the re-

construction performance with different optimized arrays. Lastly, we conclude this

chapter with Section 5.4 by providing the final remarks.
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5.2 Developed Method

This section demonstrates the developed framework for jointly optimizing the param-

eters of the MIMO imaging system and the parameters of imaging algorithms.

5.2.1 Joint Optimization Problem

In the joint optimization problem, our goal is to concurrently optimize both the pa-

rameters of the imaging algorithm, denoted by 𝜃, and the parameters of the MIMO

array, denoted by 𝜇.

We formulate this joint optimization as a constrained minimization problem as fol-

lows,

𝜃̂, 𝜇̂ = argmin
𝜃,𝜇

∑

𝐬∈𝜒

1
𝑁𝜒

(𝐬, 𝐬̂) (5.1)

subject to 𝐬̂ = 𝜃,𝜇(𝐀𝜇𝐬 + 𝐰) , 𝜇 ∈ Ω (5.2)

where 𝜒 denotes the training dataset consisting of 𝑁𝜒 number of random phase added

3D extended targets and (⋅, ⋅) is the cost function computing the fidelity of the re-

constructed reflectivity values 𝐬̂ to the ground truth reflectivity values, 𝐬. Moreover,

𝜃,𝜇 and 𝐀𝜇 respectively denote the utilized reconstruction algorithm and the forward

model matrix, where their dependency on the algorithm and system parameters are

explicitly indicated with subscripts, 𝜃 and 𝜇. Lastly, Ω denotes the set of feasible

solutions for the parameters of the observation system.

The number of trainable parameters of learned reconstruction methods is, in general,

on the order of millions. This limits the efficient use of most second-order optimization

approaches for this large-scale problem. Accordingly, we use a first-order gradient-

based method to solve this optimization problem.

To solve the minimization problem in (5.1) we use projected gradient descent [88]
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whose iterations are given by,

𝜃𝑙+1 = 𝜃𝑙 − 𝜂𝜃
𝜕
𝜕𝜃𝑙

(

1
𝑁𝜒

∑

𝑠∈𝜒
(𝐬, 𝐬̂)

)

(5.3)

𝜇𝑙+1 = ProjΩ

(

𝜇𝑙 − 𝜂𝜇
𝜕
𝜕𝜇𝑙

(

1
𝑁𝜒

∑

𝑠∈𝜒
(𝐬, 𝐬̂)

))

(5.4)

where 𝜂𝜇 and 𝜂𝜃 are the step-size parameters for the observation system and algorithm

parameters, respectively. ProjΩ(⋅) denotes the projection operator given by

ProjΩ(𝜇̄) ≜ argmin
𝜇

‖𝜇̄ − 𝜇‖2 s.t. 𝜇 ∈ Ω. (5.5)

and is equivalent to the proximal mapping of an indicator function that enforces the

system constraints.

In this work, we only optimize the transmit and receive element positions. As a result,

Ω denotes the area that lies within the antenna aperture, and the projection operator

corresponds to correcting the positions of antennas if they lie outside the aperture by

assigning the closest point to their position inside the aperture. For instance, for an

antenna aperture at the 𝑧 = 0 plane, if the 𝑥 − 𝑦 coordinates of the antennas, 𝑥𝑎 and

𝑦𝑎, take values in the intervals 𝑥𝑎 ∈ [−ℎ
2
,+ℎ

2
], 𝑦𝑎 ∈ [−ℎ

2
,+ℎ

2
], then the projected

coordinates would be computed as follows,

𝑥𝑝𝑟𝑜𝑗.
𝑎 =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

+ℎ
2
, if ℎ

2
< 𝑥𝑎

𝑥𝑎, if − ℎ
2
≤ 𝑥𝑎 ≤

ℎ
2

−ℎ
2
, if 𝑥𝑎 < −ℎ

2

and 𝑦𝑝𝑟𝑜𝑗.𝑎 =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

+ℎ
2
, if ℎ

2
< 𝑦𝑎

𝑦𝑎, if − ℎ
2
≤ 𝑦𝑎 ≤

ℎ
2

−ℎ
2
, if 𝑦𝑎 < −ℎ

2

. (5.6)

5.2.2 Utilized Reconstruction Methods

We perform joint optimization when using the commonly used analytic direct in-

version methods such as Kirchhoff migration [11] and adjoint operation [12, 60], 𝓁1

regularization in the form of unrolled iterative shrinkage thresholding algorithm (U-

𝓁1) [29, 63], and physics-based learned direct reconstruction, namely, the Deep2S

approach [60].

The learnable parameters of the reconstruction algorithm, 𝜃, differ for each of the

utilized algorithms. As traditional direct inversion methods, the KM algorithm and
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the adjoint operation do not require optimizaiton. On the other hand, as an iterative

regularization-based method, U-𝓁1 requires setting the step size and regularization

parameters. Similarly, as a physics-based learned direct inversion method, the Deep2S

approach requires the weights of the utilized DNN architecture to be learned.

For U-𝓁1, to improve the imaging performance, we utilize 𝐿 independent learnable

step-size parameters for each unrolled iteration [63]. Similarly, as the optimum regu-

larization parameter depends on the imaging setting, we jointly learn 𝐿 independent

soft threshold parameters for each unrolling step.

For the second stage of the Deep2S approach, we utilize a 3D U-net architecture, which

is the modified version of the U-net shown in Fig. 3.2. This modified architecture

inputs only the magnitudes of the 3D intermediate reconstructions. Hence, the total

number of parameters of this network is 1,356,641, which is slightly less than the 3D

U-net used in Chapter 3 with 1,357,505 parameters.

5.3 Experiments and Results

In our simulations, we consider the same microwave imaging setting investigated in

Chapter 3 and Chapter 4, where the scene of interest has a physical dimension of

30 cm × 30 cm × 30 cm, and its center is located 50 cm away from the antenna ar-

ray. The simulated MIMO array is planar and square-shaped with a side length of 30

cm. The operating frequency, 𝑓 , is swept between 4 GHz and 16 GHz with 15 uni-

form steps. Accordingly, we again choose the image voxel size as 1.25 cm along 𝑥,

𝑦 directions, and 0.625 cm along 𝑧 direction with the goal of achieving the expected

theoretical resolution [9]. For the scene of interest, this results in an image cube of

25 × 25 × 49 voxels.

5.3.1 Implementation Details

To implement the descent steps in (5.3) and (5.4), we exploit the PyTorch environ-

ment to create a computation graph for auto-differentiation. The block diagram of the

generated computation graph is shown in Fig. 5.1.
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Optimized Parameters

Simulated 
Measurement Reconstruction

Cost Function

Figure 5.1: Block diagram of the computation graph for E2E optimization where solid

lines denote the differentiated path for back-propagation.

We perform joint optimization by utilizing the same synthetically generated dataset

used in Chapter 3 and Chapter 4, where the training and validation sets contain 800

and 100 random-phase added image cubes, respectively. We set the cost function in

(5.1) to the mean square error computed over the normalized reflectivity magnitudes,

(i.e., (𝐬, 𝐬̂) = 1
𝑁
‖|𝐬| − |𝐬̂|

max |𝐬̂|
‖

2
2) due to the random-phase nature of scene reflectivity

values in various applications.

To accelerate the optimization, we substitute the gradient descent steps with a single

iteration of the Adam [72] optimization algorithm. Moreover, to reduce the memory

requirements and the optimization duration, we use a batch size of 16 and set the

maximum number of epochs to 2000. We stop the training when the validation loss

does not improve for 50 epochs. At the end of optimization, we use the parameters

that provide the minimum validation loss.

At each iteration of joint optimization, noisy measurements are simulated using (2.8)

by generating a new Gaussian noise realization. For each image in the training batch,

measurement SNR is randomly selected from a uniform distribution between 0 to 30

dB. Then, white Gaussian noise with standard deviation, 𝜎𝑤 = ‖𝐀𝐬‖2
√

𝑀
10−

𝑆𝑁𝑅
20 , corre-

sponding to this SNR realization is added to the simulated noiseless measurement of

this image.

For joint optimization with the Deep2S, we initialize the weights of the U-net archi-

tecture randomly and do not use any transfer learning. On the other hand, for joint
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optimization with U-𝓁1 we use 𝐿 = 3 unrolling iterations and initialize the step size

and soft threshold parameters of the iterative shrinkage algorithm as 10−6 and 10−2

respectively. As classical direct inversion methods, the KM algorithm and adjoint

operation do not have any parameters to optimize.

We use an initial learning rate of 10−2 for the parameters of the observation system,

𝜇. For the Deep2S approach, the learning rate for the DNN weights is initialized as

10−3. For the U-𝓁1, due to the scale difference between the step size and soft threshold

parameters of the iterative shrinkage algorithm, different learning rates are used, 10−6

and 10−4, respectively. Lastly, we use a scheduler to drop the learning rates by a factor

of 10 if the validation loss does not improve for 25 epochs.

Joint optimization takes approximately 2 hours on a NVIDIA GeForce RTX 3080 Ti

GPU using PyTorch 1.12.0 with CUDA Toolkit 11.6.0 in Python 3.10.6.

5.3.2 Analysis with Different Number of Transmit and Receive Antennas

We now jointly optimize MIMO arrays consisting of different numbers of transmit and

receive antennas with the goal of understanding the optimum number of transmit and

receive elements when using KM, adjoint, U-𝓁1, and Deep2S reconstruction methods.

For our simulations, we fix the total number of antennas to 𝑁𝑇𝑥 + 𝑁𝑅𝑥 = 25 where

𝑁𝑇𝑥 and 𝑁𝑅𝑥 denote the number of transmit and receive elements, respectively. We

perform joint optimization for each possible configuration of (𝑁𝑇𝑥, 𝑁𝑅𝑥 = 25−𝑁𝑇𝑥).

Realize from (2.3) that simultaneously switching all transmit elements to receive ele-

ments and all receive elements to transmit elements does not change the forward model

matrix. For instance, for the spiral array in Figure 3.8, if we were to have 16 receive

elements and 9 transmit elements at the exact locations of the original 16 transmit and

9 receive elements, we would obtain the same forward model matrix. However, one

should keep in mind that although these arrays yield the same forward model, the to-

tal acquisition time for the measurements is lower for the array with fewer transmitter

antennas, hence this array topology is more desirable. Here, by varying the number of

transmit elements from 𝑁𝑇𝑥 = 1 to 𝑁𝑅𝑥 = 12 and by using 𝑁𝑅𝑥 = 25 −𝑁𝑇𝑥 receive

elements, we analyze the performance of the optimized array configurations for all
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combinations of (𝑁𝑇𝑥, 𝑁𝑅𝑥 = 25 −𝑁𝑇𝑥) antenna pairs.

In our subsequent analyses for comparisons, we also provide the reconstruction perfor-

mance obtained with the commonly used MIMO arrays [5], namely, the Mill’s Cross

(MCA), Uniform Rectangular (URA), and Ring Spiral (RSA) Arrays which are shown

in Fig. 5.2.
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Figure 5.2: Commonly used MIMO arrays for near-field radar imaging.

The average reconstruction PSNRs computed over the test dataset for 0, 10, 20, and

30 dB measurement SNR when using 15 frequency steps are shown in Table 5.1 for

the configurations (𝑁𝑇𝑥, 𝑁𝑅𝑥) = (9, 16) and (𝑁𝑇𝑥, 𝑁𝑅𝑥) = (12, 13). Here, we demon-

strate the reconstruction performance when joint optimization is performed for the

same number of transmit and receive elements as the commonly utilized arrays in

Fig. 5.2.

Table 5.1: Test PSNR (dB) of the Commonly Used and the Best Performing Optimized

Arrays when using 9 and 12 Transmitter Antennas.

9 Transmitter Antennas 12 Transmitter Antennas

URA RSA Optimized MCA Optimized

Adjoint 22.68 22.54 22.78 21.94 22.93

KM 22.21 22.08 23.50 22.37 23.69

U-𝓁1 24.90 25.06 25.60 24.72 25.64

Deep2S 30.00 29.77 30.85 29.57 30.85
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As seen from the table, for both 9 and 12 transmitter antennas, the reconstruction per-

formances of the jointly optimized systems exceed the reconstruction performances

obtained with the commonly used arrays. Moreover, for all reconstruction algorithms,

the optimized systems with 12 transmitter antennas have the highest average PSNR. In-

terestingly, the performance achieved with the jointly optimized arrays for the Deep2S

approach is nearly the same for both 9 and 12 transmitter antennas. From the opti-

mized systems, we achieve the highest performance gain for the KM method, with

more than a 1.3dB difference (compared to MCA). This result indicates that the de-

veloped joint optimization method can successfully improve the antenna positions as

the KM method has no algorithm parameters to optimize. On the other hand, the sec-

ond highest performance gain is obtained for the Deep2S approach with a 0.85 dB

difference (compared to URA). Since the DNN used in the Deep2S approach has the

highest number of algorithm parameters, this result indicates that we can successfully

optimize the algorithm parameters during joint optimization.

We now analyze the joint optimization results for all the remaining configurations to

understand the effect of the number of transmitter and receiver antennas on the recon-

struction performance. The average reconstruction PSNRs of the optimized MIMO

imaging systems are shown in Fig. 5.3, where the graph illustrates the average PSNR

on the test dataset for 0, 10, 20, and 30 dB measurement SNR. We omit the adjoint

results from this graph since the performance of the KM method exceeds the adjoint

operation, and both joint optimization results show a similar trend.

As seen from the figure, for various configurations, the performances achieved with

the jointly optimized arrays consistently exceed the performance offered by the base-

line MIMO arrays, illustrating the success of the developed E2E optimization frame-

work. Moreover, the average reconstruction performance is the highest for all recon-

struction algorithms when the optimization is performed for MIMO arrays consisting

of 12 transmit and 13 receiver antennas. This result was expected since the number of

independent measurements that can be acquired with a MIMO array is proportional to

the number of virtual antennas (i.e., 𝑁𝑇𝑥 ×𝑁𝑅𝑥), which takes its highest value when

𝑁𝑇𝑥 ≈ 𝑁𝑅𝑥.

Another observation from Fig. 5.3 is that the average PSNR of the U-𝓁1 saturates ear-
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Figure 5.3: Average test performance over different measurement SNRs with respect

to the number of transmitter antennas (the number of receiver antennas is set to 𝑁𝑅𝑥 =

25−𝑁𝑇𝑥). Algorithm performances with the commonly used MIMO arrays, namely,

Mill’s Cross, Uniform Rectangular, and Ring Spiral Arrays are respectively donated

with "×","□" and "○".
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lier (after 3 transmitter antennas) than other methods. Moreover, the performance

difference between its worst- and best-performing joint optimization results is the

smallest and has a difference of around 2 dB. This may be attributed to using an im-

age prior, which decreases the dependency of the imaging performance on the array

topology. In a similar sense, the joint optimization results with the KM method seem

to be the most affected by the choice of a number of transmitter antennas. Its worst-

and best-performing joint optimization results have around a 4dB difference. This can

be attributed to KM being a traditional direct inversion method where the observation

setting is the sole factor affecting its performance. Lastly, as a learning-based direct

reconstruction method, the Deep2S achieves the highest image quality (as expected)

with more than 28dB PSNR. We believe that as the imaging performance increases,

additional performance improvements are harder to achieve. Regardless, the joint op-

timization results achieved with the Deep2S approach are higher than 30 dB PSNR

(which corresponds to the performance of URA) even after using 4 transmitter anten-

nas.

Some examples of the jointly optimized MIMO arrays are shown in Fig. 5.4 where

the notation, 𝜇𝜃,𝜇

(𝑁𝑇𝑥,𝑁𝑅𝑥)
, denotes that the parameters of the antenna array are jointly op-

timized with the reconstruction algorithm 𝜃,𝜇 for the case of (𝑁𝑇𝑥, 𝑁𝑅𝑥) transmitter

and receiver antennas.

As seen, the optimized antenna positions have self-emerged interpretable patterns.

For instance, when using 6 and 9 transmitter antennas, the jointly optimized MIMO

arrays with the adjoint operation place transmitter antennas around the receive ele-

ments. We note that similar (heuristically designed) MIMO arrays are presented in

the works [22, 40]. Similarly, when using 12 transmitter antennas, the distribution

of the antenna positions becomes similar to a commonly used rectangular array [19].

Also note that on all of the joint optimization results, the antennas are placed at the

boundaries. Intuitively, distributing the antenna elements to the boundary to yield the

largest aperture makes sense as the theoretical cross-range resolution [5] is finer for

a larger aperture. Additionally, we observe that the jointly optimized MIMO arrays

with the Deep2S have the largest virtual aperture. This may be due to the DNN used at

its second stage, enabling more efficient use of measurement diversity in comparison

to the other approaches. Furthermore, through the placement of both transmitter and
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Figure 5.4: Jointly optimized MIMO arrays. The jointly optimized algorithms are

indicated with a subscript and the number of transmitter/receiver antennas (𝑁𝑇𝑥, 𝑁𝑅𝑥)

are indicated with a subscript, 𝜇𝜃,𝜇

(𝑁𝑇𝑥,𝑁𝑅𝑥)
, beneath each figure.
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receiver antennas to the corners and the boundaries, its virtual antennas sample nearly

all the aperture with a nearly uniform density. Again, we note that ad-hoc metrics that

evaluate similar concepts as sampling density are also used in the literature to design

MIMO arrays [19]. All these results indicate that the developed E2E optimization

method outputs sensible designs.

Sample reconstructions at 30dB SNR with 15 frequency steps for the best-performing

optimized arrays and commonly used MIMO arrays are provided in Fig.5.5. As seen,

the PSNR of the reconstructions with the optimized arrays are consistently higher

than those of the commonly used MIMO arrays. For both KM and U-𝓁1, the artifacts

present on the reconstructions with the commonly used MIMO arrays are substantially

reduced with the optimized systems, especially along the range direction. Parallel to

our observations from Fig. 5.3, compared to the joint optimization results of the other

imaging algorithms, the performance gain for the KM method is the most notable and

the highest, with a 2.3dB difference. Similarly, when we compare the reconstructions

with the Deep2S approach, the PSNR achieved with the optimized system is more

than 1.3 dB higher than the second-best performing array, URA. Moreover, with the

optimized array, although a point-like artifact is present near the object, we can see

that the shape of the smaller bottom part of the target is better preserved and separated

from the main body of the target.

5.3.3 Analysis with Different Optimized Arrays

Although the joint optimization is performed for a specific reconstruction algorithm,

the optimized arrays may still offer better image quality than the commonly used

MIMO arrays when tested with the imaging algorithms in which the arrays are not

jointly optimized. To analyze this, we use the best performing jointly optimized arrays,

denoted by 𝜇𝐴𝑑𝑗𝑜𝑖𝑛𝑡
(12,13) , 𝜇𝐾𝑀

(12,13), 𝜇
𝑈−𝓁1
(12,13), and 𝜇𝐷𝑒𝑒𝑝2𝑆

(12,13) for adjoint, KM, U-𝓁1 and Deep2S re-

spectively and freeze the parameters of the observation system but train the parameters

of the algorithms, 𝜃.

The test performances of the MIMO arrays are presented in Table 5.2. Parallel to our

observations before, we see that when the optimized array matches with its jointly

optimized algorithm, the system achieves the highest performance. We also see that
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𝜇𝐷𝑒𝑒𝑝2𝑆
(12,13) , i.e., the MIMO array jointly optimized with Deep2S, achieves a greater re-

construction quality than the commonly used MIMO arrays for all reconstruction al-

gorithms except for the adjoint operation. This further supports our argument that the

jointly optimized Deep2S systems better exploit measurement diversity.

Table 5.2: Test PSNR (dB) of the Commonly Used and the Optimized Arrays with

Different Reconstruction Algorithms Computed over 0, 10, 20, and 30 dB measure-

ment SNR using 15 frequency steps.

Commonly Used Arrays Jointly Optimized Arrays

Algorithm URA RSA MCA 𝜇𝐴𝑑𝑗𝑜𝑖𝑛𝑡
(12,13) 𝜇𝐾𝑀

(12,13) 𝜇𝑈−𝓁1
(12,13) 𝜇𝐷𝑒𝑒𝑝2𝑆

(12,13)

Adjoint 22.68 22.54 21.94 22.93 21.98 22.26 22.35

KM 22.21 22.08 22.37 22.21 23.69 23.42 22.72

U-𝓁1 24.90 25.06 24.72 24.76 25.55 25.64 25.34

Deep2S 30.00 29.77 29.57 30.33 28.79 29.01 30.85

Rank 5th 6th 7th 3rd 4th 2nd 1st

To systematically evaluate the reconstruction performance of the arrays when using

different reconstruction algorithms, we compute their standard scores [89] and rank

the results by the average standard scores at the end of the table. As seen, the optimized

arrays not only perform the best for the corresponding jointly optimized reconstruc-

tion algorithm but also are more versatile compared to URA, RSA, and MCA. From

these results, it can be seen that the array 𝜇𝐾𝑀
(12,13) is the most specialized among the op-

timized arrays, as it achieves the greatest performance gain over the best-performing

commonly used array but ranks the lowest in terms of versatility. On the other hand,

𝜇𝐷𝑒𝑒𝑝2𝑆
(12,13) shows the highest and 𝜇𝑈−𝓁1

(12,13) the second highest versatility. These results fur-

ther indicate that, through joint optimization, the developed MIMO arrays can provide

more informative measurements.
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5.4 Discussion

We have developed a novel joint optimization method for 3D near-field MIMO imag-

ing. The developed joint optimization method can be used with any reconstruction

algorithm that can be cast to a differentiable layer. Although we only tested our end-

to-end optimization framework for optimizing the antenna positions, the joint opti-

mization can be easily extended to the other design parameters such as operating fre-

quencies.

We demonstrated the generality of our end-to-end optimization framework for imaging

methods such as traditional direct inversion approaches, regularized reconstruction,

and learned direct inversion. The optimization results yielded sensible array designs

with self-emerging and interpretable patterns. Moreover, the developed systems con-

sistently outperform those commonly found in existing literature while also offering

versatility to be used with other imaging algorithms.

We believe that while our simulations provide valuable insights, empirical valida-

tion through real-world hardware implementations is an essential part of the design

process, which is a topic of further study. In such a case, the cost function may be

modified to penalize the arrays that have high manufacturing costs or to enforce man-

ufacturing or other practical constraints for the validity of the forward model. More-

over, although we have performed optimization for a planar MIMO array, considering

a different topology can also improve the imaging quality [21]. Similarly, the polar-

ization of the antenna elements can provide additional measurement diversity [90],

and hence the polarization of the antennas can be included both during formulation of

the forward model and joint optimization.

We also believe that imaging performance can also be qualitatively improved by utiliz-

ing cost functions with perceptual quality [91]. Furthermore, if the optimized systems

are intended to be used for a classification application, end-to-end optimization can

be performed by using discriminative cost functions to directly improve the classifica-

tion accuracy [42]. Utilizing more comprehensive datasets can also boost the imaging

performance or yield more robust MIMO array designs. While not explored in this

study, integrating our joint optimization method with an unrolled PnP reconstruction
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may also improve the performance.
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CHAPTER 6

CONCLUSION

In this thesis, we developed efficient physics-informed deep learning techniques for

the image reconstruction and array optimization tasks encountered in 3D near-field

MIMO radar imaging. Accordingly, we started our discussions in Chapter 2 by ex-

plaining the observation model and summarizing the imaging algorithms.

In Chapter 3, we developed a novel PnP approach that enables generalizable means

of efficiently enforcing regularization on the magnitude. The developed approach in-

volves simple update steps and can be effectively used with both analytical and deep

priors. To the best of our knowledge, our approach is the first deep prior-based PnP

approach developed for near-field radar imaging where we encounter a 3D complex-

valued image reconstruction problem. Moreover, it is also equally applicable to other

similar complex-valued image formation problems, including SAR reconstruction.

We demonstrated the effectiveness of our approach through experimental data and

extensive simulations involving extended targets. We have illustrated that the devel-

oped learning-based method can be directly used without re-training for different ob-

servation scenarios since it is based on the PnP framework. The results show that the

developed technique not only provides state-of-the-art reconstruction performance but

also enables fast computation.

In Chapter 4, we focused on the Deep2S and DeepDI approaches in the literature

which enable high reconstruction quality for real-time applications. To improve their

performance, we developed a hybrid method called Deep2S+, which lies between

Deep2S and DeepDI, enabling physics-based initialization of a fully trainable net-

work. We showed that the performance of the approaches can be improved without

requiring substantial training data via physics-based initialization. Here, we also ana-
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lyzed the choice of network architecture for imaging quality. Our analyses showed that

the complex-valued processing of intermediate reconstructions does not provide any

advantage over magnitude-only processing. Moreover, we demonstrated the appli-

cability of these methods to real-world extended targets by using experimental mea-

surements. Although the methods require re-training when the observation model

changes, the results demonstrate that Deep2S and Deep2S+ (with a runtime on the

order of milliseconds) provide clean and sharp images with a very high dynamic range

and contrast.

In Chapter 4, we also analyzed the resolution offered by the Mill’s Cross array in

compressive settings. Here we considered the conditioning of the inverse problem

of estimating only the values of multiple separated point targets when we know their

exact locations. Our results suggested that achievable cross-range resolution in the

analyzed compressive setting is close to 5-6 cm rather than the expected theoretical

resolution of the conventional non-compressive setting (i.e. 2.5 cm).

Lastly, in Chapter 5, we developed a novel end-to-end joint optimization method based

on projected gradient descent. We demonstrated the success of the developed frame-

work through simulations by utilizing various reconstruction methods and different

observation settings. The developed systems consistently outperformed those com-

monly used in the literature while offering versatility to be used with other recon-

struction algorithms. Moreover, the optimization results yielded sensible array de-

signs with self-emerging and interpretable patterns.

We now provide some general remarks for future studies. We believe that for all of the

developed approaches, utilizing a dataset consisting of more realistic or task-oriented

training data or utilizing different cost functions could improve the training and per-

formance. Algorithmically, the most straightforward extension of the work presented

in this thesis can be unrolling the developed deep-prior-based PnP method. Also, the

presented joint optimization method can be extended to frequency selection, allowing

the end-to-end optimized systems to achieve higher reconstruction quality, especially

at higher compression levels. We also believe that empirical validation through real-

world hardware implementations is an essential part of the design process and a topic

of further study. More efficient computation of the forward and adjoint operators via
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methods like the fast multipole method would also be highly beneficial in terms of

accelerating the execution of the algorithms both during training and testing. Further-

more, implementing such an FMM module as a differentiable layer and contributing to

open-source libraries such as PyTorch and TensorFlow would be valuable for research

in this field.
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