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ABSTRACT

AN APPROACH TO DECOMPOSABILITY OF A CLASS OF ALMOST
COMPLETELY DECOMPOSABLE GROUPS

Kocabiyik, Makbule
M.S., Department of Mathematics
Supervisor: Assoc. Prof. Dr. Ebru Solak

June 2024, [52] pages

A torsion-free abelian group G is completely decomposable of finite rank if G is iso-
morphic to a finite direct sum of subgroups of (Q and almost completely decomposable
if G contains a completely decomposable subgroup R with G/R a finite group.The
regulator R(() is intersection of all regulating subgroups of GG and is a completely
decomposable subgroup of finite index in G. The isomorphism types of the regula-
tor R(G) and the regulator quotient G/ R((G) are near-isomorphism invariants of an
almost completely decomposable group G. In this thesis we consider a special case.
Let p be a prime, (1,2) = (t1,12,t3) be a set of types, partially ordered as ¢; is not
comparable with ¢, and ¢3 and 5 < t3 . An almost completely decomposable G with
critical typeset (1, 2) and a regulating index a p-power is called a p-local (1, 2)-group.
For p-local (1,2)-groups, the main question is to determine the near isomorphism

classes of indecomposable (1, 2)-groups.

Keywords: Almost completely decomposable groups, Torsion free groups, Decom-



posability of almost completely decomposable groups.
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0z

HEMEN HEMEN AYRISAN GRUPLARIN BIR SINIFININ AYRISMASINA
BIR YAKLASIM

Kocabiyik, Makbule
Yiksek Lisans, Matematik Boliimii
Tez Yoneticisi: Dog. Dr. Ebru Solak

Haziran 2024 ,[52] sayfa

Sonlu rankli torsiyonsuz degismeli bir grup G, Q grubunun altgruplarinin direkt top-
lamina izormorf ise, o gruba tamamen ayrisan grup denir. Bu grup GG tamamen ay-
rigan bir altkiime R igeriyorsa dyleki G/ R bir sonlu grup olsun o zaman G grubuna
hemen hemen ayrigan grup denir. Regulatér R(G), G grubunun regule altgruplarinin
kesisimidir ve GG grubunun sonlu indeksli tamamen ayrisan bir altgrubudur. Regula-
tor R(G) grubunun ve bolim regulatoriic G/ R(G) grubunun izomorfizma tipleri G
grubunun yakin-izomorfizma degismezleridir. Bu tezde biz 6zel bir durumu diisiine-
cegiz. p asal bir say1 olsun, (1,2) = (t1,t,t3) bir tipler kiimesi olsun oyle ki t; ,
ty ve tz’den bagimsiz, t, < t3 seklinde diizenlensin. Kritik tip kiimesi (1,2) olan
ve regulator indeksi bir p-kuvveti olan hemen hemen ayrigan bir grup G’ye p-lokal
(1,2)-group denir. p-lokal(1,2) gruplar i¢in asil soru ayrisamayan (1,2) gruplarin

yakin izomorfizma siniflarin1 belirlemektir.

Anahtar Kelimeler: Hemen hemen ayrisan gruplar, Torsiyonsuz gruplar, Hemen he-
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men ayrigan gruplarin parcalanmasi.
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CHAPTER 1

INTRODUCTION

Torsion-free abelian groups are the additive subgroups of rational vector spaces and it
is appealing to attack this groups computationally. However, this has some difficulties

and hence may be applied only to some special classes of torsion-free abelian groups.

Completely decomposable groups are direct sums of rank one groups and almost
completely decomposable groups are torsion-free abelian groups which contain a
completely decomposable subgroup of finite index. Although the class of almost
completely decomposable groups have been used for many examples and counterex-

amples, it is quite hard to develop a general theory.

The first basic concepts for almost completely decomposable groups, like regulat-
ing subgroups, nearly isomorphism are developed by E.Lee Lady. Burkhardt defined
a new concept called regulator as the intersection of regulating subgroups and he
showed that regulator is also completely decomposable, see [3]. An almost com-
pletely decomposable group G is an extension of its regulator R and a finite group
(G/R called the regulator quotient. Arnold and Faticoni and Schultz showed that the
decomposition of p-local almost completely decomposable groups can be classified
up to near isomorphism if the indecomposable groups are determined, see [S]]. There-
fore indecomposable groups play an important role in the decomposition of almost

completely decomposable groups.

We can describe an almost completely decomposable group G by a representing ma-
trix called coordinate matrix relative to the regulator R and the regulator quotient
G/R. A p-local, p-reduced almost completely decomposable group is decompos-

able if and only if it has a decomposable coordinate matrix. An almost completely



decomposable group is decomposable if and only if it is nearly isomorphic to a de-
composable group. Hence we can establish a matrix equivalence between coordinate

matrices of nearly isomorphic groups.

In this thesis we deal with the decomposability of almost completely groups of type
(1,2), called (1,2)-groups. Arnold and Dugas showed that local (1, 2)-groups with
regulator quotient of exponent > p* has infinitely many isomorphism types of inde-
composable groups, see [7] and [8]. The nearly isomorphism classes of indecompos-
able (1,2)-groups with regulator quotient of exponent < p* and the nearly isomor-
phism classes of indecomposable (1, 2)-groups with regulator quotient of exponent p°
are already determined, see [11]. But the decomposability problem of (1, 2) -groups

with regulator quotient of exponent p° is not resolved.

It is still an open question whether the class of (1, 2)-groups with regulator quotient
of exponent p° has bounded representation type or not, i.e., there are up to near iso-

morphism finitely many indecomposable groups or not.

In this thesis we give a partial answer for this open question. We list the near isomor-
phism classes of indecomposable (1, 2)-groups G with regulator quotient of exponent

p® and isomorphic to Z,s @ Z,, Zys D L2, (Z,5)* B Ly, Ly D Zyys.



CHAPTER 2

PRELIMINARIES

2.1 Basic Definitions

A torsion-free group is a group whose elements except the identity have infinite order.
In this thesis we only work with torsion-free abelian groups. This chapter presents
definitions and basic properties of torsion-free abelian groups, like characteristics and
types. The books of L. Fuchs and A. Mader are good sources for the definitions, see

[1]] and [6].

Let GG be a torsion-free abelian group. Every torsion-free abelian group G is a sub-
group of a Q-vector space V' such that a maximal independent set in GG serves as a
basis of V. Let {u; | i € I} be a maximal independent set in GG. Then every element

g € G can be written uniquely as
g:T1U1+"'+TnUn

where 7; € Q.

Definition 1 Let py,ps, - - - , p, denote a sequence of prime numbers in an increasing
order. Let GG be a torsion-free abelian group and let g be a an arbitrary element in G.
For a prime p, the largest integer k with p* divides g, i.e., the largest integer k for
which the equation p*y = g is solvable in G, is called the p-height of g denoted h,(g).

If there is no such maximal integer k, then h,(g) = cc. The sequence of p-heights,

xa(g) = (hp(9): s (9)s -+ Ppo(9), )

is called the characteristic of g.



Definition 2 Let k = (ky,...,k,,...)andl = (ly,...,l,,...) be two characteris-
tics of a torsion-free abelian group G. The characteristics k and | are called equiva-
lent if k,, = l,, for almost all n such that k,, and l,, are finite and they have exactly the

same oco-components. The equivalence classes of characteristics are said to be types.

The books L.Fuchs and A.Mader are good sources for the definitions, see [1|] and [6].

If xc(g) belongs to the type t, then we write t(g) = t. It is clear that t(g) = t(ng) for
all natural numbers n. For the types t, and t9, t; < ty means that there are charac-
teristics (kyi, ..., kn,...)intyand (ly,...,l,,...) inty such that (ky,..., ky,...) <
(ool

Definition 3 Ler G be a torsion-free abelian group. G is called homogenous if all

its nonzero elements have the same type t.

Definition 4 Let G a torsion-free abelian group and let H be a subgroup of G. The
subgroup H is said to be pure if the equation nx = h € H for n € N is solvable for

x in H whenever it is solvable in G and is denoted H C, G.

Remark 1 Let G be an abelian group and let H be a pure subgroup of G. Then
by definition of the pure subgroup, the divisibility properties of the elements in H by

integers are the same in G or in H.

Definition 5 Let GG be a torsion-free abelian group and let t be a type in G. Define
G(t) :={g € G|tlg) =1},

G*(t) = (g€ G |tg) >1)

and

GH(t) == G* (1)

The type ¢ is a critical type of G if % # 0.

Let T be a set of critical types of elements of a torsion-free abelian group G. Let

(T, <) be a poset. Two elements ¢; and ¢, of 7" are comparable if either t; < ¢, or

4



ty < ty. Otherwise they are incomparable. A poset 7' is called V -free if 1" is disjoint

union of inverted trees.

Posets can be represented by Hasse diagrams. For example, assume that 7" is a poset
of the critical types of elements of a torsion-free abelian group GG with three elements
t1, to and t3. If two of the critical types are comparable in such a way that ¢; is
incomparable with ¢,,%3 and 5 < t3 then there are two minimal and two maximal

elements. In this case the corresponding Hasse diagram of 7" is

¢ tl to






CHAPTER 3

ALMOST COMPLETELY DECOMPOSABLE GROUPS

3.1 Basic Definitions

Let GG be a torsion-free abelian group. The inclusion map Z — (Q induces an em-
bedding G ~ Z ® G — Q ® G. The group Q ® G is torsion-free abelian and also
a Q-vector space. Hence we can simply say that GG is isomorphic to an additive sub-
group of a QQ-vector space. The group G spans a subspace QG, called the divisible
hull of G. The dimension of QG is called the rank of G denoted rank G. In this
thesis we only consider groups of finite rank, i.e., those groups which have a finite

dimensional divisible hull.

Definition 6 The nonzero subgroups of Q are called rational groups.

Rational groups are of rank 1. In a rational group G, all nonzero elements have the

same type, denoted t(G).

Definition 7 Let G be a torsion-free abelian group. G is called completely decom-
posable if it is direct sum of rational groups. If G has only trivial direct summands

then G is called indecomposable.

The following Lemma is the Lemma 2.4.8 in [6].

Lemma 3.1.1 Let G be a completely decomposable group of finite rank n. Then G
can be written as

G:Rlﬂl@"'ann

7



such that R;’s are rational groups with the property that R, C R; if and only if
t(?“i’l)i) S t(?"j'l}j) .

Proof 1 Since G is completely decomposable,
G=G18G,&--- G,

where G;’s are rank one groups. Take a nonzero u; € G,;. Then G; = A;u; where
A; = {r € Q : ru; € G;}. The rest of the proof follows by induction on n, see the
proof of Lemma 2.4.8 in [6].

Definition 8 Ler G be a torsion-free abelian group. G is called almost completely

decomposable if G contains a completely decomposable subgroup of finite index.

3.2 Isomorphism Invariants of almost completely decomposable groups

In this section we define two isomorphism invariants of an almost completely decom-
posable group which play an important role by the construction of the corresponding
coordinate matrix. Let GG be an almost completely decomposable group of finite in-
dex. By definition of almost completely decomposable groups, they have completely
decomposable subgroups. The completely decomposable subgroups of minimal in-
dex are called the regulating subgroups. The intersection on all regulating subgroups
is a completely decomposable subgroup of finite index, called the regulator. The reg-

ulator has a structure that influences the structure of the group.

If R is the regulator of an almost completely decomposable group then the quotient
group G/ R is called the regulator quotient of GG. The isomorphism types of the regu-
lator R and the regulator quotient GG/ R are isomorphism invariants of G. It is possible
that an almost completely decomposable group has a unique regulating subgroup. In

this case, we say that GG has a regulating regulator.

Theorem 3.2.1 (Mutzbauer) Let G be an almost completely decomposable group

with critical typeset T which is V -free. Then G has a regulating regulator.

8



Remark 2 Let G be an almost completely decomposable group and let R be its reg-
ulator. Then the group G can be considered as an extension of R by its regulator
quotient G/ R, i.e., almost completely decomposable groups are torsion-free finite

extensions of completely decomposable groups of finite rank.

Definition 9 Let G be an almost completely decomposable group and let p be a prime
number. Then G is a called p-reduced if G contains only trivial p-divisible subgroups.

G is called p-local if the regulator quotient G/ R is of exponent p* for some integer k.
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CHAPTER 4

GAUSS ELIMINATION AND BASIS TRANSFORMATION

This chapter is about the modified Gauss eliminations and basis transformations that
we use on torsion-free abelian groups. The theorems and proofs are due to C.Teichert.

For the details, you can see [9].

Theorem 4.0.1 Let GG be a torsion-free abelian group and let H be a subgroup of G.
Let

G=H+Zp™ (pllw + y1> + Zp~*2 <pl2x - yg>,

where

® T, Y1,Y2 € H_pH’

o ki, ky € Nwith ki > ky and

[ ] ll, l2 eN.

1. Gauss elimination downwards:

Iflg >[4, then

G=H+Zp ™" (p"z+y) +Zp " (y2 — " "yn).

2. Gauss elimination upwards:

Ifk?g — ZQ > ]{31 — ll, then
G=H+Zp ™" (y1 —p" o) + Zp ™ (p2x + 1),
where pi=2 ¢ 7.

11



Proof 2 1. By assumption ly > 1y and ky > ks, soly — 1y > 0 > ko — ky which
implies ly— 1, —ko > —ky. Hence —p2~"'=%27, C p~™™Z. Then the assumptions
of Lemma 3.1.1 in [9] are satisfied. By setting p2x+1y,+(—p2~") (pa+y,) =

Yo — p2~lyy, the desired result is followed.

2. Let \ := —ph7l2, S :=7Zp~™™ a:=phaoty, S :=Zp " b:=p2x+ 1.

By assumption l; — lo — k1 > —ko,
AS = —ph Mz Cphz =5

Then the hypotheses of Lemma 3.1.1 in [9)] are satisfied and hence by setting

a+ \b =y, — p'*~2yy we obtain the desired result.

4.1 Basis Transformation

Lemma 4.1.1 Let R = @ R;x; be a torsion-free, abelian group and let R; be rational
i=1
groups. Assume that

o R; CR,;forallic{l,...,n}and

o 7l =uw;+ ) aw;witha; €7
i
where j € {1,...,n}.
Then .

=1

i#]

Proof 3 Let R' := @ Rix; © R;),.
i=1
ij
First we will show that R’ C R. It is enough to show that ij;- C R:

Let v := rjx’; € R;x’, where rj € R;. Then
n
T =TT+ Z rja;x; € R,
=
because by assumption r; € R; C R; and hence rja; € R; forall1 <1 <n.

Similarly we can show that R C R.

12



CHAPTER 5

COORDINATE MATRICES OF ALMOST COMPLETELY
DECOMPOSABLE GROUPS AND SOME MATRIX RESULTS

A 0
A matrix M called decomposed if it is of the form [ ] . It is possible in a
0 B

decomposed form, A and B have no rows or no columns.

A matrix M is called decomposable if there are row and column permutations that
transform M to a decomposed form, i.e., there are permutation matrices U, V' such

that U MV is decomposed.

Definition 10 Ler G be a p-reduced, p-local almost completely decomposable group
and let R be a completely decomposable subgroup of G of finite index. A matrix
M = [my;] is called a coordinate matrix of G if there is a basis (g1 + R, - - - , g, + R)
of G/ R and there is a p-basis (x1,- - - ,x,) of R such that

gi=p" (Z mij;),
j=1
where (g; + R) ~ Zx,. The definition of p-basis will be given later.

This thesis deals with the decomposition of almost completely decomposable groups.
In this chapter we discuss how the decomposability of an almost completely decom-

posable group is related to its coordinate matrix.

Lemma 5.0.1 Ler G be a p-reduced, p-local almost completely decomposable group
with regulating regulator R and with a coordinate matrix M. The group G is decom-

posable if and only if it has a decomposable coordinate matrix M.

13



Proof 4 Suppose that G is decomposable. Then we can write G = G ® Gy, with
Gy # 0 # Gs. Then the regulating regulator R of G can be written as R = Ry & Ry
where Ry is the regulator of G1 and Rs is the regulator of G5. Furthermore, the

regulator quotient G/ R can be written as

Let (g1+R, - -+ ,g,+R) beabasis of G/R such that gy, . .., g,, € Gyand gy, +1,...,9, €
Gy and a p-basis (z1,...,2,) of R such that (z1,...,2,,) is a p-basis of Ry and

(Timat, - - -, Tp) is a p-basis of Ry. Therefore, the coordinate matrix M can be written

. A 0] ., .
in the form , i.e., M is decomposable.
0 B

Next assume that M is decomposable. Then by definition there exist permutation ma-
trices X andY such that X MY = M, & M. Let B be a basis of R. Each column of
B corresponds to a basis element and the columns of M, and M, divides the p-basis
as By U B,. Hence we can write R = Ry @& Ry and it implies that G can be written

as G = Gy ® Gy where G is the purification of R; in G and so G is decomposable.

14



CHAPTER 6

(1,2)-GROUPS

Let G be a p-local, p-reduced almost completely decomposable group where p is
prime. Let (1,2) = (¢1,t2 < t3) be a set of types of GG partially ordered as given with
ti(p) # 0. Then G is called a (1, 2)-group.
Let G be a (1, 2)-group with regulator R = Ry ® Ry @ R3, where R; is homogeneous
of rank 7;, type t; and n = 1y + ry + r3 is the rank of G. The regulator quotient
G/R = @?:1(219@7.)[]', where k = k; > -+ > k; > 1, is of exponent p* and rank
r =1l +1l+...+l Then (Z,,)" is called the jth step of G/R. If {g; + R |
i';l L <f< Zgzl l;} is a basis of the jth step of GG/ R then the union of the bases
of these steps forms a basis of the regulator quotient G/R. Let (g; + R |1 < j <)
be a basis of the regulator quotient G/ R where

T1 T2 T3
gi=p" (Z aizi+ Y Biiyi+ Y %‘izz'>7 (61)
=1 =1 =1

where the p-power in front is p—*7 if Z{:_ll li<j < 2{:1 l;for1 < f < h, according
to the given decomposition of G/ R. For the details see [[10].

Then o = (o), 5 = (Bji), v = (i) are of size r X r, 7 X 19, X 13, respectively.
Let D = diag(p*kf[lj |1 <7< h), where [;; are unit matrices of size ;. This
diagonal matrix D is called the structure matrix. Then the matrix M = D[« | 5 | 7]
represents the group GG and M is the coordinate matrix of G. The details about the
coordinate matrices will be given in the next chapter.

The isomorphism types of the regulator R = R; & Ry & R3 of a (1,2)-group G is
given by the sequence ((r1, 1), (r2,t2), (r3,t3)), where 7;’s are the ranks of R;’s and
t;’s are the types of R;’s for i = 1,2, 3 and the isomorphism type of G/R is given by

the sequence ((k:h, ) |h=1,..., f) where k;, and [, are defined as above.

15



6.1 Construction of a Coordinate matrix of a (1, 2)-group

Let G be a p-reduced, p-local (1,2)-group. The coordinate matrix is obtained by
means of bases of R and GG/R. Here our aim is to show how to form the coordinate
matrix of a (1,2) group. A (1,2)-group has three critical types ¢1, 2, t3 such that ¢;
is not comparable with o, t3 and 5 < t3. Let R be the regulator of G. We can write
R = Ry & Ry & R3, where R; is homogeneous of rank r;, and the types of the R;
are t;, respectively. Let By = Y ;' S;z;, Ry = Y .2, Siyi, R = > .2, S;z; where
Z CS;CQandp ! ¢S The ordered Set {1, .., Tr s Yls- -y Yrgs 21y« -5 Zry } 1S
called a p-basis of R. Let {z1,...,x,, } be a p-basis of Ry, {v1,..., ¥y, } be a p-basis
of Ry and {21, ..., 2.} be a p-basis of of R;. Since G is a p-local group, G/R is
of exponent p* for some k& € N. Assume that G/R = é}Zpki where k; € N and
k=Fk >k >...>k.Let(gj +R|1<i< r)lljé a basis of the regulator
quotient G/ R and assume ord(g; + R) = p*. Then

T1 T2 T3
g =p" (Z QjiTi + Z Bjiyi + Z Vjizz');
i=1 =1 =1

with respect to the given decomposition of G/R and

G=R+ XT: Zp~*i (i: i + 22: Bjiyi + ZS:’inZi)-
=1 i—1 i—1 i—1

Then we can write the coordinate matrix M of G as M = D[a | f | 7] where
the structure matrix D = diag (pkl, el ka). The diagonal matrix D is determined

by the isomorphism type of the regulator quotient and is unique for the given group G.

16



CHAPTER 7

DECOMPOSABILITY OF (1,2)-GROUPS

In this chapter we state and prove some theorems that play an important role in the

decomposability problem of (1, 2)-groups.

The following Lemma is the regulator criterion for (1,2)-groups.

Lemma 7.0.1 If M = D« | 8 | 7] is a coordinate matrix of a (1,2)-group G, then

in each row of « there is a unit and there is a unit in each row of (3, 7).

Proof 5 Let G be a (1,2)-group and let R = Ry @ Ry @ R3 be the regulator of G.
The result follows by the regulator criterion for R, see Lemma 13 in [I3)]. If there is
no unit in each row of «, then Ry ® Rj3 is not pure in G and if there is a row in (3, )

without unit, then R, is not pure in G and this contradicts the regulator criterion

for R.

Definition 11 A (1, 2)-group G is called clipped if it has no completely decomposable

direct summand.

Lemma 7.0.2 Let G be a clipped (1,2)-group and let M = D[a | [ | 7] be the
coordinate matrix of G. Then there is a p-basis of Ry and a basis of G /R such that

M' = D[I | B| 7| is the corresponding representing matrix.

Proof 6 By Lemma 14 in [13] there exists a matrix V and a matrix Y, resulted by the
change of bases of R and G/ R such that o is translated to o/ = V'aYy, where the pair
(V, V") satisfies VD = DV'. By regulator criterion, there is a unit in each row of «.

By column permutation the identity in the first row of o can be moved to the position

17



(1,1) in o Then by Gauss elimination downwards, all the entries below this unit can
be annihilated. We repeat this process with the second row, third row etc. This is done
by multiplying o by V' defined above. Hence we get o/ = V'aYy = [I | 0], where Y}
is invertible. Since G is clipped there is no 0-column in o, hence o is a square matrix
and is p-invertible. The matrix Y, in the above equation can be chosen as Y, = a~!
which changes the p-basis of R, but no changes in Ry and Rs3. Thus, the resulting

matrix changes to M' = D[I | 5 | 7).

Lemma 7.0.3 ([13, Lemma 19]) Letr G be a clipped, p-reduced, p-local (1, 2)-group
and let M = D[« | B | 7] be a coordinate matrix of G. If 5-part of M is decom-
posable then G is decomposable. Conversely, if G is decomposable then it has a

coordinate matrix M with decomposable [3-part.

Proof 7 Let G be a (1,2)-group and let M = D« | 5 | ] be a coordinate ma-

trix of G. Assume that 3 is indecomposable. Then by Lemma 14 in [13] there are
matrices V and Y such that V]ca|BY = [Va|B'|Vy] where Y = diag(1,Y’,I)
with a upper triangular matrix Y'. By Lemma Vo can be changed to identity

I
matrix and V-~ = . These transformations do not affect 3'. By Corollary 17 in
0

[13], ' = VY is decomposable since [ is decomposable. Hence M changes to
M’ = DI[I|p'|V~] and so decomposability of 3-part determines the decomposability
of G. For the proof of the converse of the theorem see Lemma 12 in [12].

Definition 12 Ler G be a (1, 2)-group with a coordinate matrix M = Dla | B | v]. If

0

B,v)=| 0 0 a 0 0 0 0

0

where a is at position (i, j) in B. Then we say that there is a cross in  with a cross

point a.

PROPOSITION 7.0.4 Let G be a (1,2)-group with M = D[I | B | 7] as a coordinate

matrix.

18



1 If

B,v)=] 0 - 0o 1 0 - 0 0 .- 0

where 1 is at position (i, j) in 3. Then there is a cross in  with a cross point 1

and (x;,y;) . is a direct summand of rank 2.

If

B,v=0 - 0 o -~ 0 1 0 -+ 0

0

where 1 is at position (i, j) in . Then there is a zero row in [3 and (x;, z;) is a

direct summand of rank 2.

2. If
0 0
0 0
B,v) =] o 0 pl 0 0 0 0 1 0 0
0 0
0 0

where p' # 1 is at position (i, j) in 3. Then there is a cross in 3 with a cross

point p'. Then (x;,y;, z:)« is a direct summand of rank 3.

0 0
0 0

0 o pt o 0 0 o 1 o0 0
0 0

B,v) = :

0 0

0 o 1 0 o1l o 0o 0 o 0
0 0
0 0

where p' # 1 is at position (iy,7) and 1 at position (i, j), both in 3, then

(Tiy, Tiys Yj, Ziy )+ 18 a direct summand of rank 4.
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4. If

0 0 0
0 0
0 o p™ 0 0 0 0o 1 0 0 0
0 0 0
B,7) = :
0 0 0
0 o p* 0 0 0 0 0 0 1 0 0
0 0 0
0 0 0

where p™ # 1 is at position (i1, j), and p" # 1, at position (is, j) in 5, then

(Tiy s Tigs Yjs Ziy » Zin )+ 1S @ direct summand of rank 5.

Lemma 7.0.5 Let G be a (1,2)-group with coordinate matrix M = D[I | B | v]. If

there is a zero row in [3, then G is decomposable.

Proof 8 This follows directly by (1) in Proposition[7.0.4)
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CHAPTER 8

NEARLY ISOMORPHIC GROUPS

Definition 13 Let G and H be two torsion-free groups of finite rank. If for every
integer n € 7%, there is a monomorphism o, : Gy — Go such that [H : «,G|
is finite, n and [H : «,G| are relatively prime, then G and H are called nearly

isomorphic, denoted G =, H.

Note that near isomorphism is a weaker form of isomorphism and isomorphic groups

are also nearly isomorphic.

By Arnold’s Theorem two near-isomorphic torsion-free groups of finite rank have (up
to near-isomorphism of summands) the same decomposition properties. Let G be a
(1,2)-group and let M be a coordinate matrix of G. By allowed row and column
transformations M is transformed to M’ that is the coordinate matrix of the same
group or of a nearly isomorphic group G’. If we arrive at a matrix that shows that the
group to which it belongs decomposes or not, then the original group is decomposable

or not.

Due to the required structure of the matrices in Corollary 17 in [13] , only certain row
and column transformations are allowed. We list below the allowed row and column

transformations.

Lemma 8.0.1 ([13, Lemma 21 and 24]) Let G be a (1, 2)-group and let M = D|«|5]|7]
be the coordinate matrix where D = diag(p*', ..., p*). Then the following row and
column operations on the coordinate matrix results in a coordinate matrix of a group

G' which is nearly isomorphic to G.

1. Any multiple of a row may be added to any row below it.
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2. For iy < iy, the pFn %2 -times of row i3 may be added to a row 1 .
3. Any line may be multiplied by an integer relatively prime to p.
4. All elementary column operations can be applied to o and 7.
5. Any multiple of a column of 3 may be added to another column of [3|7].
The transformations in Lemma are called allowed transformations. While

annihilating an entry, other entries that were zero may change to nonzero entries,

then those entries are called fill-ins.

Theorem 8.0.2 ([12, Theorem 1]) Let G be a (1,2)-group and let M be the coordi-
nate relative to the p-basis (x1, . .., x,), and the basis (g1 + R, ..., g9, + R) of G/R.
Let D = diag(p’“l, e ,pk’").

(i) Let M’ be the coordinate matrix of G relative to the p-basis (y1,. . .,y,) and
basis (hy + R, ..., h, + R) of G/R such that t(x;) = t(y;) fori = 1,...,n.

Then there is a pair (V, V') and a matrix

Yiu 0 0
0 Yo Yo
0 0 Ys3

where Y;; is an ; X r; integer matrix and the diagonal blocks Y;; are p-invertible

such that M' = VMY.

Yo 0 0
(ii) Assume that a pair (V,V') and a matrix Y of the form | 0 Yy, Yas| where
0 0 Y

Yij is an r; X r; integer matrix and the diagonal blocks Y;; are p-invertible are
given. Then there is a group G' nearly isomorphic to G with regulator R , a
basis (hy,...,hl) of H/R and a p-basis (Y1, . .., Yn) of R such that H has the
structure matrix S, x; and y; have equal types fori = 1,...,n, and VMV’ is

a coordinate matrix of H.
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8.1 Some Examples

Example 1 Let G be a (1,2)-group with regulator quotient of exponent p® and let

M =[I| 5| 7] be its coordinate matrix.

1. Let R=2Zlg 1@ Zlg oo ® Z[rYas ® Z[(rs)~za © Z[(rs)~']x5 be the regulator
of G,and R C G = (R, g1, 92), g1 = p (w1 + 23), go = p~>(x2 + 14). Then

the coordinate matrix

1 0] 1] 00

M =

01 ] 0] 10
The last column of M is 0, and (z5). is a direct summand of rank 1.

2. Let R = Z[qg 1 @ Z[qg 2o @ Z[r~'xs ® Z[(rs)"!]z4 be the regulator of G, and
RCG=(R,g1,92), 91 = p~°(x1 + prs + x4), go = p~°(x2 + 25). Then the

coordinate matrix
0| p | 10
1

| 0] 01
The [-part of the coordinate matrix M has a O-row and (x9, z5),. is a direct

summand of rank 2. Moreover, (1, 3, Z4). is another direct summand of rank

3.

3. Let R =Z[qg |21 & Z[qg w2 ® Zlr~Yaz ® Z[r—]ay & Z[(rs)~!z5 be the regulator
of G,and R C G = (R, g1, 92), g1 = p °(x1 + 13), go = p° (w2 + pPwy + w5).

Then the coordinate matrix

0] 10 |0
1

has two crosses, one with cross entry a unit, the other not, and (xy, x3). and

(%9, T4, x5), are direct summands of rank 2 and 3, respectively.
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CHAPTER 9

INDECOMPOSABLE (1, 2)-GROUPS WITH REGULATOR QUOTIENT OF
EXPONENT p°

PROPOSITION 9.0.1 The following three (1, 2)-groups with regulator quotient of ex-
ponent p° given by the isomorphism types of their regulator with fixed types, their
regulator quotient and their coordinate matrix M = |« | | y] are indecom-

posable and pairwise not near-isomorphic.

10 3 1-‘
(i) M = { } b } with regulator quotient isomorphic to Z,s @ Z,, and
01 ] 1|0

rank G = 4.
o e ] o |
(ii) M = [0 X | X } . with regulator quotient isomorphic to Z,s @ Z,, and
rank G = 4. i
o o] S
(iii) M = - ’ . ’ ; with regulator quotient isomorphic to Z,s @ 7Z,, and

rank G = 4.

Proof 9 (i) Consider the following matrix:

1 ap*| |p p® + ap? p® + ap?

c 1 1 cpd 41 1

Since the entry at position (1,1) is not 0 modulo p°, the column is not 0 which shows
3

that b can not be decomposed. Hence G is indecomposable.
1
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(ii) Consider the following matrix:

Loap*| |p*|  |P*+ap*|  |P*+ap?

c 1 1 cp? 41 1

Since the entry at position (1,1) is not 0 modulo p°, the column is not 0 which shows

2

that b can not be decomposed. Hence G is indecomposable.
1

(iii) Consider the following matrix:

1 ap*| |p p + ap* p+ ap*

c 1 1 cp+1 1

Since the entry at position (1,1) is not 0 modulo p°, the column is not 0 which shows

that b can not be decomposed. Hence G is indecomposable.
1

PROPOSITION 9.0.2 The following six (1,2)-groups with regulator quotient of ex-
ponent p° given by the isomorphism types of their regulator with fixed types, their
regulator quotient and their coordinate matrix M = (o | [ | fy] are indecom-

posable and pairwise not near-isomorphic.

10 1-‘
(i) M = } P ‘ with regulator quotient isomorphic to Z,s @ Z,2 and
01 ] 1o
rank G = 4.
) Lo || 1] - |
(ii) M = | with regulator quotient isomorphic to Z,> @ Z,2 and
01 ] 1|0
rank G = 4.
Lo | p | 1ol | o .
(iii) M = with regulator quotient isomorphic to Z,s @ Z,
01| p |01
and rank G = 4 )
: Lo | po | 1| | o .
(iv) M = with regulator quotient isomorphic to Z,s @ Z,
01| 1 p]oO
and rank G = 5. .
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Lo po] ]

(v) M = [ | b | with regulator quotient isomorphic to Z,: @ Z,»
01| 1p] 0

and rank G = 5.

Loo|po0 |10
(vi)M=10 1 0 |

0
oo1 | p 1|00
and rank G = 7.

p | 0 1| withregulator quotient isomorphic to Zyy: @ Zys D Zyy2

Proof 10 The decomposability proofs of the cases of (i), (ii), (iii) are similar to the
proofs of Proposition[9.0.1]

(v) The indecomposability proofs of cases (iv) and (v) are similar. We will prove the

case (v). Consider the following matrix:

1 ap®| [p Of |1 b p+ap® ap*| [1 b p+ap® b(p+ ap?®) + ap?

c 1 1 p?*| [0 1 ecp+1 p | |01 cp+1  blep+1)+p

In the first column the entries are not both zero. If b = 0 (mod p?) then the entry
at position (1,2) may be done 0. But in this case the entry at position (2,2) is not 0

modulo p*.

(vi) The proof follows by [I, Lemma 9.3].

PROPOSITION 9.0.3 The following six (1,2)-groups with regulator quotient of ex-
ponent p° given by the isomorphism types of their regulator with fixed types, their
regulator quotient and their coordinate matrix M = |« | | 7] are indecom-

posable and pairwise not near-isomorphic.

0 | v 1]
(i) M = { ‘ b } with regulator quotient isomorphic to Z,s @ Z,3 and
01 ] 1] 0

rank G = 4.
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o o] o |
(ii) M = { ’ | with regulator quotient isomorphic to Z,s @ Z,s
01 ] p |01

and rank G = 5.

oo o] o |

(iii) M = with regulator quotient isomorphic to Z.s @ Z,»
01| » [0 1] v

and rank G = 5.

| 1o po 1] o |

(iv) M = 01 ‘ | ‘ . with regulator quotient isomorphic to Z,s @ Z,5

and rank G = 5. i
[1 0| p 0 | 1] o :

(v) M = with regulator quotient isomorphic to Z,s @ Z,s
01 [ 120

and rank G = 5. i

oo 1] o |

(vi) M = with regulator quotient isomorphic to Z,s @ Z,5
01 ] p |01

and rank G = 6.

Proof 11 (iv) Consider the following matrix:

1 ap?| |p 0] |1 b p+ap® ap®| [1 b p+ap® b(p+ap®) + ap’

c 1 1 p| |0 1 cp+1 p 0 1 ecp+1  blep+1)+p

In the first column the entries are not both zero. If b = 0 (mod p?) then the entry
at position (1,2) may be done 0. But in this case the entry at position (2,2) is not 0

modulo p°.

(v) Consider the following matrix:

1 ap?| [p Of |1 b p+ap® ap*| [1 b p+ap* b(p+ ap®) + ap*
c 1] |1 2| |0 1 p+1 p2| |0 1 p+1  blep+1)+p?



In the first column the entries are not both zero. If b = 0 (mod p3) then the entry
at position (1,2) may be done 0. But in this case the entry at position (2,2) is not 0

modulo p?.

(vi) Consider the following matrix:

S

L oap®| |p* O] |1 b p*+ap® ap*| |1 p*+ap® b(p* +ap®) + ap’

cp*+p  b(ep®+p)+p?

c 1| |p p*| |01 ap’+p p°| |0

—_

In the first column the entries are not both zero. If b = 0 (mod p?) then the entry
at position (1,2) may be done 0. But in this case the entry at position (2,2) is not 0
modulo p®. The proof of the other cases are very similar to the proof of|
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CHAPTER 10

SMITH NORMAL FORMS

Let G be a (1,2)-group and let M be a coordinate matrix of G. If we write "We form
the Smith Normal form” of M we mean that there are p-invertible matrices U and
V such that UMYV is a p-diagonal matrix. These transformations affect the matrices
in the subblocks called submatrices. But it is possible to reestablish submatrices that

were 0 or of the form p'[.

We denote (1, 2)-groups with regulator quotient of exponent p° by ((1,2), p°).

Theorem 10.0.1 There are three near-isomorphism classes of indecomposable ((1,2), p°)
groups with regulator quotient isomorphic to (Z,3)" @(Z,)"> where l; > 1 and
ly > 1 as in Proposition[9.0.1]

Proof 12 Let G be a ((1,2), p°)-group with regulator R and regulator quotient G/ R
is isomorphic to (Z,5)" @(Z,)? where l; > 1 and ly > 1. Suppose that G is in-
decomposable. Let M = [ I | B | ~| be the coordinate matrix of G. We first
form the Smith Normal forms of the subblocks of 3. If [3 is indecomposable, then by
Proposition the group G is indecomposable. Since we assumed that G is inde-
composable then if a summand is displayed, then it leads to a contradiction or we

check its class in the list given in Proposition[9.0.1]

By this method we find all indecomposable ((1,2),p°) groups with regulator quotient
isomorphic to (Z,5)" @(Z,) where l; > 1 and l; > 1. Since we assumed that G

is indecomposable, 3 does not contain 0-rows, there can not be any 0-column in M,

and there can not be a cross in [ by Proposition|7.0.4] Set § = . There is no
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unit in X to avoid a cross. Hence we write pX instead. Since the matrix Y is in the
p-block, the entries of Y are either units or zero. We successively form Smith Normal
form of the sub-block X to split out the parts p*I , p*I , p*I and pl. Note that there
is no zero column and no zero row in (3 to avoid direct summands. Then we can write

B as follows

pil 0 0 0 0]p
0 pI 0 0 O0]p°
o o0 10 olp
= 0 0 0 pl 0fp
0 0 0 0 0fp
_A1 Ay Az Ay A5_ p

There can not be a zero column in As since [ contains no 0-columns. With a unit
in As we can annihilate the entries in Ay, Ay, Az and A, this will lead to a direct
summand of rank 2. Hence we omit the units in As. Therefore the last block column

of B does not exist and hence we get

(4T 0 0 0 |p

0 pI 0 0 |pf
Bl=|0 0o pI 0 |p®
0 0 0 pl |p°

_Al Ay Az Ay p

There will be no zero column in Ay, Ao, As and Ay otherwise this would lead to a
cross in . If there is a unit in Ay by Gauss elimination upwards we can annihilate
in p*I and then by basis transformation we annihilate the entries in the same row as
this unit in As, A3 and A, but so we get a direct summand of rank 2. Hence A1 = 0

and the first column of (3 is not present. Thus [3 is of the form

(I 0 0 | p

0 pI 0 |p°

19 = 5
0 0 pl |p

| Ay A3 Ag | p

If there is a unit in Ay then the corresponding rows in Az and A4 can be annihilated

with this unit. There will be fill-ins in the first block row of  which can be removed
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by p?I and pl in p°-block, respectively. This leads to a direct summand (i) of rank 4
listed in Proposition[9.0.1] Omitting this summand we may assume that Ay = 0. But
then the first block column containing p*I leads to a cross. Hence the first block row

and the first block column of B do not exist. 3 changes to Hence we get

p2 [ O p5
Bl=10 pI |p°
As Ay p

Similarly with a unit in A3 we obtain a direct summand (ii) of rank 4 listed in Propo-

sition[9.0.1]. Omitting this summand we may assume that A; = 0 Then

pl | p°

6] = e

A unit in Ay leads to a direct summand (iii) of rank 4 listed in Proposition . This
finishes the proof.

Theorem 10.0.2 There are six near-isomorphism classes of indecomposable ((1,2), p°)
groups with regulator quotient isomorphic 10 (Z,5)" @(Z,2)"? where l; > 1 and
ly > 1 as in Proposition[9.0.2]

Proof 13 Assume that G is an indecomposable ((1,2),p’)-group with regulator R
and regulator quotient G /R is isomorphic to (Z,s )" @(Z,2)" where l; > 1 and
lo >1. Let M = |] | B | ~| bethe coordinate matrix of G. Our method consists
of forming the Smith Normal forms of the subblocks of 8 since by Proposition it
follows that if 3 is decomposable then G is decomposable. If a summand is displayed,
then it leads to a contradiction or we check its class in the list given in Proposition

9.0.2

By using this method we find all indecomposable ((1,2),p°) groups with regulator
1

quotient isomorphic 10 (Zys )" @(Z,2)" where |4 and ly > 1. Due to our

assumption that G is indecomposable, 3 can not contain 0-rows, there can not be

any 0-column in M, and there can not be a cross in 3 by Proposition Write

g = . There is no unit in X to avoid a cross. Hence set pX instead. Since the
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matrix Y is in the p>-block, the entries of Y are units,zero or in pZ. We successively
form Smith Normal form of the sub-block X to split out the parts p*I , p*I , p*I and

pl. Then we can write ( as follows

pI 0 0 0 0
0 p I 0 0 0
B=10 0 p 0 0
0 0 0 pl 0
A Ay As Ay As

There is no zero column in As due to the reason that there is no zero column in (3.
With a unit in A5 we can annihilate the entries in Ay, Ay, Az and A4 without causing
any fill-ins in the other subblocks and this will lead to a direct summand of rank 2.

Hence we execute the units in As. Therefore As is of the form pAs and hence we get

ot

(AT 0 0 0 0

0 pf 0 0 0
=10 0 p’I 0 O
0 0 0 pI O
A Ay As Ay pA5_

ot

[

ot

[

RVRIB,=_|,. =8I

If there is a unit in A,, then by Gauss elimination upwards we can annihilate in p*I
and afterwards by basis transformation we annihilate the entries in the same row as
this unit in As, As and A4. After these eliminations we get a direct summand of rank

2. Hence we set pAy. The same holds for Ay and we set pAs. Thus 3 changes to

pI 0 0 0 0
0 pI 0 0 0
=10 0 p 0 O
0 0 0 pIl 0
pA1 pAs Az Ay pAs| PP

There is no zero column in pAs and thus the Smith Normal form of pAs is pAs =
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I
b . The pl in this Smith Normal form of pAs allows us to annihilate the entries in
0

pAs and pA;. This operation do not cause any fill-ins in the other blocks. Therefore

B is transformed to

(i 0 0 0 0] P

0 pI O 0 0 P’

|0 0 pI 0 O P’
= 0O 0 0 pI 0] p
0 0 As An pl p2

(pA1 pAy Asyy Ap 0 P’

There is no 0-column in pA; to avoid a cross. Hence the Smith Normal form of pA;
is pA; = . With this pI we can annihilate in pAs. The fill-ins in the first block

row are p*7Z and can be annihilated by p31 in the second block row and so we get

p*l 0 0 0 0 p°
0o pI 0 0 O P’

0 0 pI 0 O p°

0 0 0 pI 0 p°

0 0 Az Ay pI| p?
pl 0 Az Agp O P’
i 0 pAyp Azz A 0 P’

With pl in the sixth block row we can annihilate p*I in the first block row. The fill-ins
in the first row are in p3Z and can be removed by p>I , p*I and pl respectively. Hence

the first block row is 0 and so it is not present. Thus  changes to

(0 I 0 0 o] P

0O 0 p*I 0 O p°

|0 0 0 pl O p°
= 0 0 Ay Ay pl| p°
pI 0 Az Ap 0 P’

|0 pAn Ay Ay 0] p°



A unit in Ass allows us to annihilate in pAss and in Ays. The fill-ins in p°-block can
be removed by p*I and pl respectively. But also we can annihilate with this unit in
Aso and Asy. Thus we get a direct summand (ii) listed in Proposition Omitting

this summand we can assume that pAss. Thus 5 changes to

0o pI 0 0 0| p°

0O 0 pI 0 O p°

|0 0 0 pI O p°
v= 0 0 Ay Ag pI| p?
pl 0 Az Ap 0 P’

L 0 pAxp pAss Az 0 i P’

With a unit in A3y we first annihilate in Ayy. The fill-ins in the second block row are
in p*Z and can be annihilated by pI below in the third block row. Then with this unit
we annihilate in Asy and in pAss. These cause fill-ins in the last block column in p*-
block and they can be removed by pl in the fifth block row or there are p*Z and hence
can be ignored. This leads to a summand (iv) listed in Proposition [9.0.2] We omit
this summand and we assume pAs;. By pl in the last block column, the submatrix
pAsy is annihilated without causing any fill-ins. Hence set pAs; = 0. Therefore (3 is

transformed to

0 pf O 0 0 p°

0O 0 pI 0 0 p°
|0 0 0 pl O p°
T 0 0 pI| 9
pl 0 Azz A O P’

L 0 pAxn pAss Az 0 i P’

A unit in Asy leads to a summand (iv) listed in Proposition[9.0.2] Since by assumption
G is indecomposable, we omit this summand and so we may assume that pAss. But

then by pl in the fifth block row we annihilate the submatrix pAss. So pAss = 0 and
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B changes to

(0 B 0 0 0] P

0O 0 pI 0 O p°
{0 0 0 pl O p°
= 0 0 0 Ay pl| p?
pl 0 0 Ap O p?

| 0 pAxp pAsz Az 0 i P’

There is no zero column in pAsy to avoid a cross. Hence the entries of Ass are
I

in pZ and so the Smith Normal form of pAss is pAgs = P We annihilate the
0

corresponding entries of pAss with pl in the Smith Normal form of pAss. The fill-ins
in the first block row are in p*Z and can be violated by p*I in the second block row.

Thus,

0 pI 0 0 0 p°

0 0 pI 0 O p°

0 0 0 pl 0 P’
B=10 0 0 Ap pI| p?
pl 0 0 Ap O p?

0 pIl 0 Ag O p?

0 0 pAss Ay O P’

A unit in Ay leads to a summand (i) listed in Proposition We omit this summand
and assume pAyy. But then by pl above in the third block row, the submatrix pAyy is

annihilated. Thus,

(0 BT 0 0 o] p
0 0 pI 0 O P’
0 0 0 pI O p°
=10 0 0 Ay pI| p?
pI 0 0 Ap 0| p?
0 pl 0 A; 0 p?
0 0 pAss 0 0 p?

The entries of pAssz are in pZ. A p in pAss leads to a summand (ii) listed in Proposition
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Omitting this summand we set pAsz = 0 since it is in the p*-block. This leads
to a 0-row in 3 and thereafter a cross with a cross point p* in the second block row.
Hence p*I in the second block row and the corresponding rows and columns do not

exist. Hence (3 is transformed to

0 p’I 0 0 p°

0 0 pI O p°
B=10 0 Ay pI| p?
pl 0 Agp 0 p?

|0 pl Ay 0] p?

A zero row in Ays results to a summand (iii) listed in Proposition [9.0.2] Hence the
Smith Normal form of Az is Ayz = [[ 0]. With this I in the Smith Normal form we
annihilate in Ay and in Ay The resulting fill-ins are in pZ and can be annihilated

by pl in the fifth and fourth block rows, respectively. Thus (3 is transformed to

0 p*I O 0 0 PP

0 0 pI 0 0| p°
00 0 pI 0 PP
= 0 0 0 Ay pI| p?
pl 0 0 Ap 0| p?

i 0 pI I 0 0 | P2

A unit in Ay leads to a summand (v) listed in Proposition[9.0.2] Omitting this sum-
mand we may assume that pAy,. But then pAy, can be annihilated by pl on the right
in the same block row, so pAs=0. This causes to a cross with a cross point p in
the last block column. Hence the last block column and the fourth block row are not

present. Therefore [ changes to
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0 0 pl 0 p°
0O 0 0 »pI p°
pl 0 0 Ap| p?
0 pl I 0] p?



The entries of Ay that are in pZ can be annihilated by pl on the left in the same block
row. Hence the entries of A4y are either units or zeros. There is no zero row and no
zero column in Ayo otherwise there will be crosses in 3. Hence the Smith Normal
form of Ao changes to the identity matrix. But then a direct summand (v) listed in

Proposition|9.0.2)is obtained. We omit this summand and get 3 as

p3I 0 p5
B=10 pl| p°

Lol 1]

From this form of B we can read another direct summand (vi) listed in Proposition

[9.0.2] This finishes the proof.

Theorem 10.0.3 There are six near-isomorphism classes of indecomposable ((1,2), p°)
groups with regulator quotient isomorphic to (Z,5)" @(Z,3)? where I, > 1 and

lo > 1 as in Proposition|9.0.3

Let G is an indecomposable ((1,2), p®)-group with regulator R and regulator quo-
tient G/ R is isomorphic to (Z,s)" @(Z,3)"> where l; > 1and l, > 1. Let M =
[ I | B | ~| be the coordinate matrix of G. We want to find a complete list of
indecomposable (1, 2)-groups with the given regulator quotient. By Proposition m
we know that if S-part of M is decomposable then GG is decomposable. Hence we
deal only with the section matrix 3 and check its decomposability. We will form the
Smith Normal forms of the subblocks of § and while doing this if we get a direct
then we say that either it leads to a contradiction or we check its class in the list given
in Proposition. In this way we will find all indecomposable ((1,2),p°) groups with

regulator quotient isomorphic to Z,s @ Z,s.

Since we supposed that G is indecomposable, 5 not contain O-rows, there can not

be any 0-column in d, and there can not be a cross in 3 by Proposition Let

g = . There is no unit in X to avoid a cross. Hence we can write pX instead.
Y

Since the matrix Y is in the p-block, the entries of Y are units,zero pI or p?I. We

successively form Smith Normal form of the sub-block X to split out the parts p*I
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, p°I , p?I and pI. Note that there is no zero column and no zero row in 3 to avoid

direct summands. Then we can write 3 as follows

(T 0 0 0 0]p
0 pI 0 0 O0]p°
=0 0o pr 0 0l
0 0 0 pl 0|p
_Al Ay Az Ay As_ P’

There is no zero column in As due to the reason that there is no zero column in f3.
With a unit in A5 we can annihilate the entries in A; , Ay , Az and A, this will lead

to a direct summand of rank 2. Hence we execute the units in As. Therefore A5 is of

the form pAs5 and hence we get 3 as

A0 0 0 0] P
0O pI 0 0 0 p°

0 0 pI 0 O P’

0O 0 0 pI O P’

| A Ay As Ay pA5_ p°

If there is a unit in A; by Gauss elimination upwards we can annihilate in p*I and
then by basis transformation we annihilate the entries in the same row as this unit in

Ag, A3 and A4. But so we get a cross and so a direct summand. Hence we may write

pA;.

p'I 0 0 0

0 p
0 pI 0 0 0| p°
=10 0 pI 0 O p°
0O 0 0 pI O p°
pAr Ay Az Ay PA5_ P’

With a unit in A, we first apply Gauss elimination upwards to annihilate p3I in the
second block row. Then by basis transformation we can annihilate the corresponding
entries in Aq, Ay, A3, A4 and As. This causes to a cross in 3. Hence A, is assumed

to have the form pA.,.
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pI 0 0 0 O

0 pI 0 0 O
B=10 0 pI 0 O

0 0 0 pIl O
_pAl pAy Az Ay PA5_

S B~ T ~ T~

If there is a unit in A3, then we get a cross. The same holds for the block matrices A,

and A,. So we write pA; and pAs, instead. Hence (3 changes to

0
0 pZ 0 0 0
0

0 0 0 pI 0
_PAl pAy pAs Ay PA5_

In the block marix A, there are only units and zeros due to pI above in p°-Block.
Otherwise we can apply Gauss elimination upwards and get a cross. There is no zero

column in A4 to avoid a cross with a cross point in p in p>-Block. Hence the Smith

Normal form of A, is Ay = ol
(AT 0 0 0 0| p
0O I 0 0 0| p

0 0 pI 0 0 P

0 0 0 pl O p°
p

p

pAi pAa pAs I pAs

_pAlz pAy pAsp 0 PAsz_

The submatrix pAs; can be annihilated by I on the right. The fill-ins left to p/ in the
p°-block can be annihilated by p? above in p®-Block.Hence pAs; = 0.
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0
0 pPIL 0 0 0
0 0 pI 0 0
0 0 0 pI O
pAnn pAsr 0 I pAs
_pA12 pAz pAs 0 pA52_

With a p in pA;; we can annihilate in pA;; and the corresponding entries of p*I
above. Then we can annihilate in the block row of pA;5-block. This operations will
cause a cross and so to a direct summand. Hence we conclude that the entries of p A1

are in p>Z and we write p?A;,. Thus 3 changes to

ptI 0 0 0 0

0 p’IL 0 0 0

0 0 p*f 0 0

0 0 0 pl O
pAn pAy 0 I pAs
_p2A12 pAz pAs 0 pAsz_

If there is a p in pAy,, then this leads to cross. So we assume p? A,. Similarly a p in

pAss leads to a cross and so to a direct summand. Hence we assume p? Ass.

[

ot

0
0 p3I 0 O 0
0 0 p?’I 0 0
0 0 0 »pl 0
pAn pAg 0 I pAs
_p2A12 pPAn pAs 0 p? A52_

ot

[

=T~ T e~ S~ H ~ S

A p in pAs; leads to a summand (iv) listed in Proposition 0.0.3] With a p in pAs;
we first annihilate in p?As,. This results to fill-ins in the fourth block column below

I which are in pZ. However these fill-ins can be removed by pI above in p°-block.
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Omitting this summand we may assume that p?A5;. So we /3 changes to

A0 0 0 0 p
0 p*l 0 0 0 P
0 0 p?I 0 0 p

0 0 0 pl O p°

p
p

pAn pAg 0 I p*As
_p2A12 p2A22 pAs 0 p2A52_

With a p in pA;; we first annihilate in p?A;,. This results to fill-ins below I in p3-
Block but this fill-ins can be removed by pI above in p°-Block. Then we annihilate
with this p in pA;; in pAs; and in p?As,. This causes fill-ins in the first block row
right to p*I which are in p*Z and p°Z respectively. The first fill-in can be annihilated
by p*I below and the other are in p®Z and hence be ignored. Next we annihilate with
this p in pA;; above in p*I. The fill-ins in the first block row can be removed by pI in
the fourth block row. Hence we get a direct summand of (iv) listed in the Proposition

Omitting this summand we may assume that p? A;;. Thus 3 changes to

A0 0 0 0| pf

0 p’I 0 0 0 P’

|1 0 0 p?I 0 0 p°
= 0 0O 0 pIl 0 P
p*An pAn 0 I p*Am P
_P2A12 p*An pAs 0 p2A52_ P’

We know that pA3 has no entries in p?Z due to the p?/ above. Moreover, there is no

0 column in pAs otherwise we get a cross. Hence the Smith Normal form of pAs is
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I
. Thus 3 changes to

pAs=

(AT 0 0 0 0 |

0 p’I 0 0 0 p°

0 0 pI 0 0 p°

=1 0 0 0 pI 0 p°

pPAn pAy 0 I pPAs P’

p’A p*Axn pl 0 p*As P’

_p2A13 pPA 0 0 p2A53_ P’

With a p? in p? As; we first annihilate in its row in p?Ay3 and p?A;3. Then we anni-
hilate above in p?As, and in p? As;. This leads to a cross hence we assume p? A53=0

since it is located in p3-Block.

A0 0 0 0 »

0 p’I 0 0 0 p°

0 0 p*I 0 0 P’

=1 0 0 0 pI 0 P’
p?Ann pAsyr 0 T pPAs P
pPAia pPApn pl 0 p*As P’
pPAis p*As 0 0 0 P’

Thereafter with a p? in p?A,3 we annihilate in its row and then in its whole column
and this leads to a cross and hence p?A,3 = 0 since A3 are in p3-block. The block
matrix p® Ay, can be annihilate by pI on its right but then the resulting fill-ins in the

third block row are in p®Z and can be removed by p*I above it. Hence p?Ay = 0.

Thus we get

(AT 0 0 0 0 |

0 p’I 0 0 0 P’

0 0 p1 0 0 p°

B=1 0 0 0 pI 0 P’

pPAun pAn 0 I pPAs| p°

pPA, 0 pl 0 pPAs| PP

0 p?Ays 0 0 0 p?
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With a p? in p?As, we annihilate in p?A;, and then we annihilate in p?As; but this
results to fill-ins in pZ in the fifth block row below p?I in p®-block. We annihilate
this fill-ins by / on the right to it and then this result again fill-ins in the fourth block
row left to pI which are in p?Z. This fill-in can be removed by p*I in the third block
row. Hence we get a direct summand (vi) listed in Proposition [9.0.3] Omitting this

summand we may assume p? As»=0. Thus 3 is transformed to

A0 0 0 p
0 pPI 0 0 P
0 0 p* 0 p

B=1 0 0 0 pI 0 p°

p
p
p

o O O

p2A11 pAa 0 I p2A51
p2A12 0 p[ 0 0
0 p2A23 0 0 0

With a p? in p?A,, we annihilate first in p?A;;. The fill-ins can be removed by the
same reasons like in the above paragraph. Then we can annihilate in p*/ in the first
block row. The resulted fill-ins can be removed by p?I in the third block row. This
leads to (vi) listed in Proposition[9.0.3] Omitting this summand we may assume that

p? Ao = 0 since A, is in the p3-block. Thus 3 changes to

(1 0 0 0 0 | pf

0 p’I 0 0 0 P’

0 0 p 0 0 P’

B = 0 0 0 pI O p°
p*An pAs 0 I p*As| PP

0 0 pIl 0 0 P

0 p*A4 0 0 O P

Now we can read another summand (ii) listed in Proposition [9.0.3| with pivots in the

third and in the sixth block rows. Omitting this summand we can also omit the third
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block column and third block row and sixth block row. Thus we get

(p7 0 0 0 | pf

0 p*I 0 0 P

B = 0 0 pI O P°
pPAn pAyn I pPAs P’

0 pPAx 0 o | p

There is no zero column in p? As; to avoid a direct summand. The Smith Normal form

of A5y is As; = Pl . Thus [ changes to

(AT 0 0 0 0] p

0 p’I 0 0 0 p°

0 0 p/l 0 0 P’

=1 0 0 0 pI 0 p°

pPAn pAn I 0 p*l P’

p’Aiy pAyn 0 I 0 P’

0 p*4 0 0 0 3

By p*I in the fifth block row the submatrix p?>A;; can be annihilated. Assume that
there is a p in pAs,. With this p we first annihilate in p? Ay3. The fill-ins in the last
block row are in p*Z and in pZ, respectively. They can be removed since we are in
p3-block and pI above in the fourth block row, respectively. Next we annihilate with
the p in pAsy in p?A;;. The fill-ins in the second block row and in the fifth block
row are p*Z and p*Z, respectively and they can be removed be p*[ in the first block
row in the fifth row on the right, respectively. Then we annihilate with this pivot p
in pAs;. The resulted fill-ins in the fifth block row can be removed by I on the left.
This causes again to fill-ins the third block row and they can be removed by p/ in the
fourth block row. Therefore with a p in pAs» we annihilate the corresponding entry
in p3I in the second block row. The fill-ins in the second block row are p*Z and can
be removed by pl in the fourth block row. This leads to a summand (iv) listed in
Proposition Omitting this summand we may assume that p?A,, but then this
can be annihilated by I on the right hence pAy; = 0. Then a p? in p?A;; leads to

a summand (v) listed in Proposition Omitting this summand we may assume
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that p2A;;. This p®>A;, can be annihilated by p/ in the same row on the right. Hence
set p>A;; = 0. So we get a direct summand (i) listed in Proposition Thus 3

changes to
T 0 0 0] p
0 pI 0 O p°
=10 0 pl O P’
0 pAy I pI P’
|0 pPAx O 0] P

With a p in pA,; we first annihilate in p®Ays. The resulting fill-ins are in pZ and in
p37Z can be removed by pI in third block row and can be neglected since we are in the
p3-block. This leads to a direct summand (iv) listed in Proposition Omitting

this summands we may assume that p® A,,. Hence (3 is changed to

ptl 0 0 0 p°
pPl 0 0 p
0 pI O p°
pPAyn 1 p?l p

pAs 0 0 P’

0
0
0
0

The submatrix p?A,; can be annihilated by p*I on the right in p3-block. Then we get
a summand (v) listed in Proposition 0.0.3] Omitting this summand the third block

column, the third and and the fourth block rows do not exist. Hence 3 changes to

p4 I 0 p5
ﬁ — O p3 [ p5

|_0 pQAng P’

The first block row and the first block column are not present to avoid a cross. More-
over, there is neither a zero column nor zero row in p? A3 to avoid direct summands.
Hence the Smith Normal form of p? A3 is p*I. This leads to a direct summand (iii)

listed in Proposition9.0.3

Theorem 10.0.4 There is no indecomposable (1,2)-group with regulator quotient
isomorphic to (Z,s)"* @ (Z,1)"? where ly > 1 andly > 1.
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Proof 14 Let G be a ((1,2), p°)-group with regulator R and regulator quotient G /R
is isomorphic to (Z,s)"* @ (Z,)2 wherely > 1andly > 1. Let M = [I | B | v

be the coordinate matrix of G. Assume that G is indecomposable. By Proposition
for the decomposability of M it is sufficient to check the decomposability of

the B-section M. Since we supposed that G is indecomposable, 3 not contain 0-rows,
there can not be any 0-column in M, and there can not be a cross in 3. Let } =

There is no unit in X to avoid a cross. Hence we can write pX instead. Since the
matrix Y is in the p-block, the entries of Y are units,zero pl, p*I or p*I. We form
Smith Normal form of the sub-block X to split out the parts p*I , p*I , p*I and pl.
Note that there is no zero column and no zero row in (8 to avoid direct summands.

Thus we can write (3 as follows

pIL 0 0 0 0
0 p I 0 0 0
0 0 p2 0 0
0 0 0 pl 0
0 0 0 0 0

Al Ay Ay Ay A5

There is no unit in Ay, As, As, Ay and As to avoid crosses.Hence we write pA,, pAs,

pAs, pAy and pAs.

The submatrix pA4 can be annihilated by pI above in the p>-block. A p in pA; leads
to a cross. Hence we set p*A; instead. Similarly a p in pAs leads to a cross.So we

write p? As. Hence [3 changes to

pil 0 0 0

ot

(@)
3
no
~
o
(@) (e} (@) (@n) (e}

0
0
0 0 0 »pl
0 0 0 0
p2A1 pAs pAs 0 p2 As

A5 T T~ T~ T

If there is a p in pAs or in pAs then we obtain a cross. Hence we assume p* A, and
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p? As. But then p* As can be annihilated by p*I above in p°-block.Thus we get

piI 0 0 0 0 [p
0 pPI 0 0 0 |p
I S
= 0 0 0 pl 0 |p
0 0 0 0 0 |p
_p2A1 p’A, 0 0 P2A5_ P’

A p?in p*As or a p* in p* A, leads to a crosses so we set p° Ay and p3 As. The same
holds for p* A,. Set p>A,. With a p? in p® A, we annihilate in the block row and in the

block column and get a cross. Hence we can assume that Ay = 0. Thus 5 changes to

T 0 0 0 0 |p

0 pI 0 0 0 |p
o 0 oo 0 |p
= 0 0 0 pl 0 |p
0 0 0 0 0 |p

|0 P4, 0 0 pPAs|pt

The submatrix p> Ay can be annihilated by p>I above in p°-block. This results to no
fill-ins. Hence p3Ay=0. With a p? in p*As we get a cross. So we may assume that

p3A5:0.

3
Do
~
(@)
(@) o O O O O

There is a 0-row in p*-block and this shows that there is no indecomposable group

with the given regulator quotient.
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