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ABSTRACT

DATA-DRIVEN PHASE RETRIEVAL USING DEEP GENERATIVE
MODELS

Kaya, Mehmet Onurcan

M.S., Department of Electrical and Electronics Engineering

Supervisor: Assoc. Prof. Dr. S. Figen Öktem

June 2024, 107 pages

This thesis addresses the nonlinear inverse problem of phase retrieval, which is the

process of recovering a signal from the magnitude of its Fourier transform, a funda-

mental challenge in fields such as electron microscopy, crystallography, astronomy,

and optical imaging. Classical phase retrieval techniques face limitations in robust-

ness, noise sensitivity, and computational efficiency. To overcome these limitations,

this work develops novel data-driven phase retrieval methods by exploiting advanced

deep generative models. Firstly, we present a phase retrieval approach leveraging

Langevin dynamics within diffusion models. This approach utilizes two different

deep learning pipelines, namely prNet-Small and prNet-Large, and carefully balances

the perceptual quality-distortion tradeoff. While we favor minimal distortion, we also

aim to create high-perceptual quality images. Secondly, we use the Inversion by Di-

rect Denoising (InDI) framework to solve the Fourier phase retrieval problem. The de-

veloped method also employs advanced initialization strategies and ensembling tech-

niques, resulting in improved training efficiency and better image quality compared

to traditional methods. Thirdly, we extend the Denoising Diffusion Restoration Mod-

els (DDRM) for phase retrieval by combining with the Hybrid Input-Output (HIO)
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method. This approach utilizes pretrained unconditional diffusion models. Overall,

this thesis demonstrates that exploiting the score/diffusion-based framework signifi-

cantly improves the solution of the phase retrieval problem by enabling unprecedented

image quality, better noise robustness, and higher computational speed and efficiency.

These advancements have a broad impact on computational imaging and various sci-

entific and engineering applications.

Keywords: Phase Retrieval, Diffusion, Generative Models, Deep Learning, Image

Reconstruction
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ÖZ

DERİN ÜRETİCİ MODELLER İLE VERİ GÜDÜMLÜ FAZ GERİ
KAZANIMI

Kaya, Mehmet Onurcan

Yüksek Lisans, Elektrik ve Elektronik Mühendisliği Bölümü

Tez Yöneticisi: Doç. Dr. S. Figen Öktem

Haziran 2024 , 107 sayfa

Bu tez, elektron mikroskopisi, kristalografi, astronomi ve optik görüntüleme gibi alan-

larda önemli uygulamaları olan faz geri kazanımı isimli doğrusal olmayan bir ters

problemi ele almaktadır. Bir sinyalin Fourier dönüşümünün sadece genlik değerlerin-

den yola çıkarak bu sinyalin algoritmik olarak geri kazanılması amaçlanan bu prob-

lemde klasik olarak kullanılan yöntemler sağlamlık, gürültü hassasiyeti ve hesaplama

verimliliği açısından oldukça sınırlıdırlar. Bu sınırlamaların üstesinden gelmek için

bu çalışmada ileri düzey derin üretici modeller yardımıyla veri güdümlü yeni faz geri

kazanım teknikleri geliştirilmiştir. İlk olarak, Langevin dinamiği tekniğini baz alan bir

faz geri kazanım yaklaşımı anlatılmaktadır. Bu yöntem, prNet-Small ve prNet-Large

ismindeki derin öğrenme yapılarını kullanmakta ve algısal kalite-bozulma dengesini

göz önünde bulundurarak minimum bozulma yanında yüksek algısal kalitede geri-

çatım elde etmektedir. İkinci olarak, Doğrudan Gürültü Giderme ile Ters Çevirme

(InDI) çerçevesi, Fourier faz geri kazanımı için denenmektedir. Bu yöntem, ayrıca

gelişmiş başlangıç stratejileri ve birleştirme teknikleri kullanarak, geleneksel yöntem-

lere kıyasla eğitim verimliliğini ve görüntü kalitesini artırmaktadır. Son olarak, Gü-
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rültü Giderme Difüzyon Geri Kazanım Modelleri (DDRM) faz geri kazanımı proble-

mine Hibrit Giriş-Çıkış (HIO) yöntemi kullanılarak genişletilmektedir. Bu yaklaşım,

faz geri kazanım performansını artırmak için önceden eğitilmiş koşulsuz difüzyon

modellerini kullanmaktadır. Genel olarak, bu tez, skor/difüzyon tabanlı çerçeveyi en-

tegre etmenin faz geri kazanımının görsel performansını önemli ölçüde iyileştirdiğini,

daha iyi gürültü dayanıklılığı ve daha iyi hesaplama başarımı sunduğunu göstermek-

tedir. Bu gelişmeler, hesaplamalı görüntüleme ve çeşitli bilim ve mühendislik uygu-

lamaları için geniş kapsamlı etkilere sahiptir.

Anahtar Kelimeler: Faz Geri Kazanımı, Difüzyon, Üretici Modeller, Derin Öğrenme,

Görüntü Geriçatımı
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CHAPTER 1

INTRODUCTION

1.1 Phase Retrieval Problems

In its broadest sense, the phase retrieval problem involves reconstructing an unknown

signal x from the measurements expressed as

y2 = |Ax|2 +w (1.1)

where A represents a known linear operator specific to the application, and w de-

notes the measurement noise. It is worth mentioning that phase retrieval problems

are more difficult to solve than linear inverse problems due to the non-linearity in this

forward model. This problem has many important applications in imaging, computer-

generated holography, optical computing, crystallography, microscopy, speech pro-

cessing, optical engineering, and theoretical machine learning, to name a few. De-

spite their diverse applications and different physical setups, the forward models in

phase retrieval converge to a common mathematical framework [1]–[9].

1.2 Fourier Phase Retrieval

The general problem formulation for phase retrieval as given in Eq. 1.1 reduces to

the classical Fourier phase retrieval problem when the measurement operator A is

the Discrete Fourier Transform (DFT) matrix. More formally, in the classical phase

retrieval problem, the measurements can be modeled as follows:

y2 = |F̃x|2 +w, w ∼ N (0, α2diag(|F̃x|2)) (1.2)
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Here, y2 ∈ R
√
m×

√
m denotes the noisy Fourier intensity measurements, while F̃

represents the oversampled discrete Fourier transform (DFT) matrix with dimensions
√
m ×

√
m. The target image x ∈ R

√
n×

√
n is presumed to be real-valued, non-

negative, and of finite support. The term w ∈ R
√
m×

√
m signifies the measurement

noise, and α is a scaling factor that adjusts the signal-to-noise ratio (SNR). The noise

is generally modeled as Poisson-distributed, but a normal approximation is used in

this scenario [10].

DFT of an two-dimensional signal x ∈ R
√
n×

√
n is given by

x̂ [k1, k2] =
1

4
√
n

√
n−1∑

n1=0

√
n−1∑

n2=0

x [n1, n2] e
−2πj

n1k1+n2k2√
n (1.3)

and denoted as x̂ = Fx.

For discrete real-valued signals with finite support in two or more dimensions, the

Fourier intensity measurements at discrete frequencies, denoted as |Fx|2, can uniquely

determine the unknown signal x. To ensure uniqueness (aside from trivial ambigui-

ties), for an image with support
√
n×
√
n, it is required to provide the magnitude of

its
√
m ×

√
m-point oversampled DFT with

√
m ≥ 2

√
n − 1 [11]. For simplicity,

this work sets m to 4n.

These trivial ambiguities arise from the fact that there are some transformations that

do not modify the Fourier magnitude, such as global phase shift, conjugate inversion,

and spatial circular shift.

Supposing the Fourier spectrum of x ∈ R
√
n×

√
n is oversampled twice uniformly at

ki = {0, 1/2, 1, ...,
√
n − 1/2} for i = 1, 2, we can write this oversampled spectrum

x̂(2) as

x̂(2) [k1, k2] =
1

4
√
n

√
n−1∑

n1=0

√
n−1∑

n2=0

x [n1, n2] e
−2πj

n1k1+n2k2√
n

=
1

4
√
n

√
m−1∑

n1=0

√
m−1∑

n2=0

√
n

m
x̃ [n1, n2] e

−2πj
n1k̄1+n2k̃2√

m

= (Fx̃)
[
k̃1, k̃2

]
(1.4)

where k̃i = {0, 1, · · · , 2
√
n − 1} = 2ki and x̃ ∈ R

√
m×

√
m with m = 4n is defined

such that x̃ [n1, n2] =
√

m
n
x [n1, n2] if ni ∈ N <

√
n and x̃ [n1, n2] = 0, otherwise.
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If the vectorization order is defined such that

x̃T =

√
m

n

[
xT 0T

m−n

]
(1.5)

then

x̂(2) = Fx̃ = FOmnx (1.6)

where

Omn =

√
m

n

 In

0

 . (1.7)

Defining F̃ = FOmn, the classical phase retrieval problem given in Eq. 1.2 is equiv-

alent to finding a supported signal x̃ from its noisy DFT intensity measurements with

the known support constraint sometimes including the support constraint of x itself.

It is essential to highlight the critical importance of the Fourier phase in order to un-

derstand the difficulty of the problem. The Fourier phase holds more information than

the Fourier magnitude, as demonstrated in the example depicted in Fig. 1.1. In this

example, two images are transformed to the Fourier domain, their phase components

are swapped, and then their inverse Fourier transforms are computed. The resulting

images highlight that the Fourier phase retains a substantial amount of the original

image information. This experiment demonstrates that the vital importance of phase

information which is more significant than magnitude information. In the Fourier

phase retrieval problem, we only have access to the Fourier magnitude information,

which makes it a challenging task.

3



  DFT
Magnitude

Phase

IDFT  
Magnitude

Phase

  DFT
Magnitude

Phase

IDFT  
Magnitude

Phase

Figure 1.1: Synthetic example showing the importance of Fourier phase informa-

tion. Two images are Fourier transformed, their phases are swapped, and then inverse

Fourier transformed. The resulting images demonstrate that the phase information

holds a significant amount of the original image details.

1.3 Its Significance in Optics

In optics, the significance of phase retrieval stems from the inherent limitations of

optical detection devices, such as CCD cameras and photosensitive films, which can

only measure the intensity of light and not its phase. This limitation is due to the high

oscillation frequencies of electromagnetic waves, approximately 1015 Hz, which are

beyond the capability of electronic devices to capture phase information directly.

Consequently, measuring the phase of optical waves involves additional complexity,

typically by requiring interference with another known field through holography/in-

terferometry. In such holographic/interferometric approaches, the phase informa-

tion exists in amplitude modulation of another wavefront, and the intensity of this

wavefront is measured. However, there are situations (e.g. X-ray imaging, imaging

through turbulent atmosphere) where setting up an interferometer is not always prac-

tical. Therefore, non-interferometric phase retrieval techniques requiring computa-

tional algorithms are indispensable when direct phase measurements are impossible.
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1.4 An Example Application: Coherent Diffractive Imaging

One of the primary challenges in optical imaging systems is overcoming the diffrac-

tion limit, which restricts the resolution to a value proportional to the wavelength of

the light used. For visible light, this diffraction limit is in the micron range, mak-

ing it impossible to image molecular-scale features. Although using electromagnetic

waves of shorter wavelengths, such as hard X-rays, could theoretically achieve atomic

resolution, practical limitations arise. Many lens-like devices and other optical com-

ponents suffer from significant aberrations and are difficult to manufacture due to the

refractive indices of materials in this spectral region being close to one. Additionally,

materials tend to absorb too much of the shorter wavelength light, which further com-

plicates the imaging process and reduces the efficiency and clarity of the resulting

images.

This is where coherent diffractive imaging (CDI) comes into play. CDI is a revo-

lutionary lensless imaging technique that has significantly advanced the field of mi-

croscopy. It utilizes a coherent light source, such as X-rays or lasers, to illuminate an

object and measure the resulting diffraction pattern, which corresponds to the Fourier

transform of the object in the far-field. Since only the intensity of the diffraction pat-

tern can be recorded, phase retrieval algorithms are essential for reconstructing the

image of the object from these measurements.

The revival of optical phase retrieval in 1999 marked a significant milestone for CDI.

Miao et al. successfully recorded and reconstructed a continuous diffraction pattern

of a non-crystalline object, demonstrating the potential of phase retrieval to achieve

high-resolution imaging without traditional lenses [12]. This breakthrough has al-

lowed CDI to be applied using various sources, including synchrotron radiation, X-

ray free electron lasers, high harmonic generation, optical laser, and electrons, en-

abling high-resolution imaging of non-crystalline samples. The technique has proven

particularly transformative in microscopy, offering a powerful tool for imaging small

features that are beyond the capabilities of traditional diffraction-limited lens-based

systems [1].

In CDI, the object distribution can be described by a complex-valued transmittance
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function T∗(r), where r = (x, y, z) is the coordinate in the object domain. When

a plane wave is incident on the object, the distribution of the scattered wave in the

detector plane is calculated by the following integral transformation:

U(R) = − j

λ

∫∫∫
ejkzT∗(r)

ejk|R−r|

|R− r|
dr, (1.8)

where λ is the wavelength of the employed probing wave, k = 2π
λ

is the wavenumber,

R = (X, Y, Z) is the coordinate in the detector plane, ejkz is the incident plane wave,

and |R − r| is the distance between a point in the object plane and a point in the

detector plane. The integration is performed over all scattering elements of the object

[13], [14].

Under the Fraunhofer far-field approximation, the model simplifies to the 2D Fourier

phase retrieval problem upon sampling if we consider the projected object distribution

achieved by integration along the optical axis, T (x, y) =
∫
T∗(x, y, z)dz [13], [14].

This simplification, illustrated in Fig. 1.2, is a well-known result in Fourier optics

[15]. In this context, the observed far-field intensity pattern in the detector plane,

I(x, y), is proportional to the Fourier intensity of the unknown transmittance function,

T (x, y):

I(x, y) ∝
∣∣∣F{T}( x

λd
,
y

λd
)
∣∣∣2 (1.9)

In this thesis, we focus exclusively on real-valued transmission functions rather than

complex-valued. Physically, a sample with a real transmittance function does not

cause any phase shift to the incoming coherent wave and can only absorb it.
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Coherent Wave

Unknown complex
transmittance function

Observed far-field intensity
pattern in the detector plane

Figure 1.2: Schematic representation of the coherent diffractive imaging (CDI) setup.

A coherent wave illuminates an object characterized by an unknown complex trans-

mittance function T (x, y). The resulting diffraction pattern, observed in the far-field

detector plane, is proportional to the Fourier intensity of the transmittance function.

This observed intensity pattern, I(x, y), is crucial for reconstructing the object’s im-

age using phase retrieval algorithms.

1.5 Other Applications and History

It is not difficult to imagine other physical problems that result in the same mathemat-

ical phase retrieval formulation. For instance, while CDI focuses on reconstructing

the image of an unknown object, we can also consider a synthesis setup, such as

in computer-generated holography. In this case, the challenge is to design a trans-

mittance function that produces a specified far-field intensity pattern. This synthesis

problem relies on the same phase retrieval process to achieve the intended results.

The historical development of phase retrieval adds further context to its wide-ranging

applications. Phase retrieval has a rich history, with its origins tracing back to the

mid-20th century in the field of crystallography. In 1952, Sayre proposed that phase
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information of a scattered wave could be recovered if the intensity pattern at and

between the Bragg peaks was finely measured, leveraging the periodic nature of crys-

tals. This idea was further developed in 1978 when Fienup introduced algorithms for

retrieving phases of two-dimensional images from their Fourier modulus using con-

straints such as non-negativity and known support. These foundational works laid the

groundwork for the broader application of phase retrieval techniques across multiple

scientific disciplines [1]–[9].

The importance of the phase retrieval problem extends to various other applications,

such as astronomy and optical communication. In astronomy, phase retrieval algo-

rithms have been crucial in correcting aberrations in telescope imaging, including the

well-known correction of the Hubble Space Telescope’s primary mirror aberration.

Similar techniques are employed in adaptive optics to compensate for atmospheric

distortions, enabling ground-based telescopes to achieve space-quality imaging. In

optical communication, phase retrieval is used to design the temporal phase of light

beams transmitted through optical fibers, compensating for dispersion and temporally

concentrating energy at the output, which is vital for high-speed data transmission [3].

Additionally, phase retrieval plays a key role in beam shaping, where the goal is

to design phase-only transparencies to produce desired intensity patterns. This is

crucial in applications such as laser machining and inertial confinement fusion. Phase

retrieval is also used in optical encryption, where diffractive optical elements with

quasi-random phases are designed for secure data reconstruction, and in the iterative

design of antireflection coatings and other multilayer optical structures [3].

The application of phase retrieval is not limited to these areas. It also includes wave-

front sensing for radio antennas and optics, frequency-resolved optical gating (FROG)

for characterizing laser pulses, and tomographic imaging with incomplete projections

or unknown phases. These applications demonstrate the broad utility of phase re-

trieval across various scientific and engineering domains [1]–[9].

In recent years, phase retrieval has gained renewed interest due to the development

of new imaging techniques and the integration of modern optimization and machine

learning methods. Theoretical and algorithmic advancements have significantly im-

proved the performance and applicability of phase retrieval methods. For instance,
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exploiting the sparsity of optical images has led to powerful phase retrieval methods

that achieve resolutions beyond the diffraction limit, resolving features smaller than

one-fifth of the wavelength [16]. As enforced priors about the unknown signal have

become more sophisticated, these methods have been able to provide even greater

accuracy and robustness in image reconstruction.

1.6 Classical Iterative Projection Techniques for Phase Retrieval

Iterative projection techniques have become fundamental tools for phase retrieval.

One of the earliest and most well-known algorithms is the classical Gerchberg-Saxton

(GS) algorithm [17], which iteratively applies magnitude constraints in both the spa-

tial and Fourier domains to reconstruct an unknown signal. An enhancement of the

GS algorithm is the Error Reduction (ER) algorithm, which incorporates additional

spatial domain constraints beyond just magnitude [18]. A particularly significant and

widely used method among alternating projection techniques is the Hybrid Input-

Output (HIO) algorithm [19], which builds upon the principles of the ER algorithm.

In the HIO method, Fourier magnitude constraints and various spatial domain con-

straints (such as support, non-negativity, and real-valuedness) are iteratively applied,

similar to the ER algorithm. However, the key distinction is that HIO does not force

the iterates to strictly satisfy the constraints at every step. Instead, it uses the iterates

to progressively guide the algorithm towards a solution that meets the constraints [19].

The HIO iterations are mathematically expressed as follows:

xk+1[n] =

 x′
k[n] for n /∈ γ

xk[n]− βx′
k[n] for n ∈ γ

(1.10)

where

x′
k = F−1

{
y ⊙ Fxk

|Fxk|

}
. (1.11)

In these equations, xk ∈ R
√
m×

√
m represents the reconstruction at the kth itera-

tion, F−1 denotes the inverse Discrete Fourier Transform (DFT) matrix, ⊙ signifies

element-wise multiplication, β is a constant parameter (commonly set to 0.9), and γ

is the set of indices n where x′
k[n] fails to meet the spatial domain constraints [19].
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Despite the lack of a comprehensive theoretical understanding of the HIO method’s

convergence behavior, it has been empirically observed to converge to acceptable so-

lutions in a wide array of applications. However, the reconstructions produced by

HIO can sometimes contain artifacts and errors. These issues are often attributed to

the algorithm getting trapped in local minima or to the amplification of noise within

the solution [1], [20]. To address these limitations, numerous variations and enhance-

ments of the HIO method have been proposed, aiming to improve its reconstruction

performance and reliability [21], [22].

1.7 Deep Learning for Inverse Problems

Deep learning-based reconstruction techniques have emerged as a compelling alter-

native to traditional analytical methods. These approaches demonstrate the potential

to achieve high reconstruction quality and computational efficiency across various

imaging problems, including phase retrieval [23], [24]. The integration of deep learn-

ing into phase retrieval represents a significant advancement, offering new solutions

to longstanding challenges. Deep learning priors are particularly useful for phase re-

trieval because they can effectively capture complex structures and patterns in data,

which are difficult to represent with traditional analytical techniques. By learning

from large datasets, deep learning models can provide robust priors that guide the

phase retrieval process to reduce the impact of noise and improve convergence to

accurate solutions [24].

The current landscape of deep learning-based reconstruction in the literature can be

broadly categorized into four main classes: 1) learning-based direct inversion, 2)

plug-and-play regularization, 3) learned iterative reconstruction based on unrolling,

and 4) generative methods.

Learning-based direct inversion methods aim to bypass iterative reconstruction alto-

gether by directly mapping measurements to the desired image using a deep neural

network (DNN). This approach trains the DNN to learn the inverse function of the

forward model solely on the basis of the training data. While achieving state-of-the-

art performance for simpler inverse problems like denoising [25], these methods face

10



challenges with complex observation models, significant discrepancies between ob-

servations and the target image, or limited training data availability. Such end-to-end

schemes also exist for the phase retrieval problem [26]–[28]. However, due to the

nature of the phase retrieval problem, such end-to-end learning approaches generally

do not perform well compared to other approaches [29].

To address these limitations, a common strategy involves applying an efficient ana-

lytical approximation of the forward model to generate an initial reconstruction. This

initial estimate then serves as a "warm start" for a subsequent DNN refinement step.

This hybrid approach, which combines neural networks with analytical methods, has

demonstrably succeeded in various real-valued 2D reconstruction problems, includ-

ing deconvolution, super-resolution, tomography, and phase retrieval [26], [29], [30].

Notably, a key advantage of learning-based direct inversion methods lies in their low

computational complexity due to their feed-forward (non-iterative) nature, making

them well-suited for real-time imaging applications.

In contrast to learning-based direct inversion, plug-and-play regularization, and un-

rolled learning methods embrace iterative strategies. Their core principle lies in

replacing hand-crafted analytical priors with data-driven deep priors within model-

based reconstruction frameworks. Plug-and-play methods first train a deep prior on

dedicated datasets and then leverage it as a regularizer for an iterative model-based

inversion algorithm [31], [32]. Since maximum a posteriori problem given Gaus-

sian noise assumption can be written as an optimization problem in the form of

maxx−∥y − A(x)∥2 + R(x) which can be split into data-fidelity and regulariza-

tion steps, this framework allows to solve various inverse problems by leveraging the

impressive capabilities of existing denoising models in the regularization steps while

model-based algorithms can be used jointly in the data-fidelity steps. Such plug-and-

play methods are widely used in the current phase retrieval literature [33]–[36]. While

achieving superior image quality, flexibility, and generalizability compared to direct

inversion methods, these approaches typically incur higher memory usage and com-

putational complexity due to their iterative nature. This complexity stems from the

need to compute the forward operator (system model) and its adjoint at each iteration.

Unrolled learning takes iterative methods utilizing proximal operators or deep pri-
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ors, such as those employed in plug-and-play approaches, and transforms them into

end-to-end trainable networks. This representation allows the algorithm to be con-

catenated as a series of layers, running a finite number of times as it passes through

the network. This unrolling aims to further improve reconstruction quality [37], [38].

However, similar to plug-and-play methods, unrolled iterative learning generally suf-

fers from high computational demands. Furthermore, unlike direct inversion and

plug-and-play methods, unrolled approaches necessitate the computation of both for-

ward and adjoint operators during training, leading to a significant increase in training

time and complexity. This can make them impractical for large-scale reconstruction

problems. Despite these limitations, unrolled learning has shown success in phase

retrieval [39]–[43].

1.8 Generative Models for Inverse Problems

All of the aforementioned deep learning methods focus on Maximum A Posteri-

ori (MAP) or Minimum Mean Squared Error (MMSE) estimation. As theoretically

shown in [44] and empirically observed in [45], these estimates may deviate sig-

nificantly from the natural image manifold, leading to reconstructions with overly

smooth features. Interestingly, the work by Işıl et al. [33] attributes this smoothing

behavior to an unavoidable inherent limitation of Deep Neural Networks (DNNs) in

the context of phase retrieval. However, as long as reconstruction algorithms pri-

oritize minimizing metrics like MSE, we can only expect limited improvements in

perceptual quality.

To achieve reconstructions that are visually accurate to human observers, a shift in

our strategy for solving inverse problems is necessary. Instead of focusing solely on

the conditional mean of the posterior distribution, we should aim to sample directly

from this posterior distribution p(x|y). This allows us to generate images that are

more likely to belong to the true underlying distribution of natural images.

In cases of severe information loss, the image reconstruction problem becomes ill-

posed, meaning that there can be multiple valid solutions (clean images) that explain

the observed measurements. This challenge is particularly relevant in phase retrieval,
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where intrinsic system symmetries can map different input images to the same output,

which affects network performance [46]. The MMSE solution attempts to average

these potential solutions, resulting in smoothed images lacking the fine details often

present in real-world scenes. Given the existence of multiple valid solutions, a suc-

cessful approach should incorporate stochasticity, as ill-posed problems inherently

have multiple viable solutions for the same data. Generative models provide an ideal

framework for this purpose, allowing us to sample from the posterior distribution and

generate diverse yet plausible reconstructions.

Generative models, which include techniques such as Generative Adversarial Net-

works, Variational Autoencoders, flow-based approaches, and diffusion models, have

demonstrated impressive performance in diverse inverse problem tasks [47], [48].

By learning to generate samples from the posterior distribution, generative models

can produce reconstructions that better capture the variability and richness of natu-

ral images. Notably, generative models have also been successfully applied to phase

retrieval [27], [49], [50]. Uelwer et al. [27] demonstrated that conditional genera-

tive adversarial networks (cGANs) can optimize phase retrieval processes by incor-

porating measurement knowledge, thus achieving superior performance compared to

traditional methods. Similarly, Gladrow et al. [49] utilized deep conditional gener-

ative models like cGAN and cVAE to solve the inverse problem of digital hologra-

phy, showcasing the potential of data-driven approaches in handling optical aberra-

tions. Shoushtari et al. [50] introduced DOLPH, a diffusion model-based architecture,

which effectively integrates image priors with nonconvex data-fidelity terms, provid-

ing robust and high-quality solutions for phase retrieval. These studies collectively

highlight the versatility and robustness of generative models in enhancing phase re-

trieval outcomes.

1.8.1 Diffusion Models for Inverse Problems

Diffusion models, a subclass of generative models, have recently gained prominence

for their effectiveness in high-dimensional data generation and reconstruction tasks.

These models work by simulating a diffusion process that transforms simple, noise-

like data into complex structures over time. The process is guided by learned score
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functions, which estimate the gradients of the data distribution at each step to gradu-

ally denoise the data and refine the generated outputs.

The significance of diffusion models lies in their theoretical foundation and practical

success. Historically, these models draw inspiration from non-equilibrium thermo-

dynamics and stochastic processes. The seminal works on diffusion models have

demonstrated their capability to generate high-quality, diverse samples, rivalling or

surpassing other generative models such as GANs and VAEs. The iterative nature of

diffusion models allows them to incrementally refine solutions [27], [48]–[51], mak-

ing them particularly well-suited for tasks requiring high precision, such as phase

retrieval.

In the context of phase retrieval, diffusion models provide a powerful framework

for incorporating deep learning priors. The iterative denoising process aligns well

with the need to progressively refine phase estimates from initial noisy guesses. By

training on large image datasets, diffusion models learn to capture the underlying sta-

tistical properties of the data, which can then be leveraged to guide the phase retrieval

process towards more accurate reconstructions.

One of the key advantages of using diffusion models for phase retrieval is their ro-

bustness to noise and initialization. Traditional phase retrieval algorithms often suf-

fer from convergence to local minima and sensitivity to the initial guess. Diffusion

models, with their probabilistic and iterative nature, can mitigate these issues by pro-

viding a systematic approach to explore the solution space and progressively enhance

the quality of the reconstructions.

Moreover, the flexibility of diffusion models allows their adaptation to various types

of data and measurement settings. Whether dealing with coded diffraction patterns,

multi-plane intensity measurements, or different wavelengths, diffusion models can

be trained to incorporate these variations, enabling a unified framework for phase

retrieval across diverse applications.
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1.9 Proposed Methods and Contributions

In this thesis, three novel phase retrieval methods are developed. In Chapter 2, we

present a novel approach to phase retrieval by leveraging Langevin dynamics for pos-

terior sampling. This method diverges from traditional techniques that only prioritize

distortion metrics, and instead focuses on the perceptual quality-distortion tradeoff

to achieve high-fidelity reconstructions with minimal distortion and high perceptual

quality. The chapter introduces two deep learning pipelines, prNet-Small and prNet-

Large. These pipelines iteratively refine initial HIO estimates through denoising,

data consistency, and noise injection cycles. The prNet-Large model incorporates

diverse starting points and an additional denoiser with a Wasserstein loss to enhance

robustness and perceptual quality. Moreover, test time augmentation, which exploits

the inherent properties of the phase retrieval problem, further enhances the perfor-

mance of prNet-Large with little additional computational cost. Extensive simulations

demonstrate that this method achieves state-of-the-art performance while maintaining

low computational overhead. The hybridization of denoisers with model-based tech-

niques as in this approach shows significant promise for developing reliable stochastic

solvers for nonlinear inverse problems.

In Chapter 3, we introduce a novel approach to Fourier phase retrieval by employ-

ing the Inversion by Direct Denoising (InDI) framework [52]. This methodology

features a sophisticated initialization strategy, utilizes ensembling to refine quality

metrics, and adapts the InDI process specifically for phase retrieval, to achieve sig-

nificant improvements in both training efficiency and image quality. By starting from

a plausible initial estimate rather than random noise, the method maximizes the ca-

pacity of the denoiser, resulting in reduced training time and enhanced performance.

This approach demonstrates superior results compared to both classical and recent

techniques, highlighting its potential for effective and efficient phase retrieval.

Chapter 4 extends the application of Denoising Diffusion Restoration Models (DDRM)

[53] from linear inverse problems to the nonlinear inverse problem of phase retrieval.

This chapter combines the efficient, unsupervised posterior sampling method of DDRM

with the model-based Hybrid Input-Output (HIO) method. This innovative approach

uses pretrained unconditional diffusion models. The efficacy of the proposed method
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is evaluated using image quality metrics to compare the ground truth and recon-

structed images, demonstrating its potential to outperform existing classical iterative

methods in phase retrieval.

We can classify the developed algorithms in terms of reconstruction quality and train-

ing time, as illustrated in Fig. 1.3. The figure demonstrates the tradeoffs between the

different methods developed in this thesis. The prNet model, presented in Chapter

2, exhibits the highest reconstruction performance but requires the longest training

time due to its unrolled-like training strategy. In contrast, the DDRM-PR approach

in Chapter 4 requires no training but shows lower reconstruction performance. The

InDI-PR method, developed in Chapter 3, offers a balanced approach, providing mod-

erate reconstruction performance with relatively efficient training time. This classifi-

cation shows the varying strengths and tradeoffs of each method, highlighting the ver-

satility and adaptability of the proposed techniques to different application needs. The

InDI-PR method achieves training efficiency through a fixed noise schedule, which

simplifies the learning process but restricts the pipeline’s adaptability to variable noise

conditions in phase retrieval tasks. Unlike the prNet model, which allows for dynamic

adjustment of the learnable noise schedule during training, the InDI-PR’s predefined

forward process limits flexibility, impacting its reconstruction performance and abil-

ity to handle complex scenarios.
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Figure 1.3: Classification of developed phase retrieval algorithms based on recon-

struction performance and training time.

1.10 Outline of the Thesis

The rest of this thesis is organized as follows. In Chapter 2, we introduce a novel

approach to phase retrieval by leveraging Langevin dynamics for posterior sampling

within the framework of diffusion models. We develop two deep learning pipelines,

prNet-Small and prNet-Large, which iteratively refine initial estimates to achieve

high-fidelity reconstructions with low distortion. Chapter 3 presents the Inversion

by Direct Denoising (InDI) framework for Fourier phase retrieval, incorporating ad-

vanced initialization strategies and ensembling techniques to enhance training effi-

ciency and image quality. Chapter 4 extends the application of Denoising Diffusion

Restoration Models (DDRM) to the nonlinear inverse problem of phase retrieval. We

combine generative diffusion models with the Hybrid Input-Output (HIO) method

to utilize pretrained unconditional diffusion models for superior phase retrieval per-

formance. Finally, in Chapter 5, we summarize the contributions of this thesis and

discuss potential future research directions.
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CHAPTER 2

PRNET: SOLVING FOURIER PHASE RETRIEVAL PROBLEM VIA

STOCHASTIC REFINEMENT

2.1 Introduction

As mentioned before, Fourier phase retrieval (PR) refers to the problem of recon-

structing a signal from the magnitude of its Fourier transform measurements. It arises

in numerous applications across science and engineering, including crystallography,

microscopy, astronomy, optical imaging, and speech processing [1]–[9]. Despite its

widespread utility, PR remains a challenging ill-posed inverse problem due to the loss

of phase information and the associated non-convexity. Over the years, numerous al-

gorithmic approaches have been proposed to tackle this problem, each with its own

strengths and limitations.

Classical methods for PR typically employ alternating projection schemes that iter-

ate between enforcing the known magnitude constraints in the Fourier domain and

imposing prior signal constraints in the spatial domain. A prominent example is the

Hybrid Input-Output (HIO) algorithm, which benefits from computational efficiency

but may yield suboptimal reconstructions due to stagnation in local minima or noise

amplification. More advanced techniques based on semidefinite programming, sparse

regularization, and global optimization have also been developed to mitigate these

drawbacks, albeit at increased computational cost or restrictive assumptions.

In recent years, deep learning has emerged as a powerful tool for solving various

inverse problems in imaging, including PR. Data-driven approaches based on deep

neural networks (DNNs) have demonstrated remarkable success in directly recon-

structing images from measurements or refining initial estimates from classical meth-
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ods. Alternatively, model-based optimization schemes have been augmented with

deep priors learned from data using the plug-and-play framework. However, existing

deep learning solutions for PR often suffer from limited performance due to domain

shift, which occurs when the training data and the real-world test data come from dif-

ferent distributions, leading to decreased accuracy. Additionally, these solutions face

challenges related to a lack of interpretability and the need for cumbersome parameter

tuning.

Despite extensive research on PR for coded diffraction patterns, a notable research

gap exists in the context of classical Fourier PR, with a scarcity of dedicated literature

and limited investigations in this setting. Thus, the developed method in this chapter

is important as it focuses specifically on this less-explored area.

In this work, we present a novel hybrid approach that synergistically combines model-

driven and data-driven techniques for Fourier PR. Our main contributions are as fol-

lows:

• We develop two new deep learning pipelines, prNet-Small and prNet-Large,

that achieve state-of-the-art reconstruction performance while maintaining low

computational time.

• Our methods integrate model-driven and data-driven approaches through itera-

tive refinement of initial HIO estimates using denoising, data consistency, and

noise injection cycles guided by deep neural networks.

• prNet-Large incorporates diverse starting points and employs an extra denoiser

with a Wasserstein loss to enhance robustness and perceptual quality.

• We introduce the first method that leverages test time augmentation (TTA) for

enhanced image reconstruction in Fourier PR, capitalizing on the inherent prop-

erties of the problem.

Through extensive simulations, our proposed methods show superior performance

compared to classical and state-of-the-art techniques, underscoring their efficacy in

addressing the challenges inherent to PR. Moreover, the hybridization of denoisers
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with model-based approaches demonstrates promise for developing reliable stochas-

tic nonlinear inverse problem solvers, which could have broader implications beyond

PR.

The subsequent sections of this chapter unfold as follows: Section 2.2 reviews related

research that informed the development of our approach. Our developed approach

is detailed in Section 2.3, followed by a comparative performance analysis against

classical and state-of-the-art methods in Section 2.4. Lastly, Section 2.5 summarizes

our findings and outlines future research directions.

2.2 Related Works

2.2.1 Posterior Sampling via Score/Diffusion-Based Models

Unconditional diffusion/score-based models are known for their ability to generate

high-quality samples from a prior distribution using the score function ∇x log p(x)

via Langevin dynamics. It is worth mentioning that since score-based and diffusion-

based interpretations are equivalent thanks to Tweedie’s formula [51], [54], [55], we

can focus solely on the score-based approach here.

Although directly learning the score function is an option, most work utilizes a deep

denoiser instead. This substitution is based on the relationship given by [56]

∇xt log p (xt) =
Denoiser (xt, σ)− xt

σ2
t

(2.1)

where xt = x+ v with v ∼ N (0, σtI).

Several strategies have been explored to extend this score-based approach for sam-

pling from a posterior distribution p(x|y), leveraging the posterior score function

∇x log p(x|y) within Langevin dynamics. Here, we can discuss four common meth-

ods for approximating the posterior score function for inverse problems: 1) condi-

tioning via initialization, 2) conditional denoiser, 3) hard projection, and 4) Bayesian

approach.

The "conditioning via initialization" approach initializes Langevin dynamics with a

plausible estimate obtained from a simpler method, but it does not modify the score
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function itself. While this method is simple to implement, it lacks a guarantee of

consistency with the observations. Consequently, the resulting outputs may be incon-

sistent with the actual measurements.

In "conditional denoiser" techniques, they give y to denoiser as ∇xt log p (xt|y) =
Denoiser(xt,y,σ)−xt

σ2
t

and rely fully on the learning process. This approach is still simple,

but for many inverse problems, the influence of the estimation can be very challenging

to learn as it requires learning the complex measurement model. Also, there is no

theoretical guarantee for conditioning.

The "hard projection" methods utilize a regular denoiser followed by a projection step

to match with y, more mathematically, x̂ = argminz
1
2
∥z−Denoiser(x, σ)∥2 s.t. y =

A(z). Although relatively simple to implement, this approach might not be applicable

to all inverse problems. Additionally, it can suffer from inaccuracies as the projection

step might not achieve perfect conditioning on the measurement.

The "Bayesian" approaches leverage Bayes’ rule to derive the posterior score function

as ∇x log p (xt−1|y) = ∇x log p (y|xt−1) + ∇x log p (xt−1). Offering a mathemati-

cally well-founded approach for posterior sampling, this method has been success-

fully applied to linear inverse problems by Kawar et al. [57].

Therefore, one promising approach for achieving high perceptual quality reconstruc-

tions is to employ a posterior score-based sampler, as demonstrated by Kawar et al.

[57]. This strategy offers a multitude of potential solutions for attaining perfect per-

ceptual quality, albeit potentially at the expense of PSNR (Peak Signal-to-Noise Ra-

tio) metrics.

2.2.2 Wassertein Adversarial Loss

Generative Adversarial Networks (GANs) have demonstrated remarkable success in

creating realistic images. GANs can be employed to tackle inverse problems while

producing high-quality outputs [58]. These solvers strive to generate a diverse array

of images that not only match the given measurements but also align with the dis-

tribution of clean examples. In the realm of phase retrieval (PR), several methods

already utilize GANs [27], [59]. However, a significant drawback of GAN-based ap-
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proaches for inverse problems is their tendency to assume noiseless measurements,

as highlighted in [60], a condition that is rarely encountered in practical scenarios.

Instead of solely depending on GANs, adversarial loss can also be used to remedy

over-smoothing due to the optimization of distortion metrics by defining the training

loss in the following way [44]:

ℓtotal = ℓdistortion + λℓadv , (2.2)

where the first term is the distortion between the original and reconstructed images,

and the second term is the standard GAN adversarial loss.

Although the standard GAN adversarial loss has been widely used in various ap-

plications, it suffers from several drawbacks that can hinder optimization and affect

the quality of generated samples. One significant issue is its reliance on the Jensen-

Shannon (JS) divergence metric, which can be problematic when the distributions

of real and generated samples fall apart. This can lead to training instability, mode

collapse, and poor sample quality. In contrast, the Wasserstein GAN (WGAN) intro-

duces a more stable and meaningful metric based on the Wasserstein distance, also

known as the Earth Mover’s distance, which provides a smoother and more reliable

measure of the dissimilarity between distributions. By minimizing the Wasserstein

distance, WGAN encourages the generator to produce samples that gradually tran-

sition towards the distribution of real data, leading to more stable training dynamics

and improved sample quality [61].

An improved version of WGAN, known as WGAN with Gradient Penalty (WGAN-

GP), further enhances the training stability and sample quality by imposing a gradient

penalty on the discriminator. This penalty term penalizes the norm of the gradients of

the discriminator with respect to its inputs, thereby enforcing the Lipschitz continu-

ity. By constraining the Lipschitz constant of the discriminator, WGAN-GP mitigates

the risk of mode collapse and training instability while promoting smoother conver-

gence. The algorithm for WGAN-GP involves alternately updating the discriminator

and generator parameters while incorporating the gradient penalty term into the loss

function. This regularization technique not only improves the robustness of the dis-

criminator/critic but also facilitates a more effective training of the generator, result-

ing in higher-quality generated samples [62]. Overall, by leveraging the Wasserstein
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distance and integrating gradient penalty regularization, WGAN-GP offers a more re-

liable and effective framework for training GANs, particularly in applications such as

inverse problems where stability and sample quality are paramount.

2.2.3 Test Time Augmentation

Test time augmentation (TTA) is a powerful technique in deep learning that leverages

data properties to enhance performance without an additional training requirement. It

involves creating slightly modified versions of the test images (flips, rotations, crops)

and feeding them through the trained model. The predictions from these augmented

versions are then combined (typically by averaging) to produce a final prediction [63].

This approach acts as a form of ensembling, effectively increasing the training data by

leveraging the inherent equivariance properties of the model and the data distribution

[64].

TTA is particularly beneficial when models struggle with small input variations. In

image classification, for instance, flipping an image might not significantly alter the

content, but the model could potentially misclassify the flipped version. By combin-

ing predictions from both versions, TTA achieves a more robust and generalizable per-

formance. This strategy has demonstrably improved accuracy and robustness across

various deep learning domains, including image classification [65], object detection

[66], and image segmentation [67].

In image reconstruction tasks like ours, TTA can capitalize on the algorithm’s invari-

ances. By processing different versions of the test image, TTA integrates additional

information at test time, ultimately enhancing the reconstructed output quality. It also

mitigates the model’s vulnerability to spatial transformations and noise patterns in

test data that might have been underrepresented or absent during training.

2.3 Developed Methods

The core of our method is the Langevin dynamics algorithm, which can be used to

generate samples from a given posterior probability distribution, p (xt−1|y), based on
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the score function of the posterior distribution and a noise term. This is represented

by the following equation:

xt ← xt−1 + α̃∇x log p (xt−1|y) +
√
2α̃vt, 1 ≤ t ≤ T (2.3)

Here, α̃ is the learning rate, vt represents Gaussian noise, and T is the number of

iterations. Applying Bayes’ rule yields:

∇x log p (xt−1|y) = ∇x log p (y|xt−1) +∇x log p (xt−1) (2.4)

We can use a trained denoiser to approximate the score function under the assumption

of xt = x+ v where v ∼ N (0, σtI) [56].

∇xt log p (xt) =
Denoiser (xt, σt)− xt

σ2
t

(2.5)

Substituting this into the Langevin dynamics equation, appropriately choosing con-

stants yields:

xt ← Denoiser(xt−1, t− 1) + α̃∇x log p (y|xt−1) +
√
2α̃vt, 1 ≤ t ≤ T (2.6)

As we later make all these terms learnable, the scaling does not affect anything, as

they can learn accordingly.

For successful conditioning of the generation process on the observation, the formu-

lation of the likelihood-related term specific to the inverse problem is crucial. Con-

sidering the measurement model:

y2 = |F̃x|2 +w, w ∼ N (0, α2diag(|F̃x|2)) (2.7)

Under the assumption of |F̃x|2

α|F̃x| >> 1, the model can be approximated as

y ∼ p(y) ∝ y ⊙N (y2; |F̃x|2, α2diag(|F̃x|2)) ≈ N (y2; |F̃x|2, α2diag(|F̃x|2))
(2.8)

Additionally, by considering the form of a normal distribution:

N (x2;µ, σ2) ∝ e−
(x2−µ)2

2σ2 = e−
(x−√

µ)2(x+
√

µ)2

2σ2 = e
− (x−√

µ)2

2( σ
x+

√
µ
)2 ≈ e

− (x−√
µ)2

2( σ
2
√
µ
)2 (2.9)
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We can approximate the measurement model as follows:

y = |F̃x|+w, w ∼ N (0, (
α

2
)2diag(|F̃x|)) (2.10)

After assuming independence between y and xt, the gradient of the log-likelihood

term with respect to xt becomes:

∇x log p (y|xt) ∝ ∇x∥y − |F̃xt|∥
2 (2.11)

Also, considering the one-dimensional case without loss of generality, the Wirtinger

derivative for a function x̃n with a known support sn is expressed as:

∂

∂x̃∗
n

∑
i

(yi−|Fx̃|i)
2 ∝ −

∑
i

(yi−|Fx̃|i)
∂|Fx̃|i
∂x̃∗

n

= −
∑
i

(yi−|Fx̃|i)
∂|Fx̃|i
∂(Fx̃)∗i

∂(Fx̃)∗i
∂x̃∗

n

∝
∑
i

(|Fx̃|i − yi)
(Fx̃)i
|Fx̃|i

e
2πj in√

m sn (2.12)

Therefore, this leads to the gradient expression:

∇x̃ log p (y|x̃t) ∝ diag(s)
(
x̃t − F−1

(
Fx̃t

|Fx̃t|
⊙ y

))
(2.13)

Employing gradient lookahead, where x̃t = OmnDenoiser(xt, t), involves using the

gradient after the denoising step rather than the gradient at xt. Thus, the Langevin

dynamics update is given by:

x̃t − α̃∇x log p (y|x̃t) = diag(s)
(
(1− λ)x̃t + λF−1

(
Fx̃t

|Fx̃t|
⊙ y

))
= diag(s)F−1

(
Fx̃t

|Fx̃t|
⊙ (λy + (1− λ)|Fx̃t|)

)
= ER(λy + (1− λ)|Fx̃t|)

(2.14)

where λ = α̃ is a scalar that controls the extent of the measurement update.

Thus, we arrive at one iteration of the Error Reduction (ER) algorithm. However,

(sub)gradient methods are known to perform suboptimally for the phase retrieval

problem. To address this, we can substitute this step with the Hybrid Input-Output

(HIO) algorithm, which demonstrates better convergence properties in practice. Pre-

vious diffusion model methods for PR, such as those outlined in [50], did not consider

this fact.
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It is worth noting that the gradient ∇x log p (y|xt) was incomplete because we also

have additional prior information about x beyond its support, such as its realness and

positiveness. To simulate the effect of ∇x log p (y, additional constraints|xt), rather

than hard enforcement, we can enforce such constraints in the HIO feedback steps to

improve the convergence:

xt ← HIO(λty+ (1− λt)|F̃Denoiser(xt−1, t− 1)|) +
√
2α̃vt, 1 ≤ t ≤ T (2.15)

Here, we also make the value of λ learnable and time-dependent to optimize the

measurement update during the training process.

It is worth mentioning that since the regularization term in the objective function of

plug-and-play methods can be viewed as log p(x|y), applying the subgradient method

to this term reveals a clear connection between PnP and score-based methods. Conse-

quently, it is unsurprising to find PnP methods in the literature that employ iterations

strikingly similar to the iteration we derived [34]. But, our work is quite different

from it, as they do not target sampling from the posterior.

Also, even though we formulated and tested our method for Fourier magnitude mea-

surements, it can also be utilized for CDP measurements.

The proposed pipeline outlined in Algorithm 1 and Fig. 2.1 employs an efficient uti-

lization of the denoiser’s model capacity. To optimize conditioning on observations,

we initiate the process with a warm start procedure detailed in [10]. By starting with

a plausible estimate rather than a complete noise image, we facilitate training since

it should only learn to correct this initial estimate. Note that classical methods, such

as HIO, can already provide a decent solution to the problem. Thus, it is logical

to start with that decent solution instead of starting with a random noise image so

that the denoiser model’s capacity is not wasted for the initial reconstruction steps.

This "image-to-image" instead of "noise-to-image" idea is also popular in the liter-

ature [68]–[71]. However, for such a scheme, we should diverge from the classical

diffusion sampling procedure, starting with a pure noise image.

Due to the inherent nonlinearity and non-convexity of the phase retrieval problem, re-

construction algorithms are highly susceptible to the initial guess. In order to address

this challenge and enhance the robustness of our method, this initialization procedure
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Algorithm 1 Proposed algorithm: prNet-Small
Input: y, T,K, α̃, β, λ ∈ RT is learnable (initially, a logarithmically decreasing vec-

tor)

Output: z(0)T

Initialization:

1: x′
0 ← HIO initialization procedure

2:

Main loop:

3: for i = 1 to T do

4: xi ←Denoiser(x′
i−1, i)

5: if i = T then

6: return xi

7:

8: z
(0)
i ← Omnxi

9: yi
′ ← λiy + (1− λi)|Fz(0)i |

10: for k = 1 to K do

11: z
(k)
i

′
← ℜ{F−1[yi

′ ⊙ Fz
(k−1)
i

|Fz
(k−1)
i |

]}

12: γ ← the set of indices where z
(k)
i

′
violates space domain con-

straints (e.g., support and non-negativity)

13: z
(k)
i [n]←

z
(k)
i

′
[n] , n /∈ γ

z
(k−1)
i [n]− βz

(k)
i

′
[n] , n ∈ γ

14:

15: ϵ← N (0, I)

16: x′
i ←

√
n
m
OT

mnz
(K)

i + α̃λiϵ
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runs the HIO algorithm for a small number of s iterations for m different random

phase initializations. This initial exploration aims to identify promising regions in the

search space and is highly parallelizable. After selecting the reconstruction with the

lowest residual ∥y − |Fx̂|∥22, this reconstruction is then further refined using HIO for

a larger number of n iterations.

After the initialization stage, in the main loop, we iteratively apply denoising and data

consistency blocks followed by noise addition to get the final reconstruction. Despite

HIO’s advantages, noise and local minima can still introduce artifacts in reconstruc-

tions. To address this, we employ an iterative denoising-data consistency approach

also used in many unrolling methods [37]. This scheme aims to escape local minima

and reduce artifacts, leading to improved results.

UNet
denoiser

Data
consistency

with HIO for 
iterations

Gaussian
Noise

Main Loop (for   times)

iteration:

Random
Initializations

Select the one
with the lowest

residual 

HIO
 more

iterations

HIO Initialization Stage

The amplitude of the
oversampled DFT ( )

HIO
 iterations

for  tries

Figure 2.1: The overall pipeline of prNet-Small.

The prNet-Large pipeline given in Fig. 2.2 involving multiple reconstructions en-

hances overall reconstruction quality. Specifically, the HIO initialization procedure

generates k distinct outputs, each of which undergoes denoising, yielding k/2 estima-

tions. Following the data consistency layer, the outputs of both the data consistency

and denoising stages are concatenated, introducing Gaussian noise before the subse-

quent iteration. Thus, the denoiser always takes k inputs and generates k outputs.
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Note that once we have a systematic way of sampling from p(x|y), we can also find

the MMSE solution by averaging multiple outputs to make the distortion metrics bet-

ter as MMSE solution gives the best distortion metrics. That explains why ensembling

used in the main loop of prNet-Large can make the distortion metrics better.

Following this main loop, a final denoiser refines the output more in order to com-

pensate for the decrease in perceptual quality introduced by ensembling. Our training

loss includes an additional Wasserstein GAN loss term, augmenting perceptual qual-

ity considerations alongside distortion metrics. This supplementary term serves to

balance the distortion-perception tradeoff. Smooth outputs can be generated by a

denoiser trained purely based on distortion-related loss metrics such as MSE. But,

since a critic model can easily discriminate such smooth outputs, this extra loss term

discourages such reconstructions. This Wasserstein GAN loss is directly related to

the perceptual quality of the generated samples. As both Langevin dynamics and

this added term explicitly address the perception-distortion tradeoff, our algorithm

holistically considers this tradeoff as in [44].
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Gaussian
Noise

Main Loop (for   times)
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HIO
 more
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HIO Initialization Stage with Multiple Outputs

The amplitude of the
oversampled DFT ( )

HIO
 iterations
for  tries

UNet
denoiser

Critic model
(only used in
training)

Figure 2.2: The overall pipeline of prNet-Large.

As the denoising component of our pipeline, we employed a customized UNet archi-

tecture depicted in Fig. 2.3, a well-established framework renowned for its efficacy in

image restoration tasks. Notably, this implementation of UNet incorporates timestep
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information as an additional input that is intricately linked to the noise level of the

input image. It is imperative to underscore that the denoiser operates by estimating

the residual, thus facilitating the refinement of the reconstructed image by focusing

only on the discrepancy between the noisy input and the desired clean output. Our

customization of the UNet architecture includes blocks that utilize attention mecha-

nisms. These mechanisms enable the network to selectively focus on relevant parts

of the input image, enhancing its ability to capture intricate details and effectively

suppress noise. This incorporation of attention mechanisms is crucial for improv-

ing denoising performance, particularly in scenarios where noise levels vary across

different regions of the image.
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256x256x1
Denoised Image

UpBlock2D

UpBlock2D

UpBlock2D

UpBlock2D

AttnUpBlock2D

UpBlock2D

Timestep

Positional Encoding + Linear

Figure 2.3: Architecture of the UNet denoiser with timestep input.

As in Fig. 2.4, for the training of our pipeline, we adopt a progressive approach

that evolves throughout epochs to effectively train each iteration. Initially, we prior-

itize training the initial iterations to refine the early stages of reconstruction. Within

each epoch, we gradually increase the mean of the random timesteps used for train-

ing, facilitating a nuanced learning process that adapts to growing temporal com-

plexities. As we approach later epochs, our focus shifts towards training the final

iterations. This strategic progression reflects the underlying principle of utilizing out-

puts from preceding iterations to train subsequent ones, akin to unrolled algorithms,

thereby enhancing training efficacy and coherence. In contrast to pipelines that as-

sume diffusion-like processes and train denoisers accordingly, our approach relies on

exactly utilizing the outputs of previous iterations for training. While the utilization

of exact outputs instead of the approximate ones, simplifies learning, it can extend

training duration.
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One key advantage of our framework lies in its flexibility regarding the denoising

schedule. Unlike methods that assume a fixed, pre-defined diffusion process, our

pipeline allows for the learning of this schedule during training. This capability al-

lows the model to discover the optimal denoising strategy that best suits the recon-

struction task at hand, potentially leading to superior reconstruction quality.

UNet
denoiser

Data
consistency with
HIO for  times

Gaussian
Noise

iteration:

UNet
denoiser

Data
consistency with
HIO for  times

Gaussian
Noise

iteration:

UNet
denoiser

Data
consistency with
HIO for  times
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In the first epochs, focus more on the training of first iterations.

In the last epochs, focus more on the training of last iterations.

...

In each epoch, gradually increase the mean of the random timesteps for training.

Figure 2.4: Progressive training process.

Since our measurement model is invariant to flipping, meaning that the Fourier mag-

nitude of a flipped image is identical to that of the original, we can leverage this

mathematical property for test time augmentation. As depicted in Fig. 2.5, following

the robust initialization stage, we can apply flipping to these initialization outputs and

execute our pipeline for the flipped versions of the images. Subsequently, combin-

ing the flipped outputs with the original outputs allows us to obtain a more refined

estimate. Test time augmentation is widely applicable across various deep learning

domains and can also be beneficial for enhancing the performance of image recon-

struction tasks.

A more advanced Test Time Augmentation technique called TTA D4, as illustrated

in Fig. 2.6, leverages the properties of the D4 dihedral group, which includes all

symmetries of a square, such as rotations and reflections. This method enhances the

initial TTA by applying each transformation from the D4 group to the outputs from

the robust initialization stage, covering rotations (R0, Rπ/2, Rπ, R3π/2) and reflections

(Horizontal Flip HF , Vertical Flip V F , Diagonal Flip DF , and Anti-Diagonal Flip

ADF ). Formally, we process the initialization outputs {x̂(m)
init}km=1 with a transform

T to generate new sets of initializations {T (x̂(m)
init)}km=1. We also know the effects of

these transformations in the Fourier domain, thus, we also apply the corresponding
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Figure 2.5: Test time augmentation (TTA).

transformation in the Fourier domain to the observation y. These transformed initial-

izations are then iteratively refined, producing different final outputs. The combined

final result is obtained by averaging over all D4 transformations, expressed as:

x̂(combined)
final =

1

|D4|
∑
T ∈D4

T −1(x̂T
final) (2.16)

where |D4| = 8 is the order of the D4 dihedral group.

By incorporating all transformations from the D4 dihedral group, this advanced TTA

technique maximizes the use of symmetry properties and available data, significantly

enhancing the robustness and quality of image reconstructions. This approach is par-

ticularly effective in image reconstruction tasks, where the enriched data from aug-

mentation helps mitigate overfitting and improves generalization performance.
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Figure 2.6: Test time augmentation using dihedral group D4 (TTA D4).

2.4 Results

To evaluate the performance of our method, we conducted numerical simulations

using a large image dataset. We compare the reconstruction performance against

both classical and state-of-the-art phase retrieval methods.

To assess the algorithms’ robustness to noise, generalization capacity, and computa-

tional cost, we investigate their reconstruction performance in two distinct image cat-

egories: natural and unnatural. This categorization allows us to evaluate the methods’

ability to handle real-world scenarios (natural images) and potentially more challeng-

ing, synthetic long-tail samples (unnatural images).

For the training phase, exclusively natural images are utilized. The training dataset

comprises 44, 000 natural images, including 200 training and 100 validation images

from the Berkeley segmentation dataset (BSD) [72], 41, 400 images selected from the

ImageNet database [73], [74], and 2, 300 images randomly chosen from the Waterloo
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Exploration Database [75].

During the testing phase, both natural and synthetic images are employed. This test

dataset, previously used in [33], [34], contains 236 images, which include 230 natu-

ral and 6 synthetic images. Specifically, the dataset consists of 200 test images from

BSD, 24 images from the Kodak dataset [76], and 6 natural and 6 synthetic images

sourced from [10]. The synthetic image subset features images obtained from scan-

ning electron microscopes and telescopes. All images have pixel values ranging from

0 to 255 and are of size 256× 256.

The noisy Fourier measurements were generated using Eq. 1.2, with the average SNR

values presented in Table 2.1 (where SNR = 10 log(
∥∥∥|F̃x|2∥∥∥

2
/
∥∥∥y2 − |F̃x|2

∥∥∥
2
)).

In training, the denoiser model takes the output of the previous iterations as its input

and generates an estimate for the clean image. Our training loss includes an MSE loss

between this reconstruction and the ground truth image. But, our training loss also

has a term for the reconstruction loss of the output of the data consistency block since

there are also other learned parameters after the denoising block. Furthermore, for

training the final denoiser of the prNet-Large pipeline, an extra improved Wasserstein

GAN loss with gradient penalty is added to the training loss. For the critic model

used in training, a simple ResNet18 network [77] is used.

Despite the training being conducted solely with natural images, the developed pipeline

was evaluated on both natural and synthetic images to assess its generalization capa-

bilities.

Decoupled weight decline regularization [78] is used for optimization together with

cosine annealing with linear warming [79]. The developed method is implemented by

PyTorch and tested on a NVIDIA A100 80GB PCIe GPU. The total training times for

prNet-Small, prNet-Large, and prNet-Large-Adversarial were about four days (for 90

iterations), five days (for 40 epochs), and one day (for 25 epochs), respectively.

In the initialization phase of prNet-Small, the HIO method was initially executed

with m = 50 different random starting points for s = 50 iterations each. The re-

construction with the lowest residual error was selected for an additional HIO run

of n = 1000 iterations. The resulting reconstruction was then used as input for the
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iterative denoiser-HIO stage. In this iterative phase, consisting of T = 18 blocks, the

HIO method was performed for K = 5 iterations before introducing noise under the

α̃ = 9 setting.

The selected hyperparameters for the prNet-Large pipeline differ from the prNet-

Small pipeline only in the initialization stage. In the prNet-Large initialization stage,

k = 10 multiple outputs are generated from the best k = 10 initializations with the

lowest residuals among the m = 100 different random initializations.

After the testing phase, the reconstructions of the developed approach were com-

pared with the true images using the peak signal-to-noise ratio (PSNR) and structural

similarity index (SSIM) [80]. For comparison, results for the same test set are also

included for prDeep [10], classical HIO algorithm [18], DIR [33], and MBwDDP

[34].

Table 2.1 presents the average reconstruction performance of the algorithms for 236

test images over 5 Monte Carlo runs under varying levels of Poisson noise (α =

2, 3, 4). As demonstrated in the table, the developed methods consistently surpass

other methods in both PSNR and SSIM metrics across all noise levels, while only

necessitating a marginal increase in runtime compared to the robust HIO-based ini-

tialization procedure. As another benchmark, the results at the output of different

stages of developed algorithms are also provided in the table to show performance

gains. The superiority of our methods can also be seen visually in Figs. 2.7 and 2.8.

More example reconstructions for test images can be seen in Appendix A.

The results illustrate that, with the prNet-Small pipeline, HIO artifacts can be suc-

cessfully removed while preserving the image characteristics. prNet-Large with TTA

provides the best reconstruction performance since it considers different initializa-

tions with different types of artifacts to get a better estimate for the clean image.

Several intermediate reconstructions for a natural image in the test dataset are shown

in Fig. 2.9. In fact, our approach generally does not introduce artifacts and errors like

the other methods. Additionally, by considering the perception-distortion tradeoff,

our approach also mitigates the side effects of smoothing that are prevalent in other

methodologies, as discussed in [33]. This consideration allows us to strike a bal-
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ance between preserving fine details in the reconstructed images while minimizing

distortions, ultimately enhancing the perceptual quality of the results.

To evaluate the generalization capacity of different algorithms, the results for both

natural and synthetic test images are presented separately in Table 2.1. The table

shows that, although the DNNs were trained exclusively with natural images, the

developed method achieves superior reconstruction performance for both natural and

synthetic images, despite the distinct statistical properties of the latter.

Notably, the performance of the prDeep method declines significantly for synthetic

images, which is anticipated since its reconstruction depends on a regularization prior

learned from natural images. To highlight this, example reconstructions for a syn-

thetic image from the test dataset are displayed in Fig. 2.10.

The table also reveals that the developed approach outperforms other methods across

various noise levels (α = 2, 4) in terms of reconstruction quality, despite being trained

for a specific noise level (α = 3). This indicates the robustness of the developed

method to different noise conditions.

Phase retrieval algorithms are generally sensitive to initialization due to the inherent

nonlinearity of the problem. To demonstrate the robustness of the developed approach

to different initializations and image characteristics, PSNR and SSIM histograms are

provided in Fig. 2.11 for the developed methods (with α = 3). These histograms

include reconstructions obtained from 236 distinct test images and 5 Monte Carlo

runs, implying that 5 different initializations were used for each test image. The small

spreads and high means clearly indicate the robustness of the developed approaches

to varying initializations and image statistics.

The average runtime of each method is also listed in Table 2.1. Our methods not

only outperform the other methods in terms of reconstruction quality but also exhibit

computational efficiency comparable to the robust HIO initialization method, demon-

strating both superior performance and efficiency.

Our findings also demonstrate that incorporating TTA during the reconstruction pipeline

enhances performance even without additional training data. This suggests that TTA

can take advantage of the inherent properties of the measurement model to improve
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reconstruction accuracy, potentially reducing the reliance on extensive training datasets

for specific noise distributions or image types. This observation warrants further in-

vestigation into TTA’s role in generalizing deep learning methods for image recon-

struction tasks.

It is important to mention that due to the realness and positiveness assumptions inher-

ent in the measurement model, we inherently avoid the issue of trivial global phase

shift ambiguity. While presenting the test results, we also addressed conjugate inver-

sion ambiguity by comparing both the generated image and its flipped version with

the ground truth image. This ensures that we capture the correct orientation of the

reconstructed object.

However, the challenge of spatial circular shift ambiguity remains. Natural images

generally possess a well-distributed intensity pattern across the known support, which

helps to naturally break these shift symmetries. Interestingly, this issue has received

limited discussion in previous phase retrieval literature, as evidenced by works such

as [27], [81]. Notably, the initial HIO reconstruction is not susceptible to this specific

ambiguity.

The compared methods disambiguate this circular shift ambiguity by using the ground-

truth images, but, we did not deploy such a strategy.

But, our approach encounters limitations when dealing with certain unnatural test

images, such as "E.Coli" and "Yeast." These images do not fully fit into the known

support as observed in natural images. This can lead to multiple valid HIO reconstruc-

tions for the same observations, creating an ambiguity issue. While techniques like

the shrinkwrap procedure [82] offer solutions to refine the support and address this

ambiguity, we opted not to implement this step as our primary focus lies on natural

image reconstruction.

Additionally, perceptual quality metrics, commonly employed to assess the fidelity of

reconstructed images in human perception, are not presented in this work. While such

metrics are valuable for evaluating reconstructions intended for human consumption,

they often rely on deep learning models trained on natural color images. Since our

focus is on grayscale phase retrieval and a suitable, widely-used perceptual quality
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metric for this domain is not readily available, we primarily rely on established dis-

tortion metrics to quantify reconstruction performance.

Table 2.1: Average reconstruction performances for 236 test images across 5 Monte

Carlo runs.

α = 2 Avg. PSNR (dB) ↑ Avg. SSIM ↑ Avg. runtime (sec.) ↓
(Avg. SNR: 33.24dB) Overall Natural Unnatural Overall Natural Unnatural

HIO [19] 19.79 19.73 21.92 0.50 0.50 0.49 0.25

prDeep [10] 23.45 23.49 21.72 0.65 0.66 0.58 59.32

DIR [33] 23.61 23.60 24.02 0.72 0.72 0.73 21.59

MBwDDP [34] 24.87 24.86 25.56 0.74 0.74 0.74 24.11

Initialization stage-Small 20.64 20.55 24.25 0.53 0.53 0.57 0.45

prNet-Small 29.60 29.67 26.81 0.85 0.85 0.78 0.98

Main loop-Large 32.24 32.28 30.77 0.90 0.90 0.89 1.46

prNet-Large 32.38 32.42 30.77 0.90 0.90 0.89 1.50

prNet-Large (+TTA) 32.66 32.69 31.25 0.91 0.91 0.89 1.80

prNet-Large (+TTA D4) 32.92 32.94 31.88 0.91 0.91 0.88 3.12

α = 3 Avg. PSNR (dB) ↑ Avg. SSIM ↑ Avg. runtime (sec.) ↓
(Avg. SNR: 31.53dB) Overall Natural Unnatural Overall Natural Unnatural

HIO [19] 18.92 18.89 20.34 0.43 0.43 0.43 0.27

prDeep [10] 22.06 22.09 20.91 0.59 0.59 0.54 59.41

DIR [33] 22.87 22.85 23.50 0.68 0.68 0.71 21.72

MBwDDP [34] 23.92 23.92 23.98 0.70 0.70 0.69 24.35

Initialization stage-Small 19.73 19.68 21.65 0.46 0.46 0.45 0.47

prNet-Small 28.08 28.13 25.93 0.80 0.81 0.70 1.03

Main loop-Large 30.17 30.24 27.79 0.86 0.86 0.78 1.48

prNet-Large 30.22 30.28 27.79 0.86 0.87 0.79 1.52

prNet-Large (+TTA) 30.52 30.57 27.88 0.87 0.87 0.79 1.82

prNet-Large (+TTA D4) 30.73 30.81 27.76 0.87 0.87 0.76 3.13

α = 4 Avg. PSNR (dB) ↑ Avg. SSIM ↑ Avg. runtime (sec.) ↓
(Avg. SNR: 30.24dB) Overall Natural Unnatural Overall Natural Unnatural

HIO [19] 18.52 18.48 19.80 0.39 0.39 0.40 0.28

prDeep [10] 20.69 20.70 20.38 0.53 0.53 0.51 59.68

DIR [33] 21.80 21.77 22.79 0.62 0.62 0.69 21.95

MBwDDP [34] 22.41 22.39 23.09 0.63 0.63 0.65 24.43

Initialization stage-Small 19.12 19.08 20.63 0.41 0.41 0.41 0.48

prNet-Small 26.69 26.75 24.48 0.76 0.76 0.67 1.02

Main loop-Large 28.29 28.35 25.98 0.81 0.81 0.72 1.48

prNet-Large 28.29 28.35 25.91 0.81 0.81 0.72 1.52

prNet-Large (+TTA) 28.56 28.61 26.49 0.82 0.82 0.73 1.81

prNet-Large (+TTA D4) 28.74 28.80 26.50 0.83 0.83 0.73 3.12
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(a) Ground truth

(b) prDeep,

PSNR:25.35, SSIM:0.71

(c) DIR,

PSNR:26.49, SSIM:0.73

(d) MBwDDP,

PSNR:27.87, SSIM:0.77

(e) prNet-Small,

PSNR:28.67, SSIM:0.89

(f) prNet-Large (+TTA),

PSNR:30.88, SSIM:0.92

Figure 2.7: The outputs of various algorithms for the "Turtle" test image subjected to

α = 3 noise (SNR=31.89dB).
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(a) Ground truth

(b) prDeep,

PSNR:23.44, SSIM:0.66

(c) DIR,

PSNR:20.37, SSIM:0.54

(d) prNet-Small,

PSNR:27.12, SSIM:0.88

(e) prNet-Large,

PSNR:30.87, SSIM:0.93

(f) prNet-Large (+TTA),

PSNR:31.23, SSIM:0.93

Figure 2.8: The outputs of various algorithms for the "Cameraman" test image sub-

jected to α = 3 noise (SNR=31.61dB).
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(a) Ground truth

(b) Initialization stage-Small,

PSNR:19.19, SSIM:0.45

(c) prNet-Small,

PSNR:33.51, SSIM:0.94

(d) Main loop-Large,

PSNR:35.19, SSIM:0.95

(e) prNet-Large,

PSNR:35.27, SSIM:0.95

(f) prNet-Large (+TTA),

PSNR:35.50, SSIM:0.95

Figure 2.9: Intermediate reconstruction results from the developed approaches for the

"Woman" test image at a noise level of α = 3 (SNR=32.09dB).
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(a) Ground truth

(b) prDeep,

PSNR:19.37, SSIM:0.47

(c) DIR,

PSNR:25.33, SSIM:0.67

(d) MBwDDP,

PSNR:26.28, SSIM:0.71

(e) prNet-Small,

PSNR:28.67, SSIM:0.89

(f) prNet-Large (+TTA),

PSNR:30.88, SSIM:0.92

Figure 2.10: The outputs of various algorithms for the out-of-domain "Pollen" test

image subjected to α = 3 noise (SNR=28.10dB).
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Figure 2.11: The histograms of PSNR (left column) and SSIM (right column) for

the reconstructions produced by various methods across 236 test images and 5 Monte

Carlo runs for the α = 3 scenario. Vertical dashed lines indicate the mean PSNR and

SSIM values. Overlapping histograms for each column are shown at the bottom.
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2.5 Conclusion

This chapter presents a novel approach to phase retrieval based on Langevin dynamics

for posterior sampling. Due to Tweedie’s formula, it can also be seen as an applica-

tion of diffusion models to the phase retrieval problem [54]. Unlike existing methods

trained solely with distortion metrics, which often suffer from overly smooth outputs,

our approach considers the perceptual quality-distortion tradeoff, resulting in recon-

structions with high fidelity and low distortion metrics.

We introduce two deep learning architectures based on this sampling procedure:

prNet-Small and prNet-Large. prNet-Small offers a compact and efficient solution.

prNet-Large, an extension utilizing multiple outputs, enhances robustness to initial-

ization by incorporating diverse starting points, ultimately facilitating artifact re-

moval.

Both methods start with initial HIO estimates and iteratively refine them through a

denoising-data consistency-noise addition cycle. Rather than assuming a diffusion

process and training based on this assumption, the training process exactly utilizes

the output of the previous iterations, similar to unrolled optimization algorithms,

minimizing the loss between the reconstruction at a given timestep and the corre-

sponding ground truth image. During training, random timesteps are incorporated

progressively. This is achieved by placing greater emphasis on the later stages of the

reconstruction process as the training epochs progress.

prNet-Large model uses an extra denoiser to combine the multiple outputs of its main

loop. The loss function for this extra denoiser includes an extra Wasserstein loss term

together with the reconstruction loss to also compensate for the perceptual quality of

the generated images.

Also, by using the properties of the phase retrieval problem, test time augmentation is

applied to the overall prNet-Large pipeline to improve the reconstruction performance

further with a little extra time and no training requirement.

Our developed methods were rigorously tested through various numerical simulations

and benchmarked against both classical and state-of-the-art techniques. The findings
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reveal that our approach is highly effective, adding only minimal computational over-

head compared to the robust initialization method based on HIO. It achieves superior

reconstruction performance and demonstrates greater resilience to variations in ini-

tialization, image characteristics, and noise levels.

To conclude, the methods we have developed offer cutting-edge reconstruction ca-

pabilities and computational efficiency for tackling the phase retrieval problem. We

believe that initiating diffusion processes with a preliminary estimate and integrating

denoisers with model-based approaches, as shown in this chapter, could be pivotal

in advancing more reliable algorithms for both phase retrieval and broader nonlinear

inverse problems.
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CHAPTER 3

INDI-PR: ENHANCING FOURIER PHASE RETRIEVAL THROUGH

INVERSION BY DIRECT ITERATION

3.1 Introduction

In recent years, deep learning has emerged as a powerful tool for solving various in-

verse problems in imaging, including phase retrieval. These data-driven approaches,

particularly those utilizing deep neural networks (DNNs), have shown remarkable

success in directly reconstructing images from measurements or refining initial esti-

mates from classical methods. However, existing deep learning solutions for PR often

grapple with limitations such as domain shift, lack of interpretability, or the necessity

for extensive parameter tuning. Moreover, most deep learning methods, including

those based on the unrolling of iterative algorithms, face significant challenges, such

as lengthy training processes and inefficient use of computational resources [24].

Unfolding methods, which are designed to mimic traditional iterative reconstruction

algorithms through a series of trainable network layers, often suffer from prolonged

training times and significant computational overhead. Furthermore, many current

methods commence the recovery from a state of random noise, which can lead to

inefficient utilization of denoiser capacity and extended convergence times, ultimately

limiting their practical applicability.

To address these gaps, our work introduces a novel approach within the Inversion

by Direct Denoising (InDI) [52] framework to enhance the classical Fourier PR.

This methodology marks a significant departure from traditional methods by leverag-

ing advanced denoising strategies combined with novel initialization and ensembling

techniques. By initiating the recovery process from a plausible estimate rather than
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random noise, our approach more efficiently utilizes the denoiser’s model capacity

and significantly reduces training time compared to conventional unrolling methods.

The primary contributions of our research include:

• We have integrated a novel accelerated error reduction algorithm into our ini-

tialization strategy, significantly enhancing the robustness and speed of conver-

gence for the phase retrieval process.

• Diverging from other diffusion-based methods, our image-to-image framework

starts with a plausible initial estimate and refines it, optimizing the denoiser’s

capacity and reducing overall training duration.

• Our ensembling technique combines multiple reconstructions to improve dis-

tortion metrics, but also substantially enhancing the perceptual quality of the

reconstructed images.

The techniques developed in this study not only advance the field of classical Fourier

phase retrieval but also open promising avenues for their application to other types of

phase retrieval challenges. Our methods demonstrate superior performance compared

to both classical and contemporary techniques, underscoring their efficacy in address-

ing the intrinsic challenges of PR. Furthermore, the hybridization of denoisers with

model-based approaches holds promise for developing robust and reliable stochastic

nonlinear inverse problem solvers with broad applications beyond phase retrieval.

The structure of this chapter is organized as follows: Section 3.2 reviews existing

research that informed the development of our approach. The methodology of our

developed approach, including the novel aspects of the Inversion by Direct Denoising

(InDI) framework, is detailed in Section 3.3. Comparative analyses of our method

against both classical techniques and contemporary advancements are presented in

Section 3.4. Finally, Section 3.5 consolidates our key findings and articulates prospec-

tive avenues for future research in this dynamic field.
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3.2 Related Works

3.2.1 The Geometric Interpretation of Classical Iterative Methods for Phase

Retrieval

The geometric interpretation of the Error Reduction (ER) and Hybrid Input-Output

(HIO) algorithms provides a clear visualization of their operational mechanics in the

context of phase retrieval. Both algorithms utilize iterative projections between con-

straint sets defined in different domains, but they differ significantly in their approach

to managing deviations from these constraints.

The ER algorithm applies consecutive projection operations to refine the estimate

iteratively, aligning it within the intersection of spatial and Fourier magnitude con-

straints. Mathematically, this is represented by:

xk+1 = PsPfxk (3.1)

wherePf andPs are projection operators enforcing Fourier magnitude and spatial do-

main constraints, respectively. Geometrically, this sequence of projections directs the

estimate towards the intersection of the constraint sets in a straightforward, stepwise

manner.

Conversely, HIO incorporates a reflective step to handle violations of spatial con-

straints, allowing for correction of the trajectory during iterations. The iteration for-

mula for HIO is expressed as:

xk+1 =

[
I+RsRf

2
+ (1− β)(I− Ps)Pf

]
xk (3.2)

Here, Rs and Rf denote reflection operators related to the spatial and Fourier con-

straints, respectively. This formulation introduces a dynamic adjustment to the tra-

jectory, allowing the method to navigate around potential local minima and avoid

stagnation, a common limitation in simpler projection methods.

The ER algorithm guarantees a direct approach toward the solution by closely fol-

lowing the constraints, while HIO allows for a more explorative strategy, potentially

circumventing issues like local minima through its reflective and corrective steps.

49



These interpretations underscore the distinct pathways each algorithm takes in the

constrained solution landscape of phase retrieval.

Notably, when β = 1, HIO becomes equivalent to the Douglas-Rachford algorithm.

This equivalence is particularly significant as the Douglas-Rachford algorithm is known

for its efficacy in handling nonconvex feasibility problems, such as phase retrieval.

However, while HIO offers advantages in avoiding local minima due to its more ex-

plorative update strategy, it can exhibit challenges such as spiraling dynamics [83].

3.2.2 Image-to-Image Pipelines for Inverse Problems

Unrolled methods for solving inverse problems are noted for their computational and

memory inefficiencies as well as slow training, primarily due to their extensive com-

putational requirements and the iterative refinement they employ [84]. In contrast,

classical diffusion pipelines for addressing inverse problems typically initiate the

restoration from a random noise image. This starting point is less than ideal be-

cause it does not begin with a crude reconstruction that can be generated by classical

algorithms, which could potentially facilitate faster convergence and avoid the waste

of the denoiser’s model capacity.

On the other hand, image-to-image pipelines initiate the process with a warm start

procedure. By starting with a plausible estimate rather than a complete noise image,

they facilitate training since it should only learn to refine this initial estimate. This

"image-to-image" instead of "noise-to-image" idea is prevalent in the literature [52],

[69]–[71].

One such image-to-image pipeline, the Inversion by Direct Denoising (InDI) method,

starts from a basic estimate of the image. This initial approach not only conserves de-

noiser capacity but also enhances the training process by defining a specific diffusion

process that simplifies model training [52].

The stochastic version of the Inversion by Direct Denoising (InDI) method employs a

sophisticated approach to image restoration by integrating denoising diffusion prob-

abilistic models into its framework. This methodology capitalizes on the incremental

improvement of image quality through iterative denoising, each modified by stochas-
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tic perturbations, which are essential for handling various degradation levels and en-

suring robustness in the denoising process.

The training of the denoising model within the InDI framework is strategically de-

signed to cope with varied noise levels, introduced into the training data through a

simulation of the noise degradation process. The model employs the equation for the

intermediate degraded image:

xt = (1− t)x+ tz+ tσtϵ, (3.3)

where x represents the clean target image, z is the low quality input, t ranges from

0 to 1, indicating the transition from clean to noisy image, σt varies with t as the

standard deviation of noise, and ϵ, following a standard normal distribution N (0, I),

introduces stochasticity. This formulation prepares the model to reverse noise effects

by optimizing the neural network parameters θ to minimize:

minimize
θ

Ex,y∼p(x,y)

[
Et∼p(t)

[
∥Denoiserθ(xt, t)− x∥2

]]
, (3.4)

which is the mean squared error between the denoised image and the original clean

image across randomly sampled noise levels t.

Once trained, the model uses the denoising function to iteratively restore the noisy

image towards its original state. The guiding recurrence relation for this inference is:

x̂t−τ =
(
1− τ

t

)
x̂t +

τ

t
Denoiser(x̂t, t) + (t− τ)

√
σ2
t−τ − σ2

t ϵ, (3.5)

where τ is a small step back in time from t, enhancing the restoration precision at

each step. The term σ2
t−τ − σ2

t reflects the decrease in noise variance, aiding in the

gradual restoration process.

The function Denoiser(x̂t, t) calculates the expected clean image given the current

noisy estimate, mirroring the conditional expectation of the posterior distribution

E[xt−1 | xt]. This function, optimized during training, encapsulates the core de-

noising capability of the model, aimed at minimizing the reconstruction error.

The InDI method introduces an innovative approach to supervised image restoration

that mitigates the "regression to the mean" effect, yielding images that are more real-

istic and detailed compared to traditional regression-based techniques. This method
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improves image quality incrementally in small steps, similar to generative denois-

ing diffusion models. Traditional single-step regression models often produce aver-

aged outputs that lack detail and realism due to the ill-posed nature of the problem,

where multiple high-quality images can plausibly reconstruct a given low-quality in-

put. InDI’s strength lies in its iterative refinement process, which enhances percep-

tual quality by gradually improving the image. Unlike generative denoising diffusion

models that need prior knowledge of the degradation process, InDI learns the restora-

tion directly from paired examples of low-quality and high-quality images. This ap-

proach is applicable to various image degradation scenarios, making it a versatile and

powerful solution for image restoration tasks [52].

The InDI framework, under certain conditions, is equivalent to other image-to-image

pipelines such as Schrödinger Bridge [85], [86] and Cold Diffusion [52], [70]. This

equivalence underscores the versatile and robust nature of the InDI method, aligning

its operational dynamics with the established methodologies that worked well for

other image reconstruction problems [87].

3.3 Developed Method

3.3.1 Initialization Procedure

The challenge of phase retrieval is exacerbated by the inherent nonlinearity and non-

convexity of the problem. These characteristics render the algorithm highly sensitive

to how the reconstruction process is initialized. In our method, to mitigate these

challenges and improve the robustness of the reconstruction, we adopt a sophisticated

initialization strategy that builds upon the principles described in [10]. This strategy

involves a hybrid approach combining the Hybrid Input-Output (HIO) method with

Error Reduction (ER) techniques, further enhanced by an acceleration mechanism.

Initially, the HIO method is employed using multiple random initializations. This

step is crucial as it explores various potential starting points in the solution space,

each initialized with a different random phase. The HIO algorithm is run for a small

predefined number of iterations (denoted as k), which allows each initialization to
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evolve without significant computational overhead. This initial exploration aims to

identify promising regions in the search space and is highly parallelizable.

Following the initial HIO iterations, we evaluate each result by computing the residual

∥y−|F̃x|∥2. The k initializations yielding the lowest residuals are selected for further

refinement. These chosen estimates undergo additional HIO+ER processing, this time

for an extended number of iterations n, to enhance the fidelity of the reconstructions.

To further refine the output and accelerate convergence towards a high-fidelity recon-

struction, the selected initialization then undergoes a combined ER and HIO regimen.

This regimen is structured in cycles: for a set number of iterations, the reconstruction

alternates between applying the HIO constraint and the ER constraint. Notably, dur-

ing the ER phase, an acceleration step is incorporated every few iterations, as given

in Fig. 3.1 and Algorithm 2. This acceleration involves a dynamic adjustment of

the current estimate by leveraging a convex combination of the current and previous

estimates, moderated by a scaling factor ζ . This step is critical as it introduces a

momentum-like effect, propelling the reconstruction towards the ground truth more

effectively by reducing stagnation in local minima.

Figure 3.1: Geometric interpretation of the acceleration mechanism used during the

ER phase in the initialization procedure.

Empirically, this initialization and iterative refinement approach has demonstrated su-

perior performance, particularly in terms of achieving lower residuals and higher im-

age quality. The inclusion of an acceleration mechanism during the ER steps further

enhances the efficiency of the reconstruction process, allowing for faster convergence

while maintaining the integrity of the reconstructed image as they reliably reduce the
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error in each iteration.

In summary, our methodological framework for phase retrieval initialization not only

adheres to established algorithms but also innovates by integrating a tailored accel-

eration technique during the ER phases. This strategy significantly improves the ro-

bustness and effectiveness of the phase retrieval process, making it well-suited for

complex imaging scenarios where traditional methods struggle.

Algorithm 2 Proposed accelerated ER (AER) algorithm
1: for n = 1 to K do

2: x′
n ← PFxn

3: xn+1 ← PSx
′
n

4:

5: if n = −1 (mod t) then

6: cn ← 1
2
(x′

n + xn+1)

7: a← cn−cn−t

∥cn−cn−t∥

8: r ← 1
2
∥x′

n − xn+1∥
9: xn+1 ← cn + ζra

3.3.2 Iterative Refinement through Inversion by Direct Iteration

As mentioned before, our initialization procedure produces k different outputs for

the same measurement y. These are crude estimates of the unknown image and are

denoted by {x̂(m)
init}km=1. In the context of the InDI framework, we start the iterative

refinement with the mean of these multiple initial reconstructions, mathematically,

z = 1
k

∑
m x̂(m)

init .

To counteract the information loss typically associated with this averaging, our em-

pirical research has demonstrated that conditioning the denoiser on multiple initial re-

constructions significantly improves reconstruction performance. Specifically, rather

than using the standard input in the original InDI framework, which is Denoiser(x̂t, t),

we now incorporate a set of k initial reconstructions. Consequently, the denoiser is

now conditioned to operate as Denoiser(x̂t, t, {x̂(m)
init}km=1) at each step of the iterative

refinement. This configuration means that the denoiser takes k + 1 inputs – k from
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the multiple initial reconstructions and one from the classical InDI current estimate x̂t

and produces one estimate. This approach utilizes additional context from the initial

estimates, significantly enhancing the accuracy and efficacy of the image restoration

process.

The proposed pipeline outlined in Algorithm 3 and Fig. 3.2 employs an efficient

utilization of the denoiser’s model capacity. In each iteration, after denoising and

data consistency with HIO, we also add a Gaussian noise following the InDI method.

Only iteratively denoising the estimate without physics-informed blocks can produce

outputs that are not compatible with the measurements. However, despite HIO’s ad-

vantages, noise and local minima can still introduce artifacts in reconstructions. To

address this, we employ an iterative denoising-data consistency approach also used in

many unrolling methods [37]. This scheme aims to escape local minima and reduce

artifacts, leading to improved results.

For training our pipeline, we follow the InDI training strategy based on a carefully

defined noising process. An example of the gradual noising used during training can

be seen in Fig. 3.3.

As the denoising component of our pipeline for the phase retrieval problem, we em-

ployed a customized UNet architecture, as depicted in Fig. 3.4. This well-established

framework is renowned for its efficacy in image restoration tasks. Our implementa-

tion of UNet uniquely incorporates timestep information as an additional input, which

is intricately linked to the noise level of the input image. The denoiser operates by

estimating the residual, thereby facilitating the refinement of the reconstructed image

by focusing solely on the discrepancy between the noisy input and the desired clean

output.

Our customized UNet architecture includes several enhancements, most notably the

integration of attention mechanisms within the convolutional blocks. These atten-

tion mechanisms enable the network to selectively focus on the most relevant parts

of the input image, thereby enhancing its capacity to capture intricate details and ef-

fectively suppress noise. This selective focus is particularly beneficial in scenarios

where noise levels vary across different regions of the image, a common challenge

in phase retrieval tasks. Additionally, the use of attention mechanisms helps preserve
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high-frequency details that are crucial for accurate phase reconstruction.

Algorithm 3 Overall pipeline: InDI-PR
Input: y, T,K, σi, β, λ ∈ RT is learnable (initially, a logarithmically increasing vec-

tor)

Output: z(0)T

Initialization:

1: {x̂(m)
init}km=1 ← Initialization procedure(y)

2: w← N (0, I)

3: x′
T+1 ← 1

k

∑
m x̂(m)

init + σTw

4:

Main loop:

5: for i = T to 1 do

6: xi ←Denoiser(x′
i+1, i, {x̂(m)

init}km=1)

7: z
(0)
i ← Omnxi

8: yi
′ ← λiy + (1− λi)|Fz(0)i |

9: for k = 1 to K do

10: z
(k)
i

′
← ℜ{F−1[yi

′ ⊙ Fz
(k−1)
i

|Fz
(k−1)
i |

]}

11: γ ← the set of indices where z
(k)
i

′
violates space domain con-

straints (e.g., support and non-negativity)

12: z
(k)
i [n]←

z
(k)
i

′
[n] , n /∈ γ

z
(k−1)
i [n]− βz

(k)
i

′
[n] , n ∈ γ

13: ϵ← N (0, I)

14: x′
i ← 1

i

√
n
m
OT

mnz
(K)

i +
(
1− 1

i

)
x′
i+1 +

i−1
T

√
σ2
i−1 − σ2

i ϵ

15: return x′
1

3.3.3 Ensembling Scheme

We can process the initialization outputs {x̂(m)
init}km=1 with an equivariant transform

T , such as flipping, to easily produce different set of initializations {T (x̂(m)
init)}km=1.

Then, we can iteratively refine these two different initialization outputs and get two

different final outputs. We can ensemble these two final results by simple averaging,
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Figure 3.2: The overall pipeline of InDI-PR.

Figure 3.3: An example of the defined gradual process used during training. The

timestep is increasing from left to right. The rightmost image (t = 1) corresponds to

the output of the initialization procedure, and the leftmost image (t = 0) corresponds

to the clean image.
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Figure 3.4: Architecture of the UNet denoiser with multiple input images and a

timestep input producing one denoised image.
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x̂(combined)
final = 1

2

(
x̂(original)

final + T −1(x̂(transformed)
final )

)
. This augmentation process is depicted

in Fig. 3.5.

Let produce p different such combined results, x̂(combined)
final , by starting our algorithm

from scratch. As our algorithm has stochastic components, such as the random initial

phase for the initialization procedure and Gaussian noise in the iterative refinement

stage, each output will be different from the other ones. Then, we can again combine

these p different final results by simple averaging.

As the result of such an ensembling scheme, effectively, we are combining 2p samples

{x̂(q)
final}

2p
q=1 from the posterior distribution p(x|y). As p grows, the ensemble average,

x̄final =
1
2p

∑
q x̂

(q)
final, converges to the MMSE estimate, and we expect to see better

distortion metrics.

Initialization stage outputs

Overall
Pipeline

Overall
Pipeline

Flip

Flipped initialization stage outputs

Flip Back

Mean

Figure 3.5: Test time augmentation with an equivariant transform.
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3.4 Results

To evaluate the performance of our method, we conducted numerical simulations

using a large image dataset. We compare the reconstruction performance against

both classical and state-of-the-art phase retrieval methods.

To assess the algorithms’ robustness to noise, generalization capacity, and computa-

tional cost, we investigate their reconstruction performance in two distinct image cat-

egories: natural and unnatural. This categorization allows us to evaluate the methods’

ability to handle real-world scenarios (natural images) and potentially more challeng-

ing, synthetic long-tail samples (unnatural images).

For the training phase, exclusively natural images are utilized. The training dataset

comprises 44, 000 natural images, including 200 training and 100 validation images

from the Berkeley segmentation dataset (BSD) [72], 41, 400 images selected from the

ImageNet database [73], [74], and 2, 300 images randomly chosen from the Waterloo

Exploration Database [75].

During the testing phase, both natural and synthetic images are employed. This test

dataset, previously used in [33], [34], contains 236 images, which include 230 natu-

ral and 6 synthetic images. Specifically, the dataset consists of 200 test images from

BSD, 24 images from the Kodak dataset [76], and 6 natural and 6 synthetic images

sourced from [10]. The synthetic image subset features images obtained from scan-

ning electron microscopes and telescopes. All images have pixel values ranging from

0 to 255 and are of size 256× 256.

The noisy Fourier measurements were generated using Eq. 1.2, with the average SNR

values presented in Table 3.1 (where SNR = 10 log(
∥∥∥|F̃x|2∥∥∥

2
/
∥∥∥y2 − |F̃x|2

∥∥∥
2
)).

Despite the training being conducted solely with natural images, the developed pipeline

was evaluated on both natural and synthetic images to assess its generalization capa-

bilities.

Decoupled weight decline regularization [78] is used for the training MSE loss op-

timization together with cosine annealing with linear warming [79]. The developed

method is implemented by PyTorch and tested on a NVIDIA A100 80GB PCIe GPU.
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The total training time was about 60 hours (27 epochs), respectively.

In the initialization stage, the HIO method was first run with m = 100 different

random initializations for s = 50 iterations. Then, reconstructions with the lowest

residuals was used for AER+HIO run for n = 1700 iterations with ζ ≈ 1. Thus, as

the output of this initialization procedure, k = 10 multiple outputs are generated from

the best k = 10 initializations with the lowest residuals among the m = 100 different

random initializations.

3.4.1 Comparison with Other Methods

The evaluation of our newly developed approach involved comparing its reconstruc-

tion accuracy against original images using the peak signal-to-noise ratio (PSNR) and

the structural similarity index (SSIM) [80]. For a comprehensive comparison, results

from the same test set were also generated using existing methods, namely prDeep

[10], the classical HIO algorithm [18], DIR [33], and MBwDDP [34].

Table 3.1 displays the average reconstruction performance for 236 test images sub-

jected to 5 Monte Carlo runs, with varying levels of Poisson noise (α = 2, 3, 4).

The table illustrates that our methods not only outperform the comparison group in

both PSNR and SSIM metrics but also maintain computational efficiency compara-

ble to robust initialization procedures based on HIO. The incremental performance

enhancements at different stages of our algorithms are documented, emphasizing the

efficacy of our approach.

Further analysis reveals that our approach maintains superior reconstruction quality

across various noise levels (α = 2, 4), indicating robustness even though the algo-

rithms were initially optimized for a noise level of α = 3. This adaptability is a

testament to the resilience and versatility of our methods.

Visually, the superiority of our approach is demonstrated in Figs. 3.6 and 3.7, with

additional examples available in Appendix B. The InDI-PR pipeline notably excels

in removing HIO artifacts and preserving image characteristics, which is critical for

maintaining the integrity of the reconstructed images.
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By incorporating considerations of the perception-distortion tradeoff, our approach

effectively mitigates the common smoothing artifacts prevalent in other methods.

This strategy ensures a delicate balance between minimizing distortions and preserv-

ing fine details, thus enhancing the perceptual quality of the images, as discussed in

[33].

Table 3.1 presents the performance results for different algorithms across natural and

unnatural test images, allowing for an assessment of each method’s generality. No-

tably, even though our deep neural networks (DNNs) were trained exclusively on nat-

ural images, our method achieves the best reconstruction performance for both image

types. This demonstrates an impressive capability to generalize beyond the training

data to images with differing statistical properties.

Despite the overall success, our method exhibits occasional shortcomings in the struc-

tural similarity index (SSIM) for unnatural images, although it consistently excels in

terms of peak signal-to-noise ratio (PSNR). These discrepancies highlight potential

areas for improvement, particularly in how our method handles the specific textural

elements of unnatural images.

The prDeep method, in contrast, shows a significant drop in performance when pro-

cessing unnatural images. This decline is anticipated, as its reconstruction relies heav-

ily on a regularization prior tailored to the characteristics of natural images. For a vi-

sual comparison, sample reconstructions of an unnatural image from the test dataset

are depicted in Fig. 3.8.

It is crucial to address the fact that our measurement model’s assumptions of realness

and positiveness inherently mitigate the trivial global phase shift ambiguity. More-

over, in our analysis, we confront the conjugate inversion ambiguity by comparing

both the original and flipped versions of the generated image with the ground truth,

ensuring accurate orientation alignment of the reconstructed objects.

However, challenges persist with spatial circular shift ambiguity, particularly notable

in unnatural images such as "E.Coli" and "Yeast," which do not conform well to the

known support pattern typical of natural images. This misalignment can lead to mul-

tiple valid reconstructions using the HIO algorithm, introducing notable ambiguities.
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Previous literature on phase retrieval has only sparingly discussed this issue, with

few exceptions like the studies by [27], [81]. While methods like the shrinkwrap

procedure [82] are known to refine support and reduce ambiguities, we chose not to

implement this step, focusing instead on the reconstruction of natural images.

Our decision not to use ground truth images to disambiguate circular shift, unlike the

other compared methods, partly explains the lower performance observed in certain

cases. This strategic choice highlights a tradeoff between methodological simplicity

and the potential for increased error in specific contexts.

Table 3.1: Average reconstruction performances for 236 test images across 5 Monte

Carlo runs.

α = 2 Avg. PSNR (dB) ↑ Avg. SSIM ↑ Avg. runtime (sec.) ↓
(Avg. SNR: 33.24dB) Overall Natural Unnatural Overall Natural Unnatural

HIO [19] 19.79 19.73 21.92 0.50 0.50 0.49 0.25

prDeep [10] 23.45 23.49 21.72 0.65 0.66 0.58 59.32

DIR [33] 23.61 23.60 24.02 0.72 0.72 0.73 21.59

MBwDDP [34] 24.87 24.86 25.56 0.74 0.74 0.74 24.11

Initialization procedure 21.12 21.02 24.82 0.55 0.55 0.58 0.91

InDI-PR (T = 4, no ensembling) 28.59 28.65 26.39 0.79 0.80 0.67 1.10

α = 3 Avg. PSNR (dB) ↑ Avg. SSIM ↑ Avg. runtime (sec.) ↓
(Avg. SNR: 31.53dB) Overall Natural Unnatural Overall Natural Unnatural

HIO [19] 18.92 18.89 20.34 0.43 0.43 0.43 0.27

prDeep [10] 22.06 22.09 20.91 0.59 0.59 0.54 59.41

DIR [33] 22.87 22.85 23.50 0.68 0.68 0.71 21.72

MBwDDP [34] 23.92 23.92 23.98 0.70 0.70 0.69 24.35

Initialization procedure 20.17 20.12 22.09 0.51 0.51 0.54 0.90

InDI-PR (T = 4, no ensembling) 26.78 26.85 24.18 0.73 0.73 0.61 1.11

α = 4 Avg. PSNR (dB) ↑ Avg. SSIM ↑ Avg. runtime (sec.) ↓
(Avg. SNR: 30.24dB) Overall Natural Unnatural Overall Natural Unnatural

HIO [19] 18.52 18.48 19.80 0.39 0.39 0.40 0.28

prDeep [10] 20.69 20.70 20.38 0.53 0.53 0.51 59.68

DIR [33] 21.80 21.77 22.79 0.62 0.62 0.69 21.95

MBwDDP [34] 22.41 22.39 23.09 0.63 0.63 0.65 24.43

Initialization procedure 19.54 19.46 20.88 0.48 0.48 0.47 0.91

InDI-PR (T = 4, no ensembling) 25.43 25.46 24.23 0.66 0.66 0.59 1.10
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3.4.2 Effect of Iteration Count

For the evaluation of reconstruction performance for 236 test images under specific

settings (α = 3 and 2p = 1), both distortion metrics, such as PSNR and SSIM, and

perceptual quality metrics, such as FID [88], LPIPS [89], and CLIP-IQA [90], were

utilized. This combination of metrics ensures a comprehensive analysis of image

quality from various perspectives, addressing not only the accuracy of pixel values

but also the perceptual similarity to human vision.

Table 3.2 shows that a smaller number of iterations tends to yield better outcomes in

terms of image quality. This was evident across both types of metrics, suggesting not

only higher accuracy and structural fidelity but also greater perceptual similarity to the

original images. Additionally, the computational efficiency is enhanced with fewer

iterations, as evidenced by faster processing times. However, it is noteworthy that

while fewer iterations result in higher metric scores and efficiency, visual inspection

of the outputs indicates that larger iteration counts can produce a more varied range

of reconstructed images for the same input, suggesting a potential tradeoff between

the diversity of output and quantitative performance metrics.

Table 3.2: Average reconstruction performances illustrating the effect of the iteration

count for 236 test images with α = 3 and no ensembling across 5 Monte Carlo runs.

InDI Total Perceptual Distortion

Iteration Count (T ) FID ↓ LPIPS ↓ CLIP-IQA ↑ PSNR ↑ SSIM ↑ Avg. runtime (sec.) ↓

4 100.96 0.20 0.77 26.78 0.73 1.11

8 103.65 0.21 0.77 26.51 0.71 1.28

32 109.36 0.22 0.77 26.08 0.68 2.41

3.4.3 Effect of Ensembling

Table 3.3 demonstrates the effectiveness of ensembling in image reconstruction, with

improvements observed in both perceptual and distortion metrics as the number of

different reconstructions increases. This simultaneous enhancement across different

quality dimensions suggests that the ensembling approach does not conform to the

typical constraints of the perception-distortion tradeoff space, where improvements
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in one metric are often countered by compromises in another. Instead, these results

indicate that the method is not operating within a Pareto optimal region of this tradeoff

space; enhancements are achieved in both perceptual and distortion qualities without

the expected tradeoffs.

The success of ensembling in improving these metrics can be attributed to its ability

to integrate multiple reconstructions into a single output, effectively averaging out

errors and anomalies specific to individual outputs. This process not only increases

the overall fidelity and structural integrity of the final image but also preserves the best

features of each reconstruction while reducing the impact of any individual output’s

weaknesses.

However, the computational demands increase with the number of reconstructions,

reflecting a significant tradeoff between improved image quality and processing effi-

ciency, which is particularly important in scenarios where speed is crucial.

Table 3.3: Average reconstruction performances showing the effect of the ensembling

for 236 test images under α = 3 and T = 32 setting (5 Monte Carlo runs).

Number of Different Perceptual Distortion

Reconstructions (2p) FID ↓ LPIPS ↓ CLIP-IQA ↑ PSNR ↑ SSIM ↑ Avg. runtime (sec.) ↓

no ensembling 109.36 0.22 0.77 26.08 0.68 2.41

4 96.54 0.17 0.76 27.59 0.77 10.24

6 95.01 0.16 0.76 27.83 0.79 13.55

8 94.26 0.16 0.76 27.95 0.80 20.73

12 93.64 0.15 0.76 28.18 0.81 29.24

24 93.12 0.15 0.76 28.37 0.82 56.51

3.4.4 Uncertainty Quantification Properties

The uncertainty quantification in image reconstruction is crucial for assessing the re-

liability of the outputs, particularly in scenarios where decisions are based on these

images. By utilizing the variance across an ensemble of generated outputs, we esti-

mate the uncertainty in our final reconstruction. The ensemble’s variance provides a

robust approximation of the expected squared error between the true image x and the
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final reconstructed image x̂final, as illustrated in the formula:

E{∥x− x̂final∥2} ≈ E{∥x̄final − x̂final∥2} ≈ Var{x̂(q)
final}

2p
q=1. (3.6)

This statistical approach leverages the diversity within the ensemble to reflect un-

certainty, capturing variations that might not be evident when considering a single

output.

In our experiments, we also tried to use Var{x̂(q)
final}

2p
q=1 for the error estimate of the

ensemble average output.

Isotonic regression is used for calibration due to its superior ability to address mono-

tonic distortions by fitting a nondecreasing function to the data, thereby enhancing

the calibration accuracy of probabilistic predictions [91]. This calibration is crucial

for aligning our model’s confidence with the actual performance, as uncalibrated pre-

dictions can mislead the decision-making process based on these images.

Fig. 3.9 shows the calibration curves for both uncalibrated and calibrated cases for

2p = 24, illustrating the improvement in empirical coverage after calibration. The

ideal coverage line serves as a benchmark for perfect calibration, highlighting the

effectiveness of isotonic regression in aligning our probabilistic predictions with em-

pirical outcomes. Moreover, Fig. 3.10 displays the actual errors and predicted uncer-

tainties before and after calibration for 2p = 24.
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(a) Ground truth

(b) prDeep,

PSNR:25.35, SSIM:0.71

(c) DIR,

PSNR:26.49, SSIM:0.73

(d) Initialization procedure,

PSNR:21.62, SSIM:0.50

(e) InDI-PR (T = 4, 2p = 1),

PSNR:27.07, SSIM:0.77

(f) InDI-PR (T = 32, 2p = 24),

PSNR:27.13, SSIM:0.86

Figure 3.6: The outputs of various algorithms for the "Turtle" test image subjected to

α = 3 noise (SNR=31.89dB).
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(a) Ground truth

(b) prDeep,

PSNR:23.44, SSIM:0.66

(c) DIR,

PSNR:20.37, SSIM:0.54

(d) Initialization procedure,

PSNR:18.96, SSIM:0.33

(e) InDI-PR (T = 4, 2p = 1),

PSNR:27.39, SSIM:0.70

(f) InDI-PR (T = 32, 2p = 24),

PSNR:28.98, SSIM:0.82

Figure 3.7: The outputs of various algorithms for the "Cameraman" test image sub-

jected to α = 3 noise (SNR=31.61dB).
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(a) Ground truth

(b) prDeep,

PSNR:19.37, SSIM:0.47

(c) DIR,

PSNR:25.33, SSIM:0.67

(d) MBwDDP,

PSNR:26.28, SSIM:0.71

(e) InDI-PR (T = 4, 2p = 1),

PSNR:29.10, SSIM:0.87

(f) InDI-PR (T = 32, 2p = 24),

PSNR:30.46, SSIM:0.90

Figure 3.8: The outputs of various algorithms for the out-of-domain "Pollen" test

image subjected to α = 3 noise (SNR=28.10dB).
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Figure 3.9: Calibration curves for two different cases: for only one output of the

algorithm (left), the ensemble average of many output samples (right).

(a) Actual error (log)

(b) Predicted uncertainties

(before calibration)

(c) Predicted uncertainties

(after calibration)

Figure 3.10: Example uncertainty predictions and actual errors for the ensemble av-

erage of many output samples.
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3.5 Conclusion

This chapter introduces a novel approach to Fourier phase retrieval by employing the

Inversion by Direct Denoising (InDI) framework, marking a significant enhancement

over traditional methods that commonly initiate from random noise. Our methodol-

ogy incorporates a sophisticated initialization strategy, utilizes ensembling to refine

PSNR metrics, and effectively adapts the InDI process for phase retrieval, showcasing

substantial improvements in both training efficiency and image quality.

The implementation of the InDI approach in phase retrieval offers a remarkable im-

provement by leveraging initial estimates more efficiently. This strategy not only

expedites the training process but also ensures that it is more focused on refining

rather than reconstructing from scratch, thus enhancing both image quality and com-

putational efficiency.

Moreover, our adoption of ensembling techniques has been shown to enhance both

perceptual and distortion metrics simultaneously. This result is indicative of the

method’s capacity to yield improvements in image reconstruction quality without ad-

hering strictly to the typical constraints of the perception-distortion tradeoff space.

This observation suggests that while our method advances current capabilities, it also

highlights the potential for further optimization and refinement to achieve even closer

approximation to the Pareto optimal frontier in future work.

Our contributions significantly extend the scope of methodological advancements,

providing a robust framework that adeptly handles diverse imaging conditions and

varying levels of noise. The comprehensive evaluation against established methods

confirms our approach’s superior performance in terms of reconstruction accuracy

and efficiency.

In summary, the techniques developed herein advance the field of classical Fourier

phase retrieval and indicate promising avenues for application to other types of phase

retrieval challenges. By integrating advanced denoising strategies with novel initial-

ization and ensembling techniques within the InDI framework, this work paves the

way for more accurate and efficient phase retrieval methods, potentially enhancing a

variety of scientific and industrial applications.
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CHAPTER 4

DDRM-PR: FOURIER PHASE RETRIEVAL USING DENOISING

DIFFUSION RESTORATION MODELS

4.1 Introduction

In recent years, deep learning has revolutionized the approach to solving inverse

problems in imaging, including phase retrieval. Deep neural networks (DNNs) have

achieved significant success in directly reconstructing images from measurements

or enhancing initial estimates from classical methods. Model-based optimization

schemes have also integrated deep priors within the plug-and-play framework. Nev-

ertheless, existing deep learning solutions for PR are often hindered by domain shifts,

lack of interpretability, and the necessity for extensive training [24].

Diffusion models have revolutionized the field of unconditional image generation,

demonstrating superior performance across various tasks such as super-resolution,

deblurring, inpainting, colorization, and compressive sensing. These models gradu-

ally and stochastically denoise a sample to produce the desired output, conditioned on

the measurements and the inverse problem. The use of pretrained diffusion models

allows for efficient and effective restoration without the need for specific training on

individual degradation models, thereby offering great flexibility and adaptability in

real-world applications [55].

In this work, we extend the efficient, unsupervised posterior sampling method of De-

noising Diffusion Restoration Models (DDRM) to the nonlinear inverse problem of

phase retrieval. Unlike existing methods, our approach does not require training;

instead, it utilizes a pretrained unconditional diffusion model akin to plug-and-play

methods. This characteristic significantly enhances the practicality and ease of im-
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plementation, as it eliminates the need for additional training and complex parameter

tuning [53].

The main contributions of this chapter are as follows:

• We present an innovative method that adapts the DDRM framework to the non-

linear inverse problem of phase retrieval, leveraging pretrained unconditional

diffusion models.

• Our approach combines state-of-the-art generative diffusion models with the

model-based Hybrid Input-Output (HIO) method, enhancing reconstruction qual-

ity.

• We demonstrate the superior performance of our method through empirical

evaluations using distortion and perceptual quality metrics between ground

truth and reconstructed images, highlighting its potential to outperform clas-

sical iterative techniques in phase retrieval.

By integrating the strengths of pretrained diffusion models with classical optimization

techniques, our method provides a robust and efficient solution to the challenging

problem of phase retrieval, paving the way for further advancements in this field.

The developed method is highly versatile and can be easily extended to other types

of phase retrieval problems beyond classical Fourier PR, such as coded diffraction

pattern (CDP) phase retrieval.

The following sections of this chapter are organized as follows: Section 4.2 reviews

related research. Our proposed approach is detailed in Section 4.3, followed by a

comparative performance analysis against classical and state-of-the-art methods in

Section 4.4. Lastly, Section 4.5 summarizes our findings and outlines future research

directions.
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4.2 Related Works

4.2.1 Diffusion Models

Diffusion models possess a Markov chain structure, represented as xT → xT−1 →
. . . → x1 → x0, where xt ∈ Rn. This structure defines their joint distribution as

follows:

pθ (x0:T ) = p
(T )
θ (xT )

T−1∏
t=0

p
(t)
θ (xt | xt+1) (4.1)

After generating x0:T , only x0 is retained as the sample from the generative model.

To train a diffusion model, a fixed, factorized variational inference distribution is

introduced:

q (x1:T | x0) = q(T ) (xT | x0)
T−1∏
t=0

q(t) (xt | xt+1,x0) (4.2)

This approach results in an evidence lower bound (ELBO) on the maximum likeli-

hood objective. Certain diffusion models have the unique characteristic where both

p
(t)
θ and q(t) are defined as conditional Gaussian distributions for all t < T . Addition-

ally, q (xt | x0) is a Gaussian distribution with known mean and covariance, enabling

xt to be viewed as x0 corrupted by Gaussian noise. Mathematically, this is expressed

as q (xt | x0) = N
(√

αtx0, (1− αt) I
)
, ∀t ∈ [1, T ]. As a result, the ELBO objec-

tive simplifies into the denoising autoencoder objective, as detailed in [55]:

T∑
t=1

γtE(x0,xt)∼q(x0)q(xt|x0)

[∥∥∥x0 − f
(t)
θ (xt)

∥∥∥2

2

]
(4.3)

Here, f (t)
θ represents a neural network parameterized by θ, which aims to recover a

noiseless observation from a noisy xt. Additionally, γ1:T denotes a set of positive

coefficients dependent on q (x1:T | x0).

4.2.1.1 Denoising Diffusion Restoration Models (DDRM)

DDRM have emerged as a versatile solution for addressing linear inverse problems in

both noisy and noiseless contexts, i.e., y = Hx + z where z ∼ N (0, σ2
yI). Specifi-

cally, DDRM functions as a general solver for these problems, defined by the proba-
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bilistic model:

pθ (x0:T | y) = p
(T )
θ (xT | y)

T−1∏
t=0

p
(t)
θ (xt | xt+1,y) , (4.4)

where x0 represents the final diffusion output. In short, the core concept of DDRM

is to utilize the singular value decomposition (SVD) of the matrix H , transforming

both the target variable x, and, the potentially noisy observations y into a common

spectral space. Within this spectral space, DDRM distinguishes between dimensions

based on the availability of information from y, as indicated by the singular values.

For dimensions corresponding to non-zero singular values, DDRM performs denois-

ing, while for those associated with zero singular values, it undertakes imputation.

This approach explicitly accounts for measurement noise, thereby enhancing the ro-

bustness and accuracy of the restoration process [53].

DDRM employs a procedure that leverages a pretrained unconditional diffusion model

to solve various linear inverse problems, akin to plug-and-play methods. Notably,

this approach eliminates the necessity for additional training. The authors demon-

strate that, under specific conditions, the solution obtained by training a conditional

diffusion model is equivalent to that derived from using a pretrained unconditional

diffusion model in conjunction with the DDRM procedure. Consequently, this equiv-

alence implies that one can effectively address any linear inverse problem by utilizing

a pretrained unconditional model, thus simplifying the implementation and enhanc-

ing the practicality of the method. The detailed DDRM procedure can be seen in

Appendix C.

4.3 Developed Method

For the case of no noise in the observation y, the general DDRM procedure for linear

inverse problems simplifies to be

x′
t = f

(t+1)
θ (xt+1)−H†Hf

(t+1)
θ (xt+1) +H†y

xt =
√
αt

(
ηbx

′
t + (1− ηb) f

(t+1)
θ (xt+1)

)
+
√
1− αt

(
ηϵt + (1− η)ϵ

(t+1)
θ (xt+1)

)
(4.5)

where H† represents the Moore-Penrose pseudo-inverse of H . The term f
(t+1)
θ (xt+1)

corresponds to the output of the denoising model at step t + 1, and ϵ
(t+1)
θ (xt+1) =
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xt+1−
√
αt+1f

(t+1)
θ (xt+1)√

1−αt+1
denotes the predicted noise value [92]. The parameters η and ηb

are defined by the user, and ϵt ∼ N (0, I) is a vector drawn from a standard Gaussian

distribution (refer to Appendix C for the proof).

DDRM is derived for a linear operator H . But, in this chapter, it is extended to

nonlinear phase retrieval by using the HIO algorithm as H†.

For a linear operator H , its pseudo-inverse, H†, exhibits two key properties:

• HH†H = H , meaning that applying the pseudo-inverse does not alter the

original measurement.

• H†Hx approximates x closely, providing a least-squares solution.

These properties can be extended to certain nonlinear operators. For example, defin-

ing H as the forward operator of the phase retrieval problem, i.e., Hx = |Fx|, the

HIO algorithm satisfies similar properties:

• Computing the Fourier magnitudes again after applying the HIO algorithm

yields the same measurements.

• The HIO method generally preserves visual similarity, thus applying HIO after

computing the Fourier magnitudes generates an image “close” to the original

one.

For the phase retrieval problem, the following method is developed for this method.

x′
t = f

(t+1)
θ (xt+1)− HIO(|Ff (t+1)

θ (xt+1) |) + RandomInit(y)

xt =
√
αt

(
ηbx

′
t + (1− ηb) f

(t+1)
θ (xt+1)

)
+
√
1− αt

(
ηϵt + (1− η)ϵ

(t+1)
θ (xt+1)

)
(4.6)

Here, RandomInit refers to the HIO initialization procedure in the prDeep paper [10].

Initially, the HIO method was executed with m = 50 different random initializations,

each for s = 50 iterations. Subsequently, the reconstruction with the smallest residual

was selected for an additional HIO run of n = 1000 iterations.

For, HIO(|Ff (t+1)
θ (xt+1) |), the algorithm is applied for k = 100 steps and initialized

with xt+1.
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Furthermore, to ensure consistent performance, we generate N = 8 independent

outputs for each input and use the averaged image obtained from these outputs.

In order to optimize the hyperparameters, such as η, ηb, uniformly-spaced diffusion

steps t, initial timestep Tinit, and the number of averaged samples N , a simple linear

grid search is used.

Our method’s integration of pretrained unconditional diffusion models offers several

practical advantages. The pretrained models are initially developed on large and di-

verse image datasets, capturing a wide range of features that are crucial for effective

denoising and reconstruction. This integration bypasses the need for retraining spe-

cific to the phase retrieval task, making the method more accessible and easier to

implement in various settings. The pretrained model acts as a strong prior, facili-

tating accurate reconstruction by refining noisy inputs iteratively. Additionally, we

employ a straightforward grid search to optimize hyperparameters, ensuring that the

method is not only effective but also user-friendly.

4.4 Results

In our experiments, we used the CelebA-HQ dataset at a resolution of 256x256 pixels

to evaluate the effectiveness of our proposed method. The choice of RGB images is

twofold: firstly, RGB images tend to reveal artifacts from the HIO algorithm more

clearly, and secondly, the pretrained diffusion models we employed are optimized for

RGB images. Each color channel (Red, Green, and Blue) is processed separately

by the HIO algorithm, ensuring that color information is preserved and accurately

reconstructed.

After applying the HIO algorithm to each channel, we calculated the Peak Signal-to-

Noise Ratio (PSNR) values to correct for conjugate inversion ambiguity. This step

is crucial for ensuring the accuracy of the phase retrieval process, as it aligns the

reconstructed images more closely with the ground truth.

To comprehensively evaluate the performance of our algorithm, we conducted exper-

iments under various noise levels. The primary metrics used to assess the quality of
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the reconstructed images were PSNR, Structural Similarity Index (SSIM) [80], and

Learned Perceptual Image Patch Similarity (LPIPS) [89]. These metrics provide a

well-rounded evaluation of both the pixel-level accuracy and the perceptual quality of

the reconstructions.

We applied our algorithm to a diverse set of test images from the CelebA-HQ dataset,

introducing varying noise levels to simulate real-world scenarios where measure-

ments are often contaminated with different degrees of noise, i.e., different values

of α. For each noise level, we generated multiple reconstructions and computed the

average values of PSNR, SSIM, and LPIPS to ensure the robustness and consistency

of our method.

Our method demonstrated superior performance across all evaluated metrics com-

pared to traditional phase retrieval techniques such as HIO. The PSNR values in-

dicated that our method effectively suppressed noise while preserving image de-

tails. The SSIM scores showed that the structural integrity of the images was well-

maintained, and the high LPIPS values confirmed the perceptual quality of the recon-

structions.

Figure 4.1: Ground-truth test images (top row), reconstructions using the developed

approach (middle row), and HIO initialization results (bottom row) for the case with

parameters: α = 0.5, N = 1, η = 0.15, ηb = 0.20, t = 15, and Tinit = 350.

The high performance of our method can be attributed to the integration of pretrained

diffusion models with the HIO algorithm, which allows for effective denoising and ac-

curate phase retrieval. The use of multiple independent outputs and averaging further

enhances the stability and reliability of the results. Additionally, the optimization of

hyperparameters through a linear grid search ensures that the method is finely tuned

for the best possible performance.
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Figure 4.2: Ground-truth test images (top row), reconstructions using the developed

approach (middle row), and HIO initialization results (bottom row) for the case with

parameters: α = 1, N = 1, η = 0.25, ηb = 0.22, t = 30, and Tinit = 400.

Figure 4.3: Ground-truth test images (top row), reconstructions using the developed

approach (middle row), and HIO initialization results (bottom row) for the case with

parameters: α = 2, N = 1, η = 0.25, ηb = 0.18, t = 15, and Tinit = 400.

Figure 4.4: Ground-truth test images (top row), reconstructions using the developed

approach (middle row), and HIO initialization results (bottom row) for the case with

parameters: α = 3, N = 1, η = 0.78, ηb = 0.17, t = 30, and Tinit = 300.

In conclusion, the results of our experiments validate the efficacy of our proposed

method in solving the nonlinear inverse problem of phase retrieval. The comprehen-

sive evaluation using PSNR, SSIM, and LPIPS metrics confirms that our approach

outperforms existing techniques, providing a robust and reliable solution for high-
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quality image reconstruction in the presence of noise. As demonstrated qualitatively

in Figs. 4.1, 4.2, 4.3, and 4.4, and quantitatively in Table 4.1, our method consistently

produces superior results.

Table 4.1: Average reconstruction performances of the developed algorithms for dif-

ferent images from the CelebA-HQ test set.

α = 0.5 α = 1 α = 2 α = 3

Methods PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓

HIO Stage 28.74 0.82 0.14 27.57 0.74 0.21 25.27 0.65 0.34 24.00 0.58 0.43

DDRM-PR 29.13 0.87 0.13 28.45 0.84 0.15 26.59 0.79 0.23 25.73 0.76 0.27

4.5 Conclusion

In this chapter, we present a new approach for addressing the nonlinear inverse prob-

lem of phase retrieval by extending the Denoising Diffusion Restoration Models

(DDRM) framework. Our method uniquely leverages pretrained unconditional dif-

fusion models, eliminating the need for additional training and aligning with the

plug-and-play paradigm. This characteristic significantly enhances the practicality

and ease of implementation of our approach.

Through empirical evaluations, we demonstrate the superior performance of our method

in phase retrieval tasks. The proposed technique not only achieves high-quality recon-

structions but also exhibits robustness across various scenarios. Our results, evaluated

using photometric similarity metrics between ground truth and reconstructed images,

underscore the efficacy of our approach in overcoming the limitations of existing

methods.

A key advantage of our method is its ability to generalize beyond the specific task

of phase retrieval without necessitating retraining or extensive problem-specific hy-

perparameter tuning. This flexibility highlights the potential of our approach to be

applied to a broader range of inverse problems in imaging.

In summary, our work contributes a novel, practical solution to the phase retrieval

problem by integrating state-of-the-art generative diffusion models with the Hybrid

Input-Output (HIO) method.

79



80



CHAPTER 5

CONCLUSION

In this thesis, we have developed and evaluated novel data-driven phase retrieval

methods that leverage deep learning and diffusion models to address the long-standing

challenges of this fundamental problem in optical systems and many other areas.

The work presented in this thesis encompasses significant advancements in phase re-

trieval, focusing on improving reconstruction quality, robustness, and computational

efficiency.

Chapter 2 introduced a novel approach to phase retrieval by employing Langevin

dynamics for posterior sampling within the framework of score/diffusion-based mod-

els. This method, realized through the development of the prNet-Small and prNet-

Large pipelines, relies on the iterative refinement of the initial HIO estimates through

denoising, data consistency, and noise injection cycles. By paying attention to the

perception-distortion tradeoff, the method not only yields high-fidelity reconstruc-

tions with low distortion but also achieves high perceptual quality. prNet-Large, in

particular, demonstrated enhanced robustness and perceptual quality by incorporat-

ing diverse starting points and employing an additional denoiser with a Wasserstein

loss. Extensive simulations confirmed the state-of-the-art performance of this ap-

proach with low computational cost, indicating that this approach can be extended as

a reliable stochastic nonlinear inverse problem solver.

In Chapter 3, we applied the Inversion by Direct Denoising (InDI) framework to

the Fourier phase retrieval problem. This novel method utilizes advanced initializa-

tion strategies and ensembling techniques to improve quality metrics and enhance

training efficiency. By starting from a plausible initial estimate rather than random

noise, the InDI framework makes full use of the denoiser’s capacity, reducing train-
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ing time while demonstrating superior performance compared to both classical and

contemporary techniques. This method sets a new benchmark for phase retrieval by

significantly improving both training efficiency and image quality.

Chapter 4 extended the application of Denoising Diffusion Restoration Models (DDRM)

from linear inverse problems to the nonlinear inverse problem of phase retrieval. By

combining state-of-the-art generative diffusion models with the Hybrid Input-Output

(HIO) method, we applied pretrained unconditional diffusion models to phase re-

trieval. The results demonstrated that this combined approach outperforms existing

classical iterative methods, providing a powerful tool for phase retrieval without re-

quiring any training.

The integration of deep learning into phase retrieval represents a significant advance-

ment, offering new solutions to long-standing challenges and opening new possibil-

ities for coherent imaging. By learning from large datasets, deep learning models

provide robust priors that guide the phase retrieval process, reducing the impact of

noise and improving convergence to accurate solutions.

The methods developed in this thesis are based on the score/diffusion-based frame-

work, which has gained prominence for its effectiveness in high-dimensional data

generation and reconstruction tasks. The iterative nature of these models aligns well

with the needs of phase retrieval, allowing for incremental refinement of solutions

and making them well-suited for tasks requiring high precision.

Overall, this thesis has demonstrated that the hybrid use of deep learning models

with traditional model-based techniques can significantly enhance the performance

of phase retrieval algorithms. The developed methods—prNet-Small, prNet-Large,

InDI-PR, and DDRM-PR—offer diverse solutions tailored to different aspects of

phase retrieval, showcasing the flexibility and power of combining deep learning with

classical approaches.

Future research directions include developing new denoising architectures specifi-

cally tailored for phase retrieval and applying these methods to real-world experi-

mental data. Additionally, extending these techniques to other types of phase retrieval

problems and nonlinear inverse problems, as well as exploring their integration with
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emerging imaging modalities, will further advance the field. The ongoing conver-

gence of deep learning and phase retrieval holds the promise of exciting developments

and innovations, enhancing our ability to capture and reconstruct complex signals and

images with unprecedented accuracy and detail.

To conclude, this thesis has made substantial contributions to the field of phase re-

trieval by introducing innovative methods that combine deep learning and generative

models with traditional phase retrieval techniques. These advancements not only im-

prove the accuracy and efficiency of phase retrieval but also pave the way for new

applications and further research in optical systems and other related fields. The

promising results obtained from the developed methods underscore the potential of

deep generative learning to revolutionize the approach to solving complex inverse

problems in science and engineering.
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APPENDIX A

PRNET EXAMPLE RECONSTRUCTIONS

This appendix showcases example reconstructions obtained using the proposed meth-

ods (prNet-Small and prNet-Large) for various test images.
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(a) Ground truth

(b) prNet-Large

(+TTA) (c) prNet-Small

(d) Initialization

Stage-Small

SNR:31.49 PSNR:35.41,SSIM:0.97 PSNR:32.04,SSIM:0.94 PSNR:17.87,SSIM:0.58

SNR:30.74 PSNR:37.31,SSIM:0.97 PSNR:33.17,SSIM:0.94 PSNR:22.39,SSIM:0.55

SNR:30.82 PSNR:34.36,SSIM:0.95 PSNR:32.82,SSIM:0.93 PSNR:23.43,SSIM:0.60

SNR:31.45 PSNR:36.96,SSIM:0.96 PSNR:35.42,SSIM:0.94 PSNR:19.20,SSIM:0.50

Figure A.1: The reconstructions of the different algorithms for different test images

under the α = 3 noise level.
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(a) Ground truth

(b) prNet-Large

(+TTA) (c) prNet-Small

(d) Initialization

Stage-Small

SNR:32.59 PSNR:37.09,SSIM:0.95 PSNR:35.16,SSIM:0.94 PSNR:19.20,SSIM:0.55

SNR:32.16 PSNR:38.29,SSIM:0.96 PSNR:35.71,SSIM:0.95 PSNR:24.04,SSIM:0.54

SNR:34.24 PSNR:32.60,SSIM:0.96 PSNR:30.76,SSIM:0.95 PSNR:12.52,SSIM:0.44

SNR:30.00 PSNR:34.94,SSIM:0.94 PSNR:20.26,SSIM:0.75 PSNR:14.99,SSIM:0.33

Figure A.2: The outputs of various algorithms for different test set images subjected

to α = 3 noise.
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(a) Ground truth

(b) prNet-Large

(+TTA) (c) prNet-Small

(d) Initialization

Stage-Small

SNR:29.79 PSNR:32.33,SSIM:0.96 PSNR:31.15,SSIM:0.94 PSNR:20.62,SSIM:0.62

SNR:31.81 PSNR:36.62,SSIM:0.95 PSNR:32.62,SSIM:0.91 PSNR:18.26,SSIM:0.55

SNR:31.77 PSNR:38.36,SSIM:0.96 PSNR:36.02,SSIM:0.95 PSNR:17.11,SSIM:0.57

SNR:34.04 PSNR:31.77,SSIM:0.93 PSNR:29.26,SSIM:0.89 PSNR:13.32,SSIM:0.44

Figure A.3: The outputs of various algorithms for different test set images subjected

to α = 3 noise.
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APPENDIX B

INDI-PR EXAMPLE RECONSTRUCTIONS

This appendix showcases example reconstructions obtained using the proposed meth-

ods (InDI-PR and its initialization procedure) for various test images.
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(a) Ground truth

(b) Initialization

procedure

(c) InDI-PR

(T = 4, 2p = 1)

(d) InDI-PR

(T = 32, 2p = 24)

SNR:29.41 PSNR:21.99,SSIM:0.43 PSNR:30.64,SSIM:0.76 PSNR:31.80,SSIM:0.85

SNR:32.68 PSNR:18.67,SSIM:0.40 PSNR:28.14,SSIM:0.72 PSNR:29.97,SSIM:0.79

SNR:29.09 PSNR:20.40,SSIM:0.37 PSNR:27.30,SSIM:0.75 PSNR:29.26,SSIM:0.84

SNR:34.18 PSNR:19.85,SSIM:0.51 PSNR:26.93,SSIM:0.84 PSNR:27.31,SSIM:0.88

Figure B.1: The outputs of various algorithms for different test set images subjected

to α = 3 noise.
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(a) Ground truth

(b) Initialization

procedure

(c) InDI-PR

(T = 4, 2p = 1)

(d) InDI-PR

(T = 32, 2p = 24)

SNR:31.00 PSNR:24.11,SSIM:0.49 PSNR:31.15,SSIM:0.81 PSNR:32.28,SSIM:0.88

SNR:31.37 PSNR:26.21,SSIM:0.60 PSNR:32.60,SSIM:0.85 PSNR:34.21,SSIM:0.90

SNR:32.35 PSNR:26.95,SSIM:0.59 PSNR:32.53,SSIM:0.81 PSNR:34.80,SSIM:0.90

SNR:32.09 PSNR:25.67,SSIM:0.63 PSNR:32.25,SSIM:0.87 PSNR:33.83,SSIM:0.91

Figure B.2: The outputs of various algorithms for different test set images subjected

to α = 3 noise.
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APPENDIX C

PROOFS FOR DDRM-PR

Definition C.1 (Original Form of DDRM). DDRM is a procedure utilizing a pre-

trained unconditional diffusion model to solve any linear inverse problem in the fol-

lowing form:

y = Hx+ z where z ∼ N (0, σ2
yI). (C.1)

Using the singular value decomposition, i.e., H = UΣVT with UUT = I and

VVT = I, we can make spectral definitions:

H† = VΣ†UT (C.2)

x̄t = VTxt (C.3)

ȳ = Σ†UTy (C.4)

x̄θ,t = VTxθ,t where xθ,t = f
(t+1)
θ (xt+1) is a denoiser with parameters θ. (C.5)

Then, the DDRM sampling procedure is given by:

p
(T )
θ

(
x
(i)
T | y

)
=

N
(
y(i), σ2

T −
σ2
y

s2i

)
if si > 0

N (0, σ2
T ) if si = 0

p
(t)
θ

(
x
(i)
t | xt+1,y

)
=


N

(
x
(i)
θ,t +

√
1− η2σt

x
(i)
t+1−x

(i)
θ,t

σt+1
, η2σ2

t

)
if si = 0

N
(
x
(i)
θ,t +

√
1− η2σt

y(i)−x
(i)
θ,t

σy/si
, η2σ2

t

)
if σt <

σy

si

N
(
(1− ηb)x

(i)
θ,t + ηby

(i), σ2
t −

σ2
y

s2i
η2b

)
if σt ≥ σy

si

(C.6)

Here, we denote the i-th index of any vector x by x(i).

Also, note that xθ,t = f
(t+1)
θ (xt+1) is trained with the regular unconditional diffusion
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process due to the conjugate variational distribution satisfying similar properties:

q (xt | x0) = N
(
x0, σ

2
t I

)
with 0 = σ0 < σ1 < .... < σT (C.7)

Definition C.2. Let αt =
1

1+σ2
t

for all t. Equivalently,

σt =

√
1− αt

αt

, ∀t. (C.8)

Definition C.3. Let xt =
√
αtxt, for all t. Cyan color will be used to denote this

scaling.

Lemma C.1.
xt −

√
αtx0√

1− αt

∼ N (0, I), ∀t. (C.9)

Proof. From the assumed q(xt,x0), we know that

xt − x0

σt

∼ N (0, I). (C.10)

Using Definitions C.2 and C.3,

xt − x0

σt

=

xt√
αt
− x0√

α0√
1−αt

αt

. (C.11)

From Definition C.1, σ0 is assumed to be 0, then, α0 = 1, and, it follows that

xt −
√
αtx0√

1− αt

∼ N (0, I). (C.12)

Corollary C.1.1. If we have a perfect estimator of x0 denoted by xθ,t = f
(t+1)
θ (xt+1),

then,

ϵ
(t+1)
θ (xt+1) =

xt+1 −
√
αt+1xθ,t√

1− αt+1

∼ N (0, I). (C.13)

Lemma C.2. If η ∼ N (µ,Σ), then, Aη ∼ N (Aµ,AΣAT).

Corollary C.2.1. If η ∼ N (0, I), then, Vη ∼ N (0, I) for an orthogonal matrix V.

Lemma C.3 (Reparametrization trick). If w ∼ N (µ, σ2), then, we can write it as

w = µ+ σϵ where ϵ ∼ N (0, 1). (C.14)

Lemma C.4.

H†H = (VΣ†UT)(UΣVT) = VΣ†ΣVT = Σ†ΣVVT = Σ†Σ (C.15)
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Proof. Matrix multiplication with a square diagonal matrix is commutative.

Theorem C.5 (Simplified form of DDRM). Under a noiseless setting, i.e., σ2
y = 0,

the overall DDRM process for linear inverse problems can be simplified to

x′
t = xθ,t −H†Hxθ,t +H†y

xt =
√
αt (ηbx

′
t + (1− ηb)xθ,t) +

√
1− αt

(
ηϵt + (1− η)ϵ

(t+1)
θ (xt+1)

) (C.16)

In this context, H† represents the Moore-Penrose pseudo-inverse of H . The term

xθ,t = f
(t+1)
θ (xt+1) denotes the output of the denoising model at iteration t+1, while

ϵ
(t+1)
θ (xt+1) =

xt+1−
√
αt+1xθ,t√

1−αt+1
indicates the estimated noise value. The constants η

and ηb are hyperparameters defined by the user, and ϵt ∼ N (0, I) is a vector drawn

from a standard Gaussian distribution [92].

Proof. We start with the original form of DDRM:

p
(t)
θ

(
x
(i)
t | xt+1,y

)
=


N

(
x
(i)
θ,t +

√
1− η2σt

x
(i)
t+1−x

(i)
θ,t

σt+1
, η2σ2

t

)
if si = 0

N
(
x
(i)
θ,t +

√
1− η2σt

y(i)−x
(i)
θ,t

σy/si
, η2σ2

t

)
if σt <

σy

si

N
(
(1− ηb)x

(i)
θ,t + ηby

(i), σ2
t −

σ2
y

s2i
η2b

)
if σt ≥ σy

si

(C.17)

Since σ2
y = 0, the second case does not occur:

p
(t)
θ

(
x
(i)
t | xt+1,y

)
=


N

(
x
(i)
θ,t +

√
1− η2σt

x
(i)
t+1−x

(i)
θ,t

σt+1
, η2σ2

t

)
if si = 0

N
(
(1− ηb)x

(i)
θ,t + ηby

(i), σ2
t

)
otherwise

(C.18)

Use the reparametrization trick given in Lemma C.3:

x
(i)
t =

x
(i)
θ,t +

√
1− η2σt

x
(i)
t+1−x

(i)
θ,t

σt+1
+
√
η2σ2

t ϵ
(i)
t if si = 0

(1− ηb)x
(i)
θ,t + ηby

(i) +
√
σ2
t ϵ

′(i)
t otherwise

(C.19)

where ϵ′t, ϵt ∼ N (0, I).

Note that the matrix Σ†Σ is a diagonal matrix with zeros at positions corresponding

to zero singular values and ones elsewhere. This allows us to express xt in a more
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compact form:

xt = (I−Σ†Σ)

(
xθ,t +

√
1− η2σt

xt+1 − xθ,t

σt+1

+ ησtϵt

)
+Σ†Σ

(
(1− ηb)xθ,t + ηby + σtϵ

′

t

) (C.20)

Replace with the spectral definitions given in Definition C.1:

VTxt = (I−Σ†Σ)

(
VTxθ,t +

√
1− η2σt

VTxt+1 −VTxθ,t

σt+1

+ ησtϵt

)
+Σ†Σ

(
(1− ηb)V

Txθ,t + ηbΣ
†UTy + σtϵ

′

t

) (C.21)

Multiply both sides by V. And, recall that multiplication with square diagonal matri-

ces is commutative:

xt = (I−Σ†Σ)

(
xθ,t +

√
1− η2σt

xt+1 − xθ,t

σt+1

+ ησtVϵt

)
+Σ†Σ

(
(1− ηb)xθ,t + ηbH

†y + σtVϵ
′

t

) (C.22)

Use Lemma C.4 (H†H = Σ†Σ) and Corollary C.2.1 (Vϵt = ϵt):

xt = (I−H†H)

(
xθ,t +

√
1− η2σt

xt+1 − xθ,t

σt+1

+ ησtϵt

)
+H†H

(
(1− ηb)xθ,t + ηbH

†y + σtϵ
′

t

) (C.23)

Use Definitions C.3 and C.2:

xt√
αt

= (I−H†H)

xθ,t +
√
1− η2

√
1− αt

αt

xt+1√
αt+1
− xθ,t√

1−αt+1

αt+1

+ η

√
1− αt

αt

ϵt


+H†H

(
(1− ηb)xθ,t + ηbH

†y +

√
1− αt

αt

ϵ
′

t

)
(C.24)

Simplify:

xt = (I−H†H)

(
√
αtxθ,t +

√
1− η2

√
1− αt

xt+1 −
√
αt+1xθ,t√

1− αt+1

+ η
√
1− αtϵt

)
+H†H

(√
αt (1− ηb)xθ,t +

√
αtηbH

†y +
√
1− αtϵ

′

t

)
(C.25)
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Rearrange the terms:

xt =
√
αtxθ,t +

√
αt(−1 + (1− ηb))H

†Hxθ,t +
√
αtηbH

†y

+ η
√
1− αtϵt

+H†H(−η + 1)
√
1− αtϵ

′
t

+ (I−H†H)
√
1− η2

√
1− αt

xt+1 −
√
αt+1xθ,t√

1− αt+1

(C.26)

Use Corollary C.1.1 and approximate
√
1− η2 ≈ 1− η for η ∈ [0, 1].

xt =
√
αt

(
xθ,t + ηb

(
xθ,t −H†Hxθ,t +H†y

)
− ηbxθ,t

)
+
√
1− αtηϵt

+H†H(1− η)
√
1− αtϵ

(t+1)
θ (xt+1)

+ (I−H†H)(1− η)
√
1− αtϵ

(t+1)
θ (xt+1)

=
√
αt

(
ηb
(
xθ,t −H†Hxθ,t +H†y

)
+ (1− ηb)xθ,t

)
+
√
1− αt

(
ηϵt + (1− η)ϵ

(t+1)
θ (xt+1)

)
(C.27)
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