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ABSTRACT 

 

OBTAINING MODAL MODELS OF A NONLINEAR STRUCTURE USING 

FORCE-CONTROLLED FREQUENCY RESPONSE FUNCTIONS 

 

Gürbüz, Muhammed Fatih 

Master of Science, Mechanical Engineering 

Supervisor: Assoc. Prof. Dr. M. Bülent Özer 

Co-Supervisor: Prof. Dr. H. Nevzat Özgüven 

 

 

July 2024, 124 pages 

 

Identification of physical and modal parameters of an engineering structure is 

important in the field of structural dynamics in order to establish input and output 

(i.e. forcing and displacement) relationships of the structure. Linear structure 

identification is a rather well-established field thanks to the research performed on it 

over several decades. Modal analysis is the most widespread approach used in this 

area. On the other hand, nonlinear system identification is significantly more 

challenging and there has been great interest in it over the recent years. There are 

several different and novel identification approaches proposed by different 

researchers in the nonlinear structural dynamics field. Response-controlled stepped 

sine testing (RCT) is one of these methods which is implemented by keeping the 

response amplitude of a degree of freedom constant over different excitation 

frequencies. It offers important advantages such as not needing to know nonlinearity 

infected coordinates and the type of nonlinearities in the structure, and provides a 

modal model for the whole nonlinear structure. However, most of the experimental 

methods and testing hardware are compatible with constant amplitude forcing tests 

rather than constant response tests. This thesis aims to introduce a new approach that 

extends the use of the response-controlled nonlinear structural identification method 

to the structural response data acquired with constant amplitude forcing tests. The 
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proposed approach first forms a harmonic force surface (HFS) which is obtained 

from the measured response through constant force amplitude tests. The constant-

response frequency response functions (FRFs) are obtained from this surface data 

and the modal parameters of the nonlinear structure are identified. The proposed 

method is validated using numerical case studies, experimental data shared by other 

researchers as well as the experiments performed as a part of this thesis. This study 

has the potential to extend the applicability of nonlinear structural identification with 

response-controlled testing by making it compatible with constant amplitude force 

data and testing equipment.  

Keywords: Nonlinear System Identification, Nonlinear Experimental Modal 

Analysis, Response-Controlled Stepped-Sine Testing, Force-Controlled Stepped-

Sine Testing, Harmonic Force Surface  
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ÖZ 

 

KUVVET KONTROLLÜ FREKANS CEVAP FONKSİYONLARI 

KULLANILARAK DOĞRUSAL OLMAYAN BİR YAPININ MODAL 

MODELLERİNİN ELDE EDİLMESİ 

 

Gürbüz, Muhammed Fatih 

Yüksek Lisans, Makina Mühendisliği 

Tez Yöneticisi: Doç. Dr. M. Bülent Özer 

Ortak Tez Yöneticisi: Prof. Dr. H. Nevzat Özgüven 

 

 

Temmuz 2024, 124sayfa 

 

Bir mühendislik yapısının fiziksel ve modal parametrelerinin tanımlanması, yapının 

giriş ve çıkış (yani zorlayıcı ve yer değiştirme) ilişkilerini kurmak amacıyla yapısal 

dinamikler alanında önemlidir. Doğrusal yapı tanımlama, üzerinde yapılan onlarca 

yıllık araştırmalar sayesinde oldukça iyi kurulmuş bir alandır. Modal analiz, bu 

alanda kullanılan en yaygın yaklaşımdır. Diğer yandan, doğrusal olmayan sistem 

tanımlama önemli ölçüde daha zordur ve son yıllarda büyük ilgi görmektedir. 

Doğrusal olmayan yapısal dinamikler alanında farklı araştırmacılar tarafından 

önerilen birkaç farklı ve yenilikçi tanımlama yaklaşımı bulunmaktadır. Yanıt 

kontrollü adımlı sinüs testi (RCT), farklı uyarım frekansları boyunca bir serbestlik 

derecesinin yanıt genliğini sabit tutarak uygulanan bu yöntemlerden biridir. 

Yapıdaki doğrusal olmayanlık etkilenmiş koordinatları ve doğrusal olmayanlık 

türlerini bilmeye gerek duymamak gibi önemli avantajlar sunar ve tüm doğrusal viii 

olmayan yapı için modal bir model sağlar. Ancak, çoğu deneysel yöntem ve test 

donanımı, sabit yanıt testlerinden ziyade sabit genlik zorlayıcı testlerle uyumludur. 

Bu tez, sabit genlik zorlayıcı testlerle elde edilen yapısal yanıt verilerini kullanarak 

yanıt kontrollü doğrusal olmayan yapısal tanımlama yönteminin kullanımını 

genişleten yeni bir yaklaşım tanıtmayı amaçlamaktadır. Önerilen yaklaşım, ilk olarak 
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sabit zorlayıcı genlik testleri ile ölçülen yanıt üzerinden elde edilen harmonik 

zorlayıcı yüzeyini (HFS) oluşturur. Bu yüzey verilerinden sabit yanıt frekans yanıt 

fonksiyonları (FRF'ler) elde edilir ve doğrusal olmayan yapının modal parametreleri 

tanımlanır. Önerilen yöntem, sayısal vaka çalışmaları, diğer araştırmacılar tarafından 

paylaşılan deneysel veriler ve bu tezin bir parçası olarak gerçekleştirilen deneylerle 

doğrulanmıştır. Bu çalışma, sabit genlik zorlayıcı veri ve test ekipmanları ile uyumlu 

hale getirerek yanıt kontrollü testlerle doğrusal olmayan yapısal tanımlamanın 

uygulanabilirliğini genişletme potansiyeline sahiptir.  

Anahtar Kelimeler: Doğrusal Olmayan Sistem Tanımlama, doğrusal olmayan 

deneysel modal analiz, Tepki Kontrollü Kademeli Sinüs Testi, Kuvvet Kontrollü 

Kademeli Sinüs Testi, Harmonik Kuvvet Yüzeyi  
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CHAPTER 1  

1 INTRODUCTION  

1.1 Motivation of the Thesis 

Different engineering disciplines design and analyze various complex systems for 

several purposes. Specifically, civil engineers design buildings, including tall ones, 

which may experience high amplitudes of vibrations due to their height. 

Furthermore, mechanical and aerospace engineers design and analyze systems such 

as aircraft, rockets, and automobiles. To understand the behavior of such systems, 

they need to be modeled using mathematics. Therefore, system identification is used 

to find the parameters of the system which relate the system's input to its output. 

Various methods [1] have been utilized for linear system identification to understand 

the dynamics of natural or man-made systems. However, these systems may behave 

nonlinearly (in general, they behave nonlinearly). For instance, in structural 

vibrations, different types of nonlinearities exist. Geometric nonlinearity occurs due 

to the extensive amount of displacement. Nonlinear material behavior might be 

recognized due to the constitutive law related to nonlinear stress and strain. Damping 

is also one of the main contributors to nonlinearity in natural systems whose actual 

behavior can be highly complicated [2]. One can add other sources of nonlinearity 

from the literature to this list. 

These nonlinear behaviors make the analysis of the actual systems harder and 

complicated. To analyze nonlinear system behavior, researchers have developed 

several methods for the identification of nonlinear systems.  

A nonlinear system identification process generally includes three stages [3]: 

• Checking existing nonlinearities in the system and their detection. 

• Determining the location of the nonlinearity and characterizing its type. 
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• Obtaining the values of the nonlinear system parameters. 

A literature review of nonlinear system identification is conducted in the following 

section. 

1.2 Literature Review 

As discussed in section 1.1, various approaches and techniques are available for 

nonlinear system identification. The literature on non-linear system identification is 

quite extensive, so this section reviews relevant literature on nonlinear system 

identification in structural dynamics. 

This review is based on Kerschen et al.'s [2] classification of nonlinear system 

identification methods, which can be grouped into seven categories: linearization, 

time and frequency domain methods, modal methods, time-frequency analysis, 

black-box modeling, and structural model updating. The review first summarizes 

each category by selecting the primary references from the review papers [2, 4], 

followed by a detailed explanation of three recently proposed methods at the end of 

the section. 

1. Linearization methods: When dealing with harmonic forcing and response of 

systems, two methods commonly used as a basis for nonlinear system identification 

in structural dynamics are the harmonic balance method and the describing function 

method. For instance, Wang and Zheng [5] developed the equivalent dynamic 

stiffness mapping technique, and the method was validated on a metal mesh damper. 

Moreover, some researchers made use of time varying models by applying small 

time steps to achieve linear identification. Interesting research has been published by 

Sracic and Allen [6] using linear time-periodic approximations. 

2. Time-domain methods: When data are represented as a time series, such as force 

or acceleration, the method used for identification is referred to as a time-domain 

method. Masri and Caughey [7] proposed a restoring force surface (RFS) method to 

identify nonlinear systems. The method was helpful for a single degree of freedom 
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systems having nonlinearities and requires the system’s displacement, velocity, and 

restoring force acting to create the RFS. SDOF application with a sinusoidal forcing 

was examined in their paper. Another method is the time-domain nonlinear subspace 

identification (TNSI) technique applied to nonlinear mechanical systems with 

smooth nonlinearities by Marchesiello and Garibaldi [8]. Furthermore, an 

application to an aircraft with non-smooth nonlinearities has been performed by Noel 

et al. [9] using TNSI. 

3. Frequency-domain methods: The data analyzed in frequency-domain 

identification exhibit greater diversity than those analyzed in the time domain. These 

data can manifest in various forms, such as Fourier spectra, frequency response, 

transmissibility functions, or power spectral densities. One of the promising 

frequency-domain methods is the nonlinear identification through feedback of the 

outputs (NIFO) developed by Adams [10]. Ozer et al. [11] proposed a new approach 

that involves using the describing function method to detect nonlinearity in a multi-

degree of freedom system and then identifying the type and parameters of the system. 

This method can be utilized when nonlinearity exists between the ground and any 

degree of freedom of the system. The frequency domain nonlinear subspace 

identification method developed by Noël and Kerschen [12] was applied to the 

benchmark for nonlinear structural identification (BENSI) by Carri and Ewins [13]. 

4. Time-frequency methods: Nonlinear vibrations are characterized by the fact that 

the system's natural frequency and damping coefficient can vary with time, 

depending on the type of nonlinearity present. For instance, techniques like the 

wavelet and Hilbert transforms have been consistently employed to identify the 

backbone curves of the systems, such as beams with localized nonlinearities [14] and 

jointed structures [15].  

5. Black-box methods: If one has difficulty in determining a nonlinearity model that 

is accurate enough, relying on physical insight can be very helpful. However, if 

physical insight is not available or the results are not satisfactory, it is advisable to 

turn to nonlinear black-box modeling. A nonlinear black-box model is a type of 



 

 

4 

model that can be used to describe almost any kind of nonlinear dynamics using only 

data. Some methods under this subsection for nonlinear system identification are 

artificial neural networks, wavelet networks, and neuro-fuzzy models. However, 

neural network methods are the most appealing ones. A neural network method has 

been applied to a semi-active damper [16], and two case studies, Box and Jenkins 

gas furnace, and an experimental ball-and-tube system [17] for nonlinear system 

identification. 

6. Structural model updating: Resorting to models with many degrees of freedom 

(DOFs) becomes necessary when investigating more complex structures in a wider 

frequency range. However, estimating all the model parameters from experimental 

measurements can quickly become unmanageable. To solve this problem, structural 

modeling techniques that calculate the model parameters based on the known 

geometrical and mechanical properties of the structure can be used. Enhancing 

structural models by comparing them with vibration measurements conducted on the 

actual structure is essential. This process is commonly known as structural model 

updating. Based on the Bayesian inference, some nonlinear system identification 

methods as a model updating framework are applied to a mechanism that uses 

rotational energy to generate electricity [18] and to a numerical three-floor shear 

building model [19]. 

7. Modal methods: Modal methods offer a highly advanced technique for system 

identification, where the system is defined using modal natural frequencies, modal 

damping, and mode shapes. Thanks to the pioneering work of Rosenberg [20-22], 

nonlinear normal mode (NNM) theory has become the benchmark for modal 

methods in nonlinear system identification. By framing to find nonlinear modal 

parameters presented in NNM theory as nonlinear system identification, NNM 

theory provides a means to identify the nonlinear modal parameters that govern the 

system's response. As an example, for this category, a nonlinear resonant decay 

method was proposed. The method was validated using a 5 degree of freedom system 

and nonlinear panel structure [23], wing/pylon/store experimental setup [24], and a 

real airplane test data [25]. 
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Review papers [2, 4] provided detailed explanations and references for nonlinear 

system identification methods to conclude these subcategories. 

More specifically, three trending nonlinear system identification and testing 

techniques have been proposed and appealed to researchers from both industry and 

academia. Those are response-controlled stepped sine testing (RCT), control-based 

continuation (CBC), and phase-locked loop (PLL). All three have common features; 

they do not need prior knowledge of nonlinearity types, locations, and numbers. 

Therefore, this powerful property makes these nonlinear system identification 

methods promising and appealing. Details of those are given in the following 

paragraphs. 

Firstly, Renson et al. [26] proposed a robust method (control-based continuation, 

CBC) to extract the backbone curve of the nonlinear systems and compared it with 

the resonant-decay method. For verification and validation purposes, a single degree 

of freedom oscillator with base excitation was used with a single point, one 

harmonic. It was proven that CBC overcame the presence of bifurcations and 

stability changes that might face the system. Finally, the method not only extracted 

the backbone curve of the underlying system but also gave the periodic solution of 

the system. Some works that have used and extended the technique of CBC are listed 

in these refs. [27-34]. 

Secondly, Peter and Leine [35] developed phase-locked-loop (PLL) technique. They 

introduced an innovative nonlinear mode indicator function based on power, which 

is simple to implement. The PLL controller automates the tuning of the excitation 

phase, resulting in significant time savings with this closed-loop controller. The 

methodology was tested on a clamped steel beam to demonstrate its effectiveness, 

which showed faster and more robust tracking of the backbone curve with this 

controller. Additional works building on this technique can be found in refs. [36-39]. 

Finally, Karaağaçlı and Özgüven [40] generalized the response-controlled testing 

method proposed by Arslan and Özgüven [41] for systems with nonlinear elements 

between a single coordinate and ground, to systems with many distributed nonlinear 
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elements. The RCT (Response-Controlled stepped sine Testing) method developed 

for obtaining nonlinear modal parameters (modal model) of a nonlinear system is 

also the basis that is used in this study. It makes use of the exciting outcome of single 

NNM theory that was proposed by Szemplinska-Stupnicka [42, 43], in which it was 

shown that using a single nonlinear normal mode is sufficient for representing the 

response of a nonlinear system around a resonance. With this, the proposed method 

first constructs a modal model of a nonlinear system by exciting the system at the nth 

degree of freedom at constant displacement amplitude levels for a single NNM. The 

nonlinear system resulted in quasi-linear frequency response functions at the end due 

to constant displacement amplitude testing, which makes it easier to calculate modal 

parameters using linear modal fitting techniques such as the peak-picking method. 

Afterward, these quasi-linear FRFs measured at different displacement amplitude 

levels are used to obtain amplitude-dependent modal parameters by curve fitting to 

these experimental points. Furthermore, the harmonic force surface (HFS) proposed 

in this study is constructed by merging the quasi-linear FRFs (the x-axis is the 

frequency, and the y-axis is displacement after converting FRFs to displacement) 

along the force axis. One can extract force controlled, classical FRFs by cutting HFS 

surface with constant force planes. The RCT-HFS concept later used by Karaağaçlı 

and Özgüven [44] to obtain backbone curves of strongly nonlinear systems. They 

used a 5-degree-of-freedom discrete system with cubic stiffness, and an experimental 

T-Beam system to verify and validate the technique. The method is also applied to a 

control fin actuator mechanism in the same paper, to a geometrically nonlinear 

structure [45], and to a stack-type piezoelectric actuator mechanism that exhibits 

high stiffness and damping nonlinearity [46]. Moreover, Karaağaçlı and Özgüven 

[47] used the RCT-HFS approach successfully for a nonlinear system with highly 

nonlinear damping. Recently, Ekinci et al. [48] proposed a new nonlinear structural 

modification method based on RCT-HFS framework and the structural modification 

method proposed for linear systems [49]. 

To conclude, these three recent nonlinear system identification methods are powerful 

and promising in the context of nonlinear system identification. Furthermore, the 
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RCT-HFS method requires a more basic controller strategy to perform, which makes 

it outstanding among the others. 

New nonlinear system identification methods are required to be developed due to the 

nature of the nonlinear mechanical systems. A novel method is proposed in this 

study. The aim of the method is to construct nonlinear modal models of nonlinear 

mechanical systems using force-controlled frequency response functions. The RCT-

HFS method [40] developed by Karaağaçlı and Özgüven is extended to this end. 

Hence, this thesis leverages the RCT-HFS method and aims to extend the advantages 

of the RCT-HFS concepts to the conventionally used constant force sine testing 

method. The harmonic force surface concept is first utilized to achieve that goal by 

merging the constant force frequency-displacement curves conducted at different 

forcing levels. Cutting the resultant harmonic force surface at constant displacement 

planes gives quasi-linear FRFs, from which nonlinear modal parameters can be 

determined.  

The theory of the method is explained in detail in Chapter 3 with a summary of main 

points: single nonlinear normal mode theory, response-controlled step sine testing 

and harmonic force surface concepts. Furthermore, some numerical examples are 

given to validate and verify the proposed method. Afterward, an experimental 

validation and verification are made using a benchmark beam from the literature in 

TÜBİTAK-SAGE. Finally, some real experimental data from the nonlinear 

mechanical system literature is exploited to validate and verify the method further. 

An output of the thesis is also given in [50], which is the experimental data-based 

validation of the proposed method, the force controlled stepped sine testing-

harmonic force surface (FCT-HFS) framework. 

Hence, this study is believed to provide the RCT-HFS methodology to a broader 

community of researchers from industry and academia with experimental 

capabilities. 
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1.3 Outline of Thesis 

The organization theme of the thesis is as follows: 

Chapter 2 details nonlinear systems, quasi-linearization of nonlinear equation of 

motions and solution strategies for solving nonlinear systems of equations.  

Chapter 3 first gives an insight into the RCT-HFS method and provides the procedure 

of the proposed novel method which links FCT-HFS and RCT-HFS methods. 

Numerical applications of the method are also provided for validation and 

verification purposes. 

Chapter 4 gives the application of the proposed method to real systems. First 

experiments are conducted on a nonlinear structure called the Brake-Reuß beam in 

TÜBİTAK-SAGE to validate the proposed approach. Then, three systems are taken 

from the literature to verify further and validate the method. These systems are the 

Orion beam, the half Brake-Reuß beam, and the length-modified Brake-Reuß beam. 

They are studied using the data provided in the literature. 

The thesis is closed with Chapter 5, which contains the summary and conclusion on 

the results of the proposed method. 
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CHAPTER 2  

2 NONLINEAR RESPONSE OF DYNAMIC SYSTEMS 

After demonstrating the significance of mathematical modeling of real engineering 

systems, it becomes crucial to solve them. This chapter focuses on the solution of 

the nonlinear equation of motion. Firstly, the nonlinear equation of motion is 

presented briefly. Then, harmonic balance and describing function methods are 

introduced for converting the nonlinear equations of motion to the algebraic 

equations. Finally, various approaches to solving the nonlinear equations are 

discussed. 

2.1 Nonlinear Equation of Motion 

The differential equation of motion of a nonlinear MDOF system can be written as 

𝑴𝒙̈(𝒕) + 𝑪𝒙̇(𝑡) + 𝑖𝑯𝒙(𝑡) + 𝑲𝒙(𝑡) + 𝒇𝑵(𝒙(𝑡), 𝒙̇(𝑡), … ) = 𝒇𝒆𝒙𝒕(𝑡) (2.1) 

where 𝑴,𝑪,𝑯 and 𝑲  are the mass, viscous damping, structural (hysteric) damping 

and stiffness matrices of the underlying linear system, respectively. Furthermore, in 

equation (2.1), 𝒙(𝑡) is the response vector while 𝒇𝐞𝐱𝐭(𝑡) is the external forcing 

vector acting on each degree of freedom of the system. Finally, 𝒇𝑵(𝒙(𝑡), 𝒙̇(𝑡), … ) 

is the vector that contains the nonlinear internal forces in the system. One observes 

that the nonlinear force in the system may be a function of displacement, velocity, 

and other factors, depending on the physics of the problem. Under harmonic forcing, 

the external forcing for the linear part of the problem can be expressed as 

𝒇𝐞𝐱𝐭(𝑡)  = {
𝐼𝑚(𝒇𝑒𝑖𝜔𝑡), if sinusoidal forcing

𝑅𝑒(𝒇𝑒𝑖𝜔𝑡), if cosine forcing
  

(2.2) 

Then, the response of the system is expressed as  
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𝒙(𝒕)  = {
𝐼𝑚(𝒙𝑒𝑖𝜔𝑡), if sinusoidal forcing

𝑅𝑒(𝒙𝑒𝑖𝜔𝑡), if cosine forcing
  

(2.3) 

 Expanding equation (2.1) gives 

(−𝜔2𝑴 + 𝑖𝜔𝑪 + 𝑖𝑯 + 𝑲)𝒙𝑒𝑖𝜔𝑡 + 𝒇𝑵(𝒙(𝑡)) = 𝒇𝒆𝒙𝒕(𝑡)  (2.4) 

A typical example of a nonlinear system is schematically illustrated in Figure 2-1. 

m1 m2 m3

x1(t) x2(t) x3(t)

k1

c1

k2

c2

k3

c3

k4

c4

k5

Fsin(ωt) Nonlinearity

 

Figure 2-1. Typical Discrete MDOF System with any Type of Nonlinearity Element 

2.2 Quasi-Linearization of Nonlinear Equation of Motion 

2.2.1 Describing Function Method (DFM) 

The concept of describing functions has its basis in control engineering. On the other 

hand, Tanrikulu et al. [51] developed a describing function methodology-based 

method. In linear systems, input and output can be related to transfer functions. 

However, this transfer function cannot be defined in nonlinear systems due to the 

nonlinear behavior of the system. Therefore, they proposed a method to relate the 

input and output in nonlinear systems. Figure 2-2 shows how describing function 

and transfer function work. 
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Figure 2-2. Transfer and Describing Functions 

Recall (2.1), 

𝑴𝒙̈(𝑡) + 𝑪𝒙̇(𝑡) + 𝑖𝑯𝒙(𝑡) + 𝑲𝒙(𝑡) + 𝒇𝑵(𝒙(𝑡), 𝒙̇(𝑡), … ) = 𝒇𝒆𝒙𝒕(𝑡) (2.5) 

‘rth’ row in nonlinear force vector ‘𝒇𝑵’ is expressed as 

𝑓𝑁𝑟
(𝑡) = ∑𝑛𝑟𝑗

𝑛

𝑟=1

(𝑡) 
(2.6) 

Where 𝑛𝑟𝑗(𝑡) is the resultant nonlinear internal force due to nonlinear elements 

existing in the system between coordinate ‘𝑟’ and ‘𝑗’, and n is the number of DOFs. 

This nonlinear force then can be rewritten as 

𝑛𝑟𝑗(𝑡) = 𝑛𝑟𝑗(𝑦𝑟𝑗(𝑡), 𝑦̇𝑟𝑗(𝑡), … ),   {
𝑦𝑟𝑗(𝑡) = 𝑥𝑟(𝑡) − 𝑥𝑗(𝑡), if r ≠ j

𝑦𝑟𝑗(𝑡) = 𝑥𝑟(𝑡), if r = j
  

(2.7) 

Assuming periodic excitation of external force in sine and bias terms as 

𝒇𝒆𝒙𝒕(𝑡) = 𝒇𝟎 + 𝐼𝑚 (∑ 𝒇𝒎

∞

𝑚=1

𝑒𝑖𝑚𝜔𝑡) 
(2.8) 

where ‘𝒇𝒎’ is ‘𝑚𝑡ℎ’ harmonic’s amplitude vector of external forcing. Since the 

system is assumed to vibrate periodically, the displacement can be written as 

𝒙(𝑡) = 𝒙𝟎 + 𝐼𝑚 (∑ 𝒙𝒎

∞

𝑚=1

𝑒𝑖𝑚𝜔𝑡) 
(2.9) 

where ‘𝐱𝒎’ is ‘𝑚𝑡ℎ’ harmonic’s amplitude vector of displacement. Furthermore, 

nonlinear forcing is written as 
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𝑦𝑟𝑗(𝑡) = 𝑦𝑟𝑗0
+ 𝐼𝑚 (∑ 𝑦𝑟𝑗𝑚

∞

𝑚=1

𝑒𝑖𝑚𝜔𝑡) 
(2.10) 

(𝑦𝑟𝑗)𝑚
 = {

(𝑥𝑟)𝑚 − (𝑥𝑗)𝑚
, 𝑖𝑓 𝑟 ≠ 𝑗

(𝑥𝑟)𝑚, 𝑖𝑓 𝑟 = 𝑗
  

(2.11) 

𝑛𝑟𝑗(𝑡) = 𝑎𝑟𝑗0
+ 𝐼𝑚 (∑ 𝑎𝑟𝑗𝑚

∞

𝑚=1

𝑒𝑖𝑚𝜔𝑡) 
(2.12) 

𝑎𝑟𝑗0
=

𝑖

𝜋
∫ 𝑛𝑟𝑗(𝑦𝑟𝑗(𝑡), 𝑦̇𝑟𝑗(𝑡),… )𝑑𝜙

2𝜋

0

, 𝑚 = 0 
(2.13) 

𝑎𝑟𝑗𝑚
=

𝑖

2𝜋
∫ 𝑛𝑟𝑗(𝑦𝑟𝑗(𝑡), 𝑦̇𝑟𝑗(𝑡), … )𝑒−𝑖𝑚𝜙𝑑𝜙

2𝜋

0

, 𝑚 = 1, 2, 3, …  
(2.14) 

Where ‘𝜙 = 𝜔𝑡’. Elements of ‘𝜟’ is then expressed as 

(𝜈𝑟𝑗)𝑚
=

(𝑎𝑟𝑗)𝑚

(𝑦𝑟𝑗)𝑚

 
(2.15) 

Insert (2.15) into (2.12), one gets 

𝑛𝑟𝑗(𝑡) = (𝜈𝑟𝑗)0
(𝑦𝑟𝑗)0

+ 𝐼𝑚 (∑(𝜈𝑟𝑗)𝑚
(𝑦𝑟𝑗)𝑚

∞

𝑚=1

𝑒−𝑖𝑚𝜔𝑡) 
(2.16) 

Therefore, nonlinear restoring force is expressed as 

𝒇𝑵(𝒙(𝑡), 𝒙̇(𝑡),… ) = ∑ 𝒏𝒎

∞

𝑚=0

𝑒−𝑖𝑚𝜔𝑡 
(2.17) 

In (2.17) 𝒏𝒎 can be written in matrix form using DFM as 

𝒏𝒎 = 𝜟𝒎𝒙𝒎 (2.18) 
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Where 𝜟 is the response dependent nonlinearity matrix due to nonlinear elements in 

the analyzed systems. Elements of ‘𝜟’ are then expressed using the above-mentioned 

rules as 

𝛥𝑟𝑟 = 𝑣𝑟𝑟 + ∑𝑣𝑟𝑗

𝑘

𝑗=1
𝑗≠𝑟

     𝑟 = 1,2, … 𝑘 

Δ𝑟𝑗 = −𝑣𝑟𝑗      𝑟 ≠ 𝑗,    𝑟 = 1,2, … 𝑘 

 

(2.19) 

Inserting this into (2.5) yields 

(−(𝑚𝜔)2𝑴 + 𝑖(𝑚𝜔)𝑪 + 𝑖𝑯 + 𝑲 + 𝜟𝒎)𝒙𝒎 = 𝒇𝑚 (2.20) 

Taking ‘m=1’ in the describing function method is mathematically equivalent to the 

first order harmonic balance method 𝜟𝒎 is the response-dependent matrix in DFM, 

which results in quasi-linear form as seen in equation (2.20). Further, it is possible 

to determine the nonlinear behavior of the system by DFM in a computationally 

efficient manner contrary to the time integration methods. However, still an iterative 

solution scheme is required to calculate the nonlinear response amplitudes. Hence, 

in the following section, solution procedures of nonlinear algebraic equations are 

reviewed. 

2.3 Solution Techniques of Nonlinear Equation Sets 

Throughout this thesis, it is necessary to solve sets of nonlinear equations. 

Specifically, in Chapter 3, the forced response of nonlinear equations of motions 

requires numerical solutions, and in Chapter 4, forced nonlinear equation sets need 

to be synthesized using response dependent modal parameters. In this sub-section, 

some approaches to solve these equations are discussed.The Newton-Raphson 

method and Newton's method coupled with the arclength-continuation method are 

explained, respectively. Hence, this subsection details the solution of the nonlinear 
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algebraic equations in frequency domain. The following chapters use these methods 

to determine the nonlinear frequency response functions. 

2.3.1 Newton Raphson Method 

The Newton-Raphson method, also known as Newton's method, is an alternative 

technique widely used for solving nonlinear algebraic equations due to its speed and 

fewer convergence issues compared to fixed-point iteration. This method utilizes the 

slope of a line tangent to the curve of interest, i.e., first-order Taylor series expansion. 

This method can be applied to the classical nonlinear equation presented earlier as 

follows 

𝒓(𝒙,𝜔) = (−𝜔2𝑴 + 𝑖𝜔𝑪 + 𝑖𝑯 + 𝑲)𝒙 + 𝒇𝑵 − 𝒇𝒆𝒙𝒕 = 𝟎 (2.21) 

Taylor series expansion of residual vector gives 

𝑟(𝒙 + 𝛥𝒙, 𝜔) = 𝒓(𝒙,𝜔) + 𝑱(𝒙,𝜔)𝛥𝒙 + 𝑂(𝛥𝒙𝟐) (2.22) 

Ignoring the 2nd order and higher order terms appearing in (2.22) and setting 

𝒔(𝒙 + 𝛥𝒙,𝜔) = 𝟎 where 𝑱(𝒙, 𝜔) =
𝜕𝒓(𝐱,𝜔)

𝜕𝒙
 is the Jacobian matrix. 

𝒓(𝒙,𝜔) = −𝑱(𝒙,𝜔)𝛥𝒙 (2.23) 

Solving for 𝒙𝒊+𝟏 from 𝛥𝒙 gives 

𝒙𝒊+𝟏 = 𝒙𝑖 − 𝑱(𝒙, 𝜔)−1𝒓(𝒙,𝜔) (2.24) 

Newton's method is widely used to find system roots, with other works using the 

Newton-Raphson method found in literature, including [52, 53] and many others. 

2.3.2 Newton’s Method Coupled with Arclength Continuation 

Neither fixed-point iteration nor the classical Newton-Raphson method can track the 

path in the case of a strong nonlinearity since the Jacobian matrix is close to singular 
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at the turning point. Some modifications are made to the nonlinear equation. First, 

frequency is added as an additional parameter shown in the following equation. 

Adding frequency as an additional unknown increases the number of unknowns, and 

one more equation is needed to solve the system of equations. To solve that, an 

additional parameter known as the arclength parameter is introduced and the radius 

of the hypothetical sphere is shown in Figure 2-3. 

𝒒 = [
𝒙
𝜔

] (2.25) 

(𝒙𝒌 − 𝒙𝒌−𝟏)
2
+ (𝜔𝑘 − 𝜔𝑘−1)2 = 𝑠2 (2.26) 

Equation (2.26) can be expressed as 

𝛿𝒙𝒌 = 𝒙𝒌 − 𝒙𝒌−𝟏  &  𝛿𝜔𝑘 = 𝜔𝑘 − 𝜔𝑘−1 (2.27) 

𝛿𝒒𝒌 = [𝛿𝒙𝒌

𝛿𝜔𝑘
] 

(2.28) 

Inserting (2.28) into (2.26) gives 

ℎ(𝒙𝒌, 𝜔𝑘) = 𝛿𝒒𝒌T
 𝛿𝒒𝑘 − 𝑠2 = 0 (2.29) 

With this new equation the iterative solution becomes 

𝒒𝒊+𝟏
𝒌 = 𝒒𝑖

𝑘 −

[
 
 
 
 
𝜕𝒓(𝒙𝒊

𝒌, 𝜔𝑖
𝑘)

𝜕𝒙𝒊
𝒌

𝜕𝑟(𝒙𝒊
𝒌, 𝜔𝑖

𝑘)

𝜕𝜔

𝜕ℎ(𝒙𝒊
𝒌, 𝜔𝑖

𝑘)

𝜕𝒙𝒊
𝒌

𝜕ℎ

𝜕𝜔 ]
 
 
 
 
−1

{
𝑟(𝒙𝒊

𝒌, 𝜔𝑖
𝑘)

ℎ(𝒙𝒊
𝒌, 𝜔𝑖

𝑘)
} 

 

(2.30) 

Equation (2.30) is rewritten by defining new parameters to have a neater 

representation of it. 
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𝐽(̅𝒙𝒊
𝒌, 𝜔𝑖

𝑘) =

[
 
 
 
 
𝜕𝒓(𝒙𝒊

𝒌, 𝜔𝑖
𝑘)

𝜕𝒙𝒊
𝒌

𝜕𝑅(𝒙𝒊
𝒌, 𝜔𝑖

𝑘)

𝜕𝜔

𝜕ℎ(𝒙𝒊
𝒌, 𝜔𝑖

𝑘)

𝜕𝒙𝒊
𝒌

𝜕ℎ

𝜕𝜔 ]
 
 
 
 

 

𝒓̅(𝒙𝒊
𝒌, 𝜔𝑖

𝑘) = [
𝒓(𝒙𝒊

𝒌, 𝜔𝑖
𝑘)

ℎ(𝒙𝒊
𝒌, 𝜔𝑖

𝑘)
] 

 

 

(2.31) 

Rewriting equation (2.30) gives 

𝒒𝒊+𝟏
𝒌 = 𝒒𝒊

𝒌 − 𝑱̅(𝒙𝒊
𝒌, 𝜔𝑖

𝑘)
−1

𝒓̅(𝒙𝒊
𝒌, 𝜔𝑖

𝑘) (2.32) 

The Solution point is denoted by ‘k’ whereas ‘i’ denotes the iteration counter. As 

mentioned, the initial guess is crucial when solving the nonlinear equation sets. 

Providing a good initial guess results in a fast convergence rate. Therefore, one can 

use a tangent predictor to have a fast convergence rate [54, 55], while others can 

utilize different predictors methods as well. 

 

Figure 2-3. Graphical Representation of Arclength Continuation Method 

The arclength continuation method is graphically illustrated in Figure 2-3. As 

mentioned, it involves defining an arclength that crosses two possible solution points 

at each step. The subsequent frequency can be selected using the method described 

above to follow the path. The frequency sweep can be performed from lower to upper 

and vice versa. Figure 2-3 illustrates the possible jump phenomenon paths. 

 

  

Current Solution

Point

  +1

Solution 1

Solution 2

  +1

Tangent

Predictor
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Finally, what happens about resonance, and how does one follow the path around 

that? The radius of the hypothetical sphere needs to be small enough to catch the 

sharp turns. However, this leads to long computational times. To not sacrifice the 

computational time, the adaptive step size is proposed [54]. 

𝜖 =
𝑁𝑜𝑝𝑡𝑖𝑚𝑢𝑚

𝑁
 

(2.33) 

Where 𝑁𝑜𝑝𝑡𝑖𝑚𝑢𝑚 is set by the user and 𝑁 is the number of iterations performed at 

each solution step. Then, 

𝜖 ̅ = {
0.5, if ϵ < 0.5

𝜖, if  0.5 ≤ 𝜖 ≤ 2
2, if  𝜖 > 2

  
(2.34) 

𝑠𝑛𝑒𝑤 = 𝜖 ̅𝑠𝑜𝑙𝑑 (2.35) 

One can further modify by converting 𝜖 ̅to exponential number as 

𝑠𝑛𝑒𝑤 = 𝜖 ̅1/𝑛𝑠𝑜𝑙𝑑 (2.36) 

Where n is a positive real number. 

Some studies performed by researchers in the field can be found in the literature [56-

60].
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CHAPTER 3  

3 THEORY AND NUMERICAL APPLICATIONS OF THE FCT-HFS 

FRAMEWORK  

Chapter 2 presents methods one might need to solve the nonlinear system equations. 

Specifically, the Describing Function (DF) and Harmonic Balance (HB) methods are 

discussed, which result in converting nonlinear equations of motion into algebraic 

equations. Once algebraic equations are obtained, various techniques can be applied 

to solve them.  

This chapter first delves into the single nonlinear normal mode theory, which 

provides a means of expressing the system's response. Explanations of this theory 

are provided in detail. As touched on in Chapter 1, the RCT-HFS framework utilizes 

the single nonlinear normal mode theory [42]. Furthermore, a more detailed 

explanation and implementation, as well as a numerical example of the RCT-HFS 

method, are meticulously analyzed. The approach for the FCT-HFS framework, the 

proposed method, is then explained, building on these concepts. To conclude, 

numerical examples of the FCT-HFS framework are presented. 

3.1 Theory of FCT-HFS Framework 

As the proposed method is an extension of the RCT-HFS framework, reviewing first 

the single nonlinear normal mode (SNNM) theory and then the RCT and HFS 

concepts are necessary. After that, the FCT-HFS framework is explained in detail. 
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3.1.1 Single Nonlinear Normal Mode Theory 

The theory of single nonlinear normal mode (SNNM) [42] states that in nonlinear 

systems one mode is sufficient to make good predictions near resonance by assuming 

that the modes are distinctly separated and no significant coupling occurs. In this 

subsection, the theory behind it is briefly discussed. 

As indicated in Chapter 2, nonlinear systems are solved by converting the nonlinear 

terms to nonlinearity matrix as explained. Equation (3.1) is the frequency domain 

representation of the MDOF lumped system. 

(−𝜔2𝑴 + 𝑖𝑯 + 𝑲 + 𝜟)𝒙 = 𝒇 (3.1) 

where 𝑴,𝑯,𝑲 and 𝜟 are the mass, structural (hysteric) damping, stiffness, and 

nonlinearity matrices of any MDOF system, respectively. The solution of this MDOF 

system can be written as 

𝒙 = 𝑞𝑟𝝓(𝑞𝑟)𝑟    (3.2) 

Where 𝑞𝑟 is the amplitude of the 𝑟𝑡ℎmodal coordinate. 𝝓(𝑞𝑟)𝑟 is the 𝑟𝑡ℎ nonlinear 

normal mode. Inserting (3.2) to (3.1) and multiplying with 𝝓(𝑞𝑟)𝑟, then arranging it 

gives the following: 

𝝓(𝑞𝑟)𝑟
𝑇(−𝜔2𝑴 + 𝑖𝑯 + 𝑲 + 𝜟)𝑞𝑟𝝓(𝑞𝑟)𝑟 = 𝝓(𝑞𝑟)𝑟

𝑇𝒇 (3.3) 

(−𝜔2𝑚𝑟(𝑞𝑟) + 𝑖ℎ𝑟(𝑞𝑟) + 𝑘𝑟(𝑞𝑟))𝑞𝑟 = 𝝓(𝑞𝑟)𝑟
𝑇𝒇 (3.4) 

Where 𝑚𝑟(𝑞𝑟) = 𝝓(𝑞𝑟)𝑟
𝑇𝑴𝝓(𝑞𝑟)𝑟, 𝑘𝑟(𝑞𝑟) = 𝝓(𝑞𝑟)𝑟

𝑇(𝑲 + 𝜟𝒓𝒆)𝝓(𝑞𝑟)𝑟,   

ℎ𝑟(𝑞𝑟) = 𝝓(𝑞𝑟)𝑟
𝑇(𝑯 + 𝜟𝒊𝒎)𝝓(𝑞𝑟)𝑟. Furthermore, 𝑚𝑟(𝑞𝑟), 𝑘𝑟(𝑞𝑟) and ℎ𝑟(𝑞𝑟) are 

modal mass, stiffness, and damping, respectively. 

It is essential to recognize that, 𝑚𝑟(𝑞𝑟), 𝑘𝑟(𝑞𝑟) and ℎ𝑟(𝑞𝑟) are functions of 𝑞𝑟, 

𝑟𝑡ℎmodal amplitude. 

Equation (3.4) can be taken into parenthesis of 𝑚𝑟(𝑞𝑟) which leads to the following: 
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𝑚𝑟(𝑞𝑟)(−𝜔2 + 𝑖𝜂𝑟(𝑞𝑟)𝜔𝑟
2(𝑞𝑟) + 𝜔𝑟

2(𝑞𝑟))𝑞𝑟 = 𝝓(𝑞𝑟)𝑟
𝑇𝒇 (3.5) 

where 𝜔𝑟
2(𝑞𝑟) = 𝑘𝑟(𝑞𝑟)/𝑚𝑟(𝑞𝑟), 𝜂𝑟(𝑞𝑟) = ℎ𝑟(𝑞𝑟)/(𝑚𝑟(𝑞𝑟)𝜔𝑟

2(𝑞𝑟))  

From here, modal amplitude, 𝑞𝑟, can be determined as: 

𝑞𝑟 =
𝝓(𝑞𝑟)𝑟

𝑇𝒇

𝑚𝑟(𝑞𝑟)(−𝜔2 + 𝑖𝜂𝑟(𝑞𝑟)𝜔𝑟
2(𝑞𝑟) + 𝜔𝑟

2(𝑞𝑟))
 

(3.6) 

Inserting (3.6) into (3.2) gives 

𝒙 =
𝝓(𝑞𝑟)𝑟𝝓(𝑞𝑟)𝑟

𝑇𝒇

𝑚𝑟(𝑞𝑟)(−𝜔2 + 𝑖𝜂𝑟(𝑞𝑟)𝜔𝑟
2(𝑞𝑟) + 𝜔𝑟

2(𝑞𝑟))
 

(3.7) 

Normalizing the nonlinear normal mode as 

𝝓̅(𝑞𝑟)𝑟 = 𝝓(𝑞𝑟)𝑟/√𝑚𝑟(𝑞𝑟) (3.8) 

Inserting this into (3.7) gives 

𝒙 =
𝝓̅(𝑞𝑟)𝑟𝝓̅(𝑞𝑟)𝑟

𝑇𝒇

(−𝜔2 + 𝑖𝜂𝑟(𝑞𝑟)𝜔𝑟
2(𝑞𝑟) + 𝜔𝑟

2(𝑞𝑟))
 

(3.9) 

Then, receptance can be written as for 𝑗𝑡ℎcoordinate of interest, and force is applied 

at 𝑘𝑡ℎ coordinate for lumped (discrete) systems as 

𝛼𝑗𝑘 =
𝝓̅(𝑞𝑟)𝑟𝝓̅(𝑞𝑟)𝑟

𝑇

(−𝜔2 + 𝑖𝜂𝑟(𝑞𝑟)𝜔𝑟
2(𝑞𝑟) + 𝜔𝑟

2(𝑞𝑟))
 

(3.10) 

For viscous damping instead of hysteric damping, receptance can be written as 

𝛼𝑗𝑘 =
𝝓̅(𝑞𝑟)𝑟𝝓̅(𝑞𝑟)𝑟

𝑇

(−𝜔2 + 𝑖2𝜁𝑟(𝑞𝑟)𝜔𝜔𝑟(𝑞𝑟) + 𝜔𝑟
2(𝑞𝑟))

 
(3.11) 
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3.1.2 Theory of Response-Controlled Stepped-Sine Testing (RCT) and 

Harmonic Force Surface (HFS) 

The concept behind the method is worth mentioning. Firstly, consider equations 

(3.10) and (3.11); the force spectrum is measured for the determined frequency 

interval by keeping the response amplitude constant for several response levels at the 

excitation point.  

Secondly, the corresponding FRFs, which will be quasi-linear, are used to make 

linear modal analysis using the FRFs’ quasi-linearity behavior for each response 

amplitude level. Following this procedure, by including all the amplitude levels, one 

gets the modal parameters as a function of response amplitude. The measured 

harmonic force spectra at those different response amplitude levels are composed 

together resulting in harmonic force surface (HFS). The details of the HFS’ 

construction are shown in Figure 3-5 with an example. The measured harmonic force 

spectra at each response amplitude level are plotted along with the third axis, i.e., the 

response amplitude axis. 

Finally, constant force response amplitude plots are obtained by directly cutting the 

HFS with the constant force amplitude planes (which will be experimentally 

measured ones) or using the extracted modal parameters (which will give the 

synthesized ones). The extraction of constant force response amplitudes from the 

HFS is simulated in Figure 3-7. 

Now, to better understand the underlying methodology behind the RCT-HFS 

framework [40], it is worth working on an example and presenting a flowchart at the 

end. 

The system shown in Figure 3-1 is a forced SDOF system with cubic nonlinearity. 

Its equation of motion is given by equation (3.12).  
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Figure 3-1. SDOF example of RCT-HFS Method 

𝑚𝑥̈(𝑡) + 𝑖ℎ𝑥(𝑡) + 𝑘𝑥(𝑡) + 𝑘𝑐𝑥(𝑡)3 = 𝐹𝑠𝑖𝑛(𝜔𝑡) (3.12) 

Using the DF expression for cubic stiffness, the equation of motion can be written 

as: 

(−𝜔2𝑚 + 𝑖ℎ + 𝑘 + 0.75𝑘𝑐𝑥
2)𝑥 = 𝑓𝑠𝑖𝑛(𝜔𝑡) (3.13) 

where x is the response amplitude of the oscillations in the system. where 𝑥 =

√𝑥𝑟𝑒1
2 + 𝑥𝑖𝑚1

2  is the amplitude of the coordinate. The equation turns out the 

following expression as 

[𝑘 − 𝜔2𝑚 −ℎ
−ℎ 𝑘 − 𝜔2𝑚

] {
𝑥𝑟𝑒1

𝑥𝑖𝑚1
}

+ 0.75𝑘𝑐 [
𝑥𝑟𝑒1

2 + 𝑥𝑖𝑚1
2 0

0 𝑥𝑟𝑒1
2 + 𝑥𝑖𝑚1

2 ] {
𝑥𝑟𝑒1

𝑥𝑖𝑚1
} − {

𝑓𝑟𝑒1

𝑓𝑖𝑚1
}

= {
0
0
} 

 

(3.14) 

The values tabulated in the following table as 

Table 3-1. System Properties of SDOF system 

m [kg] k [N/m] h [N/m] 𝒌𝒄 [𝑵/𝒎𝟑] 

1 1e4 1000 1e6 

For the solution of Eq. 3.16, the literature generally uses a constant force as the input 

and aims to solve the response amplitudes. However, the numerical implementation 

of the RCT approach treats the response amplitude as constant and finds the forcing 
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required to achieve this constant response amplitude at a certain degree of freedom. 

Therefore, the amplitude of the response is substituted with no phase since the 

response is the input and the forcing real and imaginary parts are solved using 

equation (3.16). Next, the aforementioned procedure is repeated for several response 

levels. In this context, RCT is employed at seven amplitude levels: 10, 20, 30, 40, 

50, 60, and 70 mm. The resulting harmonic force spectra are depicted in Figure 3-2. 

To generate the quasi-linear FRFs, each displacement value must be divided by its 

respective forcing values, and the results are illustrated in Figure 3-3. It is shown that 

by keeping the driving point's displacement amplitude, the FRFs come out as quasi-

linear. For each receptance curve, linear modal analysis can be performed to find the 

modal parameters at each displacement level of interest. Throughout this thesis, the 

peak-picking method is utilized to determine the modal parameters in general. 

 

Figure 3-2. Harmonic Force Spectra 
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Figure 3-3. Quasi-Linear FRFs 

Basically peak-picking method used here can be summarized in the following 

sentences.  

1. Resonance peaks are determined in the measured FRFs. 

2. Frequencies at the half power points (which are the points where the 

receptance amplitude is equal to 
1

√(2) 
   of the maximum receptance amplitude) 

are determined. 

3. Hysteric damping is estimated from 

𝛾𝑟 =
𝜔2

2 − 𝜔1
2

2𝜔𝑟
2

≈
𝜔2 − 𝜔1

𝜔𝑟
   

(3.15) 

4. Modal constant is estimated from 

𝛼𝑗𝑘 = ∑
𝜙𝑗

𝑟𝜙𝑘
𝑟

𝜔𝑟
2 − 𝜔2 + 𝑖𝜂𝑟𝜔𝑟

2

𝑛

𝑟=1

 = ∑
𝐴𝑗𝑘

𝑟

𝜔𝑟
2 − 𝜔2 + 𝑖𝛾𝑟𝜔𝑟

2

𝑛

𝑟=1

 
(3.16) 

Making SDOF assumption around resonance gives 

|𝐴𝑗𝑘
𝑟 | =  | 𝛼𝑗𝑘|𝑚𝑎𝑥

𝛾𝑟𝜔𝑟
2 (3.17) 
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One finds the modal parameters, namely natural frequency, modal damping and 

modal constant using this procedure presented. The next step is to use these 

parameters and obtain a fitting function for them. 

In the figure below, the markers represent calculated points of modal parameters, 

and the solid lines are the smoothingspline curves fitted to those points. The 

mathematical background of smoothingspline is given as 

𝑝∑𝑤𝑖(𝑦𝑖 − 𝑠(𝑥𝑖))
2
+

𝑖

(1 − 𝑝)∫(
𝑑2𝑠

𝑑𝑥2
)

2

𝑑𝑥 
(3.18) 

Where 𝑤𝑖, 𝑝 𝑎𝑛𝑑 𝑠 are weight, smoothing parameter and smoothing spline, 

respectively. Generally, p is taken as 1, in which case it stands as a cubic spline that 

should give the markers in the fitted curve. However, p is determined based on the 

experimental data. For example, in this example, p is determined as 0.99. Therefore, 

the fitted curve does not pass through some of the experimental points. Furthermore, 

smoothing spline generates piecewise polynomials across the measured points. 

These polynomials are presented for the modal constants in Table 3-2 for brevity. 

There are 13 measured points so 12 polynomial functions are utilized. An important 

point to be mentioned here is what happens at the boundaries. For the sake of 

understanding take 0.02 m constant displacement level, although polynomial 

functions take two same values at that point, they do not give the measured point. 

This happens since smoothingspline determines the value of the function so that a 

smooth transition between the intervals is obtained. These modal parameters will be 

used to synthesize constant-force frequency-response amplitude plots. Equation 

(3.11) needs to be solved to get the constant force frequency-response amplitude 

graphs. To achieve that, an iterative solution scheme such as Newton’s method with 

arclength continuation is required since displacement amplitude dependent functions 

are at each side of the equality. 
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Table 3-2. Piecewise Polynomial Equations to Modal Constant 

Interval [m] Polynomial Equation 

[0.01, 0.02] −206.593326 (𝑥 −  0.01)^3 − 0.043400 (𝑥 −  0.01)  

+  1.003614 

[0.02, 0.03] 328.383209 (𝑥 −  0.02)^3 + −6.1978 (𝑥 

−  0.02)^2 + −0.105378 (𝑥 −  0.02)  

+  1.002973 

[0.03, 0.04] −28.142507(𝑥 −  0.03)^3 +  3.653696 (𝑥 

−  0.03)^2 − 0.130819(𝑥 −  0.03)  

+  1.001628 

[0.04, 0.05] −64.218514(𝑥 −  0.04)^3 +  2.809421 (𝑥 

−  0.04)^2 − 0.066188 (𝑥 

−  0.040000)  +  1.000657 

[0.05, 0.06] −23.539119 (𝑥 −  0.05)^3 +  0.882866 (𝑥 

−  0.05)^2 + −0.029265 (𝑥 −  0.05)  

+  1.000212 

[0.06, 0.07] −5.889742  (𝑥 −  0.06)^3 +  0.176692 (𝑥 

−  0.06)^2 − 0.018669 (𝑥 −  0.06)  

+  0.999984 
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Figure 3-4. Displacement Dependent Modal Parameters 

Furthermore, one can construct the harmonic force surface associated with the 

system at the same time. Harmonic force spectra are plotted for each displacement 

amplitude level in the 3D plot in Figure 3-5. The HFS is then constructed with the 

help of linear interpolation between those curves. That is, a linear interpolation is 

performed between each response amplitude level shown in Figure 3-5 to create a 

surface. Figure 3-6 shows the created harmonic force surface. This HFS is used to 

extract the constant force frequency-response amplitude curves. Those are extracted 

by cutting the HFS with constant force amplitude planes. Figure 3-7 shows how 

constant force frequency-response amplitude curves are extracted from the HFS. A 

constant plane corresponding to F=40 N is drawn as seen, then the interception of 

the HFS and the plane gives the constant force frequency-response amplitude curves 

at that level of forcing. 
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Figure 3-5. Creating Harmonic Force Surface 

 

Figure 3-6. Harmonic Force Surface 
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Figure 3-7. Extraction of Constant Force Response Amplitude Curves from the 

HFS 

Three different forcing values are chosen as an example: 25, 40, and 70 N. These are 

synthesized first directly by cutting the HFS and using nonlinear modal parameters. 

Figure 3-8 compares the three approaches: constant force, harmonic force surface, 

and response-controlled stepped sine testing. As seen from the figure, there is a good 

agreement between constant force-controlled testing and the remaining two methods. 

Even though RCT is defined for a numerical case study with a single-degree-of-

freedom system, a similar approach can be utilized for experimental studies with a 

controller which tries to maintain a constant displacement on the related degree of 

freedom. Hence, the RCT-HFS framework can be summarized in Figure 3-9 

flowchart. 
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Figure 3-8. Comparison of Different techniques  

 

Figure 3-9. Flowchart of Procedure of RCT-HFS Framework  
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3.2 Numerical Applications and Procedure of FCT-HFS Framework 

In order to conceptually explain the RCT-HFS method, a simple numerical example 

is given in the previous subsection. Now, the FCT-HFS method is utilized in this 

section by giving more complex examples. Two three-degree of-freedom systems 

with cubic stiffness are examined before the experimental work is discussed. The 

types of nonlinearities can be increased, but two examples are given here for the 

brevity of the numerical application part. The other reason is that there are various 

examples of real experimental data.  

3.2.1 Multi Degree of Freedom (MDOF) System with Cubic Stiffness 1 

First, consider the following three-degree of freedom lumped system. The system is 

excited at the first degree of freedom with the sinusoidal force with an amplitude of 

F. The nonlinear force due to cubic spring can be written as shown in equation (3.19). 

Further, numerical values of the system parameters are tabulated in Table 3-3. 

𝐹𝑐𝑢𝑏𝑖𝑐 = 𝑘𝑐𝑥
3 (3.19) 

 

Figure 3-10. Multi-Degree of Freedom  

Table 3-3. System Parameters of 3 Degree of Freedom System 

m [kg] k [N/m] h [N/m] 𝒌𝒄 [𝑵/𝒎𝟑] 

1 1e4 5e2 1e7 

m

k

h

x1(t)

m

k

h

x2(t)
Fsin(ωt)

𝑘𝑐  

k

h

𝑘𝑐  

m

x3(t)

k

h

𝑘𝑐  



 

 

33 

Natural frequencies are determined as 76.53 rad/s, 141.42 rad/s, and 184.77 rad/s 

using the linear part of the system by solving the eigenvalue problem. Let’s take the 

frequency interval as 60-90 rad/s.  

In the RCT-HFS method, the system is excited at a constant displacement amplitude 

level; conversely, the classical constant force-frequency response functions are used 

in this new framework. Detailed information will be given since this is the first 

example of the new method.  

So first, excite the system at several forcing levels, 9, 11, 13, and 15 N’s. The 

measured displacement amplitudes are given in Figure 3-11. 

   

Figure 3-11. Constant Force Receptance Amplitude Curves of MDOF System-

Cubic Stiffness Example 1 

Merging these constant force FRFs to get the harmonic force surface results in: 
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Figure 3-12. Resultant HFS after Merging Constant Force Frequency-Response 

Amplitude Curves- Cubic Stiffness Example 1 

      

Figure 3-13. Extraction of Harmonic Force Spectra from the HFS 

Constant displacement amplitude planes are utilized to determine the corresponding 

quasi-linear FRFs of the system. The associated harmonic force spectra are extracted 

from the HFS using constant displacement amplitude planes. Finally, the 

correspondent quasi-linear FRFs are found by dividing the response amplitude by 

the harmonic force spectra as shown in Figure 3-14. One should remember that these 

quasi-linear FRFs determined here are indirect (obtained from constant force input 
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simulations) since the system is excited with the constant displacement amplitude 

levels to get the quasi-linear FRFs while using the RCT method. 

  

Figure 3-14. Quasi Linear FRFs of MDOF System- Cubic Stiffness Example 1 

As a side note, the peak-picking method generally determines the modal parameters 

throughout this thesis. In some cases, the results of the peak-picking method, the 

modal parameters, are used as an initial guess to the least square method to find the 

closest values of the modal parameters extracted from the quasi-linear FRFs. 

The peak-picking method is utilized to demonstrate the FCT-HFS method in this 

example. Then, it is necessary to perform curve fitting during post-processing to 

synthesize the force-controlled frequency-response amplitude curves, as illustrated 

in Figure 3-15.  
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Figure 3-15. Identified Modal Parameters- Cubic Stiffness Example 1 

One mode is used to synthesize the frequency response functions, which are then 

verified using the algebraic solution of the frequency domain non-linear equations 

with constant force amplitude as the input using the arc-length continuation method, 

as shown in Figure 3-16. As anticipated, the agreement between the original and 

synthesized functions near the resonance frequency is good.  

Here, one can observe that at low forcing levels, the match between the original and 

the synthesized frequency-response amplitude plots is not so good at the off-

resonance region compared to that at high forcing levels. This may be due to the 

nature of the construction of HFS. That is, force-controlled frequency-response 

amplitude curves are merged to get the correspondent HFS. One might need to 

extrapolate the HFS to get the quasi-linear FRFs at low displacement amplitude 

levels, which results in some deviation from the actual values to get the modal 

parameters at that displacement amplitude level. Also, the level of success of the 

modal fit of the RCT receptances determines the success of the constant amplitude 

force receptance simulations. 

Until this point, the procedure of the proposed method is examined step by step for 

the ease of the following procedure for the following sections. 
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Figure 3-16. Comparison of Measured and Synthesized Frequency-Response 

Amplitude Plots- Cubic Stiffness Example 1 

One might investigate the effects of the following on the constant force receptance 

estimations: 

1. Taking intermediate force levels. 

2. Trying different curve fits to the modal parameters. 

3.2.1.1 Adding Intermediate Force Levels 

Remember that under section 3.2.1 force-controlled tests are performed at 9,11,13 

and 15 N. Now, let’s excite the same system at forcing levels from 9 N to 15 N with 

an increment of 0.5 N to investigate the result of the taking more force between the 

boundaries. 
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Figure 3-17. Refined Force Controlled Tests 

Figure 3-18 gives an insight into the modal parameters. A smoothingspline type of 

curve fit is utilized for the sake of comparison in terms of force sampling. Firstly, 

circles represent the identified modal parameters from the HFS created using the test 

with less number of forcing levels, whereas the plus signs represent the tests with 

more forcing levels. Secondly, blue curves are for the coarse forcing levels, while 

reds are for the refined forces. As seen from the figure, taking more force did not 

affect the natural frequency values much. On the other hand, the effect of the 

increased force levels can be observed for modal damping and modal constant.  
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Figure 3-18. Modal Parameters Comparison Extracted Using Different Sampling 

Frequencies of Force 

Then, the frequency response curves are synthesized at a single forcing level, 14 N, 

that is untested force level at the first test. Figure 3-19 compares the two synthesized 

FRFs using FCT-HFS with the simulated one numerically. As seen from the graph, 

the more force data sampled case gives more accurate synthesis around the off-

resonance region. Hence, tests at a higher number of forcing levels provide minor 

improvements around resonance but significant improvements around off-resonance 

which makes test force level planning important based on the desired accuracy level.  

    

Figure 3-19. a) FRF Comparison b) Detailed View 
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3.2.1.2 Different Curve Fits to the Modal Parameters 

In this section, the same data set of 9,11,13, and 15 is utilized, and the effect of the 

type of fit on the synthesis is examined. Figure 3-20 compares the curve fits to the 

modal parameters. Figure 3-21 compares the synthesized FRFs obtained using 

different curve fit types between 75-79 rad/s, around resonance. As observed from 

the figure, The closest curve fit type to the actual FRF is cubic spline curve fit, 

followed by smoothingspline and polynomial fits. 

Afterward, another point that can be considered is what happens when increasing the 

frequency sweep in all cases from interval 75-79 rad/s to 75-80 rad/s, using the same 

modal parameter curve fits. Figure 3-22 gives an insight into this case. Cubic spline 

fit case starts to give inaccurate results frequencies from 79 rad/s to 80 rad/s. 

Furthermore, since not all the data points that are extracted from the HFS do not 

cover the whole displacement range of the frequency response amplitude curves, an 

extrapolation is inevitable as seen in Figure 3-23. In addition, as marked in Figure 

3-22 the point where the deviation starts is an extrapolated point.  

 

Figure 3-20. Comparison of Modal Parameters using Different Curve Fitting 

Methods 
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Figure 3-21. Comparison of FRFs Using Different Curve Fitting Methods 

  

Figure 3-22. FRFs Comparison Using Different Curve Fit Types- Extended 

Frequency Sweep 
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Figure 3-23. Modal Parameter Extrapolation 

It is apparent that cubic spline fit predicts an unnatural behavior due to the built-in 

behavior of boundary conditions in the cubic spline command of MATLAB. On the 

other hand, smoothingspline and polynomial curve fits predict this natural behavior 

correctly. Although using polynomial and smoothingspline curve fits give accurate 

results, one should hesitate to extrapolate these curves and should be prudent while 

doing this.  

3.2.2 Multi Degree of Freedom (MDOF) System with Cubic Stiffness 2 

Now, consider the system in Figure 3-10, subjected to different amplitudes of forcing 

levels - 10, 15, 20, and 25 N. The system is excited between 60 and 100 rad/s. In the 

previous example, no unstable branches were observed in frequency-response 

amplitude curves. The resulting curves are listed in Figure 3-24 as dashed lines. The 

solid line of the forcing level 25 N shows a jump behavior in its response curve, 

while the dashed is the frequency response amplitude curve with the unstable branch. 

Therefore, the harmonic force surface is constructed using the frequency-response 

amplitude curves with a jump (solid lines), as shown in Figure 3-25. 
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Figure 3-24. Frequency-Response Amplitude Curves-Cubic Stiffness Example 2 

 

Figure 3-25. Harmonic Force Surface- Cubic Stiffness Example 2 

The resultant harmonic force surface is cut using constant displacement amplitudes 

to obtain indirect quasi-linear frequency response functions (FRFs). Six constant 

displacement planes are utilized to extract the quasi-linear FRFs with displacement 

values ranging from 5 mm to 23 mm. The extracted quasi-linear FRFs are listed in 
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Figure 3-26. It is observed that the quasi-linear FRFs exhibit stepped shapes on the 

right-hand side of the natural frequency due to the cubic stiffness displaying the 

hardening behavior of the system, leading to a jump at these forcing levels. That 

results in the stepped shapes while extracting quasi-linear FRFs from the interpolated 

HFS. However, modal identification should not be performed based on these parts 

of the RCT FRF plots since it may lead to incorrect results. A modal curve fitting to 

these quasi-linear FRFs can be performed using equation (3.10) to identify the modal 

parameters accurately. A custom curve fitting equation is defined, and MATLAB's 

curve fitting fit function is used to perform the curve fitting. The curve-fitted quasi-

linear FRFs are shown in Figure 3-27. The modal parameters are then identified 

using these curves using the peak-picking method. These results provide valuable 

insights for further analysis. 

 

Figure 3-26. Quasi-Linear FRFs Extracted from HFS- Cubic Stiffness Example 2 
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Figure 3-27. Quasi-Linear FRFs Modal Fit- Cubic Stiffness Example 2 

The identified modal parameters are shown in Figure 3-28. The force-controlled FRF 

curves are synthesized using a smoothing spline curve fit of the modal parameters. 

The original frequency-response amplitude curves are obtained and compared using 

these modal parameters in Figure 3-29. A good agreement between the original and 

the synthesized FRFs is observed, especially near resonance frequencies. 

 

Figure 3-28. Identified Modal Parameters- Cubic Stiffness Example 2 



 

 

46 

 

  

Figure 3-29. Comparison of Measured and Synthesized Frequency- Response 

Amplitude Curves-Cubic Stiffness Example 2 

Some valuable insights and suggestions can be drawn from this example, which are 

as follows: 

• Incorporating frequency response functions with jump phenomena into the 

FCT-HFS analysis leads to stepped quasi-linear FRFs, making modal 

identification challenging. 

• Several techniques are available to determine the modal parameters of quasi-

linear frequency response functions (FRFs), here peak-picking and curve 

fitting are used. 

• An alternative approach to addressing the issue of stepped shapes observed 

in quasi-linear FRFs involves fitting a polynomial or exponential function to 

the part of the FRF that does not present jump behavior. This method offers 

a viable solution to the challenge of modeling quasi-linear FRFs accurately. 
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• Modal parameters can be directly determined from quasi-linear FRFs 

extracted from the HFS by applying the lsqcurvefit function of MATLAB. 

• As understood throughout the text, the proposed technique is not as 

successful as it is desired in the case of the jump. 

3.3 Summary 

Chapter 3 of the thesis discusses the RCT-HFS method and its procedure using a 

simple SDOF system. The strategy behind the new framework is explained using 

two and three DOF discrete systems. Only a few numerical applications are 

presented in this chapter which should be enough to explain the proposed 

methodology. The following chapter focuses on real experimental applications, 

where those conducting the experiments can better understand the new framework's 

importance. This chapter concludes with a flowchart that outlines the method's 

procedure. 
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Figure 3-30. Flowchart of the Proposed Nonlinear System Identification Method 
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CHAPTER 4  

4 EXPERIMENTAL APPLICATIONS OF THE FCT-HFS FRAMEWORK 

In Chapter 3, the RCT-HFS and FCT-HFS methods are reviewed, and their 

procedures are explained in detail using cubic stiffness nonlinearity as an example. 

It is important to note that the newly developed FCT-HFS method is primarily 

intended for experimental purposes. This chapter of the thesis verifies the proposed 

methods through experimental data where some of the data are obtained from 

literature and some of them are collected from test setups designed for the thesis. 

Experiments with the bolted joint connections are utilized as an experimental setup. 

Those are the indispensable parts of the mechanical systems of manmade structures. 

Furthermore, these jointed structures introduce friction, gap, and preload 

nonlinearities. Moreover, modeling and understanding these types of nonlinearities 

are inconvenient due to the modeling difficulty of their nature. Here, the term 

understanding is used to find out the modal parameters of the system due to those 

nonlinearities. Determined modal parameters can then describe the behavior of the 

system. Therefore, modeling and understanding the nonlinear behavior of those 

systems are crucial in engineering. To this end, several nonlinear system 

identification methods have been developed as stated in Chapter 1. Hence, the 

proposed methodology is verified and validated using such a system with a 

challenging behavior.  

Different joint structures utilized will be explained in the following paragraphs. 

Hands-on experiments were conducted at TÜBİTAK-SAGE using the Brake-Reuß 

Beam (BRB) [61, 62]. This beam has become a benchmark across the engineering 

society for nonlinear mechanical systems. Therefore, the former and latter reasons 

led to using this beam as a testing specimen. Its dimensions and properties are given 

in detail in the upcoming section, but it can be summarized as follows with brevity. 
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Two L-shaped beams, each 42 cm, are connected with three bolted joints where the 

interface is 12 cm. Besides the test, three experimental applications from the 

literature verify and validate the method using their experimental data. Firstly, the 

data of the Orion Beam [63] is utilized to validate and verify the proposed method. 

The configuration of the designed beam can be summarized as follows. Two beams, 

each 200 mm, are connected to each other with three bolted joints with the 30 mm 

interface. 

Furthermore, the setup is positioned vertically to the ground. The paper's originality 

is that it introduced a new lap-joint configuration with high repeatability, and this 

new configuration separates the correlation between the resonance frequency, 

maximum amplitude, and half-power bandwidth. That allows this system to be used 

as a reference while developing methods. Therefore, the force-controlled FRF results 

that have recently been presented are used to validate and verify the developed 

method. Details of the experimental setup and the data are presented in a related 

section. Secondly, the data of the Length Modified Brake-Reuß Beam [64] is also 

used to validate the proposed method. It is the modified version of the original Brake-

Reuß Beam by increasing the beams' length and contact area to 1080 mm and 120 

mm, respectively. Finally, the data of the Half Brake-Reuß Beam [65] is utilized. It 

is designed so that the width of the beam is decreased from 1" to 0.5". All other 

related and required details of the structures are given in their sections. The summary 

of each experimental setup, i.e., dimensions, number of connections, and position of 

the experimental setup, is provided in Table 4-1. 
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Table 4-1. Summary of the Experimental Setups  

 Individual 

Dimensions 

of Beams 

Number of 

Connections 

to Each 

Other 

Position of the Test 

Setup 

The Brake-Reuß 

Beam 

72 x 2.5 x 2.5 

cm 

3  Horizontal 

The Orion Beam  200 x 30 x 2 

mm 

3 Vertical 

The Length Modified 

Brake-Reuß Beam 

 

42.5 x 1 x 1 

inch 

3  

Horizontal 

The Half Brake-Reuß 

Beam 

28.35 x 0.50 x 

1.00 inch 

3 Horizontal 

4.1 Brake-Reuß Beam Tests Conducted in TÜBİTAK SAGE 

4.1.1 Test Setup 

The test setup of the Brake-Reuß Beam is manufactured and assembled in TÜBİTAK 

SAGE and it is shown in Figure 4-1. Two L-shaped beams are connected with bolted 

joints and tightened with a torque wrench to the desired torque level. To ensure the 

gap at each side of the connection, a 30 𝜇𝑚 shim is used during the assembly process, 

where the Brake-Reuß beam is held with two monolithic beams to ensure linearity. 

MB Dynamic Modal 110 modal shaker with forcing amplitude and frequency 

capacities of 500 N and 5000 Hz, respectively is used for exciting the system. A 

stinger is used as the connection between the beam and the shaker. A PCB 

Piezotronics 208C03 ICP load cell is attached to the connection of the stringer and 

beam to monitor forcing at the excitation location and the measured force data is 

used by the embedded controller of Siemens LMS. In addition, MB Dynamics 
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MB500VI is used as the power amplifier. LMS SCADAS Mobile is used as the data 

acquisition system, and the collected data is monitored using a desktop computer. A 

detailed photo of the test setup is shown in Figure 4-2. The shaker is connected to 

the metal block, and a rigid body connection is assumed between the shaker and the 

metal block. Six ICP accelerometers of PCB Piezotronics 352A73 are used to 

measure the data, and the positive measurement direction is shown in Figure 4-2. 

Accelerometers 1,3, 5, and 6 are placed along the +z direction half of the beam (+z 

direction is shown on Figure 4-2). In contrast, the others are placed on the -z direction 

half of the beam. Data acquired from the first accelerometer and load cell are used 

to provide the feedback acceleration and forcing measurements for the response-

controlled stepped-sine testing controller. So, the rigid L-shaped beam is assumed to 

demonstrate the same motion on the load cell and accelerometer sides. Through this 

thesis, the data measured by accelerometer one is used only. Finally, to ensure the 

free-free condition of the Brake-Reuß Beam, fish lines are used to suspend the test 

beam as shown in Figure 4-3. Two data sets are recorded using this setup at different 

tightening torques of 10 and 25 Nm. Initially, the 10 Nm case is examined, then the 

25 Nm case. 

Data is measured through accelerometers and acceleration data is recorded with LMS 

Data Acquisition System. The data acquisition system transforms this measured data 

from the time domain to the frequency domain. This procedure is performed by the 

built-in feature of the LMS Testlab. LMS Testlab determines the FRF by dividing 

the cross-power spectrum (Sxy) of the input (x) and output (y) by the auto power 

spectrum (Sxx) of the input. 
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Figure 4-1. Whole Test Setup Including Data Acquisition, Power Amplifier and 

Test Specimen 

 

Figure 4-2. Detailed View of Test Setup Photo of Brake-Reuß Beam test setup in 

TÜBİTAK-SAGE 
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Figure 4-3. Fish Line of The Setup 

4.1.2 Test 1: Test with Tightening Torque of 10 Nm 

In test 1, two data sets are examined. During each test, force-controlled stepped sine 

testing is utilized. Even numbers of forcing amplitudes are employed in data set 1, 

while the other odd numbers of forcing amplitude levels are used in data set 2. During 

both measurements, stepped sine testing is performed between 133 Hz and 144 Hz 

which covers the first natural frequency of the beam structure.  

4.1.2.1 Data Set 1  

First, a force-controlled data set is collected from 2 N to 20 N with an increment of 

2 N at each test run. Furthermore, stepped-sine testing is conducted with a frequency 

increment of 0.125 Hz between 133 and 147 Hz frequencies. In the LMS SCADAS 

desktop application, the constant force frequency response amplitude curves are 

measured as shown in Figure 4-4. The measured unit of FRF is in g (m/s^2) and the 

measured acceleration data is converted to displacement in the frequency domain. 

These frequency-response amplitude curves are plotted in MATLAB as shown in 

Figure 4-4b. 
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Figure 4-4. Constant Force Response Amplitude Curves of Data Set 1 of Test 1 of 

BRB a) Accelerance data from LMS b) MATLAB plot using displacement data 

It is observed that a jump phenomenon occurred during measurements. Without 

commenting on this (it is to be discussed in Chapter 5), let’s continue to the formal 

procedure of the FCT-HFS framework. The next step is to construct a harmonic force 

surface using these frequency-response amplitude curves. 

 

Figure 4-5. Harmonic Force Surface of Data Set 1 of Test 1 of BRB  
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Figure 4-6. a) Quasi-Linear FRFs Extracted from HFS b) Applied Curve Fitting of 

Data Set 1 of Test 1 of BRB-Curve Fit Type 1 

The harmonic force surface of test 1 of BRB is illustrated in Figure 4-5. Extraction 

of quasi-linear FRFs from the HFS between upper and lowermost displacement 

amplitude levels of 0.050 mm and 0.220 mm are performed. As shown in Figure 4-6, 

a stepped curve is observed at the left-hand side of each curve’s peak. This stepped 

response behavior is expected since jumps are observed in the measured frequency-

response amplitude plots. A similar stepped curve behavior was observed in the 

numerical simulation case study with jump behavior which was presented in the 

previous chapter. Before directly attempting the peak-picking method for these types 

of shapes, it is worth looking at the shape of the FRFs. The left-hand sides of the 

curves are stepped, but the right-hand sides are smooth and in the desired behavior. 

Furthermore, keeping in mind that these are the experimental results, the aim is to 

get a quasi-linear shape to predict modal parameters from the curves. Two different 

types of curve fitting can be considered here. 

4.1.2.1.1 Curve Fit Type 1 (Peak-picking algorithm) 

First, a curve fitting to the left-hand side of the quasi-linear FRFs is applied for that 

purpose, Figure 4-6a. Now, it is possible to estimate modal parameters using the 

peak-picking method. 

The identified modal parameters from these curves and curve fit of the identified 

modal parameters are given in Figure 4-7. From these curve fits, constant force FRFs 

are synthesized and compared with the measured ones in Figure 4-8. The results are 
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in good agreement around resonance and minor deviations are observed near 

resonance frequencies. However, one should be cautious while applying this FCT-

HFS to the force-controlled FRFs where the jump is observed since the result of an 

infinite slope causes stepped quasi-linear FRFs. That makes extracting modal 

parameters difficult using the peak-picking method. On the other hand, it is worth 

noting that the FCT-HFS framework is easier and more straight-forward to apply for 

weakly nonlinear cases where FRFs have no jumps. Furthermore, note that although 

the jump makes the analysis difficult, good agreement between the force-controlled 

stepped sine testing of measured and synthesized ones are observed near resonance 

frequencies even when the jump occurs.  

 

Figure 4-7. Identified Modal Parameters of Data Set 1 of Test 1 of BRB-Curve Fit 

Type 1 

  



 

 

58 

  

  

 

  

Figure 4-8. Comparison of Synthesized FRFs and Measured Ones of Data Set 1 of 

Test 1 of BRB-Curve Fit Type 1  
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4.1.2.1.2 Curve Fit Type 2 (Curve fitting and spline fitting algorithms) 

Another approach to handle the stepped shape in the extracted quasi-linear FRFs is 

using the lsqcurvefit function of MATLAB [66] with the modal equation. First, it is 

meant from the modal equation is the single nonlinear normal mode equation with 

response amplitude dependent modal parameters as 

𝒙 =
𝝓̅(𝑞𝑟)𝑟𝝓̅(𝑞𝑟)𝑟

𝑇𝒇

(−𝜔2 + 𝑖𝜂𝑟(𝑞𝑟)𝜔𝑟
2(𝑞𝑟) + 𝜔𝑟

2(𝑞𝑟))
 

(4.1) 

The working principle of the algorithm can be summarized as follows. First, 

lsqcurvefit is a nonlinear least-square solver that minimizes the error between the 

measured and fitted data, as shown in equation (4.2). Here, equation (4.1) is used as 

the function that should be used in equation (4.2). 

𝑚𝑖𝑛 (∑(𝑓(𝑥, 𝑥𝑑𝑎𝑡𝑎𝑖) − 𝑦𝑑𝑎𝑡𝑎𝑖)
2

𝑖

) 
(4.2) 

In contrast to the peak-picking method, here, the modal parameters of the modal 

equation are tried to be found with this algorithm.  

  Using this function, it is possible to identify modal parameters by curve fitting to 

the extracted quasi-linear FRFs. Therefore, the peak-picking method is not used in 

this approach. 
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Figure 4-9. Quasi-Linear FRFs after lsqcurvefit-Curve Fit Type 2 

 

Figure 4-10. Identified Modal Parameters of Data Set 1 of Test 1 of BRB-Curve Fit 

Type 2 

The identified modal parameters and corresponding smoothingspline fits are shown 

in Figure 4-10.The mathematical formulation of smoothingspline can be written as 

𝑝∑𝑤𝑖(𝑦𝑖 − 𝑠(𝑥𝑖))
2
+

𝑖

(1 − 𝑝)∫(
𝑑2𝑠

𝑑𝑥2
)

2

𝑑𝑥  
(4.3) 

Where 𝑤𝑖, 𝑝 𝑎𝑛𝑑 𝑠 are weight, smoothing parameter and smoothing spline, 

respectively. Generally, p is taken as 1. 
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Using the modal parameters obtained from spline-fit, the constant force FRFs are 

synthesized again and compared with the original ones in Figure 4-11. Examining 

the synthesized FRFs for curve fit types 1 and 2 shows that both approaches are 

satisfactory except for lower force levels. The cause of this deviation is the modal 

damping at the lower displacement amplitude levels. 
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Figure 4-11. Comparison of Synthesized FRFs and Measured Ones of Data Set 1of 

Test 1 of BRB-Curve Fit Type 2  
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4.1.2.2 Data Set 2 

Another data set with a jump phenomenon is conducted from 1 to 21 N with an 

increment of 2 N. Furthermore, the forced controlled test uses stepped sine testing 

with a 0.125 Hz frequency increment. A good match between the measured and 

synthesized ones is observed similar to the results obtained in Data Set 1. The 

extracted quasi-linear FRFs have also got a stepped shape at the left-hand side of the 

peak, and the same method as the preceding one is utilized where the quasi-linear 

FRFs are extracted from 0.026 mm to 0.220 mm from the HFS surface plot.  

4.1.2.2.1 Curve Fit Type 1 (Peak-picking algorithm) 

The same data set 1 curve fit type 1 is applied to the quasi-linear FRFs. Using the 

identified modal parameters (Figure 4-15), consistent FRFs are synthesized as shown 

in Figure 4-16. 

    

Figure 4-12. Constant Force Response Amplitude Curves of Data Set 2 of Test 1 of 

BRB a) from LMS (detailed view) b) from MATLAB 
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Figure 4-13. Harmonic Force Surface of Data Set 2 of Test 1 of BRB 

  

Figure 4-14. a) Quasi-Linear FRFs Extracted from HFS b) Applied Curve Fitting to 

Data Set 2 of Test 1 of BRB 
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Figure 4-15. Identified Modal Parameters of Data Set 2 of Test 1 of BRB- Curve 

Fit Type 1  
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Figure 4-16. Comparison of Synthesized FRFs and Measured Ones of Data Set 2 of 

Test 1 of BRB- Curve Fit Type 1  

  



 

 

67 

4.1.2.2.2 Curve Fit Type 2 

The lsqcurvefit function in MATLAB is used to identify the modal parameters. The 

quasi-linear FRFs data is inputted into the function, and the modal parameters are 

determined accordingly. Figure 4-17 shows the final corrected quasi-linear FRFs. 

The extracted points are then used to determine the modal parameters, and a 

smoothingspline fitting is applied, as seen in Figure 4-18. The synthesized force-

controlled FRFs are presented in Figure 4-19, and this approach provides an accurate 

synthesis of force-controlled FRFs. 

 

Figure 4-17. Quasi-Linear FRFs after lsqcurvefit-Curve Fit Type 2 

It is essential to exercise caution when interpreting jump constant force testing 

results. Even if unstable branches associated with nonlinear frequency response 

functions can be tracked during measurements, one should remain vigilant. In cases 

like these, consider the RCT-HFS method. 
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Figure 4-18. Identified Modal Parameters of Data Set 1 of Test 2 of BRB-Curve Fit 

Type 2 
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Figure 4-19. Comparison of Synthesized FRFs and Measured Ones of Data Set 2 of 

Test 1 of BRB- Curve Fit Type 2  
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4.1.3 Test 2: Test with Tightening Torque of 25 Nm 

The effect of a jump in FRF on the accuracy of the RCT-based modeling is aimed to 

be investigated in this test. The same experimental setup is replicated, and the 

tightening torque is raised from 10 Nm to 25 Nm to eliminate the FRF jump behavior 

which complicates the modal data fitting procedure. Furthermore, the accuracy of 

synthesized RCT-based FCT-HFS models is tested in the absence of a jump. The 

subsequent trial involved a constant force examination, with amplitudes ranging 

from 1 N to 7 N and spaced 1 N apart. Step-sine tests are executed from 140 Hz to 

150 Hz, sampling at 0.125 Hz. 

  

Figure 4-20. Constant Force Response Amplitude Curves of Test 2 of BRB a) from 

LMS b) from MATLAB 

From Simcenter Testlab, experimental measurements of FRFs are tabulated in Figure 

4-20.a in g/N, those are converted to the response amplitude in mm in Figure 4-20.b. 

Then, these response amplitude curves are used to synthesize the harmonic force 

surface in Figure 4-21a. The HFS is cut with constant displacement amplitude planes 

between 0.030 mm and 0.170 mm. Figure 4-21b shows that extracted quasi-linear 

FRFs are not in stepped shape, and those FRFs can be used to perform peak-picking 

analysis. 
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Figure 4-21. a) Harmonic Force Surface b) Quasi-Linear FRFs Extracted from HFS 

of Test 2 of BRB 

Modal parameters at the specified displacement amplitude levels are determined 

Using the simple peak-picking algorithm in Figure 4-22. Then, smoothing spline 

curve fitting is applied to the modal parameters shown in the same figure. 

 

Figure 4-22. Identified Modal Parameters of Test 2 of BRB 

Afterward, the constant force FRFs are synthesized using the arclength continuation 

algorithm to compare with the original ones. Figure 4-23 gives an insight into this 

comparison. One can observe that this comparison is better than the previous one 

with the jump FRFs since the force controlled FRFs do not have a jump. Therefore, 

extracted quasi-linear FRFs from the HFS give more accurate results of modal 

properties due to the shape of the quasi-linear FRFs. 
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Also, this experimental study clearly demonstrates the difficulty of testing and 

identifying the nonlinear behavior of bolted joints. Changing the tightening torque 

results in completely different modal fit parameters. This high sensitivity of 

identified modal parameters to tightening torque makes the measurement and 

identification process of such bolted systems challenging. 
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Figure 4-23. Comparison of Synthesized and Measured FRFs of Test 2 of BRB  
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4.2 The Orion Beam  

Recently, a new beam called the Orion Beam has been proposed [63]. Two thin 

beams are connected with three bolted joints. The experimental setup is shown in 

Figure 4-24. The effect of the design of the beam on the repeatability issue during 

the experiments is analyzed by changing the tightening torques and excitation force 

[67]. Repeatability can be summarized as measurement-to-measurement differences 

in the same experimental setup [62]. The experiments used two data sets: constant 

force-testing and random tests. A feedback controller is developed to implement the 

constant force testing around the beam's third and sixth bending modes to employ 

the FCT-HFS method. For measurement purposes, a laser vibrometer is used. Further 

details about the structure and the experiments can be found in [63]. Here, the third 

and sixth bending mode force-controlled step sine testing results are employed for 

validation and verification.  

 

Figure 4-24. Orion Beam a) Experimental Setup b) Schematic Representation 

4.2.1 Third Bending Mode 

This subsection uses data from the third bending mode of the Orion beam. The 

related tests are employed between the 280 and 300 Hz frequencies with a frequency 



 

 

75 

increment of 0.3906 Hz. Furthermore, the tests are performed at the different 

tightening torque levels of 20 and 80 cNm. In addition, five different forcing levels 

are handled at these two tightening torques, where the forcing levels are the same at 

each torque level. The forcing levels are 10, 50, 100, 150 and 200 mN.  

4.2.1.1 20 cNm Tightening Torque 

Measured constant force frequency-response amplitude graphs are given in Figure 

4-25a. Adding force as a third axis and creating the harmonic force surface of the 

related experiment is shown in Figure 4-25b. 

  

Figure 4-25. a) Measured Constant Force Frequency-Response Amplitude Curves 

b) Harmonic Force Surface- The Orion Beam Third Bending Mode 20 cNm Torque  

Afterward, relevant quasi-linear frequency response functions are obtained using 

HFS, cut with constant displacement amplitude planes ranging from 0.003 to 0.037 

mm, as shown in Figure 4-26. These eighteen quasi-linear FRFs are then used to 

identify displacement-dependent nonlinear modal parameters, as illustrated in Figure 

4-27. A second-order polynomial fit is used for modal natural frequency and modal 

constant. Additionally, modal damping is smoothed using a smoothing spline. The 

change in modal damping is significant with the changing displacement amplitude. 
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Figure 4-26. Quasi-Linear FRFs Extracted from HFS- The Orion Beam Third 

Bending Mode 20 cNm Torque 

 

Figure 4-27. Identified Modal Parameters- The Orion Beam Third Bending Mode 

20 cNm Torque 

Subsequently, constant force frequency-response amplitude plots are synthesized 

using these displacement-dependent modal parameters and compared to the 

measured ones in Figure 4-28. Markers are the measured data points, and the solid 

lines are the synthesized ones. The consistency between the measured and the 

synthesized constant force amplitude responses is almost perfect.  
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Figure 4-28. Comparison of Measured and Synthesized Frequency-Response 

Amplitude Curves- The Orion Beam Third Bending Mode 20 cNm Torque 

4.2.1.2 80 cNm Tightening Torque 

Measured constant force frequency-response displacement amplitude plots are given 

in Figure 4-29a. Merging these constant force frequency-response amplitude plots 

generates the harmonic force surface, as shown in Figure 4-29b. 

 

Figure 4-29. a) Measured Constant Force Frequency-Response Amplitude Curves 

b) Harmonic Force Surface- The Orion Beam Third Bending Mode 80 cNm Torque 

Afterward, quasi-linear frequency response functions are obtained using HFS, cut 

with constant displacement amplitude planes ranging from 0.004 to 0.037 mm, 
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Figure 4-30. Displacement-dependent nonlinear modal parameters are determined 

using these eighteen quasi-linear FRFs, Figure 4-31. A second-order polynomial fit 

is exploited to modal natural frequency and modal constant. Furthermore, a 

smoothing spline is used for the modal damping. In addition, the frequency shift due 

to the tightening torque is observed comparing Figure 4-27 and Figure 4-31, which 

is an expected outcome of increasing the tightening torque [68]. 

 

Figure 4-30. Quasi-Linear FRFs Extracted from HFS- The Orion Beam Third 

Bending Mode 80 cNm Torque 

 

Figure 4-31. Identified Modal Parameters- The Orion Beam Third Bending Mode 

80 cNm Torque 



 

 

79 

Consequently, the constant force frequency-response amplitude plots are re-

constructed using these displacement-dependent modal parameters and compared to 

the measured ones in Figure 4-32. Data points and the solid lines measure marked 

ones are the re-constructed ones. The agreement between the measured and the 

synthesized ones is perfect indeed. 

 

Figure 4-32. Comparison of Measured and Synthesized Frequency-Response 

Amplitude Plots- The Orion Beam Third Bending Mode 80 cNm Torque 

4.2.2 Sixth Bending Mode 

This subsection uses data from the sixth bending mode of the Orion beam. The tests 

are employed at several tightening torques: 10, 20, 30, 80, and 1000 cNm. In 

addition, six different forcing levels are handled at these five tightening torques, 

where the forcing levels are the same at each torque level. The forcing levels are 10, 

50, 100, 150, 200 and 250 mN. Frequency sweep covers the range from 1700 to 1775 

Hz with an increment of 1 Hz. The procedure for constructing the FCT-HFS method 

is followed at each torque level, and the results are compared accordingly. 
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4.2.2.1 10 cNm Tightening Torque 

It is worth noting that starting from the forcing level of 100 mN, the left-hand side 

of the resonance is hardly visible due to the excitation frequency used during testing 

not covering all the resonance regions. After merging the measured frequency-

response amplitude curves, the quasi-linear FRFs are obtained indirectly. The quasi-

linear FRFs are presented in Figure 4-34. Fourteen constant displacement amplitude 

planes are generated from 0.0002 to 0.0012 mm for modal identification of the 

constant displacement amplitude receptances.  

 

Figure 4-33. a) Measured Constant Force Frequency-Response Amplitude Curves 

b) Harmonic Force Surface- The Orion Beam Sixth Bending Mode 10 cNm Torque 

 

Figure 4-34. Quasi-Linear FRFs Extracted from HFS -The Orion Beam Sixth 

Bending Mode 10 cNm Torque 
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Displacement-dependent modal parameters are determined using the peak-picking 

method. Figure 4-35 shows that the modal natural frequencies at the lower 

displacement amplitude level decrease by increasing the displacement amplitude 

level. The other conclusion is that displacement-dependent modal damping oscillates 

between 0.75 % and 0.85 %. 

MATLAB's smoothingspline property of a fit function is used for all displacement-

dependent modal parameters (modal natural frequency, modal damping, and modal 

constant) as shown in Figure 4-35.  

Thereafter, the constant force frequency-response amplitude curves are reproduced 

using those modal parameters the curve fits Figure 4-36. Again, a good agreement 

between the measured and re-produced ones is seized. 

 

Figure 4-35. Identified Modal Parameters - The Orion Beam Sixth Bending Mode 

10 cNm Torque 
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Figure 4-36. Comparison of Measured and Synthesized Frequency-Response 

Amplitude Curves-The Orion Beam Sixth Bending Mode 10 cNm Torque 

4.2.2.2 20 cNm Tightening Torque 

Different from the 10 cNm tightening torque level, thirty-four quasi-linear FRFs are 

extracted from the HFS between the lower and upper bounds of the displacement 

amplitudes 0.2 and 3.5 𝜇𝑚, respectively. 

 

Figure 4-37. a) Measured Constant Force Frequency-Response Amplitude Curves 

b) Harmonic Force Surface- The Orion Beam Sixth Bending Mode 20 cNm Torque 



 

 

83 

 

Figure 4-38. Quasi-Linear FRFs Extracted from HFS -The Orion Beam Sixth 

Bending Mode 20 cNm Torque 

Extracted modal parameters are tabulated with markers in Figure 4-39. The trend of 

the modal natural frequency is like a first-order polynomial, so a first-order 

polynomial fit is used. The modal natural frequency is about 1735 Hz at the lowest 

displacement amplitude level. On the other hand, it decreases monotonically to about 

1717 Hz. In addition, smoothing spline is utilized for modal damping and modal 

constant so as not to lose the information gathered from the experiment.  

 

Figure 4-39. Identified Modal Parameters - The Orion Beam Sixth Bending Mode 

20 cNm Torque 
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Constant force frequency-response amplitude plots are reconstructed and compared 

to the original ones in Figure 4-40 using the fits tabulated in Figure 4-39. Again, an 

almost perfect match between the measured and the synthesized frequency-

displacement curves is obtained. 

 

Figure 4-40. Comparison of Measured and Synthesized Frequency-Response 

Amplitude Curves -The Orion Beam Sixth Bending Mode 20 cNm Torque 

4.2.2.3 30 cNm Tightening Torque 

 

Figure 4-41. a) Measured Constant Force Frequency-Response Amplitude Curves 

b) Harmonic Force Surface- The Orion Beam Sixth Bending Mode 30 cNm Torque 
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Figure 4-42.Quasi-Linear FRFs Extracted from HFS -The Orion Beam Sixth 

Bending Mode 30 cNm Torque 

After constructing the harmonic force surface associated with the 30 cNm tightening 

torque, twenty-five constant displacement amplitude planes are used to extract the 

quasi-linear FRFs of the system, similar to the previous section first order 

polynomial fit is exploited to the modal natural frequency, and a smoothing spline is 

employed to the remaining two modal parameters. 

 

Figure 4-43. Identified Modal Parameters – The Orion Beam Sixth Bending Mode 

30 cNm Torque 
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Figure 4-44. Comparison of Measured and Synthesized Frequency-Response 

Amplitude Curves -The Orion Beam Sixth Bending Mode 30 cNm Torque 

As expected, the modal natural frequency increases when the tightening torque of 

the bolted joints is increased. However, a decrease in the modal natural frequency is 

observed when the modal displacement amplitude is increased, indicating a softening 

behavior of the system. 

4.2.2.4 80 cNm Tightening Torque 

The FCT-HFS method has been applied to another data set at the tightening torque 

level of 80 cNm. Twenty-nine displacement amplitude planes have been used to 

determine the experimental quasi-linear FRFs associated with amplitude levels 

ranging from 0.0003 mm to 0.0058 mm. These FRFs are depicted in Figure 4-46. 
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Figure 4-45. a) Measured Constant Force Frequency-Response Amplitude Curves 

b) Harmonic Force Surface- The Orion Beam Sixth Bending Mode 80 cNm Torque 

 

Figure 4-46. Quasi-Linear FRFs Extracted from HFS -The Orion Beam Sixth 

Bending Mode 80 cNm Torque 

Smoothingspline fits are used for modal damping and modal constant parameters, 

while a first-order polynomial fit is utilized for the modal natural frequency. The 

constant force frequency-response amplitude curves are synthesized using those fits. 

A successful match between the experimentally measured constant forcing 

amplitude responses and the synthesized constant force responses is achieved. The 

softening behavior of the system is also seen from the frequency-displacement 

amplitude figure.  



 

 

88 

 

Figure 4-47. Identified Modal Parameters - The Orion Beam Sixth Bending Mode 

80 cNm Torque 

 

Figure 4-48. Comparison of Measured and Synthesized Frequency-Response 

Amplitude Curves -The Orion Beam Sixth Bending Mode 80 cNm Torque 

4.2.2.5 1000 cNm Tightening Torque (Glued) 

The final data set of the Orion beam to utilize the FCT-HFS method is at 1000 cNm 

tightening torque level. Indeed, it is the glued condition of the joints. Twenty-eight 

planes are cut from the resultant HFS, and displacement-dependent modal 

parameters are determined using the peak-picking method.  
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Figure 4-49. a) Measured Constant Force Frequency-Response Amplitude Curves 

b) Harmonic Force Surface- The Orion Beam Sixth Bending Mode 1000 cNm 

Torque 

 

Figure 4-50. Quasi-Linear FRFs Extracted from HFS -The Orion Beam Sixth 

Bending Mode 1000 cNm Torque 

First-order polynomial fit to the modal natural frequency and smoothingspline to the 

remaining two are utilized, Figure 4-51. The modal coefficient fits are used to obtain 

the synthesized constant forcing amplitude responses and the comparison between 

the actual constant forcing amplitude experimental data and the synthesized data 

using FCT-HFS is shown in Figure 4-52.  
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Figure 4-51. Identified Modal Parameters - The Orion Beam Sixth Bending Mode 

1000 cNm Torque 

 

Figure 4-52. Comparison of Measured and Synthesized Frequency-Response 

Amplitude Curves-The Orion Beam Sixth Bending Mode 1000 cNm Torque  

The FCT-HFS method works perfectly well when considering the Orion beam 

experimental data, even using the simple peak-picking algorithm to obtain modal 

parameters from the quasi-linear FRFs. 

One other observation that someone can make from the Orion beam data is that by 

increasing the tightening torque level from 10 cNm to 1000 cNm displacement, 

dependent modal damping decreases nearly four times. To examine this, look at 
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Figure 4-35 and Figure 4-51, around the sixth bending mode, where most data is 

shared and the experiment is conducted. 

4.3 The Length Modified Brake-Reuß Beam (LBRB)  

The other experimental application of the FCT-HFS method is demonstrated on the 

length-modified Brake-Reuß beam [64]. The experimental data is shared upon 

request of the author of this thesis. The experimental setup is shown in Figure 4-53. 

The excitation point and the measurement point are also shown there. The bolted 

joints are tightened to 20 Nm. The beam is made of stainless steel. 

Further, an electrodynamic shaker (GV20-PA100E) is utilized to experiment. The 

experiment is conducted around the first and second modes of bending using step-

sine testing. The details of the experimental setup are in [64]. 

 

Figure 4-53. The Length Modified Brake-Reuß Beam Setup [64] 

4.3.1 Mode 1 

The first bending mode of LBRB is considered in this section. At five different 

forcing levels, the first mode is excited. These are 0.25, 2, 5, 8, and 15 N, and the 

frequency is between 79.5 and 81.5 Hz with a sampling frequency of 0.03 Hz. The 

force-controlled test data is used to construct the related harmonic force surface, 

shown in Figure 4-54. Upper and lowermost displacement amplitude boundaries are 

determined in such a way that includes all experimental data points. 
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After that, the harmonic force surface is utilized to extract the quasi-linear frequency-

response functions. Eight displacement amplitude planes are exploited from 0.016 to 

0.1 mm, Figure 4-55. 

    

Figure 4-54. a) Measured Constant Force Frequency-Response Amplitude Curves b) 

Harmonic Force Surface- The Length Modified Brake-Reuß Beam Mode 1 

  

Figure 4-55. Quasi-Linear FRFs Extracted from HFS -The Length Modified Brake-

Reuß Beam Mode 1 

Experimentally extracted displacement-dependent modal parameters are given as 

markers in Figure 4-56. Furthermore, smoothingspline to the modal parameters is 

utilized. 
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Figure 4-56. Identified Modal Parameters-The Length Modified Brake-Reuß Beam 

Mode 1 

The synthesis is employed except for the lowest force amplitude, and the results are 

compared in Figure 4-58. The results are almost in perfect agreement except for the 

15 N forcing level. Indeed, this identification gives better estimates than the 

suggested model in the original study [64], tabulated in Figure 4-57. As seen from 

the plots, the best agreement is achieved between the measured and identified 

frequency response amplitude curves with the FCT-HFS method (except 15 N 

forcing level).  

 

Figure 4-57. Identified Frequency Response Plots from [64] 
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Figure 4-58. Comparison of Measured and Synthesized Frequency-Response 

Amplitude Curves -The Length Modified Brake-Reuß Beam Mode 1 

4.3.2 Mode 2 

The second data set of LBRB is the second bending mode, and the test is conducted 

at 0.25, 1, 2, and 4 N from 280.5 to 283.5 Hz with a sampling rate 0.0405 Hz. The 

measured frequency-response amplitude curves and resultant harmonic force surface 

are shown in Figure 4-59. Cutting with five constant displacement planes results in 

Figure 4-60.  
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Figure 4-59. a) Measured Constant Force Frequency-Response Amplitude Plots b) 

Harmonic Force Surface-The Length Modified Brake-Reuß Beam Mode 2 

Quasi-linear FRFs of displacement amplitude level from 0.00352 to 0.0156 mm are 

extracted from the HFS. After modal parameter identification using the peak-picking 

method, the identified points are shown in Figure 4-61.  

 

Figure 4-60. Quasi-Linear FRFs Extracted from HFS-The Length Modified Brake-

Reuß Beam Mode 2 
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Figure 4-61. Identified Modal Parameters-The Length Modified Brake-Reuß Beam 

Mode 2 

The curve fits of the modal parameters are shown in Figure 4-61. The force-

controlled frequency-response amplitude curves are synthesized and compared with 

the measured ones in Figure 4-62. Ultimately, a good agreement between the 

measured and the synthesized ones is observed for 2 N and 4 N excitation levels. 

Note that due to the inability to obtain quasi-linear FRFs at lower response amplitude 

levels, the other forcing levels are discarded. The 2 N and 4 N response amplitude 

predictions give better results than the study that originally performed the testing 

[64]. 

 

Figure 4-62. Comparison of Measured and Synthesized Frequency-Response 

Amplitude Curves -The Length Modified Brake-Reuß Beam Mode 2 
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Figure 4-63. Identified Frequency Response Curve from the Literature [64] 

4.4 The Half-Brake-Reuß Beam 

The half Brake-Reuß beam [65] is the last experimental application of the FCT-HFS 

framework. Figure 4-64 shows the experimental setup where point 3 is the excitation 

point and point 1 is the measurement point where the accelerometer is placed. A 

force-controlled step sine testing is performed at 0.2, 0.5, 1, and 1.5 N within the 

frequency range 79.2 and 81.2 Hz with a 0.05 Hz sampling rate, the first bending 

mode of the HBRB. Further details are accessible in [65]. 

 

Figure 4-64. Experimental Setup of Forced Control Testing of HBRB[65] 



 

 

98 

4.4.1 Mode 1 

The recorded data is open access, and the author used this data. Since the measured 

data is in 𝑚/𝑠2, it is converted to 𝑚, and the converted frequency-response 

amplitude plots are given in Figure 4-65. The first examination is lower amplitude 

forcing response amplitude curves have softening behavior, whereas the others have 

hardening. This can also be seen in the correspondent harmonic force surface in 

Figure 4-65. There, two different peaks take shape. Therefore, having two close 

resonance peaks in the HFS (hence in the constant displacement FRFs) results in 

difficulty for identifying the modal parameters. 

 

Figure 4-65. a) Measured Constant Force Frequency-Response Amplitude Curves 

b) Harmonic Force Surface- The Half-Brake-Reuß Beam Mode 1 

The quasi-linear FRFs are obtained using the HFS, cut with the constant 

displacement amplitude planes ranging between 0.066 and 0.296 mm with 24 planes, 

to perform modal identification as shown in Figure 4-66. However, the synthesis did 

not result in good agreement due to the sudden change of modal damping values at 

the lower response amplitude levels. Therefore, the first three response amplitude 

planes are excluded and the procedure is repeated. After applying peak-picking to 

the quasi-linear FRFs, the outcomes are plotted frequency versus displacement 

amplitude in Figure 4-67. Furthermore, the modal parameters are subjected to 

MATLAB's smoothingspline fit. 
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Figure 4-66. Quasi-Linear FRFs Extracted from HFS- The Half-Brake-Reuß Beam 

Mode 1 

 

Figure 4-67. Identified Modal Parameters- The Half-Brake-Reuß Beam Mode 1 

           

Figure 4-68. Comparison of Measured and Synthesized FRFs - The Half-Brake-

Reuß Beam Mode 1 

The reconstruction of force-controlled FRF plots is performed using the fits of modal 

parameters. A good agreement between the experimental curves and the synthesized 

curves is reported in Figure 4-68 for the highest two forcing levels, at forcing levels 
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1 N and 1.5 N.  The lowest two forcing levels, 0.2 N and 0.5 N are not synthesized 

since constant response amplitude planes utilized to synthesize the constant force 

response amplitude plots do not cover the displacement ranges at those forcing 

levels. This experimental application is the last one presented in this thesis. The next 

and last chapter summarizes and discusses the FCT-HFS framework developed 

throughout this thesis
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CHAPTER 5  

5 SUMMARY AND DISCUSSION  

In this thesis, a novel nonlinear system identification method, the FCT-HFS method, 

is developed as an extension and leverage of the RCT-HFS framework [40]. The 

procedure of the method can be summarized as follows: 

1. Measuring the constant force amplitude frequency response functions for 

several different force amplitude values.  

2. Merging these constant force FRFs to construct the associated harmonic 

force surface (HFS). 

3. Obtaining quasi-linear frequency response functions corresponding to 

various values of the displacement response amplitude by cutting the HFS 

constructed with constant displacement amplitude planes. 

4. Determining the modal parameters for each displacement amplitude level 

using the quasi-linear FRF for that amplitude level by employing the modal 

identification methods for linear systems. 

These four steps can be used to construct a modal model of any nonlinear system, 

provided that the nonlinearity in the system is not high enough to cause a jump in 

the frequency response when a force-controlled sine test is applied. 

Constructing a modal model using the standard constant force-frequency response 

functions is the main objective of this study. By applying the FCT-HFS framework 

proposed in this work, one can construct a modal model using the response model as 

the RCT-HFS framework works. 

The novel framework developed in this study is based on the RCT-HFS framework 

that has recently proven itself theoretically and experimentally. On the one hand, 

RCT-HFS exploits the constant response amplitude to construct the harmonic force 

surface and determine the amplitude-dependent modal parameters that are measured 
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experimentally. Furthermore, the modal parameters extracted using the RCT-HFS 

method are obtained from direct measurements. In this study, the FCT-HFS method 

is employed by merging constant force FRFs to construct the harmonic force surface 

and then extracting the quasi-linear FRFs from that surface, which is an indirect 

extraction of the quasi-linear FRFs. 

The major advantage of the method developed in this thesis work is constructing a 

modal model of a nonlinear system by conducting a classical constant force step sine 

testing where complicated controllers are not required to perform one, unlike the 

RCT-HFS method. Furthermore, almost all experimentalists are familiar with this 

classical type of test. In a way, this novel method is an extension and leverage of the 

RCT-HFS framework.  

Some points that should be taken into consideration while employing this method to 

obtain better results are discussed below: 

1. As shown in Chapter 4, where FRFs with jump phenomenon results are 

obtained while applying the method of FCT-HFS, prudent attempts should 

be made because the resultant quasi-linear FRFs of the HFS that are 

constructed using the FRFs with jump behavior results in stepped quasi-

linear FRFs. 

2. Another vital point is deciding the number of constant displacement 

amplitude planes to use so that a curve can be fit to the extracted modal 

parameters. The number of constant displacements that should be included 

depends on the problem, but 7 to 20 planes are generally adequate.  

3. The other point is the decision on the type of curve fitting to the modal 

parameters extracted from the quasi-linear FRFs. Typically, the first-order 

polynomial or smoothing spline type of fit of MATLAB’s fit function is 

convenient for exploiting the natural frequency. The smoothing spline 

method is commonly used in fitting modal damping and modal constants.  



 

 

103 

4. A further point is the sampling frequency of the experiments. The sampling 

frequency meticulously affects the accuracy of the results. Therefore, 

choosing the optimum sampling frequency for the experiment is important.  

5. The spacing between the amplitude of forcing levels is another point that 

affects the accuracy of the results, just like the effect of the sampling 

frequency. 

6. The final observation is that the constant force FRFs should not overlap in 

the frequency-response plane since these FRFs are used to create harmonic 

force surface using linear interpolation. If they overlap, the extracted quasi-

linear FRFs will have an undesired shape, which makes the peak-picking 

method difficult and unreliable.. 

As a future work: 

1. The method developed is verified in this study using beams with bolted 

connections. Therefore, several experimental studies using different 

structures with different nonlinearities can be performed to study the 

performance of the method in such applications. 

2. Further study can be performed on the cases where a jump is observed in 

frequency response. Thus, the possibility of using the FCT-HFS framework 

when a jump occurs can be investigated.  

3. One can develop codes for the curve fitting, since the curve fitting functions 

used here are the built-in functions of MATLAB. 
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ABSTRACT 

Mechanical joints, which are indispensable for almost all mechanical systems, are 

often an important source of nonlinearity due to frictional, backlash and/or preload 

effects. Recent studies have shown that the contact pressure distribution at bolted 

joint interfaces is the key parameter that governs joint friction and, therefore, the 

nonlinear damping mechanism in these systems. The problem is that this pressure 

distribution is susceptible to several different factors: bolt preload, bolt tightening 

order, surface roughness, surface flatness, and misalignments during the assembly 

process. These issues lead to considerable variability and repeatability problems in 

the nonlinear dynamics of jointed structures. Consequently, the accurate 

identification of nonlinear damping in jointed structures is still a challenging task. 

The combined use of the response- controlled stepped-sine testing (RCT) and the 

harmonic force surface concept (HFS) constitutes a framework that determines 
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frequency response curves from the same measurement in two different ways; either 

by directly measuring them or by synthesizing them from the identified nonlinear 

modal parameters. Since any possible discrepancy of the frequency response curves 

obtained from the same measurement cannot be attributed to the repeatability issue, 

the RCT-HFS framework validates the accuracy of the identified nonlinear modal 

parameters in a sense bypassing the repeatability problem. In this study, this novel 

feature of the RCT-HFS framework is used in identifying and validating the accuracy 

of the modal model of a benchmark beam with a bolted lap joint. 

Keywords: Joint nonlinearity, friction nonlinearity, response-controlled stepped-

sine testing, harmonic force surface, repeatability 

1. REPEATABILITY ISSUE 

Vibration responses of jointed structures repeatedly measured under the same 

excitation condition can be very different from each other [1]. This poor repeatability 

in measurements makes it difficult to understand the nonlinear dynamics of 

mechanical joints and to develop a reliable and accurate mathematical model from 

experiments. Remarkable studies have been published recently that clarify the causes 

of the repeatability issue in jointed structures (e.g. [2-3]). In these studies, it is shown 

that the interfacial contact pressure distribution is the key metric that affects the 

nonlinear dynamics of mechanical joints as well as the measurement repeatability. It 

is also shown that this pressure distribution is very sensitive to various factors such 

as the topography of the contact interface (flatness and surface roughness), bolt 

tightening order, bolt preload, and alignment issues during the assembly process. 

Some of these factors change considerably not only in the case of 

disassembly/reassembly but even in the case of the repeated measurements of the 

same assembly, which highly affects the contact pressure and therefore the 

measurement repeatability. In [2], it is demonstrated that a well-controlled assembly 

procedure can highly improve measurement repeatability. Furthermore, it is revealed 

that lower surface roughness considerably reduces the sensitivity of the contact 
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pressure to bolt preload and bolted tightening order, which also results in better 

repeatability. 

Although significant progress has been made in understanding the nonlinear 

characteristics of mechanical joints and improving repeatability as discussed above, 

developing an accurate mathematical model for joints still remains a challenging 

problem. In a recent joint work [4], the nonlinear dynamics of a jointed beam have 

been studied by applying several different identification methods such as the Hilbert 

Transform method, Peak Finding and Fitting method to the free decay response data 

measured by impact testing and shaker ringdown testing. In the same work, a 

significant discrepancy was reported between the backbone curves and nonlinear 

modal damping curves identified from these methods with the ones obtained from 

classical force-controlled stepped sine testing. Whether this discrepancy is due to the 

theoretical/practical limitations of the studied identification methods or the 

repeatability issue remains ambiguous. On the other side, since the modal damping 

obtained from force-controlled testing is identified indirectly by assuming the input 

energy provided by the shaker is equal to the energy dissipated by bolted joints of 

the beam, it is also disputable whether this modal damping constitutes an accurate 

reference to validate other identification techniques. 

An important advantage of the RCT-HFS identification framework [5] compared to 

the aforementioned identification methods is that it is capable of determining 

frequency response curves from the same measurement data set in two different 

ways; either by extracting them from the HFS or by synthesizing them from the 

identified nonlinear modal parameters based on the Single Nonlinear Mode (SNM) 

theory [6]. Since any possible discrepancy of the frequency response curves 

reproduced from the same measurement by two different approaches cannot be 

attributed to the repeatability issue, the RCT- HFS framework provides a reliable 

mean of validating its theoretical foundation, i.e. the SNM theory, in a sense 

bypassing the repeatability problem. Of course, if the structure suffers from poor 

repeatability, the problem is still there and can be studied separately by applying 

the RCT-HFS framework on repeated measurements and obtaining uncertainty 
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bounds of identified nonlinear modal parameters as shown in the case of a real 

missile in [5]. 

In a short period of time, The RCT-HFS identification framework has been 

successfully applied to a wide range of nonlinear systems; a T-beam benchmark with 

local cubic stiffness nonlinearity and a real missile with moderate damping 

nonlinearity due to bolted joints [5], a metal strip that exhibits strong geometrical 

(distributed) nonlinearity [7, 8], a nonlinear micro- electromechanical device with 

stack-type piezo-actuator [9] and the control fin actuation mechanism of a real 

missile [10]. In this study, the framework is successfully applied to a recently 

proposed benchmark beam with bolted lap joint, namely the Orion beam [11]. 

2. APPLICATION OF THE RCT-HFS FRAMEWORK TO THE 

ORION BEAM 

In this study, the RCT-HFS identification method is applied to a benchmark 

structure, the so-called Orion beam recently proposed in [11]. The structure consists 

of two thin beams connected by three bolted joints with contact patches on each 

connecting bolt. In [11], the Orion beam is subjected to a series of constant-force 

stepped-sine testing by using the experimental setup shown in Fig. 1. The beam is 

excited by a modal shaker at a point close to its clamped end. The response is 

measured by a laser vibrometer. All the details about the dimensions of the beam, 

data acquisition and control strategy can be found in [11]. Frequency response 

functions (FRFs) measured at different levels of excitation force amplitude and 

tightening torque are also provided in [12] as an open-source dataset to help different 

research groups to test the identification methods they have developed. 

In the RCT-HFS framework, the usual practice is to conduct a series of response-

controlled stepped-sine testing by keeping the displacement amplitude of a selected 

control point (usually the driving point) constant and to measure constant-response 

receptances which turn out to be quasi-linear even in the case of strongly nonlinear 

systems [5, 7-10]. Then, these receptances are processed by using standard linear 

modal analysis techniques to extract response-level dependent nonlinear modal 
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parameters (natural frequency, modal damping ratio, and modal constant). On the 

other side, the HFS is constructed by using harmonic force spectra measured at 

different constant displacement amplitude levels. By cutting the HFS with constant 

force planes, one can extract constant-force frequency response curves including 

unstable branches if there are any. Finally, the accuracy of the identified nonlinear 

modal parameters is validated by comparing constant-force receptances synthesized 

from these parameters (in a Newton-Raphson solution scheme) with the ones 

extracted from the HFS. However, [11, 12] provide only the constant-force FRFs for 

the Orion beam but not the constant-response FRFs. In this study, this issue is solved 

by using the HFS concept in a novel way different than its usual implementation as 

explained below. 

 

Fig. 1. Orion beam experimental setup [11] 

In [12], constant-force mobility (velocity/force) data are measured around the 3rd 

mode of the Orion beam at 20 cNm tightening torque level. These data are converted 

into frequency response curves as shown in Fig. 2(a). Since the nonlinearity is 

relatively weak, the frequency response curves do not exhibit any jump and are very 

smooth. Consequently, these curves are merged to construct a smooth HFS as shown 

in Fig. 2(b). Cutting this HFS with constant displacement amplitude planes gives V-

shaped harmonic force spectra. Finally, dividing selected constant displacement 
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amplitudes with corresponding harmonic force spectra gives the quasi-linear 

constant-response FRFs as shown in Fig 3. It is important to note that the main 

motivation behind the invention of the HFS was accurately identifying unstable 

branches and turning points of constant-force FRFs that exhibit the jump 

phenomenon in the case of classical constant-force testing. Therefore, in the case of 

strongly nonlinear systems, the HFS is used to obtain constant-force FRFs from the 

measured constant-response measurements. However, as shown in this study, this 

procedure can be reversed in the case of weakly nonlinear systems. This novel 

implementation of the HFS concept can be very useful to identify the model 

parameters of nonlinear structures very accurately as shown below. 

 

Fig. 2. Construction of the HFS from the constant-force frequency response curves 

for the 3rd bending mode at 20 cNm tightening torque: (a) constant-force frequency 

response curves (b) Harmonic Force Surface (HFS) 
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Fig. 3. Extraction of the quasi-linear constant-displacement FRFs from the HFS for 

the 3rd bending mode at 20 cNm tightening torque 

Once the quasi-linear constant-response FRFs are obtained from the HFS as shown 

in Fig. 3, they can be processed by using standard linear modal analysis techniques 

to extract modal parameters corresponding to each displacement amplitude level. In 

this study, constant-response FRFs are processed by using the simple pick-picking 

algorithm, and response level depended nonlinear modal parameters are obtained as 

shown in Fig. 4. An important advantage of the RCT-HFS framework over most of 

the state-of-the-art identification techniques is that it identifies accurate modal 

models of nonlinear structures without necessitating the apriori knowledge of the 

location and/or the type of nonlinearity, and it can be used even for distributed 

nonlinearity. In [11], a Duffing-Van der Pol oscillator model is assumed for the 

Orion beam, and the parameters of that model are determined iteratively by using the 

measured constant-force FRFs. The issue with such parametric modeling is that it 

can be computationally expensive or not possible at all in the case of complex 

engineering systems 
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Fig. 4. Variation of modal parameters with response amplitude: (a) natural 

frequency (b) modal damping ratio 

The final step of the RCT-HFS framework is the demonstration of the accuracy of 

the identified nonlinear modal parameters. To achieve this goal, constant-force 

FRFs are synthesized from the identified nonlinear modal model by using the SNM 

theory [6] and the Newton-Raphson solution scheme. These synthesized FRFs are 

compared with the ones directly measured by constant-force testing [11-12] in Fig. 

5. As can be seen from the figure, the match between the synthesized and directly 

measured data is perfect, which proves the accuracy of the identified nonlinear 

modal model. 

A very interesting and important observation that can be made from Fig. 4 and Fig. 

5 is that although the nonlinear model parameters were experimentally obtained for 

the displacement levels between 0.005 mm and 0.025 mm as seen in Fig. 4, the 

constant-force FRFs corresponding to the 10mN and 200 mN covering response 

amplitudes below 0.005 mm and above 

0.025 mm are also very accurately synthesized as shown in Fig. 5. This is achieved 

by a successful curve fitting and extrapolation process using the fit function of 

Matlab. A second-order polynomial is fitted to the natural frequency and 

smoothing spline curves are fitted to the modal damping ratio and modal constant, 

which satisfactorily extrapolates the modal parameters at amplitude levels below 

0.005 mm and above 0.025 mm. 
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Fig. 5. Validation of the identified nonlinear modal parameters by comparing 

constant-force FRFs synthesized from these parameters with the ones directly 

measured by constant-force testing 

3. DISCUSSIONS AND CONCLUSIONS 

Poor repeatability in measurements of jointed structures makes it a challenging task 

to understand the nonlinear dynamics of mechanical joints and to develop reliable 

and accurate mathematical models from experiments. In this study, the RCT-HFS 

framework, which has been successfully applied to a wide range of structures in a 

short period of time, is applied for the nonlinear modal identification of a recently 

proposed benchmark beam with a lap joint, the so-called Orion beam. Since the 

experimental data available in the literature consists of constant-force FRFs, the HFS 

is constructed in a novel way by merging constant-force frequency response data, 

contrary to its usual implementation which uses constant-response 
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measurements. Cutting the HFS with constant displacement amplitude planes gives 

quasi-linear constant-response FRFs. These FRFs are then processed with a simple 

peak-picking method to identify nonlinear modal parameters as functions of 

response amplitude. The perfect match between the constant-force FRFs obtained 

from direct measurement and the ones synthesized from the identified nonlinear 

modal parameters demonstrates the accuracy of the RCT-HFS method. Since the 

constant-force FRFs are obtained from the same measurement in two different ways, 

the accuracy of the identified nonlinear modal parameters is shown in a sense 

bypassing the repeatability problem. Of course, the repeatability problem is still there 

and can be studied separately by applying the RCT-HFS framework on repeated 

measurements and obtaining uncertainty bounds of identified nonlinear modal 

parameters. Also, since the nature of the RCT measurements requires keeping the 

vibration amplitude of the excitation point constant, unlike the constant amplitude 

forcing testing approach, the system does not move into an uncontrolled high 

amplitude oscillation regime at and around the resonance frequencies. In an RCT-

HFS framework, the resonance is observed with decreased forcing amplitudes only; 

therefore, it avoids drastic changes in alignments and contact conditions as well as 

reduces the stress levels around the joint region which is expected to reduce the 

severity of the repeatability problem in comparison to constant amplitude forcing 

measurements. This point will be studied in future work. 
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