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ABSTRACT

OBTAINING MODAL MODELS OF A NONLINEAR STRUCTURE USING
FORCE-CONTROLLED FREQUENCY RESPONSE FUNCTIONS

Giirbliz, Muhammed Fatih
Master of Science, Mechanical Engineering
Supervisor: Assoc. Prof. Dr. M. Biilent Ozer
Co-Supervisor: Prof. Dr. H. Nevzat Ozgiiven

July 2024, 124 pages

Identification of physical and modal parameters of an engineering structure is
important in the field of structural dynamics in order to establish input and output
(i.e. forcing and displacement) relationships of the structure. Linear structure
identification is a rather well-established field thanks to the research performed on it
over several decades. Modal analysis is the most widespread approach used in this
area. On the other hand, nonlinear system identification is significantly more
challenging and there has been great interest in it over the recent years. There are
several different and novel identification approaches proposed by different
researchers in the nonlinear structural dynamics field. Response-controlled stepped
sine testing (RCT) is one of these methods which is implemented by keeping the
response amplitude of a degree of freedom constant over different excitation
frequencies. It offers important advantages such as not needing to know nonlinearity
infected coordinates and the type of nonlinearities in the structure, and provides a
modal model for the whole nonlinear structure. However, most of the experimental
methods and testing hardware are compatible with constant amplitude forcing tests
rather than constant response tests. This thesis aims to introduce a new approach that
extends the use of the response-controlled nonlinear structural identification method

to the structural response data acquired with constant amplitude forcing tests. The



proposed approach first forms a harmonic force surface (HFS) which is obtained
from the measured response through constant force amplitude tests. The constant-
response frequency response functions (FRFs) are obtained from this surface data
and the modal parameters of the nonlinear structure are identified. The proposed
method is validated using numerical case studies, experimental data shared by other
researchers as well as the experiments performed as a part of this thesis. This study
has the potential to extend the applicability of nonlinear structural identification with
response-controlled testing by making it compatible with constant amplitude force

data and testing equipment.

Keywords: Nonlinear System Identification, Nonlinear Experimental Modal
Analysis, Response-Controlled Stepped-Sine Testing, Force-Controlled Stepped-

Sine Testing, Harmonic Force Surface
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0z

KUVVET KONTROLLU FREKANS CEVAP FONKSiYONLARI
KULLANILARAK DOGRUSAL OLMAYAN BiR YAPININ MODAL
MODELLERININ ELDE EDIiLMESI

Giirbiiz, Muhammed Fatih
Yiiksek Lisans, Makina Miihendisligi
Tez Yéneticisi: Doc. Dr. M. Biilent Ozer
Ortak Tez Yéneticisi: Prof. Dr. H. Nevzat Ozgiiven

Temmuz 2024, 124sayfa

Bir miithendislik yapisinin fiziksel ve modal parametrelerinin tanimlanmasi, yapinin
girig ve ¢ikis (yani zorlayici ve yer degistirme) iliskilerini kurmak amaciyla yapisal
dinamikler alaninda dnemlidir. Dogrusal yap1 tanimlama, lizerinde yapilan onlarca
yillik aragtirmalar sayesinde oldukca iyi kurulmus bir alandir. Modal analiz, bu
alanda kullanilan en yaygin yaklasimdir. Diger yandan, dogrusal olmayan sistem
tanimlama Onemli Ol¢lide daha zordur ve son yillarda biiyiik ilgi gérmektedir.
Dogrusal olmayan yapisal dinamikler alaninda farkli aragtirmacilar tarafindan
onerilen birka¢ farkli ve yenilik¢i tanimlama yaklasimi bulunmaktadir. Yanit
kontrollii adimli siniis testi (RCT), farkli uyarim frekanslar1 boyunca bir serbestlik
derecesinin yanit genligini sabit tutarak uygulanan bu yontemlerden biridir.
Yapidaki dogrusal olmayanlik etkilenmis koordinatlari ve dogrusal olmayanlik
tiirlerini bilmeye gerek duymamak gibi 6nemli avantajlar sunar ve tiim dogrusal viii
olmayan yap1 i¢cin modal bir model saglar. Ancak, ¢ogu deneysel yontem ve test
donanimi, sabit yanit testlerinden ziyade sabit genlik zorlayici testlerle uyumludur.
Bu tez, sabit genlik zorlayici testlerle elde edilen yapisal yanit verilerini kullanarak
yanit kontrollii dogrusal olmayan yapisal tanimlama yonteminin kullanimin

genisleten yeni bir yaklasim tanitmay1 amaglamaktadir. Onerilen yaklasim, ilk olarak

vii



sabit zorlayic1 genlik testleri ile Olgiilen yanit iizerinden elde edilen harmonik
zorlayici yiizeyini (HFS) olusturur. Bu yiizey verilerinden sabit yanit frekans yanit
fonksiyonlar1 (FRF'ler) elde edilir ve dogrusal olmayan yapinin modal parametreleri
tamimlanir. Onerilen yontem, sayisal vaka calismalari, diger arastirmacilar tarafindan
paylasilan deneysel veriler ve bu tezin bir parcasi olarak gergeklestirilen deneylerle
dogrulanmistir. Bu ¢alisma, sabit genlik zorlayici veri ve test ekipmanlari ile uyumlu
hale getirerek yanit kontrollii testlerle dogrusal olmayan yapisal tanimlamanin

uygulanabilirligini genisletme potansiyeline sahiptir.

Anahtar Kelimeler: Dogrusal Olmayan Sistem Tanimlama, dogrusal olmayan
deneysel modal analiz, Tepki Kontrollii Kademeli Siniis Testi, Kuvvet Kontrollii

Kademeli Siniis Testi, Harmonik Kuvvet Yiizeyi
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CHAPTER 1

INTRODUCTION

1.1 Motivation of the Thesis

Different engineering disciplines design and analyze various complex systems for
several purposes. Specifically, civil engineers design buildings, including tall ones,
which may experience high amplitudes of vibrations due to their height.
Furthermore, mechanical and aerospace engineers design and analyze systems such
as aircraft, rockets, and automobiles. To understand the behavior of such systems,
they need to be modeled using mathematics. Therefore, system identification is used
to find the parameters of the system which relate the system's input to its output.
Various methods [1] have been utilized for linear system identification to understand
the dynamics of natural or man-made systems. However, these systems may behave
nonlinearly (in general, they behave nonlinearly). For instance, in structural
vibrations, different types of nonlinearities exist. Geometric nonlinearity occurs due
to the extensive amount of displacement. Nonlinear material behavior might be
recognized due to the constitutive law related to nonlinear stress and strain. Damping
is also one of the main contributors to nonlinearity in natural systems whose actual
behavior can be highly complicated [2]. One can add other sources of nonlinearity

from the literature to this list.

These nonlinear behaviors make the analysis of the actual systems harder and
complicated. To analyze nonlinear system behavior, researchers have developed

several methods for the identification of nonlinear systems.
A nonlinear system identification process generally includes three stages [3]:

e Checking existing nonlinearities in the system and their detection.

e Determining the location of the nonlinearity and characterizing its type.



e Obtaining the values of the nonlinear system parameters.

A literature review of nonlinear system identification is conducted in the following

section.

1.2 Literature Review

As discussed in section 1.1, various approaches and techniques are available for
nonlinear system identification. The literature on non-linear system identification is
quite extensive, so this section reviews relevant literature on nonlinear system

identification in structural dynamics.

This review is based on Kerschen et al.'s [2] classification of nonlinear system
identification methods, which can be grouped into seven categories: linearization,
time and frequency domain methods, modal methods, time-frequency analysis,
black-box modeling, and structural model updating. The review first summarizes
each category by selecting the primary references from the review papers [2, 4],
followed by a detailed explanation of three recently proposed methods at the end of
the section.

1. Linearization methods: When dealing with harmonic forcing and response of
systems, two methods commonly used as a basis for nonlinear system identification
in structural dynamics are the harmonic balance method and the describing function
method. For instance, Wang and Zheng [5] developed the equivalent dynamic
stiffness mapping technique, and the method was validated on a metal mesh damper.
Moreover, some researchers made use of time varying models by applying small
time steps to achieve linear identification. Interesting research has been published by

Sracic and Allen [6] using linear time-periodic approximations.

2. Time-domain methods: When data are represented as a time series, such as force
or acceleration, the method used for identification is referred to as a time-domain
method. Masri and Caughey [7] proposed a restoring force surface (RFS) method to

identify nonlinear systems. The method was helpful for a single degree of freedom



systems having nonlinearities and requires the system’s displacement, velocity, and
restoring force acting to create the RFS. SDOF application with a sinusoidal forcing
was examined in their paper. Another method is the time-domain nonlinear subspace
identification (TNSI) technique applied to nonlinear mechanical systems with
smooth nonlinearities by Marchesiello and Garibaldi [8]. Furthermore, an
application to an aircraft with non-smooth nonlinearities has been performed by Noel
et al. [9] using TNSI.

3. Frequency-domain methods: The data analyzed in frequency-domain
identification exhibit greater diversity than those analyzed in the time domain. These
data can manifest in various forms, such as Fourier spectra, frequency response,
transmissibility functions, or power spectral densities. One of the promising
frequency-domain methods is the nonlinear identification through feedback of the
outputs (NIFO) developed by Adams [10]. Ozer et al. [11] proposed a new approach
that involves using the describing function method to detect nonlinearity in a multi-
degree of freedom system and then identifying the type and parameters of the system.
This method can be utilized when nonlinearity exists between the ground and any
degree of freedom of the system. The frequency domain nonlinear subspace
identification method developed by Noél and Kerschen [12] was applied to the
benchmark for nonlinear structural identification (BENSI) by Carri and Ewins [13].

4. Time-frequency methods: Nonlinear vibrations are characterized by the fact that
the system's natural frequency and damping coefficient can vary with time,
depending on the type of nonlinearity present. For instance, techniques like the
wavelet and Hilbert transforms have been consistently employed to identify the
backbone curves of the systems, such as beams with localized nonlinearities [14] and

jointed structures [15].

5. Black-box methods: If one has difficulty in determining a nonlinearity model that
is accurate enough, relying on physical insight can be very helpful. However, if
physical insight is not available or the results are not satisfactory, it is advisable to

turn to nonlinear black-box modeling. A nonlinear black-box model is a type of



model that can be used to describe almost any kind of nonlinear dynamics using only
data. Some methods under this subsection for nonlinear system identification are
artificial neural networks, wavelet networks, and neuro-fuzzy models. However,
neural network methods are the most appealing ones. A neural network method has
been applied to a semi-active damper [16], and two case studies, Box and Jenkins
gas furnace, and an experimental ball-and-tube system [17] for nonlinear system

identification.

6. Structural model updating: Resorting to models with many degrees of freedom
(DOFs) becomes necessary when investigating more complex structures in a wider
frequency range. However, estimating all the model parameters from experimental
measurements can quickly become unmanageable. To solve this problem, structural
modeling techniques that calculate the model parameters based on the known
geometrical and mechanical properties of the structure can be used. Enhancing
structural models by comparing them with vibration measurements conducted on the
actual structure is essential. This process is commonly known as structural model
updating. Based on the Bayesian inference, some nonlinear system identification
methods as a model updating framework are applied to a mechanism that uses
rotational energy to generate electricity [18] and to a numerical three-floor shear
building model [19].

7. Modal methods: Modal methods offer a highly advanced technique for system
identification, where the system is defined using modal natural frequencies, modal
damping, and mode shapes. Thanks to the pioneering work of Rosenberg [20-22],
nonlinear normal mode (NNM) theory has become the benchmark for modal
methods in nonlinear system identification. By framing to find nonlinear modal
parameters presented in NNM theory as nonlinear system identification, NNM
theory provides a means to identify the nonlinear modal parameters that govern the
system's response. As an example, for this category, a nonlinear resonant decay
method was proposed. The method was validated using a 5 degree of freedom system
and nonlinear panel structure [23], wing/pylon/store experimental setup [24], and a
real airplane test data [25].



Review papers [2, 4] provided detailed explanations and references for nonlinear

system identification methods to conclude these subcategories.

More specifically, three trending nonlinear system identification and testing
techniques have been proposed and appealed to researchers from both industry and
academia. Those are response-controlled stepped sine testing (RCT), control-based
continuation (CBC), and phase-locked loop (PLL). All three have common features;
they do not need prior knowledge of nonlinearity types, locations, and numbers.
Therefore, this powerful property makes these nonlinear system identification
methods promising and appealing. Details of those are given in the following

paragraphs.

Firstly, Renson et al. [26] proposed a robust method (control-based continuation,
CBC) to extract the backbone curve of the nonlinear systems and compared it with
the resonant-decay method. For verification and validation purposes, a single degree
of freedom oscillator with base excitation was used with a single point, one
harmonic. It was proven that CBC overcame the presence of bifurcations and
stability changes that might face the system. Finally, the method not only extracted
the backbone curve of the underlying system but also gave the periodic solution of
the system. Some works that have used and extended the technique of CBC are listed
in these refs. [27-34].

Secondly, Peter and Leine [35] developed phase-locked-loop (PLL) technique. They
introduced an innovative nonlinear mode indicator function based on power, which
is simple to implement. The PLL controller automates the tuning of the excitation
phase, resulting in significant time savings with this closed-loop controller. The
methodology was tested on a clamped steel beam to demonstrate its effectiveness,
which showed faster and more robust tracking of the backbone curve with this

controller. Additional works building on this technique can be found in refs. [36-39].

Finally, Karaagach and Ozgiiven [40] generalized the response-controlled testing
method proposed by Arslan and Ozgiiven [41] for systems with nonlinear elements

between a single coordinate and ground, to systems with many distributed nonlinear



elements. The RCT (Response-Controlled stepped sine Testing) method developed
for obtaining nonlinear modal parameters (modal model) of a nonlinear system is
also the basis that is used in this study. It makes use of the exciting outcome of single
NNM theory that was proposed by Szemplinska-Stupnicka [42, 43], in which it was
shown that using a single nonlinear normal mode is sufficient for representing the
response of a nonlinear system around a resonance. With this, the proposed method
first constructs a modal model of a nonlinear system by exciting the system at the n'"
degree of freedom at constant displacement amplitude levels for a single NNM. The
nonlinear system resulted in quasi-linear frequency response functions at the end due
to constant displacement amplitude testing, which makes it easier to calculate modal
parameters using linear modal fitting techniques such as the peak-picking method.
Afterward, these quasi-linear FRFs measured at different displacement amplitude
levels are used to obtain amplitude-dependent modal parameters by curve fitting to
these experimental points. Furthermore, the harmonic force surface (HFS) proposed
in this study is constructed by merging the quasi-linear FRFs (the x-axis is the
frequency, and the y-axis is displacement after converting FRFs to displacement)
along the force axis. One can extract force controlled, classical FRFs by cutting HFS
surface with constant force planes. The RCT-HFS concept later used by Karaagagli
and Ozgiiven [44] to obtain backbone curves of strongly nonlinear systems. They
used a 5-degree-of-freedom discrete system with cubic stiffness, and an experimental
T-Beam system to verify and validate the technique. The method is also applied to a
control fin actuator mechanism in the same paper, to a geometrically nonlinear
structure [45], and to a stack-type piezoelectric actuator mechanism that exhibits
high stiffness and damping nonlinearity [46]. Moreover, Karaagacli and Ozgiiven
[47] used the RCT-HFS approach successfully for a nonlinear system with highly
nonlinear damping. Recently, Ekinci et al. [48] proposed a new nonlinear structural
modification method based on RCT-HFS framework and the structural modification
method proposed for linear systems [49].

To conclude, these three recent nonlinear system identification methods are powerful

and promising in the context of nonlinear system identification. Furthermore, the



RCT-HFS method requires a more basic controller strategy to perform, which makes

it outstanding among the others.

New nonlinear system identification methods are required to be developed due to the
nature of the nonlinear mechanical systems. A novel method is proposed in this
study. The aim of the method is to construct nonlinear modal models of nonlinear
mechanical systems using force-controlled frequency response functions. The RCT-
HFS method [40] developed by Karaagach and Ozgiiven is extended to this end.
Hence, this thesis leverages the RCT-HFS method and aims to extend the advantages
of the RCT-HFS concepts to the conventionally used constant force sine testing
method. The harmonic force surface concept is first utilized to achieve that goal by
merging the constant force frequency-displacement curves conducted at different
forcing levels. Cutting the resultant harmonic force surface at constant displacement
planes gives quasi-linear FRFs, from which nonlinear modal parameters can be

determined.

The theory of the method is explained in detail in Chapter 3 with a summary of main
points: single nonlinear normal mode theory, response-controlled step sine testing
and harmonic force surface concepts. Furthermore, some numerical examples are
given to validate and verify the proposed method. Afterward, an experimental
validation and verification are made using a benchmark beam from the literature in
TUBITAK-SAGE. Finally, some real experimental data from the nonlinear

mechanical system literature is exploited to validate and verify the method further.

An output of the thesis is also given in [50], which is the experimental data-based
validation of the proposed method, the force controlled stepped sine testing-
harmonic force surface (FCT-HFS) framework.

Hence, this study is believed to provide the RCT-HFS methodology to a broader
community of researchers from industry and academia with experimental

capabilities.



1.3 Outline of Thesis

The organization theme of the thesis is as follows:

Chapter 2 details nonlinear systems, quasi-linearization of nonlinear equation of

motions and solution strategies for solving nonlinear systems of equations.

Chapter 3 first gives an insight into the RCT-HFS method and provides the procedure
of the proposed novel method which links FCT-HFS and RCT-HFS methods.
Numerical applications of the method are also provided for validation and

verification purposes.

Chapter 4 gives the application of the proposed method to real systems. First
experiments are conducted on a nonlinear structure called the Brake-Reuf3 beam in
TUBITAK-SAGE to validate the proposed approach. Then, three systems are taken
from the literature to verify further and validate the method. These systems are the
Orion beam, the half Brake-Reuf3 beam, and the length-modified Brake-Reul3 beam.

They are studied using the data provided in the literature.

The thesis is closed with Chapter 5, which contains the summary and conclusion on

the results of the proposed method.



CHAPTER 2

NONLINEAR RESPONSE OF DYNAMIC SYSTEMS

After demonstrating the significance of mathematical modeling of real engineering
systems, it becomes crucial to solve them. This chapter focuses on the solution of
the nonlinear equation of motion. Firstly, the nonlinear equation of motion is
presented briefly. Then, harmonic balance and describing function methods are
introduced for converting the nonlinear equations of motion to the algebraic
equations. Finally, various approaches to solving the nonlinear equations are

discussed.

2.1  Nonlinear Equation of Motion

The differential equation of motion of a nonlinear MDOF system can be written as

Mx(t) + Cx(t) + iHx(t) + Kx(t) + fn(x(t), x(t), ...) = fexe(t) (2.1)

where M, C, H and K are the mass, viscous damping, structural (hysteric) damping
and stiffness matrices of the underlying linear system, respectively. Furthermore, in
equation (2.1), x(t) is the response vector while fey(t) is the external forcing
vector acting on each degree of freedom of the system. Finally, fy(x(t), x(t), ...)
is the vector that contains the nonlinear internal forces in the system. One observes
that the nonlinear force in the system may be a function of displacement, velocity,
and other factors, depending on the physics of the problem. Under harmonic forcing,
the external forcing for the linear part of the problem can be expressed as

Im(fe'*t),  ifsinusoidal forcing (2.2)

Re(fe*t),  if cosine forcing

fext(t) = {

Then, the response of the system is expressed as



Im(xe™@t),  ifsinusoidal forcing (2.3)
Re(xei“’t), if cosine forcing

Expanding equation (2.1) gives
(—w?M + iwC + iH + K)xe'“t + fy(x(t)) = fexe(t) (2.4)

A typical example of a nonlinear system is schematically illustrated in Figure 2-1.

— Fsin(wt) —| Nonlinearity I—
—>  x(t) > Xx(t) —>  X3(t)
- AAN—] —A\A\N\— —\/\V/\—
k1 ml kz m2 k3 m3 k4
IT' _E C; _E C3 {C4
ks
AVAVAV,

Figure 2-1. Typical Discrete MDOF System with any Type of Nonlinearity Element

2.2 Quasi-Linearization of Nonlinear Equation of Motion

2.2.1 Describing Function Method (DFM)

The concept of describing functions has its basis in control engineering. On the other
hand, Tanrikulu et al. [51] developed a describing function methodology-based
method. In linear systems, input and output can be related to transfer functions.
However, this transfer function cannot be defined in nonlinear systems due to the
nonlinear behavior of the system. Therefore, they proposed a method to relate the
input and output in nonlinear systems. Figure 2-2 shows how describing function

and transfer function work.
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Linear Systems Nonlinear Systems

Output Input Describing Output
Function

Input

Transfer Function

Figure 2-2. Transfer and Describing Functions

Recall (2.1),

Mx(t) + Cx(t) + iHx(t) + Kx(t) + fy(x(t), x(t), ...) = fext(t) (2.5)

‘'™ row in nonlinear force vector ‘f’ is expressed as

n (2.6)
IOEDRIC

r=1

Where n,;(t) is the resultant nonlinear internal force due to nonlinear elements

existing in the system between coordinate ‘r’ and ‘j’°, and n is the number of DOFs.

This nonlinear force then can be rewritten as

yrj(t) = x.(t) — x;(1), ifr+j (2.7)

nrj(t) = nrj(yrj(t),)'lrj(t), ), { yr](t) = xr(t), ifr = j

Assuming periodic excitation of external force in sine and bias terms as

fext(t) =fo+ Im(Z fmeimwt>
m=1

th»

(2.8)

where ‘f,,” is ‘m™’ harmonic’s amplitude vector of external forcing. Since the

system is assumed to vibrate periodically, the displacement can be written as

h 2.9
x(t) = xo + Im(Z xmeim“’t> ¢9

m=1

b

where ‘X,,” is ‘m*"*’ harmonic’s amplitude vector of displacement. Furthermore,

nonlinear forcing is written as
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)’rj(t) =Yrijg + Im(

Ory =77

nj(t) = arj, + Im(

i 2T X
Arjo = Efo M (¥ (O, 7 (©), .. )dgp,

P 2
= [ 1 O30, e
"im ~ 211 . ri\Yrjt), Yrjl), ... ’

m=1

(x,-)m,

() ms

(0]

m=1

[0/0)
imwt
> e

ifr+j
ifr=j

imwt
)

Where ‘¢p = wt’. Elements of ‘A’ is then expressed as

(vrj )

Insert (2.15) into (2.12), one gets

rw@=@@4w%+m(

(a r})
(ym)

(o]

m=1

Therefore, nonlinear restoring force is expressed as

fn(x(®), x(), ...)

5

m=0

n,e

—imwt

In (2.17) n,,, can be written in matrix form using DFM as

L

=ApXxy,

12

m=20

m=1,23,..

00, 07

(2.10)

(2.11)

(2.12)

(2.13)

(2.14)

(2.15)

(2.16)

(2.17)

(2.18)



Where 4 is the response dependent nonlinearity matrix due to nonlinear elements in
the analyzed systems. Elements of ‘4’ are then expressed using the above-mentioned

rules as

k
Apyp = Vpp + z vy r=12,..k
=1

s (2.19)
Apj=—v; 1T#j, r=12, ok
Inserting this into (2.5) yields
(—(mw)*M + i(mw)C+ iH+ K+ A,)%0 = fm (2.20)

Taking ‘m=1"in the describing function method is mathematically equivalent to the
first order harmonic balance method 4,, is the response-dependent matrix in DFM,
which results in quasi-linear form as seen in equation (2.20). Further, it is possible
to determine the nonlinear behavior of the system by DFM in a computationally
efficient manner contrary to the time integration methods. However, still an iterative
solution scheme is required to calculate the nonlinear response amplitudes. Hence,
in the following section, solution procedures of nonlinear algebraic equations are

reviewed.

2.3 Solution Techniques of Nonlinear Equation Sets

Throughout this thesis, it is necessary to solve sets of nonlinear equations.
Specifically, in Chapter 3, the forced response of nonlinear equations of motions
requires numerical solutions, and in Chapter 4, forced nonlinear equation sets need
to be synthesized using response dependent modal parameters. In this sub-section,
some approaches to solve these equations are discussed.The Newton-Raphson
method and Newton's method coupled with the arclength-continuation method are

explained, respectively. Hence, this subsection details the solution of the nonlinear

13



algebraic equations in frequency domain. The following chapters use these methods

to determine the nonlinear frequency response functions.

2.3.1 Newton Raphson Method

The Newton-Raphson method, also known as Newton's method, is an alternative
technique widely used for solving nonlinear algebraic equations due to its speed and
fewer convergence issues compared to fixed-point iteration. This method utilizes the
slope of a line tangent to the curve of interest, i.e., first-order Taylor series expansion.
This method can be applied to the classical nonlinear equation presented earlier as

follows
r(x,w) = (—w*M+ iwC+iH+K)Xx+fy—fexe =0 (2.21)
Taylor series expansion of residual vector gives
r(x + Ax,w) = r(x,w) + J(x, w)Ax + 0(4x?) (2.22)

Ignoring the 2" order and higher order terms appearing in (2.22) and setting
ar(x,w)

s(x + Ax, w) = 0 where J(x, w) = o is the Jacobian matrix.
r(x,w) =—J(x,w)Ax (2.23)
Solving for x;,4 from Ax gives
Xiv1 = X — J(x, 0) 7' (x, @) (2.24)

Newton's method is widely used to find system roots, with other works using the
Newton-Raphson method found in literature, including [52, 53] and many others.

2.3.2 Newton’s Method Coupled with Arclength Continuation

Neither fixed-point iteration nor the classical Newton-Raphson method can track the

path in the case of a strong nonlinearity since the Jacobian matrix is close to singular
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at the turning point. Some modifications are made to the nonlinear equation. First,
frequency is added as an additional parameter shown in the following equation.
Adding frequency as an additional unknown increases the number of unknowns, and
one more equation is needed to solve the system of equations. To solve that, an
additional parameter known as the arclength parameter is introduced and the radius

of the hypothetical sphere is shown in Figure 2-3.

q= [Zf)] (2.25)
(xk — xk—1)2 + (" — Wk 1)? = g2 (2.26)

Equation (2.26) can be expressed as

Sxk = xk —xk1 & Sw;, = wk — W (2.27)
_[6xk 2.28
S5qk = ka] (2.28)

Inserting (2.28) into (2.26) gives
h(xk,wk) — 6qkT 6qk —s2 =00 (229)
With this new equation the iterative solution becomes

ar(xk, k) ar(xk, W]

axk Jw r(x’.‘ wk)}

k' — gk — { i

T T T on(xkwf) o {Mx;c,w;«) (2:30)
axf dw

Equation (2.30) is rewritten by defining new parameters to have a neater

representation of it.
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or(xk, wb)  oR(xk k)

= dxk Jw
x’.‘, kY — t
]( i wl) ah(x{(’w{() oh
dxk dw
kK (2.31)
F(xk, o) = [r(xi'wi )l
L’ l h(x:‘, w{c)
Rewriting equation (2.30) gives
—_ _1_
a¥y = qf —J(xk, f) Tk, 0f) (2.32)

The Solution point is denoted by ‘k’ whereas ‘i’ denotes the iteration counter. As
mentioned, the initial guess is crucial when solving the nonlinear equation sets.
Providing a good initial guess results in a fast convergence rate. Therefore, one can
use a tangent predictor to have a fast convergence rate [54, 55], while others can

utilize different predictors methods as well.

Current Solution

1
1
\ ! Point

~
Tangent
Predictor

Solution?2 qu |

|

Figure 2-3. Graphical Representation of Arclength Continuation Method

The arclength continuation method is graphically illustrated in Figure 2-3. As
mentioned, it involves defining an arclength that crosses two possible solution points
at each step. The subsequent frequency can be selected using the method described
above to follow the path. The frequency sweep can be performed from lower to upper

and vice versa. Figure 2-3 illustrates the possible jump phenomenon paths.
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Finally, what happens about resonance, and how does one follow the path around
that? The radius of the hypothetical sphere needs to be small enough to catch the
sharp turns. However, this leads to long computational times. To not sacrifice the
computational time, the adaptive step size is proposed [54].
_ Noptimum (233)
N
Where Noptimum 1S S€t by the user and N is the number of iterations performed at

each solution step. Then,

0.5, ife < 0.5 (2.34)
€ = €, if 05 <e<?2
2, ife>2
Snew = € Sold (2-35)

One can further modify by converting € to exponential number as

Snew = 671/nsold (2-36)

Where n is a positive real number.

Some studies performed by researchers in the field can be found in the literature [56-
60].

17






CHAPTER 3

THEORY AND NUMERICAL APPLICATIONS OF THE FCT-HFS
FRAMEWORK

Chapter 2 presents methods one might need to solve the nonlinear system equations.
Specifically, the Describing Function (DF) and Harmonic Balance (HB) methods are
discussed, which result in converting nonlinear equations of motion into algebraic
equations. Once algebraic equations are obtained, various techniques can be applied
to solve them.

This chapter first delves into the single nonlinear normal mode theory, which
provides a means of expressing the system's response. Explanations of this theory
are provided in detail. As touched on in Chapter 1, the RCT-HFS framework utilizes
the single nonlinear normal mode theory [42]. Furthermore, a more detailed
explanation and implementation, as well as a numerical example of the RCT-HFS
method, are meticulously analyzed. The approach for the FCT-HFS framework, the
proposed method, is then explained, building on these concepts. To conclude,

numerical examples of the FCT-HFS framework are presented.

3.1  Theory of FCT-HFS Framework

As the proposed method is an extension of the RCT-HFS framework, reviewing first
the single nonlinear normal mode (SNNM) theory and then the RCT and HFS

concepts are necessary. After that, the FCT-HFS framework is explained in detail.
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311 Single Nonlinear Normal Mode Theory

The theory of single nonlinear normal mode (SNNM) [42] states that in nonlinear
systems one mode is sufficient to make good predictions near resonance by assuming
that the modes are distinctly separated and no significant coupling occurs. In this

subsection, the theory behind it is briefly discussed.

As indicated in Chapter 2, nonlinear systems are solved by converting the nonlinear
terms to nonlinearity matrix as explained. Equation (3.1) is the frequency domain
representation of the MDOF lumped system.

(—w’M+iH+K+A)x=f (3.1)

where M,H,K and A are the mass, structural (hysteric) damping, stiffness, and
nonlinearity matrices of any MDOF system, respectively. The solution of this MDOF

system can be written as
x = q,$(qr)r (3.2)

Where g, is the amplitude of the r**modal coordinate. ¢(q,.), is the rt* nonlinear
normal mode. Inserting (3.2) to (3.1) and multiplying with ¢(gq,.),, then arranging it
gives the following:

¢(q,)7 (—w*M + iH + K + A)q,$(q:)r = ¢(q,)1 f (3:3)
(_wzmr(Qr) + ih,(q,) + kr(Qr))Qr = ¢(Qr)3:f (34)

Where m,(q,) = $(q, )7 Mp(q,),, kr(ar) = ¢(q,)7 (K + Are)P(q:)r,

h(qr) = ¢(q,)7 (H + Ai) (q,),. Furthermore, m.(q,), k,(q,) and h,(q,) are
modal mass, stiffness, and damping, respectively.

It is essential to recognize that, m,(q,), k,(q,) and h,(q,) are functions of gq,,

rt"modal amplitude.

Equation (3.4) can be taken into parenthesis of m,.(q,-) which leads to the following:
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m,(q-)(—w? + in, (q)wZ(q,) + 07 (q,))ar = ¢ )7 f (3.5)

where w? (CIr) = kr(CIr)/mr(CIr)a Ur(qr) = hr(qr)/(mr(qr)wg (qr))

From here, modal amplitude, g,., can be determined as:

_ ¢(a-)r f (3.6)
m,(q,)(—w? + in,(q,)w?(q,) + w?(q,))

ar

Inserting (3.6) into (3.2) gives

X = ¢(a-)- ()1 f 3.7)
m,(¢:)(—w? + iy (@) wf (g,) + w7 ()

Normalizing the nonlinear normal mode as

a(CIr)r = ¢(Qr)r/\/ m,(q,) (38)

Inserting this into (3.7) gives

‘e ¢(q:)r(ar)rf (3.9)
(_wz + inr(qr)(‘)?g (Qr) + 0)7% (Qr))

Then, receptance can be written as for jt*coordinate of interest, and force is applied

at k" coordinate for lumped (discrete) systems as

_ ¢(q.),(q,)" (3.10)
(—w? + in, (g w2(q,) + 02(q,))

ajk

For viscous damping instead of hysteric damping, receptance can be written as

_ $(a,), B! (3.11)
(—w? + i2¢, (g ww, (q,) + wF(q,))

ajk
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3.1.2 Theory of Response-Controlled Stepped-Sine Testing (RCT) and

Harmonic Force Surface (HFS)

The concept behind the method is worth mentioning. Firstly, consider equations
(3.10) and (3.11); the force spectrum is measured for the determined frequency
interval by keeping the response amplitude constant for several response levels at the

excitation point.

Secondly, the corresponding FRFs, which will be quasi-linear, are used to make
linear modal analysis using the FRFs’ quasi-linearity behavior for each response
amplitude level. Following this procedure, by including all the amplitude levels, one
gets the modal parameters as a function of response amplitude. The measured
harmonic force spectra at those different response amplitude levels are composed
together resulting in harmonic force surface (HFS). The details of the HFS’
construction are shown in Figure 3-5 with an example. The measured harmonic force
spectra at each response amplitude level are plotted along with the third axis, i.e., the

response amplitude axis.

Finally, constant force response amplitude plots are obtained by directly cutting the
HFS with the constant force amplitude planes (which will be experimentally
measured ones) or using the extracted modal parameters (which will give the
synthesized ones). The extraction of constant force response amplitudes from the

HFS is simulated in Figure 3-7.

Now, to better understand the underlying methodology behind the RCT-HFS
framework [40], it is worth working on an example and presenting a flowchart at the

end.

The system shown in Figure 3-1 is a forced SDOF system with cubic nonlinearity.

Its equation of motion is given by equation (3.12).
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——»  Fsin(wt)

Figure 3-1. SDOF example of RCT-HFS Method

mx(t) + ihx(t) + kx(t) + k.x(t)? = Fsin(wt) (3.12)

Using the DF expression for cubic stiffness, the equation of motion can be written

as:

(—w?m + ih + k + 0.75kx?)x = fsin(wt) (3.13)

where X is the response amplitude of the oscillations in the system. where x =

/xﬁel + x2,, is the amplitude of the coordinate. The equation turns out the

following expression as

T )

+ 0.75k,
={o)

The values tabulated in the following table as

[xza -l(; Xin1 0 l {xrel} _ {frel} (3.14)

2 : i
x?el + Xim1 Xim1 fim1

Table 3-1. System Properties of SDOF system
m [kg] k [N/m] h [N/m] k. [N/m3]
1 led 1000 1e6
For the solution of Eq. 3.16, the literature generally uses a constant force as the input

and aims to solve the response amplitudes. However, the numerical implementation

of the RCT approach treats the response amplitude as constant and finds the forcing
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required to achieve this constant response amplitude at a certain degree of freedom.
Therefore, the amplitude of the response is substituted with no phase since the
response is the input and the forcing real and imaginary parts are solved using
equation (3.16). Next, the aforementioned procedure is repeated for several response
levels. In this context, RCT is employed at seven amplitude levels: 10, 20, 30, 40,
50, 60, and 70 mm. The resulting harmonic force spectra are depicted in Figure 3-2.
To generate the quasi-linear FRFs, each displacement value must be divided by its
respective forcing values, and the results are illustrated in Figure 3-3. It is shown that
by keeping the driving point's displacement amplitude, the FRFs come out as quasi-
linear. For each receptance curve, linear modal analysis can be performed to find the
modal parameters at each displacement level of interest. Throughout this thesis, the

peak-picking method is utilized to determine the modal parameters in general.

Force Amplitude vs Excitation Frequency
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Figure 3-2. Harmonic Force Spectra
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5 «10 Quasi-Linear Receptances vs Excitation Frequency
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Figure 3-3. Quasi-Linear FRFs

Basically peak-picking method used here can be summarized in the following

sentences.

1. Resonance peaks are determined in the measured FRFs.

2. Frequencies at the half power points (which are the points where the

receptance amplitude is equal to ;2 of the maximum receptance amplitude)

V@

are determined.

3. Hysteric damping is estimated from

Wi —w?  w,— w; (3.15)
Yr = =

— =~
2w7 Wy

4. Modal constant is estimated from

n n
Ik w? — w? + in,w? Wz — w? + iy, w?
r=1 r=1

Making SDOF assumption around resonance gives

ATl = | ap| _ vre? (3.17)

max
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One finds the modal parameters, namely natural frequency, modal damping and
modal constant using this procedure presented. The next step is to use these

parameters and obtain a fitting function for them.

In the figure below, the markers represent calculated points of modal parameters,
and the solid lines are the smoothingspline curves fitted to those points. The
mathematical background of smoothingspline is given as

d?s\? (3.18)
Pz wi(y; — S(xi))z +(1-p) f <d_x§> dx

Where w;,pand s are weight, smoothing parameter and smoothing spline,
respectively. Generally, p is taken as 1, in which case it stands as a cubic spline that
should give the markers in the fitted curve. However, p is determined based on the
experimental data. For example, in this example, p is determined as 0.99. Therefore,
the fitted curve does not pass through some of the experimental points. Furthermore,
smoothing spline generates piecewise polynomials across the measured points.
These polynomials are presented for the modal constants in Table 3-2 for brevity.
There are 13 measured points so 12 polynomial functions are utilized. An important
point to be mentioned here is what happens at the boundaries. For the sake of
understanding take 0.02 m constant displacement level, although polynomial
functions take two same values at that point, they do not give the measured point.
This happens since smoothingspline determines the value of the function so that a
smooth transition between the intervals is obtained. These modal parameters will be
used to synthesize constant-force frequency-response amplitude plots. Equation
(3.11) needs to be solved to get the constant force frequency-response amplitude
graphs. To achieve that, an iterative solution scheme such as Newton’s method with
arclength continuation is required since displacement amplitude dependent functions

are at each side of the equality.
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Table 3-2. Piecewise Polynomial Equations to Modal Constant

Interval [m] Polynomial Equation
[0.01, 0.02] —206.593326 (x — 0.01)*3 — 0.043400 (x — 0.01)
+ 1.003614
[0.02, 0.03] 328.383209 (x — 0.02)"3 + —6.1978 (x
— 0.02)*2 + —0.105378 (x — 0.02)
+ 1.002973
[0.03, 0.04] —28.142507(x — 0.03)"3 + 3.653696 (x
— 0.03)"2 —0.130819(x — 0.03)
+ 1.001628
[0.04, 0.05] —64.218514(x — 0.04)"3 + 2.809421 (x
— 0.04)"2 —0.066188 (x
— 0.040000) + 1.000657
[0.05, 0.06] —23.539119 (x — 0.05)*3 + 0.882866 (x
— 0.05)"2 + —0.029265 (x — 0.05)
+ 1.000212
[0.06, 0.07] —5.889742 (x — 0.06)*3 + 0.176692 (x
— 0.06)"2 —0.018669 (x — 0.06)
+ 0.999984
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Figure 3-4. Displacement Dependent Modal Parameters

Furthermore, one can construct the harmonic force surface associated with the
system at the same time. Harmonic force spectra are plotted for each displacement
amplitude level in the 3D plot in Figure 3-5. The HFS is then constructed with the
help of linear interpolation between those curves. That is, a linear interpolation is
performed between each response amplitude level shown in Figure 3-5 to create a
surface. Figure 3-6 shows the created harmonic force surface. This HFS is used to
extract the constant force frequency-response amplitude curves. Those are extracted
by cutting the HFS with constant force amplitude planes. Figure 3-7 shows how
constant force frequency-response amplitude curves are extracted from the HFS. A
constant plane corresponding to F=40 N is drawn as seen, then the interception of
the HFS and the plane gives the constant force frequency-response amplitude curves

at that level of forcing.
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Figure 3-5. Creating Harmonic Force Surface
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Figure 3-6. Harmonic Force Surface
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Figure 3-7. Extraction of Constant Force Response Amplitude Curves from the
HFS

Three different forcing values are chosen as an example: 25, 40, and 70 N. These are
synthesized first directly by cutting the HFS and using nonlinear modal parameters.
Figure 3-8 compares the three approaches: constant force, harmonic force surface,
and response-controlled stepped sine testing. As seen from the figure, there is a good
agreement between constant force-controlled testing and the remaining two methods.
Even though RCT is defined for a numerical case study with a single-degree-of-
freedom system, a similar approach can be utilized for experimental studies with a
controller which tries to maintain a constant displacement on the related degree of
freedom. Hence, the RCT-HFS framework can be summarized in Figure 3-9

flowchart.
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Figure 3-8. Comparison of Different techniques
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Figure 3-9. Flowchart of Procedure of RCT-HFS Framework
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3.2  Numerical Applications and Procedure of FCT-HFS Framework

In order to conceptually explain the RCT-HFS method, a simple numerical example
IS given in the previous subsection. Now, the FCT-HFS method is utilized in this
section by giving more complex examples. Two three-degree of-freedom systems
with cubic stiffness are examined before the experimental work is discussed. The
types of nonlinearities can be increased, but two examples are given here for the
brevity of the numerical application part. The other reason is that there are various

examples of real experimental data.

3.2.1 Multi Degree of Freedom (MDOF) System with Cubic Stiffness 1

First, consider the following three-degree of freedom lumped system. The system is
excited at the first degree of freedom with the sinusoidal force with an amplitude of
F. The nonlinear force due to cubic spring can be written as shown in equation (3.19).

Further, numerical values of the system parameters are tabulated in Table 3-3.

Feuvic = kcx® (3.19)

—» Fsin(wt)
—>  Xa(t) —>  X(t) —>  X3(t)

k k k
e e A P A

Figure 3-10. Multi-Degree of Freedom

Table 3-3. System Parameters of 3 Degree of Freedom System

m [kg] k [N/m] h [N/m] k. [N/m3]
1 led 5e2 le7
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Natural frequencies are determined as 76.53 rad/s, 141.42 rad/s, and 184.77 rad/s

using the linear part of the system by solving the eigenvalue problem. Let’s take the

frequency interval as 60-90 rad/s.

In the RCT-HFS method, the system is excited at a constant displacement amplitude
level; conversely, the classical constant force-frequency response functions are used
in this new framework. Detailed information will be given since this is the first
example of the new method.

So first, excite the system at several forcing levels, 9, 11, 13, and 15 N’s. The
measured displacement amplitudes are given in Figure 3-11.

©1073 Frequency-Receptance Curve
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o
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o
©

Receptance Amplitude [m/N]
52825 5 %

©
=

60 65 70 75 80 85 90
Frequency [rad/s]

Figure 3-11. Constant Force Receptance Amplitude Curves of MDOF System-
Cubic Stiffness Example 1

Merging these constant force FRFs to get the harmonic force surface results in:
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Figure 3-12. Resultant HFS after Merging Constant Force Frequency-Response
Amplitude Curves- Cubic Stiffness Example 1
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Figure 3-13. Extraction of Harmonic Force Spectra from the HFS

Constant displacement amplitude planes are utilized to determine the corresponding
quasi-linear FRFs of the system. The associated harmonic force spectra are extracted
from the HFS using constant displacement amplitude planes. Finally, the
correspondent quasi-linear FRFs are found by dividing the response amplitude by
the harmonic force spectra as shown in Figure 3-14. One should remember that these

quasi-linear FRFs determined here are indirect (obtained from constant force input
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simulations) since the system is excited with the constant displacement amplitude

levels to get the quasi-linear FRFs while using the RCT method.

10 Quasi-Linear FRFs

Receptance [mm/N]

5 Y ——8.0000mm —— 11.4181Tmm
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41— —9.7090mm 13.1271mm
——10.2787mm —— 13.6968mm
10.8484mm
3 | | | | | | |
72 73 74 75 76 77 78 79 80

Frequency [rad/s]

Figure 3-14. Quasi Linear FRFs of MDOF System- Cubic Stiffness Example 1

As a side note, the peak-picking method generally determines the modal parameters
throughout this thesis. In some cases, the results of the peak-picking method, the
modal parameters, are used as an initial guess to the least square method to find the

closest values of the modal parameters extracted from the quasi-linear FRFs.

The peak-picking method is utilized to demonstrate the FCT-HFS method in this
example. Then, it is necessary to perform curve fitting during post-processing to
synthesize the force-controlled frequency-response amplitude curves, as illustrated

in Figure 3-15.
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Figure 3-15. Identified Modal Parameters- Cubic Stiffness Example 1

One mode is used to synthesize the frequency response functions, which are then
verified using the algebraic solution of the frequency domain non-linear equations
with constant force amplitude as the input using the arc-length continuation method,
as shown in Figure 3-16. As anticipated, the agreement between the original and

synthesized functions near the resonance frequency is good.

Here, one can observe that at low forcing levels, the match between the original and
the synthesized frequency-response amplitude plots is not so good at the off-
resonance region compared to that at high forcing levels. This may be due to the
nature of the construction of HFS. That is, force-controlled frequency-response
amplitude curves are merged to get the correspondent HFS. One might need to
extrapolate the HFS to get the quasi-linear FRFs at low displacement amplitude
levels, which results in some deviation from the actual values to get the modal
parameters at that displacement amplitude level. Also, the level of success of the
modal fit of the RCT receptances determines the success of the constant amplitude

force receptance simulations.

Until this point, the procedure of the proposed method is examined step by step for
the ease of the following procedure for the following sections.
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Figure 3-16. Comparison of Measured and Synthesized Frequency-Response
Amplitude Plots- Cubic Stiffness Example 1

One might investigate the effects of the following on the constant force receptance
estimations:

1. Taking intermediate force levels.

2. Trying different curve fits to the modal parameters.

3.2.1.1  Adding Intermediate Force Levels

Remember that under section 3.2.1 force-controlled tests are performed at 9,11,13
and 15 N. Now, let’s excite the same system at forcing levels from 9 N to 15 N with

an increment of 0.5 N to investigate the result of the taking more force between the
boundaries.
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Figure 3-17. Refined Force Controlled Tests

Figure 3-18 gives an insight into the modal parameters. A smoothingspline type of
curve fit is utilized for the sake of comparison in terms of force sampling. Firstly,
circles represent the identified modal parameters from the HFS created using the test
with less number of forcing levels, whereas the plus signs represent the tests with
more forcing levels. Secondly, blue curves are for the coarse forcing levels, while
reds are for the refined forces. As seen from the figure, taking more force did not
affect the natural frequency values much. On the other hand, the effect of the

increased force levels can be observed for modal damping and modal constant.
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Figure 3-18. Modal Parameters Comparison Extracted Using Different Sampling
Frequencies of Force

Then, the frequency response curves are synthesized at a single forcing level, 14 N,
that is untested force level at the first test. Figure 3-19 compares the two synthesized
FRFs using FCT-HFS with the simulated one numerically. As seen from the graph,
the more force data sampled case gives more accurate synthesis around the off-
resonance region. Hence, tests at a higher number of forcing levels provide minor
improvements around resonance but significant improvements around off-resonance

which makes test force level planning important based on the desired accuracy level.
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Figure 3-19. a) FRF Comparison b) Detailed View
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3.21.2 Different Curve Fits to the Modal Parameters

In this section, the same data set of 9,11,13, and 15 is utilized, and the effect of the
type of fit on the synthesis is examined. Figure 3-20 compares the curve fits to the
modal parameters. Figure 3-21 compares the synthesized FRFs obtained using
different curve fit types between 75-79 rad/s, around resonance. As observed from
the figure, The closest curve fit type to the actual FRF is cubic spline curve fit,

followed by smoothingspline and polynomial fits.

Afterward, another point that can be considered is what happens when increasing the
frequency sweep in all cases from interval 75-79 rad/s to 75-80 rad/s, using the same
modal parameter curve fits. Figure 3-22 gives an insight into this case. Cubic spline
fit case starts to give inaccurate results frequencies from 79 rad/s to 80 rad/s.
Furthermore, since not all the data points that are extracted from the HFS do not
cover the whole displacement range of the frequency response amplitude curves, an
extrapolation is inevitable as seen in Figure 3-23. In addition, as marked in Figure
3-22 the point where the deviation starts is an extrapolated point.
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Figure 3-20. Comparison of Modal Parameters using Different Curve Fitting
Methods
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Figure 3-23. Modal Parameter Extrapolation

It is apparent that cubic spline fit predicts an unnatural behavior due to the built-in
behavior of boundary conditions in the cubic spline command of MATLAB. On the
other hand, smoothingspline and polynomial curve fits predict this natural behavior
correctly. Although using polynomial and smoothingspline curve fits give accurate
results, one should hesitate to extrapolate these curves and should be prudent while

doing this.

3.2.2 Multi Degree of Freedom (MDOF) System with Cubic Stiffness 2

Now, consider the system in Figure 3-10, subjected to different amplitudes of forcing
levels - 10, 15, 20, and 25 N. The system is excited between 60 and 100 rad/s. In the
previous example, no unstable branches were observed in frequency-response
amplitude curves. The resulting curves are listed in Figure 3-24 as dashed lines. The
solid line of the forcing level 25 N shows a jump behavior in its response curve,
while the dashed is the frequency response amplitude curve with the unstable branch.
Therefore, the harmonic force surface is constructed using the frequency-response

amplitude curves with a jump (solid lines), as shown in Figure 3-25.
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Figure 3-24. Frequency-Response Amplitude Curves-Cubic Stiffness Example 2
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Figure 3-25. Harmonic Force Surface- Cubic Stiffness Example 2

The resultant harmonic force surface is cut using constant displacement amplitudes

to obtain indirect quasi-linear frequency response functions (FRFs). Six constant

displacement planes are utilized to extract the quasi-linear FRFs with displacement

values ranging from 5 mm to 23 mm. The extracted quasi-linear FRFs are listed in
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Figure 3-26. It is observed that the quasi-linear FRFs exhibit stepped shapes on the
right-hand side of the natural frequency due to the cubic stiffness displaying the
hardening behavior of the system, leading to a jump at these forcing levels. That
results in the stepped shapes while extracting quasi-linear FRFs from the interpolated
HFS. However, modal identification should not be performed based on these parts
of the RCT FRF plots since it may lead to incorrect results. A modal curve fitting to
these quasi-linear FRFs can be performed using equation (3.10) to identify the modal
parameters accurately. A custom curve fitting equation is defined, and MATLAB's
curve fitting fit function is used to perform the curve fitting. The curve-fitted quasi-
linear FRFs are shown in Figure 3-27. The modal parameters are then identified
using these curves using the peak-picking method. These results provide valuable
insights for further analysis.
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Figure 3-26. Quasi-Linear FRFs Extracted from HFS- Cubic Stiffness Example 2
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Figure 3-27. Quasi-Linear FRFs Modal Fit- Cubic Stiffness Example 2

The identified modal parameters are shown in Figure 3-28. The force-controlled FRF
curves are synthesized using a smoothing spline curve fit of the modal parameters.
The original frequency-response amplitude curves are obtained and compared using
these modal parameters in Figure 3-29. A good agreement between the original and

the synthesized FRFs is observed, especially near resonance frequencies.
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Figure 3-28. Identified Modal Parameters- Cubic Stiffness Example 2
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Figure 3-29. Comparison of Measured and Synthesized Frequency- Response
Amplitude Curves-Cubic Stiffness Example 2

Some valuable insights and suggestions can be drawn from this example, which are

as follows:

e Incorporating frequency response functions with jump phenomena into the
FCT-HFS analysis leads to stepped quasi-linear FRFs, making modal
identification challenging.

e Several techniques are available to determine the modal parameters of quasi-
linear frequency response functions (FRFs), here peak-picking and curve
fitting are used.

e An alternative approach to addressing the issue of stepped shapes observed
in quasi-linear FRFs involves fitting a polynomial or exponential function to
the part of the FRF that does not present jump behavior. This method offers
a viable solution to the challenge of modeling quasi-linear FRFs accurately.
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e Modal parameters can be directly determined from quasi-linear FRFs
extracted from the HFS by applying the Isgcurvefit function of MATLAB.
e As understood throughout the text, the proposed technique is not as

successful as it is desired in the case of the jump.

3.3 Summary

Chapter 3 of the thesis discusses the RCT-HFS method and its procedure using a
simple SDOF system. The strategy behind the new framework is explained using
two and three DOF discrete systems. Only a few numerical applications are
presented in this chapter which should be enough to explain the proposed
methodology. The following chapter focuses on real experimental applications,
where those conducting the experiments can better understand the new framework's
importance. This chapter concludes with a flowchart that outlines the method's

procedure.
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Figure 3-30. Flowchart of the Proposed Nonlinear System Identification Method
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CHAPTER 4

EXPERIMENTAL APPLICATIONS OF THE FCT-HFS FRAMEWORK

In Chapter 3, the RCT-HFS and FCT-HFS methods are reviewed, and their
procedures are explained in detail using cubic stiffness nonlinearity as an example.
It is important to note that the newly developed FCT-HFS method is primarily
intended for experimental purposes. This chapter of the thesis verifies the proposed
methods through experimental data where some of the data are obtained from

literature and some of them are collected from test setups designed for the thesis.

Experiments with the bolted joint connections are utilized as an experimental setup.
Those are the indispensable parts of the mechanical systems of manmade structures.
Furthermore, these jointed structures introduce friction, gap, and preload
nonlinearities. Moreover, modeling and understanding these types of nonlinearities
are inconvenient due to the modeling difficulty of their nature. Here, the term
understanding is used to find out the modal parameters of the system due to those
nonlinearities. Determined modal parameters can then describe the behavior of the
system. Therefore, modeling and understanding the nonlinear behavior of those
systems are crucial in engineering. To this end, several nonlinear system
identification methods have been developed as stated in Chapter 1. Hence, the
proposed methodology is verified and validated using such a system with a

challenging behavior.

Different joint structures utilized will be explained in the following paragraphs.
Hands-on experiments were conducted at TUBITAK-SAGE using the Brake-Reu3
Beam (BRB) [61, 62]. This beam has become a benchmark across the engineering
society for nonlinear mechanical systems. Therefore, the former and latter reasons
led to using this beam as a testing specimen. Its dimensions and properties are given

in detail in the upcoming section, but it can be summarized as follows with brevity.
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Two L-shaped beams, each 42 cm, are connected with three bolted joints where the
interface is 12 cm. Besides the test, three experimental applications from the
literature verify and validate the method using their experimental data. Firstly, the
data of the Orion Beam [63] is utilized to validate and verify the proposed method.
The configuration of the designed beam can be summarized as follows. Two beams,
each 200 mm, are connected to each other with three bolted joints with the 30 mm

interface.

Furthermore, the setup is positioned vertically to the ground. The paper's originality
is that it introduced a new lap-joint configuration with high repeatability, and this
new configuration separates the correlation between the resonance frequency,
maximum amplitude, and half-power bandwidth. That allows this system to be used
as a reference while developing methods. Therefore, the force-controlled FRF results
that have recently been presented are used to validate and verify the developed
method. Details of the experimental setup and the data are presented in a related
section. Secondly, the data of the Length Modified Brake-Reul3 Beam [64] is also
used to validate the proposed method. It is the modified version of the original Brake-
ReuB Beam by increasing the beams' length and contact area to 1080 mm and 120
mm, respectively. Finally, the data of the Half Brake-ReuB3 Beam [65] is utilized. It
is designed so that the width of the beam is decreased from 1" to 0.5". All other
related and required details of the structures are given in their sections. The summary
of each experimental setup, i.e., dimensions, number of connections, and position of

the experimental setup, is provided in Table 4-1.
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Table 4-1. Summary of the Experimental Setups

Individual Number of Position of the Test

Dimensions  Connections Setup

of Beams to Each
Other
The Brake-ReuBl | 72 x 25 x 25| 3 Horizontal
Beam cm
The Orion Beam 200 x 30 x 2|3 Vertical
mm
The Length Modified 3
Brake-Reufs Beam 425 x1x1 Horizontal
inch
The Half Brake-Reuf | 28.35 x 0.50 x | 3 Horizontal
Beam 1.00 inch

4.1 Brake-ReuBl Beam Tests Conducted in TUBITAK SAGE

4.1.1 Test Setup

The test setup of the Brake-ReuB Beam is manufactured and assembled in TUBITAK
SAGE and it is shown in Figure 4-1. Two L-shaped beams are connected with bolted
joints and tightened with a torque wrench to the desired torque level. To ensure the
gap at each side of the connection, a 30 um shim is used during the assembly process,
where the Brake-Reuf3 beam is held with two monolithic beams to ensure linearity.
MB Dynamic Modal 110 modal shaker with forcing amplitude and frequency
capacities of 500 N and 5000 Hz, respectively is used for exciting the system. A
stinger is used as the connection between the beam and the shaker. A PCB
Piezotronics 208C03 ICP load cell is attached to the connection of the stringer and
beam to monitor forcing at the excitation location and the measured force data is
used by the embedded controller of Siemens LMS. In addition, MB Dynamics
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MB500V1 is used as the power amplifier. LMS SCADAS Mobile is used as the data
acquisition system, and the collected data is monitored using a desktop computer. A
detailed photo of the test setup is shown in Figure 4-2. The shaker is connected to
the metal block, and a rigid body connection is assumed between the shaker and the
metal block. Six ICP accelerometers of PCB Piezotronics 352A73 are used to
measure the data, and the positive measurement direction is shown in Figure 4-2.
Accelerometers 1,3, 5, and 6 are placed along the +z direction half of the beam (+z
direction is shown on Figure 4-2). In contrast, the others are placed on the -z direction
half of the beam. Data acquired from the first accelerometer and load cell are used
to provide the feedback acceleration and forcing measurements for the response-
controlled stepped-sine testing controller. So, the rigid L-shaped beam is assumed to
demonstrate the same motion on the load cell and accelerometer sides. Through this
thesis, the data measured by accelerometer one is used only. Finally, to ensure the
free-free condition of the Brake-Reull Beam, fish lines are used to suspend the test
beam as shown in Figure 4-3. Two data sets are recorded using this setup at different
tightening torques of 10 and 25 Nm. Initially, the 10 Nm case is examined, then the

25 Nm case.

Data is measured through accelerometers and acceleration data is recorded with LMS
Data Acquisition System. The data acquisition system transforms this measured data
from the time domain to the frequency domain. This procedure is performed by the
built-in feature of the LMS Testlab. LMS Testlab determines the FRF by dividing
the cross-power spectrum (Sxy) of the input (x) and output (y) by the auto power
spectrum (Sxx) of the input.
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Figure 4-1. Whole Test Setup Including Data Acquisition, Power Amplifier and
Test Specimen

Stinger

Load Cell

Figure 4-2. Detailed View of Test Setup Photo of Brake-Reul3 Beam test setup in
TUBITAK-SAGE
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Figure 4-3. Fish Line of The Setup

4.1.2 Test 1: Test with Tightening Torque of 10 Nm

In test 1, two data sets are examined. During each test, force-controlled stepped sine
testing is utilized. Even numbers of forcing amplitudes are employed in data set 1,
while the other odd numbers of forcing amplitude levels are used in data set 2. During
both measurements, stepped sine testing is performed between 133 Hz and 144 Hz

which covers the first natural frequency of the beam structure.

4.1.2.1 Data Set 1

First, a force-controlled data set is collected from 2 N to 20 N with an increment of
2 N at each test run. Furthermore, stepped-sine testing is conducted with a frequency
increment of 0.125 Hz between 133 and 147 Hz frequencies. In the LMS SCADAS
desktop application, the constant force frequency response amplitude curves are
measured as shown in Figure 4-4. The measured unit of FRF is in g (m/s"2) and the
measured acceleration data is converted to displacement in the frequency domain.
These frequency-response amplitude curves are plotted in MATLAB as shown in
Figure 4-4b.
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Figure 4-4. Constant Force Response Amplitude Curves of Data Set 1 of Test 1 of
BRB a) Accelerance data from LMS b) MATLAB plot using displacement data

It is observed that a jump phenomenon occurred during measurements. Without
commenting on this (it is to be discussed in Chapter 5), let’s continue to the formal
procedure of the FCT-HFS framework. The next step is to construct a harmonic force

surface using these frequency-response amplitude curves.
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Figure 4-5. Harmonic Force Surface of Data Set 1 of Test 1 of BRB
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Figure 4-6. a) Quasi-Linear FRFs Extracted from HFS b) Applied Curve Fitting of
Data Set 1 of Test 1 of BRB-Curve Fit Type 1

The harmonic force surface of test 1 of BRB is illustrated in Figure 4-5. Extraction
of quasi-linear FRFs from the HFS between upper and lowermost displacement
amplitude levels of 0.050 mm and 0.220 mm are performed. As shown in Figure 4-6,
a stepped curve is observed at the left-hand side of each curve’s peak. This stepped
response behavior is expected since jumps are observed in the measured frequency-
response amplitude plots. A similar stepped curve behavior was observed in the
numerical simulation case study with jump behavior which was presented in the
previous chapter. Before directly attempting the peak-picking method for these types
of shapes, it is worth looking at the shape of the FRFs. The left-hand sides of the
curves are stepped, but the right-hand sides are smooth and in the desired behavior.
Furthermore, keeping in mind that these are the experimental results, the aim is to
get a quasi-linear shape to predict modal parameters from the curves. Two different

types of curve fitting can be considered here.

4.1.2.1.1 Curve Fit Type 1 (Peak-picking algorithm)

First, a curve fitting to the left-hand side of the quasi-linear FRFs is applied for that
purpose, Figure 4-6a. Now, it is possible to estimate modal parameters using the
peak-picking method.

The identified modal parameters from these curves and curve fit of the identified
modal parameters are given in Figure 4-7. From these curve fits, constant force FRFs

are synthesized and compared with the measured ones in Figure 4-8. The results are
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in good agreement around resonance and minor deviations are observed near
resonance frequencies. However, one should be cautious while applying this FCT-
HFS to the force-controlled FRFs where the jump is observed since the result of an
infinite slope causes stepped quasi-linear FRFs. That makes extracting modal
parameters difficult using the peak-picking method. On the other hand, it is worth
noting that the FCT-HFS framework is easier and more straight-forward to apply for
weakly nonlinear cases where FRFs have no jumps. Furthermore, note that although
the jump makes the analysis difficult, good agreement between the force-controlled
stepped sine testing of measured and synthesized ones are observed near resonance

frequencies even when the jump occurs.
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Figure 4-7. Identified Modal Parameters of Data Set 1 of Test 1 of BRB-Curve Fit
Type 1
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4.1.2.1.2 Curve Fit Type 2 (Curve fitting and spline fitting algorithms)

Another approach to handle the stepped shape in the extracted quasi-linear FRFs is
using the Isqcurvefit function of MATLAB [66] with the modal equation. First, it is
meant from the modal equation is the single nonlinear normal mode equation with

response amplitude dependent modal parameters as

‘e $(4r)r9(q.)r f (4.1)
(—w? + in, (g wE(q,) + w?(q,))

The working principle of the algorithm can be summarized as follows. First,
Isqcurvefit is a nonlinear least-square solver that minimizes the error between the
measured and fitted data, as shown in equation (4.2). Here, equation (4.1) is used as
the function that should be used in equation (4.2).
(4.2)
min (Z(f(x, xdata;) — ydatal-)2>
i

In contrast to the peak-picking method, here, the modal parameters of the modal

equation are tried to be found with this algorithm.

Using this function, it is possible to identify modal parameters by curve fitting to
the extracted quasi-linear FRFs. Therefore, the peak-picking method is not used in

this approach.
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Quasi-Linear FRFs after Isqcurvefit
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Figure 4-9. Quasi-Linear FRFs after Isqcurvefit-Curve Fit Type 2
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Figure 4-10. Identified Modal Parameters of Data Set 1 of Test 1 of BRB-Curve Fit
Type 2

The identified modal parameters and corresponding smoothingspline fits are shown

in Figure 4-10.The mathematical formulation of smoothingspline can be written as
2 dZS 2 (43)
’Pzwi()’i —s(x)) +(1 - P)f Tz &
i

Where w;,pand s are weight, smoothing parameter and smoothing spline,

respectively. Generally, p is taken as 1.
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Using the modal parameters obtained from spline-fit, the constant force FRFs are
synthesized again and compared with the original ones in Figure 4-11. Examining
the synthesized FRFs for curve fit types 1 and 2 shows that both approaches are
satisfactory except for lower force levels. The cause of this deviation is the modal

damping at the lower displacement amplitude levels.
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4.1.2.2 Data Set 2

Another data set with a jump phenomenon is conducted from 1 to 21 N with an
increment of 2 N. Furthermore, the forced controlled test uses stepped sine testing
with a 0.125 Hz frequency increment. A good match between the measured and
synthesized ones is observed similar to the results obtained in Data Set 1. The
extracted quasi-linear FRFs have also got a stepped shape at the left-hand side of the
peak, and the same method as the preceding one is utilized where the quasi-linear
FRFs are extracted from 0.026 mm to 0.220 mm from the HFS surface plot.

4.1.2.2.1 Curve Fit Type 1 (Peak-picking algorithm)

The same data set 1 curve fit type 1 is applied to the quasi-linear FRFs. Using the
identified modal parameters (Figure 4-15), consistent FRFs are synthesized as shown
in Figure 4-16.
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Figure 4-12. Constant Force Response Amplitude Curves of Data Set 2 of Test 1 of
BRB a) from LMS (detailed view) b) from MATLAB

63



—
N

—

S
)

Response Amplitude [mm]

—

N

oo
/

Frequency [Hz] 130 0

s

10

Force Amplitude [N]

Figure 4-13. Harmonic Force Surface of Data Set 2 of Test 1 of BRB

Quasi-Linear FRFs Extracted from HFS

0.04 -
0.035

0.03 -

o
S o
s S
S

Receptance [mm/N

0.015

0.01 -

A
0.005 - /%

I I
137 138 139 140 141 142 143
Frequency [Hz]

0.045 -

3
S

Quasi-Linear FRFs After Fitting
T T

—0.026 mm 0.155 mm
——0.058 mm 0.188 mm

0.091 mm ——0.220 mm
—0.123 mm

I J
138 140 142 144 146 148
Frequency [Hz]

Figure 4-14. a) Quasi-Linear FRFs Extracted from HFS b) Applied Curve Fitting to

Data Set 2 of Test 1 of BRB

64



Modal Constant

Natural Frequenc, Modal Dampin
142 4 y 1.2 ping 100
141.5 1t
80
141 ¢
0.8
— _ £ 60 |
:E 140.5 £ ~
- 06 <
I3 140t = 20
0.4+ ¢ Experimental
139.5 —— Smoothingspline
02 4 20
1391 o Experimental . o Experimental
Smoothingspline Smoothingspline
0 0
0.15 0.2 0 0.05 0.1 0.15 0.2 0 0.05 0.1 0.15 0.2
Response Amplitude [mm] Response Amplitude [mm]

138.5
0 0.05 0.1
Response Amplitude [mm]

Figure 4-15. Identified Modal Parameters of Data Set 2 of Test 1 of BRB- Curve

Fit Type 1

65



0.035 0.025 0.025
e
0.03 -
0.02 0.02
Z 0025+ z z
£ £ £
El Zo0015 £0015
o o @
S o1 S
g g g
2 2 001 2. 001
o 5 5
S S o1
3 o1 1
4 4 4
0.005 0.005
0 . o T . . T
134 136 138 140 142 144 146 134 136 138 140 142 144 146 134 136 138 140 142 144 146
Frequency [Hz] Frequency [Hz] Frequency [Hz]
0.02 0.015 - 0.014
—&— Cons. force- ?
H 0.012
Z 00t z Z o001
E £ 001 F
E £ E 008
8 001 3 3
| g £ 0.006
2 2 2
g 0,005 ]
& 0.005 - =  0.004
P 0.002
0" : 0 L
134 136 138 140 142 144 146 134 136 138 140 142 144 146 134 136 138 140 142 144 146
Frequency [Hz] Frequency [Hz] Frequency [Hz]
0.014 0.012 0.012 =
—e— Cons. force-13 N —&—Cons. force-17 N
0.012 Synt FCT-HFS-13 N Synt FCT-HFS-17 N
- 0.01 0.01
Z o001+ z z
E % 0.008 % 0.008
E .008 E &
g 8 0.006 8 0.006
= 0.006 - 8 g
2 2 s
] 8 0.004 3 0.004
20004+ 2 2 7
0.002 - 0.002 0.002
0 0 g 0
134 136 138 140 142 144 146 134 136 138 140 142 144 146 134 136 138 140 142 144 146
Frequency [Hz] Frequency [Hz] Frequency [Hz]
0.012 0.012 0.012
Cons. force-19 N
FS-19 N
0.01 - 0.01 0.01
z z z
2 0.008 - 2 0.008 £ 0.008
£ £ £
8 0.006 8 0.006 3 0.006
=1 £ £
£ & g
g g g
© 0.004 | 2 0.004 2 0.004
3 3 1
I ~ 4
0.002 - 0.002 0.002
0 |
134 136 138 140 142 144 146 134 136 138 140 142 144 146 134 136 138 140 142 144 146
Frequency [Hz] Frequency [Hz] Frequency [Hz]
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4.1.2.2.2 Curve Fit Type 2

The Isgcurvefit function in MATLAB is used to identify the modal parameters. The
quasi-linear FRFs data is inputted into the function, and the modal parameters are
determined accordingly. Figure 4-17 shows the final corrected quasi-linear FRFs.
The extracted points are then used to determine the modal parameters, and a
smoothingspline fitting is applied, as seen in Figure 4-18. The synthesized force-
controlled FRFs are presented in Figure 4-19, and this approach provides an accurate
synthesis of force-controlled FRFs.
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Figure 4-17. Quasi-Linear FRFs after Isqcurvefit-Curve Fit Type 2

It is essential to exercise caution when interpreting jump constant force testing
results. Even if unstable branches associated with nonlinear frequency response
functions can be tracked during measurements, one should remain vigilant. In cases
like these, consider the RCT-HFS method.
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Figure 4-19. Comparison of Synthesized FRFs and Measured Ones of Data Set 2 of
Test 1 of BRB- Curve Fit Type 2
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4.1.3 Test 2: Test with Tightening Torque of 25 Nm

The effect of a jump in FRF on the accuracy of the RCT-based modeling is aimed to
be investigated in this test. The same experimental setup is replicated, and the
tightening torque is raised from 10 Nm to 25 Nm to eliminate the FRF jump behavior
which complicates the modal data fitting procedure. Furthermore, the accuracy of
synthesized RCT-based FCT-HFS models is tested in the absence of a jump. The
subsequent trial involved a constant force examination, with amplitudes ranging
from 1 N to 7 N and spaced 1 N apart. Step-sine tests are executed from 140 Hz to
150 Hz, sampling at 0.125 Hz.

Response [mm]

140 142 144 146 148 150

°°°°° Frequency [Hz]

Figure 4-20. Constant Force Response Amplitude Curves of Test 2 of BRB a) from
LMS b) from MATLAB

From Simcenter Testlab, experimental measurements of FRFs are tabulated in Figure
4-20.ain g/N, those are converted to the response amplitude in mm in Figure 4-20.b.
Then, these response amplitude curves are used to synthesize the harmonic force
surface in Figure 4-21a. The HFS is cut with constant displacement amplitude planes
between 0.030 mm and 0.170 mm. Figure 4-21b shows that extracted quasi-linear
FRFs are not in stepped shape, and those FRFs can be used to perform peak-picking

analysis.
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Figure 4-21. a) Harmonic Force Surface b) Quasi-Linear FRFs Extracted from HFS
of Test 2 of BRB

Modal parameters at the specified displacement amplitude levels are determined
Using the simple peak-picking algorithm in Figure 4-22. Then, smoothing spline

curve fitting is applied to the modal parameters shown in the same figure.
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Figure 4-22. Identified Modal Parameters of Test 2 of BRB

Afterward, the constant force FRFs are synthesized using the arclength continuation
algorithm to compare with the original ones. Figure 4-23 gives an insight into this
comparison. One can observe that this comparison is better than the previous one
with the jump FRFs since the force controlled FRFs do not have a jump. Therefore,
extracted quasi-linear FRFs from the HFS give more accurate results of modal

properties due to the shape of the quasi-linear FRFs.
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Also, this experimental study clearly demonstrates the difficulty of testing and
identifying the nonlinear behavior of bolted joints. Changing the tightening torque
results in completely different modal fit parameters. This high sensitivity of
identified modal parameters to tightening torque makes the measurement and
identification process of such bolted systems challenging.
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Figure 4-23. Comparison of Synthesized and Measured FRFs of Test 2 of BRB
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4.2 The Orion Beam

Recently, a new beam called the Orion Beam has been proposed [63]. Two thin
beams are connected with three bolted joints. The experimental setup is shown in
Figure 4-24. The effect of the design of the beam on the repeatability issue during
the experiments is analyzed by changing the tightening torques and excitation force
[67]. Repeatability can be summarized as measurement-to-measurement differences
in the same experimental setup [62]. The experiments used two data sets: constant
force-testing and random tests. A feedback controller is developed to implement the
constant force testing around the beam's third and sixth bending modes to employ
the FCT-HFS method. For measurement purposes, a laser vibrometer is used. Further
details about the structure and the experiments can be found in [63]. Here, the third
and sixth bending mode force-controlled step sine testing results are employed for

validation and verification.

(a) Experimental setup (b) Schematic representation

Beam without Patch
!

Laser Vibrometer
External Bolts
Central Bolt | Variable Torque
Fully Tightened Lot
¢ Beam with Contact ." \ NI-9234 Desktop
l Patch E E ﬁ] : Data Acquisition Signal Processing
! ' E :B] :
Load Cell Al .
Bolted ‘
Toitik P Load Cell
Shaker

Figure 4-24. Orion Beam a) Experimental Setup b) Schematic Representation

4.2.1 Third Bending Mode

This subsection uses data from the third bending mode of the Orion beam. The

related tests are employed between the 280 and 300 Hz frequencies with a frequency
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increment of 0.3906 Hz. Furthermore, the tests are performed at the different
tightening torque levels of 20 and 80 cNm. In addition, five different forcing levels
are handled at these two tightening torques, where the forcing levels are the same at
each torque level. The forcing levels are 10, 50, 100, 150 and 200 mN.

4.2.1.1 20 cNm Tightening Torque

Measured constant force frequency-response amplitude graphs are given in Figure
4-25a. Adding force as a third axis and creating the harmonic force surface of the

related experiment is shown in Figure 4-25b.

Measured Constant Force Response

0.035
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0.03 —#— 50 mN .
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2 z
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g [=]
2 0.0 g
= 2300 ~
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280 285 290 295 300 Frequency [Hz] 80 0 Force Amplitude [mN]
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Figure 4-25. a) Measured Constant Force Frequency-Response Amplitude Curves
b) Harmonic Force Surface- The Orion Beam Third Bending Mode 20 cNm Torque

Afterward, relevant quasi-linear frequency response functions are obtained using
HFS, cut with constant displacement amplitude planes ranging from 0.003 to 0.037
mm, as shown in Figure 4-26. These eighteen quasi-linear FRFs are then used to
identify displacement-dependent nonlinear modal parameters, as illustrated in Figure
4-27. A second-order polynomial fit is used for modal natural frequency and modal
constant. Additionally, modal damping is smoothed using a smoothing spline. The

change in modal damping is significant with the changing displacement amplitude.
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Figure 4-26. Quasi-Linear FRFs Extracted from HFS- The Orion Beam Third
Bending Mode 20 cNm Torque
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Figure 4-27. Identified Modal Parameters- The Orion Beam Third Bending Mode

20 cNm Torque

Subsequently, constant force frequency-response amplitude plots are synthesized

using these displacement-dependent modal parameters and compared to the

measured ones in Figure 4-28. Markers are the measured data points, and the solid

lines are the synthesized ones. The consistency between the measured and the

synthesized constant force amplitude responses is almost perfect.
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Figure 4-28. Comparison of Measured and Synthesized Frequency-Response
Amplitude Curves- The Orion Beam Third Bending Mode 20 cNm Torque

4.2.1.2 80 cNm Tightening Torque

Measured constant force frequency-response displacement amplitude plots are given
in Figure 4-29a. Merging these constant force frequency-response amplitude plots
generates the harmonic force surface, as shown in Figure 4-29b.
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Figure 4-29. a) Measured Constant Force Frequency-Response Amplitude Curves
b) Harmonic Force Surface- The Orion Beam Third Bending Mode 80 cNm Torque

Afterward, quasi-linear frequency response functions are obtained using HFS, cut
with constant displacement amplitude planes ranging from 0.004 to 0.037 mm,
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Figure 4-30. Displacement-dependent nonlinear modal parameters are determined
using these eighteen quasi-linear FRFs, Figure 4-31. A second-order polynomial fit
is exploited to modal natural frequency and modal constant. Furthermore, a
smoothing spline is used for the modal damping. In addition, the frequency shift due
to the tightening torque is observed comparing Figure 4-27 and Figure 4-31, which

is an expected outcome of increasing the tightening torque [68].
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Figure 4-30. Quasi-Linear FRFs Extracted from HFS- The Orion Beam Third
Bending Mode 80 cNm Torque
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Figure 4-31. Identified Modal Parameters- The Orion Beam Third Bending Mode
80 cNm Torque
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Consequently, the constant force frequency-response amplitude plots are re-
constructed using these displacement-dependent modal parameters and compared to
the measured ones in Figure 4-32. Data points and the solid lines measure marked
ones are the re-constructed ones. The agreement between the measured and the

synthesized ones is perfect indeed.
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Figure 4-32. Comparison of Measured and Synthesized Frequency-Response
Amplitude Plots- The Orion Beam Third Bending Mode 80 cNm Torque

4.2.2 Sixth Bending Mode

This subsection uses data from the sixth bending mode of the Orion beam. The tests
are employed at several tightening torques: 10, 20, 30, 80, and 1000 cNm. In
addition, six different forcing levels are handled at these five tightening torques,
where the forcing levels are the same at each torque level. The forcing levels are 10,
50, 100, 150, 200 and 250 mN. Frequency sweep covers the range from 1700 to 1775
Hz with an increment of 1 Hz. The procedure for constructing the FCT-HFS method

is followed at each torque level, and the results are compared accordingly.
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4221

It is worth noting that starting from the forcing level of 100 mN, the left-hand side
of the resonance is hardly visible due to the excitation frequency used during testing
not covering all the resonance regions. After merging the measured frequency-
response amplitude curves, the quasi-linear FRFs are obtained indirectly. The quasi-
linear FRFs are presented in Figure 4-34. Fourteen constant displacement amplitude

planes are generated from 0.0002 to 0.0012 mm for modal identification of the

10 cNm Tightening Torque

constant displacement amplitude receptances.

(]
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0
1700

Figure 4-33. a) Measured Constant Force Frequency-Response Amplitude Curves
b) Harmonic Force Surface- The Orion Beam Sixth Bending Mode 10 cNm Torque
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Bending Mode 10 cNm Torque
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Displacement-dependent modal parameters are determined using the peak-picking
method. Figure 4-35 shows that the modal natural frequencies at the lower
displacement amplitude level decrease by increasing the displacement amplitude
level. The other conclusion is that displacement-dependent modal damping oscillates
between 0.75 % and 0.85 %.

MATLAB's smoothingspline property of a fit function is used for all displacement-
dependent modal parameters (modal natural frequency, modal damping, and modal

constant) as shown in Figure 4-35.

Thereafter, the constant force frequency-response amplitude curves are reproduced
using those modal parameters the curve fits Figure 4-36. Again, a good agreement

between the measured and re-produced ones is seized.
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Figure 4-35. Identified Modal Parameters - The Orion Beam Sixth Bending Mode
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Figure 4-36. Comparison of Measured and Synthesized Frequency-Response
Amplitude Curves-The Orion Beam Sixth Bending Mode 10 cNm Torque

4.22.2 20 cNm Tightening Torque

Different from the 10 cNm tightening torque level, thirty-four quasi-linear FRFs are
extracted from the HFS between the lower and upper bounds of the displacement

amplitudes 0.2 and 3.5 um, respectively.
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Figure 4-37. a) Measured Constant Force Frequency-Response Amplitude Curves
b) Harmonic Force Surface- The Orion Beam Sixth Bending Mode 20 cNm Torque
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Figure 4-38. Quasi-Linear FRFs Extracted from HFS -The Orion Beam Sixth
Bending Mode 20 cNm Torque

Extracted modal parameters are tabulated with markers in Figure 4-39. The trend of
the modal natural frequency is like a first-order polynomial, so a first-order
polynomial fit is used. The modal natural frequency is about 1735 Hz at the lowest
displacement amplitude level. On the other hand, it decreases monotonically to about
1717 Hz. In addition, smoothing spline is utilized for modal damping and modal
constant so as not to lose the information gathered from the experiment.
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Figure 4-39. Identified Modal Parameters - The Orion Beam Sixth Bending Mode
20 cNm Torque
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Constant force frequency-response amplitude plots are reconstructed and compared
to the original ones in Figure 4-40 using the fits tabulated in Figure 4-39. Again, an
almost perfect match between the measured and the synthesized frequency-
displacement curves is obtained.
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Figure 4-40. Comparison of Measured and Synthesized Frequency-Response
Amplitude Curves -The Orion Beam Sixth Bending Mode 20 cNm Torque
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Figure 4-41. a) Measured Constant Force Frequency-Response Amplitude Curves
b) Harmonic Force Surface- The Orion Beam Sixth Bending Mode 30 cNm Torque

84



acted from HFS
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Figure 4-42.Quasi-Linear FRFs Extracted from HFS -The Orion Beam Sixth
Bending Mode 30 cNm Torque

After constructing the harmonic force surface associated with the 30 cNm tightening
torque, twenty-five constant displacement amplitude planes are used to extract the
quasi-linear FRFs of the system, similar to the previous section first order
polynomial fit is exploited to the modal natural frequency, and a smoothing spline is
employed to the remaining two modal parameters.
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Figure 4-43. Identified Modal Parameters — The Orion Beam Sixth Bending Mode
30 cNm Torque
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Figure 4-44. Comparison of Measured and Synthesized Frequency-Response
Amplitude Curves -The Orion Beam Sixth Bending Mode 30 cNm Torque

As expected, the modal natural frequency increases when the tightening torque of
the bolted joints is increased. However, a decrease in the modal natural frequency is
observed when the modal displacement amplitude is increased, indicating a softening

behavior of the system.

4.22.4 80 cNm Tightening Torque

The FCT-HFS method has been applied to another data set at the tightening torque
level of 80 cNm. Twenty-nine displacement amplitude planes have been used to
determine the experimental quasi-linear FRFs associated with amplitude levels
ranging from 0.0003 mm to 0.0058 mm. These FRFs are depicted in Figure 4-46.
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Figure 4-45. a) Measured Constant Force Frequency-Response Amplitude Curves
b) Harmonic Force Surface- The Orion Beam Sixth Bending Mode 80 cNm Torque
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