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ABSTRACT 

 

AN AGENT-BASED MODEL FOR FLOOD RISK MAPPING: 

INTEGRATION OF URBANIZATION AND CLIMATE CHANGE 

IMPACTS 

 

 

Yeğin, Murat 

Doctor of Philosophy, Civil Engineering 

Supervisor: Prof. Dr. Elçin Kentel 

Co-Supervisor: Assoc. Prof. Dr. Gülşah Karakaya 

 

 

July 2024, 247 pages 

 

 

The frequencies and the magnitudes of flood events are changing along with climate 

change (CC). In addition to CC, land use/land cover (LULC) also affects flood 

events. Thus, flood risks cannot be managed with traditional methods. Accordingly, 

this study combines a hydrological model (HM), a 1D/2D combined hydraulic model 

(CHM), and an agent-based model (ABM) to assess the impacts of CC and LULC 

on flood risks. Initially, the HM is calibrated and validated for the study area and 

then run using 17 regional climate models (RCM) outputs. The flood hydrographs 

are generated for different return periods using the best RCM. Concurrently, the 

historical satellite images are analyzed to quantify LULC. The flood hydrographs are 

used in the CHM, and flood inundation maps (FIMs) are obtained. FIMs are 

generated for both stationary and nonstationary conditions. Finally, the ABM is 

developed to assess the effects of the public and government agents in flood risk 
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management (FRM) based on 100 realizations of 11 scenarios. The calculated peak 

discharges with the historical observations are approximately 52% greater than those 

of the RCM outputs. Economic damage for the scenario with 113% increased 

urbanized area is 59% greater than that of the stationary scenario with the historical 

records. A proactive management strategy decreases the economic damage by 52% 

compared to a reactive management strategy. When public and government agents 

are included in the FRM, the economic damages become the lowest; thus, integrating 

agents’ behavior in FRM through ABM is crucial.  

 

Keywords: Stationarity Analysis, Hydrological Model, Combined 1D/2D Hydraulic 

Model, Agent-Based Model, Flood Risk 

 



 

 

vii 

 

ÖZ 

 

TAŞKIN RİSK HARİTALAMASI İÇİN AKTÖR-TABANLI BİR MODEL: 

KENTLEŞME VE İKLİM DEĞİŞİKLİĞİ ETKİLERİNİN 

ENTEGRASYONU  

 

 

Yeğin, Murat 

Doktora, İnşaat Mühendisliği 

Tez Yöneticisi: Prof. Dr. Elçin Kentel 

Ortak Tez Yöneticisi: Doç. Dr. Gülşah Karakaya 

 

 

Temmuz 2024, 247 sayfa 

 

Değişen iklim koşulları ile birlikte taşkın olaylarının da frekansları ve şiddeti 

değişmektedir. İklim değişikliğine ek olarak arazi kullanımı / arazi örtüsü de taşkın 

olaylarını etkilemektedir. Bu yüzden taşkın riskleri geleneksel yöntemler ile 

yönetilememektedir. Dolayısıyla, bu çalışma hidrolojik model, bütünleşik 1D/2D 

hidrolik model ve aktör-tabanlı model kullanılarak iklim değişikliği ve kentleşmenin 

taşkın riskleri üzerindeki etkilerini değerlendirmektedir. Birinci olarak, çalışma 

sahasının hidrolojik modelinin başarılı bir şekilde kalibrasyon ve doğrulaması 

yapıldıktan sonra, 17 bölgesel iklim modeli verisi hidrolojik modelde çalıştırılmış ve 

en iyi bölgesel iklim modeli seçilmiştir. Taşkın hidrografları farklı dönüş periyotları 

için en iyi bölgesel iklim modeli kullanılarak hesaplanmıştır. Aynı zamanda, çalışma 

sahasının arazi kullanımı / arazi örtüsü indirilen tarihi uydu görüntüleri kullanılarak 

analiz edilmiştir. Bütünleşik 1D/2D hidrolik model ve taşkın hidrografları 

kullanılarak taşkın yayılım haritaları elde edilmiştir. Taşkın yayılım alanları hem 
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durağan olma hem de durağan olmama koşulları düşünülerek elde edilmiştir. Son 

olarak, halk ve hükümet aktörlerinin taşkın risk yönetimi üzerindeki etkilerini 

görebilmek adına aktör-tabanlı model kurulmuştur. Bu etkiler 11 farklı model ve 100 

farklı set çalıştırılarak analiz edilmiştir. Tarihi debiler kullanılarak hesaplanan pik 

debiler, en iyi bölgesel iklim modeli kullanılarak hesaplanan pik debilerden yaklaşık 

olarak %52 daha azdır. Ekonomik zarar değeri, kentleşmenin %113 artırıldığı 

senaryoda durağan senaryoya göre %59 daha fazla hesaplanmıştır. Proaktif yönetim 

stratejisi ekonomik zararı yaklaşık olarak %52 azaltmaktadır. Ekonomik zarar hem 

halk hem de hükümetin birlikte önlem aldığı koşullarda en düşük seviyeye 

inmektedir. Bu yüzden aktörlerin taşkın risk yönetimine entegre edilmesi çok 

önemlidir. 

 

Anahtar Kelimeler: Durağanlık Analizi, Hidrolojik Model, Bütünleşik 1D/2D 

Hidrolik Model, Aktör-Tabanlı Model, Taşkın Riski 
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CHAPTER 1  

1 INTRODUCTION 

Floods rank among the most devastating natural hazards, and characteristics of 

floods, such as rates of occurrences of different magnitude floods, change over time. 

Climate Change (CC) and Land Use/Land Cover (LULC) change are among the most 

important reasons for the changes in flood risk characteristics (Chang & Franczyk, 

2008). Accurate results cannot be obtained if climate and LULC changes are not 

embedded in flood models.  

Traditional flood models are developed, assuming flood events are stationary. 

However, flood characteristics change over time. For this reason, realistic results 

may not be obtained with stationarity assumption in flood models. The non-

stationarity of flood events should be analyzed and integrated into the flood models. 

Another significant challenge in current Flood Risk Management (FRM) studies is 

to include human-flood interaction in the modeling approach to investigate how 

stakeholders/agents respond to flooding and how their involvement affects the 

development of more effective FRM strategies. In addition, traditional flood risk 

analysis assume static conditions in which humans and their surrounding 

environment are inactive and their vulnerability is constant. Under such assumptions, 

time-dependent features such as human interactions, individual adaptations, and 

technology innovation cannot be incorporated in current models, and there is a lack 

of modeling approaches to include social aspects of human behavior in FRM. The 

behaviors of the stakeholders/agents and their changes over time are integrated into 

FRM via the Agent-Based Model (ABM) to develop effective and sustainable flood 

mitigation measures and adaptation strategies. 

The main purpose of this study is to combine the impacts of CC, LULC, and 

behaviors of the agents through a flood risk assessment framework. Moreover, 
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nonstationarity in flood discharges are investigated. Three different models (i.e., a 

hydrological model, a 1D/2D combined hydraulic model, and an agent-based model) 

are developed to combine the impacts of CC, LULC, and the agents’ behavior. Due 

to the meetings with the State Hydraulic Works staff, the study area is selected as 

the Göksu River, Silifke. This region has experienced many destructive flood events 

in the past. 

Hydrological model is developed to convert rainfall values to runoff values. Three 

different periods are considered in the development of the hydrological model. 17 

different regional climate models (RCM) are downloaded to include CC impacts in 

the study. The outputs of these RCMs are entered into the calibrated and validated 

hydrological model. The best RCM is selected using some statistical measures based 

on the observed discharges and the calculated discharges from the hydrological 

model with RCM data. After selecting the best RCM, the hydrological model is run 

using the outputs of the best RCM for the future. Finally, the flood hydrographs, 

which will be the inputs of a combined 1D/2D hydraulic model, are generated for 

different return periods considering the stationary and nonstationary conditions. 

LULC analysis is conducted for the study area to include LULC changes during the 

development of the hydrological model. Historical satellite images are downloaded 

and analyzed to show how LULC changed in the past, and the change in the future 

is tried to be estimated. 

The second model is the combined 1D/2D hydraulic model, and it is developed to 

generate flood inundation maps. Flood inundation maps are generated considering 

the different scenarios. These scenarios are generated to analyze the impacts of CC 

and LULC both separately and together. Furthermore, stationary and nonstationary 

models are used in these scenarios. The combined 1D/2D hydraulic model is run 

using the flood hydrographs for different return periods and all scenarios. Economic 

damage values are calculated and compared. 

Finally, an ABM is developed to include the behaviors of the agents. In this study, 

two different agents are considered: the public agent (i.e., people living in the study 
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area) and the government agent. The behaviors of the public are represented by risk 

perception and coping perception values. A survey is conducted in the study area to 

calculate these values. On the other hand, for the government agent, two different 

policies are considered: reactive and proactive. 11 different scenarios are generated 

to investigate the impacts of the agents on flood risks. In ABM, the results of the 

hydrological model with the best RCM are used. 100 different realizations are also 

generated due to the uncertainty of the flood events, and all scenarios are run for 

these realizations. 

The study results showed that i) The peak discharges that are calculated using the 

outputs of the hydrological model with the best RCM are less than the peak 

discharges calculated with historical records, ii) The urbanized area is increasing in 

the region, iii) The performance of the nonstationary models are better than the 

stationary models for all probability distributions. In addition, LULC-related 

covariates are identified to be more important than CC-related covariates in the study 

area, iv) Calculated economic damages showed the importance of urban planning. If 

the new urbanized areas are not planned considering flood inundation maps, the 

results of the floods might be devastating for the region, v) ABM results showed the 

importance of integrating the agents into FRM. The economic damage is calculated 

as the lowest for the scenarios with both public and government agents. 

The following organization is adopted within this study. Chapter 2 presents literature 

review of climate models, CC analysis in Türkiye, CC impacts on floods, LULC 

change and LULC analysis, nonstationarity analysis, ABM, and risk and coping 

perceptions. Chapter 3 provided information and photographs from the study area. 

In Chapter 4, the detailed methodology of the study is provided. In addition to CC 

and LULC analyses, detailed information about the hydrological modeling, the 

combined 1D/2D hydraulic model, and the ABM are given. Chapter 5 presents the 

results and the discussions of the study. The limitations of the study are also given 

in this chapter. Finally, Chapter 6 concludes the study by highlighting the major 

findings and making suggestions for future researches and applications. 





 

 

5 

CHAPTER 2  

2 LITERATURE REVIEW 

As mentioned before, the main purpose of this study is to combine various models 

and approaches under flood risk assessment. A detailed literature review of these 

topics is conducted under the related chapters. 

2.1 Climate modeling and global / regional climate models 

Climate change, as defined by the Intergovernmental Panel on Climate Change 

(IPCC), encompasses alterations in the climate system resulting from either natural 

internal processes or external factors like persistent anthropogenic changes in 

atmospheric composition or land use (IPCC, 2014). These changes, notably in 

precipitation and temperature patterns, deviate significantly from current conditions 

or those of the pre-industrial era, profoundly impacting natural systems (Easterling 

et al., 2000; Giorgi & Lionello, 2008; IPCC, 2014; IPCC, 2018; Mahmood et al., 

2019; Mariotti et al., 2011). One of the most prevalent consequences of climate 

change is the shift in the frequencies and intensities of extreme weather events such 

as floods and droughts. These events, in turn, indirectly degrade the quantity and 

quality of freshwater ecosystems on a global scale (Bucak et al., 2018; Dudgeon et 

al., 2006; Walther et al., 2002; IPCC, 2018; IPCC, 2014; Butchart et al., 2010). 

Scientists worldwide have been developing adaptation and mitigation strategies to 

prevent possible adverse outcomes as climate change is causing irreversible impacts 

on all aspects of Earth's ecosystems. In this context, future climatic conditions are 

evaluated using the general circulation models (GCMs) and regional climate models 

(RCMs). These tools are used to generate future climate projections under different 

socioeconomic development scenarios. Outputs of GCMs are widely used in the 

global assessment of climate change (Rivera & Arnould, 2020). GCMs are 
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developed based on the mathematical expressions of physical phenomena such as 

fluid dynamics, heat, and radiation transfer to simulate changes in 

hydrometeorological parameters such as air temperature, precipitation, and 

evaporation on a global scale (Sato et al., 2012). Hence, GCMs are based on 

describing current atmospheric processes through mathematically formulated 

physical laws to obtain future climate projections emanating from predefined 

Greenhouse Gas (GHG) emission scenarios.  

GCM outputs are not convenient to use in catchment scale analysis (e.g., drought, 

flood risk analysis) due to restrictions in the resolution of GCM outputs. The low 

resolution of GCMs poses limitations on accurate simulation of orographic 

precipitation and conventional and local scale hydrological processes (Fujihara et al., 

2008). The state-of-the-art GCMs are developed to simulate with an approximate 

111 km horizontal resolution (i.e., 1° mesh size for the ocean and 1°-2° for the 

atmosphere typically) (Flato et al., 2013). The vertical resolution is adjusted to work 

on 30-40 layers in the atmosphere and 30-60 layers in the ocean (Flato et al., 2013). 

However, they are insufficient for analyzing local-scale hydrological processes, 

especially for regions with complex topographic and land cover properties (Jaw et 

al., 2015).  Inaccurate results may be obtained locally in the case of direct use of 

course scale GCMs (Jaw et al., 2015; Sharma et al., 2007; Piani et al., 2010). 

Regional climate projections are obtained using downscaling methods considering 

GCM data as boundary conditions since GCMs cannot provide high-resolution data 

for spatial scales (Jaw et al., 2015; Kara & Yücel, 2015; WCRP CORDEX, n.d.; 

Fujihara et al., 2008). Statistic and dynamic downscaling approaches are standard 

methodologies for obtaining higher-resolution simulation results from the GCMs. 

The dynamical downscaling method uses GCM outputs as the initial and boundary 

conditions of RCMs to generate regional simulations (Fujihara et al., 2008). RCMs 

enable high-resolution simulations of hydrometeorological parameters (Kara & 

Yücel, 2015) suitable for catchment-scale hydrological studies with up to 0.11° 

(~12.5 km) horizontal resolution. The higher resolution of RCMs enables better 

simulation of spatial and temporal variability of climate and extreme events (Giorgi 
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& Gutowski Jr, 2015). For this reason, the outputs of RCM simulations are used for 

climate change assessment studies.  

2.2 Climate change analysis in Türkiye 

Negative impacts of CC in the Mediterranean Region are emphasized in IPCC’s 5th 

and 6th assessment reports (IPCC, 2014; IPCC, 2021). Many studies identified this 

region as a hot spot concerning climate change impacts (Giorgi, 2006; Giorgi & 

Lionello, 2008; Spinoni et al., 2020). These findings have been verified by the 

studies that focus on the impacts of climate change in the Eastern Mediterranean 

and/or Türkiye through the analysis of historical data (Kostopoulou & Jones, 2005; 

Kuglitsch et al., 2010) and GCM/RCM analysis (Aziz et al., 2020; Kentel et al., 

2021; Mesta et al., 2022).  

Research examining the effects of climate change on surface air temperature by 

analyzing historical temperature trends has revealed a notable increase in warming, 

especially in the southern and inland regions of Türkiye (Tayanç et al., 2009; Toros, 

2012; Unal et al., 2013; Erlat et al., 2021). 

Conversely, the study by Yucel et al. (2015) indicated no statistically significant 

change in the historical precipitation records in eastern Türkiye. Sensoy et al. (2013) 

analyzed the trends in the climate indices for 109 stations across Türkiye between 

1960 and 2010. The analysis revealed interregional variability in the changing trends 

in total annual precipitation, with an increase in the north and a decrease in the south 

and west of Türkiye. In contrast, trends relating to high precipitation events indicated 

an increase in the number of heavy precipitation days (i.e., 17 days in 100 years), 

particularly in west and southeast Türkiye, and in the intensity of heavy precipitation 

in the entire country, except for the east (Sensoy et al., 2013). 

Several studies assess the impacts of climate change in Türkiye by the use of 

projections from climate models considering ecosystem dynamics, energy, 

management of extreme events, forestry, reservoir planning, hydropower generation, 
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crop yield, and tourism activities (Fujihara et al., 2008; Özdoğan, 2011; Deidda et 

al., 2013; Kara & Yücel, 2015; Öztürk et al., 2015; Yilmaz, 2015; Mehr & Kahya, 

2017; Bucak et al., 2018; Dino & Akgül, 2019; Kentel et al., 2021).  

A few researchers have studied the impact of climate change on extreme storm 

events in Türkiye. Yilmaz (2015) investigated the potential increase in flood risk in 

Antalya. In this study, historical rainfall records and future climate projections are 

analyzed. He found that extreme rainfall increases statistically significant based on 

historical data. Balov (2020) analyzed projections of NorESM1-M GCM under the 

Representative Concentration Pathways (RCP) 4.5 and 8.5 scenarios to assess 

change in flood risk due to climate change in Bursa, Türkiye. The study revealed that 

despite the statistically non-significant change in the mean annual precipitation, the 

frequency of intense precipitation is projected to increase. 

2.3 Climate change impacts on floods 

In recent years, studies on the impact of CC on different types of floods have 

emerged in the literature. Radojevic et al. (2010) conducted an assessment of the 

impact of global change on flood regimes in Lyon, France. They selected the 1970s 

and 1990s as reference periods to examine the effects of CC on rainfall and flood 

regimes and simulate urban development's impact on flood regimes in 2025. The 

study found that urban development has the effect of reducing the 10-year flood to a 

1-year flood. Hallegatte et al. (2010) conducted a study on flood risks in Mumbai, 

highlighting the impacts of CC and the benefits of adaptation strategies. The 

researchers estimated the economic loss for a 100-year flood event under five 

scenarios: the present day, an unchanged city with the high-end scenario in the 

2080s, more resilient properties in the 2080s, improved outflow using Hydrologic 

Engineering Center - The Hydrologic Modeling System (HEC-HMS), and the 

impacts of climate change and urbanization are planned to be investigated through a 

scenario-based analysis. 
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Harada et al. (2020) studied flood frequency analysis and impact assessment for CC 

in Japan. One climate model was used, and flood runoff analysis was performed 

using the storage function method. Finally, they concluded that the peak flood flow 

was expected to increase at most 33% in the future. Oubennaceur et al. (2021) 

investigated the flood risk under CC for 2050 and 2080 in Quebec. They used two 

different RCPs and one climate model. They concluded that flood peaks and flood 

damages show a minor decrease in the future. In a more recent study, Rincon et al. 

(2022) studied the flood risk under CC in Toronto. They considered future rainfall 

based on different RCPs drainage systems that can handle 50-year rainfall events in 

the 2080s and more resilient properties with an improved drainage system. They 

found that economic loss is the least in the scenario of more resilient properties with 

improved drainage systems. Hirabayashi et al. (2013) worked on global flood risk 

under CC in a similar study. They presented global flood risk based on the outputs 

of 11 climate models. They calculated the peak discharge of the 100-year return 

period for the 20th century, estimated the return period of this discharge in the 21st 

century, and compared them. They found a large increase in flood frequency in 

Southeast Asia, Peninsular India, eastern Africa, and the northern half of the Andes. 

In another study, Dutta et al. (2013) studied flood vulnerability assessment under CC 

conditions for two selected coastal zones in Australia and Japan. Four water 

inundation parameters, three water-quality parameters, and twenty-two key issues 

were determined by experts from Australia and Japan as well as international experts 

within the context of the project. A questionnaire was prepared to obtain participants’ 

views on how different levels of coastal inundation affect key issues and assets. They 

concluded that synthetic response functions were beneficial where historical 

quantitative data on flood hazard impacts on key issues are not available and the 

proposed methodology could be used to manage flood risk in coastal zones in any 

region. In this project, similar to those in the literature 17 of CORDEX (Coordinated 

Regional Climate Downscaling Experiment) RCMs are used to carry out CC 

analysis. In a more recent study, the impacts of CC on river floods at the global scale 

were investigated by Arnell and Gosling (2016). The researchers employed the 
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results of 21 climate models in their study. The magnitude, return period of the flood 

peaks, flood-prone population, and flood-prone cropland for the 100-year flood 

event in 2050 were selected as indicators, and flood hazard was calculated based on 

these indicators. The study's results demonstrated the variations in flood risk under 

different climate models, and the primary reason for this variation was identified as 

the precipitation projections of the climate models.  

Xu et al. (2019) evaluated the impacts of CC on fluvial flood risk in a mixed-used 

watershed. They used the Soil and Water Assessment Tool (SWAT) to estimate daily 

flows. They used five different climate models. They found a decrease in flood risk 

if the precipitation increase is less than 10%. In a more recent study, Cabrera and 

Lee (2018) worked on the impacts of CC on flood-vulnerable areas in the 

Philippines. They used 39 general circulation models to obtain the rainfall 

projections and conducted flood risk analysis using the Analytical Hierarchy Process 

(AHP) for 2015, 2030, 2050, and 2100. Flood risk indicators were selected: rainfall, 

slope, elevation, drainage density, soil type, distance to the main channel, and 

population density. They concluded that there would be no dramatic change in the 

future.  

Garijo and Mediero (2018) conducted a study about the impact of CC on flood 

magnitude and seasonality in Spain using 24 global climate models under two RCPs. 

The hydrological behavior of the catchment was modelled by using Hydrologiska 

Byrans Vattenbalansavdelning (HBV) rainfall-runoff model. The magnitude of 

extreme floods decreased for most of the climate projections while it increased for 

the remaining projections. In a similar study, Robi et al. (2018) conducted a flood 

hazard mapping study in Ethiopia under a CC scenario using SWAT for the 

hydrological model and MIKE FLOOD for the hydraulic model. They generated 

flood hazard maps of 100-year return period floods for 2005, 2030, and 2060. They 

found that CC causes an increase in peak discharge of the 100-year flood hydrograph.  

Bangalore et al. (2019) studied exposure to floods, CC, and poverty in Vietnam. 

They studied coastal, fluvial, and pluvial floods together. They did not cover the 

impacts of CC in precipitation events or river discharges. They assumed 30 cm sea 
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level rise for coastal flooding. They finally concluded that more people will be 

affected from floods due to CC in the future.  

Bai et al. (2019) conducted a study to assess the impact of CC on flood events. One 

general circulation model and three emission scenarios were used in their study. The 

comparison of 10, 25, 50, and 100-year precipitation and streamflow for low, 

medium, and high emission scenarios showed that calculated values were higher than 

the historical records. In this project, the hydrological modeling of the study basin is 

carried out for different periods using different global climate models. They found 

that the rainfall intensities are likely to increase. Hence, it increases flood risk in 

Toronto.  

In a similar study, Chen et al. (2022) assessed flood risk maps under CC RCP8.5 

scenarios in Taiwan. They generated flood risk maps for 2075-2099. They 

downscaled the MRI-JMA-AGCM Model and used it as a climate model. Finally, 

they investigated the areas where hazard indicators increase and those with higher 

vulnerability levels. They also suggested some adaptation measures and strategies. 

The results of many studies showed that CC impacts on flood risk differ from region 

to region. CC caused and was estimated to cause an increase or decrease in flood 

risks in some regions, while it did not and was estimated not to affect flood risks in 

others. For this reason, CC analysis is very important for the assessment of flood 

risks in the future. In this study, outputs of different RCMs (17 RCMs) will be used 

in the HEC-HMS hydrological model, and flood hydrographs for different return 

periods will be calculated. These hydrographs will be used in the hydrodynamic 

model to determine flood-inundated areas. 

2.4 Land use / land cover (LULC) change 

LULC change might be one factor that increases the severity of flood consequences. 

There are numerous studies demonstrating the impact of LULC changes on floods. 

In their 2004 study, Dezso and colleagues examined LULC change in the Carpathian 

Region. It was stated that several severe flood events had occurred in the region and 
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that the only reason for these events could not be attributed to heavy precipitation 

events. Consequently, they conducted an analysis of the LULC change in the study 

area and discovered that the forest area had decreased in the region. The authors 

concluded that the reduction in forest area may be a contributing factor to the 

occurrence of severe flood events in the region. 

Petchprayoon et al. (2010) conducted a study about the hydrological impacts of land 

use/land cover change in a large river basin in central-northern Thailand. They 

compared the peak discharges and urban areas in 1990 and 2006. They also analyzed 

the precipitation trends but could not find a significant trend except for one station. 

Small increase was found in the peak flows, while urban areas increased by 132%. 

They concluded that the increase in peak discharges was the result of the expansion 

of urbanized areas.  

Brody et al. (2015) examined the impact of LULC change on floods from a different 

point of view. The study analyzed the impacts of LULC changes on flood losses in 

the Gulf of Mexico between 1999 and 2009. The findings indicated that an increase 

in wetland areas was associated with a reduction in flood losses. Furthermore, the 

study indicated that an increase in impervious surface area and a reduction in 

vegetation generally results in an increase in flood losses. 

In a different study, Szwagrzyk et al. (2018) studied the impacts of LULC changes 

on flood risk in Poland. They used three LULC change scenarios in their research. 

Hydrological simulations were conducted considering the current state. They found 

that peak discharges decreased in some areas while they increased in the remaining 

regions. Hence, flood-related monetary losses are projected to increase in the areas 

where peak discharges increase. In a similar study, Guzha et al. (2018) conducted 

research about the impacts of LULC on surface runoff, discharge, and low flows in 

East Africa. The findings of the study indicated that annual discharges and surface 

runoff increase with the loss of forest cover. Additionally, the researchers observed 

a weak correlation between forest cover and surface runoff, mean discharge, and 

peak discharge.   
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In a more recent study, Costache et al. (2020) studied the correlation between LULC 

changes and flash-flood potential in Romania. They carried out the analysis for 1989 

and 2019. They found a high correlation between LULC change and flash-flood 

potential change. In a similar study, Feng et al. (2021) conducted research about the 

impact of urbanization on flood risks in Canada. Six distinct land use scenarios were 

employed as input in coupled hydrological and hydraulic models. The study revealed 

that flood-prone areas are expanding as a consequence of urbanization. Furthermore, 

the study revealed that discharge rates increase while times to peak decrease due to 

urbanization. Azizi et al. (2021) studied the impacts of land use change on flood 

hydrograph by using HEC-HMS hydrological model. The analysis was conducted 

for 1985, 2000, and 2015. They determined LULC classes by using satellite images 

and they used these classes to calculate weighted curve number that is used in HEC-

HMS hydrological model. They found that urbanized area increased while grasslands 

and agricultural lands decreased. They also found that peak discharge volume 

increased between the studied dates. 

It can be demonstrated that LULC changes have a significant impact on flood risk. 

Consequently, it is of paramount importance to integrate LULC changes into flood 

risk assessment studies. Literature review reveals that there are few studies in 

Türkiye that evaluate the impacts of LULC changes on floods. The urbanization 

trends are analyzed using historical satellite images, with the results subsequently 

utilized as an input for both the hydrological model and the hydrodynamic model. 

There are also many studies that investigate the effects of CC and LULC together or 

separately. Beckers et al. (2013) carried out a study about contribution of land use 

changes to future flood damage (2100) for 100-year flood event. Nine urbanization 

scenarios under two climate scenarios were developed. The results showed that 

urbanization scenarios contribute more flood damages in dry climate scenario while 

they are not very effective in wet climate scenario. In wet climate scenario, CC 

impacts cause increases in flood damages much more than LULC change scenarios. 
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In a different study, Akter et al. (2018) investigated the impact of CC and land use 

change on flood risk in Belgium in 2100. The findings indicated that climate change 

is a more significant driver of peak flows than land use change. 

In a more recent study, Avand et al. (2021) investigated the impacts of CC and land 

use on flood probability in Iran. They predicted the land use in 2020 - 2040 based on 

the land use change between 1990 and 2019. They used RCP2.6 and RCP8.5 

scenarios in their study. They found that rainfall is likely to increase under both 

scenarios while urbanized area and forests are likely to decrease. They concluded 

that these changes would increase flood probabilities in downstream of the study 

area. 

In a study published in 2018, Igarashi and colleagues examined the impact of land 

use and climate change on flood discharge. The authors underscored the significance 

of land use change on flood risk in developing countries. A total of 14 scenarios for 

land use change (based on changes in forest cover) were generated and compared to 

average daily discharges from 3.3 and 10-year return period rainfall. The study 

concluded that climate change would result in a reduction in the average daily flood 

discharge in the future. Nevertheless, they posited that the 10-year return period 

discharge would be greater due to a reduction in forest area. 

For more studies on CC and urbanization impacts on flood risk, please see: Dankers 

& Feyen, 2008; Wilby et al., 2008; Feyen et al., 2009; Klijn et al., 2012; Poelmans 

et al., 2011; Feyen et al., 2012; Alfieri et al., 2015; Mahmoud & Gan, 2018; Haer et 

al., 2020. 

In most studies, flood risks have been found to increase even when future rainfall 

projections decrease. The most significant contributing factor to this increase is the 

expansion of urbanized areas. To assess future flood risk, it is of the utmost 

importance to analyze the effects of components both separately and together. This 

will enhance the efficacy of flood-related initiatives in the region. 

After reviewing the literature, it is realized that no study covers the impact of the 

LULC change of Silifke on river flow and floods. Table 2.1 summarizes the literature 

review of the LULC change studies conducted for the areas in the vicinity of Silifke. 
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Table 2.1 Literature review of LULC change around the study area 

Reference Date Study Area Period BE AL Forest PG FCM 

Alphan 2003 Adana 1984-2000 107.58 -22.99 -33.99   

Seyran 2009 
Lower Seyhan 

Basin 
1967-2007 465.53 -39.99 -17.85   

Derse and 

Alphan 
2012 Erdemli District 1984-2006 550.97 21.48 -7.79   

Sönmez 2012 Adana 1990-2010 
8.73 to 

9.00 

34.40 to 

35.66 

12.98 to 

9.31 
  

Tübitak MAM 

Çevre Enstitüsü 
2013 

Dogu Akdeniz 

Basin 
2012-2040    20.84  

TÜİK 2018 

Adana, Hatay, 

Mersin, 

Osmaniye, 

Türkiye 

2018-2025    

3.89, 

6.96, 

7.43, 

8.49, 

8.52 

 

TÜİK 2018 Türkiye 2018-2069    31.51  

Zadbagher et al. 2018 Seyhan Basin 2016-2036 50 8 -5   

Göksel and 

Balçık 
2019 Akdeniz District 2006-2014 -6.41 60.11 -57.54   

DSİ Strateji 

Geliştirme 

Dairesi 

Başkanlığı 

2020 
Mersin and 

Hatay 
2019     

FCMs are 

applied 

BE: Built Environment, AL: Agricultural Land, PG: Population Growth, FCM: Flood Control 

Measures 

2.5 Analysis of land use / land cover change 

Image classification has been used to analyze LULC classification by many 

researchers. Güler et al. (2007) used Landsat images to determine LULC change in 

Samsun, Türkiye. They used three images and six LULC classes in their study. They 

found an increase in the urbanized area during the studied time period. In a similar 

study, Manandhar et al. (2009) used Landsat images for LULC classification, and 

they also used post-classification enhancement to improve the classification 

accuracy in Australia. They used three Landsat images, and according to their results, 
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the method successfully improved the accuracy of the classification. In another 

study, Tan et al. (2010) used Landsat images to evaluate urban expansion and LULC 

change in Malaysia. They used different supervised classification techniques and 

compared the results. Their study used two images and seven LULC classes and 

found that the highly built-up area increased dramatically. In a similar study, Otukei 

and Blaschke (2010) used different algorithms to analyze land cover change in 

Uganda. They used two images (Landsat 5 and Landsat 7) and eight different LULC 

classes and obtained satisfactory results for their algorithms. 

Yin et al. (2011) conducted a study to detect urban expansion and LULC change in 

Shanghai between 1979 and 2009. They used four different Landsat images and five 

LULC classes in their study. They found that urbanized areas increased drastically 

in the study area. El Kawy et al. (2011) studied to detect LULC change in the 

Western Nile Delta of Egypt. Four satellite images and five LULC classes were used 

in their study. Barren land changed into agricultural areas according to the results of 

their study. In a similar study, Hassan et al. (2016) studied the dynamics of LULC 

change in Pakistan. They compared 1992 and 2012, and five LULC classes were 

used in their classification. They found that agricultural areas, urbanized areas, and 

water bodies increased while forests and barren areas decreased during the studied 

time period. In a more recent study, Deng et al. (2019) used Landsat 8 images to 

classify LULC of a heavily urbanized area. They did not detect LULC change in the 

study area where seven different LULC classes were considered. 

In a different study, Kafy et al. (2020) studied the impacts of LULC change on land 

surface temperature in Bangladesh. They used three different Landsat images in 

LULC classification. In a similar study, Alam et al. (2020) used Landsat images to 

assess LULC change in Kashmir Valley. They used three different images and five 

different LULC classes. They found the maximum increase in urbanized areas while 

the maximum decrease in pasture class. Many studies can be found in the literature 

about LULC change detection using satellite images. For more references, please see 

Muttitanon & Tripathi, 2005; Fan et al., 2007; Fu & Weng, 2016; Zaidi et al., 2017; 
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Allam et al., 2019; Mukherjee & Singh, 2020; Chen et al., 2020; Alawamy et al., 

2020; Aik et al., 2020. 

2.6 Nonstationarity analysis 

It is generally assumed that extreme events are stationary in the design of hydraulic 

structures where probabilistic methods are applied (Salas & Obeysekera, 2014; Read 

& Vogel, 2015). However, nonstationarity exists in nature. Human interventions in 

the river basin, LULC changes, and CC are the major causes of nonstationarity. For 

this reason, the concepts such as risk and return period should also be assessed 

considering nonstationarity. There are various studies that try to investigate the 

impacts of nonstationarity on extreme hydrological events such as floods, droughts, 

etc. Madsen et al. (2014) reviewed the trend analysis and CC projections of extreme 

precipitation and floods in Europe. They found that some evidence exists that shows 

the increase in extreme precipitation, while extreme streamflow does not show a 

significant increase. They also found that many areas are affected both positively and 

negatively by the hydrological projections of peak flows. Condon et al. (2015) 

studied non-stationary flood risk for the upper Truckee River basin. Variable 

Infiltration Capacity model and non-stationary Generalized Extreme Value (GEV) 

models were used in the study. Nonstationary models were generated using historical 

monthly total precipitation and average temperature. They found that flood risk 

increases significantly from 1950 through 2099. They also highlighted that the 

traditional methods underestimate flood risk. Sraj et al. (2016) investigated the 

influence of non-stationarity in extreme hydrological events on flood frequency 

estimation. They used the GEV distribution, and time and annual precipitation were 

used as the covariates. They selected two stream gauges from Slovenia. They found 

that the stationary model tends to underestimate flood quantiles.  

The year after, Debele et al. (2017) compared three approaches, namely maximum 

likelihood, two-stage and generalized additive model for location, scale, and shape 

parameters (GAMLSS), to non-stationary flood frequency analysis. They found that 
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GAMLSS gave the best results. In the same year, Gao et al. (2017) investigated the 

risk of extreme precipitation under nonstationary conditions in the Southeastern 

Coastal Region of China. They analyzed the trend of the extreme precipitation series 

using the Mann-Kendall test. The climate change index and human activity index 

were used as the covariates in the study. They generated nonstationary models using 

GAMLSS. They found a significant positive correlation between CC and human 

activities and the mean/variance of extreme precipitation. Gu et al. (2017) evaluated 

nonstationary flood risk in the Pearl River basin. They used the GEV model and time 

as the only covariate. They found that peak flood flow increases in some parts while 

decreasing in others. Furthermore, they found that the return period under stationary 

and nonstationary assumptions differs for periods longer than 50 years. They also 

stated that the failure risk of flood control infrastructure is higher for the 

nonstationary case. In the same year, Razmi et al. (2017) studied non-stationary 

frequency analysis of extreme water levels in a coastal part of New York City. The 

trend and stationarity of the series were checked using some statistical tests. They 

generated non-stationary models using the GEV and Generalized Pareto 

Distributions. They found that extreme water levels were significantly different 

under stationary and non-stationary assumptions.  

Luca and Galasso (2018) analyzed extreme rainfall time series under stationary and 

non-stationary conditions in Southern Italy. Two-Component Extreme Value 

probability distribution was used in the study, and they found that generating non-

stationary models is not essential. They also found no significant trend in historical 

data, which supports the study's previous finding. In the same year, Sun et al. (2018) 

evaluated food frequency and flood risk in the Huai River basin under non-stationary 

conditions. They analyzed monthly streamflow data of nine gauging stations. They 

did not find a significant change for the three stations, while they found a significant 

change for the rest. Another finding of the study was that flood flows of three stations 

were non-stationary, while the others were stationary. They also tried different 

probability distributions and found that the Weibull distribution was the best among 

the others. 
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Yan et al. (2019) analyzed flood hazard under nonstationary conditions. They 

considered the impacts of climate change and population growth on flood hazard by 

using rainfall and population as the covariates. They also generated nonstationary 

models using time as the covariate. They found that population and rainfall 

covariates provided more reasonable estimates than time covariate. Lu et al. (2020) 

studied the impacts of climate and reservoirs on extreme floods. They used the GEV 

distribution in the study. Time, climate indices, and climate-reservoir index were 

considered as the covariates. The performance of the nonstationary model with 

climate-reservoir index was better than the others. Oruc et al. (2022) studied the 

effect of climate change on extreme precipitation in Ankara. They used nonstationary 

GEV models, and they found a decreasing extreme trend. Barbhuiya et al. (2023) 

reviewed the methods and models in nonstationary flood frequency analysis. They 

discussed many methods, such as GAMLLS, probability-based approaches, time-

varying moments, etc. They also included the challenges associated with 

nonstationary hydrological frequency analysis. The most important inference of the 

study is that incorporating nonstationarity in flood risk assessment is needed. 

2.7 Agent-based modeling (ABM) and flood risk management 

One of the significant challenges in current FRM studies is to include human-flood 

interaction in the modeling approach to investigate how stakeholders/agents respond 

to flooding and how their involvement results in a more effective FRM. In addition, 

these studies assume static conditions in which humans and their surrounding 

environment are inactive and their vulnerability is constant. Under such assumptions, 

time-dependent features such as human interactions, individual adaptations, and 

technology innovation cannot be incorporated in current models, and there is a lack 

of modeling approaches to include social aspects of human behavior in FRM. To fill 

these knowledge gaps, interdisciplinary approaches, which allow the formulation of 

dynamic individual decision-making under uncertainty, are in demand. More 

specifically, there is a need for a technique to model social processes and 
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complexities of stakeholders’ behaviors over time through a bottom-up approach and 

in combination with engineering practices. We incorporate the behaviors of the 

stakeholders/agents and their changes over time into FRM via ABM to develop 

effective and sustainable flood mitigation measures and adaptation strategies. 

Not many studies incorporate ABM into FRM, but it is becoming popular, and 

integrating agent behaviors into FRM is gaining importance. Dawson et al. (2011) 

estimated the vulnerability of people to flood under different storm surge conditions, 

defense scenarios, evacuation strategies, and flood warning times by coupling ABM 

with a hydrodynamic model in the coastal town of Towyn in the United Kingdom. 

Their study determined agent behaviors based on age, sex, employment, and 

household size. They used the same distribution of these parameters that census 

generated and randomly located in the study area. Hassani-Mahmooei and Parris 

(2012) studied internal migration patterns under climate change. Their main goal was 

to study the migration dynamics due to climate change in Bangladesh. Migrants were 

the main agents, and decision rules were determined based on various parameters. 

They generated scenarios considering the combined effects of droughts, floods, sea 

level rise, and cyclones. They believed that the study's results could be used to 

prepare and manage the future migration flow while increasing the country’s 

adaptation to CC.  

An ABM was developed to focus mainly on the role of flood insurance by 

Dubbelboer et al. (2017) in Camden, United Kingdom. They covered the interaction 

between homeowners, insurers, local government, developers, and banks. They 

highlighted how socioeconomic development can worsen surface water flood risk in 

the study area. They also found that the implementation of different adaptation 

measures was successful in reducing surface water flood risk. However, average 

surface water flood risk increased over time, even with implemented adaptation 

measures. Haer et al. (2017) integrated household risk mitigation behavior into FRM 

in Heijplaat, Rotterdam. They analyzed household behavior under three different 

economic decision models. They showed that future flood risk may be 

underestimated if human behavior is neglected in FRM. Jenkins et al. (2017) 
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generated different scenarios using the adaptation options used in the study of 

Dubbelboer et al. (2016) for the same study area in 2017. They analyzed the effects 

of different adaptation options on surface water flood risk, individually and in 

combination. They calculated the average water surface flood risk under the effect 

of CC. Their study highlighted that surface water flood risk decreases with 

sustainable urban drainage systems and property-level flood protection. Tonn and 

Guikema (2018) developed an agent model that analyzes the impacts of community 

policies and individual decisions on community flood risk. Individual decisions of 

people were determined based on risk perception and coping perception values. They 

calculated those values based on parameters such as the number of flood experiences, 

the number of near-miss flood experiences, individual mitigation, etc. They explored 

that community mitigation decreases future flood damage. They also found that 

individual action significantly impacts community flood risk.  

Abebe et al. (2019) combined ABM and flood model to manage flood risk in Sint 

Maarten. Households and government were the main agents in their study. Three 

institutions represented the government agent. Three compliance rate values, one for 

each institution, were assigned to each agent using uniform random distribution. 

Households took actions based on these values. They used MIKE FLOOD as the 

hydraulic model. Haer et al. (2020) developed an ABM to study flood risk under CC 

in the European Union. Government and households were the main agents. They 

generated scenarios based on the different behavior types of the agents. The 

government agent can be proactive or reactive, while the households can be 

boundedly rational or rational. They found that the effects of extreme flood events 

are more significant when governments provide high protection levels in large 

metropolitan areas. In the same year, Tonn et al. (2020) investigated the behavioral 

impacts on community flood risk under CC. Their previous study (Tonn & Guikema, 

2018) solely included the CC impacts. Their study used one historic climate scenario 

and three future climate scenarios. They found that actions taken by both the 

community and individuals decrease the flood damage over time.  
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Zhuo and Han (2020) conducted a detailed literature review of ABM and FRM. They 

identified three topics that ABM was used, and different research challenges were 

addressed. These topics are real-time flood emergency management, long-term flood 

adaptation planning, and flood hydrological planning. They emphasized the potential 

contribution of ABM to future flood risk management. They also discussed the 

limitations of ABM. Taillandier et al. (2021) studied the inhabitants’ behavior during 

a flood event. They provided a new ABM called SiFlo, and they tried to answer the 

challenges that could not be answered by the previous studies. 

2.8 Risk perception and coping perception 

The risk-reducing behavior of individuals against natural hazards is interpreted using 

the Protection Motivation Theory (PMT) introduced by Rogers (1975) and has 

become very popular nowadays. Risk perception and coping perception are the two 

main cognitive processes of PMT. 

Hunter (2002) defined risk perception as identifying and evaluating risk associated 

with hazardous events. Several recent studies investigated how to evaluate people's 

risk perception regarding floods. Liu et al. (2022) studied flood risk perception and 

effecting factors in Jiaozuo City, China. They prepared a questionnaire and asked 

four questions in this survey. They assessed demographic factors, residential 

conditions, and other factors such as flood experience, adaptation measures, etc., and 

found the most influencing factors. In the same year, Ridha et al. (2022) investigated 

the impacts of CC on infrastructure in coastal urban areas. They determined the 

relationship between flood risk perception and assessment of water infrastructure 

through a survey. Results of the study showed that flood risk perception influences 

public evaluation of water infrastructure conditions. Buchenrieder et al. (2021) 

investigated the flood risk perception in a developing country. They also investigated 

the risk perception influencing factors such as religion, location, sex, age, etc. They 

found that location is one of the most critical factors influencing flood risk 

perception.  
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In 2020, Netzel et al. (2021) analyzed the importance of public risk perception for 

efficiently managing pluvial floods in urban areas. They selected two case study sites 

in Western Germany. They conducted a questionnaire-based telephone survey. Their 

study revealed that personal and global risk perceptions should be distinguished. 

They also found that global risk perception was high while personal risk perception 

was relatively low among the participants. They also analyzed the impacts of some 

parameters on risk perception and found that personal risk perception, education, 

housing conditions, and knowledge influence people's behavior in terms of 

mitigation. Liu et al. (2018) studied the flood risk perception of rural households in 

China. They used eight influencing factors based on the existing literature. They 

stated that the study's results can help the local government, and households may use 

them to improve their FRM. Adelekan and Asiyanbi (2016) assessed flood risk 

perception in flood-affected communities in Lagos, Nigeria. They designed a 

questionnaire, and 1,000 residents answered the questions. They examined the 

relationship between socio-demographic attributes of the households and flood risk 

perception.  

Bubeck et al. (2012) examined if flood risk perception contributed to FRM. They 

selected central Vietnam as a case study and stated that its results provide significant 

input to the existing literature on flood risk perception in developed countries. 

Botzen et al. (2009) investigated how geographical and socioeconomic 

characteristics, flood experience, flood threat knowledge, and risk attitude influence 

flood risk perception in the Netherlands. They found that flood risk perception is 

generally low. They also stated that flood risk awareness may be increased by 

educating people about the causes of floods.  

Many studies investigate risk perception, while coping perception is rarely studied. 

Coping perception is an essential parameter in terms of protective behavior. Bubeck 

et al. (2012) and Bubeck et al. (2018) stated that coping perception better predicts 

protective behavior than risk perception. Holley et al. (2022) investigated the roles 

of place attachment, emotions, and location on coping perception. They stated that 

coping perception could be used to predict discrete behavioral intentions. Laudan 



 

 

24 

(2019) analyzed the damage-driving factors of Germany's flash floods and river 

floods. Furthermore, he assessed the psychological impacts on the coping capacity 

of flood-affected households. He found that damage-driving factors are different for 

flash floods and river floods; flood types weakly influence the coping perception of 

people.  

Bormudoi and Nagai (2017) assessed risk perception and coping capacity in Jiadhal 

Basin, India. They prepared a questionnaire and asked the questions to understand 

the respondents’ perceptions about the primary cause of the disaster. They found that 

if a respondent’s perception of the causes of the disaster is high, coping with them is 

better. Richert et al. (2017) analyzed the factors that affect households’ flood 

mitigation decisions in France. Their study highlighted that risk perception 

influences mitigation decisions. Bubeck et al. (2013) studied the impacts of coping 

perception on mitigation behavior. They analyzed four different flood mitigation 

behaviors and highlighted the significance of coping perception on flood mitigation 

behavior. Zaalberg et al. (2009) investigated the flooding experiences in the 

Netherlands. They wondered if flood experience motivates residents to cope with 

future flooding. They found that the people who had flood experience reported strong 

emotions. They also worry more about future flooding and think they are more 

vulnerable to future floods.  

Risk and coping perceptions are effective indicators of people’s decisions on whether 

to take action or not. Thus, these two factors are included in the FRM framework 

through ABM. 
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CHAPTER 3  

3 STUDY AREA 

Göksu River, which is approximately 271 km, is one of the longest rivers in Türkiye. 

It runs through Silifke and discharges to the Mediterranean Sea. Silifke, a district of 

Mersin located at the downstream part of Göksu River, has been selected as the study 

area because, in the meeting with the State Hydraulic Works staff, they stated that 

there are not many flood studies in this region. In addition to this, flood events occur 

frequently in this region (Buldur et al., 2007; İhlas Haber Ajansı, 2017). The 

population of Silifke in 2023 was around 137,047 (Turkish Statistical Institute, 

2024). Lidar point cloud data of the study area with 1 m resolution was obtained 

from the Ministry of Environment, Urbanization, and Climate Change. It covers 

approximately 500 km2, and its resolution is 1 m. The location of buildings is also 

taken from the same institution. There are approximately 29,000 buildings in the 

study area. On the other hand, the bathymetry of Göksu River is obtained from the 

State Hydraulic Works, and the resolution of bathymetry data is 1 m as well. The 

bathymetry data covers the river section between the point where Göksu River 

discharges to sea and 8 km upstream of Silifke District Center. A digital elevation 

model is generated using lidar point cloud data and the bathymetry of the Göksu 

River. The location of the study area is given in Figure 3.1. 
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Figure 3.1. Location of the study area (Source: Google Earth) 

The study area was visited on the 29th of January, 2024. The photographs from the 

Göksu River, the center of Silifke, the Göksu Delta, wetlands, and beaches around 

the Göksu River are given in Figure 3.2. Figure 3.2 (a) and Figure 3.2 (b) show the 

wetlands around the Göksu River. These areas are near where the Göksu River 

discharges to the Mediterranean Sea. Figure 3.2 (c) and Figure 3.2 (d) show the 
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photographs taken from the Göksu River. These photographs are taken from the 

downstream part of the river. It can be seen that the width of the river is quite wide 

in this region. Figures 3.2 (e), 3.2 (f), 3.2 (g), and 3.2 (h) show the Göksu River 

passing through the center of Silifke. It can be seen that there are many bridges on 

the Göksu River (Figure 3.2 (e) and Figure 3.2 (h)). The Göksu River meanders in 

Silifke, and it can be seen that the left and right sides of the Göksu River are highly 

urbanized. Figure 3.2 (i) shows the beaches near the Göksu River and the 

Mediterranean River, and finally, Figure 3.2 (j) shows the Göksu Delta. 

 
 

(a) Wetland around Göksu River 

 

 
 

(b) Wetland around Göksu River 

Figure 3.2. The photographs from the study area: (a) and (b) Wetland around 

Göksu River (c) and (d) Göksu River (e) Göksu River passes through the center of 

Silifke (f) and (g) Meandering part of Göksu River (h) Bridges on Göksu River (i) 

Beaches around the Göksu River and the Mediterranean Sea (j) Göksu Delta 
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(c) Göksu River 

  

 
 

(d) Göksu River 

 
 

(e) Göksu River passes through the 

center of Silifke 

 

 
 

(f) Meandering part of Göksu 

River 

Figure 3.2. (cont’d) 
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(g) Meandering part of Göksu River 

 

 
 

(h) Bridges on Göksu River 

 
 

(i) Beaches around the Göksu 

River and the Mediterranean 

Sea 

 
 

(j) Göksu Delta 

Figure 3.2. (cont’d) 
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A meeting with the State Hydraulic Works (SHW) Silifke Branch was conducted on 

the 29th of January. In this meeting, the historical floods, the problems of the Göksu 

River, and the studies about the Göksu River were discussed. The combined 1D/2D 

hydraulic model is validated based on the information taken in this meeting. It is 

stated that the historical flood in 2004 hit Silifke from Democracy Park, and the flood 

water left Silifke after the fourth bridge on the Göksu River. They also stated that 

the Göksu River can pass safely 800 m3/s discharge. They also stated that there are 

expropriation problems around the Göksu River, and because of that, in some parts 

of the river, it is not possible to regulate the river bed. Figure 3.3 shows the hydraulic 

structures, meteorological stations, and stream gauges in the basin. 

 

Figure 3.3. Meteorological stations, stream gages, and dams in the basin (Basemap 

source: Esri, Maxar, Earthstar Geographics, and the GIS User Community) 

The hypsometric curve of the basin is given in Figure 3.4. It can be seen that the 

elevation is greater than 1500 m for approximately 62% of the basin. These areas 

can be considered as snow storage locations. Flood events caused by snow melting 
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are a problem for the study area. The latest historical flood event supports this 

implication (Buldur et al., 2007).   

 

Figure 3.4. Hypsometric curve of the basin 

The information about the stream gages is given in Table 3.1, while the information 

about the meteorological stations is given in Table 3.2.  

Table 3.1 The information about the stream gages in the basin 

 
Basin area 

(km2) 

Minimum 

(m3/s) 

Average 

(m3/s) 

Maximum 

(m3/s) 

Observation 

Period 

D17A016 3163.5 0.5 33.1 591.0 1964-… 

D17A017 364.0 - 5.1 238.0 1967-… 

D17A033 588.4 - 6.2 245.0 1985-… 

D17A035 491.0 - 5.9 225.0 1985-… 

E17A014 10065.2 - 100.6 1996.0 1961-… 

E17A020 4304.0 - 38.9 698.0 1965-… 

E17A025 203.0 0.1 3.7 333.0 1989-… 
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Table 3.2 The information about the meteorological stations in the basin  

Station No 

Minimum 

Temperature 

(°C) 

Average 

Temperature 

(°C) 

Maximum 

Temperature 

(°C) 

Maximum 

Precipitation 

(mm) 

Observation 

Period 

17246 -28.0 12.1 40.4 68 1951-… 

17320 -28.0 19.5 44.2 168.6 1950-… 

17330 -5.0 19.6 42.4 139.5 1951-… 

17928 -19.6 9.9 36.4 80.9 1960-… 

17956 -10.1 17.6 46.7 71.9 1959-… 

18059 -10.2 14.2 38.4 124.0 2012-… 

18062 -11.8 13.7 36.5 93.3 2012-… 

18210 -14.0 12.5 36.7 68.5 2012-… 

18484 -20.1 12.9 39.1 45.3 2014-… 

18485 -16.6 10.3 33.8 65.9 2014-… 

18495 -17.6 12.7 38.0 108.7 2014-… 

18498 -17.1 10.0 33.4 70.2 2014-… 

18592 -15.4 10.6 33.7 37.5 2014-… 

18611 -14.0 11.3 33.7 139.2 2014-… 

18655 -14.4 10.0 33.5 63.7 2015-… 

18681 -18.1 10.7 34.5 52.7 2015-… 

18758 -15.8 10.8 36 36.9 2015-… 
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CHAPTER 4  

4 METHODOLOGY 

The general flowchart of the study is given in Figure 4.1. The study mainly comprises 

two branches: i) stationary series and ii) non-stationary series. Flood studies are 

conducted using the traditional approach in the stationary series part. CC, LULC, 

and the effect of the agents are not considered for this branch. On the other hand, for 

the non-stationary series part, CC, LULC, and the effects of the agents are integrated 

into the flood modeling using the ABM. Several RCMs are downloaded and 

analyzed to include CC effects in flood studies. For the LULC change analysis, 

satellite images of the study area are used. Finally, for the ABM, a survey is 

conducted by Infakto Research Workshop in the study area, and the collected 

information is used to represent the behavior of the agents (i.e., people living in the 

study area). The main components of the study are explained in the following 

sections (see Figure 4.1). 

4.1 Climate change analysis 

CC directly affects floods and their consequences. In this study, effects of CC are 

represented through the use of RCM projections of precipitation and temperature for 

the future.  

This study assesses the potential impacts of CC by analyzing 17 CORDEX-RCMs 

for RCP8.5 scenario. The CORDEX RCMs in this study are selected by the 

following considerations: 

• CORDEX-RCMs with the daily simulation results for the EURO-11 domain 

and publicly available in the ESFG portal are used after being downloaded 

from the relevant website (https://esgf-node.llnl.gov/search/esgf-llnl/). 

https://esgf-node.llnl.gov/search/esgf-llnl/
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Figure 4.1. Flowchart of the study 
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• The CORDEX-RCMs that have historical and future climate simulations for 

the RCP8.5 scenario are employed for the analysis to achieve a comparative 

assessment of the medium and no GHG mitigation conditions. 

• CORDEX-RCMs that were used in recent studies (e.g., Kentel et al. (2021) 

and Aziz et al. (2020)) on climate change impact assessment in Türkiye are 

considered as candidate models in this study. The findings from these studies, 

particularly those pertaining to the simulation skills of the models, have been 

taken into consideration in the selection of models. 

• In order to evaluate the CORDEX-RCMs, it is necessary to consider the 

CORDEX Errata page (EURO-CORDEX, 2021). Models that have been 

identified as having potential issues that may be significantly relevant to the 

scope and objectives of this study are excluded from the final climate model 

list. 

The final list of RCMs that is used is given in Table 4.1. The selected RCMs data to 

be used is downloaded and processed. Historic precipitation and temperature data of 

these models are entered into the hydrological model, and the best RCM is 

determined based on comparison of estimated and observed streamflow values using 

Correlation Coefficient (Corr), Root Mean Square Error (RMSE), Percent Bias 

(PBIAS), and Nash Sutcliffe Efficiency (NSE). These measures are calculated for 

both sorted and unsorted streamflow. 

4.2 Land use / land cover change analysis 

LULC is another important parameter that affects flood magnitude. Landsat images 

that are the products of U.S. Geological Survey are used as historical satellite images. 

Historical satellite images are classified, and urbanization trends are evaluated using 

these results. Information about satellite images that are used in the analysis is 

provided in Table 4.2. 
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Table 4.1 Timeframes of the simulation outputs of climate models used in this study 

 Climate Model (RCM/GCM) Output Period 

Model ID+ Driving GCM RCM Historic Future (Scenarios) 

M1* CNRM-CM5 CCLM4-8-17 1950-2005 2006-2100 (RCP4.5, RCP8.5) 

M2* CNRM-CM5 ALADIN63 1951-2005 2006-2100 (RCP4.5, RCP8.5) 

M3* CNRM-CM5 RCA4 1970-2005 2006-2100 (RCP4.5, RCP8.5) 

M4* EC-EARTH HIRHAM5 1951-2005 2006-2100 (RCP4.5, RCP8.5) 

M5* EC-EARTH CCLM4-8-17 1949-2005 2006-2100 (RCP4.5, RCP8.5) 

M6* EC-EARTH RACMO22E 1950-2005 2006-2100 (RCP4.5, RCP8.5) 

M7* EC-EARTH RCA4 1970-2005 2006-2100 (RCP4.5, RCP8.5) 

M8* CM5A-MR WRF331F 1951-2005 2006-2100 (RCP4.5, RCP8.5) 

M9* CM5A-MR WRF381P 1951-2005 2006-2100 (RCP4.5, RCP8.5) 

M10* CM5A-MR RCA4 1970-2005 2006-2100 (RCP4.5, RCP8.5) 

M11* HadGEM2-ES CCLM4-8-17 1949-2005 2006-2100 (RCP4.5, RCP8.5) 

M12* HadGEM2-ES RACMO22E 1950-2005 2006-2100 (RCP4.5, RCP8.5) 

M13* HadGEM2-ES RCA4 1970-2005 2006-2100 (RCP4.5, RCP8.5) 

M14* MPI-ESM-LR CCLM4-8-17 1949-2005 2006-2100 (RCP4.5, RCP8.5) 

M15* MPI-ESM-LR REMO2009(r1i1p1) 1950-2005 2006-2100 (RCP4.5, RCP8.5) 

M16* MPI-ESM-LR REMO2009(r2i1p1) 1950-2005 2006-2100 (RCP4.5, RCP8.5) 

M17* NorESM1-M HIRHAM5 1951-2005 2006-2100 (RCP4.5, RCP8.5) 

+ Model ID’s used in this study 

* Models from the CORDEX Database: ESGF, Earth System Grid Federation website, 

https://esgf-node.llnl.gov/search/esgf-llnl/, (CoG version v4.0.0b2, ESGF P2P Version 

v4.0.4) 

 

 

 

 

 

https://esgf-node.llnl.gov/search/esgf-llnl/
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Table 4.2 Satellite images used in LULC classification (Landsat-5 image courtesy of 

the U.S. Geological Survey and Landsat-8 image courtesy of the U.S. Geological 

Survey) 

Satellite Access Date Data 

Landsat 8 25.08.2021 LC08_L2SP_176035_20210825_20210901_02_T1 

Landsat 8 10.05.2017 LC08_L2SP_176035_20170510_20200904_02_T1 

Landsat 8 22.10.2013 LC08_L2SP_176035_20131022_20200912_02_T1 

Landsat 5 19.09.2004 LT05_L2SP_176035_20040826_20200903_02_T1 

Landsat 5 23.09.1985 LT05_L2SP_176035_19850923_20200918_02_T1 

 

Landsat 5 and Landsat 8 images are employed in the LULC classification process. 

Landsat 7 images are not utilized due to a scan line corrector failure. Image 

classification is conducted utilizing the "Image Classification" tool of ArcGIS. The 

dates of the downloaded images are selected with consideration of both cloud cover 

and Google Earth image dates, as training polygons and the validation of the 

classified images are conducted using Google Earth. 

The literature review revealed a correlation between urbanization and deforestation. 

This is a crucial finding in the context of hydrological studies, as it suggests that an 

increase in urbanization may lead to a greater risk of flooding (see Section 2.4). 

Conversely, a reduction in forest areas could potentially result in an increase in peak 

discharges and flood events, which in turn could increase the risk of flooding. 

Consequently, the analysis of LULC change incorporates the classification of 

satellite images to identify trends in LULC change within the study area.  

Satellite images are classified using the Image Classification tool of ArcGIS, and the 

classification procedure is given in Figure 4.2. After downloading the Landsat 

images, they are clipped considering the study area in Figure 4.3. 
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Figure 4.2. Image classification flowchart 

 

Figure 4.3. Image classification of the study area (Basemap source: Esri, Maxar, 

Earthstar Geographics, and the GIS User Community) 
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Training samples are collected using Google Earth images. In accordance with the 

literature, a variety of LULC classes are employed within the context of the study, 

including agricultural land, forests, urbanized areas, bare land, water bodies, and 

marshes. Following the collection of training samples, a LULC map is generated 

using the Maximum Likelihood Classification (MLC) tool of ArcGIS. The MLC tool 

employs two fundamental principles: i) normally distributed cells in each class 

sample and ii) Bayes’ theorem of decision-making. 

The means and variances of each LULC class are considered when assigning an 

LULC class to a cell. The MLC tool calculates the probabilities of each LULC class 

and the LULC class with the highest probability is assigned to each cell. 

Following classification, accuracy assessment points are generated randomly, 

considering the boundaries of the training samples, to evaluate the accuracy of LULC 

classification. The image classification algorithm uses training samples to identify 

LULC classes. The LULC classes are then assigned to the generated accuracy 

assessment points using the generated LULC map. Approximately 500 accuracy 

assessment points are used, and a confusion matrix is calculated based on these 

points. In order to ensure fairness, the accuracy assessment points are generated so 

that they do not overlap with the training samples. 

Four different parameters can be obtained using the confusion matrix. These are 

𝑈𝑠𝑒𝑟′𝑠 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 (𝑈𝐴), 𝑃𝑟𝑜𝑑𝑢𝑐𝑒𝑟′𝑠 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦(𝑃𝐴), 𝑂𝑣𝑒𝑟𝑎𝑙𝑙 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 (𝑂𝐴) 

and KHAT statistics or 𝐾𝑎𝑝𝑝𝑎 𝐶𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 (𝐾𝐶). 𝑈𝐴 (Equation 4-1) can be 

calculated by dividing the number of correctly classified samples of a category by 

the total number of samples that are classified in that category. It can be used to 

indicate how well the classified map represents ground truth. On the other hand, 𝑃𝐴 

(Equation 4-2) is calculated by dividing the number of correctly classified samples 

of a category by the total number of reference samples of that category. It indicates 

how well a specific area can be correctly mapped. Furthermore, 𝑂𝐴 (Equation 4-3) 

can be calculated by dividing the total number of correctly classified samples by the 

total number of samples. It represents the accuracy of the entire product (Story & 
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Congalton, 1986). Finally, 𝐾𝐶 can be calculated using Equation 4-4 and it shows the 

strength of agreement between two sets.  

𝑈𝑠𝑒𝑟′𝑠 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑥𝑖𝑖

𝑥𝑖+
 (4-1) 

𝑃𝑟𝑜𝑑𝑢𝑐𝑒𝑟′𝑠 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑥𝑖𝑖

𝑥+𝑖
 (4-2) 

𝑂𝑣𝑒𝑟𝑎𝑙𝑙 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
∑ 𝑥𝑖𝑖

𝑟
𝑖=1

𝑁
 (4-3) 

𝐾𝑎𝑝𝑝𝑎 𝐶𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 =
𝑁 × ∑ 𝑥𝑖𝑖 − ∑ 𝑥𝑖+ × 𝑥+𝑖

𝑟
𝑖=1

𝑟
𝑖=1

𝑁2 − ∑ 𝑥𝑖+ × 𝑥+𝑖
𝑟
𝑖=1

 (4-4) 

where 𝑁 is the total number of samples, 𝑟 is the total number of LULC classes, 𝑖 is 

the index for the LULC class number, 𝑥𝑖𝑖 is the total number of correctly classified 

samples belonging to LULC class 𝑖, 𝑥𝑖+ and 𝑥+𝑖 are the marginal totals of row 𝑖 and 

column 𝑖 of the confusion matrix (Congalton, 1991). 

4.3 Development of the hydrological model 

HEC-HMS is employed to simulate the rainfall-runoff relationships of the stream 

gauges within the study basin. HEC-HMS is a conceptual modeling software 

developed by the US Army Corps of Engineers Hydrologic Engineering Center (U.S. 

Army Corps of Engineers, 2000). It facilitates the analysis of hydrological processes 

in dendritic watershed systems. The system diagram depicting the runoff process at 

a local scale is presented in Figure 4.4 (U.S. Army Corps of Engineers, 2000).  
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Figure 4.4. System diagram of the runoff process (U.S. Army Corps of Engineers, 

2000)  

For the hydrological processes where a detailed accounting is not required (e.g., 

calculation of the peak discharge), the simpler version can be employed. Figure 4.5 

illustrates the simplified representation of the watershed runoff process (U.S. Army 

Corps of Engineers, 2000). 

 

Figure 4.5. Typical representation of the runoff process (U.S. Army Corps of 

Engineers, 2000) 
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The development of the rainfall-runoff model comprises six primary model 

components: basin model, meteorologic model, control specifications, time-series 

data, paired data, and terrain data. The basin model's primary objective is to translate 

atmospheric conditions into streamflow at specified locations. The meteorologic 

model is utilized to define meteorological boundary conditions for the sub-basins. 

Control specifications serve to set the simulation start and end times, encompassing 

calibration and validation dates/times. Time-series data component is utilized for 

inputting various datasets such as precipitation, temperature, discharge, and sunshine 

hour data. Paired data, such as elevation-area or elevation-storage relationships, can 

be incorporated in functional form within HEC-HMS. Terrain data aids in watershed 

delineation and provides surface elevation information. A flowchart illustrating the 

hydrological modeling process using HEC-HMS is depicted in Figure 4.6. 

 

Figure 4.6. The flowchart of the hydrological model 

There are several methods under the basin model in HEC-HMS. These methods are 

used to calculate the outflow and the methods should be chosen considering the 

simulation type. There are two types of simulation: event-based simulation and 
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continuous simulation. For flood events, event-based simulations are generally 

preferred. However, firstly, the continuous simulation is performed to understand the 

rainfall-runoff relationship of the basin. Moreover, hourly or smaller than daily 

streamflow data for the stream gages of the basin could not be obtained from State 

Hydraulic Works; thus, event-based simulations are not possible. Thus, continuous 

simulation is used in this study, and methods are chosen according to the HEC- HMS 

User’s Manual (U.S. Army Corps of Engineers, 2024). The canopy method is used 

to represent the presence of plants in the landscape. The selection of the canopy 

method is optional but it is suggested to be used for continuous simulation (U.S. 

Army Corps of Engineers, 2024). Thus, simple canopy is selected as the canopy 

method. Selection of surface method is also optional. The ground surface where 

water may accumulate in surface depression storage can be represented by the 

surface method. It is generally used for continuous simulation and in the modeling 

studies, simple surface method is selected as the surface method (U.S. Army Corps 

of Engineers, 2024). Moreover, the loss method should be selected according to the 

simulation type. The Loss method calculates actual infiltration and all options under 

the loss method conserve mass. Deficit and constant method is selected, which is 

suitable for continuous simulation. Furthermore, the transform method is used to 

perform surface runoff calculations and the Soil Conservation Service (SCS) unit 

hydrograph method is selected. Finally, subsurface calculations are carried out by 

using the baseflow method. Simulation type is again important in the selection of the 

baseflow method. The monthly constant baseflow method is used for the baseflow 

calculations. 

There are several methods under the meteorological model component. These 

methods are used to calculate the outflow in HEC-HMS. Evapotranspiration is the 

combination of evaporation from the ground surface and transpiration from the 

plants. The evapotranspiration method is not important for short events but it is 

important for continuous simulation (U.S. Army Corps of Engineers, 2024). In this 

study, Priestley Taylor method is employed to represent evapotranspiration. This 

method requires the use of the shortwave and temperature methods. The shortwave 
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radiation method is used to represent the incoming radiation from the sun and it is 

suggested to be used when energy-balance evapotranspiration methods, namely, 

Penman Monteith and Priestley Taylor methods, are used in the hydrological model 

(U.S. Army Corps of Engineers, 2024). In this study, the Food and Agriculture 

Organization of the United Nations (FAO) 56 is selected as the shortwave radiation 

method. The longwave radiation method is not preferred in the modeling studies 

because the selected evapotranspiration method does not require using the longwave 

radiation method (U.S. Army Corps of Engineers, 2024). The precipitation method 

is used to determine the amount of water falling to the land surface. The gauge 

weights are assigned using the Thiessen polygons method. Moreover, the 

temperature method is used to represent the heat intensity of air over the land surface. 

Specified thermograph is selected as the temperature method. Windspeed, pressure, 

and dewpoint methods are not used in the hydrological model because the selected 

evapotranspiration method does not require them. Lastly, the temperature index 

method is selected as the snowmelt method that is used to represent snow melting. 

Selected methods for basin and meteorology models are summarized in Table 4.3. 

Table 4.3 Hydrological model specifications 

Basin Model Methods Meteorologic Model Methods 

Canopy Method Simple Canopy Shortwave Method FAO56 

Surface Method Simple Surface Longwave Method - 

Loss Method 
Deficit and 

Constant 

Precipitation 

Method 
Gage Weights 

Transform Method 
SCS Unit 

Hydrograph 

Temperature 

Method 

Specified 

Thermograph 

Baseflow Method Recession Windspeed Method - 

  Pressure Method - 

  Dew Point Method - 

  
Evapotranspiration 

Method 
Priestly Taylor 

  Snowmelt Method Temperature Index 
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Coefficient of Determination (𝑅2), Nash Sutcliffe Efficiency (𝑁𝑆𝐸), Root Mean 

Squared Error- Observations Standard Deviation Ratio (𝑅𝑆𝑅), Percent Bias 

(𝑃𝐵𝐼𝐴𝑆), the observed peak, the observed volume, and time to peak are measures 

that are employed to evaluate the results of the hydrological model.  

𝑅2 = 1 −
∑ (𝑦𝑖 − 𝑦̂𝑖)2𝑛

𝑖=1

∑ (𝑦𝑖 − 𝑦̅)2𝑛
𝑖=1

 (4-5) 

𝑁𝑆𝐸 = 1 −
∑ (𝑦𝑖 − 𝑦𝑖

𝑠𝑖𝑚)2𝑛
𝑖=1

∑ (𝑦𝑖 − 𝑦̅)2𝑛
𝑖=1

 (4-6) 

𝑅𝑆𝑅 =

√∑ (𝑦𝑖 − 𝑦𝑖
𝑠𝑖𝑚)2𝑛

𝑖=1

√∑ (𝑦𝑖 − 𝑦̅)2𝑛
𝑖=1

 (4-7) 

𝑃𝐵𝐼𝐴𝑆 =
∑ (𝑦𝑖 − 𝑦𝑖

𝑠𝑖𝑚) ∗ 100𝑛
𝑖=1

∑ 𝑦𝑖
𝑛
𝑖=1

 (4-8) 

 

where  𝑦𝑖 is the 𝑖th observation,  𝑦̂𝑖 is the corresponding predicted value of 𝑦𝑖, 𝑦̅ is 

the mean of observed data, 𝑦𝑖
𝑠𝑖𝑚 is 𝑖th simulated value of 𝑦𝑖  and 𝑛 is the total number 

of observations. Performance evaluation criteria for these measures are defined by 

Moriasi et al. (2015) as shown in Table 4.4. 

Table 4.4 Performance evaluation criteria for the selected measures (Moriasi et al., 

2015) 

Measure 
Performance Evaluation Criteria 

Very Good Good Satisfactory Not Satisfactory 

𝑅2  𝑅2 > 0.85 0.75 < 𝑅2 ≤ 0.85 0.60 < 𝑅2 ≤ 0.75 𝑅2 ≤ 0.60 

𝑁𝑆𝐸  𝑁𝑆𝐸 > 0.80 0.70 < 𝑁𝑆𝐸 ≤ 0.80 0.50 < 𝑁𝑆𝐸 ≤ 0.70 𝑁𝑆𝐸 ≤ 0.50 

𝑃𝐵𝐼𝐴𝑆 (%)   𝑃𝐵𝐼𝐴𝑆 < ± 5 ± 5 ≤ 𝑃𝐵𝐼𝐴𝑆 < ± 10 ± 10 ≤ 𝑃𝐵𝐼𝐴𝑆 < ± 15 𝑃𝐵𝐼𝐴𝑆 ≥ ± 15 

𝑅𝑆𝑅* 0.00 ≤ 𝑅𝑆𝑅  ≤ 0.50 0.50 < 𝑅𝑆𝑅  ≤ 0.60 0.60 < 𝑅𝑆𝑅  ≤ 0.70 𝑅𝑆𝑅 > 0.70 

* It is taken from (Moriasi, et al., 2007) 

Hydrologic Engineering Centre (HEC-HMS, 2023) proposes to check the observed 

peak, the observed volume, and time to peak values. It also states that ± 10% 

difference between the observed and simulated values is acceptable, and the time to 
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peak of the simulations should be within ± 12 hours range of the observed time to 

peak value. 

The basin boundary for E17A014 Stream Gage (SG) is given in Figure 4.7. A 

prominent challenge associated with this basin pertains to the presence of numerous 

hydraulic structures. This is problematic because the operation strategies of these 

hydraulic structures are not available on a daily time scale. Developing a 

hydrological model becomes particularly arduous in the absence of such operational 

strategies.  

 

Figure 4.7. E17A014 SG basin and major hydraulic structures (Basemap source: 

National Geographic World Map) 

The hydrological model is developed firstly for the period before the major hydraulic 

structures are built in the basin. The hydraulic structures with storages of more than 

20 hm3 are assumed to be the major structures. The names and the characteristics of 

these structures are given in Table 4.5 (Doğu Akdeniz Basin Master Plan Report, 

2017). The locations of these structures and the SGs are given in Figure 4.7. 
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Table 4.5 Characteristics of the major hydraulic structures in E17A014 Basin 

(obtained from Doğu Akdeniz Basin Master Plan Report, 2017) 

Hydraulic 

Structure 
Purpose 

Drainage Area 

(km2) 

Total Volume 

(hm3) 

Operation Start 

Date 

Bozkır Dam E + D 370.0 360.7 2020 

Bağbaşı Dam D + I 539.0 204.9 2015 

Afşar Dam D + I 384.0 363.7 2021 

Yalnızardıç Dam E 261.9 109.5 2015 

Ermenek Dam I + E 2304.0 4582.6 2010 

Gezende Dam E 3158.5 95.0 1994 

E: Energy D: Diversion I: Irrigation 

E17A014 SG basin is divided into nine sub-basins considering the locations of the 

major hydraulic structures and two other stream gages, E17A019 and E17A020. 

These nine sub-basins are also shown in Figure 4.7. Gezende Dam is the first major 

structure of the basin which was built in 1994 (see Table 4.5). Table 4.6 shows the 

meteorological observation stations (MOS) used in developing the hydrological 

model.  

These MOSs are manual stations and the representation percentages of the MOSs 

and the areas of the sub-basins are also given in Table 4.6. The representation 

percentages are calculated using the Thiessen Polygons Method. These MOSs have 

continuous data till 1986, thus, the hydrologic model is developed for the period 

between 1965 and 1986. The calibration period is selected between October 1, 1965, 

and October 1, 1978, and the validation period is selected between August 1, 1981 

and August 1, 1986.  

After developing and successfully calibrating the hydrological model that represents 

the basin's natural response, hydraulic structures are entered into the hydrological 

model since these structures affect the rainfall-runoff relationship of the basin for the 

present times’ conditions (i.e., with major hydraulic structures).  



 

 

48 

Table 4.6 The MOSs used in the hydrological model 

Station No Latitude Longitude Elevation (m) 
Representation Percentage (%) 

Afsar Bagbasi Bozkir Ermenek E17A014 

17246 37.1932 33.2202 1018      

17320 36.0686 32.8649 2    30.4  

17330 36.3824 33.9373 10     20.7 

17928 36.9893 32.4557 1552 100 100 100 60  

17956 36.6514 33.4339 340    9.6 79.3 

Area (km2) 383 168 355 2192 2181 

Station No Latitude Longitude Elevation (m) 
Representation Percentage (%) 

E17A019 E17A020 Gezende Yalnizardic 

17246 37.1932 33.2202 1018  19.8   

17320 36.0686 32.8649 2   17.8  

17330 36.3824 33.9373 10     

17928 36.9893 32.4557 1552  40.7 16.1 100 

17956 36.6514 33.4339 340 100 39.5 66.1  

Area (km2) 495 3425 893 220 

 

There are different options to represent routing in HEC-HMS. The outflow curve, 

specified release, and outflow structures are the methods to define the routing 

process in the model. Each routing method has different storage methods and initial 

condition options. Hydraulic structures should be integrated into the model 

considering the available data. Storage-outflow relationships are used by the outflow 

curve routing method to represent reservoirs. The outlet structures cannot be used 

with this method. The specified release routing method can be used if the specified 

release from the reservoir is known. On the other hand, the outflow structures routing 

method can be used if the information about outlet structures is known (U.S. Army 

Corps of Engineers, 2024). The outflow curve routing method is selected as the 

routing method due to the limited data. The elevation-storage-discharge method is 

used as the storage method, while the elevation is selected as the initial condition. 
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The hydrological model is tested between August 31, 2016, and August 31, 2020. 

Bağbaşı Dam, Ermenek Dam, Gezende Dam, and Yalnızardıç Dam are in operation 

in the test period, while Afşar Dam and Bozkır Dam are not active in the test period. 

Thus, the active hydraulic structures are entered into the hydrologic model. In the 

hydrological model, the following points are taken into consideration when entering 

these hydraulic structures into the model: 

• One of the main purposes of Bağbaşı Dam is to transfer water from Doğu 

Akdeniz Basin to the Konya Closed Basin. The diversion tool of HEC-HMS 

is used to input the transferred water to the hydrologic model. 

• There are many irrigation projects in the basin. The amount of water diverted 

from related reservoirs for irrigation purposes is entered into the hydrologic 

model. 

• Evaporated water from the reservoirs is also diverted from the related 

reservoirs. 

• Initial water elevation of the reservoirs is calibrated according to the 

performance of the statistical parameters. 

All necessary data is taken from the Doğu Akdeniz Basin Master Plan Report 

(Yüksel Proje, 2017). 

The MOSs used in the test period differ from the calibration and validation periods 

because automatic MOSs were established around 2010. The representation 

percentages of the MOSs and the areas of the divided subbasins are given in Table 

4.7. The representation percentages are calculated using the Thiessen Polygons 

Method. 
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Table 4.7 The MOSs used in the test period 

Station No Latitude Longitude Elevation (m) 
Representation Percentage (%) 

Afsar Bagbasi Bozkir Ermenek E17A014 

17330 36.3824 33.9373 10     8 

17928 36.9893 32.4557 1552  16 10   

17956 36.6514 33.4339 340     40 

18059 36.3495 33.3797 1013     26 

18062 36.5839 33.9267 1204     25 

18210 36.6336 32.9075 1415    37  

18484 37.2186 32.9564 1070      

18485 36.7011 32.6139 1655 13   53  

18495 37.268 32.7208 1190      

18498 36.9093 32.4976 1679 37     

18592 36.8969 32.6817 1590 50   3  

18611 36.7886 32.2792 1672   3 7  

18655 36.7731 33.1039 1659     1 

18681 37.0331 32.2886 1592  69 87   

18758 37.2378 32.5408 1496  15    

Area (km2) 383 168 355 2192 2181 

Station No Latitude Longitude Elevation (m) 
Representation Percentage (%) 

E17A019 E17A020 Gezende Yalnizardic 

17330 36.3824 33.9373 10     

17928 36.9893 32.4557 1552  9   

17956 36.6514 33.4339 340 21 27   

18059 36.3495 33.3797 1013 19  7  

18062 36.5839 33.9267 1204     

18210 36.6336 32.9075 1415   69  

18484 37.2186 32.9564 1070  10   

18485 36.7011 32.6139 1655    2 

18495 37.268 32.7208 1190  6   

18498 36.9093 32.4976 1679  4  34 
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Table 4.7 (cont’d) 

Station No Latitude Longitude Elevation (m) 
Representation Percentage (%) 

E17A019 E17A020 Gezende Yalnizardic 

18592 36.8969 32.6817 1590  15 7  

18611 36.7886 32.2792 1672    63 

18655 36.7731 33.1039 1659 60 23 17  

18681 37.0331 32.2886 1592    1 

18758 37.2378 32.5408 1496  6   

Area (km2) 495 3425 893 220 

4.4 Development of combined 1D/2D hydrodynamic model 

The Hydrologic Engineering Center River Analysis System (HEC-RAS) is 

employed to develop a coupled One-Dimensional/Two-Dimensional (1D/2D) 

combined hydrodynamic model. Hydraulic models might be 1D, 2D, or combined 

1D/2D. The most important factor to consider is the model’s purpose when selecting 

the model type. 1D models can be used to model the rivers with regular flow. If the 

river passes through a non-urbanized area and flood events happen never or rarely, 

1D models are good options. 2D models can be used to model the rivers that do not 

have structures on them. There are some approaches to enter these structures in 2D 

models, but they are not straightforward. The combined 1D/2D model is a good 

option for rivers with many structures and urbanized areas (Betsholtz & Nordlöf, 

2017). 

Geometry and flow data are the most important parameters of the hydraulic models. 

High-resolution geometry data will lead to more accurate results. For this reason, 

high-resolution geometry data is needed for accurate flood inundation maps. Terrain 

data of the study area and location of the buildings are obtained from the Ministry of 

Environment, Urbanization, and Climate Change. The study area’s digital elevation 

model (DEM) is generated using the LiDAR (Light Detection and Ranging) data, 
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and the point space is 1 m. A 3-dimensional view of the study area is given in Figure 

4.8. 

 

Figure 4.8. 3-dimensional view of the study area 

Bathymetry data of the river is needed to model the river bed, which was obtained 

from the SHW. Firstly, river center line and bank lines are generated using this data. 

River cross-sections are generated by considering bank lines, and some examples are 

given in Figure 4.9. The distance between each cross-section is approximately 25 m, 

and a total number of 1024 cross-sections are generated. 
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(a) River Station = 23417 

 

(b) River Station = 16102 

 

(c) River Station = 121 

Figure 4.9. Cross-section examples from Göksu River: (a) River Station = 23417 (b) 

River Station = 16102 (c) River Station = 121 
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Manning’s Roughness Coefficient value is another important parameter for the 

hydraulic models. Manning’s Roughness Coefficient values are selected based on 

the study of Papaioannou et al. (2018) and Coordination of Information on the 

Environment (CORINE) Land Cover data. The Land use / land cover and Manning’s 

roughness coefficient map of the study area is given in Figure 4.10. Manning’s 

roughness coefficient is selected as 0.06 for the 1D domain. 

 

Figure 4.10. Land use / land cover & Manning’s roughness coefficient map 

Another important parameter for 1D/2D Coupled Hydraulic Modelling is the cell 

size of the 2D domain. It should be selected as small as possible to get accurate 

results. However, small cell sizes may increase computation times significantly. For 

this reason, computation time should also be considered while selecting the cell size 

of the 2D domain. The total area of the study region is around 237 km2. The total 

number of cells varies with different cell sizes given as in Table 4.8. 
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Table 4.8 Change of the total number of cells with changing cell size 

Cell size 

(m) 

Total number of 

cells 

Cell size 

(m) 

Total number 

of cells 

Cell size 

(m) 

Total number 

of cells 

1 236947616 6 6581879 15 1053101 

2 59236904 7 4835666 20 592370 

3 26327513 8 3702307 25 379117 

4 14809226 9 2925280 30 263276 

5 9477905 10 2369477   

 

Table 4.8 shows that if the cell size is lower than 15 m, the total number of cells is 

greater than one million. It significantly prolongs the computational time. On the 

other hand, 15 m cell size is not good enough for urbanized areas to get accurate 

results. For this reason, two different cell sizes are used in this study. 100 m buffer 

zone is created around the Göksu River. For this buffer zone and urbanized areas, 6 

m cell size is used, while 30 m cell size is used for the remaining part of the study 

area of the hydraulic model. On the other hand, the computation interval is selected 

as 1 second. 

After the geometry data, the flow data is prepared. Two different boundary 

conditions should be entered into the model for unsteady flow computations. The 

upstream boundary condition is entered as the “flow hydrograph,” while the 

downstream boundary condition is selected as the “normal depth.” In addition to 

upstream and downstream boundary conditions, the external boundary condition is 

entered to represent the seaside. This boundary condition is also selected as the 

“normal depth.”  After entering geometry and flow data, the model is run considering 

flood hydrographs with different return periods. 

The validation of the combined 1D/2D hydraulic models is of paramount importance. 

However, in Türkiye, the validation of hydraulic models is challenging due to limited 

data availability. The model is validated based on the information obtained at the 

SHW staff meeting, during which insights were provided regarding a significant 
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flood event that occurred in Silifke between the 5th and 7th of March 2004. The 

locations at which floodwater enters and leaves Silifke from the left bank of the 

Göksu River were shown by the SHW staff (see Figure 4.11) and they are validated 

using the developed combined 1D/2D hydraulic model. Furthermore, it was stated 

that the Göksu River can pass a discharge of approximately 800 m3/s without 

significant adverse effects. Our model corroborates this assertion, indicating that the 

river can handle this discharge with minimal amount of overflow. This overflow may 

be attributed to the inexact dimensions of the bridges. Finally, the inundated 

neighborhoods of Silifke as a result of the flood event in 2004 are stated in the study 

of Buldur et al. (2007). These neighborhoods (Gazi, Göksu, Sayağzı, Sarıcalar, Atik, 

Bucaklı, Çeltikç, Arkum etc.) are also inundated when the developed hydraulic 

model is run for a similar flood event. 

 

(a) The location where flood water 

entered the center of Silifke 

 

(b) The location where flood water left 

the center of Silifke 

Figure 4.11. The combined 1D/2D hydraulic model results: (a) The location where 

flood water entered the city (b) The location where flood water left the city (Basemap 

source: ArcGIS World Imagery) 

4.5 Economic damage calculations 

Total economic damage for the study area is calculated using depth-damage curves 

for Europe given by Huizinga et al. (2017) because depth-damage curves for Türkiye 
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are not available. On the other hand, the costs of the government’s actions are 

calculated based on the study of Haer et al. (2020), where € is used as the currency 

unit. Thus, calculated economic damage values bear a certain degree of error; 

however, relative comparisons of the outcomes of the scenarios evaluated in this 

study provide useful information. 

4.6 Agent-based model 

ABM is an approach to model complex social dynamics. Actors in the model are 

represented as autonomous agents. The rules are assigned to the actors to model their 

behaviors. ABM is used in many areas, such as biology, social sciences, economics 

and finance, land use, anthropology, etc. (Hammond R., 2015). ABM in this study is 

developed using NetLogo, which was created by Uri Wilensky (1999).  

NetLogo is used to simulate social and natural phenomena. There are four types of 

agents in NetLogo: i) patches, ii) turtles, iii) links, and iv) the observer. Patches are 

stationary and organized in a grid pattern. Turtles can move over the patches, and the 

turtles can be connected using the links. The observer oversees all activities and 

handles tasks that the turtles, patches, and links cannot perform independently. In 

this study, land parcels are the patches, while the public (i.e., people living in the 

study area) and the government agents are the turtles. In this study, the movement is 

not assigned to the turtles. Figure 4.12 shows the turtles and patches in this study. 
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Figure 4.12. Study area at NetLogo’s interface 

NetLogo consists of three tabs, which are the interface, the info, and the code tabs. 

The interface tab is used to edit, delete, and create items in the model. The info tab 

includes the information and explanations about the model, while the code tab stores 

the code for the model. A piece of the code developed in this study is shown in the 

code tab in Figure 4.13. 
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Figure 4.13. A piece of the code developed in this study is shown in the code tab of 

NetLogo 

Two different agents are included in this study. The first one is the public agent, 

which represents the people who live in the study area, and the second one is the 

government agent. The public agents’ behaviors are functions of the coping and risk 

perception values. In other words, the public agent decides to take action based on 

those values. The original equations can be found in the study of Tonn and Guikema 

(2018). Threshold values are selected as 30 for both risk and coping perceptions (see 

Figure 4.14). These values are determined based on a sensitivity analysis. The details 

can be found in Appendix A. On the other hand, two different management strategies 

are selected for the government agent: proactive management and reactive 

management. Eleven scenarios are generated to analyze the impacts of the public 

agent, the government agent, and both. These scenarios and explanations are given 

in Table 4.9. Sc1 is the base scenario that is used traditionally in FRM studies. Sc2 

and Sc3 are the scenarios where only the public agent is considered. In Sc2, coping 
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perception and risk perception values are calculated based on random values like 

most of the studies given in the literature (Tonn & Guikema, 2018; Abebe et al., 

2019), while in Sc3, these parameters are calculated based on the survey results. Sc4 

– Sc7 scenarios include only the government agent. In two of these scenarios, 

reactive management strategy is implemented, while in the others, proactive 

management strategy is used. In this study, government actions are defined as taking 

mitigation measures against a 50-year flood or 100-year flood. The government’s 

action is represented as the construction of a dike that prevents the inundation of a 

50-year or a 100-year flood.  In scenarios Sc8 - Sc11, both the public and the 

government agents are considered. 

In this study, the simulation period is from 2025 to 2100; and 1-year time step is 

used. Moreover, 2-, 5-, 10-, 25-, 50-, 100-, and 500-year floods are considered. 

However, it is unknown if a flood will occur in each year of the simulation and it is 

also unknown if a flood occurs, what will be its magnitude (i.e., which return period 

flood event will occur?). Thus, the following approach is used to assign flood events 

to each year of the simulation period (i.e., 2025-2100): A random number between 

zero and one is generated for each year for each potential magnitude (i.e., 2-, 5-, 10-

, 25-, 50-, 100- and 500-year floods). If the generated number is less than the 

exceedance probability of the flood event, that event is presumed to happen in that 

year. If multiple flood events are projected to occur in a year, the flood event with 

the highest return period is assumed to occur in that year. This will result in one 

possible realization of flood events in the simulation period (hereafter will be 

referred to as “Realization”). An example calculation is given in Table 4.10. 

To handle the uncertainties arising from the procedure of assigning flood events to 

the simulation period, 100 different Realizations are generated and used in flood risk 

analysis. Each scenario is run considering these 100 different Realizations, and 

economic damage values are calculated for each realization. In addition to the 

economic damage values, the costs of the actions (for the scenarios with the 

government agent) are calculated as well, and a cost-benefit analysis is conducted 
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for each realization and scenario. The flowchart of the ABM is given in Figure 4.14. 

This flowchart is run once for each realization.  

Table 4.9 The scenarios designed to analyze the impacts of the agents on flood risks 

Scenario 

Number 
Scenario Name Agent1 Survey2 Explanations 

Sc1 Base None No No agents 

Sc2 PubRand Public No 

Risk and coping perceptions are 

randomly assigned to public 

agent. 

Sc3 PubSur Public Yes 

Risk and coping perceptions are 

assigned to the public agent 

according to the survey results. 

Sc4 ProGo50 Government - 

The proactive government takes 

action against a 50-year return 

period flood event. 

Sc5 ProGo100 Government - 

The proactive government takes 

action against a 100-year return 

period flood event. 

Sc6 ReGo50 Government - 

The reactive government agent 

takes action to mitigate a 50-year 

return period flood event after a 

50-, 100- or 500-year return 

period flood event is experienced. 

Sc7 ReGo100 Government - 

The reactive government agent 

takes action to mitigate a 100-year 

return period flood event after a 

100- or 500-year return period 

flood event is experienced. 

Sc8 
PubSur – 

ReGo50 

Public & 

Government 
Yes PubSur and ReGo50 together. 

Sc9 
PubSur – 

ReGo100 

Public & 

Government 
Yes PubSur and ReGo100 together. 

Sc10 
PubSur – 

ProGo50 

Public & 

Government 
Yes PubSur and ProGo50 together. 

Sc11 
PubSur – 

ProGo100 

Public & 

Government 
Yes PubSur and ProGo100 together. 

1 The government, the public, or both are used as agents in this study. 
2 When survey results are used in assigning risk and coping perceptions to people, “Yes” is used in 

this column; when risk and coping perceptions are randomly assigned to people, “No” is used in this 

column; if public agent is not considered, “-“ is used 
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Table 4.10 An example realization 

 

Flood events Selected 

Flood 

Event 
2 5 10 25 50 100 500 

2025 0.81 0.15 0.96 0.40 0.02 0.47 0.81 50 

2026 0.59 0.49 0.29 0.39 0.94 0.85 0.59 - 

. 

. 

 

        

2100 0.28 0.24 0.57 1.00 0.64 0.77 0.001 500 
 

 

Figure 4.14. The flowchart of the ABM 
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4.7 Survey 

A survey is prepared in order to understand people’s perception of flood hazards. It 

is designed to collect information about the risk perception and coping perception of 

the people in the study area about flood risks. It is conducted by Infakto Research 

Workshop. It is really important to conduct surveys and use the results to reflect the 

people’s real behaviors in the ABM. The questions are selected based on the 

literature review. The survey consists of open-ended questions, multiple choice 

questions and yes/no type questions. Some questions are asked to collect information 

on the demography of the people in the study area while the others are asked to be 

used in the analysis of the risk perception and the coping perception of the people. 

The questions are asked to 180 participants and they are selected randomly from the 

entire study area to reduce bias. The answers are analyzed and distributed to whole 

study area. Survey questions and what kind of analysis that they are used for are 

given in Table 4.11 and the participants of the survey are shown in Figure 4.15. 

 

Figure 4.15. Participants of the survey (Basemap source: Esri, Maxar, Earthstar 

Geographics, and the GIS User Community) 
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Table 4.11 Survey questions 

Question Analysis Type 

Age D 

Gender D 

Education level D 

Household income (monthly) D 

Owner / renter / lodgment / parent’s home D 

Number of households D 

How many of the household need care? D 

Residence / commercial D 

Employment status D 

How many floods have you experienced in this house in previous 

years? * 
RP 

How many near-miss flood events have you experienced in this house 

in previous years? * 
RP 

Have one of the governmental institutions taken measures against 

floods? If yes, what type of mitigation measures were implemented? * 
RP 

Have you previously taken measures against floods? * RP, CP 

Do you believe that you are well-informed about flood hazard in 

Silifke by the authorities? * 
RP, CP 

How many of your neighbors in Silifke have experienced flood in 

previous years? 
RP 

How many of your neighbors in Silifke have experienced near-miss 

flood event in previous years? 
RP 

How many of your neighbors in Silifke have taken measures against 

floods? 
CP 

The questions with * are used to calculate risk perception and coping perception values in 

this study, D: Demographic, RP: Risk Perception, CP: Coping Perception 

 

The equation of risk and coping perceptions can be found in Appendix B. 
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CHAPTER 5  

5 RESULTS AND DISCUSSIONS 

In this section, the results of RCM selection, LULC analysis, nonstationarity analysis 

of annual maximum flow series (AMFS), hydrological model, combined 1D/2D 

hydraulic model, and ABM are given. Furthermore, the limitations of the study are 

summarized at the end of this chapter. 

5.1 Selection of the best regional climate model 

To select the best RCM Corr (𝑅2), 𝑅𝑀𝑆𝐸, 𝑃𝐵𝐼𝐴𝑆, and 𝑁𝑆𝐸 are used. The calibrated 

hydrological model is run using the outputs of RCM for the calibration, validation, 

and test periods. The hydrological model is calibrated (01.10.1965 – 01.10.1978) and 

validated (01.08.1981 – 01.08.1986) considering the natural response of the basin. 

After the calibration and validation, the model is tested (31.08.2016 – 31.08.2020) 

by including the major hydraulic structures. The performances of the original outputs 

and the sorted outputs are evaluated. The statistical measures calculated for the daily 

discharge values are given in Table 5.1, Table 5.2, and Table 5.3 for the calibration, 

validation, and test periods. The best RCMs for each period are shown with bold 

characters. 

Table 5.1 Calculated statistical measures for the calibration period 

Calibration - Original 

 Corr Rank RMSE Rank PBIAS Rank NSE Rank Total Final Rank 

M1 0.52 13 103.36 4 -15.13 13 0.00 14 26 14 

M2 0.26 17 148.63 1 -37.87 4 -1.07 17 7 17 

M3 0.66 9 81.95 13 20.88 11 0.37 5 46 5 

M4 0.66 8 81.64 14 22.04 9 0.37 4 47 4 

M5 0.59 12 93.47 6 0.12 17 0.18 12 35 9 

M6 0.65 10 81.56 15 20.39 12 0.38 3 50 3 
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Table 5.1 (cont’d) 

Calibration - Original 

 Corr Rank RMSE Rank PBIAS Rank NSE Rank Total Final Rank 

M7 0.68 6 81.21 16 23.44 7 0.38 2 51 2 

M8 0.33 16 114.46 2 -2.27 16 -0.23 16 22 16 

M9 0.73 1 88.98 7 38.43 1 0.26 9 34 10 

M10 0.71 4 82.63 11 29.51 5 0.36 7 41 7 

M11 0.51 14 106.00 3 -11.82 14 -0.05 15 24 15 

M12 0.48 15 94.65 5 7.60 15 0.16 13 28 13 

M13 0.65 11 82.87 10 21.49 10 0.36 8 37 8 

M14 0.73 1 88.98 7 38.43 1 0.26 9 34 10 

M15 0.73 1 88.98 7 38.43 1 0.26 9 34 10 

M16 0.69 5 82.20 12 24.81 6 0.37 6 43 6 

M17 0.67 7 81.12 17 23.20 8 0.38 1 53 1 

Calibration - Sorted 

 Corr Rank RMSE Rank PBIAS Rank NSE Rank Total Final Rank 

M1 0.97 10 31.15 15 -15.13 13 0.91 3 51 4 

M2 0.99 3 52.92 9 -37.88 4 0.74 9 37 9 

M3 0.97 9 55.39 7 20.88 11 0.71 11 34 10 

M4 0.98 6 50.01 11 22.03 9 0.77 7 43 7 

M5 0.99 1 10.61 17 0.12 17 0.99 1 68 1 

M6 0.99 5 45.81 12 20.39 12 0.80 6 49 5 

M7 0.98 8 53.65 8 23.44 7 0.73 10 33 11 

M8 0.95 14 31.52 13 -2.29 16 0.91 5 46 6 

M9 0.94 15 76.94 1 38.43 1 0.44 15 8 15 

M10 0.97 12 64.09 4 29.51 5 0.61 14 19 14 

M11 0.99 2 19.67 16 -11.85 14 0.96 2 62 2 

M12 0.99 4 31.37 14 7.60 15 0.91 4 57 3 

M13 0.96 13 56.45 6 21.48 10 0.70 12 27 12 

M14 0.94 15 76.94 1 38.43 1 0.44 15 8 15 

M15 0.94 15 76.94 1 38.43 1 0.44 15 8 15 

M16 0.97 11 60.61 5 24.81 6 0.66 13 23 13 

M17 0.98 7 52.39 10 23.20 8 0.74 8 39 8 
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Table 5.2 Calculated statistical measures for the validation period 

Validation - Original 

 Corr Rank RMSE Rank PBIAS Rank NSE Rank Total Final Rank 

M1 0.43 13 111.40 4 -10.25 15 -0.06 14 28 13 

M2 0.23 16 144.22 1 -26.36 11 -0.77 17 15 17 

M3 0.56 9 95.49 13 27.67 8 0.59 1 47 5 

M4 0.56 10 94.62 17 24.25 12 0.24 2 53 1 

M5 0.50 12 101.87 9 10.67 14 0.12 9 38 7 

M6 0.50 11 99.20 10 26.72 10 0.16 8 37 9 

M7 0.58 5 94.63 16 28.51 6 0.24 3 50 2 

M8 0.22 17 129.07 2 -2.39 16 -0.42 16 21 16 

M9 0.60 1 102.23 6 41.71 1 0.11 10 32 10 

M10 0.58 6 95.96 12 30.27 4 0.21 6 40 6 

M11 0.39 15 115.87 3 0.59 17 -0.14 15 26 15 

M12 0.41 14 104.73 5 17.44 13 0.06 13 27 14 

M13 0.57 8 94.90 15 26.84 9 0.23 4 48 3 

M14 0.60 1 102.23 6 41.71 1 0.11 10 32 10 

M15 0.60 1 102.23 6 41.71 1 0.11 10 32 10 

M16 0.59 4 94.97 14 28.24 7 0.23 5 48 3 

M17 0.57 7 96.13 11 29.79 5 0.21 7 38 7 

Validation - Sorted 

 Corr Rank RMSE Rank PBIAS Rank NSE Rank Total Final Rank 

M1 0.97 5 31.19 14 -10.25 15 0.92 4 56 4 

M2 0.99 1 36.48 13 -26.36 11 0.89 5 54 5 

M3 0.95 9 65.75 7 27.67 8 0.81 6 36 8 

M4 0.96 8 57.63 11 1827.00 12 0.72 8 43 7 

M5 0.98 3 28.23 15 10.67 14 0.93 3 59 3 

M6 0.95 11 61.37 10 26.72 10 0.68 9 36 8 

M7 0.96 6 63.57 9 28.51 6 0.66 10 35 10 

M8 0.99 2 19.69 17 -2.39 16 0.97 1 66 1 

M9 0.90 15 87.21 1 41.71 1 0.35 15 8 15 

M10 0.94 12 70.97 6 30.27 4 0.57 12 22 12 

M11 0.97 4 25.68 16 0.59 17 0.94 2 63 2 

M12 0.96 7 48.25 12 17.44 13 0.80 7 47 6 

M13 0.95 10 63.90 8 26.84 9 0.65 11 32 11 

M14 0.90 15 87.21 1 41.71 1 0.35 15 8 15 

M15 0.90 15 87.21 1 41.71 1 0.35 15 8 15 

M16 0.92 14 73.33 4 28.24 7 0.54 14 19 14 

M17 0.93 13 71.86 5 29.79 5 0.56 13 20 13 
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Table 5.3 Calculated statistical measures for the test period 

Test - Original 

 Corr Rank RMSE Rank PBIAS Rank NSE Rank Total Final Rank 

M1 0.48 7 61.63 9 12.67 10 0.02 11 37 10 

M2 0.12 17 124.53 1 -41.98 1 -3.02 17 4 17 

M3 0.47 8 59.36 12 14.91 6 0.09 6 40 8 

M4 0.49 4 59.12 14 18.47 3 0.09 5 44 6 

M5 0.50 1 61.35 10 5.77 15 0.03 10 50 2 

M6 0.43 11 62.21 8 11.54 11 0.00 12 32 12 

M7 0.46 10 60.00 11 13.98 8 0.07 7 38 9 

M8 0.27 15 81.65 4 -8.50 12 -0.73 15 22 15 

M9 0.35 13 73.26 5 -6.34 14 -0.39 13 29 13 

M10 0.49 5 58.80 15 16.79 5 0.10 4 47 4 

M11 0.23 16 101.44 2 -13.80 9 -1.49 16 15 16 

M12 0.42 12 62.51 6 8.33 13 0.05 9 34 11 

M13 0.47 9 59.30 13 14.11 7 0.15 3 44 6 

M14 0.49 6 62.51 7 3.05 16 0.05 8 45 5 

M15 0.31 14 84.09 3 -1.90 17 -0.71 14 28 14 

M16 0.50 3 58.32 17 16.95 4 0.18 1 53 1 

M17 0.50 2 58.79 16 18.79 2 0.16 2 50 2 

Test - Sorted 

 Corr Rank RMSE Rank PBIAS Rank NSE Rank Total Final Rank 

M1 0.99 6 17.21 13 12.67 10 0.92 5 48 5 

M2 0.99 3 63.09 1 -41.98 1 -0.03 17 18 14 

M3 0.98 11 25.04 8 14.91 6 0.84 10 29 11 

M4 0.97 15 29.23 4 18.47 3 0.78 14 14 16 

M5 0.99 1 8.74 16 5.77 15 0.98 2 64 2 

M6 0.99 5 18.48 11 11.54 11 0.91 7 46 6 

M7 0.98 10 23.51 10 13.98 8 0.86 8 36 8 

M8 0.98 8 17.46 12 -8.50 12 0.92 6 46 6 

M9 0.98 7 13.52 15 -6.34 14 0.95 3 55 3 

M10 0.97 13 27.48 7 16.79 5 0.80 11 24 12 

M11 0.97 12 39.74 2 -13.80 9 0.59 16 19 13 

M12 0.99 4 15.54 14 8.33 13 0.94 4 55 3 

M13 0.98 9 23.88 9 14.11 7 0.85 9 34 9 

M14 0.99 2 7.77 17 3.05 16 0.98 1 66 1 

M15 0.95 17 27.70 6 -1.90 17 0.80 12 30 10 

M16 0.97 14 27.92 5 16.95 4 0.80 13 18 14 

M17 0.96 16 30.04 3 18.79 2 0.77 15 10 17 
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The ranks of RCMs for each period are summed and given in Table 5.4. The lower 

the value means the better the RCM. It can be seen that M5 is the best RCM, and for 

the CC analysis, the outputs of M5 are used. 

Table 5.4 Final scores of RCMs 

RCM Final Score RCM Final Score RCM Final Score 

M1 50 M7 42 M13 49 

M2 79 M8 60 M14 56 

M3 47 M9 66 M15 74 

M4 41 M10 55 M16 51 

M5 24 M11 63 M17 48 

M6 43 M12 50   

5.2 Land use / land cover change analysis results 

The satellite images of 1985, 2004, 2013, 2017, and 2021 are classified, and LULC 

maps are generated. The generated maps are given in Figure 5.1. LULC analysis is 

conducted considering the years that have clear satellite and Google Earth images. 

 

(a) LULC Map of 1985 

Figure 5.1. LULC Maps of the study area: (a) LULC map of 1985 (b) LULC map 

of 2004 (c) LULC map of 2013 (d) LULC map of 2017 (e) LULC map of 2021 
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(b) LULC Map of 2004 

 

(c) LULC Map of 2013 

Figure 5.1. (cont’d) 
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(d) LULC Map of 2017 

 

(e) LULC Map of 2021 

Figure 5.1. (cont’d) 
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The confusion matrices are calculated to determine if the classification is 

satisfactory. The confusion matrix for 1985 could not be calculated because the 

classified image could not be validated due to the lack of the Google Earth image of 

1985. For this reason, the results of the 1985 LULC map are not used in this study. 

According to Landis & Koch (1977), the strength of agreement of the calculated KC 

is "substantial" for 2004 and 2013 (Table 5.5 and Table 5.6), while it is "almost 

perfect" for 2017 and 2021 (Table 5.7 and Table 5.8). Furthermore, the calculated 

𝑂𝐴 values are greater than 0.80 for all years. According to the confusion matrices, 

the classifications of forests and water bodies are the most accurate. The 

classification of marshes is not very accurate, but it is within the desired ranges. In 

this study, the aim is to detect the urbanized areas. Therefore, the most critical 

objective is to correctly identify the urbanized areas. According to the confusion 

matrices, the classification of the urbanized areas is satisfactory (Landis & Koch, 

1977). 

Table 5.5 Confusion matrix of LULC map for 2004 

LULC Class F AL UrA WB BL M Total 𝑈𝐴 𝐾𝐶 

F 163 24 0 0 1 7 195 0.84  

AL 10 155 1 0 5 3 174 0.89  

UrA 1 0 19 0 4 0 24 0.79  

WB 0 0 0 31 0 0 31 1.00  

BL 0 7 2 0 32 0 41 0.78  

M 2 8 0 0 0 17 27 0.63  

Total 176 194 22 31 42 27 492   

𝑃𝐴 0.93 0.80 0.86 1.00 0.76 0.63  𝑶𝑨 = 0.85  

𝐾𝐶         0.78 
F: Forest, AL: Agricultural Land, UrA: Urbanized Area, WB: Water Bodies, BL: Bare Land, M: 

Marshes, 𝑈𝐴: User’s Accuracy, 𝑃𝐴: Producer’s Accuracy, 𝑂𝐴: Overall Accuracy, 𝐾𝐶: Kappa 

Coefficient 
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Table 5.6 Confusion matrix of LULC map for 2013 

LULC Class F BL AL UrA M WB Total 𝑈𝐴 𝐾𝐶 

F 145 1 16 0 3 0 165 0.88  

AL 11 11 165 18 5 1 211 0.78  

UrA 0 5 4 17 0 0 26 0.65  

WB 0 0 0 1 2 22 25 0.88  

BL 1 32 1 0 1 0 35 0.91  

M 5 2 5 1 24 0 37 0.65  

Total 162 51 191 37 35 23 499   

𝑃𝐴 0.90 0.63 0.86 0.46 0.69 0.96  𝑶𝑨 = 0.81  

𝐾𝐶         0.74 

 

Table 5.7 Confusion matrix of LULC map for 2017 

LULC Class AL UrA BL F WB M Total 𝑈𝐴 𝐾𝐶 

F 7 0 0 154 0 0 161 0.96  

AL 183 4 6 4 0 1 198 0.92  

UrA 6 41 5 0 1 0 53 0.77  

WB 0 0 0 0 21 0 21 1.00  

BL 6 2 36 2 0 0 46 0.78  

M 5 1 1 2 3 27 39 0.69  

Total 207 48 48 162 25 28 518   

𝑃𝐴 0.88 0.85 0.75 0.95 0.84 0.96  𝑶𝑨 = 0.89  

𝐾𝐶         0.85 

 

Table 5.8 Confusion matrix of LULC map for 2021 

LULC Class AL UrA BL F WB M Total 𝑈𝐴 𝐾𝐶 

F 17 2 0 145 0 2 166 0.87  

AL 187 3 6 2 1 3 202 0.93  

UrA 2 23 1 1 0 0 27 0.85  

WB 0 0 0 0 21 0 21 1.00  

BL 2 2 42 0 0 0 46 0.91  

M 3 0 0 10 0 25 38 0.66  

Total 211 30 49 158 22 30 500   

𝑃𝐴 0.89 0.77 0.86 0.92 0.95 0.83  𝑶𝑨 = 0.89  

𝐾𝐶         0.84 
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The change in LULC classes is shown in Table 5.9. As can be seen from this table, 

the urbanized area has increased from 2004 to 2021 and, based on the general trend, 

this is expected to continue in the future. 

Table 5.9 Percent change of LULC classes 

 Percent change in the range 
 2004-2013 

-16.23 

2013-2017 

0.30 

2017-2021 

-0.21 Forest 

Agricultural Land 24.86 -7.53 -0.32 

Urbanized Area 12.29 8.56 10.61 

Water Bodies -16.80 -21.03 -0.71 

Bare Land -19.14 51.44 -8.37 

Marshes 6.01 7.86 21.46 

 

The results of the previous studies conducted in the vicinity of Silifke and this study 

area are given in Figure 5.2. The graph shows the urbanized area increased in the 

vicinity of Silifke and the results of this study for Silifke. It can be seen that the 

increase for Silifke is approximately 32%. If the results of the 1985 LULC Map are 

considered, the increase in urbanized area for Silifke is almost 100%. 

 

Figure 5.2. Urbanized area increases in the vicinity of Silifke 
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Based on these results, future scenarios are generated, and these scenarios and the 

results are given under Chapter 5.4. 

5.3 Hydrological model results 

Table 5.10 presents the performances of the statistical parameters, while Figure 5.3 

and Figure 5.4 show the simulated and observed hydrographs during the calibration 

and validation periods, respectively. Table 5.10 shows that most of the measures 

have satisfactory performance. Notably, while the date/time of peak discharge 

exhibits poor performance, the overall hydrological model performance remains 

satisfactory. 

Table 5.10 Performance of the hydrological model 

Measure 

Performance Evaluation Criteria 
Calibration Period 

(1965 - 1978) 

Validation Period 

(1981 - 1986) Very 

Good 
Good Satisfactory 

𝑅𝑆𝑅 [0.0,0.5] (0.5,0.6] (0.6,0.7] 0.53 0.54 

𝑁𝑆𝐸 (0.8,1.0] (0.7,0.8] (0.5,0.7] 0.72 0.71 

𝑃𝐵𝐼𝐴𝑆 (-5,5) 
(-10,-5] & 

[5,10) 

(-15,-10] & 

[10,15) 
-3.26 1.04 

𝑅2 (0.85,1.00] (0.75,0.85] (0.60,0.75] 0.74 0.72 

Peak Discharge 

(m3/s) 
± 10% of observed value *1074 – 782 *1090 - 981 

Discharge 

Volume (mm) 
± 10% of observed value 

*5105.36 – 

4939.39 

*1835.47 – 

1854.52 

Date / Time of 

Peak Discharge 
± 12 hours range of observed value 

*22.01.1969 – 

14.03.1968 

*28.12.1981 – 

10.11.1985 

* The first value represents the observed value while the second one represents the calculated value 

Color code that shows the performance evaluation criteria 

Very Good Good Satisfactory Not Satisfactory 
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Figure 5.3. Performance of the hydrological model for the calibration period 

 



 

 

77 

 

Figure 5.4. Performance of the hydrological model for the validation period 

The simulated and observed hydrographs for the test period are given in Figure 5.5. 

Furthermore, the performances of the statistical measures are given in Table 5.11. 

Table 5.11 demonstrates that the performances of the statistical parameters are 



 

 

78 

satisfactory. Thus, this hydrological model is used in determining the peak 

discharges that input to the hydraulic model. 

Table 5.11 Performance of the hydrological model for the test period 

Measure 

Performance Evaluation Criteria 
Test Period (2016 - 

2020) Very 

Good 
Good Satisfactory 

𝑅𝑆𝑅 [0.0,0.5] (0.5,0.6] (0.6,0.7] 0.52 

𝑁𝑆𝐸 (0.8,1.0] (0.7,0.8] (0.5,0.7] 0.73 

𝑃𝐵𝐼𝐴𝑆 (-5,5) 
(-10,-5] & 

[5,10) 

(-15,-10] & 

[10,15) 
-12.01 

𝑅2 (0.85,1.00] (0.75,0.85] (0.60,0.75] 0.78 

Peak Discharge (m3/s) ± 10% of observed value *535 – 557.7 

Discharge Volume (mm) ± 10% of observed value *1267.99 – 1115.90 

Date / Time of Peak 

Discharge 
± 12 hours range of observed value 

*13.03.2017 – 

13.03.2017 

* The first value represents the observed value while the second one represents the calculated value 

Color code that shows the performance evaluation criteria 

Very Good Good Satisfactory Not Satisfactory 
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Figure 5.5. Performance of the hydrological model for the test period 
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5.3.1 Determination of peak discharges and hydrographs with stationarity 

assumption 

Peak discharges are calculated considering two cases: i) the annual maximum 

discharge time series is stationary, and ii) the annual maximum discharge time series 

is nonstationary. Here, the peak discharges for different return periods are 

determined with the stationarity assumption. 

The probability distribution that fits the best to the data is determined before 

calculating peak discharges for different return period events. The annual maximum 

discharge series of E17A014 SG is tested for different distributions. The Chi-Square 

Test is used to evaluate the suitability of different probability distributions for annual 

maximum discharge time series. the Hydrologic Engineering Center’s Statistical 

Software Package (HEC-SSP) (Hydrologic Engineering Center, 2023) is used to 

calculate the parameters of various probability distributions and Chi-Square Test 

values. Chi-Square Test results of different distributions are provided in Table 5.12. 

The calculated values are compared with the critical Chi-square value at a 

significance level of 5%. The best-fitted probability distribution for the annual 

maximum discharge series of E17A014 is the Gamma distribution with Maximum 

Likelihood Estimation (MLE) (see Table 5.12). Thus, peak discharges of different 

return periods are calculated using the Gamma distribution. Peak discharge values 

are calculated using the Gamma Distribution. Calculated peak discharge values for 

various return periods are given in Table 5.13. 

Table 5.12 Chi-square test results for annual maximum discharge series 

Probability Distribution Chi-square score 

Gamma 3.038 

GEV 4.170 

Gumbel 4.170 

Logistic 5.302 

Normal 6.811 

Generalized Logistic (GLO) 9.075 

Log-normal 12.472 
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Table 5.13 Calculated peak discharge values for E17A014 SG 

Return Period Peak Discharge (m3/s) 

2 598.0 

5 908.4 

10 1108.6 

25 1355.4 

50 1535.1 

100 1711.6 

500 2116.3 

 

Flow hydrographs are required for unsteady flow analysis, and they are generated 

using the Snyder Unit Hydrograph Model (Snyder, 1938). Basic concepts and 

equations are given in the following paragraphs. 

In this method, as explained in the study of Snyder (1938); the basin lag, 𝑡𝑝, peak 

discharge per unit area, 𝑞𝑝, and total time are selected as the critical characteristics 

of a unit hydrograph. Equation 5-1 is used to calculate unit hydrograph lag: 

𝑡𝑝 = 𝐶 × 𝐶𝑡 × (𝐿 × 𝐿𝑐)0.3 (5-1) 

where 𝐶 is a conversion constant (0.75 for SI), 𝐶𝑡 is basin coefficient, 𝐿 is the length 

of the main stream from SG to the divide and 𝐿𝑐 is the length of the main stream 

from SG to the point nearest basin centroid. Rainfall duration, 𝑡𝑟, is related to the 

basin lag, 𝑡𝑝 : 

𝑡𝑟 =
𝑡𝑝

5.5
 (5-2) 

On the other hand, adjusted lag time, 𝑡𝑃𝑅, can be calculated using Equation 5-3: 

𝑡𝑃𝑅 = 𝑡𝑃 + 0.25 × (𝑡𝑅 − 𝑡𝑟) (5-3) 

where  𝑡𝑅 is the desired unit duration. After calculation of these parameters, unit peak 

discharge, 𝑞𝑝𝑟 can be calculated using Equation 5-4: 
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𝑞𝑃𝑅 = 2760 ×
𝐶𝑝

𝑡𝑃𝑅
 (5-4) 

where 𝐶𝑝 is the peaking coefficient. If this value is multiplied by drainage area, peak 

discharge can be calculated. Figure 5.6 shows the flow hydrographs for different 

return periods. 

 

Figure 5.6. Flow hydrographs for different return periods for the stationary case 

5.3.2 Determination of peak discharges and hydrographs with 

nonstationarity assumption 

For the nonstationary case, a set of potential covariates are tested with different 

probability distributions (Normal (No), Log-normal (LogNo), Gamma (Ga), GEV, 

Gumbel (Gu) and Logistic (Lo)). Covariates used in this study are selected based on 

literature review as explained in Section 2.6 and are time, reservoir index (RI), 

annual maximum precipitation (MP), annual total precipitation (TP), annual average 

temperature (Temp), population (Pop), and Normalized Difference Vegetation Index 

(NDVI). Since parsimony, obtaining the simplest model that explains the data’s 

variation as much as possible, is the basic principle in identifying the best model 

(Coles, 2001), the nonstationary (NS) models are limited to two covariates. That is, 
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maximum two covariates are used for location and scale, and a total of 840 NS 

models are generated considering all possible combinations of the selected 

covariates. NS models are generated using extRemes package (Gilleland & Katz, 

2016) and GAMLSS (Rigby & Stasinopoulos, 2005) package are used to generated 

NS models. The parameters are estimated using MLE. Akaike Information Criterion 

(𝐴𝐼𝐶) (Akaike, 1974) scores are used to evaluate the performance of each model. 

𝐴𝐼𝐶 = (−2) log𝑒 𝐿 + 2𝐾 (5-5) 

where 𝐾 is the number of adjusted parameters in the model, and 𝐿 is the model’s 

maximum likelihood. A model with a lower 𝐴𝐼𝐶 score is considered a better model. 

Table 5.14 demonstrates the 𝐴𝐼𝐶 scores of the best 20 models and the stationary 

model for each probability distribution. This process yields a set comprising 55 NS 

models, indicating that a substantial proportion of covariate combinations perform 

relatively well regardless of the distribution. Bold values show the best model for 

each probability distribution and pink highlighted values belong to the best 20 

models for each probability distribution. 

Table 5.14 Best 20 NS models for each probability distribution 

Combination LogNo No Lo Ga GEV Gu 

RI+Pop--NDVI+ 488.63 500.85 496.14 491.67 488.38 488.55 

RI+Pop--Time+NDVI 489.39 499.97 497.97 490.24 487.43 489.97 

RI+Pop--TP+NDVI 489.44 502.3 496.97 491.27 488.81 488.87 

RI+Pop--Pop+NDVI 489.56 502.48 498.06 492.14 490.34 490.3 

RI+Pop--RI+NDVI 489.88 500.42 496.46 492.26 487.85 488.18 

RI+Pop--Temp+NDVI 490.23 494.7 493.95 493.2 490.37 489.92 

RI+Pop--MP+NDVI 490.57 502.64 497.7 493.62 486.85 488.75 

RI+Pop--TP+ 490.62 513.13 502.87 492.46 497.89 497.24 

RI+Pop--TP+Temp 491.56 502.11 497.6 492.8 499.85 498.42 

RI+Pop--+ 491.76 511.29 500.91 494.81 495.87 495.22 

RI+Pop--Time+TP 492.21 514.79 502.8 494.34 487.45 492.65 

RI+Pop--TP+Pop 492.24 512.32 504.45 494.01 498.79 498.22 

RI+--NDVI+ 492.46 506.37 500.98 495.73 492.85 492.63 

RI+Pop--MP+TP 492.47 513.27 504.87 494.43 496.71 498.13 
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Table 5.14 (cont’d)       

Combination LogNo No Lo Ga GEV Gu 

RI+Pop--RI+TP 492.54 508.21 501.33 494.25 490.54 493.08 

RI+TP--NDVI+ 492.65 507.92 502.22 496.98 493.05 493.28 

RI+Pop--Temp+ 

RI+--+ 

492.81 

492.96 

500.21 

511.81 

495.61 

502.22 

495.75 

495.82 

497.85 

495.8 

496.44 

495.67 

RI+TP--+ 493.06 513.3 503.05 496.96 493.29 495.12 

Time+RI--NDVI+ 493.12 504.43 498.63 495.18 493.77 493.08 

RI+--RI+Temp 496.56 493.41 491.54 499.14 487.35 486.96 

RI+Pop--RI+Temp 494.46 493.79 492.01 497.01 489.49 488.67 

Time+RI--RI+Temp 498.21 494.15 492.47 500.76 489.53 488.89 

RI+Temp--RI+Temp 495.9 494.96 493.49 496.65 489.45 489.01 

RI+TP--RI+Temp 496.16 495.28 493.25 499.88 489.06 488.4 

RI+MP--RI+Temp 498.46 495.37 493.5 501.02 489.3 488.9 

RI+NDVI--RI+Temp 497.64 495.39 493.54 499.49 488.75 488.39 

RI+Pop--Time+Temp 494.49 497.16 494.56 497.75 487.6 489.17 

Time+RI--Temp+NDVI 494.99 497.99 495.74 496.79 495.81 494.66 

Time+RI--Time+Temp 

Time+RI--RI+NDVI 

497.55 

494.78 

498.15 

498.46 

494.74 

494.63 

500.57 

496.89 

488.01 

486.13 

489.78 

487.15 

Time+TP--Temp+NDVI 496.83 498.86 497.64 500.54 498.4 496.74 

RI+--Time+Temp 496.42 498.98 496.84 499.14 490.54 491.92 

RI+--Temp+NDVI 494.28 499.42 497.78 497.3 494.85 494.1 

RI+TP--Temp+NDVI 494.09 499.57 498.2 498.25 494.74 494.05 

RI+TP--Time+Temp 496.24 499.68 497.57 499.83 492.13 493.07 

RI+NDVI--Time+Temp 496.5 500.39 498 498.62 487.01 491.04 

RI+Pop--MP+Temp 494.8 501.83 497.25 497.39 496.96 496.79 

RI+NDVI--RI+NDVI 495.53 500.8 497.43 497.33 486.66 488.61 

Time+RI--Pop+NDVI 494.49 505.82 500.35 494.07 495.76 494.92 

RI+Temp--Temp+ 494.47 502.95 499.12 495.34 499.03 498.42 

RI+NDVI--NDVI+ 493.72 506.6 501.28 495.59 494.38 494.07 

RI+NDVI--Time+ 495.28 513.73 502.15 497.44 484.7 492.15 

RI+NDVI--Time+RI 497.28 508.6 500.86 499.39 485.13 491.2 

RI+Pop--Time+ 493.61 513.02 500.82 496.81 485.71 490.78 

RI+NDVI--Time+NDVI 495.7 507.93 503.03 497.36 485.79 493.63 

Time+RI--Time+RI 498.33 510.26 500.88 501.52 485.81 491.4 

RI+Pop--Time+MP 

RI+NDVI--Time+MP 

495.51 

497.27 

512.16 

514.6 

502.82 

504.12 

498.27 

499.38 

486.14 

486.14 

492.52 

493.9 
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Table 5.14 (cont’d)       

Combination LogNo No Lo Ga GEV Gu 

Time+RI--Time+ 496.34 515.28 501.36 499.52 486.47 492.05 

RI+NDVI--Time+TP 496.11 515.69 503.73 498.01 486.66 493.59 

RI+NDVI--Time+Pop 496.28 513.09 503.65 498.01 486.66 494.08 

RI+--RI+ 494.96 507.44 499.28 497.82 486.79 490.07 

Time+RI--Time+MP 498.27 515.59 503.35 501.23 487.08 493.84 

RI+--RI+NDVI 494.47 502.49 498.32 497.72 487.84 489.26 

+--+ 508.9 520.61 515.06 508.95 510.99 509.44 

LogNo: Log-normal, No: Normal, Lo: Logistic, Ga: Gamma, Gu: Gumbel 

“--” separates location and scale parameters and “+--+” represents stationary model.  

Bold values show the best model for each probability distribution and pink highlighted values 

belong to the best 20 models for each probability distribution. 

 

Performances of the NS models are better than the stationary model for all 

probability distributions (see Table 5.14). The number of appearances of each 

covariate in the best 20 models for each probability distribution are shown in Table 

5.15. RI appeared in the location parameter of 54 out of 55 NS models. Furthermore, 

NDVI, which is used for the first time in NS analysis, appeared 20 times in the scale 

parameter. 

Table 5.15 Total number of the candidate covariates appearance in the best models 

(i.e., the models in Table 5.14) 

Covariate Location Parameter Scale Parameter 

Time 10 18 

RI 54 15 

MP 1 6 

TP 6 8 

Pop 20 4 

Temp 2 21 

NDVI 10 20 

 

NS models are kept as simple as possible since including several covariates might 

bring overfitting risk to the NS models. The covariates other than time cause more 

uncertainty for future forecasts. For example, for the GEV distribution, the AIC score 
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of the NS model with time covariate is 507.3, while the AIC score of the stationary 

model is 511.0. The performance of the NS model with time covariate is greater than 

the stationary model. For this reason, time is selected as the only covariate in the NS 

modeling of the annual maximum discharge series. The continuation of the studies 

on NS frequency analysis is presented in our article titled " Nonstationary Frequency 

Analysis of Annual Maximum Flow Series: Climate Change versus Land Use / Land 

Cover Change" which is presented in Appendix A. 

As mentioned in Chapter 4.1 “Climate change analysis”, 17 RCMs are downloaded 

and analyzed. According to the analysis, M5 is selected as the best RCM. The outputs 

of M5 are entered into the hydrological model and the annual maximum discharge 

series for 2025 - 2100 are obtained. In NS modeling, six distributions are compared 

based on their Chi-square scores and the GEV distribution is the winner; hence, peak 

discharges are calculated using the GEV distribution for different return periods. 

These values are given in Table 5.16 while the flow hydrographs are provided in 

Figure 5.7. 

Table 5.16 Calculated peak discharge values for different return periods – NS case 

Return Period Peak Discharge (m3/s) 

2 257.5 

5 352.6 

10 426.5 

25 534.3 

50 626.2 

100 728.9 

500 1018.2 
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Figure 5.7. Flow hydrographs for different return periods for nonstationary case 

5.4 Combined 1D/2D hydrodynamic model results 

The validation of the combined 1D/2D hydraulic models is vital. However, in 

Türkiye, it is difficult to validate the models because of the limited data. The model 

is validated based on the information received from SHW staff in the meeting 

conducted on the 29th of January, 2024. Insight was provided regarding a massive 

flood event that occurred in Silifke between the 5th and 7th of March, 2004. They 

shared the details about the locations where the flood water entered and left Silifke 

from the left bank of Göksu River. These locations are marked in Figure 5.8. The 

developed combined 1D/2D hydraulic model is run for the flood hydrograph 

estimated for the 2004 event and these locations are validated with the results of it. 

Moreover, it was learned from the SHW staff that Göksu River can pass around 800 

m3/s safely, and our model in general confirms this as well. Our model projects minor 

overflowing for discharges over 800 m3/s and this might be due to the inexact bridge 

dimensions obtained from SWH. 
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(a) 

 

(b)  

Figure 5.8. The combined 1D/2D hydraulic model results: (a) The location where 

flood water entered the center of Silifke (b) The location where flood water left the 

center of Silifke (Basemap source: ArcGIS World Imagery) 

5.4.1 Scenarios used to assess effects of climate change and land use / land 

cover change 

The combined 1D/2D hydraulic model is run using the flood hydrographs which are 

generated under stationary and nonstationary conditions. Five scenarios are 

generated to assess the effects of CC and LULC. Scenario 0 (S0) is the scenario in 

which the traditional methods are used. In this scenario, flood peak discharges are 

calculated considering the observed historical AMFS. Scenario 1 (S1) is generated 

to assess the effects of CC and nonstationarity. In this scenario, the flood peak 

discharges are calculated using the results of the hydrological model obtained using 

M5 RCM projections as inputs. In addition to this, Time is used as the covariate. 

Scenario 2 (S2) is generated to see the effects of full reservoir conditions (i.e., all 

major reservoirs in the basin are assumed to be at their maximum levels). This 

scenario is developed to represent a worst-case situation where flood mitigation 

performances of the major dams are neglected. In Scenario 3 (S3), the outputs of the 

hydrological model with M5 RCM are modeled under stationary conditions. Finally, 

in Scenario 4 (S4), the urbanized area is adjusted according to the future projections 

as explained in Section 5.2 to evaluate the effects of LULC change. In this scenario, 
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CC and nonstationarity effects are investigated as well by using M5 RCM’s climate 

projections and time as the covariate. The explanations are given in Table 5.17.  

The peak discharges that are used for each scenario and each return period is given 

in Table 5.18. It can be seen that when the hydraulic structures are in full condition, 

Q500 is the largest. On the other hand, peak discharges of the NS model are the lowest. 

If peak discharges of S0 and S3 are compared, it can be seen that peak discharges 

tend to decrease if M5 outputs are used in the hydrological model. Below, the flood 

inundation maps are provided for all scenarios. 

Table 5.17 Scenarios that are generated for the combined 1D/2D hydraulic model 

Scenario Explanations 

Scenario 0 

(S0) 
Stationary model (historical observed outputs) 

Scenario 1 

(S1) 
Nonstationary model (M5 RCM + Time as the covariate) 

Scenario 2 

(S2) 

Nonstationary model (M5 RCM + Time as the covariate + 

Hydraulic structures are ignored) 

Scenario 3 

(S3) 
Stationary model (M5 RCM) 

Scenario 4 

(S4) 

Nonstationary model (M5 RCM + Time as the covariate + 

Increased urbanized area) 
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Table 5.18 The peak discharges for each scenario and each return period 

Return Period 
Q (m3/s) 

S0 S1 S2 S3 S4 

2 637.6 257.5 434.7 307.7 257.5 

5 968.5 352.6 600.3 408.2 352.6 

10 1181.9 426.5 748.5 490.4 426.5 

25 1445.0 534.3 995.8 589.2 534.3 

50 1636.6 626.2 1235.4 760.4 626.2 

100 1824.8 728.9 1534.3 934.8 728.9 

500 2256.2 1018.2 2550.0 1589.9 1018.2 

 

The inundated areas that are calculated as a result of each scenario and each return 

period are given in Table 5.19. In the case of comparison of S1 and S4, it can be seen 

that the inundated areas are greater for S4 due to the increased urbanized area.  

Table 5.19 The inundated areas as a result of each scenario and each return period 

Return Period 
Area (km2) 

S0 S1 S2 S3 S4 

2 58.6 12.2 33.0 21.0 12.2 

5 78.4 22.1 58.6 33.0 24.5 

10 85.4 33.0 67.4 44.3 35.7 

25 91.0 37.4 79.6 55.1 40.5 

50 95.7 58.6 88.9 67.4 62.2 

100 101.8 67.4 97.8 77.3 71.6 

500 117.1 79.6 123.8 97.8 84.5 

 

Total economic damage values are given in Table 5.20. In the case of comparison of 

S1 and S4, it can be seen that the total economic damage values are greater for S4 

due to the inundation of the synthetically generated urbanized areas. It should be 
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noted that these values are not realistic for Türkiye. However, they can be compared 

and give an idea about the consequences of floods. 

Table 5.20 The economic damages as a result of each scenario and each return period 

Return Period 
Economic Damage (€) 

S0 S1 S2 S3 S4 

2 409963 73386 266544 205762 73386 

5 1337110 262253 405277 316220 307154 

10 2142024 327742 486388 356465 423355 

25 3048391 377431 1457160 396773 527569 

50 3823298 407034 2282370 489636 692187 

100 4538085 454218 3350413 1167096 808447 

500 6084402 1832446 7630792 3583662 14646553 

5.4.2 Flood inundation maps under stationary condition (S0) 

Flood inundation maps under stationary conditions are given in Figure 5.9 and Figure 

5.10Figure 5.10. Flood inundation maps under stationary conditions (S0) (a) 2-year 

flood (b) 5-year flood (c) 10-year flood (d) 25-year flood (e) 50-year flood (f) 100-

year flood (g) 500-year flood. When 500-year flood occurs, the flood-inundated area 

doubles compared to that of Q2. On the other hand, the total economic damage 

increases by a factor of 1507.  

Q500 inundation map of the study area is provided in Figure 5.9. The economic 

damage occurring at the city center is the major contribution of the total economic 

damage. Thus, flood inundation maps of the city center, which is shown with a red 

rectangle in Figure 5.9, are shown for better demonstration for the rest of the 

scenarios. 

As can be seen from 5.10 (a), Figure 5.10 (b) and Figure 5.10 (c), water from the 

Göksu River overflows from the left bank and inundates the left part of the Silifke 

Center for Q2, Q5, and Q10 flood events. In case of other flood events, water starts to 
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overflow from both the left and right banks of the Göksu River. The elevation 

difference between the right part of the Silifke Center and the Göksu River is higher 

compared to the difference between the left part of the Silifke Center and the Göksu 

River. This situation can be seen in Figure 3.2. For this reason, water initially starts 

to overflow from the left bank. 

 

Figure 5.9. Q500 flood inundation map under stationary conditions (S0) (Basemap 

source: ArcGIS World Imagery) 
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(a) 2-year flood 

 

(b) 5-year flood 

 

(c) 10-year flood 

 

(d) 25-year flood 

Figure 5.10. Flood inundation maps under stationary conditions (S0) (a) 2-year 

flood (b) 5-year flood (c) 10-year flood (d) 25-year flood (e) 50-year flood (f) 100-

year flood (g) 500-year flood (Basemap source: ArcGIS World Imagery) 
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(e) 50-year flood 

 

(f) 100-year flood 

 

(g) 500-year flood 

Figure 5.10. (cont’d) 
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5.4.3 Flood inundation maps of S1 

The flood-inundated areas are considerably reduced compared to the S0 scenario due 

to the low peak discharges (see Table 5.18). The flood-inundated area by a 500-year 

flood event is about 6.5 times greater than the area flooded by a 2-year flood event 

(see Table 5.19). Flood inundation maps of S1 are given in Figure 5.11. 

 

(a) 2-year flood 

 

(b) 5-year flood 

Figure 5.11. Flood inundation maps under nonstationary conditions (S1) (a) 2-year 

flood (b) 5-year flood (c) 10-year flood (d) 25-year flood (e) 50-year flood (f) 100-

year flood (g) 500-year flood (Basemap source: ArcGIS World Imagery) 
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(c) 10-year flood 

 

(d) 25-year flood 

 

(e) 50-year flood 

 

(f) 100-year flood 

Figure 5.11. (cont’d)  
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(g) 500-year flood 

Figure 5.11. (cont’d) 

5.4.4 Flood inundation maps of S2 

In the case of 2-year, 5-year, 10-year, and 25-year flood events, flood-inundated 

areas are quite low compared to S0 (see Table 5.19). In the case of 50-year and 100-

year flood events, the flooded areas are very similar compared to S0, while in the 

case of 500-year flood events, the flooded area is greater for S2 compared to S0 (see 

Table 5.19). This scenario is actually the worst-case scenario because the flood 

mitigation capacities of major hydraulic structures in the basin (i.e., dams) are 

ignored by assuming them to be at their full reservoir levels. Flood inundation maps 

of S2 are given in Figure 5.12. 
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(a) 2-year flood 

 

(b) 5-year flood 

 

(c) 10-year flood 

 

(d) 25-year flood 

Figure 5.12. Flood inundation maps of S2 (a) 2-year flood (b) 5-year flood (c) 10-

year flood (d) 25-year flood (e) 50-year flood (f) 100-year flood (g) 500-year flood 

(Basemap source: ArcGIS World Imagery) 



 

 

99 

 

(e) 50-year flood 

 

(f) 100-year flood 

 

(g) 500-year flood 

Figure 5.12. (cont’d) 
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5.4.5 Flood inundation maps of S3 

This scenario assesses the AMFS, which is obtained from the hydrological model 

with M5 RCM under stationary conditions. S3 is the stationary version of S1. 

Calculated peak discharge values are approximately 1.2 times greater than the 

discharge values of S1 in the case of 2-year, 5-year, 10-year, 25-year, 50-year, and 

100-year flood events. On the other hand, it is 1.5 times greater in the case of the 

500-year flood event (see Table 5.18). Flood inundation maps of S3 are given in 

Figure 5.13. 

 

(a) 2-year flood 

 

(b) 5-year flood 

Figure 5.13. Flood inundation maps of S3 (a) 2-year flood (b) 5-year flood (c) 10-

year flood (d) 25-year flood (e) 50-year flood (f) 100-year flood (g) 500-year flood 

(Basemap source: ArcGIS World Imagery) 
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(c) 10-year flood 

 

(d) 25-year flood 

 

(e) 50-year flood 

 

(f) 100-year flood 

Figure 5.13. (cont’d) 



 

 

102 

 

(g) 500-year flood 

Figure 5.13. (cont’d) 

5.4.6 Flood inundation maps of S4 

S4 evaluates the impacts of both urbanization and CC. Urbanized areas are increased 

based on LULC change analysis. This analysis showed that urbanized areas are 

estimated to increase by 113% at the end of 2100. The urbanized area is increased 

by 113% by generating additional urbanized areas. These areas are generated near 

the newly urbanized areas, and they are represented with polygons in Figure 5.14. 
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Figure 5.14. Added urbanized areas for S4 based on LULC projections 

Flow hydrographs of S4 are the same as that of S1. The results showed that inundated 

areas increase by approximately 5 km2 and 30% of the newly added urbanized areas 

are flooded (see Table 5.19). Flood inundation maps of S4 are given in Figure 5.15. 

It is crucial that urban-planning is carried out considering these flood inundation 

maps.  
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(a) 2-year flood 

 

(b) 5-year flood 

 

(c) 10-year flood 

 

(d) 25-year flood 

Figure 5.15. Flood inundation maps of S4 (a) 2-year flood (b) 5-year flood (c) 10-

year flood (d) 25-year flood (e) 50-year flood (f) 100-year flood (g) 500-year flood 

(Basemap source: ArcGIS World Imagery) 
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(e) 50-year flood 

 

(f) 100-year flood 

 

(g) 500-year flood 

Figure 5.15. (cont’d) 
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5.5 Agent-based model 

The results of ABM are given in this section. The box plots of average economic 

damages of 100 Realizations for each scenario are given in Figure 5.16. As shown 

in Figure 5.16, the average economic damage decreases as agents implement actions, 

and the government’s actions are more effective than public actions. Public agents’ 

actions resulted in a 35.4% and 19.7% decrease in the mean values for PubRand 

(public agent actions based on random values) and PubSur (public agent actions 

based on survey results) compared to the Base (no agents) scenario, respectively.  

The findings indicate that the assignment of random behavior to public agents may 

result in an overestimation of the reduction in economic damage. Consequently, the 

utilization of site-specific information is of paramount importance in order to achieve 

a realistic evaluation of flood consequences. 

The added value of a survey that is used to collect information about public risk and 

coping perceptions instead of randomly assigning them is investigated by assuming 

the occurrence of the same flood event during each year of the 75-year simulation 

period. Figure 5.17 shows the change in total economic damage over time for both 

the PubRand and PubSur scenarios for the 500-year flood. The total economic 

damage initially decreases and stabilizes with time. Risk and coping perceptions of 

the individuals who experience floods increase at the initial stage of the simulation 

period. Thus, they take action, and total economic damage decreases with time. The 

economic damage value stabilizes for around nine years. It should be noted that these 

values are highly dependent on the threshold values for risk and coping perceptions. 

It can also be seen that the total economic damage for the PubRand scenario is less 

than the PubSur scenario, which supports the previous finding. It indicates that 

people’s flood risk and flood coping perceptions are skewed towards lower-than-

average values, which is a realistic outcome for Türkiye. Thus, especially for regions 

where flood awareness is limited (Türkkan & Hırca, 2021), surveys are essential for 

accurately modeling the impact of public action on economic damage reduction. 
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Figure 5.16. Box plots for average economic damage for each scenario 
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Figure 5.17. Change in total economic damage of PubSur and PubRand scenarios 

(Q500) 

The box plots benefit–cost (B/C) ratios of 100 Realizations for scenarios with the 

government agent are given in Figure 5.18. It is observed that the B/C values of the 

scenarios with proactive government are greater than those with reactive 

government. It can also be seen that the B/C ratios of the scenarios with the 

government that take action against 50-year flood are greater than those of 100-year 

flood regardless of whether the government is proactive or reactive. Moreover, it can 

be said that taking action against a 50-year flood is more beneficial for the study 

area. The rationale behind this can be attributed to the high cost of implementing a 

100-year flood action plan and the likelihood of 50-year floods to occur earlier in the 

simulation period but the low probability of occurrence of a 100-year flood event 

earlier in the simulation period of 75 years. Another interesting finding is that the 

B/C ratios of the scenarios with proactive government are always greater than 1.0, 

while they are less than 1.0 for 4% of Realizations of the scenarios with reactive 

government. Thus, the proactive behavior of the government is always feasible.  
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Figure 5.18. B/C ratios for Sc4-Sc11 

It is observed that the timing of a severe flood (50-year, 100-year, or 500-year flood) 

affects total economic damage; thus, the following analysis is conducted to assess 

the significance of the timing of a severe flood. The Realizations are grouped into 

two: the first group includes the Realizations where a severe flood occurs within the 

initial 10 years of the simulation period (referred to as Early, denoted with E), while 

the second group has the rest of the Realizations (referred to as Late, denoted with 

L). The results of all scenarios except the base scenario are illustrated in Figure 5.19. 

It can be seen that the average damage of the scenarios with a reactive government 

in group E is less than the scenarios with a reactive government in group L. This is 

an expected result as an early occurrence of a severe flood prompts the reactive 

government to take action, resulting in decreased economic damage. On the other 

hand, scenarios with a proactive government that takes action against the 100-year 

flood exhibit very similar average economic damage values for both groups E and 

L. This is due to the fact that as the proactive government takes action at the very 

first stage, the timing of the flood event becomes unimportant. 
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Figure 5.19. The effect of the timing of a serious flood event  

The duration between flood events causes significant changes in economic damages. 

Figure 5.20 shows the economic damage change between two 500-year flood events 

for the PubSur scenario. To analyze the effect of the duration between two flood 

events 28 realizations are generated, and these realizations are designed as follows: 

i) there are only two 500-year flood events in the 75-year simulation duration, and 

ii) there are no flood events in the simulation duration. The change in the economic 

damage is calculated as the difference between the economic damage of the second 

flood event and the first flood event. Negative values show that economic damage 

decreases, while positive values show that economic damage increases. As seen from 

Figure 5.20, the rate of increase in economic damage is initially high. After around 

nine years, the rate of increase decreases. This shows that flood risk perception and 

coping perception values of the people tend to stabilize after around 9 years. In our 

study, around nine years, the change in the economic damage is becoming zero. This 

value is highly dependent on the selected threshold values for risk and coping 

perceptions. Figure 5.20 also implies that economic damage change values stabilize 

after 20 years. This shows the effect of timing on flood risk and flood coping 
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perception. People tend to forget the results of floods. Therefore, their flood risk 

perception and flood coping perception values decrease, and they do not take any 

action. 

 

Figure 5.20. The effect of duration between two flood events on economic damage 

Detailed analysis of the ABM is presented in our article titled " Integration of climate 

change impacts and agent-based model to flood risk evaluation in an urbanized area" 

which is given in Appendix B. This manuscript is under preparation for submission 

to a scientific journal. 

5.6 Limitations of the study 

The difficulties and limitations encountered during the study are summarized below: 

• LULC analysis was conducted only between 2004 and 2021 due to the 

availability of satellite images and Google Earth images. The satellite image 

of 1985 is classified, but it could not be validated since a clear Google Earth 

image of that year is not available.  

• During the development of the hydrological model, many difficulties and 

problems are encountered. The operation strategies of major reservoirs in the 

study basin are not available, so it was not possible to calibrate and validate 
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the model for the time period during which these structures were in operation. 

Thus, the hydrological model is calibrated and validated for the time period 

before the construction of the first major hydraulic structure. After the 

successful calibration and validation, the hydraulic structures are entered into 

the hydrologic model and their operation related parameters are calibrated. 

Then the model is tested with the hydraulic structures between 2016 and 

2020.  

• The hydrological model is run using daily data because the discharge values 

are available at the daily time step. However, rather than the peak discharge, 

2D hydraulic model requires the hydrograph of a flood event as input. Thus, 

the flood hydrographs are generated using a Snyder Unit Hydrograph Model. 

• The flood inundation maps are validated based on the information obtained 

from SHW and the study of Buldur et al. (2007) since flood inundation data 

is not available. The entering and leaving locations of the flood water and the 

flood-inundated neighborhoods are validated using the information obtained 

from SHW.  

• The bridge dimensions obtained from SHW are not exact. Hence, minor 

problems occurred during the development of the hydraulic model. 

Necessary modifications are implemented to run the model. 

• Manning’s Roughness Coefficients are determined based on the CORINE 

Land Cover data (European Environment Agency, 2020) and the study of 

Papaioannou, et al. (2018). 

• Economic damage values are calculated based on the study of Haer et al. 

(2020) because depth-damage curves are not available for Türkiye. Hence, 

the calculated economic damages bare some uncertainties.  

• In ABM, the public agent behavior is designed based on risk perception and 

coping perception values. Functions and the coefficients used in these 

equations and threshold values are taken from the study of Tonn and Haer 

(2018). A sensitivity analysis is conducted for threshold values. However, a 

more detailed analysis necessary to develop site-specific threshold values. 
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CHAPTER 6  

6 CONCLUSION 

This study can be divided into six different parts: climate change analysis, land 

use/land cover change analysis, stationarity analysis, the hydrological model, the 

combined 1D/2D hydraulic model, and the agent-based model. The conclusions of 

each part are given under the related topics. 

6.1 Climate change analysis 

CC impacts are assessed by using temperature and precipitation projections of 17 

RCMs from EURO-CORDEX (EURO-CORDEX, 2021). Precipitation and 

temperature data of these RCMs are downloaded and the hydrological model is run 

using the outputs of the RCMs for the calibration, validation and test periods. The 

calculated discharges and recorded discharges are analyzed based on 𝑅2, 𝑅𝑀𝑆𝐸, 

𝑃𝐵𝐼𝐴𝑆, and 𝑁𝑆𝐸. EC-EARTH CCLM4-8-17, which is referred as M5 in this study, 

is selected as the best RCM with respect to discharges. In the study of Mesta et al. 

(2022), M5 is identified as one of the best-performing models in the spatial 

representation of climatology in the eastern part of the greater Mediterranean Basin 

which includes our study area. Thus, in this study temperature and precipitation 

projections of M5 are used in the hydrological model to include CC impacts into 

flood risk analysis.  

6.2 Land use/land cover change analysis 

LULC of the region is analyzed using historical satellite images and Google Earth. 

The analysis is conducted for 2004, 2013, 2017 and 2021. The results are analyzed 

for three periods: 2004 – 2013, 2013 – 2017, and 2017 – 2021. Agricultural land and 
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urbanized areas are the LULC classes that increased the most between 2004 and 2013 

(24.86% and 12.29%, respectively). On the other hand, forestland decreased in this 

period (-16.23%). Urbanized areas continued to increase between 2013 and 2017 

(8.56%), while there was no change in forestland in this period. Finally, between 

2017 and 2021, urbanized areas increased 10.61%. Forestland, agricultural land and 

water bodies decreased in smaller amounts in this period (-0.21%, -0.31% and -

0.71%, respectively). It can be seen that urbanized areas continuously increase in the 

region and this result is compatible with the other studies’ findings that were 

conducted in the vicinity of Silifke (Alphan, 2003; Derse & Alphan, 2012; 

Zadbagher et al., 2018). Effect of increase in urbanized areas on flood risks in the 

study are are evaluated using 1D/2D hydraulic model in this study. 

6.3 Nontationarity analysis 

Findings of nonstationarity analysis provided within the scope of this thesis is 

presented in our article named “Nonstationary Frequency Analysis of Annual 

Maximum Flow Series: Climate Change versus Land Use / Land Cover Change” 

which is provided in Appendix A. A summary of its major findings is given here. 

AMFS are analyzed using seven covariates and six probability distributions for the 

study region. 841 NS models for each distribution are developed using all 

combinations of at most two covariates for location and scale parameters of the 

distribution. Finding the best combination is challenging; trying as many 

combinations as possible is a good idea, but it is time-consuming. Hence, the end-

use of the study should be determined at the very first stage, and the performance of 

NS models should be evaluated accordingly.  

Selecting the best distribution solely based on statistical measures may be 

misleading. The results of this study indicate that the GEV distribution performs the 

best among the other distributions with respect to AIC scores. Nevertheless, the best 

NS model's calculated 500-year peak discharge, Q500, is 19 standard deviations 

outside the observed maximum annual discharge. Thus, selecting GEV distribution 
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to be used in flood risk analysis is not reasonable. For the basin, Gumbel distribution 

is selected as the best distribution, considering both the AIC scores and peak 

discharges. Q500 value of the best NS model with Gumbel distribution is 

approximately 1% greater than the maximum of AMFS. However, due to possible 

uncertainties in hydrological studies, peak discharges of good-performing NS 

models should be considered instead of only the best ones in flood management 

studies. RI and Temp are the covariates of the best NS model for Gumbel 

distribution. Another conclusion is that if the performance of the stationary model is 

not good, the performance of the NS models is not good either. For this reason, the 

performance of the stationary model might be used as an indicator to eliminate 

probability distributions. 

The determination of the source of nonstationarity is of significant importance in the 

estimation of peak discharges. In the study area, NS models incorporating LULC-

related covariates, namely RI and NDVI, demonstrate superior performance to those 

incorporating CC-related covariates. RI is the best-performing covariate across all 

probability distributions. Additionally, the use of NDVI as a LULC-related 

covariate, also demonstrates promising results. However, estimating LULC-related 

covariates for future scenarios may present certain challenges. While the estimation 

of NDVI is not straightforward, RI might be estimated adequately if basin 

management is well-planned for the future. Therefore, it is important to select 

covariates with consideration of their limitations. 

6.4 Hydrological model 

The development of the hydrological model for this study area is challenging due to 

the complexity of the basin and availability of limited data. The most problematic 

part of the hydrological model development is the existence of many hydraulic 

structures since the operational data of these structures cannot be obtained. For this 

reason, these hydraulic structures are modeled using a simplified approach: The 

hydrological model is developed considering the period before the construction of 
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the first major hydraulic structure. The calibration period is selected between 1965 

and 1978, and the validation period is selected between 1981 and 1986. Then, to 

represent the rainfall-runoff behavior of the current basin, these structures are entered 

into the model, and they are represented with storage-discharge and elevation-

storage, and elevation-area curves. The calibrated and validated model is tested 

between 2016 and 2020. The model results are satisfactory based on the statistical 

measures.  

The hydrological model is run between 2025 and 2100 using the RCM outputs. 

AMFS is obtained between 2025 and 2100, and flood hydrographs for different 

return periods are generated for stationary and nonstationary conditions. The 

hydrographs are generated for five scenarios to investigate the effects of CC and 

LULC. For S2 (M5 RCM + NS model with time covariate + hydraulic structures are 

at full conditions), Q500 peak discharge is the maximum (2550.0 m3/s), while for S1 

(M5 RCM + NS model with time covariate), it is the lowest (1018.2 m3/s). The 

results also showed a decrease in the peak discharges in the future. Q500 value (1589.9 

m3/s) for S3 (stationary model with M5 RCM) is less than the Q500 value (2256.2 

m3/s) for S0 (stationary model). Furthermore, when peak discharges of the same 

return periods are compared, peak discharges for S0 are greater than the others’ peak 

discharges except the Q500 value for S2.  

6.5 Combined 1D/2D hydraulic model 

The combined 1D/2D hydraulic model is run for different return periods and five 

scenarios. The largest inundation occurs in the stationary scenario (S0) for 2, 5, 10, 

25, 50 and 100-year floods. On the other hand, for 500-year flood, the inundated area 

of S2 (123.8 km2) is the greatest which is the worst-case scenario that full reservoir 

conditions are considered. In contrast, the lowest inundation and calculated 

economic damage are observed in the nonstationary scenario (S1) due to the lowest 

peak discharges in this scenario. The inundated area of S1 for 2-year flood (12.2 

km2) is approximately five times lower than the inundated area of S0 (58.6 km2).   
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On the other hand, this difference decreases for 500-year flood (79.6 km2 and 117.1 

km2 for S1 and S0, respectively). However, the inundated area of the stationary 

scenario, S3 with a climate model (97.8 km2) is greater than that of S1 and lower 

than that of S0 for 500-year flood. Moreover, in scenario S4, the urban area is 

increased according to the LULC change projections and this resulted in larger 

inundated area (84.5 km2) than that of S1 for 500-year flood.  

When economic damage values are compared for 500-year flood, it is greatest for S4 

(1.46E+07 €). S2 (7.63E+06 €) and S0 (6.08E+06 €) comes after S4. In the case of 

the 100-year flood, the economic damage is the greatest for S0 (4.53E+06 €). The 

economic damage values are the same (7.34E+04 €) for S1 and S4 for the 2-year 

flood because the inundated areas are also the same (12.2 km2). Calculated economic 

damage values are not fully realistic for Türkiye due to the use of not country-

specific depth-damage curves (Huizinga et al., 2017) and unit costs (Haer et al., 

2020). The curves generated for the European Continent (Huizinga et al., 2017) are 

used in this study. Hence, the economic damage estimations have some uncertainties. 

The results should be evaluated considering this fact. However, we believe that the 

relative evaluation of these scenarios is still useful. 

6.6 Agent-based model 

The necessity for FRM studies has increased significantly in light of the impacts of 

CC and urbanization increases. It is also essential to integrate the agents (i.e., 

stakeholders of the flood risks) into the FRM studies. Detailed results about ABM 

are presented in our article named “Integration of climate change impacts and agent-

based model to flood risk evaluation in an urbanized area” given in Appendix B, and 

the major conclusions based on that article are summarized here. 

The significance of the agents in FRM is demonstrated using 11 scenarios and 100 

realizations in each of these scenarios in our study. Firstly, it is imperative that the 

public agent be included in FRM studies, and conducting a survey to evaluate the 
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public’s behavior in the context of flood events is crucial. In this study, the average 

economic damage of the scenario in which the survey results are employed 

(2.59E+05 €) is found to be greater than that of the scenario with randomly generated 

values (2.09E+05 €). This illustrates the importance of the surveys. The absence of 

a survey in the study area precludes the realistic evaluation of the public’s reactions 

to flood events. This is of particular importance in regions where flood awareness is 

limited. The economic damage is typically greater in scenarios with a reactive 

government than in those with a proactive government. For example, the average 

economic damage is 1.92E+05 € for the ProGo50 scenario (proactive government 

that takes action against a 50-year flood) while it is 3.93E+05 € for the ReGo50 

scenario (reactive government that takes action against a 50-year flood).  The lowest 

average economic damage value (9.58E+04 €) is observed in the PubSur-ProGo100 

Scenario (Public agent actions based on survey results and proactive government that 

takes action against 100-year flood). This outcome demonstrates the necessity of 

integrating both public and government agents into the framework of FRM. 

Another conclusion of this study is that the timing of a severe flood event is of 

significant importance. The economic damage value of the Realization that a serious 

flood event occurs earlier (e.g., 8.47E+04 € for ReGo50 scenario) is less than the 

Realization that a serious flood event occurs late (e.g., 1.62E+05 € for ReGo50 

scenario). The timing of a serious flood event is particularly important for the 

reactive government. It can be seen that economic damage decreases 48% when a 

serious flood event occurs earlier for the scenarios with a reactive government.  

B/C of the scenarios involving the government taking action against 50-year flood 

are greater than those involving the government taking action against 100-year flood. 

For the ProGo50 scenario, B/C varies between 1.18 and 1.68 with an average value 

of 1.65, while it changes between 1.11 and 1.34 with an average value of 1.32 for 

the ProGo100 scenario. The situation is similar in the scenarios with the reactive 

government as well. This is due to the high cost of the 100-year flood action. It can 

be inferred that B/C is always greater than 1.0 in the scenarios with the proactive 

government, while it is less than 1.0 for some Realizations in the scenarios with the 
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reactive government. This is a significant conclusion, as the consequences of 

flooding may be devastating destructive if the government is reactive and do not 

implement flood measure before experiencing major floods. 

The final conclusion is that the public tends to forget the consequences of floods 

after approximately nine years. It should be noted that this value highly depends on 

the selected threshold values for risk and coping perceptions. Consequently, this also 

supports the significance of disseminating information about floods, as it is of 

paramount importance that the public is aware of the potential consequences of such 

events. It is imperative that the potential consequences of floods should not be 

underestimated. This is especially important for the regions where flood events occur 

frequently. 

6.7 Future work 

Some limitations were encountered during the study. Future work is suggested to 

overcome these limitations and improve findings of the study more realistic. Firstly, 

the number of respondents in the survey can be increased to get more realistic results. 

Furthermore, long-term data can be retained and collected from agents at different 

times. It is important to consider the advantages and disadvantages of this approach. 

Developed ABM can be also used in similar places. Secondly, specific studies for 

Türkiye can be conducted to get realistic economic damage results. Thirdly, the 

government agent action can be diversified, such as the construction of a dam 

upstream of the district center, river bed regulation, etc. and different actions can be 

also considered for the public agent. Finally, the coefficients and threshold values 

used in ABM can be calibrated based on a more detailed analysis. 
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ABSTRACT 

Accurately calculating flood peak discharges is vital in flood risk management. 

Flood management under stationary conditions may fail due to the ignorance of 

climate change (CC) and land use/land cover change (LULC), which necessitates 

nonstationarity flood frequency analysis. This study addresses the challenges of 

selecting appropriate probability distributions and covariates for nonstationary (NS) 

frequency analysis of annual maximum flow series (AMFS). In this study, six 

different probability distributions, normal, log-normal, logistic, gamma, Gumbel, 

and Generalized Extreme Value (GEV) distributions, and seven different covariates, 

time, reservoir index, annual maximum precipitation, annual average temperature, 
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annual total precipitation, population, and Normalized Difference Vegetation Index 

(NDVI), are analyzed for Silifke, Türkiye. Based on Akaike Information Criterion 

(AIC) scores, the GEV distribution performed better than others. However, 

calculated 500-year return period flood (Q500) values with the best NS model of the 

GEV distribution were an outlier (i.e., almost 19 standard deviations outside the 

average observed AMFS). Thus, AIC scores alone may be misleading. When AIC 

scores and calculated Q500 values are evaluated together, Gumbel is identified as the 

best distribution for modeling AMFS in the study area. Moreover, LULC-related 

covariates are determined to govern the nonstationarity rather than CC-related 

covariates in the study area. The reservoir index is determined as the most 

representative covariate for AMFS, while NDVI, which is used as a covariate in 

nonstationarity frequency studies for the first time, also appeared in many of the 

good-performing NS models. 

Keywords Nonstationarity, Covariates of land use/land cover and climate change, 

Normalized Difference Vegetation Index, Reservoir Index, Annual Maximum Flow 

Series 

1. INTRODUCTION 

In designing hydraulic structures, it is typical to assume that extreme events are 

stationary (Salas & Obeysekera, 2014; Read and Vogel, 2015); however, 

nonstationarity exists in nature. Factors such as human interventions in the river 

basin, land use and land cover (LULC) changes, and climate change (CC) contribute 

to nonstationarity (Salas & Obeysekera, 2014; Chen et al., 2020). Therefore, 

nonstationary (NS) frequency analysis is becoming more common in hydro-

climatology studies.  

NS models are commonly generated using time as the only covariate (Wi et al., 2016; 

Sarhadi & Soulis, 2017; Son et al., 2017; Cortez et al., 2022). However, recent 

studies consider additional covariates like average temperature and annual maximum 

precipitation to investigate the impacts of nonstationarity on extreme hydrological 

events such as floods and droughts (Leclerc & Ouarda, 2007; Gül et al., 2013; 
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Condon et al., 2015; Hounkpe et al., 2015; Sraj et al., 2016; Debele et al., 2017; 

Serago & Vogel, 2018; Sun et al., 2018; Kang et al., 2019; Faulkner et al., 2020; Qu 

et al., 2020; Hesarkazzazi et al., 2021; Isensee et al., 2021; Bazrafshan et al., 2022; 

Cui et al., 2023). For example, Yan et al. (2019) used two physical covariates, rainfall 

and population, besides time in their nonstationarity analysis to evaluate the effects 

of CC and population growth on flood hazard at two locations in China. They found 

that physical covariates outperformed time as explanatory variables in their study 

areas. NS models with physical covariates produced more reasonable flood hazard 

estimates than those with only time covariate. Chen et al. (2021) modeled the peak 

flow series of 158 stream gages across the UK. They used nine different covariates, 

namely time, annual rainfall amount, annual maximum daily rainfall, global average 

temperature, regional temperature, the North Atlantic Oscillation, the Arctic 

Oscillation, the East Atlantic Pattern, and the Scandinavia Pattern with log-normal, 

gamma, inverse-Gaussian, reverse Gumbel, and Weibull distributions to model peak 

flows. Their results showed that NS models with physical covariates were superior 

for most stations, and particularly rainfall-related covariates represented flood 

nonstationarity better than other covariates.  

In NS frequency analysis of extreme flows, General Extreme Value (GEV) 

distribution is widely used (Leclerc & Ouarda, 2007; Gül et al., 2013; Condon et al., 

2015; Hounkpe et al., 2015; Sraj et al., 2016; Gao et al., 2016; Faulkner et al., 2020; 

Singh & Chinnasamy, 2021; Anzolin et al., 2023; Bossa et al., 2023; Yilmaz et al., 

2023). Normal, log-normal, Gumbel, gamma and logistic distributions are also used 

by many researchers (Beguería et al., 2011; Cheng et al., 2014; Condon et al., 2015; 

Debele et al., 2017; Ganguli & Coulibaly, 2017; Hesarkazzazi et al., 2017; Cortez et 

al., 2022) in the frequency analysis of the hydrometeorological parameters like 

annual maximum rainfall and annual maximum discharge.  

Nonstationarity analysis of the annual maximum flow series (AMFS) is crucial in 

understanding the probable effects of extreme events such as floods (Villarini et al., 

2009). In developing NS models, selection of suitable distribution models together 

with suitable covariates is very important and has become a research interest in the 
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last two decades. Therefore, this study aims to develop well-performing NS models 

using different covariates and distribution models for AMFS. Silifke, which 

experienced severe floods, was selected as the study area. Silifke, located in the 

Mediterranean region of Turkey, is predicted to be one of the most vulnerable regions 

to CC (Giorgi and Lionello, 2008). Besides CC, the region is also experiencing 

significant LULC change, which is also expected to contribute to nonstationarity on 

AMFS.   

This study introduces a new covariate, the Normalized Difference Vegetation Index 

(NDVI), to the NS frequency analysis to represent the impact of LULC change on 

AMFS. NDVI quantifies vegetation greenness and provides information about 

vegetation density. It is mainly used to monitor vegetation and plant responses to 

environmental change and assess trophic interactions in the literature (Pettorelli et 

al., 2005; Dutrieux et al., 2015; Tian et al., 2017; Huang et al., 2020). In our study, 

we used NDVI as a covariate. The primary motivation for incorporating NDVI into 

this study is its potential influence on streamflow, supported by findings from Sun 

et al. (2008) and Liu et al. (2023) that state a negative correlation between NDVI and 

streamflow.  

This study conducts NS frequency analysis of AMFS by employing commonly used 

probability distributions and covariates in the literature. Akaike Information 

Criterion (AIC) score (Akaike, 1974) is used to identify the best NS models. The 

covariates are categorized as CC-related and LULC-related, and their performances 

are examined. Moreover, to the best of our knowledge, this is the first study that uses 

NDVI as a potential covariate besides the commonly used ones in the NS analysis of 

AMFS. 

2. MATERIALS & METHODS 

2.1.Study Area and Data Sources 

Stream gage E17A014 is located on Göksu River, just upstream of Silifke. Its 

catchment area is approximately 10300 km2 (Fig. 1) and hosts several large dams 

that have significant effect on the streamflow. Among these dams, Gezende Dam, 
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the first major dam in the basin, started to operate in 1994, while Ermenek Dam, the 

last major dam in the basin, started its operation in 2009.  

Daily flow data of E17A014 spanning from 1984 to 2020 has been taken from the 

State Hydraulic Works, and then AMFS is derived from the dataset. This period's 

average annual maximum flow is 556 m3/s, while the minimum and maximum values 

are 151 m3/s and 1833 m3/s, respectively. Annual maximum precipitation, annual 

total precipitation, and annual average temperature data are obtained from the 

Turkish State Meteorological Service, while population data is taken from the 

Turkish Statistical Institute (Turkish Statistical Institute, 2024). The average annual 

maximum precipitation is 47.7 mm and ranges between 29.8 mm and 67.5 mm for 

1984-2020. On the other hand, the average temperature in the region is around 7.3°C 

for the same period. Finally, NDVI is calculated using satellite images from the US 

Geological Survey (i.e., Landsat-5 image courtesy of the U.S. Geological Survey and 

Landsat-8 image courtesy of the U.S. Geological Survey). 
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Fig. 1 The study area (Source: Esri, Maxar, Earthstar Geographics, and the GIS User 

Community) 

2.2.Candidate Explanatory Covariates 

To examine the effects of CC and LULC on AMFS, representative covariates from 

each category are identified based on the literature review. That is, annual maximum 

precipitation (MP), annual total precipitation (TP), and annual average temperature 

(Temp) to analyze CC effects (Condon et al., 2015; Yan et al., 2019; Chen et al., 

2021), whereas reservoir index (RI) and population (Pop) for LULC changes 
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(Villarini et al., 2009; Lopez & Frances, 2013; Yan et al., 2019) are selected. As 

being another commonly used covariate indicator of both CC and LULC, time is also 

employed in our analysis. 

In addition to these six covariates, NDVI is also included as one of the LULC-related 

covariates. This is due to the increase in urbanization around the study area, as 

supported by Alphan (2003), Derse & Alphan (2012), and Göksel & Balçık (2019). 

Hence, a total of seven covariates are evaluated in this study. 

There are 17 meteorological stations (MSs) in and around E17A014 Basin (Fig. 1). 

Available data from these MSs are used in Thiessen Polygons Method to obtain areal 

average temperature and precipitation values for the basin.  

As shown in Fig. 1, there are several large dams in the basin that affect the AMFS at 

its outlet. Therefore, RI is used as the covariate to characterize the impact of these 

reservoirs on the AMFS. RI was first proposed by Lopez and Frances (2013) as an 

indicator of reservoir impacts on streamflow and is formulated as follows: 

𝑅𝐼 = ∑ (
𝐴𝑖

𝐴𝑇
)

𝑁

𝑖=1

× (
𝐶𝑖

𝐶𝑇
) (1) 

where 𝑁 is the number of reservoirs located upstream of the stream gage, 𝐴𝑖 is the 

catchment area (km2) of the reservoir 𝑖, 𝐴𝑇 is the catchment area (km2), 𝐶𝑖 is the 

capacity of the reservoir 𝑖 (hm3), and 𝐶𝑇 is the average annual discharge (hm3) at the 

stream gage.  

The basin spans across various districts of different cities. The population of the 

study area is estimated using censuses of these cities. The population increased until 

2000, decreased until 2007, and has been increasing in this region recently. Thus, the 

population is assessed as an indicator of LULC.  

In this study, NDVI is estimated using Landsat-5 and Landsat-8 images provided by 

the U.S. Geological Survey, and the analysis is conducted using the ArcGIS program. 

Landsat-5 and Landsat-8 images consist of seven and eleven spectral bands, 

respectively. Each cell of these images has its band values that are used to calculate 
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an average NDVI value for the basin. NDVI values for Landsat-5 and Landsat-8 are 

calculated as follows: 

𝑁𝐷𝑉𝐼 =
𝐵𝑎𝑛𝑑 4 − 𝐵𝑎𝑛𝑑 3

𝐵𝑎𝑛𝑑 4 + 𝐵𝑎𝑛𝑑 3
                     𝐿𝑎𝑛𝑑𝑠𝑎𝑡 − 5 (2) 

𝑁𝐷𝑉𝐼 =
𝐵𝑎𝑛𝑑 5 − 𝐵𝑎𝑛𝑑 4

𝐵𝑎𝑛𝑑 4 + 𝐵𝑎𝑛𝑑 3
                     𝐿𝑎𝑛𝑑𝑠𝑎𝑡 − 8 

(3) 

 

 

2.3.Changes in the Candidate Covariates and AMFS over Time 

Temporal variations in each covariate, together with AMFS, are shown in Fig. 2. As 

can be seen from Fig. 2 (a), there is a notable jump in RI in 2009 when Ermenek 

Dam, the largest reservoir volume in the basin, became operational (see Fig. 2 (a)). 

It can be observed that AMFS has lower annual maximum flows after 2004 

compared to the 1984-2004 period. Higher NDVI values are observed after 2004, 

indicating a correlation between lower maximum flows and higher NDVI values. On 

the other hand, MP and TP exhibit oscillations similar to those of AMFS. With some 

shifts, the oscillations seem to be compatible. Temp also oscillates but there is not 

any observable relation with that of AMFS oscillations. Similarly, Pop does not show 

any obvious correlation with AMFS. Hence, it is not straightforward to determine 

the best covariate or covariate combinations from these plots. Developing NS models 

by testing all combinations of these seven covariates for both location and scale 

parameters is impractical. Thus, a trial-and-error process is employed to find the best 

NS model. Initially, NS models are developed based on the combinations that are 

commonly used in the literature. After that, the number of covariates is restricted to 

two for each distribution parameter (i.e., location and scale), and all possible 

combinations are explored. The details of model development will be provided in 

the next section. 
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(a) RI vs AMFS 

 

(b) NDVI vs AMFS 

 

Fig. 2 Temporal variation of the covariates and AMFS 
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(c) MP vs AMFS 

 

(d) TP vs AMFS 

 

Fig. 2 (cont’d) 
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(e) Temp vs AMFS 

 

(f) Pop vs AMFS 

 

Fig. 2 (cont’d) 

2.4.Methodology 

In developing NS models for AMFS of E17A014, the commonly used distributions 

families, normal, Pearson type III, GEV and logistic families are considered, and six 

probability distributions from these families, namely normal, log-normal, gamma, 

GEV, Gumbel, and logistic are employed. The probability density functions of these 

distributions are given in Table 1. Two different R Packages are used in the 

development of the NS models: the extRemes package (Gilleland, 2022) and the 

Generalized Additive Model for Location Scale and Shape (GAMLSS) package 

(Rigby & Stasinopoulos, 2005).  
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Table 1 Distribution functions  

Name Probability Density Function 

Normal (No) 𝑓(𝑥) =
𝑒−(𝑥−𝜇)2 (2𝜎2)⁄

𝜎√2𝜋
 

Log-normal 

(LogNo) 
𝑓(𝑥) =

𝑒−((ln ((𝑥−𝜇)/𝜎))2 (2𝜉2)⁄

(𝑥 − 𝜇)𝜉√2𝜋
 

𝑥 > 𝜇 

𝜎, 𝜉 > 0 

Gamma (Ga) 

𝑓(𝑥)

=
(

𝑥 − 𝜇
𝜎 )

𝜉−1

𝑒(−
𝑥−𝜇

𝜎
)

𝜎Г(𝜉)
 

𝑥 ≥ 𝜇 

𝜉, 𝜎 > 0 

GEV 

𝑓(𝑥) =
1

𝜎
[1 −

𝜉

𝜎
(𝑥

− 𝜇)]
(

1−𝜉
𝜉

)

𝑒
{−[1−

𝜉
𝜎

(𝑥−𝜇)]

1
𝜉

}

 

𝜇 +
𝜎

𝜉
< 𝑥 < ∞ 

Gumbel (Gu) 𝑓(𝑥) =
1

𝜎
𝑒

𝑥−𝜇
𝜎 𝑒−𝑒

𝑥−𝜇
𝜎  

Logistic (Lo) 𝑓(𝑥) =
1

𝜎

𝑒−(𝑥−𝜇) 𝜎⁄

[1 + 𝑒−(𝑥−𝜇) 𝜎⁄ ]2
 

𝜇: Location parameter, 𝜎: Scale parameter,  𝜉: Shape parameter, Г: Gamma 

function 

 

For each distribution, first, a set of NS models is developed, considering the 

previously developed models in the literature and adding NDVI to some of them. 

This set has 93 NS models and is referred to as the Initial Set, “IS”.  

The performances of NS models are evaluated based on their AIC scores (Akaike, 

1974): 

𝐴𝐼𝐶 = (−2) log𝑒 𝐿 + 2𝐾 (4) 

where 𝐾 is the number of parameters in the model, 𝐿 is the maximum likelihood of 

the model, and smaller AIC values indicate better models.  
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Besides the NS models in IS, new models that use combinations of better-performing 

covariates are intended to be developed to represent a diverse range of models. 

However, this process is not straightforward as knowing which combinations of the 

covariates will result in good NS models before their development is impossible. 

Therefore, the number of covariates is restricted to at most two for each location and 

scale parameter, and all possible combinations are explored. For each distribution, a 

set of 840 NS models are developed, and this set is referred to as “All2”: 

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑁𝑆 𝑚𝑜𝑑𝑒𝑙𝑠 = ∑ (
𝑛

𝑘
)

2

𝑘=0

× ∑ (
𝑛

𝑟
)

2

𝑟=0

− 1 (5) 

where 𝑛 is the total number of covariates, which is seven, 𝑘 is the number of 

covariates used to represent the location parameter, and 𝑟 is the number of covariates 

used to represent the scale parameter. We subtract one to ensure that only models 

with at least one covariate are considered. 

In the results section, the models' performances in All2 and IS are compared to assess 

the advantages of developing all possible NS models with at most two covariates in 

each parameter against the traditional approach of developing a limited number of 

NS models with predetermined covariate combinations. Stationary (S) models are 

also developed to compare their performances against those of NS models. 

Moreover, 5-year flow (Q5) and 500-year return period flood (Q500) values are 

calculated to check whether the models with good performances have reasonable 

peak discharge values. In the calculations, the approach of Eastoe & Tawn (2009) is 

followed. That is, first, a specific discharge value is selected, and the exceedance 

probability of this value is calculated for each year. Afterwards, the average of these 

exceedance probabilities is found. If this average value matches the desired value, 

the selected discharge value is considered accurate. Otherwise, a new discharge 

value is selected, and the process is repeated until the desired exceedance probability 

is achieved. This return level is referred as marginal return level in the study of 

Eastoe & Tawn (2009). 
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3. RESULTS 

AIC scores of the S model, the best of IS, and the best of All2 for each distribution, 

together with the improvements in AIC scores, are represented in Fig. 3. It can be 

seen that the performances of the best NS models, both for IS and All2, are better 

than the S models across all distributions. It can be observed that the improvement 

from the S model to the best of IS ranges between 13 and 24, whereas it ranges 

between 18 and 27 for the best of All2. On the other hand, the improvement from 

the best of IS to the best of All2 is between 1.7 and 7.4.  

When the distributions of good-performing models are analyzed, it is seen that better 

NS models are developed with GEV, Gumbel, and log-normal distributions. 

Moreover, the improvements in the AIC scores from the best of IS to the best of All2 

are less than 5 for these three distributions. Thus, it can be concluded that developing 

a limited number of NS models (like those in IS) with good-performing distributions 

will result in good-performing NS models. In other words, the added benefit of 

developing all NS models with all possible combinations of two covariates may not 

be necessary if good-performing distributions are used.   

It can also be seen from Fig. 3 that AIC scores of S models with GEV, Gumbel, log-

normal, and gamma distributions are close to each other and better than those with 

logistic and normal distributions. For logistic and normal distributions, besides S 

models, NS models also have the highest AIC scores. Thus, performances of S 

models can be used as an indicator of the performances of the corresponding NS 

models of the same distributions and be used in selecting potential distributions to 

be used in the NS frequency analysis. It is concluded that normal and logistic 

distributions do not perform as good as GEV, Gumbel, log-normal and gamma 

distributions to model AMFS for the study area.  
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Fig. 3 AIC scores of the best models and improvement between different sets 

Fig. 4 shows the box plots for AIC scores of the models in All2, in IS, and the best 

20 NS models for each distribution. As can be seen from the box plots of the best 20 

NS models in Fig. 4, GEV and Gumbel distributions yield the lowest AIC scores. 

Gumbel distribution also has a narrow range for the best 20 NS models. Normal and 

logistic distributions have large number of relatively bad performing NS models both 

in IS and All2. Moreover, the normal distribution presents numerous outliers, with 

the worst AIC scores. These findings support our initial conclusion of normal and 

logistic distributions not being suitable for the study area. Another interesting 

observation from Fig. 4 is that although the narrowest variation in AIC scores of best 

20 NS models is for the GEV distribution, the variations in IS and All2 of the GEV 

distribution are considerably wide. Therefore, if a limited number of NS models with 

the GEV distribution are developed, that set may not include good-performing 

models.  

The top-performing 20 NS models in All2 for each probability distribution are 

identified. Among these models employing the same covariates in the same 

parameters are compared and those with higher AIC scores are selected. This process 

yields a set comprising 55 NS models, indicating that a substantial proportion of 

covariate combinations perform relatively well regardless of the distribution. 

However, it should be noted that for gamma, logistic, and normal distributions, most 

of these 20 best-performing models are not located in IS but in All2. 
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Fig. 4 Box plots for AIC scores of the models in All2, IS, and the best 20 NS models 

Table 2 presents the Q500 values of the best NS models and the minimum and 

maximum Q500 values of the NS models in All2. The variance is highest for GEV 

distribution, where Q500 values vary between 1844.2 m3/s and 19395.4 m3/s. The log-

normal distribution also demonstrates high variance. On the other hand, the variance 

of Gumbel distribution is the lowest, with the logistic distribution exhibiting similar 

characteristics. Since Q500 values are frequently used in flood risk analysis and it may 

not be possible to identify the best nonstationary model every time, distributions that 

give reasonable Q500 values for all nonstationary models should be used. Of course, 

the nonstationary models with good performances and realistic Q500 values should 

be preferred. 

Table 2 Calculated Q500 values for the models in All2 

 Q500 of the best NS 

model (m3/s) 
Minimum Q500 (m

3/s) Maximum Q500 (m
3/s) 

LogNo 1651.8 1572.9 5384.7 

No 1872.5 1291.7 2762.6 

Lo 1734.9 1284.0 2102.7 

Ga 1705.2 1361.1 3215.5 

GEV 7774.2 1844.2 19395.4 

Gu 1853.1 1423.5 2510.4 
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Fig. 5 demonstrates the calculated Q500 values for all 55 NS as well as S models. Q500 

values of most NS models are significantly higher than those of the S model for both 

GEV and log-normal distributions, justifying the necessity of developing NS models, 

especially for flood risk analysis. It can be observed from Fig. 5 that Q500 values for 

GEV and log-normal distributions oscillate a lot. The recorded maximum discharge 

value of E17A014 SG is 1833 m3/s between 1961 and 2024, while the Q500 value of 

the best NS model of GEV distribution is notably higher at 7774 m3/s. This value is 

an outlier among the observed AMFS, which is approximately 19 standard deviations 

away from the maximum observed AMFS. Therefore, although the best NS model 

belongs to the GEV distribution (see Fig. 3), it is impractical to use this model to 

generate extreme streamflow values. A similar problem is also identified by Song et 

al. (2018). They stated that the Maximum Likelihood Estimation method may lead 

to unreasonable results in the parameter estimation of NS models for the GEV 

distribution. On the other hand, log-normal and gamma distributions have good 

performances, too. The calculated peak discharge values for the 500-year return 

period flood of the best NS models with log-normal and gamma distributions are 

also acceptable. Lastly, the AIC scores of the NS models with Gumbel distribution 

are lower than those with log-normal and gamma distributions (see Fig. 3). Hence, 

Gumbel distribution emerges as the most suitable probability distribution for 

modeling AMFS, which many researchers use in the literature (Solomon & Prince, 

2013; Osei et al., 2021; Patel, 2020; Game et al., 2023). For Gumbel distribution, the 

improvement in AIC from the best of IS to the best of All2 is around 1.5 (see Fig. 

3), indicating that the added benefit of developing 840 NS models is insignificant. 

When AIC scores (see Fig. 3) and Q500 values (Fig. 5) are evaluated together, these 

results suggest that developing good NS models with commonly used covariates in 

the literature is likely when a suitable distribution is selected. In other words, 

developing NS models with all combinations may not be necessary to identify good 

NS models. However, it should be noted that uncertainty is inherent in the nature of 

hydrological events. Thus, it is worth checking the Q500 values of other NS models 

with lower AIC scores. For example, consider the case of Gumbel distribution, where 
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the NS model yielding the maximum Q500 value has an AIC score of 489.8, which is 

just 0.6% greater than that of the best NS model with Gumbel distribution. On the 

other hand, the difference between the Q500 values of these two models is 657.3 m3/s, 

which is an important difference for flood management studies. Thus, investigating 

the Q500 values of the NS models with reasonable AIC scores is crucial. 
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Fig. 5 Calculated Q500 values for the best 55 NS models and S models. The circle 

marks the NS model of the GEV distribution that has Q500 of 17590.3 m3/s (see Table 

2). “- -” separates the location and scale parameters 
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To identify the covariates with the potential to yield good NS models, top-

performing 20 NS models of each probability distribution are selected, and the 

frequency of occurrence of each covariate within these models is shown in Fig. 6. 

As can be observed from Fig. 6 that RI is consistently the most frequently selected 

covariate for the location parameter across all probability distributions. For gamma 

and log-normal distributions, population emerges as another significant covariate for 

the location parameter. On the other hand, it is not possible to identify a favored 

covariate for the scale parameter. Moreover, for Gumbel distribution, RI, average 

temperature, and NDVI are the most frequently selected covariates for the scale 

parameter. 

It should be stated that LULC-related covariates are selected more frequently than 

CC-related covariates for all distributions in the best 20 NS models. This suggests 

that the effect of LULC on AMFS is more pronounced than that of CC in the study 

area. Therefore, critical processes that may affect streamflow in the study regions 

should be thoroughly investigated first, and NS models using indicators of these 

processes as covariates have to be evaluated. For example, for Gumbel distribution, 

as being the suggested distribution, the AIC value of the best NS model that uses 

CC-related covariates is 496.7, while it is 487.1 with LULC-related covariates (see 

Table 3). 

 

(a) LogNo 

 

(b) No 

Fig. 6 Number of appearances of each covariate in the best 20 NS models 
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(c) Lo 

 

(d) Ga 

 

(e) GEV 

 

(f) Gu 

Fig. 6 (cont’d) 

Table 3 shows the AIC scores of the best NS model for each distribution and the 

combinations of the covariates. These combinations include models employing only 

CC-related covariates (time, MP, TP, and temp), only LULC-related covariates 

(time, RI, Pop, and NDVI), and models using both types of covariates. As evident 

from the AIC scores in Table 3, using only LULC-related covariates for all 

distributions resulted in better NS models than models using only CC-related 

covariates. For normal and logistic distributions, using LULC-related covariates 

improved AIC scores slightly in comparison with CC-related covariates (i.e., 2.3 and 

3.6 for normal and logistic distributions, respectively). This suggests that LULC-

related covariates are more effective than CC-related covariates on AMFS for this 

basin. In addition to this, using both types of covariates did not result in better models 

while compared to the models with only LULC-related covariates. The AIC scores 

of the best NS models did not change for log-normal, gamma and GEV while it is 

increased by 0.1 for Gumbel distribution. 
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Fig. 7 shows the box plots for the models in All2 with only CC-related covariates, 

LULC-related covariates, and both types of covariates. It can be seen that No-CC, 

No-Both, and Lo-CC have many outliers. LogNo-LULC, LogNo-Both, GEV-LULC, 

GEV-Both, Gu-LULC, and Gu-Both have smaller AIC scores. The models with CC-

related covariates generally have higher AIC scores than others, which supports the 

importance of including LULC-related covariates in NS models. 

Table 3 The impacts of CC and LULC-related covariates on the AIC Scores 

  

AIC Score of the 

best model 

Covariates used in the best NS model 

Time MP TP Temp RI Pop NDVI 

NS models with only CC covariates 

LogNo-CC 495.1 L 
 

L 
    

No-CC 500.8 L+S 
 

L S 
   

Lo-CC 498.2 L+S 
 

L S 
   

Ga-CC 498.6 L S L 
    

GEV-CC 496.8 L 
 

L 
    

Gu-CC 496.7 L 
 

L 
    

NS models with only LULC covariates 

LogNo-LULC 488.6 
    

L L S 

No-LULC 498.5 L 
   

L+S 
 

S 

Lo-LULC 494.6 L 
   

L+S 
 

S 

Ga-LULC 490.2 S 
   

L L S 

GEV-LULC 484.7 S 
   

L 
 

L 

Gu-LULC 487.1 L 
   

L+S 
 

S 

NS models with both CC & LULC covariates 

LogNo 488.6 
    

L L S 

No 493.4 
   

S L+S 
  

Lo 491.5 
   

S L+S 
  

Ga 490.2 S 
   

L L S 

GEV 484.7 S 
   

L 
 

L 

Gu 487.0 
   

S L+S 
  

L: Location Parameter, S: Scale Parameter 
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Fig. 7 Box plots for the models with only CC-related, only LULC-related, and both 

types of covariates 

Streamflow values (both extremes, Q500 and Q5) generated using NS models are 

calculated for all distributions and shown in Fig. 8. As mentioned above, despite 

GEV distribution exhibiting the lowest AIC scores, calculated Q500 values are 

outliers for many models (i.e., Q500 of the best GEV model is 7774.2 m3/s and it is 

approximately 19 standard deviations away from the observed maximum AMFS.) 

Q500 values of best NS models for other distributions are more or less the same (see 

Table 2). Q500 value of the best NS model with Gumbel distribution is 1853.1 m3/s, 

and this value is approximately 1% greater than the maximum observed discharge 

value. As shown in Fig. 8 (b), Q5 values of NS models with GEV distribution 

oscillate significantly and many outliers exist. The straight line in Fig. 8 (b) 

represents the average of the AMFS over a 63-year observation period (i.e., 1984-

2020), and most of the outliers of GEV distribution in All2 are not observed in this 

period. It can also be seen that there are no outliers for the best 20 NS models for 

Q500 and Q5 values in any distribution.  
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(a) 

 

(b) 

Fig. 8 (a) Q500 (m
3/s) values for the NS models (b) Q5 (m3/s) values for the NS 

models. The solid horizontal line is the average of observed discharges. 

4. CONCLUSION 

Traditional flood management relies on stationarity assumption, however, analyzing 

AMFS under nonstationary conditions is essential. In flood studies, selection of the 
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appropriate probability distribution and covariates is important for developing 

representative nonstationary models. 

In this study, six different probability distributions and seven different covariates are 

analyzed to characterize a suitable NS model for the study area. 93 NS models (IS) 

are generated as an initial step, and after that, 840 NS models (All2) are generated 

using two covariates at most for each statistical parameter. The best NS models in 

these two sets differ with respect to their AIC scores. The performance differences 

between these two NS models are high for normal and logistic distributions and low 

for GEV and Gumbel distributions. It should be noted that finding the best NS model 

with the best combination of covariates is a challenging task; trying as many 

combinations as possible is a good idea, but it might be time-consuming. However, 

choosing a good-performing probability distribution can reduce the need for 

extensive covariate selection.   

Selecting the best distribution based on some statistical measures might be deceptive. 

In this study, GEV distribution performs best among the others according to AIC 

scores. However, the best NS model’s calculated peak discharge, Q500, value is far 

from the observed maximum annual discharges. Thus, the appropriate distribution 

should be selected considering the end-use of the study. For the basin, Gumbel 

distribution is selected as the best distribution, considering both the AIC scores and 

peak discharges. Q500 value of the best NS model with Gumbel distribution is 

approximately 1% greater than the maximum of AMFS. Furthermore, there is no 

significant difference between the best NS models of set IS and All2. Hence, good-

performing NS models can be developed without so much effort with Gumbel 

distribution. However, due to the uncertainty in hydrological processes, the peak 

discharges of the NS models that perform well should also be considered in flood 

management studies. RI and Temp are used in the best NS model for Gumbel 

distribution. Another conclusion is that if the performance of the S model is not good, 

the performance of the NS models is not good either. For this reason, the 

performance of the S model might be used as an indicator to eliminate probability 

distributions. 
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Determining the source of the nonstationarity is important in estimating peak 

discharges. In our study area, NS models with LULC-related covariates perform 

better than those with CC-related covariates. RI is the best-performing covariate for 

all probability distributions. In addition, NDVI, which is used as an LULC-related 

covariate for the first time, performs well. However, estimating the LULC-related 

covariates for the future may not be straightforward. While the estimation of NDVI 

is not easy, RI might be estimated well enough if the basin management is well-

planned for the future. Hence, the covariates should also be selected considering their 

limitations.  
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ABSTRACT 

Floods are among the most devastating natural hazards. Flood hazards cannot be 

prevented, but the consequences of floods can be reduced by taking necessary 

actions. Nevertheless, public actions are also very important in reducing flood 

consequences; in traditional flood risk management studies, government actions are 

included. In recent years, public actions have started to be included in the studies by 

using agent-based models (ABM). This study analyzes the impact of both climate 

change and agent impacts on flood risk in an urbanized area. 17 different regional 

climate models (RCM) were downloaded and analyzed for climate change analysis. 

The best RCM was selected based on some statistical measures, and the outputs of 

the best RCM were used in the hydrological model. The hydrological model was run 

between 2025 and 2100. The combined 1D/2D hydraulic model was run for each 

year using different flood hydrographs (i.e., 2-year, 5-year,…,500-year). In ABM, 

two different agents were included: i) public agent and ii) government agent. 

Decision analysis of the public agent is designed based on the individuals' flood risk 

perception and flood coping perception values. A survey was conducted in the study 

area to evaluate these parameters. In most of the studies, these parameters are 

randomly assigned. On the other hand, two different behavior types are used for the 
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government agent: i) Proactive behavior and ii) Reactive behavior. In this study, 11 

different scenarios and 100 Realizations were generated to analyze CC and ABM on 

flood risks. The study's main findings are: i) Climate change is an important 

parameter and should be integrated into the hydrologic and hydraulic models for 

future simulations.  ii) In our study area, the economic damage of the scenario with 

the survey results is greater than that with the random values. Thus, conducting the 

survey is crucial for the study area; iii) Government actions and behavior types of 

the government are important. In our study area, the benefit-cost ratio (B/C) of the 

scenarios with the government which takes action against a 50-year flood event is 

greater than the scenarios with the government which takes action against a 100-year 

flood event. Another important finding is that the B/C of some Realizations is lower 

than 1.0 for the scenarios with reactive government, while it is always greater than 

1.0 if the government is proactive; iv) Timing of the severe flood event is effective 

on the average economic damage. The Realizations that a serious flood event 

occurred earlier (in the first 10 years of the simulation) have less average economic 

damage than the others due to the earlier actions. Thus, it is important to take action 

earlier, considering the possible future flood consequences; v) The public agent tends 

to forget the consequences of the floods around 9 years. Hence, it is important to 

educate the public and raise awareness about the floods in the study area. 

1. INTRODUCTION 

Floods are one of the most destructive natural hazards in the world (CRED and 

UNDRR, 2020). Although they cannot be prevented entirely, their consequences 

may be reduced significantly by taking the necessary mitigation and adaptation 

measures (Jonkman & Vrijling, 2008; Kreibich et al., 2015; Yang & Liu, 2020; Merz 

et al., 2021). These measures, which will be referred to as actions from here on for 

the sake of simplicity, can be taken by the public, the government, or both.  

Traditional flood risk management (FRM) studies typically employ hydrological 

models to develop hydrographs of flood events with different return periods and 

hydraulic models to generate corresponding flood inundation maps. Afterwards, with 
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the help of these inundation maps and depth-damage curves, the economic, social, 

and environmental risks are calculated. However, thisapproach has two main 

shortcomings: i) it ignores the effects of climate change, and ii) it fails to account for 

potential impacts of actions.  

Climate change (CC) is regarded as one of the most important drivers behind the 

changing frequency and intensity of floods worldwide (Bronstert, 2003; Hirabayashi 

et al., 2013; Swain et al., 2020). Thus, many researchers intended to integrate climate 

change impacts on traditional FRM (Ranger et al., 2011; Hirabayashi et al., 2013; 

Arnell & Gosling, 2016; Zhou et al., 2019; Tabari, 2020). Future flood risks are tried 

to be evaluated using the outputs of regional and global climate models in this study. 

 

In traditional FRM studies, typically, the behaviors of the agents/stakeholders (i.e., 

the public, the government, or both) are overlooked. Although the involvement of 

stakeholders’ behavior is crucial (Haer et al., 2020), there are a few studies in which 

the behaviors of the stakeholders are considered in FRM (Dubbelboer et al., 2016; 

Haer et al., 2017; Tonn & Guikema, 2018; Haer et al., 2020). These studies employed 

Agent-Based Model (ABM), which has been proposed to include stakeholders’ 

behavior in the analysis. ABM is an analytical method for the social sciences that 

enables a researcher to create, analyze, and experiment with models composed of 

agents that interact within an environment (Gilbert, 2008). Actions taken by the 

stakeholders are integrated into flood risk analysis in a number of limited studies, 

such as Dawson et al. (2011), Haer et al. (2017), Tonn and Guikema (2018), and 

Haer et al. (2020). However, in most studies, random behaviors are assigned to the 

people living in flood-prone areas, or the analysis is carried out based on some 

hypothetical scenarios. This is because even though the incorporation of site-specific 

data to represent the behaviors of agents is expected to improve the accuracy of the 

analysis, it can be rather costly (Coughlan et al., 2013)  and time-consuming, so its 

added value should be assessed. One of the main contributions of this study is to 

analyze the effects of the surveys on ABM.  
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Silifke, which has encountered numerous flood events over the past decade is chosen 

as the study area. Göksu River, which is one of the longest rivers in Turkey, runs 

through Silifke and discharges to the Mediterranean Sea. Silifke is quite suitable for 

analyzing the impact of both climate change and the actions of the stakeholders on 

floods due to historical floods in Silifke and the results of climate change studies 

conducted in the region (Aziz et al., 2020; Kentel et al., 2021). 

The main objective of this study is to integrate both the effects of climate change and 

the actions of stakeholders into FRM analysis to develop more effective and resilient 

FRM strategies tailored to the specific needs and conditions of the study area. A 

hydrological model is developed for the study area to generate flood hydrographs of 

various return periods using precipitation and temperature predictions of the best-

performing climate model for the period spanning from 2025 to 2100. A combined 

1D/2D hydraulic model is developed to generate corresponding flood inundation 

maps. Finally, an ABM is generated to integrate the actions of agents (i.e., the public 

and the government) regarding flood risks. A survey is conducted to realistically 

represent the spatial distribution of behavior of the public agent (represented by the 

individuals living in the study area), while the government agent is designed based 

on two different management strategies, namely proactive and reactive. 

This study is one of the first studies that integrates a hydrological model, a combined 

1D/2D hydraulic model, and an ABM to evaluate CC impacts and behavior of the 

agents in micro-scale flood risk assessment. It is also crucial for Turkey because it 

is the first flood risk study that integrates both CC impacts and ABM. The study 

results highlight the significance of the timing of a major flood event on economic 

damage, the importance of the management strategies of the government and the 

realistic identification of economic damage calculated using site-specific 

information collected through surveys. 
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2. BACKGROUND 

2.1.Flood risk and climate change 

Intergovernmental Panel on Climate Change (IPCC) – Working groups I, II, and III 

(IPCC, 2014) define “Climate Change (CC)” as changes in the climate system that 

may be due to natural internal processes or external forcings such as persistent 

anthropogenic changes in the atmospheric composition or land use. Due to CC, 

precipitation and temperature trends are significantly altered compared to the current 

conditions or the pre-industrial era, and the natural systems are strongly affected 

(Easterling et al., 2000; Giorgi & Lionello, 2008; Mariotti et al., 2011; IPCC, 2014, 

2018; Mahmood et al., 2019). Changes in the frequencies and intensities of extreme 

weather conditions, such as floods and droughts, are the most commonly 

encountered consequences of CC.  

Recently, studies on the impact of CC on different types of floods (fluvial, pluvial, 

or coastal floods) have appeared in the literature. Hirabayashi et al. (2013) worked 

on global flood risk under CC using the outputs of 11 climate models. They 

calculated the peak discharge of the 100-year return period for the 20th century, 

estimated the return period of this discharge in the 21st century, and compared them. 

They found a significant increase in flood frequency in Southeast Asia, Peninsular 

India, eastern Africa, and the northern half of the Andes. In a more recent study by 

Arnell and Gosling (2016), the impacts of CC on river floods at the global scale are 

studied using the results of 21 climate models. Changes in the magnitude, return 

period of the flood peaks, flood-prone population, and flood-prone cropland for the 

100-year flood event in 2050 were selected as indicators, and flood hazard was 

calculated based on these indicators. The study results showed the variations of flood 

risk under different climate models; moreover, the primary reason for this variation 

was identified as the precipitation projections of the climate models. Blöschl et 

al.(2019) studied the effect of climate change on European river floods by analyzing 

the observed flood discharges in the past five decades in Europe. They found that 

regional flood discharge trends range between an increase of about 11 % and a 
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decrease of about 23 % per decade. Oubennaceur et al. (2021) investigated the flood 

risk under CC for 2050 and 2080 in Quebec. They used one climate model and two 

different RCPs. They concluded that flood peaks and flood damages show a minor 

decrease in the future. Many studies conclude that CC affects flood risks (Hallegatte 

et al., 2010; Bai et al., 2019; Bangalore et al., 2019; Xu et al., 2019; Tanaka et al., 

2020; Wing et al., 2022; Liu et al., 2023). 

In Turkey, although there are many studies on floods (Yegin, 2015; Nigussie & 

Altunkaynak, 2019; Yalcin, 2019; Ogras & Onen, 2020; Bayazıt et al., 2021; Beden 

& Keskin, 2021), research on CC impacts on floods are very limited. One of the 

earliest studies was carried out by Gül et al. (2010) and flood frequency estimation 

methods under different climatologic and geographic conditions were carried out. In 

a study conducted by Şen and Kahya (2017), combined hydrological and hydraulic 

models were used to estimate surface and peak flows. They calculated these flows 

using historical observations and CC scenarios, concluding that the peak discharges 

would decrease due to CC in Rize. Bilici and Everest (2017) studied the relationship 

between the December 29, 2016 Mersin Flood and CC. They also studied the other 

causes of major floods in Mersin; however, numerical modeling was not conducted. 

2.2.Agent-Based Model 

ABM is an approach to modeling complex social dynamics. Agents in the model are 

represented as autonomous individuals, and different rules are assigned to the agents 

to simulate their behaviors. ABM is used in many areas, such as biology, social 

sciences, economics and finance, land use, and anthropology (Hammond, 2015). 

In traditional flood risk analysis, possible actions that the government or the people 

can take are ignored. The government may adopt flood mitigation strategies 

proactively, regardless of flood experience, or reactively after experiencing floods. 

On the other hand, people’s risk and coping perceptions are the two main factors that 

reflect people’s tendency to take actions to decrease flood consequences (Zhai et al., 

2006; Bubeck et al., 2012; Attems et al., 2020), may evolve with time and vary with 

spatial factors such as proximity to the river. Integrating these potential actions and 
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perceptions into FRM studies is a major challenge. Until recently, this need was not 

recognized since numerical modeling approaches are lacking in including people’s 

and the government’s behavior; however, ABM addresses this gap by incorporating 

the behaviors of agents in FRM. 

Integration of ABM into FRM has limited applications. Dawson et al. (2010) 

estimated the vulnerability of people to flood under different storm surge conditions, 

defense scenarios, evacuation strategies, and flood warning times by coupling ABM 

with a hydrodynamic model in the coastal town of Towyn in the United Kingdom. 

They assessed agents' behavior based on age, sex, employment, and household size 

and randomly assigned locations to the agents. In a more recent study, Haer et al. 

(2017) integrated household risk mitigation behavior into FRM in Heijplaat, 

Rotterdam. They analyzed households’ behavior under three different economic 

decision models: i) expected utility theory, ii) prospect theory, and iii) a prospect 

theory model They showed that future flood risk may be underestimated if human 

behavior is neglected in FRM. Tonn and Guikema (2018) developed an ABM that 

analyzes the impacts of community policies and individual decisions on community 

flood risk. Individuals’ decisions were determined based on risk and coping 

perceptions, which were calculated based on parameters including the number of 

flood experiences, the number of near-miss flood experiences, and individual 

mitigation efforts. They concluded that community mitigation decreases future flood 

damage. One of the rare studies in which CC and ABM are used together is carried 

out by Haer et al. (2020). Using a scenario-based approach, they developed an ABM, 

where the government and the households were the main agents, to study flood risk 

under CC in the European Union. They found that the effects of extreme flood events 

(such as a 1000-year flood event) are more significant (economical damage is higher) 

for the proactive government than the reactive government, which provides high 

protection levels in large metropolitan areas. Zhuo and Han (2020) conducted a 

detailed literature review of ABM and FRM. They identified three topics: real-time 

flood emergency management, long-term flood adaptation planning, and flood 

hydrological planning, where ABM has been used, and addressed different research 
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challenges. They emphasized the potential contribution of ABM to future FRM 

studies. 

2.2.1. Risk and Coping Perceptions 

The risk-reducing behavior of individuals against natural hazards is interpreted using 

the Protection Motivation Theory (PMT) introduced by Rogers (1975) and has 

become very popular nowadays. Risk perception and coping perception are the two 

main cognitive processes of PMT.  

Risk and coping perceptions are the two main factors that reflect people’s tendency 

to take action to decrease flood consequences (Zhai et al., 2006; Bubeck et al., 2012; 

Attems et al., 2019). Risk and coping perceptions of people vary with time (i.e., flood 

experience) and space (i.e., proximity to the river). Thus, the actions of people should 

be quantified considering temporal and spatial dimensions in ABM.  

Risk perception is a time-dependent parameter used to identify and evaluate risk 

associated with hazardous events (Hunter, 2022). People's risk perception regarding 

floods is investigated in a few studies. Botzen et al. (2009) evaluated how 

geographical and socioeconomic characteristics, flood experience, flood threat 

knowledge, and risk attitude influence flood risk perception in the Netherlands. They 

found that flood risk perception is generally low. They also stated that flood risk 

awareness may be improved by educating people about the causes of floods. In a 

recent study, Netzel et al. (2020) analyzed the importance of public risk perception 

for efficiently managing pluvial floods at two case study sites in Western Germany 

through a questionnaire-based telephone survey. Their findings revealed that 

personal and global risk perceptions should be distinguished. They observed that 

global risk perception was high while personal risk perception was relatively low 

among the participants. Furthermore, they analyzed the impacts of some parameters 

on risk perception and found that personal risk perception, education, housing 

conditions, and knowledge influence people's behavior in terms of mitigation. Liu et 

al. (2022) studied flood risk perception and effecting factors in Jiaozuo City, China. 

They assessed demographic factors, residential conditions, and other factors (e.g. 
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flood experience, adaptation measures), and found that people with lower levels of 

education and income, fewer flood experiences, as well those being married, living 

in rural areas, or near rivers/reservoirs had a higher flood risk perception than others. 

Coping perception, which refers to the way people perceive their ability to handle 

and manage challenging circumstances, is an essential parameter in terms of 

protective behavior. Bubeck et al. (2012, 2018) stated that coping perception predicts 

protective behavior better than risk perception. Zaalberg et al. (2009) studied the 

flooding experiences in the Netherlands and investigated whether previous exposure 

to flooding significantly influenced residents' motivation to manage future flood 

events adequately. They found that people with flood experience exhibited strong 

emotional responses,  increased concerns about future flooding, and increased 

perception of vulnerability to future floods. Laudan (2019) examined the damage-

driving factors of flash floods and river floods in Germany. Furthermore, he assessed 

the psychological impacts on the coping ability of flood-affected households. He 

found that damage-driving factors are different for flash floods and river floods, and 

flood types weakly influence the coping perception of people.  

Risk and coping perceptions are important indicators of people’s decisions on 

whether to take action or not. Thus, these two factors are included in the FRM 

framework through ABM in this study. 

3. DATA & METHODS  

3.1.Study Area and Data 

Göksu River, which is approximately 271 km, is one of the longest rivers in Turkey. 

It runs through Silifke and discharges to the Mediterranean Sea. Silifke, a district of 

Mersin located at the downstream part of Göksu River, is selected as the study area 

because of the number of flood events in recent years. In the 2004 flood, 4,887.3 da 

agricultural area and many residential areas were flooded. Economic damage was 

determined as approximately  $ 6 million  (Buldur et al., 2007). In the 2017 flood, 

1,109 da agricultural areas were flooded, and economic damage was calculated as 
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approximately  $ 370,000 (İhlas Haber Ajansı, 2017). The population of Silifke in 

2023 is around 137,047 (Turkish Statistical Institute, 2024). Lidar point cloud data 

of the study area with 1 m resolution was obtained from the Ministry of Environment, 

Urbanization, and Climate Change. It covers approximately 500 km2, and its 

resolution is 1 m. The spatial data regarding the locations of buildings is also taken 

from the same institution. There are approximately 29,000 buildings in the study 

area. On the other hand, the bathymetry of Göksu River is obtained from the State 

Hydraulic Works (SHW), and the resolution of bathymetry data is 1 m as well. The 

bathymetry data covers the river section between the point where Göksu River 

discharges to sea and 8 km upstream of Silifke District Center. A digital elevation 

model is generated using lidar point cloud data and the bathymetry of the Göksu 

River.  The photographs from the study area are given in Figure 1.  

  

Figure 1. Photographs from the study area  

There are 17 meteorological stations (MSs) in and around E17A014 Basin (see 

Figure 2). The observed minimum temperature in the basin is -28°C while the 

maximum is 46.7 °C. On the other hand, the maximum precipitation amount is 

observed as 168.6 mm. The recorded maximum discharge is 1996.0 m3/s at E17A014 

stream gage and this value is recorded during the flood event in 2004. This value is 

actually greater than 1996 m3/s, but the stream gage could not record the real value 

because it was damaged during the flood event. The average discharge value is 100.6 

m3/s for this stream gage, which is located just upstream of the center of Silifke. The 

study area is shown in Figure. 
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Figure 2. Location of the study area (Source: Esri, Maxar, Earthstar Geographics, 

and the GIS User Community) 

3.2.Methods 

The flowchart of the methodology is given in Figure 3. Three different models are 

developed within the context of this study. Firstly, a hydrological model to simulate 

the rainfall-runoff behavior of the catchment is developed to determine inundated 

areas. After calibration and validation of the model, a combined 1D/2D hydraulic 



 

 

216 

model is developed. Finally, using the combined 1D/2D hydrodynamic model 

outputs, an ABM covering the period from 2025 to 2100 is framed to incorporate the 

behaviors of the agents and evaluate their impacts on flood risks. Detailed 

information about each model is provided in the following sections.  

 

Figure 3. The flowchart of the methodology  

The hydrological model of the study area is developed using the Hydrologic 

Engineering Center’s Hydrologic Modeling System (HEC-HMS) of the US Army 

Corps of Engineers. The hydrologic model is calibrated using daily streamflow 

observation of E17A014 Stream Gage (SG), whose drainage area is approximately 

10.300 km2. E17A014 is located 8 km upstream of Silifke (see Figure).  
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Daily streamflow measurements of E17A014 SG are available between 1960 and 

2023. However, many hydraulic structures are located along Göksu River within the 

basin boundary, and daily operational data of these hydraulic structures are 

unavailable. Without this information, developing a realistic hydrologic model is not 

possible. Thus, the hydrologic model is developed, calibrated, and validated for the 

period before the construction of the major hydraulic structures. The hydraulic 

structures (i.e., elevation-storage-discharge curves) are integrated into the calibrated 

model accordingly. 

Gezende Dam is the first major hydraulic structure constructed in the basin in 1994. 

In addition to streamflow data, daily temperature and daily rainfall data are required 

as inputs for the hydrological model. There are 17 meteorological stations (MSs) in 

and around E17A014 Basin (see Figure 2).  Available data from these MSs are used 

in Thiessen Polygons Method to obtain areal average temperature and precipitation 

values for the basin. Discharge, temperature, and rainfall data for the model area are 

available between 1965-1978 and 1981-1986. Thus, the calibration and validation 

periods are selected as 1965-1978 and 1981-1986, respectively. The performance of 

the hydrological model is tested for the 2016 – 2020 period after the dams are 

embedded into the model. 

The hydrological model is run with the temperature and precipitation time series 

obtained from the best climate model for the 2025-2100 period, and annual 

maximum discharges are obtained. Generalized logistic distribution is fitted to the 

annual maximum discharge series using the HEC-SSP software and peak discharges 

for different return periods (i.e., 2-, 5-, 10-, 25-, 50-, 100-, and 500-year) flood events 

are determined. Finally, corresponding flood hydrographs are generated using the 

Snyder Method. These hydrographs are used as the primary inputs of the combined 

1D/2D hydraulic model. 

Climate change models are used to include the effect of CC on future floods. In this 

study, the potential impacts of CC are assessed through the analysis of 17 

Coordinated Regional Climate Downscaling Experiment (CORDEX) – Regional 
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Climate Models (RCMs) for Representative Concentration Pathways (RCP) 8.5 

scenario. These models are selected based on previous studies as in Kentel et al. 

(2021) and Aziz et al. (2020). CORDEX-RCMs are evaluated using the CORDEX 

Errata page (EURO-CORDEX, 2021), and the ones with potential problems that may 

affect flood risk analysis are eliminated from the final climate model list.  

As can be seen in Table 1, a flood simulation has to be conducted for each year of 

the simulation period (i.e., 2025-2100). In this study, we only considered the 

possibility of occurrence of 2-, 5-, 10-, 25-, 50-, 100- and 500-year flood events. 

However, we do not know when a flood event will occur during the simulation period 

and its return period. The following approach is used to assign flood events to each 

year from 2025 to 2100: A random number between zero and one is generated for 

each year for each possible return period. For example, for 2025, seven random 

numbers representing 2-, 5-, 10-, 25-, 50-, 100-, and 500-year events are generated. 

If the generated number is less than the exceedance probability of the flood event, 

that event is presumed to happen in that year. For example, if the random number 

generated for the 2-year flood event for 2025 is 0.15, then the 2-year flood event is 

assigned to 2025 since 0.15 is less than 0.5 (i.e., the exceedance probability of the 2-

year flood event). The occurrence of other flood events in 2025 is decided similarly.  

It is assumed that if multiple flood events are projected to occur in a year, the flood 

event with the highest return period will ocur in that year. An example is given in 

Table 1. This will result in one possible realization of flood events in the simulation 

period (hereafter will be referred to as “Realization”). To handle the uncertainties 

arising from the procedure of assigning flood events to the simulation period, 100 

different Realizations are generated and used in flood risk analysis. After 

determining the flood events, the hydraulic model is run, and inundation maps are 

generated. Finally, total economic damage for the study area is calculated using 

depth-damage curves for Europe given by Huizinga et al. (2017). 
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Table 1. An example of realization generation 

 

Flood events Selected 

Flood 

Event 

2 

(0.5) 

5 

(0.2) 

10 

(0.1) 

25 

(0.04) 

50 

(0.02) 

100 

(0.01) 

500 

(0.002) 

2025 0.81 0.15 0.96 0.40 0.01 0.47 0.81 50 

2026 0.59 0.49 0.29 0.39 0.94 0.85 0.59 
No 

flood 

. 

. 

 

. 

. 

 

. 

. 

 

. 

. 

 

. 

. 

 

. 

. 

 

. 

. 

 

. 

. 

 

. 

. 

 

2100 0.28 0.24 0.57 1.00 0.64 0.77 0.001 500 
Values in parentheses are the exceedance probabilities of the flood events 

Bold values show the selected floods for the corresponding year 

The combined 1D/2D hydraulic model of the study area is developed using the 

Hydrologic Engineering Center’s River Analysis System (HEC-RAS) of the US 

Army Corps of Engineers. The combined 1D/2D Hydraulic Model is preferred since 

the study area is highly urbanized. The 1D model is used to model flow inside the 

river, while the 2D model is run for the remaining area, which is prone to inundation. 

The total length of the modeled river reach is approximately 23.5 km, and 1.025 

cross-sections are generated using the bathymetry data of Göksu River for the 1D 

hydraulic model.  

Flood hydrographs (obtained by transferring the outputs of the hydrologic model at 

E17A014 with the drainage area-ratio method) are entered into the combined 1D/2D 

hydraulic model as the upstream boundary condition, while normal depth is entered 

into the model as the downstream boundary condition. Two mesh sizes are used for 

the 2D area: 6 m by 6 m mesh within the 100 m buffer zone of the river banks and 

the urbanized area, and 30 m by 30 m mesh for the rest of the model area. The 

Coordination of Information on the Environment (CORINE) dataset (Copernicus 

Land Monitoring Service, 2018) is used as the land cover data for the 2D study area. 

Corresponding Manning values are taken from the study of Papaioannou et al. 

(2018). 

The agent-based model (ABM) is developed using NetLogo created by Uri 

Wilensky (1999). The flowchart of the ABM is given in Figure 4. The duration of 
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the simulation is 75 years, from 2025 to 2100, and yearly time steps are used. As 

explained earlier, the best-performing climate model's temperature and precipitation 

time series are inputs for the calibrated hydrological model to include CC impacts 

on flood risks.  Mitigation and adaptation measures that can be taken by agents (the 

public, the government, or both) are included in the analysis through ABM. 

The public (i.e., households living in the study area) and the government are the main 

agents in our study. The behavior of the public agent, which consists of 28,863 

agents, is simulated using risk perception and coping perception and structured as in 

Tonn and Guikema (2018). The equations are provided below: 

 𝑅𝑖𝑠𝑘 𝑃𝑒𝑟𝑐𝑒𝑝𝑡𝑖𝑜𝑛 =  ∑(𝐹𝑜𝑟𝑚𝑢𝑙𝑎 × 𝐵𝑒𝑡𝑎) (1) 

 𝐶𝑜𝑝𝑖𝑛𝑔 𝑃𝑒𝑟𝑐𝑒𝑝𝑡𝑖𝑜𝑛 =  ∑ 𝐹𝑜𝑟𝑚𝑢𝑙𝑎 (2) 

The details of the calculations regarding risk perception and coping perception are 

given in the Appendix. The threshold values for risk and coping perceptions are 

determined as 30 based on a sensitivity analysis. The details of the sensitivity 

analysis are also given in the Appendix. The public agent is assumed to take action 

if risk and coping perceptions are greater than 30.  

On the other hand, the government agent behavior is designed based on two 

management strategies: i) proactive management strategy and ii) reactive 

management strategy. The scenarios are generated based on the management 

strategies for the government agent. 
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Figure 4. Flowchart of the model simulation 

To realistically model the public’s risk and coping perceptions of flood hazards in 

the ABM, a survey is prepared and conducted in the study area. The questions are 

selected based on the literature review. It consists of open-ended questions, multiple 

choice questions, and yes/no type questions. 180 surveys are conducted by selecting 

the respondents from various parts across the study area to reduce bias  (see Figure 

5). The survey results are distributed through the whole study area as follows: The 

study area is divided into two regions: the 500 meter-buffer zone around Göksu River 

and the remaining area. Survey results obtained in each region are then randomly 

assigned to the agents located in that particular region.  

A scenario-based approach (see Table 2) is used to investigate the impacts of the 

agents on flood risks. In the model, the government is characterized as either reactive 

or proactive. A reactive government takes action only after a certain return period 

flood event is experienced, while a proactive government takes action immediately 
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without waiting for such an event. Actions by people and the government are 

modeled through a scenario-based analysis. A base scenario (S1) represents the 

traditional flood risk analysis. Thus, actions are completely ignored (i.e., no agents, 

thus no actions). In scenario 2, public actions are included, but random risk and 

coping perceptions are assigned to agents. This scenario represents the case where 

no survey is conducted (similar to Tonn and Guikema’s (2018) study). In the third 

scenario, survey results are used to assign risk and coping perceptions to the agents. 

In scenarios 4, 5, 6, and 7, the government is the only agent that takes action, and 

details of these scenarios are explained in Table 2. Finally, both the government’s 

and the public’s actions are included in scenarios 8, 9, 10, and 11. Scenarios are 

shown in Table 2 as well. 

Table 2. The scenarios designed to investigate the impact of agent’s actions on flood 

risks  

Scenario 

Number 

Scenario Name Agent1  Survey2 Explanations 

S1 Base  None  No No agents; thus, actions are not used. 

S2 PubRand Public No Risk and coping perceptions are 

randomly assigned to public agent. 

S3 PubSur  Public  Yes Risk and coping perceptions are 

assigned to the public agent according 

to the survey results. 

S4 ProGo50 Government - The proactive government takes 

action to mitigate the consequences of 

a 50-year return period flood event. 

S5 ProGo100  Government - The proactive government takes 

action to mitigate the consequences of 

a 100-year return period flood event. 

S6 ReGo50  Government - The reactive government agent takes 

action to mitigate a 50-year return 

period flood event after a 50-, 100- or 

500-year return period flood event is 

experienced. 

S7 ReGo100  Government - The reactive government agent takes 

action to mitigate a 100-year return 

period flood event after a 100- or 500-

year return period flood event is 

experienced. 

S8 PubSur – 

ReGo50  

Public & 

Government 

Yes PubSur and ReGo50 together.  

S9 PubSur – 

ReGo100  

Public & 

Government 

Yes PubSur and ReGo100 together. 
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Scenario 

Number 

Scenario Name Agent1  Survey2 Explanations 

S10 PubSur – 

ProGo50  

Public & 

Government 

Yes PubSur and ProGo50 together. 

S11 PubSur – 

ProGo100  

Public & 

Government 

Yes PubSur and ProGo100 together. 

1 The government, the public, or both are used as agents in this study. 
2 When survey results are used in assigning risk and coping perceptions to people, “Yes” is used in 

this column; when risk and coping perceptions are randomly assigned to people, “No” is used in this 

column. If the public agent is not included in the scenario, “-“ is used. 

 

Figure 5. Locations of the participants of the survey (Basemap source: Esri, Maxar, 

Earthstar Geographics, and the GIS User Community) 

As explained previously, 100 Realizations are generated for the 75-year simulation 

period. In other words, each scenario is replicated 100 times. Let 𝐸𝐷𝑖,𝑗,𝑘 denotes 

economic damage in year 𝑖, for Realization 𝑗 of scenario 𝑘. Then, the total economic 

damage for each Realization of each scenario, 𝑇𝐸𝐷𝑗,𝑘, is calculated by summing up 

yearly economic damages of 75 years of the simulation period: 

 𝑇𝐸𝐷𝑗,𝑘 = ∑ 𝐸𝐷𝑖,𝑗,𝑘

2100

𝑖=2025

, ∀𝑗, 𝑘 (3) 
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The average economic damage for each scenario 𝑘, 𝐴𝐸𝐷𝑘, is calculated by taking 

the average of total economic damage obtained for 100 Realizations of that scenario: 

 𝐴𝐸𝐷𝑘 =  
∑ 𝑇𝐸𝐷𝑗,𝑘

100
𝑗=1

100
, ∀, 𝑘 (4) 

Depth-damage curves specific to Türkiye are not available. Therefore, the curves 

suggested by Huizinga et al. (2017) for Europe are utilized, and the costs of actions 

that can be taken by the public agent are ignored in this study.  

The government’s action is represented as the construction of a dike. The costs of 

the government’s actions are calculated based on the study of Haer et al. (2020), 

where € is used as the currency unit. Thus, calculated economic damage values bear 

a certain degree of error. However, we believe that comparing scenarios relative to 

each other is still useful. 

4. RESULTS 

4.1. Results of the hydrological model 

The hydrologic model is calibrated and validated for the periods of 1965-1978 and 

1981-1986. The observed discharges and the outputs of the hydrological model are 

compared and performances of the statistical measures for the hydrological model 

are given in Table 3. 
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Table 3. Performances of the statistical measures 

Measure 

Performance Evaluation Criteria (Moriasi et al., 

2015; HEC, 2020) 

Calibration 

Period (1965-

1978) 

Validation 

Period (1981-

1986) Very Good Good Satisfactory 

The RMSE-

observations 

standard 

deviation ratio  

(𝑹𝑺𝑹) 

[0.0,0.5] (0.5,0.6] (0.6,0.7] 0.53 0.54 

Nash-sutcliffe 

efficiency (𝑵𝑺𝑬) 
(0.8,1.0] (0.7,0.8] (0.5,0.7] 0.72 0.71 

Percent bias 

(𝑷𝑩𝑰𝑨𝑺) 
(-5,5) 

(-10,-5] & 

[5,10) 

(-15,-10] & 

[10,15) 
-3.26 1.04 

Coefficient of 

Determination 

(𝑹𝟐) 

(0.85,1.00] (0.75,0.85] (0.60,0.75] 0.74 0.72 

Peak Discharge 

(m3/s) 
± 10% of observed value 

*1074 – 782 

(37.3%) 

*1090 - 981 

(11.1%) 

Discharge Volume 

(mm) 
± 10% of observed value 

*5105.36 – 

4939.39 (3.4%) 

*1835.47 – 

1854.52 (1.0%) 

Date/Time of Peak 

Discharge 
± 12 hours range of observed value 

*22.01.1969 – 

14.03.1968 

*28.12.1981 – 

10.11.1985 

* The first value represents the observed value, while the second one represents the calculated value 

Color code that shows the performance evaluation criteria 

Very Good Good Satisfactory Not Satisfactory 

 

Although peak discharge and time of peak discharge values for both the calibration 

and validation periods do not fall within the 10% range of observed values, the 

overall performance of the hydrological model is very good and satisfactory based 

on the statistical measures (Moriasi et al., 2015; HEC, 2020). Thus, model calibration 

is assumed to be acceptable. After the calibration and validation, hydraulic structures 

are entered into the hydrological model. 

4.2. Selection of the best RCM 

The final climate model list that is used in the study is given in Table 4. As explained 

by Mesta et al. (2024), extreme events are poorly represented in the ensembled time 

series. Thus, instead of using ensemble precipitation and temperature time series, the 

best-performing climate model is identified using correlation coefficient, root mean 

square error, and percent bias, and projections of this model are used in this study. 

M5 is identified as the best RCM for the study area.  
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Table 4. The list of climate models  

 Climate Model (RCM/GCM)  Climate Model (RCM/GCM) 

Model ID Driving GCM RCM Model ID Driving GCM RCM 

M1 CNRM-CM5 CCLM4-8-17 M10 CM5A-MR RCA4 

M2 CNRM-CM5 ALADIN63 M11 HadGEM2-ES CCLM4-8-17 

M3 CNRM-CM5 RCA4 M12 HadGEM2-ES RACMO22E 

M4 EC-EARTH HIRHAM5 M13 HadGEM2-ES RCA4 

M5 EC-EARTH CCLM4-8-17 M14 MPI-ESM-LR CCLM4-8-17 

M6 EC-EARTH RACMO22E M15 MPI-ESM-LR REMO2009(r1i1p1) 

M7 EC-EARTH RCA4 M16 MPI-ESM-LR REMO2009(r2i1p1) 

M8 CM5A-MR WRF331F M17 NorESM1-M HIRHAM5 

M9 CM5A-MR WRF381P    

 

4.3. The results of the combined 1D/2D hydraulic model  

Using the outputs of M5 RCM, the hydrological model is run for the period 2025 – 

2100. Discharges for different return periods are calculated using both recorded 

discharges and the outputs of the hydrological model with M5 RCM. The results are 

provided in Table 5. It can be seen that climate change causes a decrease in the peak 

discharges in the study area. 

Table 5. Calculated discharges for different return periods 

Return Period 
Q (m3/s) 

Historical M5 RCM 

2 637.6 307.7 

5 968.5 408.2 

10 1181.9 490.4 

25 1445.0 589.2 

50 1636.6 760.4 

100 1824.8 934.8 

500 2256.2 1589.9 
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The outputs (daily average temperature and daily average rainfall) of M5 between 

2025 and 2100 are entered into the calibrated hydrological model. The peak 

discharges for each year are obtained. Among gamma, Generalized Extreme Value, 

generalized logistic, generalized Pareto, Gumbel, log-Pearson III, log-normal, 

logistic, normal, and Pearson III, generalized logistic is identified as the best-fitting 

distribution to these values using HEC-SSP 2.3 (Hydrologic Engineering Center, 

2023). Finally, discharges of flood events with different return periods (i.e., 2-, 5-, 

10-, 25-, 50-, 100- and 500-year events) are calculated. 

The combined 1D/2D coupled hydraulic model was validated based on the State 

Hydraulic Works staff meeting. Insight was provided regarding a massive flood 

event that occurred in Silifke between the 5th and 7th of March, 2004. They shared 

the details about the locations where the flood water enters and leaves Silifke from 

the left bank of Göksu River. The entering and leaving locations of the flood water 

are marked in Figure 6. These locations are validated with the combined 1D/2D 

coupled hydraulic model. Moreover, it was said that Göksu River can pass around 

800 m3/s safely; our model cannot handle 800 m3/s safely, but 33 buildings are 

inundated because of this flood event. Our model cannot handle this amount because 

of the inexact bridge dimensions. This data could not be obtained from the related 

institution. 

 
(a) 

 
(b) 

Figure 6. The combined 1D/2D coupled hydraulic model results: (a) The entering 

location of flood water (b) The leaving location of flood water (Basemap source: 

Esri, Maxar, Earthstar Geographics, and the GIS User Community) 
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4.4. The results of ABM – economic damage 

The box plots of average economic damages of 100 Realizations for each scenario 

are given in Figure 7. As shown in Figure 7, the average economic damage decreases 

as agents implement actions, and the government’s actions are more effective than 

public actions. Public agent’s actions resulted in a 35.4% and 19.7% decrease in the 

mean values for PubRand and PubSur compared to the Base scenario, respectively. 

These results show that assigning random behavior to public agents may result in 

overestimating the reduction in total economic damage. Thus, site-specific 

information is crucial in realistically evaluating flood consequences. 

On the other hand, the government’s actions result in larger reductions in economic 

damages. As expected, a proactive government decreases the economic damage 

more than a reactive government. It is also evident from the results that the economic 

damage is notably lower if the government has proactive management strategies and 

takes an action that prevents damages from a 100-year flood compared to an action 

that prevents damages from a 50-year flood. On the other hand, in the case of a 

reactive government, the average economic damage is higher for the ReGo100 

scenario compared to the ReGo50 scenario. This may seem counterintuitive, but 

there are two main reasons for this result. The first one is that there are Realizations 

where a 100-year flood does not occur, but one or more 50-year flood occur. For 

such Realizations, the government takes action in the ReGo50 scenario, while no 

action is taken in the ReGo100 scenario. The second reason is that in some 

Realizations, a 100-year flood happens late and the government does not take any 

action until that time in the ReGo100 scenario. However, when a 50-year flood 

happens earlier in these Realizations, actions are taken early in the ReGo50 scenario, 

reducing economic damage. The final inference from Figure 7 is that the economic 

damage is the lowest when both the public and the proactive government take 

mitigation actions against floods. 

One of the goals of this study is to investigate the added value of a survey that is 

used to collect information about public risk and coping perceptions instead of 
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randomly assigning them. To facilitate interpretation, the same flood event is 

assumed to occur during each year of the 75-year simulation period. Figure 8 

illustrates the change in total economic damage over time for both the PubRand and 

PubSur scenarios for different return period flood events. As expected, the total 

economic damage initially decreases and stabilizes with time. The initial decrease is 

attributed to the increase in the individual's risk and coping perceptions as they take 

action when their perceptions are high (see Figure 4). Once all people who have 

experienced floods take action, the average economic damage stabilizes. As can be 

seen in Figure 8, the total economic damages for the PubRand scenario are less than 

those of the PubSur Scenario for all return periods. This supports the previous 

findings that the PubRand Scenario underestimates the economic damages within the 

study area. It indicates that people’s flood risk and flood coping perceptions are 

skewed towards lower-than-average values, which is a realistic outcome for Türkiye. 

Thus, especially for regions where flood awareness is limited (Türkkan & Hırca, 

2021), surveys are essential for accurately modeling the impact of public action on 

economic damage reduction. 
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Figure 7. Average economic damage for each scenario 
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Figure 8. Total ED for PubSur and PubRand scenarios: (a) 2-year and 5-year events 

(b) 10-year and 25-year events (c) 50-year and 100-year events (d) 500-year event 
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The box plots 𝐵/𝐶 of 100 Realizations for scenarios 4 – 11 are given in Figure 9. 

The 𝐵/𝐶 of the scenarios with reactive government are lower than those with 

proactive government. It is also observed that the 𝐵/𝐶 of the scenarios with 

governments that take action against 50-year flood are higher than those of 100-year 

flood, regardless of whether the government is proactive or reactive. 

When the other settings of the scenarios are the same, the mean values of the 

scenarios with proactive and reactive governments do not differ much. However, the 

variability is less in the scenarios with a proactive government. In addition, 𝐵/𝐶 

values are less than 1.0 for some Realizations of the scenarios with a reactive 

government. Thus, the proactive behavior of the government is always feasible, 

while the reactive government’s actions are not feasible for outlier Realizations, 

particularly when severe floods occur late in the simulation period. In these cases, 

the total economic damage is greater than the others. As explained earlier, the 

occurrence times of serious floods (50-year, 100-year, or 500-year floods) 

significantly affect economic damage. Moreover, it can be said that taking action 

against a 50-year flood is more beneficial for the study area. The rationale behind 

this can be attributed to the high cost of implementing a 100-year flood action plan 

and the likelihood of 50-year floods to occur earlier in the simulation period. It can 

also be concluded from Figure 9 that there is not a significant difference between the 

scenarios with only the government and with both the government and the public. 

As can be seen in Figure 9 that 𝐵/𝐶 values of the scenarios with both the government 

and the public are slightly greater than those with only the government. The main 

reason for this result is that the economic damage values are slightly lower in the 

scenarios in which both the government and the public agents are included.  
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Figure 9. Box plots of B/C for scenarios 4 – 11 

4.5. The results of ABM – the timing of a flood event 

We observed that the timing of a severe flood (50-year, 100-year, or 500-year flood) 

affects total economic damage; thus, the following analysis is conducted to assess 

the significance of the timing of a severe flood. The Realizations are grouped into 

two: the first group includes the Realizations where a severe flood occurs within the 

initial 10 years of the simulation period (referred to as Early, denoted as E), while 

the second group has the rest of the Realizations (referred to as Late, denoted as L). 

The results of all scenarios except the base scenario are provided in Figure 10. It can 

be seen that the average damage of the scenarios with a reactive government in group 

E is less than the scenarios with a reactive government in group L. This is an expected 

result as an early occurrence of a severe flood prompts the reactive government to 

take action, resulting in decreased economic damage. On the other hand, scenarios 

with a proactive government that takes action against the 100-year flood exhibit very 

similar average economic damage values for both groups E and L. This is due to the 

fact that as the proactive government takes action at the very first stage, the timing 

of the flood event becomes unimportant.  
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Figure 10. The impact of the timing of a severe flood. Here, “L” represents 

Realizations with a major flood event in the first 10 years, while “E” represents the 

rest. 

Counterintuitive results are observed for PubRand and PubSur scenarios where the 

average economic damage for group E is greater than that of group L. Thus, 

following analysis is conducted for the PubSur scenario: i) A total of 30 Realizations 

are generated, ii) Each Realization consists of 30 time steps (i.e. 30 years), iii) In the 

1st Realization, a 500-year flood occurs in the 1st year and in the rest of 29 years a 

50-year flood occurs. In the next Realization, the 500-year flood occurs in the 2nd 

year while all other years have 50-year floods, and the location of the 500-year flood 

shifts to the next year for each Realization.  

Figure 11 shows that average economic damage increases with the shifting of the 

500-year flood through to the end of the simulation period. It is evident that the 

timing of a severe flood affects the public’s decisions about flood mitigation 

measures. The public takes action earlier because of the earlier serious flood event. 

Thus, the average economic damage decreases. This behavior supports the validity 
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of the ABM used in this study. Figure 11 also demonstrates how important it is for 

the public to take action against floods. For this reason, it is important to educate 

people against floods and increase the awareness. 

 

Figure 11. The impact of the timing of a severe flood for the PubSur Scenario 

The duration between flood events causes significant changes in economic damages. 

Figure 12 shows the economic damage change between two 500-year flood events 

for the PubSur scenario. Different realizations are generated to see the effect of the 

duration between two flood events. 21 realizations are generated, and these 

realizations are designed as follows: i) there will be two 500-year flood events, and 

ii) It is assumed that there will be no flood event in other time steps. The duration 

between two flood events is calculated as the total number of years without flood 

events. On the other hand, change in the economic damage is calculated as the 

difference between the economic damage of the second flood event and the first 

flood event. Negative values show that economic damage decreases, while positive 

values show that economic damage increases. As seen from Figure 12, the rate of 

increase in economic damage is initially greater. After around nine years, the rate of 

increase decreases. This shows that flood risk perception and coping perception 

values of the people tend to be stable after some point. In our study, around nine 
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years, the change in the economic damage is becoming zero.  This also supports the 

findings that are shown in Figure 8. It can be seen that economic damage is becoming 

stable around nine years (See Figure 8). Figure 12 also implies that economic damage 

change values stabilize after 25 years. This shows the effect of timing on flood risk 

and flood coping perception. People tend to forget the results of floods. Therefore, 

their flood risk perception and flood coping perception values decrease, and they do 

not take any action. 

 

Figure 12. The effect of the duration between two flood events on economic damage 

change 

5. CONCLUSION 

FRM studies are more important than ever before due to CC impacts. In this study, 

the impacts of CC and the agents on flood risks were analyzed using a hydrological 

model, a combined 1D/2D hydraulic model, and ABM. For future FRM, integrating 

CC impacts into the hydrological model and the hydraulic model is crucial because 

the magnitude and frequency of flood events are changing. Moreover, the agents 

should be integrated into the FRM studies too. 

The importance of the agents in FRM was shown by generating 11 different 

scenarios and 100 Realizations in our study. Firstly, the public agent should be 

included in FRM studies, and conducting a survey to evaluate the public’s behavior 
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against flood events is important. In this study, the average economic damage of the 

scenario that the survey results are used is greater than the scenario with the random 

values. This shows the importance of the surveys. If a survey is not conducted in the 

study area, it is not possible to evaluate realistically the public’s reactions to flood 

events. This is very important for the regions where the flood awareness is limited. 

total economic damage is generally higher for scenarios with the reactive 

government than those with the proactive government. The total economic damage 

value is the lowest for the PubSur-ProGo100 Scenario. This result shows that 

including both the public and government agents in FRM is vital.   

Another conclusion of this study is that the timing of a severe flood event is 

important. The economic damage value of the Realization that a serious flood event 

occurs earlier is less than the Realization that a serious flood event occurs late. The 

timing of a serious flood event is especially important for the reactive government. 

The timing is also important for the public agent. If the public experiences flood 

events earlier, they tend to take action earlier, and economic damage decreases. For 

this reason, educating the public about flood consequences and raising awareness 

about floods is really important.  

B/C of the scenarios with the government, which takes action against 50-year flood 

events, is greater than those with the government, which takes action against 100-

year flood events due to the high cost of the 100-year flood action. Another inference 

is that B/C is always greater than 1.0 in the scenarios with the proactive government, 

while it is less than 1.0 for some Realizations in the scenarios with the reactive 

government. This is an important conclusion because the consequences of the floods 

might be destructive for a reactive government. 

The final conclusion is that the public tends to forget the consequences of floods for 

around nine years. Thus, this also supports the importance of educating the people 

about floods because the public should be aware of the consequences of floods. They 

should not underestimate the outcomes of the floods. This is especially important for 

the regions where flood events occur frequently.  
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The threshold values are important in the decision mechanism of the public agent. 

Thus, these values should be determined carefully. As a future study, these factors 

will be analyzed in more detail.  

APPENDIX 

RP and CP are calculated using the equation of perceived risk which is proposed by 

Tonn and Guikema (2018). The survey questions to calculate RP and CP are given 

in Table A1 and A2, respectively. The factors related to the neighbors are not 

included in our study. Furthermore, home value is calculated based on the 

methodology provided in the study by Tonn and Guikema (2018). However, in 

Silifke, it is not possible to obtain those values. For this reason, random values are 

assigned for this factor. 

Table A1. Risk perception factors (Tonn & Guikema, 2018) 

Factor Description Formula Beta 

Flood 

Experience 

Has the agent experienced 

flooding in previous years? 

Number of floods/ 

number of years 
200 

Near-miss 

Experience 

Has the agent experienced 

flooding in previous years? 

Number of near-miss 

events/number of years 
-100 

Community 

Mitigation 

Has the community 

previously completed 

mitigation? 

Yes (1) or No (0) -20 

Agent 

Mitigation 

Has the agent previously 

completed mitigation? 
Yes (1) or No (0) -20 

Information 

Did the community 

disseminate information in 

the previous year? 

Yes (1) or No (0) 20 

Table A2. Coping perception factors (Tonn & Guikema, 2018) 

Factor Description Formula 

Base Coping 

Perception 
Random value assigned to each agent 

A random value 

between 0 and 20 

Home Value 
Value assigned based on property 

value 

Random value: 5, 

10, 15 or 20 

Prior Agent 

Mitigation 

Has the agent previously completed 

mitigation? 
Yes (20) or No (0) 

Information 

Did the community disseminate 

information in the previous year? 

 

Yes (20) or No (0) 
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Another difference between Tonn and Guikema’s study and this study is the 

threshold values for RP and CP. RP and CP values are determined based on the 

sensitivity analysis. Figure A1 shows the economic damage change in 50 years with 

different CP and RP threshold values. The first value represents CP while the second 

one represents RP. It can be seen that if both CP and RP are below 30, economic 

damage rapidly decreases because most of the agents tend to take action in this 

situation. On the other hand, if both parameters are above 30, many agents do not 

want to take action. Hence, economic damage does not change much as time passes. 

For this reason, threshold values for CP and RP are selected as 30. 

 

Figure A1. Economic damage change with changing CP and RP threshold values 
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