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Abstract. This study investigates the application of various machine learning (ML) algorithms 

for predicting two critical aerodynamic coefficients, i.e. the maximum lift coefficient (𝐶𝑙 𝑚𝑎𝑥) 

and the minimum drag coefficient (𝐶𝑑 𝑚𝑖𝑛), for wind turbine airfoils at any given Reynolds 

number. We propose to use clustering techniques to group similar airfoil shapes and use the 

created partitions to predict unseen airfoil properties utilizing their similarity. Here, we also 

represent airfoils in the PARSEC low dimensional space, rather than high dimensional airfoil 

points space, to remedy the small number of training data. For this purpose, an extended 

experimental airfoil database is created and used for training models based on five different ML 

algorithms. We observe that the Decision Tree Ensemble (DTE), Random Forest (RF) and multi-

layer perceptron (MLP) models emerge as the most effective predictors for 𝐶𝑙 𝑚𝑎𝑥  and 𝐶𝑑 𝑚𝑖𝑛. 

Testing these two ML models on three additional airfoil cases not included in the training 

database shows that the 𝐶𝑙 𝑚𝑎𝑥 prediction performance is generally reasonable, with error levels 

being around 5% on average. In contrast, the prediction error levels for 𝐶𝑑 𝑚𝑖𝑛 are usually higher, 

with an average of around 15%. 

1.  Introduction 

Aerodynamic design as well as performance analysis of a wind turbine blade heavily relies on Blade 

Element Momentum (BEM) theory-based fast analysis tools, which in turn rely on accurate aerodynamic 

coefficient data (i.e., airfoil polars) for the airfoils used in the blade design. 

These airfoil polars can either be generated numerically or through wind tunnel tests. When available, 

experimentally obtained polars are preferred in general since numerical tools could have difficulty in 

predicting aerodynamic characteristics, especially the maximum lift coefficient (𝐶𝑙 𝑚𝑎𝑥), minimum drag 

coefficient (𝐶𝑑 𝑚𝑖𝑛) and stall angle (αstall)[1]. Note that experimental data of course will have 

measurement uncertainties and variations between different facilities may be observed, however these 

variations are generally limited and the data in general are more reliable than simulation results, 

especially for the two aerodynamic coefficients considered in this study, i.e.  𝐶𝑙 𝑚𝑎𝑥 and 𝐶𝑑 𝑚𝑖𝑛
[2]. In a 

typical industrial wind tunnel campaign, these data are generally obtained at relatively lower Reynolds 

numbers compared to the ones observed in real operational conditions. The measured aerodynamic data 

then have to be extrapolated to higher Reynolds numbers in order to be used in blade design. 
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Though scarce, some methodologies have been proposed over the years for Reynolds number 

extrapolation. Yamauchi and Johnson[3] proposed a power-law-based referencing equation to extrapolate 

Reynolds number effects on 𝐶𝑙 𝑚𝑎𝑥 and 𝐶𝑑 𝑚𝑖𝑛 for helicopter airfoil applications. Similarly, Peterson 

and Rizzi[4] developed a methodology to scale 𝐶𝑑 𝑚𝑖𝑛 for airfoils used in fixed-wing aeroplanes, 

suggesting a range of power coefficients based on Prandtl’s analysis. In another effort for wind turbine 

airfoils, Ceyhan[5] proposed to calculate trends from RFOIL and CFD simulations to predict high 

Reynolds number effects. Recently, Özgören and Uzol[6,7] proposed a data-driven extrapolation 

methodology to first predict 𝐶𝑙 𝑚𝑎𝑥, 𝐶𝑑 𝑚𝑖𝑛 and αstall using generated response surfaces based on an 

experimental airfoil database and then to predict full airfoil polars through a power-law type 

implementation. 

In recent years, data-driven techniques have become increasingly popular, and machine learning 

algorithms are being implemented in a variety of aerodynamics problems[8,9]. In this context, this study 

will investigate the prediction performance of different machine learning algorithms to predict 𝐶𝑙 𝑚𝑎𝑥 

and 𝐶𝑑 𝑚𝑖𝑛, at any given Reynolds number as an extension of the more statistical and response-surface 

based prediction technique described in Özgören and Uzol[6,7]. The models are trained using an expanded 

version of the experimental airfoil database in Özgören and Uzol[6,7], which is constructed from available 

data in open literature. The predicted 𝐶𝑙 𝑚𝑎𝑥 and 𝐶𝑑 𝑚𝑖𝑛 values at high Reynolds numbers can then be 

used to obtain full polars using the methodology described in Özgören and Uzol[6,7]. 

2.  Methodology 

2.1.  The Airfoil Aerodynamic Coefficient Database 

The experimental database consists of 128 different airfoil profiles with measured aerodynamic data in 

a Reynolds number range between 1x106 and 9x106 (392 experimental data in total). Most of these are 

NACA airfoils, and a digitized version is available in open literature[10]. Additionally, a limited number 

of airfoils commonly used in wind turbine applications have also been added to the database. A complete 

list of the included airfoils in the database is given in Table 1. 

Table 1. Airfoil database used in this study with experimentally obtained aerodynamic coefficients. 

NACA0006 NACA63(2)415 NACA65,3-618 NACA66-006 

NACA0009 NACA63(2)615 NACA65(216)-415,a=0.5 NACA66-009 

NACA1408 NACA63(3)218 NACA65-006 NACA66-206 

NACA1410 NACA63(3)418 NACA65-009 NACA66-209 

NACA1412 NACA63(3)618 NACA65-206 NACA66-210 

NACA2412 NACA63(4)021 NACA65-209 NACA66(1)012 

NACA2415 NACA63(4)221 NACA65-210 NACA66(1)212 

NACA2418 NACA63(4)421 NACA65-410 NACA66(2)015 

NACA2421 NACA64-006 NACA65(1)012 NACA66(2)215 

NACA2424 NACA64-009 NACA65(1)212 NACA66(2)415 

NACA4412 NACA64-108 NACA65(1)212,a=0,6 NACA66(3)018 

NACA4415 NACA64-110 NACA65(1)412 NACA66(3)218 

NACA4418 NACA64-206 NACA65(2)015 NACA66(3)418 

NACA4421 NACA64-208 NACA65(2)215 NACA66(4)021 

NACA4424 NACA64-209 NACA65(2)415 NACA66(4)221 

NACA23012 NACA64-210 NACA65(2)-415,a=0.5 NACA67,1-215 

NACA23015 NACA64(1)012 NACA65(3)018 NACA747A315 

NACA23018 NACA64(1)112 NACA65(3)218 NACA747A415 

NACA23021 NACA64(1)212 NACA65(3)418 AH93-W-257 
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NACA23024 NACA64(1)412 NACA65(3)-418,a=0.5 AH93-W-300 

NACA63(420)-442 NACA64(2)015 NACA65(3)-618,a=0.5 AH94-W301 

NACA63(420)-517 NACA64(2)215 NACA65(4)021 DU91-W2-250 

NACA63-006 NACA64(2)415 NACA65(4)221 DU93-W-210 

NACA63-009 NACA64(3)018 NACA65(4)421 DU97-W-300 

NACA63-206 NACA64(3)218 NACA65(4)-421,a=0.5 FFA-W3-211 

NACA63-209 NACA64(3)418 NACA65(215)114 FFA-W3-241 

NACA63-210 NACA64(3)618 NACA65(421)420 FFA-W3-301 

NACA63(1)012 NACA64(4)021 NACA66,1-212 FX66-S196-V1 

NACA63(1)212 NACA64(4)221 NACA66(215)016 S814 

NACA63(1)412 NACA64(4)421 NACA66(215)216 S825 

NACA63(2)015 NACA65,3-018 NACA66(215)216,a=0.6 S827 

NACA63(2)215 NACA65,3-418,a=0.8 NACA66(215)416 S809 

2.2.  The Airfoil Geometry Parameterization 

Given the limited number of data points, reducing the dimensionality of the input domain would 

significantly improve training of the machine learning models. Each airfoil geometry included in the 

database is parameterized using the PARSEC airfoil parameterization methodology[11]. This 

methodology is based on 12 geometrically meaningful parameters to express the airfoil geometry[12]. 

These PARSEC parameters, given in Figure 1, are used as inputs in the machine learning algorithms. 

We can treat the 12-dimensional space parameterized by PARSEC as the latent variable in a larger auto-

encoder model, where airfoil points serve as input/output. Essentially, this mapping enables training a 

smaller and shallower model using the scarce available data. Using PARSEC, we bypass the initial 

layers that would have been there to map the large number of points in airfoil shape to a lower 

dimensional space and make the model focus on learning the underlying mapping between our low 

dimensional inputs and our output. 

 
Figure 1. PARSEC parameters for an airfoil profile[11] 

2.3.  Machine Learning Algorithms 

The airfoil aerodynamic database is then used to train machine learning models using various 

algorithms. The 12 PARSEC parameters and the Reynolds number are inputs, and 𝐶𝑙 𝑚𝑎𝑥 and 𝐶𝑑 𝑚𝑖𝑛 

are outputs. This scheme is illustrated in Figure 2. In this study, we investigate five different algorithms, 

which are the Linear Regression Model (LRM), Support Vector Machines (SVM), Decision Tree 

Ensemble (DTE), Random Forest (RF) and Multi Layer Perceptron (MLP) [13,14]. 
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Figure 2. The scheme used for training the database. 

Airfoil shapes play a crucial role in determining aerodynamic performance. It is widely observed that 

similar airfoil geometries exhibit similar aerodynamic characteristics. Building upon this insight, our 

research investigates the performance of the clustering methods within a regression framework to predict 

aerodynamic coefficients. Specifically, we aim to predict airfoil characteristics based on existing 

measurement data by clustering similar airfoils closer together and dissimilar airfoils farther apart. Also, 

while airfoil characteristics typically exhibit a non-linear relationship with their shape, in numerous 

instances a linear correlation exists between the airfoil shape parameters and their associated 

characteristics (for instance Sadraey[15] suggests a linear relationship between lift curve slope and airfoil 

maximum thickness). Hence, this work compares classification-based results with results obtained by 

Multi Layer Perceptron (MLP) feedforward neural nets and with linear regression models. The goal is 

to identify the most effective approach for predicting 𝐶𝑙 𝑚𝑎𝑥 and 𝐶𝑑 𝑚𝑖𝑛. 

2.4.  Training Procedure 

In this study, the test dataset is fixed and thus excluded from the training and cross-validation process, 

which are the sole focus of this paper. The training data is partitioned into an 90-10 split for training and 

cross-validation, respectively. The scaling for the PARSEC parameters was set to value 1 whereas the 

scaling for the Re was set to 8x106. The outputs were scaled by the min-max scaling method. 

We explored a vast array of MLP architectures on this dataset, ultimately selecting a model with a 

neuron configuration of 1024, 128, and 128. This model employs a LeakyReLU activation function with 

a negative slope coefficient of 0.2 and has demonstrated superior performance on cross-validation data. 

Given the modest size of the dataset, the batch size was set to be equal to the entirety of the training 

data, and each model underwent training for up to one hundred thousand epochs on CUDA 1080 Ti 

GPUs. The learning rate was treated as a variable during the architecture search, tested at 0.1, 0.01, and 

0.001, with the final model being trained at a learning rate of 0.001. For optimization, the ADAM 

optimizer was employed, adhering to the default beta parameters of PyTorch (Beta1 = 0.9 and Beta2 = 

0.999). To ensure robustness, the training data was shuffled prior to each forward pass of the MLP 

models. 

During the training of the Random Forest (RF) model, Least-Squares Boosting (LSBoost) was 

applied for various numbers of regression trees and the model with 150 regression trees was selected.  

For the training of the Decision Tree Ensemble (DTE), the bagging ensemble method was applied for 

the same number of regression trees selected for random forest for each model. This was done in order 

to be able to compare the results of DTE and RF. Lastly for training the SVM model the gaussian kernel 

was used. 

3.  Results 

3.1.  Performance of the Machine Learning Models 

The constructed airfoil experimental database is used in the training of the models using five different 

algorithms that are explained in Section 2.3. These models are then used to predict 𝐶𝑙 𝑚𝑎𝑥 and 𝐶𝑑 𝑚𝑖𝑛 

values using the airfoil PARSEC parameters and the required Reynolds number as inputs to the models. 

Here two performance metrics are investigated for each model. The first tries to assess the capacity 

of each model in learning the underlying mapping from inputs to outputs. The second tries to assess the 

performance of each model when predicting the 𝐶𝑙 𝑚𝑎𝑥 and 𝐶𝑑 𝑚𝑖𝑛 values for a set of test airfoils for 
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which some are similar to the ones used in training and some are dissimilar to the training data. For 

these airfoils, we also investigate the prediction performance of the models for Re numbers that are 

never seen by the model. 

 
Figure 3. Error percentage distributions for 𝐶𝑙 𝑚𝑎𝑥 for the trained ML models. MLP: Multi Layer 

Perceptron, RF: Random Forest, LR: Linear Regression Model, SVM: Support Vector Machines, DTE: 

Decision Tree Ensemble 
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Figure 4. Error percentage distributions for 𝐶𝑑 𝑚𝑖𝑛 for the trained ML models. MLP: Multi Layer 

Perceptron, RF: Random Forest, LR: Linear Regression Model, SVM: Support Vector Machines, DTE: 

Decision Tree Ensemble 

Figures 3 and 4 illustrate the training capacity of each model as a histogram of their respective errors 

on training data, after the training process for each model is concluded. This capacity is measured by 

the capability of the model to minimize the error for predicting the training data. Here, we tried to select 

models that minimize the mean squared error MSE. As to eliminate the possibility of overfitting, the 

limit for the MSE of an epoch is set to 1x10-6. 

The linear regression was employed here to investigate if any simple relationship may be observed 

after training the model. For LR, new non-linear features were created by combinations of inputs up to 

their third degree. Yet, the model did not perform well as expected on the training data. The performance 

of the SVM model was lacking on the training data as a hyperplane might not be enough for clustering 

the complex airfoil shapes into two categories based on their aerodynamics characteristics. Due to the 

unsatisfactory performance of these two models, their results are not included at Tables 2 and 3, which 

are presented later in this paper. 

We also observe that the same models perform better in learning the 𝐶𝑙 𝑚𝑎𝑥 than 𝐶𝑑 𝑚𝑖𝑛. The reason 

for that might be due to the measurement error percentage inherent in experimental data. In other words, 

the measurement errors (for the same error bounds) will affect the 𝐶𝑑 𝑚𝑖𝑛 measurements and their 

distribution more as 𝐶𝑑 𝑚𝑖𝑛 values are generally two to three orders of magnitude smaller than 𝐶𝑙 𝑚𝑎𝑥 

values. Due to this fact, the uncertainty in the measurements of the  𝐶𝑑 𝑚𝑖𝑛 are two to three orders higher 

than that of the 𝐶𝑙 𝑚𝑎𝑥 which also in turn affects the prediction error bounds of models trained on each 

coefficient. In addition, regarding the learning/overfitting capacity of the selected models, when 

compared in terms of flexibility the MLP is the most flexible model and then comes the DTE and RF 

models, respectively. The same flexibility is observed in Figures 3 and 4 when comparing the standard 

deviation levels. 
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3.2.  Prediction Results for Test Airfoilss 

Three different airfoils, i.e. NACA65(3)618, DU00-W-212 and NACA63(3)018, are selected as test 

airfoils, and are not included in the training process to test the prediction performance of the trained 

models. 

Table 2.  Comparison of  𝐶𝑙 𝑚𝑎𝑥 predictions with experimental data for test airfoils 

Airfoil Name 

Reynolds 

Number 

[x10-6] 

Experimental 
RF Predicted 

(Error %) 

DTE Predicted 

(Error %) 

MLP Predicted 

(Error %) 

NACA65(3)618 3 1.41 1.36 (-3.5) 1.36 (-3.5) 1.38 (-2.1) 

NACA65(3)618 6 1.55 1.52 (-1.9) 1.51 (-2.6) 1.52 (-1.9) 

NACA65(3)618 9 1.65 1.61 (-2.4) 1.61 (-2.4) 1.62 (-1.8) 

DU00-W-212 3 1.29 1.44 (11.6) 1.43 (10.9) 1.39 (7.8) 

DU00-W-212 6 1.46 1.42 (-2.7) 1.42 (-2.7) 1.49 (2.1) 

DU00-W-212 9 1.56 1.53 (-1.9) 1.53 (-1.9) 1.51 (-3.2) 

DU00-W-212 12 1.63 1.53 (-6.1) 1.53 (-6.1) 1.53 (-6.1) 

DU00-W-212 15 1.66 1.53 (-7.8) 1.53 (-7.8) 1.48 (-10.8) 

NACA63(3)018 3 1.26 1.23 (-2.4) 1.23 (-2.4) 1.30 (3.2) 

NACA63(3)018 6 1.45 1.38 (-4.8) 1.38 (-4.8) 1.42 (-2.1) 

NACA63(3)018 9 1.52 1.52 (0.0) 1.52 (0.0) 1.49 (-2.0) 

NACA63(3)018 15 1.63 1.52 (-6.7) 1.52 (-6.7) 1.45 (-11.0) 

NACA63(3)018 20 1.64 1.52 (-7.3) 1.52 (-7.3) 1.45 (-11.6) 

Table 3.  Comparison of  𝐶𝑑 𝑚𝑖𝑛 predictions with experimental data for test cases 

Airfoil Name 

Reynolds 

Number 

[x10-6] 

Experimental 
RF Predicted 

(Error %) 

DTE Predicted 

(Error %) 

MLP Predicted 

(Error %) 

NACA65(3)618 3 0.005520 0.006055 (9.7) 0.006122 (10.9) 0.005428 (-1.7) 

NACA65(3)618 6 0.004770 0.005234 (9.7) 0.005234 (9.7) 0.004468 (-6.3) 

NACA65(3)618 9 0.004320 0.005061 (17.2) 0.005056 (17.0) 0.004298 (-0.5) 

DU00-W-212 3 0.007000 0.005415 (-22.6) 0.00540 (-22.9) 0.006500 (-7.1) 

DU00-W-212 6 0.006010 0.004392 (-26.9) 0.004466 (-25.7) 0.005940 (-1.2) 

DU00-W-212 9 0.005660 0.004120 (-27.2) 0.004091 (-27.7) 0.005882 (3.9) 

DU00-W-212 12 0.005580 0.004120 (-26.2) 0.004091 (-26.7) 0.005806 (4.1) 

DU00-W-212 15 0.005480 0.004120 (-24.8) 0.004091 (-25.3) 0.006287 (14.7) 

NACA63(3)018 3 0.005835 0.005998 (2.8) 0.006050 (3.7) 0.005775 (-1.0) 

NACA63(3)018 6 0.005311 0.004856 (-8.6) 0.004850 (-8.7) 0.005200 (-2.1) 

NACA63(3)018 9 0.005013 0.004661 (-7.0) 0.004715 (-5.9) 0.004823 (-3.8) 

NACA63(3)018 15 0.004785 0.004661 (-2.6) 0.004715 (-1.5) 0.005092 (6.4) 

NACA63(3)018 20 0.005262 0.004661 (-11.4) 0.004715 (-10.4) 0.005772 (9.7) 

As the constructed airfoil database primarily comprises of NACA airfoil profiles, it is crucial to 

assess the prediction performance for a NACA profile. Due to this reason, NACA65(3)618 airfoil is 

selected as one of the test airfoils. Polar data of this airfoil is available at Reynolds numbers 3x106, 

6x106 and 9x106. The other test airfoil, DU00-W-212, was previously experimentally tested in the 

DNW-HDG wind tunnel at 3x106, 6x106, 9x106, 12x106 and 15x106 Reynolds numbers within the 

context of the AVATAR project[16]. The last test airfoil is the symmetrical NACA63(3)018 airfoil for 

which the aerodynamic polar data are available at 3x106, 6x106, 9x106, 15x106 and 20x106. Tables 2 and 

3 present the results regarding the prediction performance of the top three models, i.e. Random Forest 

(RF), Decision Tree Ensemble (DTE) and Multilayer Perceptron (MLP). 

Regarding 𝐶𝑙 𝑚𝑎𝑥 predictions for the test airfoils, results presented in Table 2 show that even though 

these airfoils are not included in the training database the error levels are generally below 12% and the 

average error for all cases is 4.5%. For 𝐶𝑑 𝑚𝑖𝑛 predictions, the error levels are generally higher compared 

to those of 𝐶𝑙 𝑚𝑎𝑥 predictions (error levels as high as 27% are observed) with an average error level of 
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about 15%. Both for 𝐶𝑙 𝑚𝑎𝑥 and 𝐶𝑑 𝑚𝑖𝑛 predictions and for all cases with a Reynolds number higher than 

9x106, we observe that the predicted values are all similar (with some improvements in the case of MLP) 

for three ML models. The improvement in the results of MLP can be attributed to its higher capacity to 

learn compared to the other models. Yet, during architecture search it was observed that the MLP is 

more susceptible to overfitting compared to other models. With a larger number of parameters, the MLP 

shows promising results even for the airfoils that are dissimilar to the ones it is trained on and Reynolds 

numbers that are out of bound for its training data. 

4.  Conclusions 

In this paper, we have presented machine learning (ML) based methods to predict aerodynamic 

coefficients, i.e. 𝐶𝑙 𝑚𝑎𝑥 and 𝐶𝑑 𝑚𝑖𝑛, to be used in Reynolds number extrapolation methods previously 

proposed in the literature. For this purpose, an airfoil database of experimentally obtained aerodynamic 

data has been utilized to train ML models using five different machine learning algorithms. It is observed 

that the Decision Tree Ensemble (DTE), Random Forest (RF) and Multi Layer Perceptron (MLP) 

models show better performance in general in terms of 𝐶𝑙 𝑚𝑎𝑥 and 𝐶𝑑 𝑚𝑖𝑛 prediction capability. Testing 

these three ML models on three additional airfoil cases that are not included in the training database 

show that the 𝐶𝑙 𝑚𝑎𝑥 prediction performance is reasonable in general with error levels being around 5% 

in average, while the prediction error levels for 𝐶𝑑 𝑚𝑖𝑛 are generally higher with an average around 15%. 

This higher error rate for the 𝐶𝑑 𝑚𝑖𝑛 is attributed to the fact that the scale of the minimum drag coefficient 

is two to three orders of magnitude smaller than the maximum lift coefficient and thus will be more 

affected by the measurement errors. This can also be observed when investigating the capacity of each 

model trained on the data where for the same number of parameters the models show lower training 

error for 𝐶𝑙 𝑚𝑎𝑥 compared to 𝐶𝑑 𝑚𝑖𝑛. Increased error levels are observed for the range of very large 

Reynolds numbers (i.e. 9x106 and above), which would be relevant especially to very large offshore 

wind turbines (10MW+). However, for most of the current onshore and offshore designs, current 

methodology gives acceptable prediction levels for 𝐶𝑙 𝑚𝑎𝑥  and 𝐶𝑑 𝑚𝑖𝑛, which could in turn be used in 

recently proposed Reynolds number extrapolation schemes in the literature[6, 7]. We also observe that the 

prediction performance is notably better for the two NACA test airfoils. This outcome is attributed to 

the fact that the majority of the database is constructed from NACA profiles. The error levels for the 

DU00-W-212 airfoil are somewhat higher for RF and DTE models and comparably better for the case 

of MLP. This discrepancy may be explained by the larger parameter space of the MLP model, allowing 

it to better fit the complexities of the underlying domain.  
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