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ABSTRACT

OPTIMUM GEOMETRY FOR TORQUE RIPPLE MINIMIZATION OF
SWITCHED RELUCTANCE MOTORS

Sahin, Funda
M.S., Department of Electrical and Electronics Engineering
Supervisor: Assoc. Prof. Dr. Kemal Leblebicioglu
Co-Supervisor: Prof. Dr. H. Biilent Ertan

January 1996, 207 pages

For reducing torque ripple of SR motors two different approaches can be
considered. One is to pursue a motor geometry which reduces torque ripple, the
second is to manipulate motor current to improve performance. The second
approach to the problem requires fast and costly microprocessors for control
purposes. A number of papers reporting progress in this area exist. In any case, it is
desirable to look for an ideal geometry even if following such an approach, further

improvement is desireable.

Determination of optimum geometry that minimizes torque ripple is extremely
difficult and requires the abililty to predict SR motor performance for all magnetic
circuit parameters for a specified operating condition. Partly because of this reason,

research in the literature concentrates on minimizing torque ripple for a specific



geometry through shaping of the phase current. The research reported in this thesis
however presents a more general approach to the problem and inspects the effect of
magnetic circuit parameters on the torque ripple while they are allowed to vary in a
wide range. This is made possible since the authors have access to a set of
dimensionless data, and a method which permits prediction of torque position and
permeance position characteristics of a doubly-salient magnetic structure as a
function of exciting MMF for a specified tooth width/tooth pitch (t/A), tooth
pitch/airgap length (A/g) and normalized position (x,).

In this study, a doubly salient geometry which minimizes torque ripple at low speeds
is sought. To simplify the problem at this stage the excitation is assumed to be
available without any restriction due to winding space. The tools available for this
purpose are a finite element field solution program and a set of normalized data as
described above. First the accuracy of the finite element program is tested. It is
found that although accurate results can be obtained, this approach is very lengthy

for searching wide range of parameters.

Than using the force and permeance data for the same purpose is investigated. A
neural network based software is developed to extract the desired information from
the data available. Than the problem of determining the optimum geometry is treated
as a mathematical optimization problem. The results indicated that irrespective of
the excitation level, the optimum points occur for large A/g values (about 250) and
for t/A (stator tooth width/tooth pitch) about 0.4 and t/A (rotor tooth width/tooth
pitch) about 0.5.

To gain a physical insight to the problem various parameters are fixed and variation
of torque ripple with one independent variable is also investigated. The results are
presented in a table which identifies a range for each parameter where torque ripple

is quite near the global minimmm.



Finally neural network based predictions are compared with finite element field
solution results. It is observed that, the findings from the two approaches agree quite
well.

In this work, it is also shown that, when a single phase is excited, adjacent pairs of

teeth to the excited pole play no role in torque production.

Key Words: Reluctance motors, torque ripple, optimum design,
finite element analysis, artificial neural networks.
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ANAHTARLI RELUKTANS MOTORLARINDA MOMENT
DALGACIKLARINI ENAZLAMA AMACLI TASARIM

Sahin, Funda
Yiiksek Lisans, Elektrik ve Elektronik Mihendisligi Béliimii
Tez Yéneticisi: Dog. Dr. Kemal Leblebicioglu
Ortak Tez Yoneticisi: Prof. Dr. H. Biilent Ertan

Ocak 1996, 207 sayfa

Anahtarh relikktans (AR) motorlarinda moment dalgaciklaninin azaltilmasi amagh
iki ayn yaklasim bulunmaktadir. flki, moment dalgaciklarim azaltacak bir motor
geometrisi tasarimi, ikincisi ise motor akimina bu dalgaciklan azaltacak gekilde
miidahale edilmesidir. Ikinci yaklagim, ki bu konuda 6nemli diizeyde gelismeler
kaydedilmigtir, denetim amacina hizmet edecek hizli ve pahali mikroiglemcilere
ihtiyag duymaktadir. Her ne kadar bu ikinci yaklagimla ulagilabilecek ¢6ziimlerin
maliyet problemlerinin giderilmesi i¢in yapilacak olan g¢aligmalar bu konuyla

ilgilenenlerce daha fazla ilgi gbrmekteyse de, ideal geometrinin tespiti hem



meselenin  6ziiniin  anlagilmasi, hem de yukanida deginilen g¢aligmalara destek

olarak 6nem arzetmektedir.

Moment dalgaciklarinin enazlanmasini saglayacak ideal geometrinin tespiti olduk¢a
gii¢ bir siireg olup, tanimh ¢aligma kosullarinda, tim manyetik devre parametreleri
i¢in AR motor performansinin kestirilmesini gerektirir. Bu ¢galigmada elde bulunan
simetrik gikik kutuplu geometriler igin hazirlanmmg boyuttan bagimsiz veriler ve
¢ifte ¢ikik kutuplu manyetik devrelerde moment-konum ve permeans-konum
karakteristiklerini, uyarma MMK’nin (magneto motor kuvveti) dis genigligi/dis
agikhg (VA) ve dig agikligi/hava aralifs uzunlugu (A/g) igin tanimh bir fonksiyonu
olarak ifade eden bir metod kullamlmigtir. Boylece moment dalgaciklarim
enazlayacak bir geometrinin tespiti miimkiin olabilmistir.

Bu tez diigiik hizlarda AR motoru igin moment dalgaciklarini enazlamayi
amaglayan bir galijmay: kapsamaktadir. Problemin basitlestirilmesi agisindan
sargilarin kapladigi alandan kaynaklanan fiziksel kisitlar ihmal edilmigtir. Bu
calismada AR motorunun moment egrilerinin elde edilmesinde, elde bulunan bir
sonlu elemanlar analiz program (ANSYS) ve yukanda deginilen normalize edilmis
veri arag olarak kullanilabilmektedir. Ilk olarak sonlu elemanlar analiz programi
dogrulugu agisindan test edilmis ve biiyiik 6l¢iide hassasiyet elde edilmigtir. Ancak,
bir optimizasyon siirecinde genig bir parametre araliginda ¢aliyma yapilacagindan,
zaman kisit1 bu yaklagimin kullanilmasin1 olanaksiz kilmigtir.

Sonug¢ olarak elde bulunan moment ve permeans verisinin aragtirma igin
kullanilmasina karar verilmigtir. Thtiyag duyulan ara veriler, bir yapay sinir agmin
eldeki verilerle egitilmesiyle belirlenmektedir. Problemin dogrusal olmayan
yapisinin matematiksel modelleme imkanlarimi ciddi bir gekilde siirlamasi, yapay
sinir aglannin kullanmlmasini gerekli kilmigtir. Daha sonra, matematiksel bir

optimizasyon problemi modellenmigtir. En iyi sonuglarin g¢esitli uyartim



seviyelerinde, A/g’nin yiiksek (yaklagik 250), t/A’min (stator dis genisligi/dis
agikhiffi) 0.4 ve t/A’mn (rotor diy genigligi/dis agikhg) 0.5 civaninda oldugu
araliklarda bulundugu tespit edilmistir.

Probleme fiziksel bir anlam getirebilmek amaciyla parametrelerin  degisen
degerlerinde moment dalgacik miktarnin nasil degistigi aragtinlmistir ve
parametrelerin gesitli kombinasyonlan i¢in hangi araliklarda dalgacik miktarnin
diigiik oldugunu gosteren tablolar diizenlenmigtir.

Son olarak sinir aglanyla elde edilen moment tahminleri sonlu elemanlar analizi
sonuglanyla kargilagtirilmig ve iki yontemin yaklagik sonuglar verdigi gortilmigtiir.
Buna ek olarak, anahtarh reliiktans motorlarinda tek faz uyartildiginda komsu dig

¢iftlerinin moment tiretimine etkisinin olmadig: gosterilmigtir.

Anahtar Sézciikler: Reliiktans motorlari, moment dalgaciklarn, optimum tasarim

sonlu elemanlar analizi, yapay sinir aglan
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CHAPTER 1

INTRODUCTION

1.1 General

Switched-reluctance motors (srm) have gained attention in the variable speed drive
market. The savings in motor manufacturing cost due to the simplicity of
construction and usage of minimum number of switching devices in the drive circuit
are two important factors in its favor compared to any other motor drive.
Moreover, an attractive feature of srm is its higher torque-inertia ratio compared to
similarly sized induction motors or permanent magnet synchronous motors. The

advantages and disadvantages of the motor are listed below:

Advantages:
a) High torque to inertia ratio,
b) High speed operation,
c) Fast step response,
f) Mechanically simple with long life,
g) Bidirectional rotation,

Disadvantages:
a) No holding torque when windings are not excited,
b) Oscillations and overshoot in step response,
c) Acoustic noise and speed ripples caused by high torque ripple.



The srm is inherently a nonlinear machine. The salient stator and rotor poles give
rise to position dependent airgap reluctance which is hamessed to create useful
torque. This torque production mechanism is highly dependent on the geometry of
the poles and is characterized by static dependence on both stator coil current and
rotor position. These nonlinear nature of srm causes torque ripple which is greater
than that of other conventional electric machines, resulting in increased acoustic
noise and speed ripples.

1.2 The Switching Reluctance Motor

1.2.1 Construction and Principle of Operation

The motor is designed to have salient teeth on the stator and rotor, which are
constructed by stacking together steel laminations. Common configurations have
two, three or four-phase windings on the stator. An example of a four-phase motor
having 8 stator and 6 rotor teeth is shown in Fig.1.1.

In typical operation, energizing a phase of the motor makes the rotor turn in such
a way that a pair of rotor teeth are aligned with the teeth of the energized phase.
Therefore, the reluctance of the energized magnetic circuit is minimized, or
equivalently, the inductance is maximized. The torque that is developed is
independent of the current polarity, so operation from a single power supply is
common. Sustained rotating motion is achieved by sequentially energizing the
various phases as the rotor tums, so the well-known name is “switched reluctance
motor”’. Motor construction is very rugged, since there are neither field windings nor
magnets on the rotor and with proper design, the motor can have very high

efficiencies.



Figure 1.1 Crossectional view of a srm

In step motor structures, each set of coils which are excited separately for applying
a specific pattern of excitation is called a ‘phase’. The number of discrete
positions in which the specific pattern of excitation can be established relative to
the stator structure equals to the number of phases and denoted by ‘q’. When
excitation sequence is changed, the rotor moves by an angular displacement which is
termed as ‘step angle’, a. The step angle of a srm is determined by the number of
teeth on the rotor and stator, as well as the number of phases and can be calculated

as follows;

(1.1)

where N, denotes the number of poles.

The operating principle of srm just described is rather straightforward. Let one
phase of the windings, phase A (Fig.1.1) be energized by a constant voltage. The
magnetomotive force setup by the current will position the teeth of the rotor section



under the excited phase, aligned with the teeth on the same phase of the stator. This
is the position of minimum reluctance and the motor is in a stable equilibrium. For
instance, when phase B is energized, rotor will rotate 15 degrees, counter-
clockwise, and the rotor teeth will be aligned with the teeth of phase B.
Continuing in the same way, the input sequence of phase of ABCDA.. will rotate

the motor in counter-clockwise direction.

If the motor is energized with its rotor at the equilibrium position, no torque will
be developed on the rotor shaft. When the rotor is displaced from the equilibrium
position, a restoring torque is developed which tends to restore the rotor to its
stable equilibrium position. This restoring torque is referred to as the “static torque™.
A typical static torque curve of one phase of a 8/6 (number of stator teeth / number
of rotor teeth ) structure is shown in Fig.1.2. The zero-degree position shown on
the torque curve represents the stable equilibrium position of the rotor.

stable equilibrium

rator position
L mechanical degrees
30 0 307

w

Figure 1.2 Typical static torque of a 8/6 srm

Figl.3 illustrates typical static torque curves of a four phase srm. These curves are

quite useful in the determination of the best control sheme for the motor. There is



a displacement between the characteristics corresponding to one step length, so
that, for example, the equilibrium position for phase A excited is one step length
away from the equilibrium position of phase B excited.

stable eql;li'bﬁm; of ph'es

Figure 1.3 Typical static torque curves of a 8/6 stm

The shape of the static torque/rotor position characteristic depends on the
dimensions of the stator and rotor teeth as well as the operating current. Static
torque characteristic of the motor may be predicted by using finite element analysis
software (ANSYS or similar) as described in chapter-2 as well as by using semi-

numerical methods 15",

1.2.2 Torque Ripple of Switched Reluctance Motor

Torque ripple may be determined as the variations in the output torque. Since the
amount and level of torque ripple are dependent on the speed of the motor, torque
ripple should be determined according to the operating mode of a srm. Switched
reluctance motors generally have three operating modes; low speeds (where phase



current is assumed to be constant), chopped current mode at medium speeds and
high speed mode where phase current is dependent on many variables such as back
emf . In order to predict the amount of torque ripple, current waveforms as seen in
Fig.1.4 should be considered as well as static torque characteristics of the motor.
Note however, the effect of torque ripple is most significant at low speeds where
torque variations considerably affect instantenous speed of the shaft. At higher
speeds inertia of the rotor helps to reduce these speed variations and hence vibration.
Torque ripple determination in these operating modes is explained as follows.

1 phase current
ON ON ON
I_ — s ——p R
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Fig.1.4 Typical current waveforms for a srm
a) low-speed b)medium-speed c)high-speed

A) Low-Speed Mode

Typical phase current waveforms for srm are shown in Fig.1.4. At the lowest
operating speeds (Fig.1.4.a) the current waveforms are nearly rectangular, the

build-up of current to the rated level occupies a minor portion of the excitation time.

For low speed applications, assuming that the overlapping of the phase currents is
negligible, and phases are turned on and off at the rotor positions (x) corresponding

to the intersection points of the torque curves of the phases (x corresponding to



Tmin), the amount of torque ripple may be determined easily as the percentage
ratio of peak torque to minimum torque (Eq.1.2). The maximum value of the static
torque is known as the “peak static torque” (Tna) and for torque ripple prediction,
the intersection points, as seen in Fig.1.5, of the torque curves of the phases is
denoted by Tuyin.

T.
%ripple = :l—:'“& -100 (1.2)

max

The overall torque/rotor position characteristic of the motor is shown in Fig.1.5. In
this thesis, an optimum set of dimensions of the motor (stator and rotor teeth and
airgap lenght) are sought for different levels of excitation for low speeds to minimize

torque ripple as discussed in chapter 4.

Torque

max o T T~

rotor position (%)

Fig.1.5 Torque ripple characteristic of a srm at low speeds

B) Medium-Speed Mode

For stepping rates where the phase current is only excited for a time comparable to
the winding time constant, however, the waveform (Fig.1.4.b) is considerably

distorted by the nearly exponential rise and decay of the phase current. Therefore,



for medium speeds, at a given speed, phase inductance (L) and resistance (R),
output torque ripple characteristic of the motor may be obtained from the relevant
static torque characteristic.

C) High-Speed Mode

At high speeds, each phase is excited for only a short time interval and the build-up
time of the phase current is some significant proportion of the excitation interval.
When a motor is operating at high speeds the current in each phase may not even
reach its rated value before the excitation interval finishes and the phase is turned
off. In addition, the time taken for the phase current becomes important at high
speeds because the phase current continues flowing (through the freewheeling
diode) beyond the excitation interval dictated by the drive transistor switch. The
calculation of the pull-out torque at high speeds is complicated by the variations in
current during the excitation time of each phase, which means there is no longer a
simple relationship between static torque/rotor position characteristic and pull-out
torque.

At high speeds, the voltage induced in the phase windings by the rotor motion
should also be considered. The effect of these induced voltages can be seen from
the high speed waveform on Fig.1.4.c, in which the waveform can no longer be
described in terms of a simple exponential rise and decay. Even while the phase is
switched on it is possible for the current to be reduced by the induced voltage,
which is at its maximum positive value when the phase is excited. Similarly
when the phase is turned off the decay of current can be temporarily reversed as
the induced voltage passes through its maximum negative™™®, Therefore, analysis
of torque ripple completely depends on the analysis of the circuit model (Fig.1.6)
of the one phase of a srm, that includes voltage induced in the windings at high
speed operation. Torque ripple analysis and minimization of srm at high speeds is
left aside as future study.



Fig.1.6 Circuit model for one phase of a srm

1.2.3 Torque Ripple Minimization

The form and level of torque ripple are dependent on the form of magnetic
circuit, the level of its saturation, and the phase current waveform. There are two
approaches that can be used for minimization of torque ripple of switched
reluctance drive:

a) designing magnetic circuit geometry with minimum torque ripple
b) manipulate motor current to improve performance

Second approach to the problem requires fast and costly microprocessors for
control purposes. In any case, it is desirable to look for an optimum geometry even
if further improvement is desired through such an approach. The aim of this thesis is
to find the optimum geometry with minimum torque ripple at low speeds.

1.3. Existing Research in the Literature

Up to now, plenty of studies have been conducted on switched reluctance motors.

The reason of this interest is the advantages of the srm listed before. But, there are



still some unsolved problems inherent to srm which arise due to their working
principles that are highly dependent on the heavy saturation of the magnetic
material. A major problem that the researchers are still working on is the srm’s
torque ripple. In the following subsections, these research on srm will be reviewed
by splitting the existing work on srm into two, reports on srm’s in general and
studies specialized on srm’s torque ripple.

1.3.1 Brief Review of Previous Work on SRM’s

Earliest published reports on srm belong to Unnewehr and Koch, Blenkinshop,
Byme and Lacy, Baushand and Rieke. Unnewehr and Koch presented a disc type
srm in 1974 ®*1 In 1976 a phase single stack srm is analyzed by Blenkinshop .
This work presented only the basic operation principles of srm. In 1977, in order to
investigate the performance of srm’s, Koch developed a linear theory of srm. In
1979, Corda presented his results on the design of a 0.75 kW stm ™, Corda, in his
work, formulated linear analysis for the performance calculations of a srm in a very
systematic manner. He set out a number of different design criteria which are
necessary for a reversible drive with self starting capability.

Lawrenson discussed the recent significant developments in srm drives in his
paperin 1983 ! In his work the importance and advantages of such drives were
emphasized.

In 1984, Chappell, Ray and Blake published a paper which discusses applications

where microprocessors have been used in the control unit of srm drives 'L

In the following years many noteworthy papers were published on design and

performance calculations. Some of these deserved more attention such as Unify and
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Miller. Research results and methods described in the following work is most utilized

here:

In 1982, Ertan showed an analytical method of static torque and inductance curve
prediction for symmetrically slotted doubly salient devices in his published work ",

In 1985, Tohumcu offered a method for optimizing the asymmetrically slotted srm
in his Ph.D. thesis *°!.

In 1987, Diriker sought the optimum airgap geometry of the asymmetrically slotted
geometry in his M.S. thesis !°1

1.3.2 Brief Review of Studies Specialized on SRM’s Torque Ripple

Determination of optimum geometry to minimize torque ripple is extremely difficult
and requires the prediction of SR motor performance for all magnetic circuit
parameters for a specified operating condition. Partly because of this reason,
research in the literature concentrates on minimizing torque ripple for a specific
geometry through shaping of the phase current® However, a few examples exist in
the literature, which attempt to investigate the affect of pole arc on the torque ripple
with the aid of finite element field solutions”®. Brief review of studies in the
literature specialized on srm’s torque ripple is presented below:

B.Amin presented a paper about the analysis of the torque ripple and design
considerations for improving the rate of the torque ondulations in variable

reluctance motors in 1988,

In 1990, Corda published a paper and discussed the effects of the magnetic circuits
on torque pulsations of switched reluctance motor. In his paper several motor
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structures are considered and by using field solutions of the motors, torque ripple

levels are compared ",

Wallace and Taylor, in 1990, investigated the effects of pole arcs on torque ripple
by using finite elements method and control methods for minimization of torque

ripple of three-phase srm 9,

Tormey and Torrey, in 1990, published a paper presenting an explication of the
issues related to the design of a srm drive for an application which is sensitive to the
supply current drawn by the drive and the torque ripple produced by the drive .

In 1991, Wallace and Taylor published a paper on low torque ripple switched
reluctance motor for direct-drive robotics. A contribution of this paper is the
discovery that, although a trade-off between peak torque and torque ripple exists,
the maximum smooth torque and minimum torque ripple can be achieved by the

same direct-drive motor 7},

Optimum commutation-current profile on  torque linearization of switched
reluctance motors is discussed by Schramm, Williams and Green in 1992 #2.

In 1993 Le Chenadec, Multon and Hassine published a paper about the current

waveform optimization to minimize torque ripple 41

Hung, in 1993, published a paper on the design of current waveforms that

minimizes torque ripples in variable reluctance motors at low excitation levels %,

O’Donavan et al, in 1994, published a paper presenting an artificial neural network
solution to torque ripple reduction in a switched reluctance motor. They showed a
very simplified controller resulting from the combination of neuro-learning and
analytical insight .

12



1.4 Content of the Thesis

The aim of this thesis is to find an optimum switched reluctance motor geometry
with minimized torque ripple for excitation levels where the current waveform is
nearly constant during stepping. Determination of optimum geometry that minimizes
torque ripple is extremely difficult and requires the prediction of SR motor
performance for all magnetic circuit parameters for a specified operating condition.
The research reported in this thesis however presents a general approach to the
problem and inspects the effect of magnetic circuit parameters on the torque ripple
while they are allowed to vary in a wide range. This is made possible due to having
access to a set of dimensionless data ''”)) and a method which permits prediction of
torque position and permeance position characteristics of a doubly-salient magnetic
structure as a function of exciting MMF for a specified tooth width/tooth pitch
(t/A), tooth pitch/airgap length (A/g) and normalized position (x,).

In optimum design of a srm, knowing the steady state average torque is of vital
importance. In srm’s analytical expression of steady state average torque is not
available due to heavy saturation and unusual nonlinear nature of srm’s. Then
instead of using analytical expressions, torque can be computed by means of various
numerical field solutions. However, such methods are too long to be introduced into
an iterative optimization process. Therefore, an easier method " of calculating the
static torque curve, should be used. In this thesis, normalized permeance and force
are calculated from the numerical magnetic data""*'® for doubly salient geometries
with identical teeth pairs.

In chapter-2, torque and flux linkage calculations of srm by finite element field

analysis is introduced. The usage and abilities of finite elements analysis software
(ANSYS) are presented. Method of measurements of torque and flux linkage

13



characteristics of srm is explained in detail and calculation results and measurements
are compared in this chapter for each of two different test motors.

In chapter-3, first the essentials for artificial neural networks are cited. A method
for using neural networks in the process of relating the design variables with torque
ripple according to the data on hand is presented. Force data calculation for
asymmetrically slotted structures from the force and permeance data of
symmetrically slotted structures calculated by Ertan ') are explained. Algorithms
for neural network simulations and prediction of asymmetrically slotted structures is
also contained in this chapter.

In chapter-4, a background for the torque ripple optimization problem is formed.
First the general optimization problem is introduced, then the design problem is
stated as a mathematical optimization problem, design variables are defined and the
constraints that should be imposed on the optimization problem are set out.
Torque ripple function as an objective is introduced and results of optimization

problem for different excitation levels are presented.

In chapter-5, optimization results, namely optimum motor designs with minimum
torque ripple, are verified by finite element field solutions. In other words, motor
designs with optimum parameters found are modeled in ANSYS and static torque
curves of these motors are obtained for the prediction of the amount of torque

ripple. Results are evaluated and comparisons are made.

Chapter-6 covers an overall discussion of the thesis and the conclusions. Moreover,

possibilities for future research are discussed.
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CHAPTER 2

SWITCHED RELUCTANCE MOTOR FINITE ELEMENT FIELD
CALCULATIONS AND TORQUE AND FLUX LINKAGE
MEASUREMENTS

2.1, Introduction

Numerical solution of Magnetic fields is an important engineering tool for prediction
of performance of various devices. The use of this technique for magnetic design
purposes is only about 30 years old. It was first pioneered by Elderly, and is
growingly becoming a very important modem tool for magnetic design. Finite
Element method is one of the solution techniques and it has found a more general
acceptance than the others. Finite element modelling is much newer in electrical
engineering than in civil and mechanical engineering. While stress and temperature
fields are the key distributed parameters obtained by finite elements for civil and
mechanical engineers, electrical engineers need to obtain electric and magnetic
fields. This fields must then be used to predict other performance parameters such
as torque, current, voltage, power loss etc. ANSYS is one such professional Finite

Element Field solution tool used by industry.
In this chapter, the use of this software for predicting the performance of switched

reluctance motors will be described. In Finite Element field solution program the
field is generally divided into number of discrete elements. For each element a set of
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equations valid for that element is written. Then, the resulting set of equations are
solved simultaneously while satisfying the boundary conditions.

The solution therefore greatly depends on how the user discretizes the problem and
imposes boundary conditions. For that reason it is essential to test the program and
- its results for obtaining desired accuracy without excessively increasing the
computation time. Although professional programs provide a field solution, often
essential software for calculating the desired performance is not readily available.
The user develops such ‘macro’s for the specific problem. Development of such
tools for SR motor performance analysis and testing their accuracy has been the
other purpose.

The work was started by solving the field for SR motors readily available in the
laboratory. The tests on these motors (called SR1 and SR2 in this thesis) for finding
their torque-position and flux linkage-position-current characteristics have also been
carried out. The effect of distribution of meshes in the solution area is investigated
also on this motors. Another issue investigated was to find out how to use a given
mesh distribution for obtaining field solution for different rotor positions. This is
extremely important for minimizing the effort to obtain the desired characteristics.
The purpose was to identify factors affecting the prediction accuracy, and to find out

how to minimize solution time while achieving desired accuracy.

For magnetic field analysis of the sr motors computer system with the following
specifications was used:

HP series 720 Computer Workstation
1 Gbyte SCSI Disk

32 Mbytes RAM

HP - UX 8.07
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Moreover PC based version of the program is also studied. But, because of the huge
computational time, the system described above was preferred.

In this chapter, the finite elements analysis method and, ANSYS program are
briefly described. Then the test and computation results for each motor is given in
separate subsections. Measurement techniques are also discussed.

2.2 Finite Elements Method

The finite element method is a numerical procedure for analyzing structures.
Usually the problem is too complicated to be solved satisfactorily by classical
analytical methods. The finite element procedure produces many simultaneous
equations, which are generated and solved on a digital computer.

In general, the finite element method models a structure as an
assemblage of small parts (elements). Each element is of simple
geometry and therefore is much easier to analyze than the actual
structure. In essence, a complicated solution is approximated by a
model that consist of piecewise continuous simple solutions. Elements
are called ‘finite’ to distinguish them from differential elements used in
calculus. Discretization is accomplished simply by sawing the
continuum into pieces and then pinning the pieces together again at
node points. !

An important issue in a finite element analysis is the behaviour of the individual
elements. A few good elements may produce better results than many poorer
elements. We can see that several element types are possible by considering Fig.2.1.
Function @, which might represent any of several physical quantities, varies
smoothly in the actual structure. A finite element model typically yields a piecewise
smooth representation of ®@. Between elements there may be jumps in the x and
y derivatives of ®. Within each element, ® is a smooth function that is usually
represented by a simple polynomial. For the triangular element

17



D =a;+ax + asy 2.1)
is appropriate it where the a; are constants. These constants can be expressed (solved) in

terms of @, ®,, O3 which are the values of @ at the three nodes. Triangles model

the actual @ by a surface of flat triangular facets. For the four node quadrilateral the
bilinear function

D =a;+ ax + azy + asxy (2.2)

is appropriate. The eight-node quadrilateral in Fig.2.1 has eight a; in its polynomial

expression

D =a;+ a;X + azy + Xy + asxC + agy’ + a7y + agxy’ (2.3)

and can represent a parabolic surface.

Figure 2.1 “A function @ = ®(x,y) that varies smoothly over a rectangular region in
the xy plane and typical elements that might be used to approximate it.”*'"
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Equations 2.1 to 2.3 are interpolations of function ® in terms of the position (xy)
within an element. That is, when the a; have been determined in terms of nodal
values ®;, Eqs. 2.1 to 2.3 defines ® within an element in terms of ®; and the
coordinates. If the mesh of elements is not too coarse and if ®; happened to be
exact, then @ away from the nodes would be a good approximation. Nodal ®;
values are closed to exact if the mesh is not too coarse and if element properties are
properly formulated. The finite element method solves for the unknown function
® only at nodes ®; , and once this is accomplished the function ® within the
region between the nodes can be determined by interpolation.

Unfortunately, the choice of element type and size to be used in various part of the
entire region in question is not simple and requires experience. But fortunately, as
will be elaborated later in this chapter, professional finite element programs such as
ANSYS has its own mesh generation program that divides the continuum into finite
elements according to the basic guidelines defined by the user, automatically.

The importance of the choice pertaining to the type and size of elements may be
visualized on some simple figures sketched for a one dimensional region. In
Fig.2.2.a the true function @ (quadratic) to be estimated is sketched as a function
of x within the interval [0,a). A simple element of size [0,a] shown in Fig.2.2.b
with a linear interpolation function would do a poor job of capturing the actual
quadratic nature of the response. Better results could be obtained with a greater
number of linear elements (Fig.2.2.c) or a single element of size [0,a] that has a
quadratic interpolation function could capture the actual distribution (Fig.2.2.d).
The msight out of this example may easily be associated with the elements of two
dimension, considering that for a triangular element, the interpolation function is
linear (a plane) and for the quadrilateral it is bilinear (see Fig.2.1).
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Figure 2.2 Simplified example pertaining to the importance of element type and size

As cited above, the primary task of the finite element method is solving the unknown
function @, defined by some differential equations and boundary conditions, at the
nodes specified. For any single element the problem is eventually reduced to a form

such as
[K],®; = A, (2.4)

where 5: is the unknown vector for the ith element with entries dTu denoting the

unknown value of ® at the jth node of element i (Fig.2.3.a). [K]; is a matrix and
K: is a vector obtained from several transformations of the differential equations and
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boundary conditions that define the problem. These transformations involve the
representation of the differential equations in  their weak forms and some
rearrangements according to the nature of the problem.

After equations of type Eq.2.4 are obtained for each element these should be
combined in such a way that their relative locations on the entire space and their
relations could be captured. To maintain this the nodes are labelled not only locally
(in element level as in Fig.2.3.a), but globally (as in Fig.2.3.b) as well.

global numbers

element i element j

= | ; 2

1 .4 1

N ©

local numbers

@ )

W
AV}

Figure 2.3 a. Local labelling of elements
b.Global labelling of elements

Then for element 1, in Fig.2.3.b the matrix form of the problem according to global

coordinates is

ky Ky kg k| o] I,

ky ky ko ki, "Dz _ f, (2.5)
ki, ki, ki ki, | (@) |F )
k41 k42 k43 k44 (D5 f4
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and for the second element;

111 112 113 (D’ £,
1, 1, Lyl |@s(=]g, (2.6)
131 132 133 (D4 23

As seen the only difference with the original formulation Eq.2.4 is that the entries
of the vector &): is labelled globally rather than locally.

The combined formulation of this two element system is

ki k2 ki3 0 kia o, fi

k21 k2 ka3 0 ka4 o, f;

ks; kaz  (ksstlyn) L (kaath) | . | @5 | = | g 2.7)
0 0 Iz ki3 L5 D, g

kyy ke  (kistlh) Lz (Lsthy) Ds fi+g,

Although, it may not be observed in the simple two element system, in a model with
large number of elements, a large but sparce matrix is obtained.

There exist special methods to store and solve these kinds of sparce matrix
equations. Because, in large size problems the unnecesity of storing null entries is a

very important advantage in terms of the storage capacity.

The matrix equation is finally solved either by direct methods that are based on
Gaussian elimination (Cholesky decomposition, Front method) or by iterative
methods where the solution vector @ is solved iteratively (Gauss-Jacobi, Gauss-
Seidel, Conjugate gradient method). Additionally, in professional packages such as
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ANSYS, output interpretation programs called postprocessors, help the user sort
the output and display it in graphical form.

2.3 Finite Elements Software: ANSYS

ANSYS is a computer program for finite element analysis and design. The program
may be used to find out how a given design (e.g. a machine) works under operating
conditions. It can be also used to calculate a proper design for given operating

conditions.

ANSYS program can be used in all disciplines of engineering such as structural,
thermal, mechanical, electrical, electromagnetic, electronic, fluid and biomedical. In
this study only the static magnetic analysis facilities of the program is used.

In the following subsections basic features of ANSYS and the steps to be followed
to build a model and solution of the field are described.

2.3.1 Static Magnetic Analysis Option of ANSYS

Two dimensional static magnetic field analysis is used to determine the solution of
static magnetic fields of devices that can be modeled planar or axisymmetric
configurations. The term “static” indicates the magnetic field is not a function of
time; that is, transient effects are not considered. ‘“Planar” indicates a device which
can be modeled by a 2-D cut through its center. A device is set to be “axisymmetric”
if a 2-D section can be revolved 360° about an axis. Planar or axisymmetric magnetic
fields are important phenomena in many engineering applications; solenoids,

actuators, motors, permanent magnet devices, transformers, etc.
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Two-dimensional magnetostatic field problems are solved by minimizing a nonlinear
magnetic energy functional containing a vector magnetic potential (A. In other
words, the vector potential formulation is used. The ANSYS program solves these
simultaneus equations using the frontal solution technique and this solver
simultaneously assembles and solves the global set of simultaneous equations as

follows:

1. The degrees of freedom (unknowns) and the [K] matrix for the element with
the lowest order number are added to the global matrix which is initially empty.

2. Those degree of freedom that are not shared by any other elements yet to be
added to the global matrix are expressed interms of the other degrees of freedom
already in the matrix. The resulting equations are stored, and the degrees of freedom
just processed are removed from the global matrix.

3. The degrees of freedom and the [K] matrix for the next element, in order
number sequence, are brought into the global matrix.

4. Steps 2 and 3 repeated until all elements are processed. The last expression
that was stored can be used to solve explicitly for the last degree of freedom.

5. The known degrees of freedom can then be used in stored expressions to

solve for the remaining degrees of freedom. This action is called ‘back substitution’.

The number of degrees of freedom (unknowns) in the global matrix at any given
time constitute the ‘wavefront’. The wavefront swells and shrinks as the elements are
processed. Large wavefronts require more computer resources than small
wavefronts. The wavefront is smallest if degree of freedom can be removed as
soon as possible from the global matrix after the degrees of freedom are added.

Since degrees of freedom are added based on the element order, adjustment of the
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element order can be used to reduce the wavefront. Once the degrees of freedom
are determined, derived results, such as flux densities are calculated within each
element using its shape functions.

A single iteration is required if element matrix has constant components(i.e.,
constant material permeability). Multiple iterations are required (ie., the analysis is

nonlinear) under the following conditions:

- The B-H material curve is nonlinear

- The permanent magnet demagnetization curve is nonlinear

For a nonlinear analysis, the iterative procedure is based on the Newton-Raphson
method to obtain a solution. .

Whether the problem is linear or nonlinear, the 2-D static analysis solves for values
of the out-of-plan, or z-directed, component (AZ) of the vector magnetic potential
at each node, and for the magnetic flux density (B). Nodal vector magnetic
potentials are solved for in the planar case and circumferential directed magnetic
potentials are solved for in the axisymmetric case. Other elements are calculated

on a per-element basis.

2.3.2 ANSYS Modules

ANSYS contains three main modules (Fig.2.4): a preprocessor for model entry and
generating a finite element mesh, a solver which generates the main numerical
solution, and a postprocessor for deriving various parameters or creating displays.

These steps of analysis are as follows:
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PREPROCESSING:

The preprocessing phase is where all relevant data, such as material properties,
geometry, and boundary conditions, are entered into the database in preperation of

solution. Preprocessing steps are as follows:

A. Defining element types (four nodded magnetic elements are used for meshing
operation)
B. Defining material properties. Options are as follows

Linear material properties

Nonlinear material properties ( BH data of magnetic material is loaded )
C. Creating the model geometry ( dimensions of the motor )
D. Defining analysis type (magnetic,thermal,..) and analysis option

PREPROCESING

SOLUTION

L

POSTPROCESSING

Figure 2.4 ANSYS Modules
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SOLUTION:

In solution phase following steps are included:

A. Boundary Conditions;

*Boundary conditions are considered to be at symmetry planes of a model or at the
far-field boundary of the model . Boundary options includes flux-normal, flux-
parallel , far-field , far-field zero and periodic.

*Flux normal conditions are used to force flux to flow perpendicular to a surface.
This is imposed naturally by the finite element method when no specifications are
made at the surface of interest.

*Flux parallel conditions are used to force flux to flow parallel to a surface . This is
imposed by setting the magnet vector potential , Az , to a constant value. The
constant value is usually zero unless a non-zero field is being imposed.

In our applications flux parallel boundary conditions ( A=0 ) are chosen on the
exterior parts of the motor that surrounded by air. ( Drichlet type or flux parallel
boundary conditions )

B. Loads

*Loads that can be applied to a model include nodal potentials, element current
density and nodal current segments.

*Nodal vector potential loads (Az) are used to apply nodal vector potentials to a
node. This is generally done to apply an external field to a model by applying
potentials at the model boundary.

*Source current density (Js) loading is used to apply a uniformly distributed source

current to an element. The loading is expressed in terms of current “density”.
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C. Specifying load step options:

Due to the nonlinear nature of the model, a two load step procedure is used. The
first load step is used to ramp on the boundary conditions (nodal potentials and
loads ) . The second load is used to converge the iterations. Convergence controls
used during solution also have to be defined . The specificiations of solition phase is

as follows:

1. ANSYS- Analysis Options:

e Analysis options includes, STATIC, SUBSTRUCTURE analysis, etc.

e Newton-Raphson solution procedure may be selected. (In most cases, the
program will choose by default the appropriate option) (NROPT command,
adaptive descent procedure)

e Solver options include a FRONTAL EQUATION SOLVER and a JACOBIAN
CONJUGATE GRADIENT SOLVER. (EQSLV-command).

2. ANSYS-Solution Options:

e Number of substeps within a load step may be specified (NSUBST-command)

e Number of equilibrium iterations within a substep to allow for nonlinear
convergence may be specified by (NEQIT)-command.

¢ CNVTOL command is used to set the nonlinear convergence criteria for the
analysis.

- Convergence may be based on the out-of-balance load for the corresponding

forcing load (Label=CSG)
- Convergence may be based on the degree of freedom. (Label=A)
- Program calculated default reference is recommended
- Solution accuracy has to be set to at last a value 0.001 (0.1%) for the
accuracy of the analysis. (Default value is 0.001).

e If convergence is not obtained, program may be terminated (NCNV command)
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. Linear Analysis:

Linear analysis accurs when only linear properties are defined (ie, relative
permeability input only, no B-H curve).

Solution requires only 1 substep.

4. Nonlinear Analysis:

Nonlinear analysis occurs when B-H curves are input.

Recommended solution sequence is to solve the problem over two load steps as
follows:
a) First load step:
-Obtain approximate solution
-1 equilibrium iteration per substep
-Number of substeps (5-15) is chosen
b) Second load step:
-Obtain converged solution
-Set number of equilibrium iteration (10-20)
-Set convergence tolerance (default value 0.001)
For SR motor analysis here, nonlinear analysis solution sequence is used; Number
of equibrium iteration is defined 20 , number of substeps is 5 and, convergence

tolerance taken is 1.10°®,
—  POSTPROCESSING:

Once the solution has been calculated ANSYS postprocessor can be used to
review the results. Contour displays , tabular listings and many other postprocessor
options are available and there are commands to make some calculations (e.g. line

‘integra], cross product .. etc.). Some specifications of postprocessing phase are:
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A. Nodal vector potential (Az) is available for processing.
-Flux lines are lines of constant Az in a planar analysis , and lines of constants A
in an axisymmetric analysis (r = x coordinate)

- Az can be used to visualize flux lines

- Between any two nodes in a model , the flux passing between the nodes may be
calculated as :

o=§a.@ 2.8)

B. Nodal magnetic flux density (B) and field intensity (H) are available for

processing,

C. Nodal Lorentz forces or Maxwell surface forces may be displayed.

2.4 Calculations of Torque and Flux Linkage Using Field Solutions

2.4.1 Torque Calculation:

A ‘Macro’ software is used for calculation of torque produced by the motor at a

given position, once the field solution is obtained. The approach used in this
software is briefly described below.

The torque on a rigid body can be obtained using the Maxwell stress tensor and is

given by;
T=J( (B.a).(rxB/p,)-[Bl2(rxn)/2u, )ds (2.9)

where r is the position and n is the normal vector.
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For the two dimensional planar case rxB has only a single out of plane vector

component and can thus be treated as the scalar
K= (1. By - 1,.By) (2.10)

therefore equation 2.9 becomes :

.

=] (KB/u,.n).ds (2.11)

In all our applications a circular integration path is chosen through the center of the
air gap and for different rotor positions (rotating the rotor nodes without modeling
the geometry again as explained in the following sections) torque is calculated . The
path of integration is circular about the origin and number of nodes used to define
the path is chosen to be 36, it means the angle between nodes is 10 degrees.
Integration path is shown in Figure 2.5 . It has to be remembered that the SI unit of
calculated torque in this method is Nm/m and resultant torque is calculated by

multiplying it with stack length.

Figure 2.5 Path of integration for torque calculation

31



2.4.2 Flux Linkage Calculations:

As discussed in the previous sections, nodal magnetic potential (A;z) is available in
ANSYS postprocessing phase. Az can also be used to visualize the flux lines . (As
seen in the Ay graphs) . In this study there are two methods used for flux linkage
calculations.

A) METHOD I:

Between any two node in the model, the flux passing between the nodes may be
calculated as in Eq 2.12:

o=$A.d (2.12)

In this case the integration is carried out following a closed loop extending into the z
direction since Az has no component in the x direction. Contribution to the integral
part of the contour along x direction is zero. If a unit length of magnetic core is
considered in the z direction, it may be concluded that flux through the stator teeth
as seen from Figure 2.6, may be calculated from the equation

¢ =(A1 - Ag) (2.13)
where;
A, is the magnetic vector potential of node 1 in Fig 2.6
A, is the magnetic vector potential of node 2 in Fig 2.6

¢, is flux per pole per tum
The flux linkage per phase ( Wb-Turns ) may be calculated from the equation:

v=(2*N)*(¢z)*L (2.14)
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where ;

L : Stack length

N : Number of turns

On the other hand flux leakage may be assumed to be;

Leakage flux = 2¢, - ¢, (2.15)

where ¢ is the flux through surface shown in Fig.2.6. Leakage fluxes can be seen
on Ay graphs.

Figure 2.6 Calculation of flux per pole

Using this method, it is assumed that leakage flux will not be contained through the
integration path, if the nodes on the edges of the slot are chosen . But, it is very
difficult to predict where leakage flux deviates from the slot region. Another
assumption, explained as the second method aims averaging the linkage flux values
calculated between different node patterns placed on the coils.
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METHOD 2:

A second method recommended by Prof Jack is also tested . For this purpose a
macro file is written to find average magnetic flux density over a coil.

In this approach flux may be calculated from;

flux linkage /pole /turn =® = A, -A; (2.16)
where,
A, is the average flux of coil 1
A, is the average flux of coil 2.

Note that this method is similar to method 1. The only differenece in this case is an
average node potential is considered for the calculations. In this study both are found
to give almost identical results.

Macro file procedure:

The macro file written for this purpose traces the following steps.

1. From ANSYS magnetic field solution find nodal magnetic vector potential A;
for every node on coil 1 (Fig. 2.7)

2. From ANSYS magnetic field solution find nodal magnetic vector potential A;

for every node on coil 2.

3. Find average magnetic vector potential of coil 1 from

Ai=(ZA)/n (2.17)

where i= 1, .. n is the node number.
4. Find average magnetic vector potential of coil 2 from
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A2=(ZAi)/n (2.18)

where i= 1, .. nis the node number. (coils have same number of nodes)
5. Then;
linkage flux/pole/tumn=® = Al - A2 (2.19)

Figure 2.7 Nodes of Excited Coils

2.5 Solution of the Field and Calculation of Torque and Flux Linkage for
Test Motor 1 (SR1)

The program used for the solution of the magnetic field with the purpose of
calculation of the torque and flux linkage is briefly described in the previous sections.

In this section the application of the field solution technique to the switched

reluctance motors described. The method is studied on two different switched

reluctance test motors.
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The effect of the mesh distribution and the factors affecting the accuracy of torque
position (T vs 0) and flux linkage-position characteristics (A vs 0) was first
investigated on SR1. Measured T ve® and A vs O characteristics of this motor
was available from previous works. Solution results are compared with these

measurements.

2.5.1 The specifications of the motor

Dimensions of the test motor SR1 are as follows:

Outer diameter ofrotor : 70 mm
Quter diameter of stator : 135 mm

Core length : 9.5 mm
Backcore width : 11 mm
Air gap length : 0.2 mm
Stator pole width : 85 mm
Rotor pole width : 10 mm
Stator pole depth : 21,3 mm
Rotor pole depth : 175 mm
Number of turns : 300

Rated Current : 6 Ampere/pole
Wire size : 0.7 mm

Maximum area for placing the coil is

a=6 mm, t.=12.8 t4=12.6

The motor structure is shown in Figure 2.8
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a) SR1 Motor lamination b) A Phase coil of SR1

Figure 2.8 SR1 motor structure

STEP ANGLE
The step angle of the motor is simple to calculate as described in chapter 1 as
follows;
o =360/n.p=360/4.6=15°
where n is number of phases and p is the number of rotor teeth.
POSITION NORMALIZATION

The torque curve of the motor is periodic over rotor tooth pitch (RTP)

RTP=n.o = 4*15 =60° (2.20)
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Position
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Figure 2.9 Torque-Normalized Position Curves of SRM

In this study rotor position is expressed in normalized form. The normalization is

done over (RTP/2). In this notation, the normalized step angle (a.,) is calculated as;

o, =15/30=0.5

LOADING

For the exterior nodes of the motor (exterior parts of stator and rotor) flux parallel

boundary conditions are applied. It means parallel component of the magnetic

vector potential is defined as zero. It is supposed that only one phase is excited at

the time of analysis. Exciting conductors are seen in Fig.2.10.
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Figure 2.10 SRM with Excited Conductors

Current density is applied on every element in the area representing the coils

(Fig.2.11) of a pole. For SR1 motor for 4 Ampere phase current, current density is:

~{c— i

Figure 2.11 Conductors of SR1

J=N.I/Area =300.4/(t..ts)=1200/1.61.10" = 7.44.10° A/m’
For Part II the direction is reversed. J = -N.I / Area =-7.44.10° A/m®
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2.5.2 Type of Element and the Distribution of Elements

Element type used for the solution of the problem here is PLANE -13/2-D
Coupled-Field Solid. Plane 13 coupled field solid element is defined by four nodes
with up to four degrees of freedom per-node. Magnetic, thermal, electrical and
structural field capability may exist. The element has nonlinear magnetic capability
for modeling B-H. curves or permanent magnet demagnetization curves. Plane 13
may be used as a four nodded or three nodded (rectangular or triangular options).
element. Meshing properties of the part of the motor may be described as follows:

A) Airgap Meshing

For airgap meshing, rectangular elements are used. This is called mapped meshing. It
requires that an area or volume be “regular” that is, it must meet certain special
criteria:
a) The area must be bounded by either three or four lines,
b) It must have equal numbers of element divisions specified on opposite sides of the
rectangular elements. They are preferred for meshing the airgap because;
i) For torque calculation, nodes along the same circular path have to be taken
(accuracy of integration)
ii) For rotation of the rotor without remeshing, there must be equal size of

elements on the surface of rotation. This process is explained below:

* Rotation of the Rotor: Rotor/Stator Stitching Operation

In order to obtain torque / position curves of the switched reluctance motor, several
analyses are needed. To avoid generation of a mesh distribution for each individual
position, ANSYS stitching operation is used. The procedure is summarized as

follows.
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1. Create stator solid model

2. Create rotor solid model

3. Mesh rotor and stator areas: On the border of the rotating part and
stationary parts in the airgap, there are nodes generated at the same coordinate
which are detached. For a quarter geometry, 180 nodes are generated on the
border, so that the interval between nodes corresponds to a 0.5° angle and
intervals are equal. For this reason, we may rotate the rotor part with an angle

which is multiple of 0.5°.

4.Define rotor nodes at surface as detached components (CM Command)

of the nodes on stator side

5. Define stator elements at surface as detached components (CM Command)

of the nodes on rotor side

6. Select rotor nodes and stator elements at the surface.

7. Generate constraint equations. (CEINTF)

8. Apply boundary conditions

9.Solve

*If another analysis is needed for different position of the rotor;

1. Delete constraint equations by CEDELE command,
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2. Select rotor nodes,

3. Detach solid model,

4. Rotate rotor nodes by a specified amount (NGEN-command),

5. Select rotor nodes and stator elements at the surface,

6. Generate constraint equations (stitching),

7. Solve.

B) Meshing Stator and Rotor Regions

In these parts of the motor rectangular elements are prefered. But, for non-regular
areas such as triangular areas generated between the coilar and back core areas,

triangular elements may be used.

For meshing other parts of the motor, the shape and distribution of the elements are
carefully selected. Using a mesh that has low aspect ratio helps to minimize the
discontinuities in the flux density components and the errors in the computed torque
of a srm. For this reason the ANSYS program performs element shape checking
(based on aspect ratio and shape angle) to wam user whenever a meshing operation
creates an element having a poor shape. Here are some suggestions to decide

whether element shapes are acceptible:
*Regions that are flattened or have excessively sharp comers generally cause mesh

failure. Hence, mesh should be made dense enough so that elements with high
aspect ratio would not be produced.
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*Low aspect ratio elements should be used to avoid long and sharp triangles. “15°”

is a proper lower bound for the internal angles of any element”

In designing the mesh structure of SR motor, the above mentioned principles have
been followed. Additionally, since the airgap plays a crucial role in the determination
of torque, a special emphesis is given to the mesh design of this region. The design is
made such that the elements are smallest among of the whole mesh of the motor
structure. Radially moving in both directions away from the airgap (along the
magnetic circuit) the motor is first divided into eccentrical circles such that the radial
distance between each successive circle is an increasing multiple of airgap length (x2,
x3,....) to define ring areas. The borders of these areas are divided such that, the size
of the elements increased radially outwards within the stator region. Then each ring
is meshed by ANSYS in either triangular or rectengular elements. The perimeter of
each ring is divided such that the above mentioned 15° constraint is eventually
satisfied. This procedure allows us to have a satisfactory accurracy in torque and

inductance with a considerably low number of elements.

2.5.3 The Effects of Mesh Distribution on Calculations

The ultimate aim of the field solution is to be able to predict the torque and
inductance characteristics of the motor with good accuracy. However, field solution
is time consuming even on fast workstation. Therefore, it is highly desirable to
minimize number of elements, without loosing the accuracy of the solution. To study
this issue three different mesh models are created for SR1. Mesh A and Mesh B as
shown below have similar number of elements on the main structure. The major
difference is in the number of elements in the airgap. Mesh B has about 50% less

elements in this region.
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In the case of Mesh C the number of elements in the airgap are the same as Mesh A.
In this case, however, the number of elements in other regions is increased by about

50% to find out its effect on the solution time and accuracy. The specifications of the

meshes are as follows:

MESH A: 8180 elements ( total ) Fig. (2.12,2.13,2.17)
2160 elements ( in the air gap)
**3 ROWS of elements used for air gap mesh

*** Computation time is approximately 30 minutes

MESH B: 7960 elements ( total ) Fig. (2.12,2.14,2.17)
1440 elements ( in the air gap)
**2 ROWS of elements used for air gap mesh

*¥* Computation time is approximately 20 minutes

MESH C: 12140 elements ( total ) Fig.2.15
2160 elements ( in the air gap)
**3 ROWS of elements used for airgap mesh

*** Computation time is approximately 45 minutes

Moreover, accuracy of five rows of elements in the airgap region was also
investigated (Fig.2.16). The type of element used for meshing and the rules followed
in creating the mesh are discussed in the previous section and the resulting torque
and flux linkage values for different mesh types are explained in the next section.
Related flux contour graphs are shown in Figures 2.18,2.19 and 2.20.



Figure 2.12 Mesh A,B general distribution
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Figure 2.13 Mesh A, airgap region

46
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Figure 2.14 Mesh B, airgap region
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Figure 2.15 Mesh C general distribution
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Figure 2.16 5-Rows of elements in the airgap
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Figure 2.17 Detail of mesh A,B
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Figure 2.18 SR1 magnetic flux density distribution
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Figure 2.19 SR1 flux contours
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2.5.4 Comparisons of Measured and Calculated Torque and Flux Linkage for
SR1

A) Torque Prediction

The solution of the field is obtained for all three meshes described before and the
static torque curve is computed from Maxwell Stresses for 6 normalized positions of
the rotor teeth. Torque measurement of SR1 was made by Besenek””' and the results
are used. The measured and computed torque characteristic of the motor (or one
phase on excitation at phase current of 4A) is shown in Figures 2.20 and 2.21
respectively, and is also tabulated in Table 2.1.

From these figures it can be observed that the solution obtained for reduced number
of elements in the airgap is unacceptably inaccurate (Mesh B). However, Mesh A
provides a very good accuracy. The error in computations from mesh B is obviously
due to insufficient number of elements in the air gap. The rest of the mesh

distributions for B is the same as mesh A.

Table. 2.1 Predicted and measured torque for SR1 at various positions at 4A

excitation.

Normalized Measured ANSYS ANSYS

Position (x,) Torque (Nm) (Mesh A) (Mesh B)
0.1 3.3 3.16 3.29
0.2 8.0 7.8 43
0.3 10.6 10.2 8.27
0.4 1.2 11.9 11.96
0.5 9.1 9.6 8.5
0.6 3.0 3.003 3.07
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Figure 2.20 Predicted (Mesh A) and measured torque curves for SR1 at 4A
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Figure 2.21 Predicted (Mesh B) and measured torque curves for SR1 at 4A
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The solution obtained for Mesh C is also found to have a similar accuracy to that of
obtained from Mesh A. However, the computation time was 50% more in this case.

For this reason Mesh A is used for further investigation.

From the above results it may be concluded that the number of elements in the
airgap is extremely important for obtaining acceptable accuracy and 3 rows of
elements is the minimum number recommended for the airgap region for an

acceptable torque curve prediction.
B) Flux Linkage Prediction

Measured (from Besenek’s study ) and computed flux linkage position curve is
given for the test motor (in one phase on mode at a phase current of 4A) for Mesh A
and Mesh B in Table 2.2. and plotted in Fig.2.22. The method of flux linkage
calculations is as described before and Table 2.2 shows that flux linkage is not very

sensitive to mesh distribution in the airgap region.

Table 2.2 measured and predicted flux linkage for SR1 for 4A excitation

Normalized Measured ANSYS ANSYS
Position (1=4A) (Mesh A) (Mesh B)
Wb.T Wb. T Wb.T
0 0.9 1.02 1.025
0L 0.89 0.99 1.01
0.2 0.84 0.94 0.956
0.3 0.775 0.86 0.884
04 0.655 0.75 0.765
0.5 0.53 0.502 0.504
0.6 0.37 0.346 0.348
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Investigation of Fig.2.22 displays a constant discrepancy between measured and
computed flux linkage values. This is expectable since the end winding leakage
which is independent of rotor position is neglected. However, this disprepancy
seems to dissapear in normalized positions 0.5 and 0.6. This is likely to be due to a
flux or position measurement error for these positions. On the other hand, assuming
the flux distribution is same in axial direction and modelling the three dimensional

problem as two dimensional may also be a source of error.

This point however, is not pursued further since the purpose of the exercise at this
stage was to gain experience with the field solution programme. In the next section
the results obtained for the 2nd test motor (SR2) are given. In this case the error
sources are eliminated with the experience gained by the previous study and more

accurate results are obtained.

flux linkage (W b.T)

i
— m easured(Nm) }
—+— ANSYS(mesh A) [T~ S
-
i

{] ™ ANSYS(mesh B)

B 0,008 0 95007 810 270 208 0 B 35 0 400 .68 0BG 85 0 00 .85 e T
norm alized position

Figure 2.22 Measured and predicted flux linkage/position curves for SR1 at 4A
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2.6 Torque and Flux Linkage Measurements and Calculations for Test
Motor-2 (SR2)

2.6.1 Specifications of the Motor

The dimensions of the motor are given below and motor structure is shown in

Fig.2.23. The coil region of SR2 is shown in Fig.2.24 and currents applied for the

solution is shown in Table 2.3.

Outer diameter of rotor 38.6 mm
Outer diameter of stator 99.9 mm
Core length 40 mm
Backcore width 10.1 mm
Air gap length 0.255 mm
Stator pole width 8.2 mm
Rotor pole width 8.2 mm
Stator pole depth 30.395 mm
Rotor pole depth 7.2 mm
Number of turns 322

Rated Current 3 Ampere/pole
Wire size 0.7 mm

Table 2.3 Currents applied to the conductors of SR2

ForI=1A ForI=2A ForI=3A

I | J=N.I/Area I [I=@322)/1.12.10° I [1=@322)/1.12.10"
J=(1.322)/1.12.10® 7=5.75.10° A/m® J=8.6.10°A/m’
J=2.8.10° A/m*

o | J=-2.8.10° A/m* I | 7=5.75.10° A/m® o | J=-86.10°A/m’
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Figure 2.23 Lamimation of SR2 (air gap length= 0.255mm stack length= 40mm)
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Figure 2.24 Conductors of SR2
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Figure 2.25 SR2 mesh distribution
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Figure 2.27 SR2 magnetic flux density distribution
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Figure 2.28 SR2 flux contours
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2.6.2 The Field Solution and the Mesh Distribution

In the light of the experience obtained, the mesh distribution shown in Figures 2.25
and 2.26 is generated. Note that, in order to minimize the number of elements and
obtain a reasonable accuracy, the element sizes along the pole are increased in a

geometric sequence (g, 2g, 4g etc). Elements are generated as described in 2.5.2.

Number of Elements: 8704

Number of Nodes: 7918

Type of Element: rectangular - triangular
rows of elements in air gap: 3

solution accuracy: 10°

The field solution is obtained with this mesh for 9 different rotor positions at
different excitation levels. The solution times changed between 25-35 minutes. A
typical result for 3A excitation level is shown in Figures 2.27 and 2.28 when one

phase is excited.

2.6.3 Torque and Flux Linkage Measurements for SR2

A) Torque Measurements

The test set up used for torque measurements is shown schematically in Fig.2.29 The
device designed is simple but effective. Fixing rod in the figure stops rotation of the
shaft. When one of the phases is excited, the rod on which micrometer rests
(positioning arm) is set in a horizantal position. The motor is now in the IN position.
Then the positioning arm in Fig.2.30 is adjusted with the aid of a screw until it
deflects as much as desired. The new position of the rotor can be simply calculated

as shown in Fig 2.31.
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Figure 2.29 The set-up for measuring static torque
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Figure 2.30 Shaft positioning set-up for torque measurements. (A section of the set-

up in Fig.2.31)



Figure 2.31 Position measurement

The reading of the torque transducer is then recorded and converted to torque at 1m

if necessary. The torque transducer used in the tests is

Brandname: SHC / Himmelstein
Model: 24-02T(1-2)

Range: 100 Ib-in (11.276 Nm)
Max.speed. 15000 rpm

The measured torque/position curves of this motor are given Fig.2.35 and Table 2.4

for one phase on excitation at three different excitation levels.
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Table 2.4 Measured torque values for SR2 for different excitation levels

Normalized 1A 2A 3A
Position Torque (Nm) | Torque (Nm) | Torque (Nm)
0.1 0.36 0.52 0.61
0.2 0.40 0:72 0.92
0.3 0.41 0.88 1.20
0.4 0.43 1.06 1.50
0.5 0.49 1.16 175
0.6 0.45 1.14 1.88
0.7 0.45 1.12 1.85
0.8 0.37 0.91 1.71
0.9 0.20 0.36 0.58

B) Flux Linkage Measurements

For flux linkage measurements again the positioning device in Fig.2.31 is used. For

measurement of flux linkage a circuit shown in Fig.2.32 is used.

l M
ke N
T T . r
1 Eddy Curent
Dy Dt
Ry

Figure 2.32 The circuit for measurement of flux linkage



The transistor switch in the circuit was designed after a considerable amount of
experimentation with mechanical switches. It is observed that mechanical switches
fail to give satisfactory results because of bouncing problems.

The integrator is also very important for obtaining accurate results. Various devices
were tested to find out their suitability as an integrator. Drift and noise in the signal
received was found to be an important problem. To avoid noise a coaxial cable is

used to carry the signal to the integrator

A Gould 1602 digital storage scope with integration facility was found to be the
most suitable device as integrator in this circuit.

When transitor in the circuit is tuned on (manually by supplying its base) current
circulates through the loop formed by the phase coil, resistance R; and the clamping
diode. The indicated voltage-time integral in Fig.2.33 can be found in terms of the

circuit parameters as shown below

fv.df=-Ti4H— L (2.21)
’ R;+Ry :
y=LI 2.22)

R;+R
i B e iy (2.23)
Ry

The measured flux linkage data for different positions and different excitation
currents is tabulated in Tablo 2.4 and shown in Fig.2.34
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Table 2.4 Measured flux linkage values for SR2

Normalized
Position 05A 1A 15A 2A 25A| 3A | 35A
0.0 0.248 0.386 0.473 | 0.511 | 0.576 | 0.596 0.604
0.1 0.221 0.367 0.452 | 0.498 | 0.546 | 0.574 0.594
0.2 0.195 0.345 0.432 | 0.478 | 0.521 | 0.559 0.577
0.3 0.189 0.324 0.405 | 0.458 | 0.505 | 0.529 0.555
0.4 0.148 0.278 0378 | 0.441 | 0.491 | 0.519 0.544
0.5 0.123 0.251 0.337 | 0.406 | 0.40 | 0.498 0.531
0.6 0.102 0.218 0.309 | 0.376 | 0.438 | 0.476 0.512
0.7 0.091 0.179 0.249 | 0.317 | 0.368 | 0.406 0.455
0.8 0.088 0.141 0.226 | 0.295 | 0.345 | 0.391 0.425
0.9 0.061 0.113 0.187 | 0.245 | 0.315 | 0.358 0.395
39, 7mUs

£H 1 AR ERE =1
— -

REREER N

s IV e

Figure 2.33 Typical integral signal
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Figure 2.34 Measured flux linkage values for SR2

2.6.4 Comparison of Measured and Calculated Torque and Flux Linkage for
SR2

A) Torque Prediction

Measured and computed static torque curves for SR2 are plotted in Fig.2.35 against
normalized position for three different excitation levels, and also tabulated in
Table.2.6.

The results display an extremely good agreement between measurements and
computations. The error is largest for the low excitation level (1A). This is probably
because the measured torque is less than 5% of the rating of the torque transducer.
For the highest excitation levels (3A) ANSYS prediction gives about an 8% higher
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value for certain positions (0.6 and 0.7) than measured torque. This is an indication
that the airgap size in the manufactured motor may be more than specified. To find
the effect of airgap size, the field solition procedure is repeated at 3A excitation level
for airgap length 0.3 mm The results arr given in Table 2.7 and plotted in Fig.2.36.

Table 2.6 Measured and calculated torque of SR2 for different excitation levels

measured torque{Nm) | predicted torque (ANSYS)
normalized
position I=1A =2A I=3A I=1A I=2A { I=3A
0.1 0.36 0.52 0.61 0.272 0.492 0.606
0.2 0.40 0.72 0.92 0.313 0.695 0.890
0.3 0.41 0.88 1.20 0.343 0.898 1.201
0.4 0.43 1.06 1.50 0.360 1.040 1.524
0.5 0.49 1.16 1.75 0.362 1.106 1.800
0.6 0.45 1.14 1.88 0.371 1.134 1.980
0.7 0.45 1.12 1.85 0.370 1.153 2.000
0.8 0.37 0.91 1.71 0.320 1.032 1.800
0.9 0.20 0.36 0.58 0.070 0.261 0.583

Table 2.7 Measured and predicted (at g=0.3 mm) torque of SR2

normalized measured predicted torque
position torque (Nm) (g=0.3mm)
0.1 0.61 0.47
0.2 0.92 0.71
0.3 1.2 0.91
0.4 1.5 1.28
0.5 1.75 1.632
0.6 1.88 1.80
0.7 1.85 1.88
0.8 1.71 1.76
0.9 0.58 0.54
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Figure 2.36 Measured and predicted (at g=0.3 mm) torque of SR2
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Comparison of the field solution for SR2 at g = 0.255 mm and g = 0.3 mm indicates
a considerable detoriation in accuracy although the peak torque is better predicted.
This suggests that the reason for prediction of higher torque for the designed airgap
(0.255 mm) is not likely to be due to a much larger airgap in the test model but
perhaps due to the difficulty of representing behaviour of the magnetic material
under extreme saturation conditions. Extreme saturation levels occur at the comers
of teeth around positions which correspond to peak torque due to very small overlap
and channeling of tooth flux to this region.

B) Flux Linkage Prediction

Measured and computed flux linkages for SR2 are plotted against position for three
phase current values (1A, 2A, 3A) in Fig.2.37 and tabulated in Table 2.8.
Investigation of this figure show that the shape of the curve is well predicted for all
current levels. However, as expected a constant discrepancy exists between
measurements and computations. This discrepancy is attributable to the end winding
flux linkage which could not be taken into account in two dimensional field
solutions. The fact that the magnitude of the discrepancy increases with current level
supports this conclusion. It is possible to compute and account for end winding flux
leakage if desired. Moreover, leakage fluxes are also calculated by the method
explained in 2.4.2 and small values around 10™ are found and then neglected.
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Table 2.8 Measured and Predicted Flux Linkage for SR2 (Wb.T)

measured flux linkage-Wb.T Predicted (ANSYS)

normalized
position |I=1A (I=2A |[I=3A |I=1A [I=2A |I=3A

0.0 0.386 0.511 0.596 | 0.329 0.423 0.459

0.1 0.367 0.498 0.574 ]0.320 0.415 0.451

0.2 0.345 0.478 0.559 | 0.307 0.405 0.445

0.3 0.324 0.458 0.529 [0.263 0.387 0.434

0.4 0.278 0.441 0.519 10.228 0.360 0.420

0.5 0.251 0.406 0.498 ]0.193 0.319 0.397

0.6 0.218 |0.376 0.476 | 0.157 0.271 0.361

0.7 0.179 10317 0.406 | 0.120 0.220 0.306

0.8 0.141 0.295 0.391 | 0.085 0.167 0.242

0.9 0.113 0.245 0.358 | 0.068 0.135 0.202
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2.7. Conclusion

The study in this part of this thesis was aimed to familiarize with the use of
professional magnetic field solution sorftware and gain the capability to use such
software for design purposes of SR motors.

In the first part of this work, ‘macro’s are developed for the calculation of flux
linkage, leakage flux and torque from the field solution. The effects of mesh
distribution on solution accuracy and torque and flux linkage calculations are
investigated. Rules are laid out for obtaining accurate results. Field solution software
is also used for the prediction of torque-position and flux linkage- position curves of
two different SR motors.

Measurements of the torque and flux linkage characteristics of SR motors are
conducted. When measured data is compared with computed torque curves the
agreement is found to be very good. Comparison of measured and computed flux
linkage- position curves displayed that a constant discrepancy exists between
measurements and predictions due to the end winding leakage which can not be
taken into account in two dimensional field solutions. However, it must be noted that
often the difference in the area under the curves is required in performance
computations and in that case the constant end winding leakage plays no role. If
necessary, the end winding leakage can be calculated using analytical and numerical
techniques.

The study in this section clearly displayed that magnetic field solution technique and

the routines developed for torque and flux linkage calculation are reliable and can be
used to verify the performance of a srm.
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CHAPTER 3

NEURAL NETWORK BASED FORCE CALCULATION OF
ASYMMETRICALLY SLOTTED STRUCTURES

3.1 Introduction

For the designer, accurate prediction of torque-position curves is vitally important
since it gives the information about the motor’s single step and dynamic response
and also maximum static and dynamic torques. On the other hand, as discussed in
the previous chapters, because of the structure, torque prediction of srm is
extremely tedious and needs several finite element field solutions which takes huge
computation time even on a fast workstation. Since the aim is to find the optimum
motor structure with minimum torque ripple, plenty of torque-position curves for
different structures are required. But, using finite element analysis in an iterative
optimization process is almost impossible due to the time constraint.

In view of the limitations of the finite element analysis, another method which can be
used for torque curve prediction of an srm is sought. Force and permeance data
which is mumerically computed '*'”), per unit length for a doubly salient structure
with identical stator and rotor teeth, contains information about the nonlinear
nature of the problem, and is used as a data base. However, the data is computed
for equal slotting for both rotor and stator sides. For the optimization process data
for an unequal slotting is also required. It is shown!", that the permeance and
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force for an unequal slotting can be obtained from the data available for equal
slotting. The procedure will be described in section 3.4.

Inherently, the data on hand includes only some discrete points in the design space
but an accurate optimization process requires the continuous search space. In other
words, a continuous function that maps the design variables on force is required.
Due to its highly nonlinear nature of the problem, it is misleading to derive a
mathematical function that fits the finite number of data points at hand. What
remains is various numerical methods or artificial neural networks. Due to the
reasons outlined later in this chapter, the latter is preferred. Throughout in this
chapter, force data set production using artificial neural networks for both
symmetrical and asymmetrically slotted teeth pairs is explained.

3.2 Normalization

Since produced torque of an srm highly depends on the airgap parameters of the
motor such as stator and rotor tooth widths, airgap length, and rotor pole pitch,
optimization should be based on these variables. Airgap parameters of an srm are

shown in Fig.3.1 where single stator pole and two rotor poles are shown.

In Fig.3.1 A, denotes rotor pole pitch, t, and t, denote rotor and stator pole
widths respectively, y is overlap and x is the displacement between the center

lines of stator and rotor poles.
For the sake of generality all dimensions should be normalized as a fraction of rotor

pole pitch. The normalization makes all procedures less complex and comparisons

more meaningful.
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Figure 3.1 Airgap region of an srm
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Since positional relationship between stator and rotor poles repeats with a
period of A, the position knowledge should somehow be expressed as a
function of rotor pole pitch, Ar. Any position can be converted to normalized
position from;

A
=X_-— 3.1
x=x, @3.1)
where ‘x’ (see Fig.3.1) is the displacement and ‘x,’ is normalized displacement. It is
also convenient to express the pole widths as a fraction of A, Normalized
values of stator and rotor pole widths, t,, and t, are defined as follows;

(s

ty = X:‘ (3.2)
t‘
t, = " (3.3)

Finally, the tooth pitch is normalized with respect to g.
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A
pitch to gap ratio = ;‘ (3.4)

3.3 Unit Doubly Salient Structure

Unit doubly salient structure (udss), whose rotor pole pitch and core length are Im
long, is the scale model of the original geometry. The original geometry and
corresponding udss are shown in Fig, 3.2.

Having a general structure with unity rotor pole pitch and core length, udssis a
very convenient tool as far as the analysis is concerned. Since all dimensions are
converted, performance comparisons of the motors with different dimensions could
be possible. All dimensions, which are in transverse plane, are obtained as scaled
by 1/A; and in axial dimensions by 1/L. . So, for the coordinates following
relationship may be written for the geometries shown in Fig.3.2;

Xo = Ar Xy (3.5.3)
Yo = MYu (3.5.0)
z,=L 7 (3.5.0)

where the subscript “o” refers to the original geometry and “u” refers to the udss.

In order to carry the nonlinear nature of the actual geometry to the scaled model,
the magnetic quantities B and H should be scaled by a scale factor of unity. So,
mmf per pole pair and flux crossing the gap over a rotor pole pitch may be scaled

as follows;

F,=AF (3.6)

d’o = A-r]-«: ¢u (37)
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Figure 3.2. A doubly salient geometry and unit doubly salient structure

3.4 The Data

For optimization, numerically computed force and permeance data will be used as a
base. The data was computed by Ertan!''”), for per unit axial length for a doubly
salient geometry with ‘identical’ stator and rotor teeth as a function of the following

variables:

AJg: pitch to gap ratio
t/A: normalized tooth width

B:: average flux density
Xa: normalized position
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Throughout the computations , a geometry with three identical stator and rotor teeth
pairs is considered and force and permeance is calculated for the interior teeth pair.
The geometry for which data have been computed has a tooth pitch, equal to
0.0172m. That means, for ‘udss’ equivalent mmf and force values have to be
multiplied by the constant; 1/0.0172. Typical B-mmf and force-mmf curves obtained
are shown in Fig. 3.4. and force values are tabulated in Table 3.1

Ertan"®'"! and Besenek!” obtained these curves for 6 different A/g ratios (40,
70,100,150, 200,250) and three different t/A ratios (0.3, 0.4, 0.5). For the
calculations slot depth is chosen as 40g to eliminate the slot effects. Ertan showed in
his work that this choice of slot depth effectively represents an infinite slot.

Normalized permeance of a given magnetic structure having identical teeth pairs
with tooth width t, tooth pitch A, airgap length g, for a given B and x, is a function

of normalized variables t/A and A/g only and defined as follows:

_ (t/n)
Rl (VA G8)

The corresponding flux, ¢ and mmf, F can be found as ;

(since, core length L is assumed to be 1m long)

(3.10)

"
I
" |-o-
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where tooth pitch 2,is 0.0172 m and core length is 1m long.

Figure 3.3 Sample force-mmf and B-mmf curves computed by Ertan!'*'”
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Table 3.1 Normalized Force-mmf (S(Nt)-F(A)) data computed by Ertan (L.=1m)

Rpdkbkhkh ek ug (22 2 222ttt ]
VA | % 40 70 100 150 200 250
wees |+ | F | S | F | S | F | S | F| S| F|S|F]s
.
03 02 ] 302 | 99.1 ]} 175 | 65.6 | 125 51 9% | 403 ] 70 | 333 55 25.8
431 | 245 220 | 104 | 200 129 | 150 | 110 | 110 31 90 67.8
825 | 389 ]| 470 | 333 | 350 | 308 | 250 | 243 | 160 | 199 160 173
1235 490 | 707 | 458 | 525 | 499 | 380 | 414 ] 270 | 323 ]| 230 | 284
03 04 ] 302 | 110 | 175 | 69.6 § 125 | 53.1 90 | 416 ] 70 | 333 55 26.1
431 | 277 | 220 | 110 | 200 135 150 | 113 | 110 | 82.5 90 68.9
825 | 723 | 470 | 453 | 350 | 364 | 250 | 270 | 160 | 209 160 | 180
1235 | 1008 | 707 | 808 | 525 | 647 | 380 | 482 | 270 | 343 | 230 | 296
0.3 06 | 302 { 108 175 67 125 | 515 %0 406 1 70 | 329 55 25.4
431 | 275 | 220 | 165 | 200 | 131 150 | 113 110 | 80.9 90 68.3
825 | 705 | 470 | 481 | 350 | 375 | 250 | 283 | 160 | 216 160 186
1235 | 1210 | 707 | 837 | 525 619 | 380 | 461 | 270 | 327 § 230 | 280
03 08 | 302 | 206 § 175 7.9 125 4.2 90 21 70 1 55 0.6
431 | 522 | 220 18 200 | 10.7 |} 150 53 110 2.6 90 1.6
825 154 | 470 | 56.6 | 350 | 329 | 250 | 162 | 160 8 160 51
1235 | 334 | 707 | 128 | 525 74 380 | 374 | 270 16 230 | 106
0.4 02§ 302 | 991 | 175 | 65.7 | 125 51 90 41 70 333 55 25.8
431 | 246 | 220 | 104 | 200 | 123 150 110 | 110 | 80.5 90 67.6
825 | 396 § 470 | 320 | 350 | 284 | 250 | 234 | 160 | 192 160 170
1235 | 533 707 | 432 | 525 | 454 | 380 | 400 } 270 | 311 230 | 278
0.4 04 | 302 | 107 175 | 63.6 | 125 | 52.6 90 416 ] 70 | 33.7 55 26.1
431 | 270 | 220 | 103 | 200 | 134 | 150 | 114 | 110 | 821 90 68.5
825 | 632 | 470 | 443 | 350 | 358 | 250 | 266 | 160 | 205 160 176
1235 | 944 | 707 | 465 | 525 638 § 380 | 479 | 270 | 337 | 230 | 291
04 0.6 | 302 | 110 175 71 125 | 52.8 90 416 | 70 333 55 26.1
431 | 276 | 220 | 172 | 200 | 134 150 | 113 | 110 | 825 90 69
825 719 470 | 449 | 350 | 361 250 | 270 160 | 209 160 180
1235 | 1215} 707 | 803 | 525 637 | 380 | 431 | 270 | 343 230 | 296
0.4 08 | 302 | 100 175 | 66.2 | 125 | 503 90 40 70 | 325 55 25.2
431 | 252 | 220 | 162 | 200 128 150 | 111 110 | 803 90 67.4
825 | 696 | 470 | 459 | 350 | 366 | 250 | 279 | 160 | 214 | 160 185
1235 | 1137 ] 707 | 793 | 525 | 598 | 380 | 453 | 270 | 323 230 | 277
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Table 3.1 Cont’d

A | X 40 70 100 150 200 250

shth | wan F [ F S F S F S F S F S

0.5 021302 |956] 175 | 644 ] 125 | 506 ]| 90 | 407 ] 70 | 332 ]| 55 | 258
431 | 234 | 220 | 202 | 200 | 128 | 150 | 109 | 110 | 80.2 | 90 | 674
825 | 387 | 470 | 302 | 350 | 283 | 250 | 230 | 160 | 190 | 160 | 168
12351 515 | 707 | 454 | 525 | 468 | 380 | 392 | 270 | 306 | 230 | 276

0.5 04 ] 302 ] 103 | 175 | 675 | 125 | 522 | 90 | 414} 70 | 336 ] 55 26

431 | 261 | 220 | 107 | 200 | 133 | 150 | 113 | 110 | 81.7 | 90 | 68.2
825 | 621 | 470 | 425 | 350 | 350 | 250 | 263 | 160 | 200 | 160 | 173
12351 931 | 707 | 725 | 525 | 618 | 380 | 471 | 270 | 330 | 230 | 286

0.5 06 ] 302 | 102 | 175 69 125 | 51.7 ] 90 | 413 | 70 | 336 ] 55 26
431 | 258 | 220 | 167 | 200 | 131 | 150 | 113 | 110 | 81.7 ] 90 | 63.3
825 | 672 | 470 | 432 | 350 | 351 | 250 | 263 | 160 | 203 | 160 | 174
1235 | 1104 | 707 { 767 | 525 | 622 ] 380 | 471 | 270 | 334 | 230 | 289

0.5 08 1302 | 908 | 175 | 627 | 125 { 492 ] 90 | 396 ] 70 328 | 55 | 256
431 | 229 | 220 | 153 | 200 | 125 } 150 | 108 | 110 | 80 90 | 674
825 | 583 | 470 | 400 | 350 | 333 | 250 | 255 | 160 | 201 | 160 | 175
12351 932 | 707 | 690 | 525 | 576 § 380 | 443 | 270 | 327 | 230 | 286

3.5 Discussion on the Effect of the Asymmetrical Slotting

As seen from the normalization formulas in Sec.3.2, all design parameters are
normalized with respect to rotor pole pitch. But, for all practical srm designs,
number of stator and rotor teeth must be different for repeatable stepping.'For
different number of rotor and stator teeth, it is obvious that there is always overlap

between the poles. In that case however, several problems arises;

1. Does the adjacent tecth have any effect on the performance? If so, how can
this be taken into account?




2. If the data computed for symmetrical slotting is to be used for torque
calculations, can it be used and is any modification needed in using this
data?

This issues will be considered below;

A carefull consideration will show that a srm with even number of rotor poles and
even number of stator poles excited in diametrically oposite pairs will have
negligable mutual coupling between phases. If iron is assumed to be infinitely
permeable, it can easily be shown that the mutual coupling between phases is
indeed zero. This is true, because with equal ampere-turns in each coil, the mmf
drop across the gap between one stator pole and the rotor is exactly equal to the
mmf drop across the gap between the rotor and the diametrically opposite stator
pole. This means that the rotor is at zero magnetic potential with respect to the
stator. Therefore no leakage flux will flow between rotor and the poles belonging
to the other phases.

This may also be proved by the simple analysis of the magnetic circuit of the srm as
shown in Fig.3.4. In the circuit diagram, F, and F; are ampere-turns of diametrically
excited coils and they are equal. R, and R, are the sum of gap, stator and rotor
reluctances. R,; and R,; are the sum of overlapping stator teeth, rotor and gap
reluctances and are equal as well. It may easily be proved from the circuit that,
when back core mmf is assumed to be zero, in other words iron permeability is very
high in this region, leakage flux ¢, is exactly equal to zero.

Ri=R,=Rg+R,+R, @3.11)

where R;, R,, and R, are gap, stator teeth, and rotor teeth reluctances respectively,

Roi = Roz = Reg + Res + Rer (.12)
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where R, R.., and R, are gap, neighbour stator teeth, and rotor teeth reluctances
respectively. From the circuit, loop equations may be written as;

F1=Ri$1 + Rof (3.13.a)
F2=Ri¢1 + Raf; (3.13.b)
¢ =F/R, (3.13.c)

By substituting Eq.3.13.c in Eq.3.13.a, it is found that ¢, is equal to zero. The
discussion given here is also verified using numerical field solution technique and
discussed once again in Sec.5.2.

Figure 3.4 Magnetic circuit diagram of an srm when one phase is excited

The evaluation above indicates that unless the back iron mmf drop is high ie., a
significant proportion of excitation mmf drops in this regiondue to wrong design or
extremely high excitation, the adjacent teeth have no role to play even if rotor teeth
under the excited pole overlaps also the next or previous stator teeth.
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The data available is computed by assuming that all of the adjacent teeth are under
excitation. Therefore as discussed in Ref19 and Sec.3.8 a reduction in force
produced occurs when a rotor tooth is under the effect of more than one stator teeth.

When it is desired to use this data for calculation of the force for a pair of teeth in a
srm, obviously the embedded effect of adjacent teeth somehow be removed for
finding a correct force value. A rough correction approach is described in Ref 19 and
also mentioned in Sec.3.9.2. Obviously, if an adjacent pair closer than 25g is present
at the instant force is calculated, there is a reduction effect in force produced as
compared to the situation and this must be compansated using Fig.3.12.

While using the data in this work, all of the dimensions are normalized with respect
to A.. If the rotor teeth is found to approach the adjacent teeth less than 25g than A,
is redefined as in Eq.3.25. In this manner the effect of adjacent teeth embedded in the

data is removed.

3.6 Obtaining Flux vs MMF and Force vs MMF Characteristics Using
Artificial Neural Networks

In order to obtain force-mmf and flux-mmf characteristics of a given geometry of
switched reluctance motor at a certain operating condition using the data mentioned
before, artificial neural networks are preferred to other curve fitting techniques such
as cubic splines or polynomials. The neural network will be trained by the data to
give force and flux of a given structure as a function of the airgap parameters, and
given excitation (mmf). A brief explanation about artificial neural networks is
contained in the following subsections. The advantages of using neural networks
may be summarized as follows:
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a) Obtaining fast results; Once the network is trained with the whole data the
network gives fast response as a software module.

b) Obtaining a precise mapping; If the neural network is defined with the
correct number of neurons in the hidden layers, results will be very accurate.

¢) Since network is working as a function within the software, programming
effort is minimized.

d) For multi-input systems, other techinques such as splines causes
complexity in programing, since all two dimensional surfaces have to be defined
seperately. But in the usage of neural networks, there is no limitation on the
dimensions of input and output vectors

3.7 Artificial Neural Networks

“An artificial neural network is an information or signal processing
system composed of a large number of a simple processing elements,
called artificial neurons or simply nodes, which are interconnected by
direct links called connections and which cooperate to perform
parallel distributed processing in order to solve a desired
computational task.™”

Artificial neural networks may be considered as a simplified model of a human brain
_because of their ability to adopt to different environment by changing their
connection strenghts or structure.

3.7.1 Basic Neuron Model
The basic artificial neuron can be modelled as a nonlinear device with multi-input and

output (Fig.3.4). Weighted interconnections ‘w;’ are also called synaptic weigths or
strenghts. The cell body represents a nonlinear limiting or threshold function ¥(u;).
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This simplest model of artificial neuron sums the n weighted inputs and passes the
result through a nonlinearity process according to the equation

y; = “(iwiixi +®j) (3.14)

where ¥ is a limiting or threshold function, called an activation function, ©; is the
external threshold, also called an offset or bias, w; are the synaptic weights or
strenghts, x; are the inputs (i=1,2,,,n), n is the number of inputs and y; represents the
output. A threshold value ®; may be introduced by adding another input xo, equal to
+1, to the system and corresponding weight wy; , so the Eq.(3.14) may be written as

y;= w(iwﬁxi) (3.15)

where Woj=®j, X,=1.

8,
INPUTS
X
e w(u;)
%, Yj k— ¥ AXON
. A (Output)
X, CELL BODY
no (Threshold or limiting function)

Figure 3.5 Basic neuron model
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In the basic neuron model, the output signal is usually determined by a
monotonically increasing sigmoid (S-shaped) function of a weighted sum of the
mput signals. Such a sigmoid function is mathematically defined for example as

1-e™™
.=tanhyu. = —— 3.16
Y; T, l+e 27 ( )
for a symmetrical representation or
— 3.17
Yi= 1+e™™ 3.17)

for an unsymmetrical unipolar representation where y is a positive constant or
variable which controls the slope of sigmoidal function. In comparison with the other
nonlinearity functions sigmoidal activation function is more convinient and realistic
and used in this work. These sigmoidal functions are shown in Fig.3.6.a and
Fig.3.6.b respectively.

@ ®)

Figure 3.6 Symmetrical (a) and unsymmetrical (b) sigmoidal activation functions



3.7.2 Architecture of Three-Layer Perceptron

In this study three-layer feedworward network is used as described in the
following sections. Standard multilayer networks are a class of feedforward neural
networks with neurons in the layers. All neurons in the layers are connected to all
neurons in the adjacent layers through uni-directional links. These links are
represented by synaptic weights. The snapthic weights act as signal multipliers
on the corresponding links (interconnections).

fesponse

b32 vector

‘FastHiddenLayer © SecondHiddenLayer Trird Hidden Lager
( Nl f1eurons) (N, neurons) (N3neurons)

Figure 3.7 Tree layer feedforward neural network
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In Fig.3.7 a three layer perceptron shown. The neurons are grouped in sequentally
connected layers; each layer is numbered 1,2,3. The neurons of layer one are called
the first hidden layer and the last layer is the output layer where the response of the
network comes through. The neuron layers between the input and output pattemns
are called ‘hidden layers’. Theoretically, there is no limitations on the number of
hidden layer, but in practice there will be one or two hidden layers. Each neuron is
connected to all neurons of the two adjacent layers and to no other neurons. Note
that connections within a layer or from higher to lower layers are not permitted.
The arrows indicate the flow of information. Generally, the multilayer perceptron has
a different number of neurons and different synaptic weights for different layers.
The neurons usually take activity in the normalized range from +1 to -1 (in this
study this range is preferred).

Once the synaptic weights are determined through optimization their values are kept
constant in using the network predictions. These values determine the network
behaviour and its capability to correctly process (map) the input data. In order
to obtain the required network behaviour the values of the synaptic weights must
be properly computed. Such a computation is called ‘learning’ or ‘training’
process. During the training process information is also propagated back through
the network and it is used to update the synaphtic weights succesfully first in the
output layer, second in the hidden layer, and last in the first hidden layer. The
training process and ‘batch leaming algorithm’ will be described in the following
subsection.

3.7.3 Learning Algorithms

Learning algorithms may be classified into two groups as on-line and batch learning,
In the batch leaming algorithm first all learning samples are accummlated, than
weights are updated according to the error functional for the whole set. But in on-
line approach determination of weights is accomplished by updating for each



individual learning sample iteratively. On the other hand, batch learning approach
takes longer time than on-line procedure. In this study batch back propagation
algorithm is preferred. The reasons for the choice of batch leaming algorithm may
be summarized as follows:

a) All learning examples are already available and no temporal adoptation is
required.

b) A high precision mapping may be obtained

¢) “Batch learning provides a better estimate of the gradient components
and avoids a mutual interference of the weight changes caused by different

patterns™',

3.7.4 Batch Learning Algorithm with Unconstrained Optimization

Batch learning is essentially a mean square error minimization process. As cited
before, a feedforward neural network works as a nonlinear function that maps a
given input vector on an output vector with predetermined dimensions. The training
pattern consist of a set of input vectors and corresponding output vectors. Training
of the network means choosing synaptic weights such that the array of output
vector that the neural network computes for the array of training input vectors fits
the array of training output vector as much as possible. Theoretically, the best
measure that represents the degree of fit is the mean square error measure defined

as

n m 2

E=%ZZ(yij ~yd,) (3.18)

i=1 j=l

where y is the computed output, yd is the desired output, n is the number of the
training samples, and m is the dimension of the output vector.



The feedforward neural network may be considered as a chain of mathemathical
transformations where at each layer of the network the input vector is transformed
first linearly and then nonlinearly. The output of each layer is the input of the
consequtive layer. So it is possible to express the error at each level as a function of
the synaptic weights and threshold values corresponding to that level, analitically. By
this property, the error at the output level may be propagated backwards to compute
the errors implied in the preceeding levels. That is the reason why this algorithm is
called as the back propogation algorithm. Thanks to this ability of analytical
representation, it is possible to calculate the effect of individual changes in snaptic
weights and thresholds on the performance measure, mean square error. In other
words, it is possible to express the partial derivatives of the mean sqare error with
respect to the synaptic weights and the treshold values analytically. Once these
gradient vectors are obtained what remains is the employment of an optimization
algorithm to minimize the mean square error with respect to the synaptic weights
and treshold values.

The method choosen is the steepest descent algorithm. Essentially, the algorithm,
beginning from an initial point, scans the error surface such that it iteratively moves
along the direction where the slope of the error surface is steepest. In the
algorithm one dimensional search is carried out to find the optimum amount of
advance in the direction of the gradient. First, given the initial point (wy;(0)), the
gradient vector (VE) at that point, two predetermined search parameters o, ,0;
(Ky/|VE|and K,/|VE| where K, and K; are arbitrary parameters choosen
heuristically) and weights are updated by;

OE
Wagk-+1) = Wiy (1) + G =+ B ()~ Wog (k= D)) (3.19)

(where B is momentum constant defined by the user to control the rate of

convergence) by taking o=c, and a=a, seperately, and the corresponding error is



calculated for both. The error is assumed to be a parabolical function of o within the
interval [0,0.;] which passes through the error points calculated at a=0, a=a, and
a=a,, and a parabolic fit is carried out accordingly. The optimum search parameter
o is choosen as the value that minimizes the fitted parabole and the weights are
updated according to Eq.3.19. This procedure is iterated until comvergence is
maintained. Throughout the iterations the results are monitored and to ease
convergence the algorithm is intervened by changing the momentum constant 8
when necessary. The batch leaming program, which is contained in Appendix A, is
written on C programming language and the program steps are described as follows:

ALGORITHM STEPS
1. Define arbitrary weights w,; where
n: layer number
i: neuron number of the corresponding layer

j: neuron number of the consequtive layer

2. Calculate states:

_ - r A 4 r -
X1 Wi1Wiageee- Wiy u, b,
X,, Wpgeeeemeeneenenas u, b,
X, =|. ={. Jd. {4+, (3.20)
| Xiw, | LWangeeeeenes Wi, | LU, ] by ]

where vector u is input pattern and, b is the treshold vector of first layer.
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Zy,
Z =|. |=yX)=rtmhyX, (3.21)
| ZN, |

In the same manner calculate vectors, X,,Z, and output response vector y for
every input patterns,

3. Calculate error function (Eq.3.18),

4. Calculate gradient vector of error function. ( all gradient components are
calculated analitically using ‘chain rule’),

oWy, OW,,, oW,y OW,y ob,;,

- [aE OE OE 3E 3E ]’ 622)

5. Calculate search parameter o as described before,

6. Calculate new synaptic weight using Eq.3.19,

7. If there is problem related with the convergence, update momentum constant. One
of the facility of the program is the random momentum constant (B) generator, if

random momentum constant updating is preferred, this step is omitted.

8. Check convergence and go to step 2.
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3.8 Networks Trained for the Computation of Force vs MMF and Flux vs
MMF Curves of Symmetrically Slottted Structures

From the above mentioned data obtained by Ertan''®'") neural networks are trained
to obtain force vs. mmf and flux vs. mmf curves for symmetrically slotted
structures.

3.8.1 The Network (NN1) for Computation of Force vs MMF Curves

The first network computes force for a given geometry and given mmf value.
Inputs of the network are A/g, /A, x,, and mmf (F) , and the output of the
network is force (S). Training data computed by Ertan is defined for a geometry
where tooth pitch A is equal to 0.0172 m. Force (output) and mmf (input) values
may be easily converted to udss by multiplying with 1/0.0172. Before training, all
input and output data is normalized into the range [0,1]. This have to be pointed out
that all inputs and outputs of the network have to be normalized for guaranteing
convergence. This is done by dividing A/g to 250, mmf and force values to 1500
(maximum in Ertan's data). t/A and, x, are not needed to be normalized since they
are within the desired range. The training set is contained in Appendix A and the
specifications of this network are summarized as;

Inputs: A/g, t/A, X, mmf(F)

Output: Force (S)

Number of neurons in the first hidden layer: 10
Number of neurons in the seccond hidden layer: 10
Number of data points in the training set : 500
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Unfortunately, there is no theoretically robust method conceming the choice of
number of neurons in each hidden layer for a given problem. There exists an inherent
trade-off between accuracy and generalization which are functions of the number of
neurons in the hidden layers. That is, the smaller is the number of hidden layer
neurons, the higher is the generalization and vice versa. Additionally, larger number
of hidden layer neurons implies larger computational time until convergence is
reached. These are the reasons why a large number of hidden layer neurons is not
always the best alternative. So, the best is making the choice heuristically by trial and
error method. Beginning with a low number of hidden layer neurons, the network is
trained continously monitoring the convergence rate and if this rate is very low, the
training process is terminated. Another training session with a larger number of
hidden layer neurons is initiated from the scratch still monitoring the rate of
convergence and this process is repeated until an appropriate convergence rate is
observed. After this point the number of hidden layer neurons is not updated again
and the network is left to converge until the overall mean squared error falls below
102 In order to observe the neural network performance, force-mmf curves similar
to Fig.3.8 are plotted for several combinations of A/g, t/A, x, values. As seen on the
representative example Fig.3.8, force-mmf relation is plotted simultaneously for the
training set values (computed) and neural network output, on the same graph.

During the training, due to insufficiency of data, for some intervals ( with very
high or very low values of mmf) poor fits were observed and to overcome this
problem new data points obtained (interpolated or extrapolated) from force-mmf
graphs (for the training set values) and from the studies of Yagan™", were added
to the training set.

98



!
!
|
|
I
|
i
1
1
L

1,600 r . .
i H 1
1 ]
1 ]
| ] i
1.200 | -— 4 F
I ] |
| I i ¥
i | | ]
i i i |
1,000 R et SRR L L .
| | i I
I i i i ]
1 | | { i
| | | i I i
see r-——--&-——-@—-—-—a + + =+ -
] | i | 1 i | |
i | 1 | I | {
] | { 1 1 i i
] ; 1 1 | : i
| ] ] |
L e e T+ + + -+ -
] ! 1 i | ]
| 1 I i 1 i
| i ! 1 ! i
| R N A A
400 u! e s Bt B
1 § I | { f
] y i i | |
1 ] | 1 |
1 ] 1 | |
L 1 l l

200 ———

£

Traluling Data

t

| MoeuralNetwork output

¢ 100 200 300 40868 500 880 700 S0 000 1,100
mm¢t

Figure 3.8 Force-mmf curves calculated using neural network in comparison with
the base data (A/g=100, t/A=0.5, x,=0.4, A,=0.0172 and L.=1m)
(A representative example)

3.8.2 The Network (NN2) for Computation of Flux vs MMF Curves

The second network is trained to find the relation of mmf values with magnetic
flux density B,. Its inputs are A/g, /A, X,, and B, and output is mmf It is trained
for obtaining force for unequal teeth pairs, as described in the following sections.
The network specifications are:

Inputs: A/g, t/A, x,, B:

Output: mmf (F)

Number of neurons in the first hidden layer: 10

Number of neurons in the seccond hidden layer: 10

Number of data pointsin the training set :880 (Appendix A)



New data points are also generated (by interpolation and extrapolation) and
added to the original set to overcome the problem of poor fitting. This
network is also divided into two mnetwork modules to guarantee convergence.

Both networks were trained until the total cost is equal to 102 First module is
trained for the input values of A/g equal to 40-70-100, and second module is
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3.9 Normalized Force Calculation for Asymmetrically Slotted Structures

3.9.1 Theory

For obtaining force values of asymmetrical slotted structures, a method
developed by Ertan!"” is used. The method may be explained by the help of an
asymmetrical teeth pair shown in Fig.3.10.

By
't
- -
| i
o et fe—xp—> ¢
< 't L

Figure 3.10 An asymmetrical teeth pair

Normalized force and permeance may be calculated by using two different
geometries having identical teeth pairs shown in Fig.3.11. According to the
method, symmetric geometries having equal stator and rotor teeth widths t, and
t. are considered. For the flux of both geometries to be equal, equation below
should hold.
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where A, and A, are stator and rotor teeth crossectional areas and B, and B, are
average flux density values of two geometries. It is clear that , if average flux
densitiy of geometry-a is B,, average flux density of geometry-b would be B.. t/t,.
For this reason MMF values to produce these flux densities are also different.

From these geometries force and permeance are calculated.

S= (S, +8)/2 (3.24)

Pr=2.Pu Py / (Pu+ Pu) (3.25)

Using the permeance value of asymmetric structure, mmf value that can
produce teeth pair flux ¢, may be calculated as:

F=¢/P (3.26)

From this formula, resultant mmf (F) can be determined in terms of symmetrical
geometry mmf values as :

F =(F.+Fy) /2 (3.27)

For the approach to be valid, distances d, and d; should be at least 25g. The
procedure mentioned below will be applied if these distances are lower .

As can be seen clearly from Fig.3.11, the geometry-a has stator and rotor tooth
width of t,, where geometry-b has t, and normalized displacement is x,=2.x/A.
The approximation below should be utilized, if distance to the next pair of the

moving rotor teeth is lower than 25g in the actual geometry.

A= Max ( A,t,+x; +25g) (3.28)
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Ab= Max ( A,t,+x; +25g) (3.29)
Therefore, in the calculations, A/g and t/A values for geometries (a) and (b) will

be different if the distances d, and d; are lower than 25g. So the effects of
neighbouring teeth will be considered as an important issue.

}(__ is Bt Geometry a

x}

d1
ts y
Bt.asftr Geometry b
tr
. x2 e

d2

Figure 3.11 Two geometries with identical teeth pairs

3.9.2 Force Correction Factor

Altough it is not needed here, if necessary to reduce error in calculated forces from
the data available a correction factor could be used. In other words if it was
necessary to use the data while the distance to the next teeth was less than 25g a
reduction factor due to this, could be read from Fig.3.12. Clearly if in the real
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geometry such a reduction is not present, the force found from the data must be
increased this nouch.

The percentage of reduction which is independent of position, was calculated by
Ertan!” for various flux density values and summarized in Fig.3.12. In the form of
two curves one for flux density greater than 1.1 Tesla and the other for flux
density lower than 0.5 T. For the flux density values in between the two extremes
linear interpolation may be used. Table 3.2 shows the data for the curves.

Table 3.2 Force correction factors

reduction reduction
d/g Bts>1.1T Bts<0.5T
25.7 0 0
13.6 6.4 27
10 10.6 44

These data points are fitted to polynomials using MATLAB for B,>1.1T and
Bi<0.5 T, and values within these range are found using linear interpolation.

The polynomials calculated are as follows.

For Bo>1.1T

P1(x) = -0.0021x*+0.1414x>-3.6153x+34.6808 (3.30)
For B<0.5T

P2(x) =0.0157x>-0.8381x+11.1889 (3.31)

104



reduction

L] T T T 1

| i I | |

i l | i |
- G e Ao (ISR, e

1 | i { i

i i | f |

I i I ) I
llllll A b L

( | | i ]

i i i i

| | i i i
|||||| b o]

i i y i T

) i I | i

i i | [ |
I P o AR N
r=—==="1 - y iy = r==3

I I i I

| | 1 | |

| | 1 ] )
|||||| R A R

i

i | I | i -

| i I { i ©
|||||| e 1 e " St it I

T oA e

| |

I ) i I | v
|||||| S SRS [0/ R, S SRSy S R

1 S R VA e

'

y I | i o
= ol B S 74 S L]

i 1 | | i

i i i { i

| f | i |
e A A e L Lo}

| i i i I

| | i I I

i i i i ! -
xxxxxx e Aty B Sttt B

i | I I i

i i | i i -
...... AN R S S Y

| 1 I i I »

i ) | |

| ! i I @
llllll s e e ————te

i | ] I _

| I | I

! ! ! !

- L ] - N

[ ] -]
- -

14 16
di/g

12

10

Figure 3.12 Force correction polynomials

3.9.3 Algorithm for Force Calculation of Asymmetrically Slotted Structures

The algorithm for data set production for asymmetrically slotted structures is written

on C programming language and is contained in Appendix A. Basic framework of

the algorithm is as follows:

STEP 1) For all the combinations of t/A, t/A, X,, and B, do step 2 to step 8

*A/g - 40, 70, 100, 150, 200, 250

*t/A- 03, 0.4, 0.5
*t/A - 0.3, 0.4, 0.5

*B, -0.2,0.4,06,0.8,1,1.2,1.4,1.6, 18,2
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STEP 2) For A=0.0172 (Calculation is based on Ertan’s data) calculate the
following parameters:

*t= (L/A).A

*t= (t./A).A

*g= A/(Mg)

*x= (Xa.A) /2

* d=A- (t/2 + t/2 + X)

STEP 3) For GEOMETRY-A calculate:

* A=MAX(A , t;+x+25.g )

* Mg=hg

* t/A=t/Aa

* Xo=2.X/\a

* using NN2 (neural network explained in section 3.7.2) find mmf for
geometry-a (F,)

F.=NN2(A/g, t/A, Xo,Bts)

* using NN1 (neural network explained in section 3.7.1) find corresponding

force.

S:=NN1(Mg, t/A, X, Fa)

STEP 4) For GEOMETRY-B calculate:

* By = Buts/t:

* A = MAX(A, t+x+25.g)

* Mg=Mv/g

* t/A=t/Ap

* Xa=2.X/ Ay

* using NN2 (neural network explained in section 3.7.2) find mmf for
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geometry-b (Fy)
Fy=NN2(Mg, VA, x,,Bv)
* using NN1 (neural network explained in section 3.7.1) find corresponding

force.

Se=NN1(A/g, t/A, X,, Fp)

STEP 5) Calculate mmf and force values for asymmetrical teeth pair:

*F= (F,+Fb)/2
* S =(S.+Sp)2

STEP 6) Calculate correction factor (CF) if d/g<25:
This procedure is omitted here. However, for the sake of generality its description is

given.

* if Bts>1.1 T use polynomial 1 (P1)
CF=P1(d/g)
* if Bts<0.5 use polynomial 2 (P2)
CF=P2(d/g)
*if 0.5<Bts<l.1
CF1=PI1( d/g)
CF2 =P2 (d/g)
CF= CF2+HCF1-CF2)/(0.6/(Bts-0.5))

STEP 7) f d/g <25

* § = §(100+CF)/100

STEP 8) Write the results to an output file
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3.9.4 Training Force Data of Asymmetrically and Symmetrically Slotted
Structures

From the above mentioned program, force data points for asymmetrically slotted
structures are obtained. Sample force data curves obtained for asymmetrically
slotted structures are shown in Fig.3.13. These data points and force data for
symmetrically slotted structures had to be trained together to be used in
optimization. By using the weights found from this work, a program is used to
obtain static torque characteristics of any given structure, and this program is
contained in Appendix B. The specifications of this network are summarized as
follows:

Inputs: A/g, t/A, t/A, X,, mmfF), Output: Force (S)

Number of neurons in the first hidden layer: 20

Number of neurons in the seccond hidden layer: 10

Number of data points in the training set : 2037
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Figure 3.13 Force curves of asymmetrically slotted structures obtained from the
algorithm in section 3.8.3 (A/g=200, t/A=0.4, t/A=0.3, A=0.0172m and L=1m)
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3.10 Verification of the Results on Two Different Test Motors (SR1, SR2)

Two test motors where torque position curves were measured as explained in
Chapter 2, are used to verify the accuracy of the obtained curves. The results are

given below:

A) SR1 MOTOR:

(First the quantities t/A,, t/A,, A/g have to be determined)
Outer diameter of the rotor: 70 mm

Number of rotor poles: 6

Stator tooth width (t): 8.5 mm

Rotor tooth width(t,) : 10 mm

Airgap length (g): 0.2 mm

Number of turns (N): 300

Core length (L.): 91.5 mm

Current : 4 A

A= (2*[1*35)/ 6 = 36.652 mm = 0.0366 m

t/A.= 8.5 /36.652 =0.232

t/Ac= 8.5 /36.652 =0.273

A/g = 36.652/0.2 = 183.26

mmf = [*N = 4*300 = 1200 AT

mmf converted to UDSS is mmf/A, =1200/0.0366 = 32786 AT

Since the output of the neural network is force, it have to be converted to

torque which is proportional to force

T = 2.8. d; AL (3.32)
(where d; is the radius of the rotor)
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The results for 4A current excitation are shown in Table 3.3 and Fig.3.14. For
this motor, t/A, and t/A, values are 0.232 and 0.273 respectively and these values
are out of the neural network training range (0.3 , 0.4, 0.5). In addition, BH
characteristic of this motor is different from the BH characteristic used for the
production of the force data.
explained with these reasons.

The error at normalized position 0.6 may be

Table 3.3 Measured”’ and calculated torque (Nm) for SR1

Xa Measured Calculated
0.1 3.3 4.74
0.2 8 8.11
0.3 10.6 9.79
0.4 11.2 10.52
0.5 9.1 11.19
0.6 3.0 9.37
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Figure 3.14 Measured'" and calculated torque-position curves of SR1
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B) SR2 MOTOR:

Outer diameter of the rotor: 38.6 mm
Number of rotor poles: 6

Stator tooth width (t;): 8.2 mm
Rotor tooth width(t,) : 8.2 mm

Airgap length (g): 0.255 mm
Number of turns (N): 322
Core length (L.): 40 mm
Current :1,23 A
Using the same method necessary quantities may be calculated as follows:

A= (2*I1*19.3) / 6 = 20.21 mm = 0.02021 m

t/A. = 8.2 /20.21 =0.406
t/A.= 8.2 /20.21 =0.406
AJg= 20.21/0.255=79.25 (The results are shown in Table 3.4 and in Fig.3.15)

Table 3.4 Measured and calculated torque(Nm) values for SR2

I=3A =3A I=2A I=2A I=1A I=1A
X, | measured | calculated | measured | calculated | measured | calculated
0.1 0.61 0.48 0.52 0.4 0.36 0.2
0.2 0.92 0.936 0.72 0.714 0.4 0.29
0.3 1.2 1.31 0.88 0.91 0.41 0.35
0.4 1.5 1.56 1.06 1.04 0.43 0.38
0.5 1.75 1.73 1.16 1.12 0.49 0.39
0.6 1.88 1.77 1.14 1.13 0.45 0.38
0.7 1.85 1.68 1.12 1.14 0.45 0.379
0.8 1.7 1.38 0.91 0.84 0.37 0.27
0.9 0.58 0.23 0.36 0.15 0.2 0.1
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Figure 3.15 Measured and calculated torque-position curves for SR2

From the curves, it can be observed that the shape and magnitude of the torque
curve is well predicted. This result is very satisfactory in view of the facts that the
B-H curve of the material used for the test motor is slightly different than the one
used for obtaining the data, and uncertanities exist in the airgap size due to the
difficulty of measurement (as explained in Chapter 2). On the other hand, force
calculations of these two motors, back core mmf drop is assumed to be zero. From

the finite element analisis of the motors, it is found that back-core mmf drop is

normalized position (xn)

negligibly small and this assumption is supported.
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CHAPTER 4

FORMULATION OF THE OPTIMIZATION PROBLEM

4.1 Introduction

As its name implies, the purpose of this thesis is to find optimum parameters for
switched reluctance motors that minimize torque ripple. Essentially, the thesis is an
optimization study and all the effort up to now is aimed to present the original
problem in such a way that it is possible to formulate it in a standard constraint
optimization problem.

Throughout this chapter, the processes pertaining to formulation of the problem in
the form of a constraint minimization problem and the solution technique will be
explained in detail In the last part of the chapter, optimum parameters found for
different excitation levels are also presented.

4.2 Constrained Optimization Problem in General

In its general form, a typical constrained optimization problem can be formulated
as;

Minimize £(x)

Subject to pi (;)= a; fori=l,...m <n
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G (x) < b; for i=1,........my
xeXcR
. $x<dc (Bounded variables) k=1.......n

where f (;) is the function to be minimized or the objective function. Left and
right hand side of inequality constraints are represented by functions g; (;), and
constant parameters b; respectively. Similarly, left and right hand side of equality
constraints are represented by functions pi()_() and constant parameters a;. Constants
m;, m; and n are number of equality constraints, number of inequality constraints and
dimension of the vector x respectively. The constraints ensure that the system
satisfies a set of specified requirements. x is a vector of independent optimization
variables in terms of which the objective function and constraint functions can be
computed. In other words, the constraints determine a subset of the domain

(feasible region) defined for the independent optimization variables (;). The
eventual aim of a constraint minimization problem is to choose the optimal vector
x" from the feasible region enforced by the constraints that minimizes the function
f(;). For the solution of the problem represented in this form several methods exist
(Lagrangian methods, exact penalty method, etc.). In this study, Augmented
Lagrangian optimization technique is preferred

4.3 Augmented Lagrangian Method

For an unconstrained minimization problem there are several solution methods. But
since in a constraint minimization problem the objective function is forced to reach
its minimum within a region determined by the constraints these solution methods

can not be directly applied. The main idea of constraint minimization is to convert
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the problem with constraints into an unconstrained form where the constraints are
implicitely imposed. The two well known methods to serve this aim is the
Lagrangian method and the penalty method.

Here in this study, Augmented Lagrangian method which is the combination of the
Lagrangian and Penalty Methods is used. These methods may be explained as

follows;

In the Lagrangian method, the terms that the difference of the left hand side and the
right hand side of equality and unequality constraints are added to the objective
function after being mulitiplied with new variables called Lagrangian multipliers. This
new function is called the “Lagrangian function” (Eq.4.1) and minimization of this
function with some unconstrained minimization method gives the solution for the

original constrained minimization problem.

Ux) =1+ (o, -p) + 8 b, -a) @

i=1

Penalty method on the other hand may be described as follows;

The basic idea in penalty methods is to eliminate some or all of the
constraints and add to the objective function a penalty term which
prescribes a high cost to infeasible points. Associated with these
methods is a parameter w, which determines the severity of the
penalty and as a consequence the extend to which the resulting
unconstrained problem approximates the original constrained
problem. As w takes higher values, the approximation becomes

increasingly accurate™ .

In view of these considerations the Augmented Lagrangian function with
Lagrangian and Penalty terms may be defined as;
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L.(;,&,B) = t(;) +c_x-T(;— 1—)) +[_3T(5- a) -W,p, —W,P; —W;P; (4.2)

where each penalty weight w; > 0 and, o and PB” are the vectors of Lagrangian
multiplier for equality and unequality constraints respectively and,

P, = g(ai -p.)’ (4.3)
P2 = Zc(bj -q), C.={ j: B;>0} (4.4)
ps= 2(b,-q) ., € ={j B=0and g>b} 4.5)

jeC,
where p; = pi (x) (i=1,2....,m; )and q; = q; (x) (;=1,2....,m;)

Gradient of the augmented Lagrangian function is :

ml
VL. =Vf(x) + 2, o' Vpi + 2, B'Vg + 2 2ws(bj-gq)Vg (4.6)

i=1 jec, jeCy

where Vp; and Vq; are gradient terms of equality and inequality constraints
respectively and these terms are found analitically and replaced in to the problem.

af’ = - 2W1 ( a; - Pi ) (4.7)

if j € C,, then;

.0 if B-2w,[b;q;] <0
i

) B; —2w2[b j—qj], otherwise (4.8)
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if j € Cy, then;
0, if [b;-q;] 20

B; = (4.9)
2w,[b i—4 j], otherwise

w; values during this update process are those values used in the previous step.
After new P values are generated, the sets C, and C; are also updated.

Given this standard formulation of Augmented Lagrangian Method the associated
torque ripple minimization problem variables and parameters are presented in the

next section.

4.4 Optimization Parameters

Correct design of airgap geometry is very effective on torque production of the
motor. For this reason, this work is based on optimizing the airgap parameters of
the motor. Because of the reason explained in section 3.2, the effect of adjacent
teeth is assumed to be negligible.

Independent optimization wvariables in this problem are listed below:
Mg - tooth pitch over airgap length,
t/A - stator tooth width over tooth pitch,

t/A - rotor tooth width over tooth pitch,

x=(Mg t/A t/L). (4.10)
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These are the variables to be optimized. Moreover, parameters used for the
construction of objective function are:

Xa - normalized rotor position,
mmf - Applied mmf to the teeth region.

Inorder to reduce the computational difficulties which may be associated with the
method used, normalized parameters rather than the actual parameters should be
used throughout the optimization process. This is because if the orders of the
optimization parameters are very different from each other the convergence may be
slowed down. Therefore, in our case, all optimization parameters are normalized
within the range [0-1]. This is obtained by dividing A/g values 250 (maximum value
defined), and mmf values to 1500 (since for A=0.0172, maximum value of mmf is
1500, for udss structure maximum mmf is 1500/0.0172). The force on the other
hand is observed to span a range between 0 to 1500 N for the data. For this reason
force data is normalized with respect to 1500 N. Since other parameters are in the
range [0-1] they are not needed to be normalized.

4.5 Constraints

Constraints of the problem are :
40< Mg <250 (4.11.a)

in normalized form ( normalized with respect to A=250) this constrained may be
written as;
0.16< Ag <1 (4.11.b)
03< t/A £0.5 (4.12)
03 < t/A 0.5 (4.13)
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The reason for these constraints is the fact that the neural network that functions as
the objective function is trained for A/g, t/A, t/A values within these intervals. The
networks were trained within these regions, because above or below these ranges
designing motor is physically unpracticle, e.g. very norrow or large airgap, very thin
or thick tooth widths.

- For minimizing out position inductance;

t/A + t/A <1

The first three constraints implies that, the last one is automatically satisfied ; hence
it is redundant and it is not included to the problem.

- For increasing the winding space,

t/A - t/A <0 (4.13)
For all practical designs, rotor pole width will be greater than or equal to stator pole
width since srm has only stator windings.
- Every parameter have to be greater than zero (nonnegativity constraints)
- For the motor be capable of self starting””),

t/A21/q (4.14)

where q isthe number of phases.

For this problem q is assumed to be 4 and this condition is also automatically
satisfied because of Eq.(4.12) and is redundant.
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Then the constraints of the optimization problem that we deal with may be written in
normalized form as;

)  0.16< Mg <1
i)  03< t/A <0.5
i)  0.3< t/A <0.5
V) t/A- t/A SO
V) t/A20,t/A20, Mg >0

4.6 Objective Function: Formulation of Normalized Torque Ripple

The most crucial point in the torque ripple optimization process, as mentioned
several times in the previous chapters, is the fact that the objective function which is
the torque ripple function can not be expressed as a mathematical function of the
objective variables. This is the reason why a neural network that maps the objective
variables into the torque ripple was trained with a set of computed data points. So
the neural network is the main tool in the objective function formulation process.

The neural network trained is a function (subroutine) within the optimization
program written on C, which returns force (S) when called with parameters A/g, t/A,
t/A, mmf, x,.

In the discussion above the way A/g, mmf (F), force (S) are normalized within the
neural network was described. In searching for the torque ripple the optimization
procedure again requires these variables in normalized form. Therefore, no further
conversion of variables is needed. In summary, the source data is for a structure with
A=0.0172. The neural net extracts the required information from this data set and it
is then converted to either to udss data or data for a specific motor.
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Here, it is important to reconsider the fact that this study does not involve one
single optimization problem but five similar minimization problems for five different
mmf levels (30, 40, 50, 60, 70 kKAT).

Given the fact that the neural network trained returns force (S), torque is
theoretically proportional to force and torque ripple is a phenomenon related with
the fluctuation of force among the different positions of the motor, the following
heuristic is proposed to represent the torque ripple.

For each vector [ Mg t/A t/A mmf ' of interest the neural network is called to
return force for each normalized rotor positions (11 times):

As seen from Fig.4.1 in a range of 30° ( 0< x, <1 in normalized form ) the points on
the force locus corresponding to each x, is calculated and this constitutes an array:

[ max [S(A/ g,t, /At / A, mmf, x,),S(A/ g,t, /A,t, / A, mmf, x; +0.5))

if x, <05
S,() =1 4
max [S(A/ g t, /A, t, /A, mmf,x.),S(A/ g t,/At, /A, mmf,x, —0.5)
| if x; > 05
for i=1,...,,11 (4.15)

where S(A/g, t/A, t/A, mmf, x;) is the force value returned by the neural network

for

y=(Mg t/A t/A ) (4.16)
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Next, the peak value of the force is found
ST = max{Sy(1), Sy(2),..., S(11)} (4.17)

For a fixed mmf value objective function to be minimized is defined as

~ 1 &S5 -8, () :
fly)=>- Z[TJ (4.18)

i=1

By dividing the difference term to S , normalized form of ripple is obtained
and comparison between different mmflevels becomes meaningful.

/N
FORCE (S]
Smax
81
S 8 :
force locus |
Smin :
|
|
I
|
|
\
0 05 1 = Xn

Figure 4.1 Torque ripple curve
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4.7 Minimization of the Augmented Lagrangian Function: Davidon Fletcher
Powell (DFP) Method

In the previous section, the constrained minimization problem was converted to a
unconstrained minimization problem by the Augmented Lagrangian method. The
Augmented Lagrangian function implicitly involves the constraints and in this form
it can be minimized by several unconstrained minimization methods.

In this study Davidon Fletcher Powell method which is known as one of the Quasi-

Newton methods is used. In order to understand this method, first the Newton’s
method should be understood.

Beginning from the simplest case, suppose that the function f of a single variable x is
to be minimized, and suppose that at a point x, where a measurement is made it is
possible to evaluate the three numbers f{x,), f(x:), f (xi). Then by Taylor expansion
around x it is possible to construct a quadratic function q which at x, agrees with f

up to second derivatives, that is

q(x) = fxe) + £0u)x - %) +0.5 £ (Gral(x - %)’ (4.19)

We may then calculate an estimate of xi+1 of the minimum point of fby finding the
point where the derivative of q vanishes. Thus setting

q (1) = £0x0) + £ (KW X1 - %) =0 (4.20)
we find

X1 = X = (FO) £ (%)) (4.21)
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This process which is illustrated in Fig.4.2, can be repeated at xy+;

Figure 4.2 Newton’s method for minimization

The idea behind Newton’s method is that, the function f being minimized is
approximated locally by a quadratic function, and this approximate function is
minimized exactly. For a function f of several variables (f R* — R), by the same

logic we can approximate f by the truncated Taylor series near xj

£(x) = f(xe) + Vi )(x-30)+ 2 (5~ ) "Bl )(x- ) 422)

The function is minimized when;

;k+l = ;k - [H()—(k )] N Vf(;k)T (423)
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Eq.4.23 is the pure form of Newton’s method. In view of the second order

sufficiency conditions for a minimum point, we assume that at a relative minimum

point x , The Hessian matrix H(x ) is positive definite. We can then argue that if f

has continuous second partial derivatives, H(;) is positive definite near x , and
hence the method is well defined near the solution.

At points remote from the solution, the algorithm must be modified in order to

guarantee convergence. The modification is that a search parameter o is introduced
so that the method takes the form

Xen = xe —0y [H(xe)] " VE(xe)” (4.24)

where o is selected to minimize f Near the solution we expect, on the basis of
how Newton’s method was derived, that o, = 1. Introducing the parameter for
general points, however, guards against the possibility that the objective might

increase with cu=1, due to nonquadratic terms in the objective function.

In most cases, such as this study evaluation and inversion of the Hessian matrix is
impractical or costly. The idea underlying quasi-Newton methods is try to construct
the inverse Hessian or an approximation of it, using information gathered as the
descent process progresses. The current approximation is then used at each stage to
define the next descent direction as in the Newton’s method. Ideally, the
approximations converges to the inverse of the Hessian at the solution point and the

overall method behaves somewhat like Newton’s method.

One of the most sophisticated methods for constructing the inverse Hessian is the
Davidon Flecher Powell Method. This method is one of the most effective search

method because of the following advantages:
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1. It requires only the value and the gradient of the function to be minimized.

2. Search directions are always guaranteed to be in the directions of descent.

3. Starting from any positive definite matrix, the approximated positive
definite matrices converge to the actual inverse Hessian at the solution

point.

The theory underlying the method can be found in any advanced optimization text
book!™!, Here only the algorithm will be given.

STEP 0:

Start with any symmetric positive matrix S, (preferably the identity matrix) and any
point Xo. Sy denotes the approximation for the inverse Hessian at the kth iteration.
Then starting with k=0,

STEP 1:
Set di=- Sk.gk

where g, = VE(x. ) , d is the direction of descent.

STEP 2:
Minimize f(§k +adk) with respect to o >0 to obtain X,.;, px = ody and 8k+1

(Search parameter o is evaluated (minimized) by the method explained in
section.3.6.4)

STEP 3:
Set qx = gr+1 - 8« and

PkPI _.SquqISk

S...=8S, +
K . PIQk QISqu

(4.25)
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Update k and return to STEP 1.

This algorithm keeps up iterating until ";m —;k" <€ , where € is a number within
the range [10?,10%]chosen by the user.

As it may seen from the method the gradient vector (of the objective function f)
needs to be evaluated at each iteration. But in this study, since the objective
function (Augmented Lagrangian L,) is not a pure mathematical function but an
indirect function of several neural network outputs, in order to evaluate the gradient
a numerical differentiation method is required. This method is the subject of the next

section.

4.8 Numerical Differentiation of the Objective Function

The gradient of the Augmented Lagrangian function is given by Eq.(4.2). It may be
seen that this gradient involves the gradient term of the original objective function
(torque ripple function). The torque ripple, for a given input vector, can only be
evaluated algorithmically from several neural network outputs. So the differentiation
should also be carried out computationally by typical numerical differentiation
methods.

In its simple form since

f'(x)= lélpw (4.26)

the straightforward method is to choose a sequence {hy}, so that hy—>0 and compute
the limit of the sequence

127



f(x+hk) - f(x)
D, ==

fork=12......n..... (4.27)

Beginning from D,, Dy (k = 2,3,....) is computed iteratively, also computing the
difference D;-D;.; at each successive iteration. The process is terminated when this
difference falls below a very small number € (defined by the user) for a number of
consecutive iterations. At this termination point (say, iteration j), D;is chosen as the

final approximated value of £(x).
If the function f{x) can be evaluated at values that lie to the left and right of x than
a two point formula will involve abscissas that are chosen symmetrically on both

sides of x. The simplest central-difference formula is;

f(x +h) — f(x — h)

(x) = 4.28
£ - (428)
In this study, a more sophisticated version of this equation is used;

. —f(x+2h) +8f(x+h) - 8f(x-h) + f(x-2h

() = =0+ 20) + 88 1) — 88(x 1) + E(x—2h) 429

12h

The derivation of Eq.4.29 is available in Reference 27.

The above formula is given for a function of one single variable but since the torque
ripple function is a function of several variables the algorithm defined by Eq.(4.29)
is applied to each individual component of the input vector simultaneously to obtain
the gradient.
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choose an initial design x,
choose initial multipliers o; , B;
choose initial penalty weights
W1, Wa, W3 (greater than or equal to 1)

iter=1

Xi=Xo

find x;, from x; using DFP

iter= iter+1 YES

Is termiation critarion

satisfied ?

NO
Update multipliers

a=a’ p=p"

Update penalty weights
w(iter)= c.w(iter-1)
(if w is not greater than w,,, chosen by the user)

Figure 4.3 Flowchart of the optimization procedure
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4.9 Flowchart of the Algorithm

The unconstrained optimization procedure described in the previous section may be
summarized by the flowchart shown in Fig.4.3. This program is also written on C
programming language and contained in Appendix B.

4.10 Application of the Optimization Algorithm

The solution of the unconstrained optimization problem can be made urbitrarily close
to the optimal solution of the original problem by choosing the penalty factor, w,
sufficiently large. However the behaviour of the method depends on the choice of
the penalty factor and the starting point. Especially for starting points far from the
final points, choice of large penalty factors will give way to computational
difficulties®® Therefore, it is suitable to start by a moderate penalty factor and to
find a solution for the resulting problem. Then the penalty factor is increased by a
certain amount and starting from the solution of the previous step, another solution
is found. The penalty factor at each step is increased according to the relationship;

w(i) = c.w(i-1), (4.30)

where W(i) <Wma, and i is the number of iteration. The optimal choice of penalty

increment factor, ¢, depends on the problem and even on starting point in a quite
complex manner. In general for low values of c¢(c<2) convergence needs a large
number of iterations, whereas for high values of c(c>7) convergence problems arise.
For our problem, initial values of constants w, and c are chosen as 2, and 2
respectively, and maximum value of W (Wpax) is limitted to32.
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Lagrangian Multipliers for equality and inequality constraints, o; (i=1,..,m, where m
is the number of equality constraints) and §; (j=1,..,n, where n is the number of
inequality constraints) are both chosen initially as 1 and are updated in each iteration
according to the equations 4.8 and 4.9.

For all optimization procedures, optimization criteria is used for terminating the
process. Throughout the optimization procedure convergence factor, €, is chosen as

10 for accuracy.

4.11 Optimization Results

The torque ripple minimization procedure is carried on from 54 different initial
points which are the combinations of the following values of the variables

A/g : 40, 70, 100, 150, 200, 250
t/A: 0.3, 0.4, 0.5
t/\:0.3,0.4, 0.5

In order to determine the effect of the variables on torque ripple a series of solutions
is obtained with objective function in Eq.(4.18), while keeping the MMF as a
parameter. The results of this investigation are summarized in Table 4.1. This table
indicates that torque ripple is minimized for large A/g (>200) values and A/g
increases with increasing saturation. At the mininmm ripple point t/A is around 0.4

and t/A is around 0.5.

A mathematical search for minimum unfortunately conceals many facts from the
designer. It is of interest to discover how sensitive the torque ripple is to variation of
each variable. For this reason, a further investigation is carried out where for

example MMF, t/A, t/A combinations are fixed and A/g is allowed to vary. In this
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case, a different concept, ‘percentage torque ripple’ is introduced. Percentage torque
ripple (see Fig.4.1) may be calculated as:

S-S
Smx w100 (4.31)

% torque ripple = S

Table 4.1 Optimum variables for different MMF levels for udss

MMF Mg t/A tdA
(kA)
30 2000 | 042 | 0.50
40 199.1 | 044 | 048
50 2012 | 042 | 050
60 250.0 0.4 0.50
70 2492 | 037 | 050

A typical result is given in Fig.4.4, for different combinations of t/A, and t./A, at 50
kA excitation level. For example, Fig.44.a, where t/A, and t/A are equal to 0.4 and
0.5 respectively, clearly displays how torque ripple falls from %40 to nearly %5 with

increasing A/g.

In general, as the mmf applied to udss is changed between 40 kAT to 70 kAT, the
best results are found for t/A, and t/A are equal to 0.4 and 0.5 respectively. The
ripple at this condition is about %6. The point at which the minimum ripple occurs
shift towards higher A/g values as the mmf is increased as indicated in Table 4.2.
The worst ripple occurs for norrow teeth (t/A, and t/A are equal to 0.3) and is in
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the order of %35. For other combinations, the ripple is about %20. When both sides
have a (t/A, and t/A) ratio of 0.5, the ripple is again low. However, large t,/A values
leave little space for windings and is not practically acceptable.

Fig.4.5 displays another set of results where A/g is kept as a parameter and t/A is
allowed to be the only variable of optimization, and the excitation is 50 kA. This
figures shows how sensitive the torque ripple is to t/A. For example, in Fig.4.5.b
variation of t/A between 0.5 to 0.48, while t/A=0.4, doubles the ripple and
increases from 5% to 10%. For different excitation levels, graphs which shows the
effect of A/g and t/A on torque ripple are contained in Appendix B. Investigation of
these figures show that the variation of torque ripple has its similar trend for
different excitation levels.

Generally in design optimization problems, optimum intervals are preferred to
optimum points. Hence a table presenting minimum ripple regions for the design
parameters is prepared for different values of mmf, t/A, t/A. Table 4.2 summarizes
the findings and gives A/g values and regions corresponding to minimum torque
ripple. From the table it may be concluded that, minimum ripple values obtained
where t/A and t,/A values are around 0.4 and 0.5 respectively.

It may be also concluded that for low excitation levels ripple is slightly higher than
what is found for higher excitation levels (greater than 50 kAT for udss) and
optimum A/g values lie in the range A/g greater than 100, and values /g less than
200 for 30 kAT and nearer 250 for excitation values approaching 40 kAT. At higher
excitation levels (greater than 50 kAT), ripple tends to decrease with increasing
excitation but is not very noticable for t/A combinations other than 0.3,0.3. In this
excitation range the optimum torque ripple value is available for A/g values between
150-250.
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Table 4.2 Sensitivity to A/g: Minimum ripple regions

Ag regions
MINIMUM Ag value corresponding to
MMF t/A /A RIPPLE oorrespondmg to minimum ripple
(KAT) VALUE (%) minimum ripple (.up'v to+ %10 of
point minimum ripple )

30 0.3 0.3 36.49 140 80-250

30 0.4 0.4 19.73 140 100-200
30 0.5 0.5 9.17 140 110-180
30 0.3 0.4 16.82 120 90-140

30 0.3 0.5 18.73 140 100-200
30 0.4 0.5 5.88 160 130-200
40 0.3 0.3 39.5 250 90-250

40 0.4 0.4 23.85 250 100-250
40 0.5 0.5 15.21 160 100-250
40 0.3 0.4 16.81 120 90-140

40 0.3 0.5 20.96 250 120-250
40 0.4 0.5 8.88 250 130-250
50 0.3 0.3 39.44 250 120-250
50 0.4 0.4 21.06 250 150-250
50 0.5 0.5 10.78 250 190-250
50 0.3 0.4 14.23 250 170-250
50 0.3 0.5 15.84 250 190-250
50 0.4 0.5 5.76 250 200-250
60 0.3 0.3 35.37 250 180-250
60 0.4 0.4 21.69 250 160-250
60 0.5 0.5 9.62 250 200-250
60 0.3 0.4 16.11 250 170-250
60 0.3 0.5 14.51 250 190-250
60 0.4 0.5 6.81 250 200-250
70 0.3 0.3 22.05 250 120-250
70 0.4 0.4 15.65 250 220-250
70 0.5 0.5 9.55 250 190-250
70 0.3 0.4 17.58 250 150-250
70 0.3 0.5 22.21 250 200-250
70 0.4 0.5 6.82 250 200-250
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From this research, the following generalizations can be made:

1. Torque ripple is lower when A/g is greater than 150.

2. Torque ripple is increased when rotor and stator teeth widths are reduced,
for example when t/A or t/A is around 0.3 the amount of torque ripple is
greater.

3. Minimum ripple values are obtained where t/A and t/A values are equal to
0.4 and 0.5 respectively.

4. With increasing mmf, t/A and t/A values where minimum ripple points are
found to be similar.

5. With increasing mmf, sensitivity to A/g is increased. For example from
Table 4.2 it is seen that, at 40 kA excitation, A/g range corresponding to
minimum ripple is approximately [100-250], when it is [200-250] at 70 kA
excitation mmf.

4.12 Discussions

This chapter presents the results of an investigation that pursues the effect of
magnetic circuit parameters on torque ripple of a doubly-salient switched reluctance
motor which operates with a constant level of excitation at low operating speeds.
The effect of ripple is most pronounced at these speeds since shaft speed changes
are also more noticable. Although, due to the simplifying assumptions the torque
ripple values may show some variation in practice, the general trend is clearly
observable from the investigation. The findings indicate that by correctly choosing
A/g values greater than 150 and setting t/A to values around 0.4, and t/A to values

around 0.5, the torque ripple can be minimized at low speeds.

However, although these evaluations are valid within the assumptions made, an
important practicle aspect of designing a srm is left out. The winding space
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requirement may affect the choice of t/A and t/A and a more complete investigation
this factor must also be taken into account. However, the findings here are
summarized in Table 4.2 to indicate ranges of parameters where low torque ripple
may be obtained and the general trend for reducing torque ripple. A designer can
use the information provided to achieve low torque ripple designs.
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CHAPTER §

COMPARISON OF THE OPTIMIZATION RESULTS WITH FINITE

ELEMENT FIELD CALCULATIONS

5.1 Introduction

In this chapter, static torque curves of optimum geometries (the geometries defined
by the results of the optimization study) are predicted using finite element analysis to
test the validity of the findings from the data and the optimization.

A discussion on the adoptation of the data is also contained in this chapter. Effect of
overlapping on force for doubly salient structures is discussed and methods are
proposed for eliminating this effect. Another important issue contained in this
chapter is the normalization of the parameters of the practical motors with unequal
number of stator and rotor teeth. Normalization with respect to the stator and rotor
tooth pitch is discussed and results from different normalizations for test motor SR2
are compared

5.2 A Discussion on the Adaptation of the Data to the Present Problem

One important issue in this study is the effect of adjacent tooth pairs on the force
produced by asymmetrically slotted doubly salient structures. The usage of a neural
network, with the available data, made it possible to make force calculations for
various geometries within a wide range as discussed in Chapter 3. Hovewer, it is
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important to consider the fact that the available data had been produced by
Ertan'"*'") for structures with equal stator and rotor tooth pithces and tooth widths.

In Section 3.9, the method developed by Ertan'" for force calculation of
asymmetrically slotted structures from symmetrically slotted tooth pairs is explained.
In order to understand the method first the method used to obtain the original data
by Ertan should be explained. The main point to understand is the fact that during
the force data calculation by field solutions by Ertan'"”), not only the stator tooth for
which the force was intended to be calculated, but all adjacent stator teeth were
excited as well Hovewer, in this study the aim is to obtain force-position
characteristics resulting from one-phase-on excitation. For force calculation of
asymmetrically slotted structures, the aim is to eliminate the effect of the adjacent
excited stator tooth. This is accomplished by modelling the structure such that the
distance between two adjacent tooth pairs is larger than its actual value.

In Fig.5.1, adjacent tooth pairs are presented. In this figure, “0” represents amount
of overlap and “x” represents the distance between the rotor tooth and the adjacent
stator tooth. In his study, by using various field solutions, Ertan proved that for
values of “x” larger than 25g, the effect of adjacent tooth pair is negligible.

Considering this fact, in force calculations of asymmetrically slotted structures, if
rotor tooth pitch, A, (t;+d+x), is less than t;+d+25g, the adjacent teeth has the effect
to decrease force. As discussed in Sec.3.4, in a switched reluctance motor when a
pair of symmetrical pairs are excited adjacent play no role in force production.
Hence, in this study tooth pitch is assigned the value t;+d+25g and reminding the fact
that all parameters are normalized with respect to this new value, and force
calculations are carried out according to this new normalization. By this method the
effect of adjacent tooth is eliminated. This assumption means that the force produced
by a pair is mainly dictated by the amount of overlap.
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Figure 5.1 A model of doubly salient structure

In order to verify this approach, considering a geometry (as seen in Fig.5.2) where
overlapping effect is considerably high, and assuming the stator tooth width of the
test motor SR2 is widened such that t/A, is equal to 0.5, force characteristics are
obtained using ANSYS. In this verification study the parameters tJ/A,, t/A,, A/g are
0.5, 0.4 and 79.25 respectively, and it is obvious for this geometry that overlapping
effect is high. In Table 5.1, ANSYS and neural network results are compared. In this
table both the amount of overlapping (o/g), and the distance between the rotor tooth

and the adjacent stator tooth is given for various positions in normalized forms.

In Fig.5.3, the results in Table 4.1 are plotted. The good agreement between the
neural network results and ANSYS solutions is readily observable. The discreapency
at x, is equal to 0.7 and 0.8 is probably due to meshing problems and needs to be
verified ones again. However, these results support the assumption that the overlap

with the adjacent pole does not introduced a serious error to predictions.
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Figure 5.2 The relative position of teeth for t/A,=0.5, t/A=0.4 for position x,= 0.6

Table 5.1 Comparison of force data calculated using ANSYS and neural network to
test the effect of adjacent teeth pair (t/A,=0.5, t/A=0.4, A,/g=79.25).

rotor normalize Torque | Predicted
position rotor overlap x/g calculate torque
(degree) position o/g d using from
wW.I.t A (Xq) ANSYS | neural net.
3 0.1 31.7 19.81 0.25 0.46
6 0.2 27.7 15.85 0.68 0.92
9 0.3 23.8 11.9 1.06 1.28
12 0.4 19.8 7.93 1.37 1.54
15 0.5 15.85 3.96 1.59 1.72
18 0.6 11.9 0 1.75 1.84
21 0.7 7.93 -3.96 1.87 1.80
24 0.8 3.96 -7.93 1.96 1.70
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Figure 5.3 Comparison of force data calculated using ANSYS and neural network to
test the effect of adjacent teeth pair (t/A.=0.5, t/A=0.4, A,/g=79.25).

Another important problem is that the stator and rotor tooth pitches of the structure,
which the original force data is calculated for, are equal. But, practically this is
impossible, since the number of stator and rotor teeth have to be different for
operation. For example, for the test motor SR2, number of stator teeth (N;) is equal
to 8 and number of rotor teeth (N,) is equal to 6, and it is obvious that the stator and
rotor tooth pitches are different (A,=61/8). In this case, the problem is which one of
the tooth pitches (As or A,) is used for parameter normalization. But for ideal case, it
means there is no overlapping between phases (x>25g), there is no difference

between normalization with respect to stator and rotor tooth pitches.

For verifying this fact, for the test motor SR2 all parameters are normalized with
respect to stator tooth pitch and the results of two types of normalizations are
compared with the measured force data. In Table 5.2 the results of different type of
normalizations are shown. From the table, the results are similar when the effect of
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overlapping is small. But for normalized positions which greater than 0.6, the error
of second type of normalization is increased. In this table, normalized positions of
the rotor with respect to A, and A, are also seen for the same amount of rotation, and
here x,, is normalized rotor position with respect to A,, and x, is the normalized
position with respect to A,. Since the ratio of the number of stator and rotor teeth is

8/6, the relationship between X, and x,, may be derived easily as Xqs = 8.X,/6.

Table 5.2 Predicted force from neural net. data of SR2 for normalizations with
respect to A, and A,

rotor normalized | normalized measured torque torque
position position position with torque of | calculated by | calculated by
(degree) with respect to A, x/g | SR2at3A | normalizing | normalizing
respect to (Xar) excitation | parameters | parameters
Ar (Xos) W.I.t Ay w.It As
3 0.1 0.13 23.80 0.61 0.47 0.41
6 0.2 0.26 19.81 0.92 0.93 0.88
9 0.3 0.40 15.85 1.20 1.31 1.23
12 0.4 0.53 11.90 1.50 1.56 1.47
15 0.5 0.67 7.93 1.75 1.73 1.62
18 0.6 0.80 3.96 1.88 1.77 1.57
21 0.7 0.93 0 1.85 1.68 0.92
24 0.8 1.06 -3.96 1.71 1.38 0

5.3 Comparisons of Torque Curves Computed from Field Solutions and

Neural Network Simulations

B-H data chosen in finite element based torque calculations of the motor designs
found for the five different mmf levels, is the same with the B-H data in Ertan’s
computations. In order to reduce the slot effects, sloth depth was chosen (by Ertan)
as 40g for the calculation of the data. Ertan, in his work, showed that this choice of

slot depth effectively represents an infinite slot. For this reason, slot depth is
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slot depth effectively represents an infinite slot. For this reason, slot depth is
choosen as 40g also in finite element modelling. Since the back iron mmf drop is
neglected in this study, in order to reduce the drop, the back iron is modeled such
that it is very thick (3t,). Conductors are modeled such that they are very small and
are sufficiently far away from the airgap region. Models are carefully meshed as
explained in Chapter 2.

For optimum geometries at different mmf levels, torque curves are obtained from
field solutions (ANSYS) and also from neural network algorithm in order to make
comparisons between them. The results are presented in Table 5.3 and Figures (5.4
to 5.8).

Percentage torque ripple associated with the curves are calculated from Eq.4.30 and
tabulated in Table.5.4 for each approach (finite element and neural network). This
table shows that the difference in torque ripple levels calculated from the two
different approaches are not large. The error is in an acceptable range since the both
approaches inherently have their error allowances. The resultant torque curves are
similar in shape. The reason of the error may be related with the differrences in
modelling with finite element analysis and neural network model, and solution errors

due to meshing in numerical field solutions.
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Table 5.3 Torque values computed using ANSYS and neural network
simulations for optimum designs at different mmf levels.

Optimum | Normalized | Torque (Nm) | Torque(Nm)
MMF (kA) | Geometry | Position (x,) ANSYS Neural Net.

0.1 22.8 25.5

0.2 52.7 54.8

Ag=200 0.3 72.3 70.7

30 t/A=0.418 0.4 82.1 78.4
t/A=0.5 0.5 84 81.7

0.6 84.2 82.1

0.7 84.8 814

0.8 84 78.9

0.9 63 23.5

0.1 29.9 43.9

0.2 58.1 74.6

Mg=199.1 0.3 78.1 91.5

40 t/A=0.436 0.4 90.8 99.5
t/2=0.48 0.5 97.4 102.6

0.6 100 1031
0.7 99.6 103.9
0.8 93.4 105.2

0.9 25.6 41.9

0.1 30.4 51.9

0.2 69.2 88.7

A/g=201.2 0.3 102.2 112.1
50 t/A=0.419 0.4 124.9 123.4
t/2=0.495 0.5 133.7 128.1

0.6 135.7 129.1

0.7 136.3 129.3

0.8 135.9 130.9

0.9 110.9 54.7
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Table 5.3 Cont’d

0.1 36.1 68.1
0.2 86.4 106.6
A/g=250 0.3 120.4 134.1
60 t/A=0.4 0.4 146.6 148.7
t/A=0.5 0.5 158.5 154.9
0.6 162.6 156.8
0.7 165.4 156.9
0.8 166.2 157.7
0.9 150.7 68.3
0.1 37.7 81.8
0.2 93.7 118.2
Ag=249.2 0.3 140.2 148.6
70 t/A=0.374 0.4 167.8 165.7
t/A=0.5 0.5 177.4 173.3
0.6 183.8 176.1
0.7 185.2 177
0.8 186.5 173.7
0.9 158.1 87.2
torque (kN m)
100 T T T T
E | i | | | i | :
i | | i i | | ! |
I e — -
B0 [ e N o
i | | | | | | |
I I R R R A B RN
60 fprmmmpmmm b o]
| ] { i I i 1 |
1Y/ B
‘ ' ' 4 1 1 H 1 |
L et i/ A S i | o i i 7
| | | | | | l | |
720 R R R T T
I O e B ST Y
| | | ; | ; i { |
i i — NN —+— ANSYS i E
0o 0.1 0.2 0.3 0.4 0.5 0.8 0.7 0.8 0.9 1
Xn

Figure 5.4 Torque curves computed using ANSYS and from neural network
simulations(optimum design for MMF=30kA, A/g=200, t;A=0.418, t;A=0.5)
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Figure 5.5 Torque curves computed using ANSYS and from neural network
simulations (optimum design for MMF=40kA, A/g=199.1, t,A=0.436, t,A=0.48)
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Figure 5.6 Torque curves computed using ANSYS and from neural network
simulations (optimum design for MMF=50kA, A/g=201.2, 1/A=0.419, t/A=0.495)
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Figure 5.7 Torque curves computed using ANSYS and from neural network
simulations (optimum design for MMF=60kA, A/g=250, t/A=0.4, t/A=0.5)
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Figure 5.8 Torque curves computed using ANSYS and from neural network
simulations (optimum design for MMF=70kA, A/g=249.2, t/A=0.374, t/A=0.5)
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Table 5.4 Torque ripple levels of optimum geometries calculated from neural

network and ANSYS
MMF of optimum % Torque ripple % Torque ripple (neural
geometry (kA) (ANSYS calculation) | network calculation)
30 8 8.5
40 15.2 8.2
50 11.3 8.9
60 10.4 10.2
70 10.2 9.6
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CHAPTER 6

CONCLUSIONS

6.1 General

In the first part of this work, a professional magnetic field solution software
(ANSYS) is assessed for accuracy in predicting flux linkage, leakage flux and
torque of a switched reluctance motor. For this purpose macros are developed. The
effects of mesh distribution on both solution accuracy and torque and flux linkage
calculations are investigated. Rules are laid out for obtaining accurate results.
Measurements of the torque and flux linkage characteristics of SR motors are
conducted. When measured data is compared with computed torque curves
agreement is found to be very good. This study clearly displayed that magnetic field
solution technique and the routines developed for torque and flux linkage calculation
are reliable and can be used to verify the performance of an srm. However, it is
found that, a typical problem with practical levels of saturation (approximately 8000
nodes) takes about 25 minutes on a HP-700 workstation.

Since the aim is to find the optimum motor structure with minimum torque ripple, a
large number of solutions would be required. As a result of this it is easy to conclude
that, using finite element analysis in an iterative optimization process is almost
impossible due to time constraint. For this reason, force and permeance data which
617 js used as a data base. This data is
computed per unit length of a doubly salient structure with identical stator and
rotor teeth, containing information about the nonlinear nature of the problem.

is numerically computed by Ertanf
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The problem then, is extracting the required information from this data set without
loss of accuracy. Another important consideration is the time taken to reach the
desired data point. This is very important, since the aim here is to optimize a three
variable problem and access to this data will be required hundreds of times in a
typical optimization procedure. For this reason, neural networks are found to be
suitable for this problem. Neural networks not only have accurate prediction ability,
but are suitable for an optimization algorithm, since once the network is trained
finding a data point involves calculation of a simple analytical equation. If neural
networks and other interpolation techniques, such as multi-input splines are
compared, it can be observed that for a system which has many inputs (in our
problem number of inputs is 5), neural networks are more advantageous. Because,
for multi-input systems other techniques such as splines causes complexity in
programming and they are also time consuming, since all two dimensional surfaces
have to be defined separately. But in the usage of neural networks, there is no

limitation on the dimensions of input and output vectors.

One important aspect about neural networks is the choice of the number of hidden
layer neurons. The choice should be made such that the neural network recognizes
the pattern underlying the training data with the lowest possible number of hidden
layer neurons which is called as ‘generalization’. With greater number of neurons
than the number sufficient to generalize, the neural network ‘memorizes’ the training
data which means that although the neural network seems to be trained perfectly, it
makes large oscillations while being used as a device for interpolations between the
data points in the training set. So the strategy for choosing the number of neurons
was, to begin with a low number of hidden layer neurons and monitoring the
interpolation performance on graphs, and than increasing the number of neurons

gradually until the desired accuracy for accessing the data achieved.

As discussed in Chapter 3, three networks are trained. These are networks trained to
represent force-mmf (500 data points in training set)and Bt (flux density)-mmf (880
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data points) curves of symmetrically slotted geometries, and a third network trained
to represent force vs. mmf variation of asymmetrically slotted structures (2037 data
points).The first two networks are in fact only needed to conmstruct the third
network. The force vs. mmf network for asymmetrically slotted geometries is crucial
since it simplifies the prediction process as described in Chapter 3. In this work,
overall mean square error of 107 is taken to be sufficient for accuracy. On the other
hand, each one of these networks is found to take about a month on a HP-700
workstation including corrections for portions of the data which were found to be
poorly trained. This experience indicates that training a network is a tedious work if
high accuracy is desired.

Using the approach® described in Chapter 3 and the force-mmf network for
asymmetrically slotting, it became possible to predict the torque-position curves of
any asymmetrically slotted geometry. It must be noted however that in the approach
adopted here the excitation region is excluded from the calculation since the data
also assumes that this region does not affect the force produced. For this reason,
using this data essentially means neglecting the effect of the excitation winding, the
space it occupies, also losses, temperature rise etc. This however is taken to be an
acceptable assumption at the first stage of the problem.

Since our problem is a constraint optimization, the problem has to be converted into
an unconstrained form where the constraints are automatically imposed. The two
well-known methods to serve this aim is the Lagrangian method and the penalty
method. In this work, the Augmented Lagrangian method, which is the combination
of Lagrange and Penalty methods, is preferred since this combined method has the
advantages of enlarged region of convergence and the requirement of fewer
iterations for convergence. In this combined form, some problems related with
penalty weights, such as divergence from the global minimum, is avoided. For
minimization of the Augmented Lagrangian function Davidon Fletcher Powel
method which is one of the quasi-Newton methods, is preferred. The reason for
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using this sophisticated method is that; only the first derivatives of the function to be
minimized with respect to each independent variable is required and the method is
guarantees search direction to be in the direction of the descent. Then the design
problem is formmlated as torque ripple minimization problem with three variables
and inequality constraints. Starting from 54 initial points, optimum variables are
found . For convergence, approximately 300 iterations are required, which takes
approximately about an hour.

Then, to get an insight to the problem for different mmf levels, optimum parameters
that minimize torque ripple are found. The results are presented so that rather than
specific optimum points intervals in which torque ripple is within 10% of the
minimum. It is believed that this form of the data will prove useful for the designer.
The results of this study are presented in Table 4.2 and figures Fig.4.4-5 and in
Appendix B.In summary, for different mmf levels, the best results are found for t/A,
and t/A, values of 0.4 and 0.5 respectively and the worst ripple for narrow teeth
(t/A=0.3) for both sides. The point at which minimum ripple occurs shift towards
higher A./g values as the mmf is increased within the interval 100-250.

Finally, to assure that the results of the optimization are meaningful, the static torque
characteristics of optimum geometries found for different mmf levels are computed
also using finite element analysis. The comparison given in Table 5.4 shows that the
results of the optimization match the computations.

In this work, the optimum ripple conditions obtained rely on two basic assumptions;
1. The saturation in the back core is negligible,

2. The winding space is not a constraint on the mmf that can be applied to
teeth region.
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In practice both of these conditions play an important role in designing a practical
device. Therefore it is necessary to incorporate these considerations into the design
procedure.

However, the approach presented here clearly indicates how torque ripple can be
minimized and what can be done to minimize it. The results given here are obviously
not exact values, both because of the computation errors and assumptions involved,
but indicate the general trend with changing parameters. So instead of using the
parameters obtained from optimization directly as they appear, a better approach
would be to examine the tables which show the ripple for various combinations of
design parameters and assess several designs in the optimum range. The designers
experience in deciding on various parameters and deciding on current densities is

obviously important.

6.2 Future Work

In this thesis, the search for optimum geometry is limited to conditions which
corresponds to low speed operation. Indeed this condition is the most important
from the point of view of torque ripple since inertia effect is most observable.
However, considering the medium speed range, also including back emf effects for
torque ripple minimization is also worthy of investigation.

It may be also worthwhile to develop a torque ripple optimization approach to

investigate how a more realistic set of o parameters can be found including the effect
of winding space.
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APPENDIX A

PROGRAMS AND DATA SETS RELATED WITH NEURAL NETWORK
BASED FORCE CALCULATION OF ASYMMETRICALLY SLOTTED
STRUCTURES

A.1l. Artificial Neural Network Algorithm:

The following algorithm, which was written on C programming language, is used to
train a neural network that recognizes the pattern underlying the data available. The
algorithm was explained in Sec 3.5. In order to run the program succesfully, data file
and related weight file have to be contained in the same directory.

NEURAL.C
#include <stdio.h>
#include <math h>
#include <stdlib.h>
#define boy 25

e

/**definition of parameters**/

FILE *fp, FILE *fout; FILE *fyd; FILE *fy,

double w{4][boy]{boy],big.t,bt[boy][boy];

int gb,iter,a,b,c,i,j,jj,nn,Lkk,ii,s,ss,tt,h,say,N1,N2,iv,in,on;

int nk,p,itn,dimu,dimy,dimx 1,dimx2,dd,dim,fare,sayi,wsay,tel;

double cost,top,der,ex1,der],out,cons,ex,ut,yt,sum;

double gb3[boy],gw3[boy] [boy].gb2[boy],gw2[boy][boy].gb1 [boy],gw1 [boy] [boyl;
double GALM,GALM2,ALM,AL A B Bk, ALMT,GAL2,dr, NORM,CST,pert,cold,
double *u,*y,*yd, *x1,*x2,*z1,*22,*JJ,*GJ,*X, *d, *old, *old1;

fex+x READ INPUT/OUTPUT DATA FILE ****¥/
if((fp~fopen("mmf-force.dat","r")) =NULL) {
printf("can not open the file\n");  exit(0); }
/*mmf-force.dat training set file (or any training set) have to be contained in the same directory
with the program. This file have to contain inputs and outputs in the same raw.*/
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printf{"\nWhat is the number of input/output vectors? \n "), scanf("%d",&iv),
printf{"What is the number of inputs ? \n"); scanf{"%d",&in);
printf(*What is the number of outputs ? \n"); scanf{"%d",&on),
printf{"What is the number of neurons in the first layer?\n"); scanf{"%d",&N1),
printf{"What is the number of neurons in the second layer™\n"), scanf{*%d",&N2),
printf{"Number of iterations=\n"), scanf("%d" &itn);
pnntﬂ random weights(0) or read from file(1)\n"); scanf{"%d", &tel)

Sk kb ideiek Bhgkd ddedeede ik iokfokkkdk /
/*dynaxmc memory allocation part*/
dimu=iv*in; dimy=iv*on;, dimx1=iv*N1; dimx2=iv*N2;
dim=in*N1+N1*N2+N2*on+N1+N2+on,

if{(u=(double*) malloc(dimu*sizeof{ double))==NULL ) exit(1);
if{(y=(double*) malloc(dimy*sizeof{double)))==NULL ) exit(1);
if{(yd=(double*) malloc{dimy*sizeof{ double))—=NULL ) exit(1);
if((x1=(double*) malloc(dimx 1*sizeof{double))y==NULL ) exit(1);
if{(z1=(double*) malloc(dimx 1*sizeof{double)))—NULL ) exit(1);
if{(x2=(double*) malloc(dimx2*sizeof(double))—NULL ) exit(1);
if((z2=(double*) malloc(dimx2*sizeof{double))==NULL ) exit(1);
if{(JJ=(double*) malloc(dim*sizeof{double)))==NULL ) exit(1);
if{(GJ=(double*) malloc(dim*sizeof{ double))>=NULL ) exit(1);
if{(X=(double*) malloc(dim*sizeof(double))==NULL ) exit(1);
if((d&=(double*) malloc(dim*sizeof{double)))==NULL ) exit(1),
if((old=<(double*) malloc(dim*sizeof{double))=NULL ) exit(1);
if{(old1=(double*) malloc(dim*sizeof(double))=NULL ) exit(1);

/*reading training set from the file mmf-force.dat*/
nn=1;
for(i=1;i<1+iv;i++)
{ i1, for(d—nnkk<nn+injkk++) {fscanfifp,"%lg".&ut); a=in*(-1)+jj; ulaj=ut; j=ij+1; }
=1
for(kk=(nn-+in);kk<nn+in+on;kk++)
{ fscanfifp,"%lg".&yt), b=on*(i-1)+], y[bl=yt; I=1+1;} nn=nntinton; }

/*** defining arbitrary weights ***/
/* if the parameter ‘tel’ is 0 weights are not read from any file but defined arbirarily*/
big=0; dr=100;, a1,
for(b=1;b<1+in;b++) {for(c=1;c<1+Nl;ct++) {w]a][b]l{c]=rand();
if(big< wia][b][c]) big= wia][b][c] ; }}
a=2; for(b=1;b<1+N1;b++) {for(c=1;c<1+N2;c++) {wa][b][c]=rand();
if(big< wia][b][c]) big= wia][b][c] ;}} a=3;
for(b=1;b<1+N2;b++) { for(c=1;c<l+on;c++) {wla][b][c]=rand(; if(big< wla][b][c])
big=wia][blic] ; } }
a=1; for(b=1;b<l+inb++) { for(c=1;c<1+N1;c++) { wia][b][c]=wla][b][c]/(big*dr);, }}
=2, for(b=L;b<I+NLb++){ for(c=1,c<1+N2;c++) {wia][b][c]=wla][b]ic])/(big*dr);}}
a=3; for(b=1;b<1+N2;b++) { for(c=1;c<l+on;ct++) { wia][b][c]=wia][b][c])/(big*dr); }}
t=0; a=1; for(c=1,c<1+Nl;c++){ bt[a][c]=rand(); if(t<bt[a][c]) t="bt[a][c]; }
a=2; for(c=1;c<1+N2;c++) { bt[a][c]=rand(; if{t<bt[a][c]) t="bt[a][c]; }
a=3; for(c=1;c<l+on;ct++) { bt[a][c]=rand(); if{t<bt[a][c]) t="bt[a][c]; }
a=1; for(c=1;c<1+N1;c++) { bt[a][c]=bt[a][c]/(t*dr);}
a=2; for(c=1,c<1+N2;c++) {bt[a][c]=bt[a][c]/(t*dr);}
a=3; for(c=1,c<1+on,c++) {bt[a][c]=bt[a][c]/(t*dr);}

[dRkkeek parameter initialization *******/
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gb=in*N1+N1*N2+N2*on+N1+N2+on, say=0, Bk=0; cold=0;

for(a=1,a<gb+1;a++) { old[a]=0; old1fa]=0; }

wsay=0;, AL~1; sayi=0;

if(tel>=1) /*if weights are read from file which is previously obtained*/

{

if{(fyd~fopen("weight.dat","r")==NULL) { printf{"can not open the file\n"); exit(0); }
fscanf(fyd,"%d %d %d %d\n",&in ,&N1,&N2, &on),

for(i=1;i<int+ L;i++) { for(k=1k<N1+1k++) { fscanfifyd,"%lg \n",&w{1][i}[k]);}}
for(k=1k<N1+1;k++) { for(p=1;p<N2+1;p++) { fscanf(fyd,"%lg \n",&wi2][k][p]); }}
for(p=1,p<N2+1;p++) { for(=L;j<on+1j++) { fscanf(fyd,"%lg \n",&w{3][p](D); }}
for(k=1;k<N1+1k++) { fscanfifyd,” %lg \n",&bt[1][k]); }

for(p=1,p<N2+1;p++) { fscanf(fyd,"%lg \n".&bt[2][p]); }

for(=1;j<on+1;j++) { fscanfifyd,"%lg \n".&bt[3](D; }

}

[4* * ITERATIONS #*#**xathihirrabtibdbkihhhbshihsess/
for(iter=1;iter<itn;iter++)

{ /* for temporary weights output of the network is calculated and error is obtained */

[hxx OUTPUT VECTOR CALCULATION i

cons—10;

for(ii=1;ii<iv+1;ii++)

{
/***  CALCULATION OF THE STATE VECTORS X1 AND Z1 **¥/
for(lke=1k<N1+1;k++)
{ sum=0; for(p=1;n<in+1;n++)
{ a=in*(ii-1)tn; sum=w{1][n][k]*ufa]+sum; }
c=N1*@ii-1}+k; x1[c]=sum+bt[1][k];
/*** SIGMOID OPERATION **#/ zl[c]=tanh(cons*x1[c]); }
/***  CALCULATION OF THE STATE VECTORS X2 AND Z2 **¥/
for(p=1,p<N2+1;p++)
{sum=0; for(k=1;k<N1+1k++) { c=N1*(ii-1)+k; sum=w{2][k][p]*z1[c}+sum;
3

b=N2*%(ii-1)+p; x2[b]J=sum+bt[2][p];
/*** SIGMOID OPERATION ***/ z2[b]=tanh(cons*x2[b]); }
[e** CALCULATION OF THE OUTPUT VECTORS wkx/
for(=1;j<on+1;j++)
{sum=0; for(p=1;p<N2+1;p++) { b=N2*(ii-1)}+p; sum=w{3][p]{jl*z2[b]+sum,; }
dd=on*(ii-1)+j; yd[dd]=sum+bt[3][j]; }}
/***  COST FUNCTION  **v/
cold=cost, sum=0;
for(i=1;i<iv+1;i++)
{ for(=1;j<on+1;j++) { dd=on*(i-1)+j;
cost=(y[dd]-yd[dd])*(y[dd]-yd[dd])+sum;,
sum=cost; }} cost=cost/2;
if(((cold-cost)<0.001)&&(iter>2) ) pert=1; /* if cost doesn’tchange more,
printf(MnCOST = %lg iter= %d \n",cost,iter);
[+ **griting the weights to an output file after every 10 iteration****/
wsay++;
if (wsay>10)  {
for(ii=1;ii<iv+1;ii++) { for(=1;j<on+1;j4++) {dd=on*(ii-1)+j;
printf("\n out= %lg out= %lg".yd[dd] ,y[dd]);}}
if{(fy=fopen("wght_temp.dat","w")=NULL) {
printf("can not open the file\n"),
exit(0); }
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fprinti(fy,"%d %d %d %dwn",in N1, N2, on),

for(i=1;i<int 1;i++) { for(k=1;k<N1+Lk++) {fprintf(fy,"%lg \n",w{1][i}[k]); }}

for(le=1;k<N1+1k++) { for(p=1,p<N2+1;p++) { fprintfify,"%lg \n",w2]{k][p]); 1

for(p=1,p<N2+1,p++){ for(F=1;j<on+1;j++) { fprintfify,"%lg \n",W{3][p]GD); }}

for(k=1.k<N1+1k++) { fprinti{fy," %lg \n",bt[1][k]); }

for(p=1,p<N2+1;p++) { fprintRfy,"%lg \n".bt[2][p]); }

for(=1;j<on+1j++) { fprintf(fy,"%lg \n",be[3][]); }

wsay—=0; }

[+*** GRADIENT VECTOR CALCULATION ***%/

for(j=1;j<on+1;j++)

{ sum=0; for(i=1;i<iv+1;i++){dd=on*(i-1)+j;gb3[j]=(yd[dd]-y[dd]y*+sum; sum=gb3[j]; }}

for(p=1;p<N2+1;p++) {for(j=1;j<on+1;j++){ sum=0; for(i=1;i<iv+1;i++){ dd=on*(i-1)+j;
b=N2*(-1)+p; gw3[p][il~(vdldd]-yldd])*z2[b] + sum; sum=gw3[p][jl; }}}

for(p=1;p<N2+1;p++) { sum=0; for(=1;j<on+1;j++) { for(i=1;i<iv+1;i++) { dd=on*(i-1)}+j;.
b=N2*(i-1)+p; ex=((1+exp(-2*cons*x2[b]))); ex1=((1-exp(-2*cons*x2[b])));
der=((2*cons*exp(-2*cons*x2[b])*ex)+(2*cons*exp(-2*cons*x2[b])*ex1))/(ex*ex);
gb2[p}=(yd[dd]-y[dd])*W{3][p] [i]*der+sum; sum=gb2[p]; }}}
for(k=1,k<N1+1k++)

{ for(p=1;p<N2+1;p++) { sum=0; for(j=1;j<on+1;j++) {for(i=1;i<iv+1;i++) {
dd=on*(i-1)tj; b=N2*(i-1)}+p; c=N1*(i-1)+k;
ex=((1+exp(-2*cons*x2[b]))); ex1=((1-exp(-2*cons*x2[b])));
der=((2*cons*exp(-2*cons*x2[b])*ex)+(2*cons*exp(-2*cons*x2[b] ) *ex1))/(ex*ex);
gw2[k][p]=(yd[dd]-yldd])*w{3][p][i]*z1[c]*der+sum; sum=gw2[k][p]; }}}}

for(lk=1;k<N1+1:k++)

{ sum=0; for(p=1;p<N2+1;p++) {forG=1;j<on+1;j++) { for(i=1;i<iv+1;it++) { dd=on*(i-1)+j;
b=N2*(i-1)+p; c=N1*(-1)tk; ex=((1+exp(-2*cons*x2[b])));
der=(4*cons*exp(-2*cons*x2[b]))/(ex*ex);
ex1=((1+exp(-2*cons*x1[c]))); derl=(4*cons*exp(-2*cons*x1[c]))/(ex1*ex1);
gb1[K]=(yd[dd]-y[dd])*W{3][p] (i]*W{2][K][p] *der*derl+sum; sum=gbl[k]; }}}}

for(n=1;n<in+1;n++)

{ for(k=1;k<N1+1;k++) { sum=0; for(p=1;p<N2+1;p++) { for(=1;j<on+1;j++) {

for(i=1;i<iv+1;i++) {dd=on*(i-1)}+j; b=N2*(i-1)+p, c=N1*(i-1)+k; a=in*(i-1)+n;
ex=((1+exp(-2*cons*x2[b]))), ex1=((1-exp(-2*cons*x2[b])));
der=((2*cons*exp(-2*cons*x2[b])*ex)+(2*cons*exp(-2*cons*x2[b] ) *ex1))/(ex*ex);
ex=((1+exp(-2*cons*x1[c]))); ex1=((1-exp(-2*cons*x1[c])));
der1=((2*cons*exp(-2*cons*x 1 [c])*ex)+(2*cons*exp(-2*cons*x1[c])*ex1))/(ex*ex),
gw1[n][k]=<(yd[dd]-y[dd])*W{3][p]]*w{2][K][p] *der*der] *u[a]+sum,
sum=gwl[n](k]; }} }}}

jex+*  CALCULATION OF NORM hasdd)

sum=0;
for(=1j<ont+1;j++) {top=gb3[j]*gb3[jl+sum; sum=top; }
for(p=1;p<N2+1;p++) {for(=1;j<on+1;j++) {top=gw3[pl[il*gw3[p][j]+sum; sum=top; }}

for(p=1;p<N2+1;p++) {top=gb2[p]*gb2[p]+sum;sum=top; }
for(k=1;k<N1+Lk++) {for(p=1,p<N2+1;p++) {top=gw2[k][p]*gw2[K][p]+sum; sum=top;
1
for(k=1;k<N1+1k++) {top=gb1[k]*gbl[k]+sum; sum=top; }
for(n=1;n<in+1;n++) {for(k=1;k<N1+1k++) {top=gwl[n][k]*gw1[n][k}+sum;

sum=top; } }
NORM=sqrt(sum); printf("™\n NORM = %lg" NORM);
/#*%** Determination of Gradient Vector *##**#/
a1, for(n=1;n<in+1;n++) { for(k=1;k<N1+1k++) { Gl[a]=gwl[n][k]; a=a+1; }}
for(k=1;k<N1+Lk++) {for(p=1;p<N2+1;p++) {GJ[al=gw2[k][p]; a=a+1; }}
for(p=1,p<N2+1;p++) {for(=1;j<on+1;j++) {Gl[al=gw3[p][i]; a=a+1; }}
for(k=1,k<N1+1;k++) {GJ[a]=gbl[K]; a=a+1; }
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for(p=1;,p<N2+1,p++) {GJ[a]=gb2[p], a=a+1; }

for(=1;j<om+1;j++) {GJ[a}=gh3[j]; a=a+1; }

/t‘*##tt X vm tt“t‘#/

&1, for(n=1;n<in+I;n++) {for(k=1k<N1+1k++) { X[a}=w1][n}{k]; a=atl; }}
for(k=1;k<N1+Lk++) {for(p=1,p<N2+1;p++) { X[aJ=w{2][k][p]; a=a+l; }}
for(p=1;p<N2+1;p++) {for(=1;j<on+1j++) {X[a]=wI3][p]li}; a=a+l;}}
for(k=1k<N1+1 k++){X[a}=bt[1][k]; a=a+l;}

for(p=1,p<N2+1;p++) {X[a]=bt[2][p]; a=a+1;}

for(=1;j<on+1;j++) {X[a]=bt[3](j]; a=a+1; }

for(a=1;a<gb+1;a++) {d[a]=GJ[a](Bk*(old[a]-old1[a])); }
for(a=1;a<gb+1;a++) {old1[a]=old[a]; old[a]=X[a];}

/#*#+  ONE DIMENSIONAL SEARCH PART ***#/
ALM=5/NORM,; /* search parameter o is chosen initially */
for(h=1;h<20;h++) /* iterations of one dimensional searc part, limited to 20%/
{ BIR:
for(a=1;a<gbt1;a++) {X[a]=old[a]-(ALM*d[a]); }
a=1; for(r=1;n<in+1,n++) { for(=1;k<N1+1;k++) { w(1][n][k]=X]a]; a=at+l; }}
for(k=1k<Nl+Lk++) {for(p=1,p<N2+1;p++) { wi2]kl[p}=X[a]; a=at+1; }}
for(p=1;p<N2+1;p++) { for(=1,j<on+1;j++) {wi3l[p][i]=X[a]; a=at+1;}}
for(k=1;k<N1+1k++) {bt[1][k]=X[a]; a=a+1; }
for(p=1,p<N2+1;p++) { bt[2][p]=X[a];, a=at+1;}

/#*-—itt‘ sesfe ot e ofe e e e e gk kk *fvvws/
for(ii=1;ii<l+iv;ii++)
{for(k=1;k<N1+1k++) {sum=0;for(n=1;n<in+1;n++) { a=in*(ii-1)+n; sum=w{1][n]{k]*u[a]+sum;
} =N1*@i-1)+k; x1[c]=sum+bt[1][k]; z1[c]=tanh(cons*x1[c]); }
for(p=1;p<N2+1;p++) { sum=0; for(k=1k<N1+1;k++) {
c=N1*(ii-1)y+k; sum=w{2][k][p]*z1[c}+sum; }
b=N2*(ii-1)+p; x2[b]=sum+bt[2][p]; z2[b]=tanh(cons*x2[b]); }
for(=1;j<on+1;j++) { sum=0; for(p=1,p<N2+1;p++) { b=N2*(ii-1y+p;
sum=w{3}[p][j1*z2[b]+sum; }
dd=on*(ii-1)+j; yd[dd}=sum+bt[3][j]; }}
CST=0; for(i=l;i<iv+1;i++) { for(=1;j<on+1;j++) { dd=on*(i-1)+j;
CST=(y[dd]-yd{dd])*(y[dd]-yd[dd])+sum; sum=CST;} } GALM=CST/2,
for(a=1;a<gb+1;a++) { X[a]-old[a]((ALM*d[a])/2); }
a=1; for(n=Ln<in+1;n++) {for(k=Lk<N1+Lk++) { w{1][n][k}=X[a]; a=a+1; }}
for(k=1;k<N1+1k++) {for(p=1;p<N2+1;p++) {wl2][k][p]=X[a]; a=a+1; }}
for(p=1;p<N2+1;p++) {for(=1j<on+1j++) {wi3][plG]=X[a]; a=atl; }}
for(k=1:k<N1+Lk++) {bt[1][k]=X[a], a=a+l;}
for(p=1;p<N2+1;p++) {bt[2][p}=X[a]; a=a+l;}
for(=1;j<ont+1;j++) { bt[3][j]=X[a], a=atl;}
/*?*1 Ao ke e e e e ofe e 2 e 3 e ofe e dfe e s ofe e ofe ok e ke e /
for(ii=1;ii<l+iv;ii++) {
for(k=1;k<N1+1;k++) { sum=0; for(n=1;n<in+1;n++) { a=in*(ii-1)+n;
sum=w{1]{n][k]*u[a}+sum; }
=NI*(i-1y+k; x1[c]=sumtbt[1][k]; z1[c}=tanh(cons*x1[c]); }
for(p=1;p<N2+1;p++)
{sum=0; for(k=1k<N1+1;k++) { c=N1*(ii-1)+k; sum=w{2]{k][p]*z1[c]+sum; }
x2[c]=sum+bt[2][p]; b=N2*(ii-1)+p; z2[b]=tanh(cons*x2[b]); }
for(=1;j<on+1;j++) { sum=0; for(p=1;p<N2+1;p++) { b=N2*(ii-1)x+p;
sum=w[3][p][j]*z2[b]+sum,; } dd=on*(ii-1)+j; yd[dd]=sum+bt[3][j}; } }
CST=0; for(i=1;i<iv+1;i++) {for(=1;j<on+1;j++) { dd=on*(i-1)+j;
CST=(y[dd]-yd[dd])*(y[dd]-yd[dd])+sum; sum=CST;} } GALM2=CST/2,
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ALMT=ALM,; if{cost<=GALM2) {ALM=ALM/2; }
iflcost>GALM2) { ifl{GALM<=GALM2) { ALM=2*ALM; }}
/Mf{GALM>GALM2) goto LOOP;*/  if{(cost>GALM2)&&(GALM>GALM?)) goto LOOP;}
LOOP: /**quadratik fit, new value of o is found from -B/2A where f=Ax>+Bx+C**/
B=(4*GALM2-GALM-3*cost)/ ALM,
A<(GALM-cost-ALM*B)/{(ALM*ALM);,
AL~=-B/(2*A),
for(a=1;a<gb+1,a++) { X[a]=old[a]-(AL*d[a]); }
a=1; for(n=1;n<in+1;n++) {for(k=1;k<N1+1k++) {w{1][n][k]=X[a]; a=a+1; }}
for(k=1;k<N1+1;k++) {for(p=1;p<N2+1;p++) {wi2][k][p}=X[a]; a=a+l;}}
for(p=1;p<N2+1;p++) {for(=1;j<on+1j++) {W3l[pllil=X[a); a=a+1;}}
for(=1k<N1+1k++) {bt[1][k]=X[a]; a=at+1; }Hor(p=1;p<N2+1;p++) {bt[2][p}=X[a]; a=a+1; }
for(=1;j<on+1j++) {bt[3][j]=X[a]; a=a+1.}
for(ii=1;ii<l+iv;ii++)
{ for(lk=1k<N1+1;k++) { sum=0; for(n=1;n<in+1;n++) { a=in*(ii-1)+n;
sum=w{1][n]{k]*ufa]+sum; }
c=N1*Gi-1)ytk; x1[c]=sum+bt[1][k]; z1[c]=tanh(cons*x1[c]); }
for(p=1;p<N2+1,p++) { sum=0;for(k=1;k<N1+1;k++){ c=N1*(ii-1)+k;
sum=w{2][k}[p]*z1[c]+sum,; }
b=N2*(ii-1ytp; x2[b]J=sum+bt[2][p]; z2[b]~tanh(cons*x2[b]);}
for(i=1;j<on+1;j++) {sum=0; for(p=1;p<N2+1;p++) {b=N2*(ii-1)+p;
sum=w{3][p][j}*z2[b}+sum;}
dd=on*(ii-1)+j; yd[dd]=sum+bt[3][j};}}
CST=0; for(i=1;i<iv+1;i++) {for(i=1;j<on+1;j++){dd=on*(i-1y+j;CST=(y[dd]-yd[dd])*(y[dd]-
ydidd})y+sum; sum=CST; }}GAL2=CST/2;
if{GAL2>GALM2) AL=ALM/2;
if{(cost<GAL2) && (GAL2<GALM)) AL=0.05*ALM; if (AL<le-5) AL=1e-5;
printf("AL= %lg\n", AL);
for(a=1;a<gb+1;a++){X[a]~old[a]-AL*d[a]; }
#1; for(n=1;n<in+1;n++) { for(=1;k<N1+1;k++) {w[1][n][k]=X[a]; a=a+1; }}
for(k=Lk<N1+1k++){for(p=1,p<N2+1;p++) {wl2][kl[p]=X[a]; a=atl;}}
for(p=1;p<N2+1;p++) {for(=1 j<on+1;j++) {wi3l[pl[il=X[a]; a=a+1;}}
for(k=1;k<N1+1k++) { bt[1][k]=X[a]; a=a+1; Hor(p=1;p<N2+1;p++) { bt[2][p]=XIa];
a=atl;}
for(=1j<on+1;j++) {bt[3][jl=X[a]; a=a+1; }fare=0; say++;
if(say>sayi) { printf{"\n Write the value of Momentum constant: \n"); scanf("%lg" &Bk);
fare=1; say=0; } if (fare>=1){printf("iteration number=\n"), scanf("%d",&sayi); }
}
SON:

say=0; }

A.2 Data Sets Used for Training the Networks

1) Data set used for training network NN1 (Sec.3.8.1) for computation of force-mmf
curves for symmetrically slotted structures (A/g=0.0172m) is presented below. As

discussed in Sec.3.8.1, inputs to this network are A/g, t/A, x, and mmf (F), and
output is force (8S).
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t/A

0.5
0.5
0.5
0.5
0.4
04
0.4
0.4
03
03
03
03
0.5
0.5
0.5
0.5
0.4
0.4
0.4
0.4
0.3
0.3
0.3
03
0.5
0.5
0.5
0.5
0.4
0.4
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0.4
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0.3
0.3
0.3
0.5
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0.4
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0.5
0.5
0.5
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0.2
0.2
02
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.4
0.4
0.4
0.4
0.4
0.4
0.4
0.4
0.4
0.4
0.4
04
0.6
0.6
0.6
0.6

302
481
825
1235
302
481
825
1235
302
481
825
1235
302
481
825
1235
302
481
825
1235
302
481
825
1235
302
481
825
1235
302
431
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481
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1235
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825
1235
302
481
825
1235
302
481
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1235
302
481
825
1235

w2
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95.6
2335
386.9
515.8

99.
245.7
396.2
532.6

99.1
245.7
389.7

490.5

103

261
620.5
930.8
106.6

270

632
943.6
109.7
276.8
722.7
1008

102

258
676.9

1103.8
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2) Data set used for training network NN2 (Sec.3.8.2) for computation of B-mmf
curves for symmetrically slotted structures (A/g=0.0172) is presented below. As
discussed in Sec.3.8.2, inputs to this network are A/g, t/A, x, and flux density (B;), and
output is mmf (F).

Mg A X B F Mg VA X B F
40 0.5 0 0 0 40 0.4 0.2 1.896 1235
40 0.5 0 0.99 302 40 0.3 0.2 0 0

40 0.5 0 1.48 481 40 0.3 0.2 0.682 302
40 0.5 0 1.72 825 40 0.3 0.2 1.064 481
40 0.5 0 1.87 1235 40 03 0.2 1.207 825
40 0.4 0 0 0 40 0.3 0.2 1.395 1235
40 0.4 0 1.03 302 40 0.5 0.4 0 0

40 0.4 0 1.56 481 40 0.5 0.4 0.759 302
40 04 0 1.77 825 40 0.5 0.4 1.199 481
40 0.4 0 1.89 1235 40 0.5 0.4 1.608 825
40 0.3 0 0 0 40 0.5 04 1.788 1235
40 0.3 0 1.1 302 40 0.4 04 0 0

40 0.3 0 1.7 481 40 0.4 0.4 0.739 302
40 03 0 1.8 825 40 0.4 0.4 1.158 481
40 0.3 0 1.94 1235 40 0.4 0.4 1.567 825
40 0.5 1 0 0 40 0.4 0.4 1.777 1235
40 0.5 1 0.4 302 40 0.3 0.4 0 0
40 0.5 1 0.65 481 40 0.3 0.4 0.708 302
40 0.5 1 1.11 825 40 03 0.4 1.107 481
40 0.5 1 1.49 1235 40 0.3 0.4 1.605 825
40 0.4 1 0 0 40 0.3 0.4 1.854 1235
40 04 1 0.284 302 40 0.5 0.6 0 0

40 0.4 1 0.453 481 40 0.5 0.6 0.624 302
40 0.4 1 0.777 825 40 0.5 0.6 0.976 481
40 04 1 1.164 1235 40 0.5 0.6 1.379 825
40 03 1 0 0 40 0.5 0.6 1.63 1235
40 03 1 0.28 302 40 0.4 0.6 0 0

40 0.3 1 0.45 481 40 0.4 0.6 0.555 302
40 0.3 1 0.77 825 40 0.4 0.6 0.868 481
40 0.3 1 1.16 1235 40 04 0.6 1.283 825
40 0.5 0.2 0 0 40 0.4 0.6 1.6 1235
40 0.5 0.2 0.889 302 40 0.3 0.6 0 0

40 0.5 0.2 1.388 481 40 0.3 0.6 0.437 302
40 0.5 0.2 1.717 825 40 0.3 0.6 0.696 481
40 0.5 0.2 1.877 1235 40 0.3 0.6 1.13 825
40 0.4 0.2 0 0 40 0.3 0.6 1.626 1235
40 0.4 0.2 0.908 302 40 0.5 0.8 0 0

40 0.4 0.2 1.417 481 40 0.5 0.8 0.49 302
40 0.4 0.2 1.726 825 40 0.5 0.8 0.78 481
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200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200

t/A

0.3
0.5
0.5
0.5
0.5
0.4
04
0.4
0.4
03
03
0.3
03
0.5
0.5
0.5
0.5
04
04
0.4
0.4
0.3
0.3
03
0.3
0.5
0.5
0.5
0.5
04
04
04
04
0.3
0.3
03
0.3
0.5
0.5
0.5
0.5
0.4
0.4
04
04
03
03
03
0.3
0.5
0.5
0.5
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1.924
0.149
0.234
0.392
0.517
0.084
0.132
0.227
0.323
0.091
0.143
0.247
0.351
0.876
1.292
1.587
1.709
0.848
1.258
1.563
1.693
0.801
1.197
1.515
1.659
0.687
1.02
1.276
1.39
0.61
0.912
1.162
1.281
0.482
0.728
0.962
1.101
0.496
0.742
0.949
1.052
0.371
0.559
0.744
0.857
0.162
0.255
0.429
0.575
0.305
0.46
0.617

270
70
110
190
270
70
110
190
270
70
110
190
270
70
110
190
270
70
110
190
270
70
110
190
270
70
110
190
270
70
110
190
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110
190
270
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110
190
270
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110
190
270
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110
190
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70
110
190
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200
200
200
200
200
200
200
200
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250
250
250
250
250
250
250
250
250
250
250
250
250
250
250
250
250
250
250
250
250
250
250
250
250
250
250
250
250
250
250
250
250
250
250
250
250
250
250
250
250

t/A

0.5
04
0.4
04
04
03
03
03
03
03
03
0.5
0.5
0.5
0.5
04
04
0.4
0.4
03
0.3
0.3
03
0.5
0.5
0.5
0.5
0.4
04
0.4
0.4
0.3
0.3
03
0.3
0.5
0.5
0.5
0.5
0.4
04
04
0.4
03
03
0.3
03
0.5
0.5
0.5
0.5
0.4
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0.718
0.127
0.199
0.336
0.452
0.096
0.151
0.261
0.371
0.756
0.962
1.023
1.507
1.781
1.917
1.036
1.519
1.8
1.943
1.056
1.54
1.829
1.984
0.128
0.209
0.357
0.475
0.074
0.121
0.215
0.309
0.083
0.135
0.24
0.345
0.852
1.289
1.582
1.703
0.821
1.252
1.552
1.682
0.771
1.185
1.495
1.638
0.663
1.013
1.261
1.372
0.585

270

70
110
190
270

70
110
190
270
550
700

55

160
230
55
90
160
230
55

160
230
55
90
160
230
55
90
160
230
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160
230
55

160
230
55
90
160
230
55
90
160
230
55
90
160
230
55



250
250
250
250
250
250
250
250
250
250
250
250
250
250
250
250
250
250
250
250
250
250
250
250
250
250
250
250
250
250
250
250
250
150
200
200
250
250
150
200
200
250
250
150
200
200
250
250
150
200
200
250

t/A

04
04
0.4
0.3
0.3
0.3
0.3
0.5
0.5
0.5
0.5
0.4
0.4
0.4
04
03
0.3
0.3
03
0.5
0.5
0.5
0.5
0.4
04
0.4
04
03
0.3
0.3
03
03
03
0.3
0.3
03
03
0.3
0.4
04
0.4
0.4
0.4
0.5
0.5
0.5
0.5
0.5
0.3
0.3
0.3
0.3
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B,

0.901
1.144
1.26
0.456
0.71
0.939
1.073
0.475
0.732
0.933
1.034
0.349
0.545
0.724
0.833
0.141
0.23
0.398
0.54
0.288
0.45
0.604
0.702
0.113
0.185
032
0.436
0.087
0.142
0.252
0.362
0.866
1.181
2.28
2.28
236
23
24
2.26
222
2.32
22
2.35
223
22
2.26
22
231
2.25
2.19
23
217

160
230
55

160
230
55

160
230
55

160
230
55

160
230
55

160
230
55
90
160
230
55

160
230
550
750
1204
860
1204
688
1204
1204
860
1204
688
1204
1204
860
1204
688
1204
1204
860
1204
688
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250
150
200
200
250
250
150
200
200
250
250
150
200
200
250
250
150
200
200
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200
200
250
250
150
200
200
250
250
150
200
200
250
250
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200
200
250
150
200
200
250
250
150
200

t/A

0.3
0.4
0.4
0.4
0.4
0.4
0.5
0.5
0.5
0.5
0.5
0.3
0.3
0.3
0.3
0.3
0.4
04
0.4
04
0.4
0.5
0.5
0.5
0.5
0.5
03
03
0.3
03
03
04
0.4
0.4
0.4
0.4
0.5
05
0.5
0.5
0.5
0.3
0.3
03
03
0.4
04
04
0.4
0.4
0.5
0.5

Xa

0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
02
0.2
0.4
04
0.4
0.4
04
0.4
0.4
0.4
04
0.4
0.4
04
0.4
04
0.4
0.6
0.6
0.6
0.6
0.6
0.6
0.6
0.6
0.6
0.6
0.6
0.6
0.6
0.6
0.6
0.8
0.8
0.8
0.8
R ]
0.8
0.8
0.8
0.8
0.8
0.8
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232
21
205
215
204
219
208
2.06
21
2.04
2.16
2.02
1.82
2.06
1.7
2.08
1.81
1.76
1.83
1.72
1.85
1.93
1.8
1.96
1.72
1.98
1.89
1.5
1.93
1.35
1.95
1.69
1.46
1.74
1.38
1.76
1.73
1.55
1.75
1.5
1.76
1.52
1.16
1.54
1.55
1.58
1.19
1.59
1.11
1.6
1.57
1.36
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1204
1204
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1204
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1204
860
1204
688
1204
1204
860
1204
688
1204
1204
860
1204
688
1204
1204
860
1204
688
1204
1204
860
1204
688
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1204
860
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688
1204
1204
860
1204
688
1204
1204
860
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1204
1204
860
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1204
1204
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200
250
250
150
200
200
250
250
150
200
200
250
250
150
200
200
250
250
200
200
200
200
200
200
150
150
150
150
150
150
250
250
250
250
250
250

t/A

0.5
0.5
05
03
03
0.3
03
0.3
04
0.4
0.4
0.4
0.4
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5

X

0.3
0.3
0.8
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B

1.58
125
1.59
14
1.14
1.42
1.03
1.47
14
1.15
1.44
0.98
1.5
1.54
132
1.55
1.13
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688
1204
1204
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1204
688
1204
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1204
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A.3. Algorithm for Force Data Set Production of Asymmetrically Slotted
Structures:

(The following algorithm is explained in Sec 3.9.3. In order to run the program
succesfully, related weight files have to be contained in the same directory.)

UNEQUAL.C

#include <stdio.h>
#include <math.h>
#include <stdlib.h>
o
FILE *fout; FILE *ff, FILE *yf.FILE *fys;
double *u,tsl,trl1dg xn F1,F2.F Ir.1a Ib ts.tr,x xa xb.g,
double S1,52,P1,P2 Bts,Btr,S.P,ab,d,CF,pl,p2; double OUTPUT(),
int Ic,i,count,tsc,trc,Btc,xnc,in,on, N1,N2 k.p.j;
double wi4][11][11],btf[11][11],wyf[4][11][11],byf[11]1{11],ws[4][11]{11},bts[11][11] ;
if((u=(double*) malloc(5*sizeof(double))=NULL ) exit(1),
if((fout=fopen("ungqforce”,"a"))==NULL) { /* Output data is written to file unqforce*/
printf("can not open the file\n"); exit(0); }
if{(fF=fopen("mmf_force.dat","r")=NULL) { /*weight file produced from NN1*/
printf("can not open the file\n");  exit(0); }
if((fyf=fopen("Bt_mmf.dat","r")y==NULL) { /* weight file of NN2 for 2/g in the range [40-100]
*/
printf{"can not open the file\n"); exit(0); }
if((fys=fopen("ysi1.dat","r")==NULL) { /* weight file of NN2 for A/g in the range [100-250] */
printf("can not open the file\n"); exit(0); }

kbR dbkdookkdokkdokkkiforea NN ddkkkkkkkkkdkkkkkidokkk/
fscanf(ff,"%d %d %d %d\n".&in ,&N1,&N2, &on),

for(i=1;i<in+ Li++){for(k=1.k<N1+1;k++){fscanfiff,"%lg \n",&wi1][i]k]);}}
for(k=1;k<N1+Lk++){for(p=1;p<N2+1;p++){fscanfiff,"%lg \n".&wi[2][k][p]);}}
for(p=1,p<N2+1;p++){for(=1;j<om+ 1 j++){fscanfiff,"%Ilg \n".&wi[31[p][]):}}
for(k=1;k<N1+1k++){fscanf{ff," %lg \n",&btf[1][k]);}
for(p=1;p<N2+1;p++){fscanfiff,"%lg \n",&btf[2][p]);}
for(=1;j<omrt L j++){fscanfiff,"%lg \n",&btI3](j]);}

/********************‘*# BT_MNIF 1 kkekkk® * *e /
fscanf(fyf,"%d %d %d %d\n",&in ,&N1,&N2, &on);

for(i=1;i<in+1;i++) {for(k=1;k<N1+1;k++){fscanf(fyf,"%lg \n",&wyf{1][i][K]):}}
for(k=1;k<N1+1k++){for(p=1,p<N2+1;p++){fscanf{fyf,"%lg \n",&wyf[2][k][p]);}}
for(p=1;p<N2+1;p++){for(=1;j<on+ 1 j++){fscanfifyf,"%lg \n",&wyf[3][p]G]);}}
for(k=1;k<N1+1;k++){fscanf(fyf," %lg \n",&byf[1][k]);}
for(p=1,p<N2+1;p++){fscanf(fyf,"%Ilg \n",&byf[2][p]);}
for(G=1;j<on+1j++){fscanf(fyf,"%lg \n",&byf[3]1[]);}
[erssnnnnsnsssronnenss  BT.MMF 2 et /
fscanf(fys,"%d %d %d %d\n" &in ,&N1,&N2, &on),
for(i=1;i<in+L;i++){for(k=1;k<N1+1;k++){fscanf(fys,"%lg \n" &ws[1][i][k]);}}
for(k=1,k<N1+1:k++){for(p=1,p<N2+1;p++){fscanfifys,"%lg \n",&ws[2][(K][p]);}}
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for(p=1,p<N2+1,p++){for(7=1;j<on+ L;j++){fscanflfys,"%lg \n",&ws[31[p](i]);}}
for(l=1,k<N1+1k++){fscanf(fys," %lg \n".&bts[1](k]);}
for(p=1;p<N2+1;p++){fscanflfys,"%lg \n"&bts[2]{p]);}
for(=1;j<on+1;j++){fscanfifys,"%lg \n".&bts[3][j]);}

Faga bt il ol l Ll L2 2 2R L L2 EL 2 dodeedededds * RhnRphkRpk/

or(lc=0;lc<6;lc++) { ifflc=0) 1dg=49; if{lc—1) 1dg=70; ifllc—=2) Idg=100;
if(lc==3) 1dg=150; if(lc==4) 1dg=200; if{ilc==>5) 1dg=250;
for(tsc=0;tsc<3;tsc++)  { ifitsc==0) tsI=0.3; if{tsc=1) tsl=0.4; if{tsc—=2) ts1=0.5;
for(tre=0;tre<3;tre++) { ifitre=—0) trl=0.3; if(trc==1) trl=0.4; if{trc==2) tr}=0.5;
for(xne=0;xnc<d;xnc++) {if{xnc=—0) xn=0.2; if(xnc==1) xn=0.4; if(xnc=2) xn=0.6;
if(xnc=3) xn=0.8; for(Btc=0;Btc<10;Btc++){
if{Btc==0) Bts=0.2;if(Btc—1) Bts=0.4; ifiBtc—2) Bts=0.6;if{Btc—=3) Bts=0.8;
ifiBtc—4) Bts=1 ;if(Btc—"5) Bts=1.2; if(Btc—"6) Bts=1.4;if{Btc=="7) Bts=1.6;
if{Btc=—8) Bts—=1.8;if{Btc—"9) Bts=2; /*if{tsl—trl) goto SON;*/
1=0.0172;
ts=tsl*Ir,
x=(xn*Ir)/2 ;
tr=tri*lr;
g=1r/ldg;
d=Ir-((ts/2)H(tr/2)+x);/*asymmetrical teeth*/
d=d/g;
a=ts+x+(25%g),
if (@>=Ir) la=a,
if{a<lr) la=ir;
b=tr+x+(25%g),
if (b>=Ir) Ib=b;
if(b<lr) 1b=ir;
for(i=0;i<5;i++) ufi]=0;

/* FOR GEOMETRY A */

u[1]=(1a/g)/250; u[3}=(x*2)/1a;

u[2]=ts/la; u{4]=Bts/2;

count=1;

if(u[1]<0.4) F1=OUTPUT (u,wyf,byf,count),
if(u[1]>=0.4) F1=OUTPUT (u,ws,bts,count);
u[4]=F1/1500;

count=2;

S1=QOUTPUT (u,wf,btf,count);

/*FOR GEOMETRY B*/

Btr=Bts*ts)/tr;

u[2]=tr/lb; u[1]=(1b/g)/250; u[4]=Btr/2;

u[3]=(x*2)/1b,

count=1;

if(u[1]<0.4) F2=OUTPUT (u,wyf,byf,count);

if(u[1]>=0.4) F2=OUTPUT (u,ws,bts,count);

u[4]=F2/1500;

count=2;

S$2=0OUTPUT (u,wf,btf,count);

/*torque correction part, optional*/

/* if(d<25) { if{Bts>=1.1) CF=(-0.0021*d*d*d)+(0.1414*d*d)-(3.6153*d)+34.6808;
if(Bts<=0.5) CF=(0.0157*d*d)-(0.8381*d)+11.1889;
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if{(Bts<1.1)&&Bts>0.5)) {  pl=(0.0157*d*d)-(0.8381*d)+11.1889;
p2=(-0.0021*d*d*d)+(0.1414*d*d)-(3.6153*d)+34.6808;
CF=p1+((p2-p1)/(0.6/(Bts-0.5))); } CF=(100-CF)/100; } else CF=1,
/*RESULT PART*/
S=((S1+S2)*CF)/2; F=(F1+F2)/2;

/ * * 2 * * hkRhkkRpR * L2 Lt 2 L]

fprintf{fout,"%10lg %10lg %10lg %10lg %10lg %10lg \n",(1dg/250) tsl.trl ,xn,F/1500,5/1500);
/*fprintf{fout,"GEOMETRY A: La= %lg La/g= %lg ts/La=%Ilg Xna= %lg \n",la,la/g ts/1a,(x*2)/1a);
fprintf{fout, "Bts=%lg F1=%lg S1=%lg \n",Bts,F1,S1);

fprintfifout,"GEOMETRY B: Lb= %lg LiVg= %lg tr/Lb=%lg Xnb=%lg \n",ib,Ib/g tr/1b,(x*2)/1b);
fprintf{fout,"Btr=%lg F2=%Ilg S2=%Ig \n" Btr,F2,S2);

fprintf(fout,” CF=%lg F=%lg S=%lg \n",CFF,S);*/

SON: k=5; }}}}} fclose(fout), }

double OUTPUT (u,w,bt,count) /* function computes neural network outputs*/
#define boy 11

double *u,w{4][boy][boy],bt[boy]j[boy], int count, { double big,t,

int a,b,c,i,j,jj,nn,Lkk ii N1,N2,iv,in,on,n k,p,/**x1,*x2, *z1,*22,*yd, */

double ut,yt,sum,ex1,out,cons,ex,x1[11},x2{11},21{11],z2[11],yd[2];

int dimu,dimy,dimx1,dimx2,dd,dim; if(count==1) N1=N2=6; if{count=2) NI=N2=10; iv=1,
in=4; on=1; /*dimu=iv*in; dimy=iv*on; dimx1=iv*N1; dimx2=iv*N2;

if{ (yd=(double*) malloc(dimy*sizeof{double)))==NULL ) exit(1);
if((x1=(double*) malloc(dimx 1 *sizeof(double))y==NULL ) exit(1);
if{(z1=(double*) malloc(dimx1*sizeof(double))==NULL ) exit(1),
if{(x2=(double*) malloc(dimx2*sizeof(double)))==NULL ) exit(1);
if((z2=<(double*) malloc(dimx2*sizeof{(double))==NULL ) exit(1);*/

[rx* QUTPUT VECTOR CALCULATION CELELY)
cons=10; for(ii=1;ii<iv+1;ii++)

{ /** CALCULATION OF THE STATE VECTORS X1 AND Z1 *#*¥/

for(k=1;k<N1+1;k++) { sum=0; for(n=1;n<in+1;n++) {
a=in*(ii-1)+n; sum=wi{1]}[n][k]*u[a]+sum; } =NI1*Gi-1)+k;
x1[c]=sum+bt[1][k];

zl[c]=tanh(cons*x1[c]); }

/***  CALCULATION OF THE STATE VECTORS X2 AND Z2 ***/
for(p=1;p<N2+1;p++) { sum=0; for(k=1k<N1+1:k++) {
o=NI1*@ii-1)}+k; sum=w{2][k][p]*z1[c}+sum; } b=N2*(ii-1)+p;
x2[b]=sum+bt[2][p]; z2[bj~tanh(cons*x2[b]); }

[e** CALCULATION OF THE OUTPUT VECTORS wnkf
for(=1j<on+1;j++) {sum=0, for(p=1,p<N2+1;p++) {
b=N2*(ii-1)tp; sum=w{3][p][j]*z2[b]+sum; } dd=on*(ii-1)+j;
yd[dd]=sum+bt[3][j]; }}

for(ii=1;ii<iv+1;ii++) { for(i=1i<int+1;i++) { a=in*(ii-1)+i; printf(" in=%lg " ,ufa]); }

for(i=1;j<ont1;j++) { dd=on*(ii-1)+j; /*if (count=1) yd[dd]<(yd[dd]*1500);/*result is mmf*/

/*if ((count=2)|(count=4)) yd[dd]=(yd[dd]*1500);*/

yd[dd]=yd[dd]*1500; printf(" out=%lg ".yd[dd] ); }

printf("\n"); }

out=yd[1];

return(out);

}
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A.3. Force Calculation Algorithm:

Below algorithm is used to obtain static torque curves of any structure in udss form.
For succesfull ranning of the program related weight files of asymmetrically slotted
structures have to be in the same directory with the program.

FORCEUDSS.C

clsO;

#include <stdio.h>
#include <math.h>
#include <stdlib.h>
#define boy 21
main()

{

FILE *ff. double OUTPUT();
double u[6],w[4][boy] [boy],bt[boy][boy],S,ba; int k,in,N1,N2,0n,j,p.i;
/1if((u=(double*) malloc(6*sizeof{double))—=NULL ) exit(1);

in=5; on=1; N1=20; N2=10; for(i=0;i<6;i++) u[i}=0;

J* deoh deafe e ek ol s ofe dfe e s e e e e ok koo ke kkkR etk T/

if((fi=fopen("weight1.dat","r"))==NULL) { printf("can not open the file\n"); exit(0); }
/* weight1.dat contains weights of network that is used for asymmetrically slotted structures force
calculation */

JEERRR AR AR RO R AR fr e NNFEE RS SRR R R AR R AR RN |
fscanf(ff,"%d %d %d %d\n".&in ,&N1,&N2, &on),

for(i=1;i<int+ L;i++){for(k=1;k<N1+1:k++){fscanf(fl,"%lg \n",&w{1][i][k]);}}
for(k=1;k<N1+1k++){for(p=1;p<N2+1;p++){fscanf(ff,"%lg \n".&w{2][k][pD;}}
for(p=1;p<N2+1;p++){for(j=1;j<on+1 j++){fscanf(ff,"%lg \n".&wi{3][pIlD:}}
for(k=1;k<N1+Lk++){fscanf(fI,” %lg \n".&bt[1][k]);}
for(p=1;p<N2+1;p++){fscanf(ff,"%lg \n",&bt[2][p]);}

for(j=1;j<on+1;j++){fscanf(ff,"%lg \n".&bt[3][j]);}

JRERR ok Rk AR * Mook /

u[1]=(200.0/250); /* A,/g value and normalized with 250 for NN conversion
uf[3]=0.4; /* t/A ¥/

u[2]=0.5; I* t/A, */

u[4]=0.1; /* normalized position starting from 0.1 */
ba=((30000*0.0172)/1500); /* normalized mmf, written in udss form (300000) */
u[5]=ba, /* normalized mmf*/

for(i=1;i<10;i++)/* for 10 different normalized positions (0.1,0.2,...,1) neural network function is
called*/

{

S=OUTPUT (u,w,bt),

u[4]=u[4]+0.1; /*increase normalized position*/

3}

double OUTPUT (u,w,bt) /* Neural Network function */
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#define boy 21
double uf6],w{4] [boy][boy],bt[boy] [boy];
{ double big,t;
int a,b,c,i,j,jj,nn,Lkk,ii, N1,N2,iv,in,on,n.k,p;/**x1,%x2,*z1,*22,*yd;*/
double ut,yt,sum ex!,out,cons,ex,x1[21},x2[11],z1]21],z2[11],yd[2];
int dimu,dimy,dimx1,dimx2,dd,dim;
N1=20;N2=10; iv=1;in=5; on=1;
cons=10; for(ii=1;ii<iv+1;iit++)
{
for(k=1,k<N1+1;k++)
{sum=0; for(n=1;n<in+1;n++) {a=in*(ii-1)y+n; sum=w{1][n][k]*ufa]+sum; }
c=N1*%(Gi-1)Y+k; x1[c]=sum+bt[1][k]; zl[c]~tanh(cons*x1[c]);}
for(p=1,p<N2+1;p++)
{ sum=0; for(k=1;k<NI1+Lk++) {
c=N1*(ii-1y+k, sum=w{2][k]{p]*z1[c}+sum;}
b=N2*(ii-1)+p; x2[b]=sum+bt[2][p], z2[b]=tanh(cons*x2[b]),
for(=1;j<on+1;j++)
{ sum=0; for(p=1;p<N2+1;p++)
{ b=N2*Gii-1)+p; sum=w{3][p}{j]*z2[b]+sum; }
dd=on*(ii-1)+j;, yd[dd]=sum+bt{3][j);
1}
for(ii=1;ii<iv+1;ii++)
{
for(i=1;i<in+1;i++)
{ a=in*(ii-1)*+i; printf(" in= %lg " ,ula]); }
for(i=1;j<on+1;j++)
{dd=on*(ii-1)+j;
yd[dd]=(2*(yd[dd]*1500))/0.0172; /* calculate force for udss , A, =Im, L.=1m */
printf(" out= %lg ",yd[dd] ); }
I}Jrintf("\n");
out=yd[1];
return(out); /* return force */
/* In this algorithm, if output is multiplied with motor radious, torque may be found*/

}
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APPENDIX B

OPTIMIZATION ALGORITHM AND GRAPHS PRESENTING THE
EFFECTS OF AMJg AND t/A ON TORQUE RIPPLE

B.1. Augmented Lagrangian Algorithm:

In order to run the optimization program, which is explained in Chapter 4,
succesfully, weight file obtained from training the asymmetrically slotted structures
(Sec.3.9.4), have to be contained in the same directory.

RIPPLEOPT.C
#include <stdio.h>
#include <math.h>
#include <stdlib.h>

main()

{

double FXNS(),FXFE(),FXFI(),AUGLAG(Q,GFF(,GFE(),GFI),GALAG(;

double DFPRV(),DMAX(),OUTPUT(),

double AL F,FS EPS1 EPS2,EPS3,*A *B,*C,*D,W1,W2,W3, WF, WMAX,*GO,*XP NG;
int N.NE,NI,NBV,i,*XB,ICONV,NBD,NN,IUP,IC1 K,IVAR,itot, NGE,

double *FE *FI,*FES,*FIS,*GAL,*HE,*HI,*HVL *HVU,*XT, *X,*R,*GE,*GI,*GF,
double *H,*DLG,*DLX, *dfp, GMAG,EPD,EPT ,EPV,RHO,SLOPE RMAG;

double D1,D2,D3,Y1,Y2,Y3,YS,Y,DT,DELX DEL G, TEMP,DS;

int IBSD,IT,IFAIL . KSRC,NSRC;

/***WRITE THE VALUES OF N=NUMBER OF VARIABLES, NE=# OF EQUALITY***
**¥**CONSTRAINTS, NI=# OF INEQUALITY (<=) CONSTRAINTS, NBV=#OF
BOUNDED****

R AR AR A A A A whk  VARTABLES *tdkssiikkkiiimkihaiiiiokionk/

N=3; NE=0; NI=1, NBV=3,

ke 3t afe e o e afe o ofe ok afe o ok e 3 e afe afe e afe a3 e a5 3 a6 3¢ afe e ol afe e a6 ae e o o afe e o kK 'T’«-TTT/

if((XB=(int*) malloc(N*sizeof{int))=NULL) exit(1);

[exxxrixxx++*ENTER THE VALUES FOR BOUNDED VARIABLES*##*%¥ ¥ okxf
JRik kR FROM =0 TO N-1 AR

/* XB(I=0"F X(I) IS NOT BOUNDED 1 IF IS BOUNDED FROM BELOW

ONLY, 2 IF IS BOUNDED FROM ABOVE ONLY, 3 [IF BOUNDED FROM BOTH***/
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XB[0]=3; XB[1]=3; XB[2]=3;
/*#*t****##*t#t#t‘*#t‘*#“*‘#t##*#t‘##tt###*t*#*‘*‘#‘t‘*t**#**t‘##t*#/
if((A=(double*) malloc(NE*sizeof{double))==NULL) exit(1),

if{(B=(double*) malloc(NI*sizeof{double))=—NULL) exit(1);

[+#+xx2422+ENTER THE RIGHT HAND SIDE OF EQUALITY A(0, NE) AND“"*"*/

/ AEBELEERELS INEQ. CONST B(0, ,NI) RIGHT HAND SIDE . /
/*RIGHT SIDE OF EQUALITY CONSTRAINTS*/
B[0]=0' /*RIGHT SIDE OF INEQUALITY CONSTRAINTS*/

1f((C=(double*) malloc(N*sizeof{double)) ==NULL) exit(1);

if{(D=(double*) malloc(N*sizeof(doubie))—NULL) exit(1),

/+++«+*ENTER THE UPPER AND LOWER BOUNDS C(0,,N) LOWER BOUND****¥/
/#* D(0,,N) UPPER BOUND VALUES, DON'T WRITE IF NOT BOUNDED *#****/
C[0]=100; C[1]=0.3; C[2]=0.3;

D[O]—250 D[1]=0.5; D[2]=0.5;

Vi ook e e e e o o o o e e e o o o e e sl o s ofe o desfeafesiesioiodk koo kol e k /

NN—N*N NSRC=2*N)+1,

1*if((FE=(double*) malloc(NE*sizeof{double))y==NULL) exit(1);*/
if((FI=(double*) malloc(NI*sizeof{double)))==NULL) exit(1);
/Af((FES=(double*) malloc(NE*sizeof(double))==NULL) exit(1);
if((FIS=(double*) malloc(NI*sizeof{double))—NULL) exit(1),
if((GAL~(double*) malloc(N*sizeof{double)))=NULL) exit(1);
if{(HVL=(double*) malloc(NBV*sizeof(double))==NULL) exit(1);
if{(HVU=(double*) malloc(NB V*sizeof{double)))==NULL) exit(1);
if((GF=(double*) malloc(N*sizeof{double))==NULL) exit(1),
//if{(GE=(double*) malloc(NE*N*sizeof{double)))=NULL) exit(1),
if((GI=(double*) malloc(NI*N*sizeof(double))—=NULL) exit(1),
if((X=(double*) malloc(N*sizeof(double))=NULL) exit(1);
if{(XT=(double*) malloc(N*sizeof{double))=NULL) exit(1),
f{(XP=(double*) malloc(N*sizeof{double)))=NULL) exit(1);
/f{(HE=(double*) malloc(NE*sizeof(double))=NULL) exit(1);

if{ (HI=(double*) malloc(NI*sizeof{double))=—=NULL) exit(1);
if{(GO=(double*) malloc(N*sizeof(double)))=NULL) exit(1),
if{(dfp=(double*) malloc((N+NN+3)*sizeof{double))==NULL) exit(1);
if{(H=(double*) malloc(NN*sizeof{double))>=NULL) exit(1);
if((DLG=(double*) malloc(N*sizeof(double))==NULL) exit(1);
if{(DLX=(double*) malloc(N*sizeof{double))=—NULL) exit(1);
if{(R=(double*) malloc(N*sizeof{double)))=NULL) exit(1);

/*INITIAL CONDITIONS*/

EPS1=1e-6; EPS2=1e-4; EPS3=1e-4;

X[0F100; X[1]=0.3; X[2]=0.3; /*initial states*/

for(i=0;i<N;i++) DLX[i]=DLG[i]=0;

for(i=0;i<NN;i++) H[i]=0; for(i=0;i<(NN+2),i++) dfp[i]=0;

if (NE+NI+NBV)=0){ W1=1; W2=1, W3=1;, WF=2, WMAX=32;}
for(i=0;i<NE;i++) HE[i]=0; for(i=0;i<NI;i++) HI[i]=0;/*alfa-beta*/
for(i=0;i<N;i++) { HVL[i]=0; HVUI[i}=0;} /*bounded variable multipliers*/
F=FXNS(X); printf("F=%lg " F);/*COST FUNCTION INITIALIZATION*/
if(NE!=0){ for(i=0;i<NE;i++) FE[i]=FXFE(X.i);}/*left side of equality constr*/
if(NI1=0){ for(i=0;i<NLi++) FI[i]=FXFI(X,i);}/*left side of inequality costr*/
/*printf(" FE= %lg FI=%Ilg\n" ,FE[0],FI[0]);*/
RHO=GMAG=0;IBSD=IT=itot=0,
AL=AUGLAG(X,FE,FLHE HLHVL, HVU,A,B,C,D,F.XB,W1,W2,W3,N,NE,NLNBV);
/*AUGMENTED LAGRANGE FUNCT*/

Tprintf(" AL= %lg\n",AL);*/
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ifi NE!=0){ for(i=0;i<NE*N;i++) GE[i]=GFE(X.i);}

If(NII=0){ for(i=0,i<NI*N;i++) GI[i]=GFI(X,i),}

for(i=0;i<N;i++) GF[i[=GFF(X,i);
*GAL~GALAG(X,A,B,C.D,FE FLGF,GE,GLHE HL,HVL HVU,W1,W2,W3,XB,GAL,N,NE,NLN
BV),

GMAG=0;

for(i=0;i<N;i++){ GO[i}=GAL[i],/* printi" GAL~%Ig ",GAL[i]);*/
GMAG=GMAG+GALI[i]*GALI[i); }

GMAG=sqrt(GMAG); /* NORM OF GRADIENT printf(" GMAG=%lg \n",GMAG);*/
EPD=0.1*EPS1;, EPT=10*EPS2, EPV=EPS2,

ICONV=IFAIL-NBD=(; KSRC=0;

FS=F;

if(iNE!=0){ for(i=0;i<NE;i++) FES[i]=FE[i]; }

ifNI'=0){ for(i=0;i<NE;i++) FIS[i}=FI[i]; }

NG=1;, RHO-0;

/* ITERATIONS for(itot=0;itot<50;itot++) {*/

ST10:

if{itot=—200) goto ST80; printfi{" itot =%d ",itot);
*dfp=DFPRV(GAL,RHO,DLG,DLX,H,R,dfp,NG,KSRC,IFAIL,N),
for(i=0;i<NN;i++) H[i]=dfp[i]; SLOPE=dfp[NN];RMAG= dfp[NN+1];NG=dfp[NN+2];
for(i=NN+3;i<(NN+N+3);i++) R[(i-NN-3)}=dfpl[i];

for(i=0;i<(N+NN+3);i++) printf("df=%lg *,dfpli]);

if(ING=2) goto ST12; if(NG>2) goto ST14;

NBD=NBD+1,

if(NBD>=5) goto ST80; else goto ST14;

ST12: NBD=0,

ST14;

/*SEARCH ALGORITHM-CONDUCTS SEARCH ALONG R TO FIND STEPSIZE RHO THAT
MAXIMIZES AUGMENTED LAGRANGIAN, AL=F(X+RHO*R)*/

DS=0; YS=AL; D1=0; IC1=0; Y1=AL; IUP=0; D2-1,

ifING==1) D2=0.1; if(KSRC=0)&&(IF AIL>0)) D2=0.05;

iftRMAG>=200) D2=10/RMAG; if(D2<0.001) D2=0.001;

/*VALUE-EVALUATES AUGMANTED LAGRANGIAN Y AT STEPSIZE D*/
DT=D2;/*printf(" D2=%lg \n" , D2);*/

/*VALUE*/ for(i=0;i<N;i++) { XT[i[=X[i]+DT*R[i]; XP[i}=X[i]; X[i]l=XTI[i];}
F=FXNSX),for(i=0;i<NE;i++) FE[i]=FXFE(X.i),

for(i=0;i<NLi++) FI[i}l=FXFI(X.i);
Y=AUGLAG(XFE FLHE HIL. HVL . HVU,A B,C,D F, XB,W1,W2,W3 N NE,NI,NBV),
if(Y>YS) IUP=1; i Y>=YS) { for(i=0;i<NE;i++)FES[i]=FE[i];

for(i=0;i<NLi++) FIS[i}=FI[i], FS=F; DS=DT, YS=Y;} /*VALUE*/
I*printf{"y=%Ig\n", Y);*/

Y2=Y; K=1; for(i=0;i<N;i++){ X[i]=XPfi]; printf(" X=%lg" . X[i]);}
M*UNIDIRECTIONAL SEARCH*/

D3=DMAX(D1,D2,D3,Y1,Y2,Y3,SLOPE K);/* printf(" D3=%lg \n" , D3);*/
if((Y2-Y1)<0) goto S50; if((Y2-Y1)=0) goto S$200; goto S20;

$20:

if (D3<=0) goto S200; if((D3>=0.9*D2))&&(D3<=(1.1*D2))) goto $410;

S25:

if(D3<=(5*D2)) goto S340; if(D3>(100*D2)) D3=100*D2;

DT=D3;

/*VALUE# for(i=0;i<N;i++) { XT[i[=X[i[+DT*R[i]; XP[i}=X[i); X[i]=XT[i];}
F=FXNS(X).for(i=0,i<NE;i++) FE[i]=FXFE(X,i);

for(i=0;i<NLi++) FI[i]=FXFI(X.i);
Y=AUGLAG(X.,FE,FLHE HLLHVL HVU,A B,C,D F,XB,W1,W2, W3 N,NE,NI,NBV);,
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if(Y>YS) IUP=1; iflY>=YS){ for(i=0;i<NE,i++)FES[i]=FE(i],
for(i=0;i<NLi++)FIS[i]=Fl[i];, FS=F, DS=DT; YS=Y;} /*VALUE*/

Y3=Y; for(i=0;i<N;i++) X[i}=XP{i];

if{(Y3-Y2)<0) goto S200; if{(Y3-Y2)==0) goto S200; goto S30;

$30:

D2=D3; Y2=Y3, goto S300;

S50:

if(D3>(0.2*D2)) goto S100; if{D3<(0.01*D2)) D3=0.01*D2;

DT=D3,

/*VALUE*/ for(i=0;i<N;i++) { XT[iJ=X[il+DT*R[i]; XP[i]=X[i}; X[i]=XT[i];}
F=FXNS(X).for(i=0,i<NE;i++) FE[i]=FXFE(X.i),

for(i=0;i<NLi++) FI[i}=FXFI(X.i),
Y=AUGLAG(X,FE ,FLHE HL HVL HVU A B,C,D,F, XB,W1,W2 W3 N,NE,NI,NBV);,
if(Y>YS) IUP=1; if( Y>=YS) {for(i=0;i<NE;i++)FES[i]=FE[i],
for(i=0;i<NL;i++)FIS[i]=FI[i]; FS=F;, DS=DT; YS=Y,} /#*VALUE¥*/

Y3=Y; D2=D3; Y2=Y3; for(i=0;i<N;i++) X[i]=XP{i],

if((Y2-Y1)<0) goto S60; if((Y2-Y1)—0) goto S200; goto S300;

S60:

if{IC1>=0) goto S410; IC1++; K=1;
D3=DMAX(D1,D2,D3,Y1,Y2,Y3,SLOPE K)./* printf(" D3=%lg \n" , D3);*/
goto S50;

S100:

DT=D3;

*VALUEY/ for(i=0;i<N;i++) {XT[i]=X[il+DT*R[i]; XP[i]=X[i]; X[{][=XT[i};}
F=FXNS(X);for(i=0;i<NE;i++) FE[i[FFXFE(X.i);

for(i=0;i<NLi++) FI[i[=FXFI(X,i);
Y=AUGLAG(X,FE ,FLHE HLHVL HVU,A B,C,D,F. XB,W1,W2,W3 NNE.,NINBV),
if(Y>YS) IUP=1; i Y>=YS){ for(i=0;i<NE;i++)FES[i]=FE[i];
for(i=0;i<NI;i++)FIS[i]=FI[i]; FS=F;, DS=DT; YS=Y;} /*VALUE*/

Y3=Y; for(i=0;i<N;i++) X[i}=XP[i];

if((Y3-Y1)<0) goto S120; if{(Y3-Y1)—0) goto S410; goto S350;

S120:

D2=0.2*D3; IC1++; DT=D2;

*VALUE¥*/ for(i=0;i<N;i++) {XT[i]=X[i[+DT*R[i]; XP[i]=X[i]; X[i]=XT[il;}
F=FXNS(X),for(i=0;i<NE;i++) FE[i]=FXFE(X,i),

for(i=0;i<NLi++) FI[i[=FXFI(X.i);
Y=AUGLAG(XFE, FLHE HLHVLHVU,A,B,C,D.F XB,W1,W2,W3 N,NE,NLLNBV),
if(Y>YS) IUP=1,; if(Y>=YS){ for(i=0;i<NE;i++)FES[i]=FE[i];
for(i=0;i<NLi++)FIS[i]=FI[i]; FS=F; DS=DT; YS=Y;} /*VALUE*/

Y2=Y; for(i=0;i<N;i++) X[i]=XP[i];

if((Y2-Y1)<0) goto S150; if{(Y2-Y1)==0) goto S410; goto S240;

S150:

if(IC1>10) goto S240;

S160:

D3=D2; Y3=Y2; goto S120;

$200:

D3=5*D2; IC1++;

DT=D3;

/*VALUE*/ for(i=0;i<N;i++) {XT[i]=X[i]+DT*R[i]; XP[i]=X[i]; X[i]=XT[i];}
F=FXNS(X);for(i=0;i<NE;it++) FE[i]=FXFE(X.i);

for(i=0,i<NI;i++) FI[i]=FXFI(X.i);
Y=AUGLAGQFE,FLHE HLHVL HVU,A B,C D,F, XB,W1,W2,W3 N,NE NI, NBV);
if(Y>YS) IUP=1; if(Y>=YS){ for(i=0;i<NE;i++)FES[i]=FE(i];
for(i=0;i<NLi++)FIS[i}=FI[i]; FS=F, DS=DT; YS=Y;} /*VALUE*/
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Y3=Y; for(i=0;i<N;i++) X[i]=XP[i];
if{(Y3-Y2)<0) goto S220;, iff(Y3-Y2)y=0) goto S210; goto S210;

S210:
if(IC1>10) goto S240; D1=D2; Y1=Y2; D2=D3; Y2=Y3, goto S200;

$220:

if(TUP<=0) goto S410; goto S240,

$240:
K=2; RHO=DMAX(D1,D2,D3,Y1,Y2,Y3,SLOPE K);/* printf{" Rho=%lg " ,RHO),*/
goto S400;

S300:
K=1; D3=DMAX(D1,D2,D3,Y1,Y2,Y3,SLOPE K);/* printf(" D3=%lg " , D3);*/
if((D3>=(0.9*D2))&&(D3<=(1.1*D2))) goto S410; if (D3<=0) goto S200;
if(IC1>10) goto S410; IC1++; goto S25;

S340:
DT=D3;
/*VALUE¥ for(i=0;i<N;i++) {XT[i[=X[iHDT*R[i]; XP[i}=X[i]; X[i]=XT[i}; }
FXNS(X);for(i=0;i<NE;i++) FE[i]=FXFE(X,i);

for(i=0;i<NIL;i++) FI[i]=FXFI(X.i);
Y=AUGLAG(X,FE.FLHE HL,HVL HVU, A B,C.D,F. XB,W1,W2 W3 N,NE NLLNBV);
iY>YS) IUP=1; if(Y>=YS){ for(i=0;i<NE,;i++)FES[i]=FE[i];
for(i=0;i<NI;i++)FIS[i}=FI[i], FS=F, DS=DT; YS=Y,} /*VALUE*/

Y3=Y; for(i=0;i<N;i++) X[i]=XP[i];

if((Y3-Y2)<0) goto S240; if{(Y3-Y2)==0) goto S350, goto S350;

$350:

K=2;, RHO=DMAX(D1,D2,D3,Y1,Y2,Y3,SLOPE K),/* printf(" Rho=%lg " ,RHO);*/
if{(RHO>=(0.9*D3))&&(RHO<=(1.1¥D3))) goto S410;

/*BEST STEPSIZE RHO FOUND FOR THIS SEARCH*/

$400:

DT=RHO;

/*VALUE* for(i=0;i<N;i++) {XT[{}=X[i+DT*R[i]; XP[i]=X]i]; X[i}=XT[i]; }
F=FXNS(X);for(i=0;i<NE;i++) FE[i]J=FXFE(X,i);

for(i=0;i<NI;i++) FI[i]=FXFI(X,i);
Y=AUGLAG(X.FE,FLHE HLHVL,HVU,A B,C,D,F, XB,W1,W2,W3 N,NE NI,NBV),
if(Y>YS) IUP=1; if( Y>=YS){ for(i=0;i<NE;i++)FES[i]=FE[i];
for(i=0;i<NI;i++)FIS[i]=FI[i], FS=F;, DS=DT; YS=Y;} /*VALUE¥%/

AL~=Y; for(i=0;i<N;i++) X[i]=XP{i];

S410:

RHO=DS,; for(i=0;i<N;i++) XT[i]=X[i]+RHO*R[i];

for(i=0;i<NE;i++) FE[i]=FESi],

for(i=0;i<NI;i++) FI[i]=FIS[i]; F=FS; AL=YS;

for(i=0;i<N;i++) printf(" LX=%lg \n",XT[i]); printf("F=%lg\n" ,F );

/*END OF SEARCH */

ifRHO=—0) goto ST15;
if(NE!=0){ for(i=0;i<NE*N;i++) GE[i]=GFE(XT,i);}
ifiNI!'=0){ for(i=0;i<NI*N;i++) GI[i}]=GFI(XT,i);}

for(i=0;i<N;i++) GF[i]=GFF(XT,i); NGE++;
*GAL=GALAG(XT,A,B,C,D,FE,FLGF,GE,GLHE HLHVL,HVU,W1,W2,W3 XB,GAL N,NE NI,
NBV),

ST15:

/*COMPUTES NORM(XNEW-XOLD), NORM(GNEW-GOLD)*/

DELG=GMAG=0; for(i=0;i<N;i++) { DLX[i]=XT[i]-X[i]; DLG[i[=GAL[i]-GO[i;
DELG=DELG+DLG[i]*DLGli], GMAG=GMAG+GALI[i]*GALI[i];X[i|=XTI[i]; GO[i]=GALI[i];}
DELX=RHO*RMAG; DELG=sqrt(DELG); GMAG=sqrt(GMAG);/***delta***/
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itot++;, KSRC++,

ST20:

if{TUP==0) goto ST24; IFAIL=0,

ifDELX>EPS3) goto ST28; il GMAG<EPV) goto ST40;
ifDELG>EPV) goto ST28, if(NGl=1) goto ST26,
if{(DELG<EPD)&&(KSRC==1)) goto ST80; goto ST26;

ST24:

IFAIL++; if(IF AIL—4) goto ST80; ifi(NG==1)||((RHO==0)) goto ST40;
ST26:

IBSD++;

ST28:

if(KSRC>N) goto ST30; if(IBSD==2) KSRC=N; goto ST10;
ST30:

iffKSRC=NSRC) goto ST40; i GMAG<=EPV) goto ST40,
ST35:

if(IBSD<3) goto ST10; RHO=0,

ST40:

/AMULTIPLIERS AND PENALTY WEIGHTS UPDATED BY UPDATE RULES*/
for(i=0;i<NE;i++) HE[i]=HE[i]-2*W1*(A[i]-FE[i]);/*equal (Ity cons. update*/
for(i=0;i<NI;i++) { TEMP=B[i]-FI[i] ; /*inequality cons. update*/
if(HI[i}<=0) {ifTEMP<0) HI[i]=2*W3*TEMP;}

else { Hi[i]=HI[i]-2*W2*TEMP, if(HI[i]<0) HI[i]=0;} }
iffNBVI=0){/*BOUNDED VARIABLE UPDATE*/

for(i=0;i<N;i++){ IVAR=XBIi];

If((IVAR==1)||IVAR==3)){ TEMP=X[i]-C[i},
if{(HVL[i]<=0)&&(TEMP<0)) HVL[i}]=-2*W3*TEMP,

if(HVL[i}>0) { HVL[i]=HVL[i]-2*W2*TEMP, iff HVL[i]<0) HVL[i]=0;}}
if{(IVAR=2)||IVAR==3)){

TEMP=D({i}-X[i];

if(HVU[i}>0){ HVU[i][=HVU[i]}-2*W2*TEMP, if(HVU[i]<0) HVU[i]=0;}

else { ifTEMP<0) HVU[i]=2*W3*TEMP, }} }}

/*update we[lghts*/

WI1=WF*W1;, W2=WF*W2, W3=WF*W3

iftWI>WMAX) WI=WMAX

iflW2>WMAX) W2=WMAX

iff W3>WMAX) W3=WMAX;

F=FXNS(X),/* printf("F=%lg " F),*/

iffNE!=0){ for(i=0i<NE;i++) FE[i]=FXFE(X.i);}

ifNI1=0){ for(i=0;i<NI;i++) FI[i]FFXFI(X,i);}
AL=AUGLAG(XFE,FLHE HL,HVL HVU,A B,C.D,F,XB,W1,W2,W3 N,NE NI NBV),
ifiNE!=0){ for(i=0;i<NE*N;i++) GE[i]=GFE(X,i);}

if(NT1=0){ for(i=0;i<NI*N;i++) GI[i]=GFI(X.i);}

for(i=0;i<N;i++) GF[i]=GFF(X,1),
*GAL=GALAG(X,A,B,C,D.FE FI,GF,GE,GLHE HLHVL,HVU,W1,W2 W3 XB,GAL N,NE NIL.N
BV),

GMAG=0;for(i=0;i<N;i++) GO[i[=GALI[i];

ST60:
for(i=0;i<N;i++) GMAG=GMAG+GAL[i]*GAL[i]; GMAG=sqrt(GMAG),
Mprintf("GMAG=%lg DELX=%Ilg" ,AL.DELX );*/

ST70:
KSRC=0; IBSD=0; if GMAG<EPT) EPV=EPS]1;
if((GMAG>EPS1)|(DELX>EPS3)) goto ST10;

ICONV=1,

ST80:
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ifICONV=1) printf"CONVERGENCE OCCURED\n");

iflICONV==0) printf(" POOR CONVERGENCE!\n");

printf(" alfa= %lg\n", HE[0]);

for(i=0,i<N;i++) printf{" X= %lg " X[i]);

printf (" GMAG = %5lg F= %5lg\n",GMAG,F);

printf (" FE = %35lg F11= %5lg FI2= %5Ig FI3= %5lg \n" FE[0],FI[0],FI[1],FI[2]);
}

/*FUNCTION COMPUTES AUGMENTED LAGRANGE*/

double AUGLAG(X,FE,FLHE HLHVL ,HVU,A B,C,D,F XB,W1,W2,W3 N,NE,NI,NBV)
double *X, *FE, *FI,*HE *HI,*HVL,*HVU, *A,*B,*C,*D,F, W1, W2, W3,

int *XB,N,NE,NLLNBV,

{

double temp,P1,P2,P3 flag ALG;

int ivar,i;

flag=P1=P2=P3=temp=0,

MEQUALITY CONSTRAINT COMPONENTS*/
if(NE!=0) { for(i=0;i<NE;i++) { temp=A[i]-FE[i]; flag=flag+HE[i}*temp;
Pl1=Pl+temp*temp;} }
/*INEQUALITY CONSTRAINT COMPONENTS*/
ifiNI!=0) { for(i=0;i<NIL;i++)
{ temp=BI[i]-FI[i |;
if{(HI[i]<=0) && (temp<0))P3=P3+temp*temp;
if(HI[i]>0) {flag=flag+HI[i]*temp; P2=P2+temp*temp;} }}
/*BOUNDED VARIABLES*/
ifiNBV1=0)
{ for (i=0;i<N;i++) { ivar=XBIi];
if{(ivar=1)|(ivar==3)) { temp=X[i]-CI[i];
if((HVL[i]<=0) && (temp<0))P3=P3+temp*temp;
f(HVL[i]>0) {flag=flag+HVL[i]*temp; P2=P2+temp*temp;}}
if{(ivar—=2)||(ivar=3)) { temp=D[i}-XI[i];
iff(HVU[i]<=0) && (temp<0)) P3=P3+temp*temp;
iHVU[i}>0) {flag=flag+HVU][i]*temp; P2=P2+temp*temp;} } } }
/* AL EQUALS THE SUM OF ALL COMPONENTS */
ALG=F+flag-W1*P1-W2*P2-W3*P3; *printfi("FLAG= %lg ALG=%lg\n" flag, ALG);*/
return (ALG);}

/*FUNCTION COMPUTES AUGMENTED LAGRANGE GRADIENT*/

double

GALAG(X,A,B,C,D FE FI,GF,GE,GLHE HIL HVL, HVU,W1,W2,W3 XB,GAL,N,NE ,NI,NBV)

double *GAL,*X,*A *B,*C, *D,*FE,*FI,*GF,*GE,*GI,*HE,*H, *HVL, *HVU, W1, W2,W3;

int *XB.N,NE,NI.NBV,

{

int i,indx k ivar;

double glag,gewl giw2, giw3,temp;

for(k=0;k<N;k++)

{

glag=gewl=giw2=giw3=0;

ifiNE!=0) {indx=k;/*equality constraints*/
for(i=0;i<NE;i++) { glag=glag+HE[i]*GEl[indx];
gewl=gewl+(A[i]-FE[i]))*GE[indx]; indx=indx+N;}}
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if(NI!1=0) { indx=k; /*inequality constraints*/
for(i=0;i<NI;i++) { temp=B[i]-FI[i];

if((HI[i]<=0)&&(temp<0)){ giw3=giw3+temp*Gl[indx]; indx=indx+N;}
if(HI[i]>0) {glag=glag+HI[i]*Gl[indx]; giw2=giw2+temp*Gl[indx];
indx=indx+N;}}}

ifiNBV!=0) { ivar=XB[k];

if{(ivar=1)j|(ivar==3)) {/*lower bound variables*/

temp=X[k]-C[k];
iff(HVL[k]<=0)&&(temp<0)) giw3=giw3-temp;
if(HVL[K]>0) { glag=glag-HVL[k]; giw2=giw2-temp;} }
if{(ivar—==2)||(ivar=—=3)){/*upper bound variables*/
temp=D[k]-X[K];
if(HVU[k]<=0)&&(temp<0)) giw3=giw3+temp,
if(HVU[K}>0) { glag=glag+HVUIk]; giw2=giw2+temp;}}}
/*GAL EQUALS THE SUM OF THE COMPONENTS*/
GAL[k]= GF[k]-glag+2*(W1*gewl+W2*giw2+ W3*giw3);
[*printf(" gew1=%lg ".gewl);*/

}
return (*GAL);}
/*COMPUTES SEARCH DIRECTION R, VIA DFP METHOD WITH RESETS OF R=GAL*/

double DFPRV(GAL,RHO,DLG,DLX,H,R,dfp,NG,KSRC,IFAIL,N)
double *dfp,*GAL,*H,*DLX,*DLG,RHO,*R NG; int [FAIL, KSRC,N;
{
double SLOPE, conl,con2,con3,cond,con5, GAMA RMAG, TFM,TEMP,
int NN,i.k,j,INDX,ISS, itern,L;
NG=NG+1; NN=N*N;ISS=1;
if(RHO==0) goto A,
if{(KSRC=0)&&(IF AIL>0)) goto A,
if((KSRC!=0)|[(NG<=N)) { printf(" NG= %Ig",NG); goto B;}
A
NG=1; SLOPE=0;, INDX=0; for(i=0;i<NN;i++) H[i}=0;
for(i=0;i<N;i++) { HIINDX+i]=1, R[i}=GAL[i], SLOPE=SLOPE+(R[i]*R[i]);
INDX=INDX+N;} RMAG=sqrt(SLOPE);,
for(i=0,i<NN;i++) dfp[i]=H[i], dfp[NN]=SLOPE; dfp[NN+1]=RMAG;dfp[NN+2]=NG;
for(i=(NN+3);i<(N+NN+3);i++) dfp[i]=R[(i-NN-3)];
return (*dfp);
B:/*R VIA DFP OR DFPSS*/
conl=con2=con3=con4=INDX=0;
for(i=0,i<N;i++) { TFM=0,
for(j=0;j<N;j++) TFM=TFM+H[INDX+j]*DLG{j];
R[i]=TFM; conl=con1+DLX[i]*DLGi]; con2=con2+DLG{i]*R[i];
if(ISSI=0){ TEMP=GAL[i]-DLG[i]; con3=con3+TEMP*DLX[i]; con4=con4+TEMP*R[i];}
INDX=INDX+N;}
if{(con1==0)|(con2==0)) goto A; if{(ISS!=0)&&(con4!=0)) {
for(i=0;i<N;i++) DLG[i]=R[i])/con2-DLX[i}/conl; con5=con2/2;
GAMA=-con3/con4; } INDX=0;
for(k=0;k<N:k++) { itern=k*N; for(G=k;j<N;j++) { L=<INDX+j;
if((ISS!=0)&&(con4d!=0))
H[L}=H{L]-R[k]*R]j}/con2+con5*DLG[k]*DLG[j])*GAMA-DLX|[k]*DLX[j]/conl;
else H[L}=H[L]-DLX[k}*DLX][jl/conl-R[k]*R[j]/con2;
Hlitern+k}=HJ[L]; itern=itern+N;}
INDX=INDX+N;} INDX=0; for(i=0;i<N;i++){ TFM=0; for(=0;j<N;j++)
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TFM=TFM+H[INDX+j]*GAL{j]; R[i]TFM; INDX=INDX+N;}
/*TEST FOR A GOOD R; IF R BAD, SET R=GAL*/
RMAG=SLOPE=0;
for(i=0;i<N;i++){ RMAG=RMAG+R[i]*R]i]; SLOPE=SLOPE+R[i]*GAL[i];}
RMAG=sqrt(RMAGQG);
for(i=0;i<NN;i++) dfpli]=HIi], dfp[NN]=SLOPE; dfp[NN+1]=RMAG,dfp[NN+2]=NG;
for(i=(NN+3);i<(N+NN+3),i++) dfpli]=R[(i-NN-3)];
iff SLOPE>0) return (*dfp); else goto A,
}

double DMAX(D1,D2,D3,Y1,Y2,Y3,SLOPE K)
double D1,D2,D3,Y1,Y2,Y3,SLOPE; int K;

{/*ASSUMES QUADRATIC FORM AL=A*(D1-ALF)**2+B*(D1-ALF)+C
MAXIMUM ALF=D1-B/2A FOUND BY QUADRATIC FIT OF DATA*/
double tpl,dif,tp2,d21,d31,ALF;

iffK=1) { tp1=SLOPE*D2; dif=Y2-Y1+tpl;if{difl=0){ ALF=(tp1*D2)/(2*dif),
return (ALF);} else return (25*D2);}

if(K=2) { d21=D2-D1; d31=D3-DI; tpl=d31*(Y2-Y1);, tp2=d21*(Y3-Y1),
dif=tp1-tp2; if(dif—=0) return (25*D2),

ALF=D1-0.5*%(d21*tp2-d31*tp1)/dif, return (ALF); }

}

double FXNS(X) /* FUNCTION USED FOR CALCULATION OF FCO*/
#define boy 21

double *X;

{

double F;

[***%+ WRITE THE FUNCTION TO BE MAXIMIZED **%#**k&&ks*/
FILE *{T,

double u[6],TR[10},w{4][boy] [boy],bt[boy] [boy],S1,52,xn,max,RPL;

int k,in,N1,N2,0n,j,p.i;
in=5; on=1; N1=20; N2=10;
for(i=0;i<6;i++) u[i]=0;

ok e e e e ek ok ok * dokdekkiokkiokkkk)

/ Rkd

if{(fi=fopen("suql.dat","r")=NULL) {
printf{("can not open the file\n"); exit(0); }

froed *axkkkkkforoe NN**Esdkkbhaiohsk bbb d bbbt )

fscanf(ff,"%d %d %d %d\n",&in ,&N1,&N2, &on),

for(i=1;i<in+1;i++){for(k=1,k<N1+1Lk++){fscanf(ff,"%lg \n".&w[1][i][k]);}}

for(k=1;k<N1+1;k++){for(p=1;p<N2+1;p++){fscanf(ff,"%Ig \n",&w[2][k][p]);}}

for(p=1,p<N2+1;p++){for(j=1,j<on+1,j++){fscanf(ff,"%lg \n".&w{3][pl[iD);}}

for(k=1;k<N1+1.k++){fscanf(ff," %lg \n",&bt[1][k]);}

for(p=1;p<N2+1;p++){fscanf(ff,"%Ig \n",&bt[2][p]);}

for(5=1;j<on+1;j++){fscanf(ff,"%lg \n",&bt[3][i]);}

/******#**************#**********t*#***********####***********************/

X[0]=(X[0)/250);

uf1]=X{0];

uf2]=X[1];

u[3]=X[2},

/*Enter the mmf value for a UDSS*/

u[5}F(50000%0.0172)/1500;
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xn=0.1, max=0;
for(i=0;i<10;i++)

{
uf4]=xn; S1=OUTPUT(u,w,bt); if{xn<=0.5) u[4]=(xn+0.5);else u[4]=(xn-0.5),
S2=OUTPUT(u,w,bt);  ifiS1>=S2) TR[i]=S1; else TR[i}=S2; xo=xn+0.1;
if(TR[i}>=max) max=TR[i];/*peak value of torque ripple curve*/
grmtf("torque = %lg \n",TR[il);
RPL=0,
for(i=0;i<10;i++) RPL=RPL+0.5*pow(((max-TR[i])/max),2);
printf("ripple function = %lg ",RPL), fclose (ff); return RPL;
}

double OUTPUT (u,w,bt)
#define boy 21

double u[6],w{4][boy][boy],bt[boy][boy];

{
double big,t;
int a,b,c,i,j.ji,nn,Lkk,ii, N1,N2,iv,in,on,n k,p;/**x1,*x2,*z1,%22,*yd, */
double ut,yt,sum,ex1,out,cons,ex,x1[21},x2{11],z1{21],22[11],yd[2];
int dimu,dimy,dimx1,dimx2,dd.dim;
N1=20;N2=10; iv=1; in=5; on=1, cons=10;
for(ii=1;ii<iv+1;ii++)

{ fork=1k<Nl+l:k++) {

sum=0; for(n=1;n<in+1;n++) { a=in*(ii-1)+n;

sum=w{1][n] [k]*ufa}+sum;}
c=N1*(ii-1y+k; x1[c]=sum+bt[1][k]; z1[c]=tanh(cons*x1[c]), }
for(p=1,p<N2+1;p++)
{ sum=0; for(k=1:k<N1+1:k++) { c=NI1*(ii-1)+k;

sum=w{2][k][p]*z1[c}+sum; }
b=N2*%(ii-1)+p; x2[b]=sum+bt[2][p];, 2z2[b]=tanh(cons*x2[b]);}
for(j=1;j<om+1;j++)
{ sum=0; for(p=1;p<N2+1;p++) { b=N2*(ii-1)+p;
sum=w{[3]{p](j]*z2[b}+sum,; }
dd=on*(ii-1)+j; ydidd]=sum+bt[3](j]; }}
for(ii=1;ii<iv+1;ii++)
{ for(i=Li<intl;i++) { a=in*(ii-1)+i; //printR" in=%lg " ,ula]); }
forG=1;j<on+1;j++) {  dd=on*(ii-1)+j; yd[dd}=(yd[dd]*1500)/0.0172;
/fprintf(" out=%lg "yd[dd] ), } //printf("n");}
out=yd[1]; return(out); }

double FXFE(X,i) /#CALCULATION OF EQUALITY CONSTRAINTS*/

double *X; int i;

***ENTER THE LEFT HAND SIDE OF EQUALITY CONSTRAINTS FROM =0 TO NE***/
{ }

double FXFI(X,i) /#*CALCULATION OF INEQUALITY CONSTRAINTS*/

double *X; int i,

/*** ENTER THE LEFT HAND SIDE OF INEQUALITY CONSTRAINTS FROM =0 TO
NI*** /

{ if(==0) return (X[1]-X[2])}
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double GFE(Xi) /*calculation of equality consraint gradient*/

double *X; int i;

/*ENTER THE GRADIENT COMPONENTS FROM I=0 TO N*NE*/
/*NE(0X0),NE(0X(1), .. FIRST # OF EQ. C. SECOND #OF VARIABLE*/
{ }

double GFI(X.i) /*calculation of inequality consraint gradient*/
double *X; int i;
/*ENTER THE GRADIENT COMPONENTS FROM =0 TO N*NI*/
{ if(i==0) return (0);
if(i==1) return (1);
ii=2) return (-1);  }

double GFF(X,1i) /*calculation of function gradient*/
double *X; int i;
/#ENTER THE GRADIENT COMPONENTS OF F FROM I=1 TO N¥/

{ if(==0) return (0.5);
if{i=1) return (1),
if(i==2) return (0.5);
if(i==3) return (1),

}

B2. Graphs Presenting the Effect of A/Jg and tJ/A on Torque Ripple for

Different mmf values

Following graphs are skethed to present the outstanding results of this optimization
study as discussed in Chapter 4. The first four set of graps (Fig. B1-B4) shows
percentage ripple as a function of A/g, each for different mmf values (30, 40, 60, 70

kA for udss). Each set includes six different graphs for six different combinations of
t/A and t/A. The next four set of graphs (Fig. B5-B8) for the same set of mmf

values shows percentage ripple as a function of t/A, each for three different values
of t/A (0.3, 0.4, 0.5). Each graph in this second set of four shows four different

curves, each for a different value of A/g.
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