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Abstract
This paper develops a measure of realism from within the framework of cognitive 
structural realism (CSR). It argues that in the context of CSR, realism can be opera-
tionalised in terms of balance between accuracy and generality. More specifically, 
the paper draws on the free energy principle to characterise the measure of realism 
in terms of the balance between accuracy and generality.

Keywords  Cognitive structural realism · Free energy principle · The strategy of 
model-based science · Realism · Operationalism

1  Introduction

The free energy principle (FEP), which is articulated by Karl Friston and colleagues, 
is at the centre of flourishing research streams in computational neuroscience and 
theoretical biology. There are vibrant debates over the right philosophical interpreta-
tion of FEP. These interpretations come in various flavours, ranging from outright 
instrumentalism (Colombo & Palacios, 2021; van Es & Hipolito, 2020) and moder-
ate non-realism (Ramstead et al., 2020) to outright or moderate versions of realism 
(Beni, 2019b; Kirchhoff et al., 2022), with interesting remarks on how the model-
ling practice of FEP theorists may bear on the realist/antirealist interpretation of 
FEP (Andrews, 2021; Beni, 2021a; Friston et  al., 2020). This paper goes beyond 
just defending realism about FEP and sets itself the more ambitious task of endors-
ing FEP as an operational measure that lies at the centre of a new take on scientific 
realism. To be more precise, the paper draws on FEP to characterise a measure for 
realism in terms of the balance between the generality and accuracy of scientific 
models.

Despite the novelty of the proposal of the paper—to use FEP to characterise a 
measure for scientific realism—the philosophical tradition that motivates our quest 
has been around for quite a while. The enterprise of this paper is inspired by the 
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informational structural realism in the philosophy of science, in the works of Floridi 
(2008, 2009), Ladyman and Ross (2007). More specifically, the present paper is a 
derivation of a (cognitive) derivation of Floridi’s realism—with the cognitive deri-
vation being called Syntactical or more recently cognitive structural realism (CSR) 
(Beni, 2016, 2018, 2019a). Amongst other things, CSR has been claimed to under-
write a naturalist methodology of science (Beni & Pietarinen, 2021; Pietarinen & 
Beni, 2021). It also arguably accounts for social aspects of scientific practice on the 
basis of FEP’s theory of (dyadic) alignment (Beni, 2021c). However, despite being 
introduced as a version of realism, CSR simply has not provided a clear statement 
of its realist tendency. The present paper aims to amend this shortcoming. CSR’s 
account of scientific representations (which are supposed to be truthful, if CSR is 
a version of realism) builds on FEP. This paper relies on the theoretical resources 
of FEP once more to offer a measure for realism under CSR, which will be sup-
plemented with a definition of realism in terms of the balance between the accuracy 
and generality of scientific models. To relate our measure of realism to the extant 
philosophy of science, the contribution of the paper will be presented as a revision 
of Levins’s (1966) discussion of the strategy of model-based science.

The paper is structured as follows. Section 2 introduces the free energy prin-
ciple and cognitive structural realism. Section  3 visits Levins’s account of the 
relationship between generality and realism (articulated in terms of accuracy) and 
rehearses reasons for scepticism about identifying realism with accuracy. Sec-
tion 4 shows how FEP provides an operational measure for finding the balance 
between accuracy and generality. Section 5 is the conclusion.

2 � The Free Energy Principle and Cognitive Structural Realism

The free energy principle, as being developed by Karl Friston and colleagues 
(Friston, 2010; Friston et al., 2010; Ramstead et al., 2017), lies at the centre of 
a unifying theoretical framework for aspects of computational neuroscience, the-
oretical biology and physics. According to the second law of thermodynamics, 
the sum of entropies of all of the systems that attain thermodynamic equilibrium 
would increase. In order to survive, biological systems must defy the second law. 
They do so by minimising their variational free energy, which is defined based on 
‘self-information’, ‘surprisal’, or simply ‘surprise’ (the relation between the sta-
tistical term surprisal and psychological surprise has been a point of contention, 
but we overlook the difference in this paper).

The mathematical articulation of FEP has been subject to various formulations 
over time. One neat way of modelling FEP (and the notion of relative entropy) 
consists in using Kullback–Leibler divergence (KL-divergence), assuming that 
minimising free energy corresponds to minimising the divergence between 
expected and actual (future) entropy of the self-organising system.

We start with the basic expression for a KL divergence for a probability space 
X, such that ��X;
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Simply put the KL divergence measures the difference between two probability 
distributions q and p. The (variational) free energy can be written in various ways as 
a mixture of a KL divergence and an expected energy.

Consider a partition of some system into states ( � ) that are external to an arte-
fact, particle or person and particular states ( � ) that constitute the particle or person 
in question. These states can be further divided into internal states ( � ) and blanket 
states (b) that intervene between the internal and external states.1 With this parti-
tion in mind, we can now express the free energy as the expected surprisal or self-
information of blanket states—given external states or their latent causes—plus a 
KL divergence between posterior beliefs and the (Bayesian) beliefs parameterised 
by internal states. Equivalently, we can express the free energy as the expected log 
likelihood of blanket states (e.g., sensory inputs) plus the KL divergence between 
Bayesian beliefs and prior beliefs about external states. In the free energy principle, 
these Bayesian beliefs are parameterised by internal states. This is denoted by the 
subscript in q� , in the following expression for free energy:

The first two terms on the right-hand side of Eq. 2 correspond to inaccuracy and 
complexity respectively. In short, free energy provides an upper bound on self-infor-
mation or surprisal, which can be read as scoring Bayesian beliefs in terms of their 
ability to explain external impressions on blanket states—e.g., sensory inputs or sci-
entific measurements of some particle, agent or observer—as simply as possible. 
The inequality above means that minimising free energy minimises self-information 
and can be read as minimising complexity under accuracy constraints. The term 
‘complexity’ scores the difference between Bayesian beliefs about latent or hidden 
causes ( � ) before and after is received some sensory evidence (b). The main insight 
of this paper is that Eq. 2 also provides a measure of realism. Surprisal is the upper 
limit on the subtotal of the internal inaccuracy and complexity of the self-organising 
particle. By respecting this upper limit, the organism makes itself a model of its 
environment.2 In other words, it provides a reliable representation of its environ-
ment. Assuming that realism is mainly (if not totally) about having faithful enough 

(1)D[q||p] =
∑

�
q(�)log

q(�)

p(�)

(2)
F(q, b) = Eq[− log p(b| 𝜂)]+D[q𝜇(𝜂)| p(𝜂)] > − log p(b)

= inaccuracy + complexity > surprisal

1  In the context of the FEP, a Markov blanket is used to establish a statistical boundary that condition-
ally separates a system (such as, but not exclusively, a biological entity) from its external environment. 
It specifies which variables within the system are conditionally independent of the variables outside the 
blanket. Thus, blanket states refer to the internal states of a system that lie within its Markov blanket, and 
Markov blankets are used to specify the pertinent information required for making predictions or infer-
ences about the system’s internal states.
2  One way of thinking about this is to note that self information is the negative of log evidence. There-
fore, minimising self information or surprisal is the same as maximising the evidence for a probabilistic 
model of external states that is parameterised by internal states. This view is sometimes referred to as 
self evidencing.
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representations of the environment, the present project offers to operationalise the 
reliability of representations (and thereby the notion of realism) in terms of finding 
the balance between inaccuracy and complexity (or the balance between accuracy 
and generality, on which more will be said later in this paper).

FEP, its general and neat formal articulation, and its capacity for representing bio-
logical facts have been at the centre of interesting philosophical debates (Kirchhoff 
et al., 2022; van Es & Hipolito, 2020). This paper aims to go beyond the extant dis-
cussions to explore the capacity of FEP for underpinning a new operational measure 
for realism. The notion of realism that we use here is derived from a Cognitive ver-
sion of Structural Realism (CSR) [see Jones, (2019) for a critical review].

Scientific realist theories of various stripes aim to ground the empirical success 
of theories in their truth-likeness. Structural Realism (SR) is a version of realism 
that accounts for the cumulative growth of theories at the level of structure or form 
rather than content (Worrall, 1989). When elaborated metaphysically, CSR holds 
that structures are fundamental and individuals are derivative (French, 2014; Lady-
man & Ross, 2007). Orthodox versions of SR, such as Steven French’s (French, 
2006; French & Ladyman, 1999) aim to model scientific representations via quasi-
set theory and model theory (with partial structures), but according to CSR, this 
approach to representations is too abstract to contribute to reinforcing the realist 
core of SR (Beni, 2019a, 2019c chapter 3). According to this critique, to establish its 
claim to realism, SR must reinforce its account of structural representations with an 
intelligible account of how scientists (as actual biotic self-organising systems) can 
represent the structure of the world to themselves (both at the level of individuals 
and scientific communities) (Beni, 2018, 2021c). And CSR relies on the theoretical 
framework of FEP to construct its account of scientific representation. According 
to CSR, the information processing of the cognitive systems under the FEP under-
writes the formation and verification of scientific theories. 

Informational structures of the scientific theories, which could be regimented 
by the unified entropy-based informational framework, latch onto reality on 
the basis of the predictive coding capacity of the brain. Thus we can account 
for the connection between the unified entropy-based informational framework 
(which regiments the informational structure of theories) and the world on the 
basis of the brain’s capacity for decreasing the discrepancy between its models 
and reality (Beni, 2018, pp. 640–641).

 Before going further, it should be noted that recent articulations of CSR do not 
assume that scientific inferences are exclusively grounded in the neurocomputa-
tional mechanisms of individual brains. Responding to Jones’s (2019) worry about 
the negligence of social aspects of scientific practice, Beni (2021c) has argued that 
the cognitive structures that are at issue in CSR can and indeed do include patterns 
of distributed collective scientific knowledge. These patterns are distributed in sci-
entific groups or even whole scientific communities. Drawing on preceding work 
of Giere (2002), Hutchins (1995), Kirsh (2010), and Nersessian (2003), the recent 
articulation of CSR indicates that cognitive embodied structures that are at issue 
in CSR could be construed along the lines of moderate versions of embodiment 
and enactivism. At some level (perhaps a basic one), scientific representations are 
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still taken to be formed in the brains, but brains are embodied and situated within 
ecological and social contexts. This provides a purchase for developing a distrib-
uted account of scientific representations in terms of patterns of human–human and 
human-artefact dynamics, which means the inferences that are at issue in scientific 
practice are not directly and exclusively supported by any individual scientist’s 
brain. In short, CSR recognises that science is a socio-cultural practice. Scientists 
are organised into groups, and they use artefacts such as computers and external rep-
resentations. The collective cognitive activity of individual scientists and its exten-
sion into external representations such as computational tools, laboratories, etc. are 
explicated by CSR as forms of adaptive complementary social behaviour under the 
rubric of FEP. This insight draws on Giere’s account of the interrelatedness of the 
cognitive and social aspects of scientific activity, between which no sharp divide can 
be stipulated (see Beni, 2021c, p. 78). In this picture, scientific knowledge emerges 
from collective cognitive activity, which is affected by the social organisation and 
culturally evolved tools, as well as the cognitive abilities of individuals.

CSR’s account of collective scientific knowledge (that is distributed into patterns 
of human–human and human-artefact dynamical interaction) is still supplemented 
by FEP. According to CSR, collective scientific practice, when taking place success-
fully, leads to the minimisation of the collective information entropy of the system 
as a whole. There is no water-tight proof to demonstrate that populations as large 
as laboratories or scientific groups are deliberately and consciously participating in 
minimising their collective entropy. In fact, even simpler accounts of adaptive com-
plementary social behaviour under FEP require further experimental support. But 
at least the theoretical foundations of FEP can be trusted with the job of accounting 
for collective cognition in terms of minimising free energy by using shared genera-
tive models in different communities—from simple communities such as a popula-
tion of neurons and a couple of birds that try to perform a duet based on the same 
sonic template to more sophisticated communities, such as scientific ones (Friston 
& Frith, 2015a, 2015b; Kirchhoff, 2018; Ramstead et al., 2019). I shall put my point 
in context by drawing on a working example that has been originally discussed by 
Chandrasekharan and Nersessian (2015).

Chandrasekharan and Nersessian (2015) argue that scientific cognition is dis-
tributed in the web of implicit sensorimotor processes of diverse contributors. To 
instantiate their view, they show how distributed information processing provides 
solutions to some concrete problems. For example, the problems of how to develop 
new drugs, build RNA folds, or explain how retinal cells detect motion can be han-
dled by crowdsourcing them between multitudes of players in games such as Foldit, 
EteRNA, Eyewire. In this context, Chandrasekharan and Nersessian construe scien-
tific cognition in terms of distributed processes; scientific representation is expli-
cated in terms of building up external representations. I adapt their insight and 
below will put it in the context of a bioengineering lab.

Let us assume that A is a theoretical modeller and B is an experimentalist in 
the context of a bioengineering lab. Their collective aim is to construct external 
representations and fit them into internal ones. As Chandrasekharan and Nerses-
sian remark, the task will be accomplished collectively, via cognitive processes 
that are distributed in a system that comprises the modeller, the experimenter, 
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and different artefacts—such as diagrams, graphs, papers, databases, search 
engines—that contribute to the accomplishment of the task. The collaboration 
is fruitful when A’s and B’s respective active inference schemes are coupled 
together and A and B collaborate on the basis of a shared generative model. I 
shall elaborate immediately. At the earliest stage of collaboration, A and B want 
to start to understand one another and get a grasp of the goals of the research. 
They want to figure out how the tasks are distributed and what are the available 
representational tools. In the beginning, there will be a rather high amount of pre-
diction errors included in A’s and B’s respective models of what the other thinks. 
This means that, as Chandrasekharan and Nersessian’s study indicates, at first, the 
collaboration between A and B is strained. This is because A’s and B’s respective 
models of each other are erroneous in the beginning. More precisely, as Chan-
drasekharan and Nersessian (2015, p. 1754) argue, at first the participants “had 
different representations of the mechanism, different levels of control, different 
goals/objectives, and little understanding of the nature of these differences”. The 
divergence between A’s and B’s respective representations of mechanisms and 
levels of control could become too large to allow for efficient collaboration so 
much so that eventually the divergence may prevent them from achieving the 
goals of the research. For example, it might become the case that the divergence 
between perspectives is so big that B, who is the experimentalist, does not take 
the theoretical predictions of A, who is the modeller, seriously to try to test them 
carefully enough (Chandrasekharan & Nersessian, 2015, p. 1749). Moreover, even 
if A and B want to try to predict one another’s intentions and actions without a 
shared basis, the problem of regress may raise its head. This is because A must be 
able to predict B, who aims to predict A, who aims to predict B, and so forth. The 
question is how A and B may succeed in constraining the discrepancy between 
their individualistic models and get a handle on intersubjective facts about the 
status of one another as well as goals, objectives and the involved mechanisms 
of their common research. It is obvious that for the research to succeed, A and B 
must begin to collaborate efficiently when their active inference schemes are cou-
pled together. This means that they begin to subscribe to the same narrative so as 
to coordinate their respective active inference schemes. To enhance the efficiency 
of their collaboration, A and B must be able to minimise the discrepancy between 
their respective perspectives, say, when B the experimentalist begins to invest in 
the representations constructed by A the modeller. Thus, the minimisation of dis-
crepancy happens when the collaboration starts to take off.

The example that has been used in the previous paragraph is inspired by Chan-
drasekharan and Nersessian’s account. However, despite its merits, their account 
does not elaborate on the underpinning mechanisms of the formation of trust and 
collaboration. So, the main question is, what are the cognitive mechanisms of mini-
misation of uncertainty and the evolution of trust? The minimisation of the discrep-
ancy between the respective perspectives can be explained best based on general-
ised synchrony under FEP. Under this model, the outcome of the prediction error 
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minimisation of one system could be predicted from the perspective of the other sys-
tem based on a shared narrative or a shared generative mode (Beni, 2021c; Friston 
& Frith, 2015a). A and B would not be able to overcome their uncertainty about one 
another’s goals, intentions, and the division of labour without getting entrapped into 
an infinite regress unless they can rely on a shared generative model that sets the 
stage for coordinating the division of responsibilities for fulfilling a given task under 
a social hierarchy superimposed on the structure of the distribution of the task.

The main point of this paper is to find a measure for realism in the context of CSR. 
CSR—which also accommodates an account of the dynamics of human–human 
and human–artefact integration in the context of scientific practice under the rubric 
of FEP—aspires to be a version of realism. Thus far, reasons that have been mar-
shalled in favour of the realist core of CSR have been conjured from evolutionary 
biology (which fits the naturalist tendency of CSR). The present study aims to go 
further to find a measure for the notion of realism without presupposing the pos-
sibility of direct access to the causal structure of the world. The attempt at setting 
the measure for realism in terms of finding the balance between generality and accu-
racy under FEP is quite compatible with the distributed-collective take on scientific 
knowledge. This is because FEP underlies a viable neurocomputational account of 
social cognition. FEP theorists argue that mechanisms of minimising uncertainty 
and active inference underwrite computational models of social perception, social 
learning, social signalling and generally social inferences (Molapour et al., 2021). 
Minimisation of uncertainty in the context of social cognition, too, consists in put-
ting surprisal as the upper bound on the subtotal of inaccuracy and complexity. This 
is explicable in terms of striking the balance between the accuracy and generality 
of models. If so, there will be formal consistency between using FEP to define a 
measure for scientific realism on the one hand and a social conception of scientific 
practice on the other, given that computational models of social cognition, too, can 
be specified in the formalism of minimising free energy. The main point is that from 
both an individualistic and collective perspective on science, there is no model-inde-
pendent access to the unobservable parts of the world to confirm the veracity of rep-
resentations (also see Beni, 2019a, chapters 3 and 4). Bearing that point in mind, we 
will endeavour to find a measure for realism from within the framework of CSR (in 
terms of the balance between accuracy and generality.

To recap, CSR gives up on some of the less modest claims of scientific realism—
the conception of mind-independent reality is replaced with a perspectival, cogni-
tive conception. However, this scientifically informed and modest version of realism 
would appeal to a radical naturalist. In the past few years, CSR was expanded to 
account for social aspects of scientific practice by relating FEP’s view on alignment 
to dynamic systems theory (Beni, 2021b, 2021c) and explicate a naturalised account 
of scientific methodology and scientific inference that draws on FEP to address the 
issues of scientific model making and theory choice (Beni & Pietarinen, 2021; Pie-
tarinen & Beni, 2021). What CSR still lacks is a clear sense of realism. In this paper, 
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we show how CSR can develop a perspective on scientific realism based on its natu-
ralist account of selecting models.

3 � Realism and Accuracy of Models

Levins’s (1966) account of the strategy of model-based science in biology indicates 
that the complex process of scientific model-making is not simply a matter of set-
ting up mathematical models that can provide “a faithful, one-to-one reflection of 
this complexity” (Levins, 1966, p. 422). The central insight of Levins’s paper is that 
generality, realism, and precision about the goals of understanding, predicting and 
controlling the world cannot be simultaneously maximised (Levins, 1966, p. 423). 
Absent maximising all three factors simultaneously, Levins (1966, p. 423) conceives 
of three approaches for dealing with generality, realism and precision.

	 I.	 The modeller sacrifices generality for realism and precision. The focus would 
be on the short-term behaviour of the organism in particular situations. This 
paper is not concerned with (I) and does not engage in an in-depth discussion 
of it.

	 II.	 The modeller sacrifices realism to generality and precision, more or less in 
the same way that in physics, physicists construct models of perfect gases or 
frictionless planes.

	 III.	 The modeller sacrifices precision to generality and realism, caring for the 
long-run qualitative rather than quantitative results.

In his discussion of these three approaches, Levins identifies realism with accu-
racy alone and does not assume that generality and precision can contribute to real-
ism as well (Beni, 2022). This point becomes prominent in Levins’s negative evalu-
ation of the second strategy, where (1966, p. 422) he gives examples of the kinetic 
theory of gases and frictionless planes and suggests that the involved models (such 
as general equations in the kinetic theory) are unrealistic in the sense that they lack 
accuracy.

According to Levins, the second strategy, namely (II), leads to the minimisation 
of realism in the sense that involved models do not provide accurate enough repre-
sentations of the causal structure. He remarks that this lack of accuracy—which is 
a result of the generalisation of models—is prevalent in models of physics, which 
abstract away from full details and idealise them—hence the reference to the kinetic 
theory or the Galilean account of motion on inclined planes. Whether or not the 
distortion that is caused by idealisation undermines the realist understanding of the-
ories of physics is an important question (Cartwright, 1983; Frigg, 2010; Suárez, 
1999). However, we do not need to engage in that fundamental discussion to develop 
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our account here. For, the assumption that we make is quite minimal. We assume 
that, from the fact that scientific practice relies on idealisation, approximation, appli-
cation of ceteris paribus laws, and so on, it does not follow that the class of mod-
els that instantiate theories fail to provide precise/faithful (enough) representation 
of their target systems (McMullin, 1985).3 In the same vein, we assume that add-
ing unnecessary details to models is always unwelcome in both special sciences and 
physics (Craver & Kaplan, 2018). We do not think these assumptions are demand-
ing. It is some kind of truism to say that more details are not always better, and add-
ing details marked as unnecessary will not be helpful. The more important question, 
that needs to be articulated and addressed with more care is how to determine what 
details are necessary and what details are not (Beni, 2022). This is the question that 
we will discuss in the remainder of this paper. We will argue that CSR can draw on 
FEP once more to provide a realist measure of how much detail should be retained 
without undermining the representational capacity of theories.

I shall clarify my point with an example before going further. When reproving the 
use of generic equations in his section on strategy, Levins remarks on the models of 
the Volterra predator–prey equation. This equation glosses over physiological details 
as well as the effect of a species’ population density on its rate of increase. However 
the realist tendency of the Volterra equation can be defended as well on the same 
logic that McMullin used to deal with the implied idealisation of the kinetic theory 
(see the previous paragraph). Despite glossing over some physiological details, the 
class of models under the Volterra equations4 still manages to achieve empirical 
adequacy. The main point here is that although the Volterra equation representations 
are not fully detailed and complete, there is no reason to think that they do not pro-
vide truthful representations of the general relationship between prey and predators. 
We do not of course assume that the equations need to refer to the mind-independent 
structure of reality. The heart of the enquiry is elsewhere.

It is true that Volterra’s model misses some details, for example, about the physi-
ological constitution of prey and predators. Nevertheless, the model comes with 
non-negligible explanatory and predictive power. We do not submit that the explana-
tory power of the model is grounded in the mind-independent causal structure of the 
world. Our question is about how much accuracy is enough for bolstering realism 

3  As Levins remarks, the kinetic theory of gases does not specify the internal structure of molecules that 
are taken as constituents of the gases. So, the models of kinetic theory idealise some concrete facts about 
the intrinsic nature or structure of the molecules. But not all facts about the internal structure of the mol-
ecules contribute to increasing the explanatory or predictive power of the theory. Maximising accuracy 
about all the details (or having complete models) undermines the representational power of the theory, 
and as such it could hardly maximise realism.
4  Assuming that V is the size of the prey population and P denotes the size of predator population, r is 
the rate of the growth of the prey population and m is the death rate of predators, Volterra’s model of 
fluctuation of predator–prey dynamics (Volterra, 1926) holds that:

dV

dt
= rV − (aV)P

dP

dt
= b(aV)P − mP
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about models. In the present case, more details about the physiological constitution 
of the prey and predator as well as the properties of the environment—whether it 
contains, say, saltwater or brackish—would increase the accuracy of a given applica-
tion of Volterra’s model, but these details do not necessarily contribute to providing 
a more realistic explanation of why cessation of fishing led to the decrease in fish 
population, in defiance of the earlier expectations (Beni, 2022). In fact, as Weisberg 
remarks, it is not always possible (or even desirable) to have complete models of tar-
get systems in their full complexity, especially when one strives to model complex 
systems (Weisberg, 2007, p. 626).

In short, we deny that realism entails the maximal accuracy of models with 
respect to their specified applications. There is no doubt that realism about models 
mandates concern for some degree of accuracy of models. Our question is about 
how to find the right balance between the accuracy and generality of models that 
could be the loci of realist commitments.

4 � Free Energy Principle as the Measure for Realism

Thus far in this paper, I have argued that realism should not be specified in terms of 
the accuracy of models alone. Instead, the paper proposes to reconceptualise real-
ism in terms of the balance between the generality and accuracy of models. From a 
scientific realist perspective, models should be accurate enough to impart detailed 
enough information about the properties of the target systems, but at the same time, 
they must be generic enough to represent only properties that are relevant to spe-
cific applications (and possibly, explain how these properties are connected with the 
physical foundations of the world). In other words, models that are over-parameter-
ised can provide a very accurate fit and match their target system very well. Realism 
is about finding the right balance between accuracy and generality. This provides a 
nice operational notion of realism in the context of CSR.

Being a version of structural realism, CSR seeks to ground the veracity of scien-
tific representation in the (individual and collective) ability of scientists (as biotic 
self-organising systems) to represent the causal structure of the world to themselves, 
and thereby it links the veracity of scientific representations with the fact that in 
order to maximise the chance of their survival, biotic self-organising systems need 
to fasten their cognitive grip on a non-negligible portion of the causal structure of 
the real world (Beni, 2019a, chapter 6). In this paper thus far realism has been oper-
ationalized in terms of striking the balance between generality and accuracy. I finish 
this paper by briefly spelling out this measure in terms of FEP. The same free energy 
minimising mechanisms that natural self-organising systems apply to stay in non-
equilibrium steady states enable the notion of realism as the balance between accu-
racy and generality. This move will be in harmony with CSR’s radically naturalist 
enterprise to ground scientific representation in the dynamical interplay between the 
organism and its (social and biological) environment under FEP (more on this later).

FEP itself seems to owe part of its success to the fact that the right combination 
of generality and accuracy is incorporated into its formulation. Relying on generic 
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equations that model the minimisation of free energy, FEP draws unificatory links 
between various fields in psychology, life science, computational neuroscience, 
and even social cognition (Friston, 2010; Hesp et al., 2019; Vasil et al., 2020). At 
the same time, by invoking detailed enough causal models of the neurophysiologi-
cal mechanisms of cognition (Büchel & Friston, 1997; Friston et al., 2003) it pro-
vides rather accurate accounts of embodied mechanisms of cognition and life at the 
level of neuronal nested populations (Kirchhoff & Kiverstein, 2019; Pezzulo et al.,, 
2017). So, FEP itself seems to be articulated by finding the right balance between 
generality and accuracy. FEP not only owes its success at least partly to striking 
the right balance between generality and accuracy, it is also an enabler of the har-
mony between accuracy and generality of scientific models, where this harmony is 
the main constituent of scientific realism.

When introducing FEP in Section 2 of this paper, I remarked that KL-divergence 
could provide a measure of relative entropy as a centrepiece of FEP. For the sake 
of simplicity, I draw on a simpler version of KL-divergence (Eq. 1), which is also 
used in Mann et al.’s (2021) articulation of FEP, to show how FEP can optimise the 
balance between accuracy and generality of models. I shall flesh out my proposal 
immediately.

Let us express complexity in terms of prior and posterior beliefs about some 
latent causes or hypothesis D[q�(�)|p(�)] , as in Eq. 3. We assume that mechanisms 
of formation of scientific hypotheses and testing them are grounded in mechanisms 
of minimisation of free energy under FEP [a la (Beni, 2019a chapters 6 and 7; Beni 
& Pietarinen, 2021; Pietarinen & Beni, 2021)]. To press our point, instead of con-
struing 3 as a formal basis for developing an account of cognition per se, we inter-
pret Eq. 3 to represent the mechanisms of constructing and testing scientific hypoth-
eses, which, according to CSR, are grounded in neurophysiological mechanisms of 
minimising prediction error under FEP. The equation, when interpreted in terms of 
generative models that underwrite cognition per se (e.g., in the case of Eq. 1) (origi-
nally) articulates the relation between prior predictions embedded in the generative 
models and posteriors about hidden states, but we expand its interpretation by sub-
mitting that p(�) represents the scientific model’s prior hypotheses about the features 
of the territory, and q(�) denotes posterior beliefs about the features of the scientific 
target system (which is supposed to be represented by the class of models). Parts of 
the target systems are represented by scientific hypotheses. When seen in this light, 
FEP underwrites a likely story of how natural phenomena are represented by scien-
tific models that can be updated against the evidence. Under this interpretation, w 
denotes a specific configuration of worldly states, and let  p(�) denote the prior rep-
resentational states of a given scientific hypothesis about external state of affairs � 
and q(�) denote the posterior beliefs about the same states after imputing the model 
to the target system and updating the hypothesis.

The interpretation of Eq.  3 in the previous paragraph just submits a techni-
cal articulation of the main insights behind CSR, as previously presented in (Beni, 
2018, 2019a). Now we go further to unpack the implications of this proposal for 
Levins’s notion of generality, and indeed for the definition of scientific realism in 
general. Our main insight here is that if the models are completely accurate, then the 
divergence between the two sets of distributions p and q will, in general, be high–in 
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order to fit the data at hand. This means that the model closely fits the target system 
completely. The downside of this is that models would overfit the target system in a 
way that makes them fail to serve in the explanation or prediction of anything aside 
from the specific configuration of � . Complete accuracy is not a desirable feature of 
scientific models because it makes them a bit too local to serve their scientific repre-
sentation purpose.

In order to support realism about scientific models, we not only must avoid 
maximal accuracy but also over-generalisation. This is because models that dis-
miss all relevant details fail to accomplish their representational task as well. 
This is tantamount to saying that models that we cannot use to form any accurate 
predictions about the configuration of any worldly state would fail to serve their 
scientific purpose. In that circumstance, any occurrence would become surprising 
for the agent, because the agent’s hypotheses or models would become too gen-
eral to make any precise predictions about what would happen next. So, let � rep-
resent a specific configuration of worldly state and b denote a piece of evidence 
that the agent has for supporting the hypothesis about � . In this circumstance, 
p(b, �) represents a probabilistic generative model about external or worldly states 
( � ) and the empirical evidence for that hypothesis (b). In this setting, the accu-
racy Eq[logp(b|�)] is given by Eq.  3, where, p(b|�) represents the likelihood of 
the evidence given the hypothesis about the worldly state. The equation indicates 
how surprised we would be in case of divergence between our prior beliefs about 
evidence being the case given the truth of the hypothesis about the state of the 
world on the one hand and q (�) or our posterior belief after imputing the model 
to the target system on the other. In case the model is too general, the divergence 
between q(�) and p(b) would exceed expectations. That is to say beliefs about 
the world would be so general that they could not be used to predict any spe-
cific distribution of external states of with any accuracy and thus any future states 
would be surprising to the agent that uses the over-generalised predictive mod-
els. Unless the divergence between q(�) and p(�) could be constrained, the model 
would fail to serve its explanatory and predictive goals. Under FEP, the evolu-
tionary cost of the failure is that models that maximise surprise would minimise 
survival. In the context of scientific practice, the cost of using over-generalised 
models is the falsification of theories.

Thus far in this section, we constructed the operational measures of the accuracy 
and generality of models. Now we construct a measure for evincing the relationship 
between accuracy and generality. (the solution is inspired by Mann et  al., (2021) 
who use this (or a very similar) approach to find the balance between over-fitting 
and the failure to explain);

M is the measure for realism, saying that a class of models whose application 
conforms to general guidelines of realism must avoid both extremes of being too 

(3)
M(q, b) = Eq[log p(b| 𝜂)] −D[q𝜇(𝜂) | p(𝜂)] < log p(b) = accuracy − complexity
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accurate and too general. This measure just is the negative variational free energy 
in Eq. 2.5 The first term represents the accuracy, whereas the second term represents 
the complexity penalty for too much generality. By constraining both accuracy and 
generality, the FEP provides a measure of realism.

Admittedly, it is unsurprising that Eq. 3 can apply to the scientific context. When 
stating their formulation of FEP, authors sometimes refer to the scientific context 
metaphorically (Hohwy, 2013; Mann et al., 2021). What is interesting in this context 
though is to go beyond mere metaphors and admit that scientific practice (both at the 
individual and collective levels) is based on the neuro-computational mechanisms 
of the minimisation of free energy, and to admit that the general realist perspective 
could be grounded on the cognitive mechanisms of model-selection. CSR aspired to 
develop such a cognitive perspective of science by drawing on FEP. Using FEP as 
a measure of realism—in terms of the harmony between accuracy and generality—
amends CSR’s lack of a clear statement on realism.

5 � Concluding Remarks

The paper aimed to develop a cognitive-operational measure of scientific realism. 
We started by revisiting Richard Levins’s identification of realism with the accuracy 
of scientific models in life sciences and argued that realism cannot be specified in 
terms of accuracy alone but as the harmony between accuracy and generality. To 
put flesh on this skeletal definition of realism (as the balance between accuracy and 
generality) we fell back on a cognitive version of structural realism that grounded 
its account of scientific representation in the minimisation of free energy under the 
free energy principle (FEP). Crucially, the FEP can be used to articulate an opera-
tional measure of finding the right balance between generality and accuracy. This 
proposal is in line with cognitive structural realism (CSR), which submits that sci-
entific practice is a finessed form of the capacity of self-organising systems to mini-
mise the discrepancy between their internal models and the causal structure of real-
ity. At the same time, the enterprise of this paper provided CSR with a congenial 
operational definition of realism. In short, FEP has been used to account for various 
theories about self-organising systems and their sentient behaviour; CSR projects 
this account to the domain of scientific collective knowledge. The upshot is that FEP 
does not need to be used to argue for or against scientific realism but, rather, can be 
regarded as itself furnishing a theory of scientific realism.
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