
Faster MIL-based Subgoal Identification for Reinforcement

Learning by Tuning Fewer Hyperparameters

SAIM SUNEL, Department of Computer Engineering, Middle East Technical University, Ankara, Turkey

ERKIN ÇILDEN, RF and Simulation Systems Directorate, STM Defense Technologies Engineering and

Trade Inc., Ankara, Turkey

FARUK POLAT, Department of Computer Engineering, Middle East Technical University, Ankara, Turkey

Various methods have been proposed in the literature for identifying subgoals in discrete reinforcement learn-
ing (RL) tasks. Once subgoals are discovered, task decomposition methods can be employed to improve the
learning performance of agents. In this study, we classify prominent subgoal identification methods for dis-
crete RL tasks in the literature into the following three categories: graph-based, statistics-based, and multi-
instance learning (MIL)-based. As contributions, first, we introduce a new MIL-based subgoal identification al-
gorithm called EMDD-RL and experimentally compare it with a previous MIL-based method. The previous ap-
proach adapts MIL’s Diverse Density (DD) algorithm, whereas our method considers Expected-Maximization
Diverse Density (EMDD). The advantage of EMDD over DD is that it can yield more accurate results with
less computation demand thanks to the expectation-maximization algorithm. EMDD-RL modifies some of the
algorithmic steps of EMDD to identify subgoals in discrete RL problems. Second, we evaluate the methods in
several RL tasks for the hyperparameter tuning overhead they incur. Third, we propose a new RL problem
called key-room and compare the methods for their subgoal identification performances in this new task.
Experiment results show that MIL-based subgoal identification methods could be preferred to the algorithms
of the other two categories in practice.

CCS Concepts: • Computing methodologies → Sequential decision making;

Additional Key Words and Phrases: Subgoal identification, expectation-maximization, diverse density, hyper-
parameter search, multiple instance learning, reinforcement learning

ACM Reference Format:

Saim Sunel, Erkin Çilden, and Faruk Polat. 2024. Faster MIL-based Subgoal Identification for Reinforcement
Learning by Tuning Fewer Hyperparameters. ACM Trans. Autonom. Adapt. Syst. 19, 2, Article 10 (April 2024),
29 pages. https://doi.org/10.1145/3643852

1 INTRODUCTION

Solving reinforcement learning (RL) tasks with a divide-and-conquer strategy was found to
be fruitful in the RL literature [6, 25, 27], and this has led to the proliferation of many task
decomposition algorithms in recent decades. A decomposition technique divides a given RL task

This study was supported by Grant No. 2210-A (2019/2) National Scholarship Programme for MSc students of the Scientific
and Technological Research Council of Turkey (TÜBİTAK).
Authors’ addresses: S. Sunel and F. Polat, Department of Computer Engineering, Middle East Technical University, 06800
Ankara, Turkey; e-mails: saimsunel@ceng.metu.edu.tr, polat@ceng.metu.edu.tr; E. Çilden, RF and Simulation Systems Di-
rectorate, STM Defense Technologies Engineering and Trade Inc., 06530 Ankara, Turkey; e-mail: erkin.cilden@stm.com.tr.
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be
honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee. Request permissions from permissions@acm.org.
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM 1556-4665/2024/04-ART10
https://doi.org/10.1145/3643852

ACM Trans. Autonom. Adapt. Syst., Vol. 19, No. 2, Article 10. Publication date: April 2024.

https://orcid.org/0000-0003-4638-7047
https://orcid.org/0000-0003-3451-7326
https://orcid.org/0000-0003-0509-9153
https://doi.org/10.1145/3643852
mailto:permissions@acm.org
https://doi.org/10.1145/3643852
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3643852&domain=pdf&date_stamp=2024-04-20

10:2 S. Sunel et al.

into smaller tasks and tackles each subtask individually. Solutions to these subtasks are combined
to accomplish the main objective more efficiently. These smaller tasks are critical, since they are
intermediate steps toward solving the problem.

If employed at the early stages of problem-solving, then task decomposition can accelerate the
learning performance of RL agents by increasing exploration efficiency and shortening the time
required to achieve goal [1–5, 16, 17, 19, 25]. Many decomposition methods seek to identify critical
states on a given problem, called subgoals. After discovering these states, agents first attempt to
learn policies to reach these subgoals. After obtaining solutions to these subgoals, agents can learn
at more abstract policy levels. With such an abstraction, agents do not have to realize their learn-
ing solely with the low-level actions supported by tasks. They can learn to develop policies over
policies and further blend low-level actions with more abstract behavior. For instance, an agent
may be allowed to apply only four actions that move it forward, back, left, and right directions
in a given task. After running a subgoal analysis, the agent may find that a particular state acts
as a gateway and regard this state as a subgoal. To reach this subgoal, it can learn an abstract ac-
tion, “move to the gateway,” by analyzing its trajectories. Thus, the agent can execute this abstract
action whenever it wishes to transition to the gateway state.

In the related literature, various studies have proposed methods to tackle the subgoal identifica-
tion problem in discrete RL tasks by approaching it from different perspectives. Several studies use
graph theory methods and metrics on a graph constructed by inspecting the state transitioning his-
tory of an agent [4, 17]. Another group of studies devises statistical metrics mainly depending on
the occurrences of states in trajectories [3, 13]. One study takes a unique approach and treats the
subgoal identification problem as if it is a problem of multi-instance learning (MIL) paradigm
[16]. With these fundamental differences, we can group these studies into three main categories:
graph-based, statistics-based, and MIL-based. Throughout this article, we advocate MIL-based sub-
goal identification algorithms thanks to their unique approach to the subgoal identification prob-
lem and the advantages they provide in practice.

Tuning hyperparameters of algorithms for learning tasks is of great importance in machine
learning, because hyperparameters directly determine the behavior and learning capabilities of
methods [21]. So, a hyperparameter search procedure has to be carried out to find the best-
performing hyperparameter configuration in a particular problem. Reinforcement learning and
subgoal identification methods are no exception [10, 24]. For every new RL task encountered,
hyperparameters of methods have to be adjusted to acquire optimal performance. The effort to
search for optimal hyperparameter values correlates with the size of the hyperparameter search
space. Every hyperparameter constitutes one dimension of the search space, and as the number of
hyperparameters increases, the number of hyperparameter configurations to test increases expo-
nentially. Deciding values for hyperparameters can become demanding, especially for those that
can take a value from an infinite set, since some values or value ranges must be opted among infin-
itely many options. The situation can worsen if the performance of a method is highly susceptible
to its hyperparameters. In such cases, searching for an optimal value turns out to be looking for a
needle in a haystack, as the exact hyperparameter values have to be determined for the algorithm
to perform optimally. Thanks to their small number of hyperparameters with values from a finite
set, MIL-based methods can easily be exempted from the intricacies that increase the effort for a
hyperparameter search.

In addition to bolstering MIL-based studies, we propose a new MIL-based subgoal identifica-
tion method in this study. Our method has been developed mainly by getting inspiration from
a previously proposed MIL-based approach, which we refer to as subgoal identification with Di-
verse Density (SDD) [16]. The method is an adapted version of a well-known MIL algorithm called
Diverse Density (DD) for the subgoal identification problem. The DD algorithm is one of the first

ACM Trans. Autonom. Adapt. Syst., Vol. 19, No. 2, Article 10. Publication date: April 2024.

Faster MIL-based Subgoal Identification for RL 10:3

techniques proposed in the MIL domain. As the successor of DD, the Expectation-Maximization

Diverse Density (EMDD) algorithm [28] surpasses DD concerning both speed and accuracy per-
formances. Thanks to its superiority, we have adapted EMDD to identify subgoals in discrete RL
tasks. In the upcoming sections, we present our algorithm coined EMDD-RL in detail and provide
experimental evidence to support its usefulness in several RL problems by comparing it with SDD
for speed and accuracy performances.

The availability of many methods for subgoal identification makes it hard to devise a unifying
experimental setup under which all methods are tested for their accuracy performances in multi-
ple RL tasks. It is because a hyperparameter search for each method has to take place for each task,
and many RL tasks have to be designed, both of which require a significant amount of effort and
time. Instead of comparing methods of the three categories over a wide range of RL problems, we
first focus on the hyperparameter search overhead they incur while being employed for several
discrete RL problems. Second, we compare their identification accuracy performances in a new
RL task. To summarize, we follow three main directions throughout this article to compare sub-
goal identification methods. In the first direction, as EMDD-RL is a new MIL-based approach, we
compare it with SDD. In the second direction, we conduct experiments to assess the hyperparam-
eter tuning overhead of the methods in the three categories. Comparing the subgoal identification
performance of the methods in the new RL task constitutes the third direction.

This work focuses mainly on the subgoal identification problem in discrete RL tasks. After identi-
fying subgoals, a task decomposition method can divide the problem into smaller subproblems and
learn the optimal policies for them, whose concerns and research questions differ from the meth-
ods presented in this article. Once a subgoal identification method and a decomposition method
are selected, they can be combined to solve a given RL problem faster than the conventional RL
methods (e.g., Q-learning [26], SARSA [22]). To this end, options framework [25] could be con-
sidered as the task decomposition algorithm, which can develop and learn abstract policies over
primitive ones (actions).

The article’s outline is as follows: in Section 2, we introduce the prominent subgoal identi-
fication techniques in the literature in a detailed manner by categorizing them depending on
their approach to the subgoal identification problem. In the same section, along with SDD, we
also introduce DD and EMDD algorithms to lay the foundations for our algorithm. In the follow-
ing section (Section 3), we present our MIL-based subgoal identification method and explain the
necessary algorithmic details and internals. Next, we outline our experimentation setup for the
three directions mentioned previously and present the results of the experiments in Section 4. In
Section 5, we discuss the experiment results and emphasize why the MIL-based methods should
be preferred in practice for subgoal identification in discrete RL problems. Last, we finalize our
study with concluding remarks and future directions in Section 6.

2 SUBGOAL IDENTIFICATION IN REINFORCEMENT LEARNING

Reinforcement learning constitutes the third paradigm in machine learning and aims to develop
decision-maker entities (agents) that can solve sequential decision-making problems through trial
and error. A mathematical framework called Markov Decision Process (MDP) [24] represents
a reinforcement learning problem (environment). MDP is a four-tuple (S , A, R, T) where S is the
set of states in which an agent can be, A is the set of available actions for the agent, R is the re-
ward function that determines the feedback signal delivered to the agent, andT is the transitioning
function that governs the probability of transitioning from one state to another. An agent interacts
with this framework (environment) during learning and seeks an optimal action sequence (policy).
The agent decides on an action and applies it to an environment; as a response, the environment
delivers a reward score and the new state information to the agent. The main goal of the agent is

ACM Trans. Autonom. Adapt. Syst., Vol. 19, No. 2, Article 10. Publication date: April 2024.

10:4 S. Sunel et al.

Fig. 1. Sample grid-world problem

to maximize the expected reward received (E[
∑

t γ
tRt]) over time, where Rt is the reward value

received at time step t and γ is the discount factor regulating the importance of future rewards.
Throughout the study, we refer to the environments whose state and action sets are finite as dis-
crete tasks.

There have been plenty of studies to identify subgoal states to decompose a discrete RL problem.
Depending on how methods approach identifying subgoals, there are different subgoal definitions.
For instance, Reference [12] defines the states between strongly connected areas on the graph con-
structed via an agent’s interaction history (trajectories) as subgoals. Different from this definition,
[3] considers the states that enable an agent to transition to an unvisited part of the state space
of an environment. In this article, we stick to the definition provided by Reference [16], where a
subgoal is a state that is present in successful trajectories (an agent reaches a goal state in these
trajectories) but not present in negative ones.

Most subgoal identification studies consider grid-world problems in which an agent has to pass
through several gateways and obstacles to reach a goal state. A sample grid-world problem is
illustrated in Figure 1(a). Each square represents a state, which is colored depending on its type
(obstacle state is black, goal state is green, and visitable is white). In the problem, the obstacle states
divide the state space into two rooms, and an agent represented with an orange circle aims to
learn a sequence of actions that will lead it to the goal state located at the bottom right. Whenever
it reaches the goal state, a new episode begins. At the beginning of each episode, the agent is
randomly located at one of the states in the left-hand side room.

Figure 1(b) shows the numeric labels of the states. With the subgoal definition considered in
this work, state 10 is a good candidate, because it must be present on successful trajectories (the
agent has to pass through it to reach the goal state). These gateway states and the states around
them are valuable as they facilitate an agent to transition to different parts of the state space of
a problem. If the agent learns how to reach these states before an actual goal state, then it can
navigate between rooms quickly and use its time to explore other rooms. Thus, the agent can get
the goal state quickly and learn the action sequence to solve the problem faster.

The subgoal definitions presented in this work apply to grid-world problems and are valid for
other types of discrete RL problems, because a transitioning graph can still be constructed. On
this graph, we can still expect strongly connected regions to occur or some specific states to be
present on successful trajectories. We prefer grid-world problems in this work as they facilitate
visualization.

Enhancing the learning performance of a reinforcement learning agent requires more than just
identifying subgoals. Employing hierarchical reinforcement learning (HRL) techniques with
the identified subgoals is usually essential. In the literature, hierarchical reinforcement learning
methods [6, 18, 25, 27] propose techniques to accelerate learning and improve the problem-solving
capability of an agent. These methods decompose a given RL problem into sub-tasks and learn a
hierarchy over the action sequences that solve these subtasks.

One of the well-known HRL methods is the options framework [25]. This framework requires
subgoals to decompose a problem into smaller subtasks. It first solves these subtasks and then

ACM Trans. Autonom. Adapt. Syst., Vol. 19, No. 2, Article 10. Publication date: April 2024.

Faster MIL-based Subgoal Identification for RL 10:5

learns how to combine the solutions to achieve an actual goal. An option is a close-loop action
sequence defined over a particular state-space region and solves a specific subproblem. Figure 1(c)
shows a sample option that takes the agent to the subgoal state (state 10). This option facilitates the
agent to transition to the right-hand-side room where the actual goal state is; hence, it is highly
likely that the agent will reach the goal state faster by utilizing this option. In addition to their
advantage of facilitating learning, when several tasks are similar to each other (e.g., they have
similar state sets and problem structure), an option learned in a task can be reused for the others
to shorten the learning duration for an agent further [16]. With this respect, transfer learning can
be employed for new RL tasks with identified subgoals and learned options.

The multi-instance learning paradigm (MIL) emerged due to the need for a solution to
the drug activity prediction problem [7] and is a generalization of the conventional supervised
learning paradigm. In this paradigm, data instances do not have individual labels. Instead, data
instances belong to groupings called bags, and only the labels of these bags are known. So, datasets
of this paradigm consist of bag-label pairs. DD [14] was the first MIL algorithm adapted for subgoal
identification. As a successor to DD, EMDD [28] offers superior accuracy and speed performances
in the MIL domain. To frame subgoal identification as an MIL problem, bag-label pairs should be
acquired from an RL problem setting. While an agent interacts with an environment, it can store
its interaction history (sequence consisting of rewards, states, and actions). If the problem is an
episodic task, then the agent can create a new bag for each episode, and depending on a success
criterion, it can label this bag as positive or negative. The agent can also follow a similar approach
for non-episodic tasks (e.g., after reaching a particular state or obtaining a particular reward signal,
it can create a new bag and label it according to some other success criterion.)

In the following subsections, we provide a detailed review of the prominent subgoal identifica-
tion methods of the three categories (graph-based, statistics-based, and MIL-based) for discrete RL
tasks.

2.1 Graph-based Subgoal Identification

Graph-based subgoal identification algorithms use graph theory metrics and algorithms to dis-
cover subgoals. By utilizing the interaction history of an agent with an environment, it is possible
to create a transitioning graph. This graph can reveal the overall structure of the environment;
hence, by employing graph theory algorithms (e.g., max-flow/min-cut, partitioning) and metrics
(e.g., centrality metrics), subgoal locations can be discovered. Each algorithm differs in the tech-
nique/metric used and assumptions that they make, which naturally leads to having advantages
and disadvantages over one another.

2.1.1 Local Graph Partitioning (L-Cut) . The L-Cut algorithm [4] constructs a transitioning
graph by utilizing the recent trajectories of an agent. According to the study, a subgoal refers
to the state between two regions on the graph where the chances of the agent transitioning from
one region to another are less than the likelihood of it staying in those regions. In grid-world prob-
lems, these subgoals correspond to gateway locations that agents must pass through to transition
between rooms. The algorithm uses a cut metric called NCUT [4] to partition the recent transition-
ing graph. After partitioning, states connecting the regions are considered subgoals. Periodically,
the algorithm constructs a transitioning graph and partitions it. Accepting every identified state
as a subgoal in this construct-partition cycle is inappropriate, because the agent may have fol-
lowed a random trajectory. The study proposes a simple threshold mechanism to eliminate falsely
identified subgoals.

The method requires four threshold values for states to be a subgoal. The first one is the tc hy-
perparameter, which sets a threshold value on the cut metric value while partitioning the graph.

ACM Trans. Autonom. Adapt. Syst., Vol. 19, No. 2, Article 10. Publication date: April 2024.

10:6 S. Sunel et al.

The method does not yield subgoals if a partitioning cannot attain a cut score above this threshold.
The second one is the to hyperparameter, with which the algorithm checks whether an identified
subgoal state has been observed in the trajectory history sufficiently many times since the begin-
ning of the agent’s interaction with the environment. The method uses the third hyperparameter,
tp , to allow or reject a state s to be a subgoal depending on whether the ratio cs

is
is above the tp

value, where cs is the number of times the agent is in a state s and is is the number of times the
method identifies it as a subgoal. The fourth hyperparameter (h) regulates the length of the recent
trajectory history of the agent.

The authors of the study have left a strategy to select hyperparameter values unmentioned.
Since tc , tp ∈ R, the number of the values that we can consider is theoretically infinite for both
hyperparameters, whereas to and h hyperparameters can take values from a finite set.

2.1.2 Q-Cut. Like L-Cut, the Q-Cut algorithm [17] also constructs a transitioning graph. It re-
gards states in the middle of highly connected subgraphs as subgoals. The algorithm treats the
transitioning history as a flow graph and employs a Max-Flow/Min-Cut algorithm to identify sub-
goal locations.

The authors propose a relative visitation frequency metric over states for building the flow graph.
Like L-Cut, the cut procedure can partition every given graph. So, the algorithm considers only
the significant cuts to yield reliable subgoals. Checking the reliability of the cut is carried out by
measuring a metric (ratio cut). If a cut attains a ratio cut score above a certain threshold, then the
algorithm considers it valid and regards the states on the cut location as subgoals.

The algorithm runs iteratively. Once an agent has interacted with an environment for a desig-
nated time, the algorithm initiates the cut process. Mainly, it requires two hyperparameters for
its operations. The first one is the cut threshold value (tc , tc ∈ R), and the second one is the step
threshold (ts), which determines the number of actions the agent must take in an environment
before executing the cut procedure. The tc hyperparameter can have any value from an infinite
set, while ts takes an integer value. Like L-Cut, the authors have left a well-defined strategy to
ascertain optimal values for the hyperparameters undescribed.

2.1.3 Segmented Q-Cut. The Segmented Q-Cut [17] algorithm is proposed to circumvent the
problem of identifying multiple subgoals in an environment with Q-Cut. Unlike the original Q-
Cut, the algorithm constructs local graphs. With the cut-checking mechanism of Q-Cut, it decides
whether to partition a local flow graph.

The algorithm starts with a single local graph constructed by inspecting the trajectory history
of an agent, and it checks the cut quality on the graph regularly. If a cut is reliable, then this local
graph is partitioned into two smaller local graphs. While the agent continues interacting with the
environment, the algorithm expands these two graphs via trajectories depending on which graph
region the agent is visiting. It repeats this procedure to identify multiple subgoals.

Besides the tc and ts hyperparameters of Q-Cut, Segmented Q-Cut introduces a distance thresh-
old (td , td ∈ N) for picking the source or target node in the cut procedure. Depending on the tc ,
ts , and td values, the application frequency of the cut procedure changes. The tc hyperparameter
value should be picked from an infinite set, whereas td and ts can take a value from a finite set of
numbers. Like previous methods, no well-defined procedure to determine hyperparameter values
is available in the study.

2.1.4 Strongly Connected Components (SCC). Similar to previous methods, this study [12] re-
gards states that are in the middle of densely connected regions as subgoals and employs the
strongly connected components identification procedure to find these subgoal locations. First, it
constructs a directed transitioning graph from the transitioning history of an agent. Then, an

ACM Trans. Autonom. Adapt. Syst., Vol. 19, No. 2, Article 10. Publication date: April 2024.

Faster MIL-based Subgoal Identification for RL 10:7

algorithm (the authors call Strongly Connected Components (SCC)-Inspector) is run over the
graph to obtain strongly connected components. The method considers the states bridging strongly
connected components as subgoals.

To obtain reliable connected components, the authors impose a threshold value (tt , tt ∈ N) on
the edge weights of the transitioning graph. Those edges that pass the threshold test remain on
the graph for connected component analysis. This threshold value is the only hyperparameter of
the method. The authors propose to inspect the edge weight histogram of the transitioning graph
to set an optimal value for the hyperparameter.

2.1.5 Betweenness. The method [23], different from Q-Cut and L-Cut, calculates a centrality
metric (betweenness) over states for subgoal identification. In a problem, if an agent often has to
pass a state or a group of states, then they possess high importance to achieve the goal; hence,
they are highly likely to be subgoals. The betweenness metric accentuates these central locations.
The algorithm constructs a transitioning graph by inspecting trajectory histories. The method
computes the betweenness centrality value for each state on the graph and picks the states that
achieve the local maximum score as subgoals.

Calculating the betweenness metric on the whole graph incurs significant computation over-
head, especially for problems with large state-space sizes. To remedy this problem, the authors
propose an incremental version of the algorithm that constructs local subgraphs and performs the
search for the most central state on these small graphs via the betweenness metric. The incremen-
tal version introduces a couple of hyperparameters to get reliable results cleansed from the noise
that might emerge due to randomness in trajectories. The authors inherit some hyperparameters
(tp ∈ R and to ∈ N) of L-Cut for this purpose. Once a state attains the highest local betweenness
score on the local graph, it must meet the threshold values set by to and tp to become a subgoal.
In addition, it is crucial to determine how often the states on the local graph should get evaluated
for the subgoal criteria. The incremental version introduces a step threshold (ts ∈ N) to govern
the evaluation frequency, similar to the L-Cut study. No well-defined technique to choose hyper-
parameter values for new problems is available in the study.

2.2 Statistics-based Subgoal Identification

Unlike graph-based algorithms, statistics-based methods calculate metrics on states without con-
structing a graph. They mainly depend on the occurrences of states in trajectory histories. Thus,
these methods generally have better time and space complexities than graph-based methods for
subgoal identification.

2.2.1 Relative Novelty (RN). The relative novelty (RN) method [3] approaches the subgoal
identification problem from a different perspective. It aims to identify the locations where an agent
transitions to a previously unvisited part of the state space by measuring a metric called relative
novelty. The authors define the novelty score of a state as the square root of its observation fre-
quency in trajectory history. To infer whether the agent transitions to a new state-space region,
the algorithm calculates the relative novelty scores of states, where relative novelty is the square
root of the summation of novelty values of a group of states.

The authors take the relative novelty score ratio between two groups of states into account
for subgoal identification. The first group consists of the states that precede a particular state s
(predecessors), and the other consists of the states that are present in trajectories after state s
(successors). If the ratio of novelty scores of predecessors and successors of a particular state is
high, then this state is likely responsible for the agent to transition to a new state-space region;
hence, it is a subgoal candidate.

ACM Trans. Autonom. Adapt. Syst., Vol. 19, No. 2, Article 10. Publication date: April 2024.

10:8 S. Sunel et al.

To calculate the relative novelty ratio, the method requires the number of predecessors and suc-
cessors as a hyperparameter (novelty lag, ln ∈ N). After calculating its ratio value, the authors
employ Bayesian decision theory to accept a state as a reliable subgoal, which requires the follow-
ing hyperparameters: tRN , p, q, λf a/λmiss , p(N)/P(T).

The authors provide a well-defined procedure to set hyperparameter values for tRN , p, q,
λf a/λmiss , p(N)/P(T), which requires experience data collection from various RL tasks. However,
a hyperparameter search must be performed for the novelty lag hyperparameter.

2.2.2 Frequency-Distance. The objective of the study in Reference [13] is to remove three pre-
requisites of the SDD algorithm: knowledge of the distance between states, static filtering to ex-
clude certain states from calculations, and the requirement for negative trajectories (bags). To
this end, the authors introduce two numerical measures calculated for every state in trajectory
histories: frequency and distance. The frequency measure calculates the normalized occurrence
frequency for a state and aims to emphasize states that occur frequently in trajectories. Similarly,
using a Gaussian-like function, the distance measure calculates a transformed distance score for
each state. This measure eliminates the need for static filtering (state elimination) and prioritizes
states in the middle of trajectories. The algorithm uses the multiplication of these two measures
to identify subgoals. Transformed distance calculations require two hyperparameters (a,b ∈ R).
Unfortunately, the study lacks a well-defined procedure to assign optimal hyperparameter values.
A serious disadvantage of the method is that it requires many trajectories to solve a problem.

2.3 MIL-based Subgoal Identification

MIL-based subgoal identification methods mainly convert the subgoal identification problem into
a MIL problem. Thanks to the MIL paradigm, they inherently seek what is helpful for an agent
to achieve its goal. They label each trajectory positively or negatively depending on a success
criterion and aim to find out what causes the discrimination between positive and negative bags.

When applied for subgoal identification in an RL problem, these methods require a dataset con-
sisting of positive and negative bags. In an RL setting, the primary data source is an agent’s trajec-
tory history. We can label a trajectory as positive or negative depending on a criterion. A simple
criterion can be checking whether the agent has reached a goal state in a trajectory (if it has
reached, we can label the trajectory as positive; otherwise, negative). For instance, suppose that
the following trajectories have been gathered from the sample environment in Figure 1: {{0, 1, 2,
9, 10, 11, 4, 5, 6, 13, 20}, {7, 0, 7, 8, 15, 16}, {8, 9, 10, 11, 18, 19, 20}, {2, 9, 10, 11, 4, 12}}. Since the first
and the third trajectories have ended in the goal state, we label these two trajectories as positive.
Similarly, the second and fourth trajectories are labeled as negative.

2.3.1 Diverse Density. The DD algorithm [14, 15] calculates a probability score (diverse density)
that signifies how important a data instance is to distinguish between positive and negative bags.
The data instance with the highest DD value is called the concept instance, and the algorithm uses
it to label new unseen bags.

Geometrically, the algorithm considers each bag as a path in a multi-dimensional space where
each data instance is a point. It aims to pinpoint a specific location (the location of the concept
instance) in the space that must satisfy the following conditions: (1) most positive bags should
have instances close to this location, and (2) instances of negative bags should be far from this
location. A data instance that appears in many positive bags but not in negative bags yields a high
DD score.

A search over all data instance space must be performed to find the location with the highest
DD value for a given dataset. Since it is computationally intractable, especially in a continuous
space, the authors suggest initiating the search procedure from individual data instances. More

ACM Trans. Autonom. Adapt. Syst., Vol. 19, No. 2, Article 10. Publication date: April 2024.

Faster MIL-based Subgoal Identification for RL 10:9

formally, the algorithm maximizes the DD value by starting from each data instance t in positive
bags, which is mathematically expressed as

DD(t) = max
y

P
(
y = t |B+1 B

+
2 B
+
3 · · · B−

1 B
−
2 B

−
3 · · ·

)
, (1)

where B+i and B−
j represent the ith positive bag and the jth negative bag, respectively. After ap-

plying the Bayesian formula two times and assuming: (1) all data instances have the same prior
probability scores, (2) bags are conditionally independent for a given data instance t , the Equa-
tion (1) becomes (the normalization factor is the same for all data instances):

DD(t) = max
y

n+∏

i

P(y = t |B+i)
n−∏

j

P(y = t |B−
j), (2)

where n+ and n− are the total number of positive and negative bags, respectively. For representing
the probability of a data instance with given bags, the noisy-or model can be employed:

P(y = t |B+i) = 1 −

n+i∏

k

(1 − P(y = t |B+ik)),

P(y = t |B−
j) =

n−
j∏

l

(1 − P(y = t |B−
jl)),

(3)

where B+
ik

is the kth instance in the ith positive bag, B+
jl

is the lth instance of the jth negative bag;

n+i and n−j are total instance counts of the ith positive bag and the jth negative bag, respectively.
P(y = t |B+

ik
) (and also P(y = t |B−

jl
)) models the probability of the instance t for a given other

instance, and it is represented via a Gaussian-like distribution:

P(y = t |Bmn) = exp(−sd ‖y − Bmn ‖
2), (4)

where sd is a scaling factor. Equation (1) is maximized via the gradient ascent algorithm for each
data instance in positive bags. Among all the final maximization results attained, the one with the
highest DD score is considered to be the concept instance:

C = {B+i j |1 ≤ i ≤ n+, 1 ≤ j ≤ n+i },

t∗ = arg max
x ∈C

DD(x). (5)

2.3.2 Expectation Maximization Diverse Density (EMDD). The EMDD algorithm [28] combines
the expectation-maximization (EM) technique with the Diverse Density algorithm. It regards
the concept instance as an unknown entity and employs EM to estimate it. It starts with an initial
guess for the concept instance. The initial guess is updated, and its associated DD score is improved
gradually by employing the EM technique. In the expectation (E) step, the algorithm picks a
single instance from every bag depending on how close data instances are to the current guess. A
probability distribution model measures the closeness between instances. These selected instances
constitute the dataset for the DD maximization procedure in the M step (every bag has a single
data instance). After maximization, the resulting data point becomes the updated concept instance.
These EM steps are repeated till the DD value of the concept instance stops improving.

To find the concept instance, DD uses all instances in positive bags as initial starting points while
searching. Unlike DD, the EMDD algorithm considers a relatively small set of these instances. In
addition, during the DD value maximization step, fewer instances are used to calculate gradient
information. DD uses all the instances in bags, whereas EMDD considers only a single instance

ACM Trans. Autonom. Adapt. Syst., Vol. 19, No. 2, Article 10. Publication date: April 2024.

10:10 S. Sunel et al.

from each bag. Thus, EMDD incurs less computation overhead compared to DD. Thanks to the EM
algorithm, it outperforms DD also with respect to accuracy performance in the MIL domain.

2.3.3 SDD Algorithm. The SDD algorithm [16] approaches the subgoal identification problem
as a MIL domain problem. Each episode history of an agent corresponds to a bag, and visited states
are the instances in those bags. SDD adapts the DD algorithm for the discrete nature of tasks with
a discrete state space by discarding gradient ascent calculations. Instead, it calculates DD scores
of states without the maximum operator in Equation (1). The method picks the state attaining the
highest DD value as a subgoal.

At the early stages of learning, the state with the highest DD score may not be a true subgoal.
To alleviate this problem, the authors propose a counting mechanism to eliminate falsely identi-
fied states. In the study, after identifying subgoal states confidently, the options framework [25] is
employed to decompose and solve problems efficiently.

The algorithm can pick the states that are spatially very close to a goal state in trajectories as
subgoals, which tend to have high DD values. It applies static filtering [11] to eliminate these states
from DD calculations.

Algorithm 1 provides the pseudo-code for the SDD algorithm. The pseudo-code only involves
the identification of a subgoal (all options framework-related parts of the method proposed in Ref-
erence [16] are discarded). This is because, in this study, we mainly focus on the subgoal identifica-
tion accuracy performances of methods. The SDD function requires positive bags, negative bags, a
transitioning graph, and a list of states. First, it eliminates some states from positive and negative
bags for static filtering (line 2). Next, it scans all the positive bags and gathers their instances into
a set (lines 3–8). It then calculates the DD scores by iterating through each instance within the set
(lines 9–17) and returns the instance with the highest DD score as a subgoal (line 18).

The function DD returns the adapted DD score of a given instance (Equation (2) without the max-
imum operator). It calculates two conditional probability scores for the given instance via positive
bags (lines 26–28) and negative bags (lines 29–31). Then, it combines the results of both parts into
a single value via multiplication (lines 27 and 30). Conditional probability calculations are carried
out via two functions PrPositive and PrNegative. These functions implement Equation (3). The
instance-instance similarity is measured via the PR function, which implements Equation (4). For
instance-instance similarity calculations, a distance value is required to measure the proximity
of two states (line 22). To this end, the method utilizes a transitioning graph. This graph can be
constructed using the states in positive and negative bags.

3 EMDD-RL ALGORITHM

This section describes our novel EMDD-RL algorithm and provides its pseudo-code along with a
basic execution flow diagram (Figure 2).

The EMDD-RL algorithm (Algorithm 2) adapts EMDD for the subgoal identification problem in
discrete RL tasks. It has two main stages: seed instance selection and EM loop. Like SDD, EMDD-
RL initially applies static filtering on bags (line 2). Then, the algorithm selects seed instances and
employs the EM algorithm. Unlike EMDD, which randomly chooses multiple positive bags and
uses their instances as seed instances, EMDD-RL picks the positive bag with the fewest instances
and uses its instances as seeds (line 4, “Initial Seed Selection” block in Figure 2). EMDD-RL con-
siders this particular positive bag for seed selection because of two main reasons. First, this bag
corresponds to the shortest trajectory in which an agent achieves its goal; thus, it has fewer in-
stances than other positive bags. With fewer seed instances, EMDD-RL incurs less computation
overhead. Second, since it is a positive bag, one of its instances should have the highest DD score.

Further, EMDD-RL removes some of the selected seeds to reduce computation overhead (lines
5–8, “Skip some instances” block). The algorithm specifies the number of instances to be removed

ACM Trans. Autonom. Adapt. Syst., Vol. 19, No. 2, Article 10. Publication date: April 2024.

Faster MIL-based Subgoal Identification for RL 10:11

ALGORITHM 1: SDD Algorithm

1: function SDD(positive bags B+, negative bags B−,
transitioning graph G , array eliminated_states)

2: Remove each x ∈ eliminated_states from all
bags

3: all_posit ive_instances = set ()
4: for each B+i ∈ B+ do

5: for each instance j ∈ B+i do
6: add j to all_posit ive_instances
7: end for
8: end for
9: hiдhest DD = −∞

10: c∗ = null
11: for each instance j ∈ all_posit ive_instances do
12: dd_j = DD(j, B+, B−, G)
13: if dd_j > hiдhest DD then
14: c∗ = j
15: hiдhest DD = dd_j
16: end if
17: end for
18: return c∗

19: end function
20: function PR(instance i , instance j , transitioning graph

G , dimension scalar sd = 1.0)
21: Calculate distance d between i and j on G
22: return exp(−sd .d2)
23: end function
24: function DD(instance i , positive bags B+, negative bags

B−, transitioning graph G)

25: product = 1.0
26: for each B+i ∈ B+ do

27: product∗ = PrPositive(i , B+i)
28: end for
29: for each B−

i ∈ B− do
30: product∗ = PrNegative(i , B−

i)
31: end for
32: return product
33: end function
34: function PrPositive(instance i , positive bag B+j ,

transitioning graph G)
35: product = 1.0
36: for each instance b+i ∈ B+j do

37: value = PR(i , b+i , G)
38: product∗ = (1.0 − value)
39: end for
40: return (1.0 − product)
41: end function
42: function PrNegative(instance i , negative bag B−

j ,

transitioning graph G)
43: product = 1.0
44: for each instance b−

i ∈ B−
j do

45: value = PR(i , b−
i , G)

46: product∗ = (1.0 − value)
47: end for
48: return product
49: end function

through its hyperparameter k . Mainly, this hyperparameter has a direct effect on the total number
of operations performed. With this basic removal strategy, EMDD-RL aims to pick several instances
in a state-space region by eliminating neighboring states, because DD scores in a state-space region
are close to each other. After determining the seed instances, the EM loop is executed for each of
them individually (lines 12–18, “EMDD” block). During the EM loop, the goal is to find a new
instance with a higher DD value than a given seed.

In the loop, initially, a given seed instance is considered to be the current concept instance (line
25). This current concept instance gets updated as long as its DD value improves. For calculating
DD scores, the DD function of SDD is utilized. In the E step (lines 31–39, “Expectation” block),
the algorithm picks one instance closest to the current concept instance from each bag using a
Gaussian-like distribution. Later in the M step (lines 41–69, “Maximization” block), it uses these
selected instances to obtain a new concept instance that maximizes bag label probabilities, which is
the objective function of the M step. During maximization, EMDD-RL discards gradient ascent cal-
culations of EMDD. Instead, it calculates the objective function score for each instance a ∈ testset
(lines 48–69). Then, it picks the state with the highest objective score as the new current concept
instance (line 72). The content of testset is determined according to the S hyperparameter of the
method. EMDD algorithm considers the instances selected from a positive bag in the E step. EMDD-
RL follows this behavior when S = S1 (line 43). However, EMDD-RL can also consider all instances
in positive bags (when S = S2, line 46) for identifying the instance with the highest objective score.
The reasoning behind this new behavior is that testing all instances in positive bags could expe-
dite the detection of the instance with the highest DD score in the EM loop. Thus, EMDD-RL could
complete calculations faster. To model bag label probabilities, the authors of EMDD propose two

ACM Trans. Autonom. Adapt. Syst., Vol. 19, No. 2, Article 10. Publication date: April 2024.

10:12 S. Sunel et al.

Fig. 2. Execution flow diagram for EMDD-RL. The algorithm prepares a seed instance set for DD value

maximization, and for each seed instance, it executes the expectation-maximization procedure. Each seed in-

stance is a starting point for the maximization calculations. As long as the DD value is improved, expectation-

maximization steps are repeated. After processing every seed instance, the method returns the instance with

the highest DD score as a subgoal.

distribution models: linear (LIN) and exponential (EXP). Therefore, selecting the appropriate
distribution model is another hyperparameter for EMDD-RL, which is indicated by model in the
pseudo-code (lines 50–56, lines 57–63).

EMDD calculates the objective function of the M step by multiplying probability scores, which
can suffer from floating-point number issues in practice. EMDD-RL applies the logarithm func-
tion to circumvent these issues (lines 52, 55, 59, and 62). After processing all seed instances and
completing maximization calculations (lines 11–18, “Subgoal Identification” block), it returns the
instance with the highest DD value score as a subgoal (line 20). Similar to SDD, EMDD-RL requires
similarity information between instances for its calculations. To this end, it utilizes the PR function
of SDD, which requires a transitioning graph.

Compared to SDD, which uses all instances as seed instances in positive bags for DD max-
imization calculations, EMDD-RL considers fewer instances thanks to the EM loop. The EM
loop identifies a concept instance by incurring less computation overhead. Moreover, since it
dynamically searches the instance space until no DD score improvement occurs, it is likely
to encounter more accurate concept instances. Thus, EMDD-RL can identify subgoals more
accurately compared to SDD.

3.1 SDD and EMDD-RL Worst-case Time Complexity Analysis

This part provides a detailed worst-case run-time analysis of SDD and EMDD-RL for an episodic
discrete RL task. Since both are MIL-based methods, they require the same input information:

ACM Trans. Autonom. Adapt. Syst., Vol. 19, No. 2, Article 10. Publication date: April 2024.

Faster MIL-based Subgoal Identification for RL 10:13

ALGORITHM 2: EMDD-RL

1: function EMDD-RL(positive bags B+, negative bags B−,
transitioning graph G , skipping factor k , probability
model model , maximization instance set S = S1, array
eliminated_states)

2: Remove each x ∈ eliminated_states from all
bags

3: // Construct initial seed set
4: Find the smallest positive bag, b+

small est
5: Let the size of b+

small est
be l

6: // 0, k, 2k, 3k ... l
7: indices = {i | 0 ≤ i < l, i = i + k }
8: seeds = {b+

small est
[i] | i ∈ indices }

9: maxddvalue = −∞
10: t ∗ = null
11: // Find the state that has the highest DD value
12: for seed ∈ seeds do
13: < t, ddvalue >= EM(seed, B+, B−, G, sd)
14: if ddvalue > maxddvalue then
15: maxddvalue = ddvalue
16: t ∗ = t
17: end if
18: end for
19: // Return the state with the maximum DD value as

the identified subgoal
20: return t ∗

21: end function
22: function EM(instance seed, positive bags B+, nega-

tive bags B−, transitioning graph G , probability model
model , maximization instance set S = S1)

23: nldd0 = ∞
24: nldd1 = − log(DD(seed, B+, B−, G))
25: peakstate = seed
26: hiдhest DD = −1 ∗ nldd1
27: // Keep updating the current guess as long as the DD

value improves
28: // EM loop
29: while nldd1 < nldd0 do
30: // E step
31: p∗

+ = set (), p∗
− = set ()

32: for each bag Bi ∈ B+ do
33: p = arg maxBi j ∈Bi

PR(Bi j , peakstate, G)

34: append p to p∗
+

35: end for
36: for each bag Bk ∈ B− do
37: p = arg maxBkl ∈Bk

PR(Bkl , peakstate, G)

38: append p to p∗
−

39: end for
40: // M step
41: h′ = null ; maxhvalue = −∞
42: if S = S1 then
43: testset = {pi |pi ∈ p∗

+ }
44: else if S = S2 then
45: // All instances in positive bags
46: testset = {pi |pi ∈ B+i , B+i ∈ B+ }

47: end if
48: for each instance ti ∈ testset do
49: sum = 0.0
50: if model = linear then
51: for pi ∈ p∗

+ do
52: sum+ = log(1 − |1 − PR(pi , ti , G) |)
53: end for
54: for pl ∈ p∗

− do
55: sum+ = log(1 − PR(pl , ti , G))
56: end for
57: else if model = exponential then
58: for pi ∈ p∗

+ do
59: sum+ = log(exp(PR(pi , ti , G) − 1))
60: end for
61: for pl ∈ p∗

− do
62: sum+ = log(exp(Pr(pl , ti , G)))
63: end for
64: end if
65: if sum > maxhvalue then
66: sum =maxhvalue
67: h′ = ti

68: end if
69: end for
70: nldd0 = nldd1
71: nldd1 = − log(DD(h′, B+, B−, G))
72: peakstate = h′

73: hiдhest DD = −1 ∗ nldd1
74: end while
75: return < peakstate , hiдhest DD >
76: end function

positive bags, negative bags, and a transitioning graph. Here, we assume that the task imposes a
certain step limit for an agent to form a negative bag. If the agent reaches a goal state without
exceeding the step limit in an episode, then this episode’s history is considered a positive bag;
otherwise, it is a negative bag. After the agent finishes interacting with the task, bags are formed
with trajectory histories. The number of bags and the step limit determine the input size for both
methods.

We consider the following definitions: θ is the set of states of the task, n is the number of states
of the task (n = |θ |),n+

baд
is the number of positive bags,n−

baд
is the number of negative bags, step is

the step limit value imposed in the task, B+i is a positive bag where B+i = {sj |j = 1..O(step), sj ∈ θ },
B+ is the set of positive bags (B+ = {B+i |i = 1..n+

baд
}), B−

m is a negative bag where B−
m = {sk |k =

1..step, sk ∈ θ } and B− is the set of negative bags (B− = {B−
m |m = 1..n−

baд
}). Each bag Bu (positive

ACM Trans. Autonom. Adapt. Syst., Vol. 19, No. 2, Article 10. Publication date: April 2024.

10:14 S. Sunel et al.

or negative) consists of αu ∗ n instances where each αu is a constant factor (for negative bags
αu = step/n, the same equation is valid for positive bags in the worst case). In the following
subsections, we first provide the analysis for common parts of the methods, and then the individual
algorithm analyses are presented.

3.1.1 Common Algorithmic Parts. The DD function (Algorithm 1) is common to both algorithms.
It invokes the PrPositive function n+

baд
times and the PrNegative function n−

baд
times. Both

PrPositive and PrNegative functions call the PR function, which first measures the distance
between given instances (states) and uses the result in a mathematical expression. We can consider
Dijkstra’s algorithm [8] for distance calculations. The algorithm has a time complexity of O(|E | +
|V | log |V |) [9] per distance measurement, where E and V are the edge set and vertex set of a
transitioning graph, respectively. The graph can have O(n) vertices and O(n2) edges at most.

Both PrPositive and PrNegative functions require O(step) ∗O(|E | + |V | log |V |) time (in the
worst case), since they iterate through a positive or negative bag. Hence, the DD function has a
worst-case time complexity of n+

baд
∗O(step) ∗O(|E |+ |V | log |V |)+n−

baд
∗step ∗O(|E |+ |V | log |V |).

3.1.2 SDD Algorithm. The SDD function (Algorithm 1) identifies all distinct instances in positive
bags in n+

baд
∗O(step) time and calculates a DD score for each of them. Since all the states can be

distinct in the positive bags, the SDD function has a worst-case time complexity of n+
baд

∗O(step) ∗

(n+
baд

∗O(step) ∗O(|E | + |V | log |V |) + n−
baд

∗ step ∗O(|E | + |V | log |V |)) + n+
baд

∗O(step).

3.1.3 EMDD-RL Algorithm. The EMDD-RL function (Algorithm 2) first finds the positive bag
with the smallest size, then constructs a seed instance set, and iterates through seed instances
by calling the EM function (Algorithm 2). The EM function first invokes the DD function for the
initial seed instance and performs the expectation-maximization procedure as long as the DD
score improves. In the E step, from every positive bag, a single instance is picked (n+

baд
instances),

in n+
baд

∗O(step) ∗O(|E |+ |V | log |V |) time, by invoking the PR function. Later, the same procedure

is applied for the negative bags (n−
baд

instances, in n−
baд

∗ step ∗ O(|E | + |V | log |V |) time). The

test instances in the M step are determined depending on the hyperparameter S . For each test
instance (n+

baд
+ n−

baд
instances for S = S1, n+

baд
∗O(step) instances for S = S2), the PR function is

invoked. Thus the M step completes in (n+
baд
+ n−

baд
) ∗ (n+

baд
+ n−

baд
) ∗O(|E | + |V | log |V |) time or

(n+
baд

∗O(step))∗(n+
baд
+n−

baд
)∗O(|E |+ |V | log |V |) time depending on the hyperparameter S . Finally,

the DD function is called once more at the end of the main loop. If we represent the maximum
number of times the main loop executes with iteration, then the EM function has a worst-case time
complexity of n+

baд
∗O(step) ∗O(|E | + |V | log |V |) + n−

baд
∗ step ∗O(|E | + |V | log |V |) + iteration ∗

(n+
baд

∗O(step) ∗O(|E | + |V | log |V |) + n−
baд

∗ step ∗O(|E | + |V | log |V |) + (n+
baд
+ n−

baд
) ∗ (n+

baд
+

n−
baд

) ∗O(|E | + |V | log |V |)+n+
baд

∗O(step) ∗O(|E | + |V | log |V |)+n−
baд

∗ step ∗O(|E | + |V | log |V |))

for S = S1, and n+
baд

∗O(step) ∗O(|E | + |V | log |V |) + n−
baд

∗ step ∗O(|E | + |V | log |V |) + iteration ∗

(n+
baд

∗O(step) ∗O(|E | + |V | log |V |) +n−
baд

∗ step ∗O(|E | + |V | log |V |) + (n+
baд

∗O(step)) ∗ (n+
baд
+

n−
baд

) ∗O(|E | + |V | log |V |)+n+
baд

∗O(step) ∗O(|E | + |V | log |V |)+n−
baд

∗ step ∗O(|E | + |V | log |V |))

time for S = S2.
As EMDD-RL picks a single positive bag for seed instances, in total it has a worst-case time

complexity of O(step) ∗ (n+
baд

∗O(step) ∗O(|E | + |V | log |V |) + n−
baд

∗ step ∗O(|E | + |V | log |V |) +

iteration∗(n+
baд

∗O(step)∗O(|E |+ |V | log |V |)+n−
baд

∗step∗O(|E |+ |V | log |V |)+(n+
baд
+n−

baд
)∗(n+

baд
+

n−
baд

)∗O(|E |+ |V | log |V |)+n+
baд

∗O(step)∗O(|E |+ |V | log |V |)+n−
baд

∗step∗O(|E |+ |V | log |V |))) for

S = S1, andO(step)∗(n+
baд

∗O(step)∗O(|E |+ |V | log |V |)+n−
baд

∗step∗O(|E |+ |V | log |V |)+iteration∗

ACM Trans. Autonom. Adapt. Syst., Vol. 19, No. 2, Article 10. Publication date: April 2024.

Faster MIL-based Subgoal Identification for RL 10:15

(n+
baд

∗O(step) ∗O(|E | + |V | log |V |) +n−
baд

∗ step ∗O(|E | + |V | log |V |) + (n+
baд

∗O(step)) ∗ (n+
baд
+

n−
baд

) ∗O(|E | + |V | log |V |)+n+
baд

∗O(step) ∗O(|E | + |V | log |V |)+n−
baд

∗ step ∗O(|E | + |V | log |V |)))

for S = S2.

Lemma 3.1. Let the number of positive bags be n+
baд

, the number of negative bags be n−
baд

, the step

limit imposed in a discrete RL task be step, the edge set and vertex (state) set of the transitioning graph

constructed by interacting with the task be E and V, respectively. The SDD algorithm has a worst-case

time complexity ofO(n+
baд

∗step)∗O(n+
baд
+n−

baд
)∗O(step)∗O(|E |+ |V | log |V |) to identify a subgoal.

Proof. (By construction) Sections 3.1.1, 3.1.2 dissect the SDD algorithm and provide partial and
overall time complexity analyses. �

Lemma 3.2. Let the number of positive bags be n+
baд

, the number of negative bags be n−
baд

, the

step limit imposed in a discrete RL task be step, the maximum number of iterations in the M step

of EMDD-RL be iteration, the edge set and vertex (state) set of the transitioning graph constructed

by interacting with the task be E and V, respectively. The EMDD-RL algorithm has a worst-case time

complexity of O(n+
baд
+ n−

baд
+ step) ∗O(iteration) ∗O(n+

baд
+ n−

baд
) ∗O(step) ∗O(|E | + |V | log |V |)

time for S = S1 and O(step ∗ n+
baд

) ∗ O(iteration) ∗ O(n+
baд
+ n−

baд
) ∗ O(step) ∗ O(|E | + |V | log |V |)

time for S = S2 to identify a subgoal.

Proof. (By construction) Sections 3.1.1 and 3.1.3 dissect the EMDD-RL algorithm and provide
partial and overall time complexity analyses. �

4 EXPERIMENTS AND RESULTS

In the previous section, we have introduced various methods of the three categories to identify sub-
goals in discrete RL tasks. Searching for the best-performing algorithm is an intricate endeavor,
since each method makes different assumptions and approaches to the subgoal identification prob-
lem from various aspects. Conducting a thorough analysis of all these techniques in various RL
tasks entails considerable time and effort. Instead, we have designed and conducted three main
experiments to compare the methods.1

Our first experiment setup concentrates on comparing MIL-based methods. Specifically, it as-
sesses the accuracy and speed capabilities of EMDD-RL and SDD in two RL tasks (two-rooms,
four-rooms). In the second experiment setup, we evaluate the methods of the three categories
considering their practical hyperparameter search overhead for achieving optimal performance in
three tasks (two-rooms, four-rooms, and two-rooms5×). Finally, we compare all the methods in a
new challenging RL task called key-room in the third experiment setup, focusing on their subgoal
identification accuracies. The following sections provide detailed experiment setups and present
the results.

All the RL tasks that we have employed in our experiments are episodic discrete RL tasks. In
two-rooms [16] and two-rooms5× environments, an agent begins a new episode in any state of
the left room and aims to reach the goal state at the bottom right by passing through a gateway
separating the rooms (Figures 3(a) and 3(c)). Similarly, in four-rooms [20], an agent starts in any
state in the left-hand side rooms and attempts to reach the goal state between the right-hand side
rooms (Figure 3(b)).

4.1 EMDD-RL and SDD Comparison Experiments

In this section, we evaluate EMDD-RL and SDD for the subgoal identification problem with
two groups of experiments. The experiments in the first group (referred to as speed evaluation

1All datasets and the source code can be found at https://github.com/SaimSUNEL/EMDDRL

ACM Trans. Autonom. Adapt. Syst., Vol. 19, No. 2, Article 10. Publication date: April 2024.

https://github.com/SaimSUNEL/EMDDRL

10:16 S. Sunel et al.

Fig. 3. Two-rooms, two-rooms5×, and four-rooms environments with labeled states. The yellow color in-

dicates the expected subgoal states in the environments. Green-coloured states are goal states. When an

algorithm reports a state among the yellow-colored states, it is considered successful. In all environments,

blue-colored states around a goal state are discarded in DD calculations for EMDD-RL and SDD to avoid

DD value bias toward these states. For the four-rooms, the states surrounding the eliminated states are also

strong candidates for subgoal, since positive trajectories have to pass over these states.

experiments) aim to explore which algorithm has a better running time performance. The exper-
iment in the second group (referred to as the accuracy experiment) analyzes how accurate these
methods are when the amount of data available for them changes.

EMDD-RL has three hyperparameters. The first hyperparameter (k) is the skipping factor. When
k is bigger, the method eliminates more instances from a seed set. If too many instances are

ACM Trans. Autonom. Adapt. Syst., Vol. 19, No. 2, Article 10. Publication date: April 2024.

Faster MIL-based Subgoal Identification for RL 10:17

eliminated, then the method might miss a region in a state space where a DD score peak occurs
during maximization, so this hyperparameter should be tweaked to avoid skipping peaks. The sec-
ond hyperparameter (model) is the selection of the distribution of label probabilities. The third and
final hyperparameter (S) is the set of instances checked in the M step. For all experiments, we have
tested the following hyperparameter values: k = {1,2,3,4}, S = {S1, S2},model = {linear, exponential}.

Both algorithms require a scaling factor (sd) while performing their distance calculations (Equa-
tion (4)). Since both work with one-dimensional instances (states), we have set the scaling factor sd
as 1.0 in the experiments. We eliminate duplicate states in episode histories to reduce computation
overhead for both methods while creating positive and negative bags. Depending on whether an
agent reaches a goal state or not in a task, each bag gets labeled as positive or negative. For all
experiments in this part, we have utilized a transitioning graph extracted directly from the envi-
ronments (the graph has not been constructed from trajectories) for both algorithms to prevent
possible problems that may occur because of incomplete node connections changing from episode
to episode, which may affect the actual performances of the algorithms.

To determine the accuracy of a method in identifying subgoals for a task, we count the number
of times a method has accurately identified an expected subgoal state in a task and divide it by
the total number of subgoal predictions made by the method. The expected subgoal states for
two-rooms and four-rooms environments are highlighted with yellow in Figures 3(a) and 3(b).

4.1.1 Speed Evaluation Experiments. Here, we present the experiments conducted to measure
the speed performance of EMDD-RL and SDD. These experiments are divided into two parts: speed
experiment and state-space effect experiment. In the former, we compare the speed performances
of both algorithms, whereas, in the latter, we investigate how the state-space size of an RL task
affects the running time (speed) performances of the algorithms.

We have gathered state trajectories from two-rooms and four-rooms environments with two
different instance collection strategies for the speed experiment. With the first one, we have not
restricted an agent with a step limit in an episode, but with the second one, 200 and 400 step limits
are imposed for two-rooms and four-rooms, respectively. In a step-limited episode, if the agent
cannot reach a goal state without exceeding the step limit, then the episode is terminated, and a
new episode begins. Both step-limitless and step-limited trajectories are gathered from 100 trials.
In a trial, the agent starts with zero knowledge about the problem and interacts with it for some
episodes to solve it.

For collecting data from both environments, we have made use of a Q-learning [26] agent with
the same hyperparameter values as Reference [16] (epsilon (ϵ) = 0.1 learning rate (α) = 0.05,
discount factor (γ) = 0.9) and the agent is given four different actions to apply (left, right, up,
down) with an action noise (moving 90% probability in an intended direction and 10% probability
in any direction). The agent has received a reward of 0 in non-goal states and 1 in a goal state. The
eliminated states for static filtering are depicted with blue in Figures 3(a) and 3(b).

We have obtained three datasets for both trajectory collections. From step-limited trajectories,
Step-balanced and Step-positive datasets are formed. The Step-balanced dataset consists of a trial’s
first 20 unsuccessful episodes and the first 20 successful episodes. The Step-positive dataset is
constructed with the first 20 successful episodes, and no unsuccessful episode is included. Similarly,
the Positive dataset is created from step-limitless trajectories, which contains the first 20 episodes
of a trial. EMDD-RL and SDD have been evaluated with these datasets extracted from each trial.

In the state-space effect experiment, we have inspected both algorithms’ speed performance as
the state space of the two-rooms environment changes. We have designed five two-rooms envi-
ronment versions with different state-space sizes (rooms are expanded horizontally, and the wall
is kept in the middle), and datasets are formed in the same way as the speed experiment.

ACM Trans. Autonom. Adapt. Syst., Vol. 19, No. 2, Article 10. Publication date: April 2024.

10:18 S. Sunel et al.

Table 1. Speed Experiment Results of SDD

for Each Dataset of Two-rooms

Dataset Accuracy (%) Time (s)

Step-balanced 100 0.6480
Step-positive 100 0.3169
Positive 78 0.6650

Table 2. Speed Experiment Results of SDD for

Each Dataset of Four-rooms

Dataset Accuracy (%) Time (s)

Step-balanced 89 1.9020
Step-positive 89 0.9129
Positive 88 2.1361

4.1.2 Accuracy Experiment. This experiment aims to explore the accuracy of the algorithms in
producing subgoals when the amount of available experience data changes. To this end, the EMDD-
RL and SDD algorithms have been run with varying bag sizes. We have utilized the Step-balanced
dataset formed in the speed experiment as it is the only dataset that contains negative bags. We
have tested positive bag sizes of 5, 10, 15, and 20, while negative bag sizes have been selected from
the set of 0, 5, 10, 15, and 20. For every combination of positive and negative bag sizes, we have
conducted a hyperparameter search with EMDD-RL.

4.2 Results of EMDD-RL and SDD Comparison Experiments

4.2.1 Speed Evaluation Experiments. This section presents the results of the speed evaluation
experiments for each environment separately. For each trial in an environment, we have created
three datasets as described, and on every trial, EMDD-RL and SDD algorithms have been run (a
total of 100 runs with each dataset for each method). The speed experiment has been repeated ten
times for each algorithm to obtain reliable execution time results cleansed from execution oscilla-
tions from run to run. The running time results of the state-space effect and accuracy experiment
are calculated using 100 runs (1,000 runs in the speed experiment).

In Tables 1 and 3, we present the average execution time results of SDD and EMDD-RL algo-
rithms in the two-rooms environment. For the EMDD-RL algorithm, we present the results of the
fastest configuration that attains the same or better accuracy compared to SDD and the configura-
tion that attains the highest accuracy (shaded rows).

The hyperparameter configuration (model = exponential, S = S1) results in the fastest speed
performance for the EMDD-RL algorithm across all datasets and k values tested. We have also
provided the average loop count in the EM step. Using the exponential model results in the lowest
number of loops required for the EM step. The exponential model is superior to the linear model
in speed, and S = S1 always attains the shortest execution time against S = S2. Depending on the
k value, the algorithm accelerates significantly. It should be neither too big nor too small for fast
execution time and accuracy. A value of 2 or 3 is reasonable for this hyperparameter.

When we take the fastest EMDD-RL hyperparameter configurations that attain the same or
better accuracy into account, EMMDRL runs 6.30 times faster on the Step-balanced dataset, 5.30
times faster on the Step-positive dataset, 3.37 times faster on the Positive dataset of two-rooms
compared to SDD. As for the accuracy performance, the EMDD-RL algorithm performs as well
as SDD on Step-balanced and Step-positive datasets; however, on the Positive dataset, EMDD-RL
achieves better accuracy.

Tables 2 and 4 present the average running time results of SDD and EMDD-RL algorithms in
the four-rooms environment. The observations made for the EMDD-RL hyperparameters with
two-rooms are also valid for the results in the four-rooms environment (speed superiority of ex-
ponential model and S1, k value effect). When we consider the fastest hyperparameter configura-
tions attaining the same or better accuracy (shaded hyperparameter configurations in the tables),
EMDD-RL runs significantly faster on the Step-balanced, Step-positive, and Positive datasets of
four-rooms, achieving a speedup of 10.85, 8.69, and 4.89 times, respectively. Additionally, it yields

ACM Trans. Autonom. Adapt. Syst., Vol. 19, No. 2, Article 10. Publication date: April 2024.

Faster MIL-based Subgoal Identification for RL 10:19

Table 3. Speed Experiment Results of EMDD-RL

for Each Dataset of Two-rooms

Dataset S model k Loop Accuracy (%) Time (s)

Step-balanced S1 EXP 3 11.96 100 0.1028
Step-balanced S1 EXP 3 11.96 100 0.1028
Step-positive S1 EXP 3 13.08 100 0.0598
Step-positive S1 EXP 3 13.08 100 0.0598
Positive S2 EXP 4 19.06 78 0.1970
Positive S2 EXP 3 25.09 79 0.2624

The shaded rows present the results of the fastest hyperparameter
configurations that achieve the same or higher accuracy compared to SDD.
Non-shaded rows show the results of the hyperparameter configurations
with the highest accuracy.

Table 4. Speed Experiment Results of EMDD-RL

for Each Dataset of Four-rooms

Dataset S model k Loop Accuracy (%) Time (s)

Step-balanced S1 EXP 3 14.73 90 0.1753
Step-balanced S1 EXP 2 21.42 92 0.2546
Step-positive S1 EXP 3 46.40 91 0.1051
Step-positive S2 EXP 1 46.40 94 0.5580
Positive S1 EXP 3 41.89 88 0.4370
Positive S1 EXP 3 41.89 88 0.4370

The shaded rows present the results of the fastest hyperparameter
configurations that achieve the same or higher accuracy compared to SDD.
Non-shaded rows show the results of the hyperparameter configurations
with the highest accuracy.

Fig. 4. Barchart graph of execution times of the SDD and EMDD-RL algorithms in two-rooms environments

with different state-space sizes. The charts are partitioned with respect to datasets. The running time axis

shows the total duration of 100 runs of EMDD-RL and SDD on a particular dataset formed with a particular

state-space size. The EMDD-RL hyperparameter configurations whose running time results are shown here

achieve the same or better accuracy performance compared to SDD.

more accurate results on Step-balanced and Step-positive datasets, whereas both algorithms per-
form equally well on the Positive dataset.

For the state-space effect experiment, both algorithms have been evaluated using datasets
formed from two-rooms environment versions with 210, 310, 410, 510, 610, and 710 states. The
step limits imposed are proportional to the state-space sizes and are as follows: 200, 300, 400, 500,
600, and 700. Figure 4 presents the speed performance results of the algorithms. As the state space
of the environment expands, the speed performance gap between the algorithms enlarges. The im-
pact of state-space growth on EMDD-RL is notably less than on the SDD algorithm, which makes
EMDD-RL a promising choice for environments with large state space.

4.2.2 Accuracy Experiment. Tables 5 and 6 show the performance results of the algorithms
in the accuracy experiment. For each bag size pair in the tables, we have considered the result
of the EMDD-RL hyperparameter configuration that achieves the highest accuracy score and
fastest execution time. The Time columns depict the average execution time of the algorithms for
100 runs.

The table rows are colored based on the performance results of EMDD-RL (green: EMDD-
RL outperforms; no color: both perform equally well; red: SDD outperforms). In the two-rooms

ACM Trans. Autonom. Adapt. Syst., Vol. 19, No. 2, Article 10. Publication date: April 2024.

10:20 S. Sunel et al.

Table 5. Results of the Accuracy Experiment

in Two-rooms

Alg Pstv Ngtv S model k Accuracy (%) Time

SDD
5 0

92 0.0724
EMDD-RL S2 EXP 2 86 0.0740

SDD
5 5

70 0.1365
EMDD-RL S2 EXP 4 81 0.0688

SDD
5 10

69 0.1971
EMDD-RL S1 LIN 4 78 0.0854

SDD
5 15

60 0.2618
EMDD-RL S2 EXP 4 76 0.1263

SDD
5 20

57 0.3271
EMDD-RL S2 EXP 3 66 0.1658

SDD
10 0

98 0.1591
EMDD-RL S1 EXP 2 99 0.0687

SDD
10 5

97 0.2268
EMDD-RL S2 EXP 3 97 0.0984

SDD
10 10

96 0.3039
EMDD-RL S2 EXP 3 96 0.1245

SDD
10 15

93 0.3939
EMDD-RL S1 EXP 3 95 0.0849

SDD
10 20

93 0.4649
EMDD-RL S1 EXP 1 93 0.3054

SDD
15 0

100 0.2386
EMDD-RL S1 EXP 2 100 0.0792

SDD
15 5

99 0.3123
EMDD-RL S1 EXP 4 99 0.0575

SDD
15 10

98 0.3895
EMDD-RL S1 EXP 1 99 0.2194

SDD
15 15

98 0.4711
EMDD-RL S1 EXP 1 99 0.2492

SDD
15 20

98 0.5564
EMDD-RL S1 EXP 2 98 0.1553

SDD
20 0

100 0.3198
EMDD-RL S1 EXP 3 100 0.0588

SDD
20 5

100 0.3906
EMDD-RL S1 EXP 4 100 0.0639

SDD
20 10

100 0.4823
EMDD-RL S1 EXP 3 100 0.0790

SDD
20 15

100 0.5792
EMDD-RL S1 EXP 3 100 0.0913

SDD
20 20

100 0.6416
EMDD-RL S1 EXP 3 100 0.1040

The green color specifies the bag size combinations that result in better
accuracy for EMDD-RL, while no color is used if EMDD-RL and SDD [16]
have identical accuracy performance. However, if SDD performs better than
EMDD-RL, then it is indicated with red color. The unit of the Time column
is second. For the two-rooms, in most bag size combinations, the EMDD-RL
algorithm excels in accuracy performance or performs as well as SDD.

Table 6. Results of the Accuracy Experiment

in Four-rooms

Alg Pstv Ngtv S model k Accuracy (%) Time

SDD
5 0

57 0.1865
EMDD-RL S1 LIN 4 63 0.0529

SDD
5 5

56 0.3678
EMDD-RL S1 EXP 4 72 0.0836

SDD
5 10

53 0.5455
EMDD-RL S2 LIN 4 70 0.4752

SDD
5 15

52 0.6933
EMDD-RL S2 EXP 3 65 0.2796

SDD
5 20

55 0.8511
EMDD-RL S2 EXP 3 66 0.3285

SDD
10 0

83 0.4402
EMDD-RL S2 EXP 3 86 0.1626

SDD
10 5

83 0.6784
EMDD-RL S1 EXP 3 87 0.1124

SDD
10 10

80 0.9291
EMDD-RL S1 EXP 4 84 0.1215

SDD
10 15

84 1.1165
EMDD-RL S2 EXP 4 87 0.2976

SDD
10 20

85 1.3538
EMDD-RL S2 EXP 4 87 0.3416

SDD
15 0

85 0.7088
EMDD-RL S1 LIN 4 87 0.0971

SDD
15 5

85 0.9252
EMDD-RL S1 EXP 2 90 0.1683

SDD
15 10

85 1.2187
EMDD-RL S1 EXP 3 91 0.1404

SDD
15 15

84 1.4033
EMDD-RL S1 EXP 2 91 0.2291

SDD
15 20

82 1.6698
EMDD-RL S2 EXP 1 91 1.1150

SDD
20 0

89 0.9411
EMDD-RL S2 EXP 1 94 0.5626

SDD
20 5

90 1.1590
EMDD-RL S1 EXP 1 92 0.3197

SDD
20 10

90 1.4012
EMDD-RL S1 EXP 1 94 0.3754

SDD
20 15

91 1.6837
EMDD-RL S2 EXP 3 93 0.3392

SDD
20 20

89 1.9210
EMDD-RL S1 EXP 2 92 0.2575

The green color specifies the bag size combinations that result in better
accuracy for EMDD-RL, while no color is used if EMDD-RL and SDD [16]
have identical accuracy performance. However, if SDD performs better than
EMDD-RL, then it is indicated with red color. The unit of the Time column
is second. For the four-rooms environment, in all bag size combinations, the
EMDD-RL algorithm excels in accuracy performance.

environment results, for most of the bag size combinations, EMDD-RL achieves better or similar
accuracy performance (for only one case, 5 positive bags and 0 negative bags, it fails). However,
it outperforms SDD in the four-rooms environment results. For some size pairs (e.g., 5 positive
bags and 0 negative bags), the SDD algorithm runs faster than EMDD-RL. When dealing with
small datasets, calculating individual DD scores of instances can become more efficient than going
through the EM loop, which can result in increased computation overhead for EMDD-RL.

The results of the EMDD-RL and SDD comparison experiments indicate that EMDD-RL outper-
forms SDD in terms of speed and accuracy for the subgoal identification problem.

4.3 Hyperparameter Search Experiments

In this part, we present two experiments that empirically assess how strongly the accuracy
performances of the graph-based, statistics-based, and MIL-based algorithms depend on their

ACM Trans. Autonom. Adapt. Syst., Vol. 19, No. 2, Article 10. Publication date: April 2024.

Faster MIL-based Subgoal Identification for RL 10:21

Table 7. Methods and Their Hyperparameter Values Tested in Two-rooms, Four-rooms, and Two-rooms5×

Environments for the First Hyperparameter Search Experiment

Method Hyperparameters and Values

Betweenness [23]
ts to tp

100,200 5,10,15 0.15,0.20,0.25,0.30

L-Cut [4]
h tc to tp

100,140,180 0.10,0.15 10 0.10,0.15,0.20

Q-Cut [17]
ts tc

50,100,150,200 500,1000,2000,3000,4000

RN [3]
tRN q p λf a/λmiss p(N)/P(T) ln

1.50,1.70,1.90 0.0056 0.0712,0.0700 50.0,100.0,150.0 100.0,150.0 7,10,15

Segmented Q-Cut [17]
ts tc td

100,150 80,100,120,140,160 10,15

SCC [12]

Environments tt
two-rooms 2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26
four-rooms 2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,36,37,39

two-rooms5× 2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,35
SDD [16] —

EMDD-RL
S model k

S1,S2 linear, exponential 1,2,3,4

For each algorithm, every combination of their hyperparameter values has been tested. For the SCC algorithm,
hyperparameter values are determined by inspecting trajectories for each environment.

hyperparameter values. With the first experiment, we investigate whether a predetermined set
of hyperparameter values could be employed for different tasks to obtain optimal accuracy perfor-
mance. To this end, we evaluate a predetermined set of hyperparameter values for each algorithm
in three RL tasks (two-rooms, four-rooms, two-rooms5×). In the second experiment, we inspect the
impact of minor changes in hyperparameter values on accuracy performance using only the two-
rooms environment. When minor changes do not result in significant performance fluctuations, a
hyperparameter search procedure can be guided by focusing on the hyperparameter values in the
vicinity of values that yield promising results. Thus, search effort can be reduced. In the case where
performance fluctuations occur, checking many hyperparameter values may become necessary to
identify a configuration that yields satisfactory results, which engenders increased effort.

In both experiments, we have utilized the Step-balanced dataset of the speed experiment for
all algorithms (datasets are created from two-rooms5× in a similar manner). The hyperparameter
values used for the algorithms in each experiment are presented in Tables 7 and 8. For EMDD-RL
and SDD, transitioning graphs are constructed with trajectories.

The SCC algorithm stands out among others concerning its hyperparameter value selection
strategy. The method determines its hyperparameter value dynamically by inspecting its transi-
tioning graph. When the agent follows a different set of trajectories, the candidate hyperparameter
values will likely change. So, for fairness, in the experiments, we have considered hyperparameter
values extracted after inspecting trajectories for each environment. Different from other methods,
in this respect, the SCC algorithm does not consider the same set of hyperparameter values for
two-rooms, four-rooms, and two-rooms5× environments.

4.4 Results of Hyperparameter Search Experiments

Tables 9 and 10 show results for the hyperparameter search experiments. Table 9 presents sev-
eral statistical measure scores calculated with all hyperparameter configuration results for each
method. Figure 5 summarizes the table as a bar graph (EMDD-RL and SDD are omitted). The mean
accuracy values are illustrated with bars, while the standard deviation of accuracy values is shown
with lines on the bars. Although the same hyperparameter values are used for each method (ex-
cept the SCC method, but tested value sets are very close to each other) in all environments, the

ACM Trans. Autonom. Adapt. Syst., Vol. 19, No. 2, Article 10. Publication date: April 2024.

10:22 S. Sunel et al.

Table 8. Methods and Their Hyperparameter Values Tested Solely in the Two-rooms Environment for the

Second Hyperparameter Search Experiment

Method Hyperparameters and Values

Betweenness [23]
ts to tp

100,120,140,200 5,10,15 0.10,0.15,0.20,0.25,0.30

L-Cut [4]
h tc to tp

100,120,140,180 0.10,0.15 5,10,15 0.10,0.15,0.20

Q-Cut [17]
ts tc

20,50,80,100,150,200 100,500,1000,2000,3000,4000

RN [3]
tRN q p λf a/λmiss p(N)/P(T) ln

0.5,0.7,1.0,1.50,1.70,1.90 0.0056 0.0712,0.0700 50.0,100.0,150.0 100.0,150.0 5,7,10,12,15

Segmented Q-Cut [17]
ts tc td

20,30,50,80,100,150 80,100,120,140,160 4,6,8

SCC [12]
tt

2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26
SDD [16] —

EMDD-RL
S model k

S1,S2 linear, exponential 1,2,3,4

For each algorithm, every combination of their hyperparameter values has been tested.

attained results are significantly different. Standard deviations are high for every method except
Segmented Q-Cut and EMDD-RL (Segment Q-Cut has failed to achieve satisfactory results in both
experiments). Yielding significantly different results in different environments with the same hy-
perparameter values shows that the graph-based and statistics-based methods strongly depend
on their hyperparameter values, and different sets of hyperparameter values need to be tested for
every new environment to achieve reliable subgoal identification accuracy performance. EMDD-
RL yields more stable results with varying hyperparameter configurations compared to the other
methods.

Table 10 presents the accuracy results of several hyperparameter configurations in the second ex-
periment. The “Number of predictions” column provides the total number of subgoals reported by
a particular hyperparameter configuration of a method. While the hyperparameter configurations
are similar, the accuracy and number of subgoal predictions can vary greatly. In other words, small
perturbations in hyperparameter values can culminate in significant performance changes. EMDD-
RL is less affected by this phenomenon than the graph-based and statistics-based techniques.

4.5 Key-room Environment Experiment

In this section, we introduce a new discrete (episodic) problem called key-room (Figure 6) and the
experiment conducted with this environment employing all the methods, referred to as the key-
room environment experiment. In the RL tasks of the previous sections (two-rooms, four-rooms,
two-rooms5×), it has been straightforward to identify subgoals as they correspond to gateways
between rooms. The key-room environment introduces a more complex problem where an agent
has to visit a particular state (state 4, referred to as the key state) before reaching the goal state to
solve the problem. Naturally, this single state becomes a subgoal for the agent. Identifying such a
subgoal is more challenging for the graph-based and statistics-based methods, because it violates
assumptions of the methods (e.g., it does not reside between strongly connected state regions or a
new state-space region is not explored after visiting it). The algorithms must be capable of inferring
that the key state is vital for the agent’s success.

In the problem, an agent is given four different actions to apply (left, right, up, down) with
an action noise (moving 90% probability in an intended direction and 10% probability in any
direction). The agent receives a reward value of −0.001 in non-goal states and 5 or −5 in the goal

ACM Trans. Autonom. Adapt. Syst., Vol. 19, No. 2, Article 10. Publication date: April 2024.

Faster MIL-based Subgoal Identification for RL 10:23

Table 9. Accuracy Performance Results of the First Hyperparameter Search Experiment

Method Environment
Accuracy (%) Accuracy (%) Accuracy (%)

(Mean) (Standard Deviation) (95% Confidence Interval)

L-Cut [4]
two-rooms 26.42 15.39 [18.54, 34.29]
four-rooms 21.06 4.57 [18.73, 23.40]

two-rooms5× 17.26 3.79 [15.32, 19.20]

Q-Cut [17]
two-rooms 28.78 42.51 [8.37, 49.19]
four-rooms 93.08 6.65 [89.88, 96.27]

two-rooms5× 72.66 14.65 [65.63, 79.70]

Segmented Q-Cut [17]
two-rooms 29.79 8.38 [25.76, 33.81]
four-rooms 33.17 5.68 [30.44, 35.90]

two-rooms5× 6.19 1.49 [5.47, 6.90]

RN [3]
two-rooms 37.20 32.16 [31.04, 43.37]
four-rooms 57.46 20.16 [53.60, 61.32]

two-rooms5× 30.35 12.73 [27.91, 32.79]

Betweenness [23]
two-rooms 11.52 20.82 [2.54, 20.50]
four-rooms 20.85 25.74 [9.75, 31.95]

two-rooms5× 4.86 7.55 [1.60, 8.11]

SCC [12]
two-rooms 53.27 33.16 [39.30, 67.24]
four-rooms 31.75 30.12 [21.41, 42.08]

two-rooms5× 19.07 17.54 [12.65, 25.50]

SDD [16]
two-rooms 100.00 0.00 [—, —]
four-rooms 89.00 0.00 [—, —]

two-rooms5× 98.00 0.00 [—, —]

EMDD-RL
two-rooms 99.56 0.007 [99.17, 99.95]
four-rooms 85.87 0.06 [82.17, 89.57]

two-rooms5× 97.87 0.006 [97.54, 98.20]

Several statistical measures are calculated from the accuracy scores of all hyperparameter configurations of a
particular method. For the graph-based and statistics-based methods, results can significantly vary when the same
hyperparameter values are utilized in different problems.

Fig. 5. Barchart graph of the results in Table 9. Average accuracy scores are illustrated with bars. The lines

on the bars indicate the standard deviation of the results for a particular method.

ACM Trans. Autonom. Adapt. Syst., Vol. 19, No. 2, Article 10. Publication date: April 2024.

10:24 S. Sunel et al.

Table 10. Accuracy Performance Results of Several Hyperparameter Configurations

in the Second Experiment

Algorithm tc to tp h Number of predictions Accuracy (%)

L-Cut [4]

0.10 15 0.10 140 22 31.82
0.10 15 0.10 180 7 0
0.10 15 0.15 100 8 62.5
0.10 15 0.15 120 11 54.55
0.10 15 0.15 140 2 50
0.10 15 0.15 180 2 0
0.10 15 0.20 100 3 66.67
0.10 15 0.20 120 4 25
0.10 15 0.20 140 1 100
0.10 15 0.20 180 0 0

ts tc Number of predictions Accuracy (%)

Q-Cut [17]

20 100 16818 0.05
20 500 298 2.68
20 1000 17 35.29
20 2000 4 100
20 3000 4 100
50 100 2843 0.04
50 500 327 0.31

tt Number of predictions Accuracy (%)

SCC [12]

15 25 28.0
16 14 50.0
17 10 30.0
18 12 58.33
19 15 86.67
20 12 100.0

ts tc td Number of predictions Accuracy (%)

Segmented Q-Cut [17]

20 80 4 116 31.03
20 80 6 117 21.37
20 80 8 211 18.48
20 80 10 153 17.65
20 80 15 147 27.89
20 100 4 78 28.21
20 100 6 86 24.42
20 100 8 164 22.56
20 100 10 138 18.84

tRN q p λf a/λmiss p(N)/p(T) ln Number of predictions Accuracy (%)

RN [3]

0.5 56 0.0712 50.0 100.0 5 486,209 14.37
0.5 56 0.0712 50.0 100.0 7 470,401 14.53
0.5 56 0.0712 50.0 100.0 10 446,698 14.7
1.70 56 0.0712 100.0 100.0 12 49 97.96
1.70 56 0.0712 100.0 100.0 15 2 50
1.70 56 0.0712 100.0 150.0 5 61 72.13
1.70 56 0.0712 100.0 150.0 7 48 47.92
1.70 56 0.0712 100.0 150.0 10 37 86.49
1.70 56 0.0712 100.0 150.0 12 40 100
1.70 56 0.0712 100.0 150.0 15 0 0
1.70 56 0.0712 150.0 100.0 5 61 72.13

to tp ts Number of predictions Accuracy (%)

Betweenness [23]

5 0.10 100 786 20.87
5 0.10 120 579 23.14
5 0.10 140 412 23.3
5 0.10 200 53 0
5 0.15 100 271 21.4
10 0.15 120 21 33.33
10 0.15 140 13 38.46
10 0.15 200 0 0
10 0.20 100 3 66.67
10 0.20 120 2 100
10 0.20 140 2 100
S model k Number of predictions Accuracy (%)

EMDD-RL

S1 LIN 1 100 100
S1 LIN 2 100 100
S1 LIN 3 100 99
S1 LIN 4 100 99
S1 EXP 1 100 100
S1 EXP 2 100 100
S2 EXP 2 100 100
S2 EXP 4 100 98

Even though the values are close to each other in hyperparameter space for the graph-based and statistics-based
methods, their results can differ significantly.

ACM Trans. Autonom. Adapt. Syst., Vol. 19, No. 2, Article 10. Publication date: April 2024.

Faster MIL-based Subgoal Identification for RL 10:25

Fig. 6. Key-room environment. A key is located at state 4. The goal state is state 38. To get a positive reward,

the agent must visit state 4 (take the key) before reaching the goal state. The blue-colored states are removed

for static filtering.

state, depending on whether it has visited the key state. For each new episode, the agent starts in
one of the following states randomly: {0,1,2,6,7,8,12,13,14}.

With these characteristics, the key-room environment differs from the other tasks introduced
previously in that the environment hides the information about whether the key state is visited
or not from the agent. It only provides state information to the agent. Thus, it embodies hidden-
state information, which renders it a partially observable MDP (POMDP) [29] problem. The
POMDP framework extends MDP with two additional components: Ω andO , where Ω is the set of
observations and O observation probability function. In a POMDP problem, an agent is provided
with an observation instead of actual state information. POMDP generalizes MDP, and it is more
capable of representing real-world problems.

We have collected experiment data and performed a hyperparameter search for each method
to compare the algorithms in this environment, similar to the experiments with two-rooms
and four-rooms environments. The same data gathering and data set creation steps in Sec-
tion 4.1.1 have been followed (100 trials, Step-balanced dataset, 20 positive bags, 20 negative
bags). We have not imposed a step limit, and trajectories have been labeled depending on
whether the agent has visited state 4 before reaching the goal state. Transitioning graphs for
EMDD-RL and SDD are constructed from trajectories. We have tested all the hyperparameter
values in Table 8, but we have also considered additional hyperparameter values for several al-
gorithms, because the environment features fewer states compared to two-rooms (Betweenness:
ts = {10, 20, 40, 50, 100, 120, 140, 180, 200}, L-Cut: h = {10, 20, 40, 50, 100, 120, 140, 180, 200}, Seg-
mented Q-Cut: ts = {10, 20, 30, 40, 50, 80, 100, 150}, td = {4, 6, 8, 10, 15}, Q-Cut: ts = {5, 10,
20, 50, 80, 100, 150, 200},tc = {20, 40, 60, 80, 100, 500, 1, 000, 2, 000, 3, 000, 4, 000}, SCC: {2–105}).

4.6 Results of Key-room Environment Experiment

Table 11 summarizes the accuracy results of the methods in the key-room environment. The MIL-
based methods significantly outperform the graph-based and statistics-based methods in identify-
ing the key state as a subgoal. The RN and Betweenness methods can identify the key state better
than the other graph-based methods, but they have picked almost every state as a subgoal.

5 DISCUSSION

When dealing with the subgoal identification problem, the following aspects stand out for
methods: accuracy and speed. The main goal is to identify subgoals as accurately as possible, but

ACM Trans. Autonom. Adapt. Syst., Vol. 19, No. 2, Article 10. Publication date: April 2024.

10:26 S. Sunel et al.

Table 11. Accuracy Performance Results of the Key-room Environment Experiment

Method Accuracy (%) Number of predictions

L-Cut [4] 0 832.96
Q-Cut [17] 0 1,340.12
SCC [12] 0 108

Segmented Q-Cut [17] 0 18.00
RN [3] 1.42 349,819

Betweenness [23] 0.24 1,248
SDD [16] 46 100
EMDD-RL 52 100

For the methods attaining an accuracy score of 0, the “Number of predictions” column
averages the number of subgoals reported by all hyperparameter configurations.

computation demand must be taken into account for practicality. Computation demand can emerge
due to an algorithm itself or the hyperparameter search it requires (in the worst case, due to both).

In the previous section, we have compared the methods of the three categories by basing our
experiment setups on the following questions: (1) As EMDD-RL is a new MIL-based method, how
does it compare to SDD regarding accuracy and speed? (2) How strongly do the methods depend
on their hyperparameter values concerning accuracy performance? (3) How do the graph-based
and statistics-based methods perform in a problem where their subgoal assumptions are violated?

For the first question, we have conducted three experiments (speed, state-space effect, and accu-
racy) using three environments. When all the results of these experiments are considered, EMDD-
RL outperforms SDD in terms of speed and accuracy. In addition, its computation demand scales
better with the state-space size of a task than SDD. Unlike SDD, EMDD-RL requires three hyperpa-
rameters (model , S , k). Concerning accuracy performance, EMDD-RL does not possess a dominant
hyperparameter configuration. However, as for speed performance, the configuration (model = ex-
ponential, S = S1) has yielded the shortest execution time in the experiments. This setting can be
employed if an agent demands a subgoal in a shorter time. Assigning S to S2 has degraded the
speed performance compared to S = S1; however, it has delivered more accurate results on several
datasets. So, a search over the hyperparameters must be performed if the agent aims to identify
subgoals more accurately. As default, the configuration (model = exponential,S = S1, k = 2) could
be considered for EMDD-RL.

Regarding the second question, two experiments (hyperparameter search experiments) have
been designed. With the first one, predefined hyperparameter configurations for algorithms have
been tested against their accuracy performance in three tasks. In the second, results of relatively
close hyperparameter configurations have been inspected. The results indicate that the graph-
based and statistics-based approaches strongly depend on their hyperparameters, and a new hy-
perparameter search with possibly different hyperparameter values should be carried out in a new
task. However, EMDD-RL attains more stable results with varying hyperparameter configurations.

The number of hyperparameters and their value sets describe the hyperparameter configura-
tion space of an algorithm. When there is no guideline for hyperparameter value selection, an
exhaustive search is needed over the configuration space of the algorithm. Performing a search
over a finite value set is relatively simple, since the values to be considered are known in advance.
However, a serious problem arises with hyperparameters whose values are real-valued (continu-
ous). Since there are infinitely many possible values, some groups of values or ranges should be
preferred to others. Unfortunately, without actually trying and inspecting the outcomes, it is
not easy to know whether selected values yield the best results or whether there is a better

ACM Trans. Autonom. Adapt. Syst., Vol. 19, No. 2, Article 10. Publication date: April 2024.

Faster MIL-based Subgoal Identification for RL 10:27

configuration that might have been excluded during selection. With this regard, EMMD-RL and
SCC facilitate hyperparameter tuning as they require several hyperparameters whose values can
be picked from a finite set. In contrast, the other techniques require either real-valued hyperparam-
eters or hyperparameters with many discrete values (e.g., integers). Furthermore, in most studies,
the authors leave a well-defined procedure for hyperparameter value selection undescribed.

As for the third question, we have examined the accuracy performances of the methods in the
key-room environment. The environment challenges the algorithms by introducing an unconven-
tional subgoal, unlike the other environments in the experiments. Its subgoal (the key state) vio-
lates the assumptions made by the methods. It is neither located near a gateway state nor facilitates
an agent to transition to a new state-space region, so the graph-based and statistics-based meth-
ods have failed to detect it as a subgoal. Different from these methods, SDD and EMDD-RL have
achieved much more accurate results. It is thanks to the fact that SDD and EMDD-RL have their
origins in the MIL paradigm. Since trajectories are classified as positive or negative depending on
a success criterion, both algorithms extract the most helpful information from a dataset to differen-
tiate positive and negative bags. When employed for an RL task, the algorithms intrinsically form
a notion of what is useful or not for an agent in the task, an important property that the other
subgoal identification methods lack. Such a property is necessary for identifying the subgoal of
the key-room environment.

When all these results are considered, for the subgoal identification problem, the MIL-based
methods could be preferred to the other techniques as they require fewer hyperparameters and
intrinsically have a notion of what might be helpful for an agent to achieve its objective.

Despite their merits, the MIL-based subgoal identification algorithms can be further improved.
A prominent disadvantage is that (although it is not due to the nature of algorithms) they require
particular states to be eliminated from trajectory histories when applied to discrete RL tasks. In this
study, we have manually fed these states to the algorithms. However, these states can be chosen
automatically by inspecting trajectory histories. For instance, a certain percentage of a trajectory
history could be considered for static filtering. This ratio can be determined by examining various
discrete RL tasks.

It is apparent that the amount of experience data directly affects the subgoal identification per-
formance of all the methods. Reliable subgoal identification and policy learning entail gathering
sufficient data. In this study for the experiments, we have considered trajectory histories of 40
episodes (20 positive bags, 20 negative bags) for all methods. We have inspired the number of
positive bags (20) from the SDD study [16], where the authors use the experience data of 20 to
30 episodes for subgoal identification. With the considered experience data amount, the methods
have identified reliable subgoals with a suitable hyperparameter configuration, though the accu-
racy of some methods is low. However, more than 40 trajectory histories may be required in tasks
with large state spaces. In general, it can be challenging to ascertain how many episodes should be
considered for data gathering beforehand. As a solution, it can be regarded as a hyperparameter
for all subgoal identification methods.

6 CONCLUSION AND FUTURE WORK

In the reinforcement learning literature, subgoal identification refers to discovering critical states
for decomposing a task. In this work, first, we classify prominent subgoal identification meth-
ods for discrete RL tasks into the following three categories: graph-based, statistics-based, and
MIL-based. Second, we present a novel MIL-based method called EMDD-RL; third, we thor-
oughly compare the methods of these categories with three main experiment setups. EMDD-RL
adapts a MIL method called EMDD for subgoal identification in discrete RL tasks. It has achieved

ACM Trans. Autonom. Adapt. Syst., Vol. 19, No. 2, Article 10. Publication date: April 2024.

10:28 S. Sunel et al.

better accuracy and speed performance results than another MIL-based approach called SDD in
the experiments. Our experiment results suggest that MIL-based approaches could be preferable
to the methods in the other categories for subgoal identification in practice. They feature fewer
hyperparameters, which facilitate hyperparameter tuning, and have a better knowledge extraction
capability toward what may be helpful for an agent to achieve its goal.

Our method can be improved and employed as a new method in other research areas. Among
all the algorithmic steps of EMDD-RL, a natural improvement could take place in the algorithm’s
seed set selection part. EMDD-RL populates the initial seed set with the instances of the short-
est positive trajectory and eliminates some of them with a simple strategy. A better mechanism
that shrinks the set further without missing possible subgoal candidates can speed up EMDD-RL
more. Different from this direction, EMDD-RL could be introduced to the partially observable MDP
(POMDP) research area as a new subgoal identification method for POMDP problems. Although in
this study we have considered only discrete RL problems, after making some modifications, both
SDD and EMDD-RL methods could be applied to RL problems with continuous state space (where
the application of the other methods mentioned in this study is impractical) for subgoal identifi-
cation, since both originate from the MIL domain, which is another important research direction
that can be considered.

REFERENCES

[1] Hüseyin Aydın, Erkin Çilden, and Faruk Polat. 2022. Using chains of bottleneck transitions to decompose and solve
reinforcement learning tasks with hidden states. Future Gen. Comput. Syst. 133 (2022), 153–168. https://doi.org/10.
1016/j.future.2022.03.016

[2] Akhil Bagaria and George Konidaris. 2019. Option discovery using deep skill chaining. In Proceedings of the Interna-

tional Conference on Learning Representations.
[3] Özgür Şimşek and Andrew G. Barto. 2004. Using relative novelty to identify useful temporal abstractions in rein-

forcement learning. In Proceedings of the 21st International Conference on Machine Learning (ICML’04). Association for
Computing Machinery, New York, NY, 95. https://doi.org/10.1145/1015330.1015353

[4] Özgür Şimşek, Alicia P. Wolfe, and Andrew G. Barto. 2005. Identifying useful subgoals in reinforcement learning by lo-
cal graph partitioning. In Proceedings of the 22nd International Conference on Machine Learning (ICML’05). Association
for Computing Machinery, New York, NY, 816–823. https://doi.org/10.1145/1102351.1102454

[5] Michael Dann, Fabio Zambetta, and John Thangarajah. 2019. Deriving subgoals autonomously to accelerate learning
in sparse reward domains. In Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 33. 881–889.

[6] Thomas G. Dietterich. 2000. Hierarchical reinforcement learning with the MAXQ value function decomposition. J.

Artif. Int. Res. 13, 1 (Nov. 2000), 227–303.
[7] Thomas G. Dietterich, Richard H. Lathrop, and Tomás Lozano-Pérez. 1997. Solving the multiple instance problem with

axis-parallel rectangles. Artific. Intell. 89, 1 (1997), 31–71. https://doi.org/10.1016/S0004-3702(96)00034-3
[8] E. Dijkstra. 1959. A note on two problems in connexion with graphs. Numer. Math. 1 (1959), 269–271.
[9] Michael L. Fredman and Robert Endre Tarjan. 1987. Fibonacci heaps and their uses in improved network optimization

algorithms. J. ACM 34, 3 (July 1987), 596–615. https://doi.org/10.1145/28869.28874
[10] Peter Henderson, Riashat Islam, Philip Bachman, Joelle Pineau, Doina Precup, and David Meger. 2017. Deep re-

inforcement learning that matters. In Proceedings of the AAAI Conference on Artificial Intelligence. Retrieved from
https://api.semanticscholar.org/CorpusID:4674781

[11] Glenn A. Iba. 1989. A heuristic approach to the discovery of macro-operators. Mach. Learn. 3, 4 (1989), 285–317.
[12] Seyed Jalal Kazemitabar and Hamid Beigy. 2008. Automatic discovery of subgoals in reinforcement learning using

strongly connected components. In Advances in Neuro-Information Processing, Mario Köppen, Nikola Kasabov, and
George Coghill (Eds.). Vol. 5506. 829–834. https://doi.org/10.1007/978-3-642-02490-0_101

[13] R. Kretchmar, Todd Feil, and Rohit Bansal. 2003. Improved automatic discovery of subgoals for options in hierarchical
reinforcement learning. Journal of Computer Science & Technology 3, 2 (2003), 9–14.

[14] Oded Maron and Tomás Lozano-Pérez. 1998. A framework for multiple-instance learning. In Proceedings of the Con-

ference on Advances in Neural Information Processing Systems (NIPS’97). MIT Press, Cambridge, MA, 570–576.
[15] Oded Maron and Tomas Lozano-Perez. 1998. Learning from Ambiguity. Ph.D. Dissertation. AAI0599603.
[16] Amy McGovern and Andrew G. Barto. 2001. Automatic discovery of subgoals in reinforcement learning using di-

verse density. In Proceedings of the 18th International Conference on Machine Learning (ICML’01). Morgan Kaufmann
Publishers, San Francisco, CA, 361–368.

ACM Trans. Autonom. Adapt. Syst., Vol. 19, No. 2, Article 10. Publication date: April 2024.

https://doi.org/10.1016/j.future.2022.03.016
https://doi.org/10.1145/1015330.1015353
https://doi.org/10.1145/1102351.1102454
https://doi.org/10.1016/S0004-3702(96)00034-3
https://doi.org/10.1145/28869.28874
https://api.semanticscholar.org/CorpusID:4674781
https://doi.org/10.1007/978-3-642-02490-0_101

Faster MIL-based Subgoal Identification for RL 10:29

[17] Ishai Menache, Shie Mannor, and Nahum Shimkin. 2002. Q-cut—Dynamic discovery of sub-goals in reinforcement
learning. In Proceedings of the 13th European Conference on Machine Learning (ECML’02). Springer-Verlag, Berlin,
295–306.

[18] Shubham Pateria, Budhitama Subagdja, Ah-hwee Tan, and Chai Quek. 2021. Hierarchical reinforcement learning: A
comprehensive survey. ACM Comput. Surv. 54, 5, Article 109 (June 2021), 35 pages. https://doi.org/10.1145/3453160

[19] Sujoy Paul, Jeroen Vanbaar, and Amit Roy-Chowdhury. 2019. Learning from trajectories via subgoal discovery. Adv.

Neural Info. Process. Syst. 32 (2019).
[20] Doina Precup. 2000. Temporal abstraction in reinforcement learning. Ph.D. Dissertation.
[21] Philipp Probst, Anne-Laure Boulesteix, and Bernd Bischl. 2019. Tunability: Importance of hyperparameters of machine

learning algorithms. J. Mach. Learn. Res. 20, 53 (2019), 1–32. Retrieved from http://jmlr.org/papers/v20/18-444.html
[22] G. Rummery and Mahesan Niranjan. 1994. On-line Q-learning using connectionist systems. Technical Report CUED/F-

INFENG/TR 166.
[23] O. Simsek and A. G. Barto. 2009. Skill characterization based on betweenness. In Proceedings of the Conference on

Advances in Neural Information Processing Systems. 1497–1504.
[24] Richard S. Sutton and Andrew G. Barto. 2018. Reinforcement Learning: An Introduction. A Bradford Book, Cambridge,

MA.
[25] Richard S. Sutton, Doina Precup, and Satinder Singh. 1999. Between MDPs and Semi-MDPs: A framework for tem-

poral abstraction in reinforcement learning. Artif. Intell. 112, 1–2 (Aug. 1999), 181–211. https://doi.org/10.1016/S0004-
3702(99)00052-1

[26] Christopher J. C. H. Watkins and Peter Dayan. 1992. Q-learning. Mach. Learn. 8, 3 (May 1992), 279–292. https://doi.
org/10.1007/BF00992698

[27] Marco Wiering and Jürgen Schmidhuber. 1997. HQ-learning. Adaptive Behavior 6, 2 (1997), 219–246. https://doi.org/
10.1177/105971239700600202 arXiv:https://doi.org/10.1177/105971239700600202

[28] Qi Zhang and Sally A. Goldman. 2002. EM-DD: An improved multiple-instance learning technique. In Advances in

Neural Information Processing Systems 14, T. G. Dietterich, S. Becker, and Z. Ghahramani (Eds.). MIT Press, 1073–1080.
[29] K. J. Åström. 1965. Optimal control of Markov processes with incomplete state information. J. Math. Anal. Appl. 10, 1

(1965), 174–205. https://doi.org/10.1016/0022-247X(65)90154-X

Received 7 February 2023; revised 31 August 2023; accepted 20 January 2024

ACM Trans. Autonom. Adapt. Syst., Vol. 19, No. 2, Article 10. Publication date: April 2024.

https://doi.org/10.1145/3453160
http://jmlr.org/papers/v20/18-444.html
https://doi.org/10.1016/S0004-3702(99)00052-1
https://doi.org/10.1007/BF00992698
https://doi.org/10.1177/105971239700600202
https://arxiv.org/abs/https://doi.org/10.1177/105971239700600202
https://doi.org/10.1016/0022-247X(65)90154-X

