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Abstract: The purpose of this paper is to study the dynamics of Hopfield neural networks with
impulsive effects, focusing on Poisson stable rates, synaptic connections, and unpredictable external
inputs. Through the symmetry of impulsive and differential compartments of the model, we follow
and extend the principal dynamical ideas of the founder. Specifically, the research delves into the
phenomena of unpredictability and Poisson stability, which have been examined in previous studies
relating to models of continuous and discontinuous neural networks with constant components.
We extend the analysis to discontinuous models characterized by variable impulsive actions and
structural ingredients. The method of included intervals based on the B-topology is employed to
investigate the networks. It is a novel approach that addresses the unique challenges posed by the
sophisticated recurrence.

Keywords: discontinuous Hopfield neural networks; symmetry of impulsive and differential
compartments; unpredictable functions; unpredictable sequences; discontinuous unpredictable
solutions; Poisson couples; method of included intervals; B-topology; asymptotic stability

1. Introduction

Neuroscience is a rapidly developing field, and researchers are constantly studying
various aspects of brain activity and neural networks. Understanding the oscillatory and
recurrent behaviors in neural networks is critical for advancements in various fields such
as neuroscience, artificial intelligence, and complex system modeling.

John J. Hopfield, in papers [1,2], presented a model,

y′i(t) = aiyi(t) +
p

∑
j=1

bij f j(yj(t)) + ci(t), (1)

where t, yi, i = 1, . . . p, are from the real axis, yi(t) and y′i(t), i = 1, . . . p, denote the mem-
brane potentials of neuron i and their rates of change; and p is the total number of neurons
in the network. Moreover, ai, i = 1, . . . , p are rates of self-regulation or reset potentials for
neurons i = 1, . . . , p when they are isolated; f j, j = 1, 2, . . . , p, are the activation functions
for neurons j, j = 1, . . . , p, which determine how the membrane potential influences other
neurons; bij, i, j = 1, 2, . . . , p are the weights of the connection between neurons j, and i,
i, j = 1, 2, . . . , p; ci(t), i = 1, 2, . . . , p, are input functions representing external stimuli or
inputs to neurons i, i = 1, 2, . . . , p.

Impulsive neural networks are specifically designed to handle sudden input data or
changes in system dynamics. They are inspired by how biological neurons respond to stim-
uli, such as pain or temperature changes, by transmitting corresponding signals to the brain.
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Just as biological neurons can undergo sudden changes in their state, impulsive artificial
neural networks are engineered to mimic this behavior and adapt to sudden changes or
disturbances in the input. This unique design makes them particularly useful in scenarios
where the input data are prone to sudden changes, such as in applied mathematics.

Recent studies have emphasized the exploration of chaotic and recurrent signals
within neural networks [3–5]. Recurrence types, such as periodicity, quasi-periodicity,
and Poisson stable motions, originate in the theory of celestial dynamics and have been
applied to various areas of applied mathematics. Currently, the theory of oscillations is
widely developed in a chaotic sense, and more than the classical functions are needed to
describe complex systems’ dynamics. Therefore, new models and solutions of models and
new functions are required. This is why the unpredictable functions were introduced [6].

The proof of the stability of unpredictable functions is based on the method of included
intervals, which is a new and efficient instrument for verifying convergence. This method,
which is a significant contribution to the field, extends to spaces of discontinuous functions
based on the B-topology, further enhancing its applicability and relevance in the field
of applied mathematics. It plays a crucial role in our understanding of the behavior of
impulsive neural networks.

In numerous real-world scenarios, continuous processes within neural network sys-
tems are often subject to abrupt interruptions caused by impulsive events or impacts [7–11].
This study investigates the dynamics of such discontinuous Hopfield neural networks,
emphasizing the symmetrical nature of the model. By treating impact actions as the limits
of continuous processes of short duration, we establish that the functional structure of
impulsive equations mirrors that of the differential ones. The symmetrical property of the
model facilitates a detailed examination of network states during sharp jumps, enabling the
exploration of complex models of processes with impulses. The symmetry ensures that the
mathematical model accurately captures the behavior of these processes, and the research
follows the dynamical ideas of J. Hopfield [1,2]. This is why we maintain a structural
symmetry between the impulsive and differential parts of the models [5,12].

In this article, we delve into the unpredictability and Poisson stability of impulsive
Hopfield-type neural networks with variable coefficients, which is a novel area of study.
We also explore sequences that characterize Poisson stability and unpredictability synchro-
nized for external input and output solutions. This research adds to the existing body of
knowledge and provides new insights into the behavior of impulsive neural networks.

Throughout the paper, N, Z and R denote the sets of natural numbers, integers,
and real numbers, respectively. Introduce the norm

∥ψ∥ = max
i

|ψi|, i = 1, 2, . . . , p, where |·|—is the absolute value and p is a fixed natural

number; ψ = (ψ1, . . . , ψp) is a vector, such that ψi ∈ R, i = 1, 2, . . . , p. Consequently,

∥D∥ = max
i

p

∑
j=1

∣∣dij
∣∣, i = 1, 2, . . . , p, means the norm for the n × n matrix D =

{
dij

}
, i, j = 1,

2, . . . , p.
We investigate, in this paper, the existence and stability of unpredictable solutions of

symmetrical impulsive discontinuous Hopfield-type neural networks of the form

y′i(t) = ai(t)yi(t) +
p

∑
j=1

bij(t) f j(yj(t)) + ci(t), t ̸= θk,

∆yi|t=θk = αikyi(θk) +
p

∑
j=1

βijkgj(yj(θk)) + γik,
(2)

where t, yi ∈ R, i = 1, . . . p, yi(t) correspond to the membrane potential of the unit i,
i = 1, . . . p, and p is the number of neurons in the network. The sequence θk, k ∈ Z of
discontinuity moments is increasing, such that |θk| → ∞ as k → ∞.

Similarly to the differential part of the model, the coefficients αik, i = 1, 2, . . . , p, and
k ∈ Z in the impulsive equation are constants of self-regulation for the units or reset of
potentials. When the units are isolating, the constants βijk, i, j = 1, 2, . . . , p, k ∈ Z, denote
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the weights for connection between units j and i, while gj and j = 1, 2, . . . , p are activation
vectors, and the sequences γik, i = 1, 2, . . . , p, k ∈ Z, are external impulses for the network.
One can see that the impulsive part of the model possesses the same structure as the
differential part. This is why we refer to the model as symmetrical one.

Suppose impact actions are considered as limits of continuous ones. In that case,
the jump presentations must admit the functional structure of the differential equation.
Hence, considering neural networks with impulses mimicking the structure of continuous
rates is of great interest. In our research, we have proposed a neural network with newly
structured impacts, completely imitating the rates. Our proposal makes excellent sense for
applications, as impacts are limitations of their rate counterparts. Consequently, the issues
which motivated J. Hopfield are now valid for the model under investigation in all of its
parts. Since the impulsive actions are compatible with the differential equation in this study,
it covers all similar neural networks considered previously.

The symmetry is completely or partially ignored in the literature [7–11,13–17], but the
arguments above prove that it must be considered if one wants to conduct effective re-
search on this topic. It has to be mentioned that ignorance on this topic is either due to the
theoretical difficulties of impulsive systems or the absence of biological and engineering
arguments for novelty. We are applying the experience accumulated in the books [18,19]
for discontinuous dynamics. Moreover, we are the first to introduce the symmetry in [12],
where mathematical and biological arguments have been formulated. The first types are
based on the limiting processes, which are standardized to obtain discrete analogs of con-
tinuous models, and the second one appeals to the founders’ original ideas, such as those
presented by J. Hopfield [1,2]. We provide the initial explanation for the model in the hope
that neuroscience specialists will accept and adapt our suggestions further. The symme-
try will open up new possibilities for productive application of the methods introduced
and developed within the last few years for various types of impulsive systems [20–22]
and networks [23–25]. Another interesting opportunity involves combining methods for
discontinuous dynamics with those for synchronization [26,27].

We assume that ai(t), bij(t), ci(t), f j, gj : R → Rp are continuous functions and
the coefficients αik, βijk, and γik are real numbers.

The present paper continues what was initiated in the article [12], where impulsive
neural networks of the following form were studied:

x′i(t) = aixi(t) +
p

∑
j=1

bij f j(xj(t)) + ci(t), t ̸= θk,

∆xi|t=θk = αixi(θk) +
p

∑
j=1

βijgj(xj(θk)) + γik.
(3)

It deserves to be emphasized that constancy dominates in coefficients of the model.
Precisely, rates of self-regulation ai, αi, i = 1, . . . , p, activation functions fi, gi, i = 1, 2, . . . , p,
connection weights bij, βij, and i, j = 1, 2, . . . , p are real constants. This is not surprising,
since traditionally, the networks have fixed connection weights or coefficients. However,
there are extensions and variations of the Hopfield model that introduce variable coef-
ficients. These modifications can allow for more flexible and adaptive behavior [28–36].
The dynamics of networks will still involve updating neuron states iteratively until the
network reaches a stable state or settles into a limit cycle. It is clear that with variable coeffi-
cients, the convergence properties and stability of network states may change dynamically
as the coefficients are adjusted. Networks with variable components can be applied to
tasks where the underlying relationships or patterns are not fixed and may change over
time, for example, in pattern recognition tasks where the importance of features varies
depending on context, or in adaptive control systems where the network needs to learn
and adjust to changing environments.

Another reason for the study of the system (2) besides the model (3) is the theoretical
challenges connected to sophisticated dynamics of unpredictability, which now is more
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saturated in the model’s interiors. We must analyze the role of unpredictable components
and consider sufficiency of the unpredictability combined with Poisson stability. That is,
we must not simply involve variable coefficients to make the research align more closely
with the applications and increase its mathematical merits; we must also create more
wide-reaching structural possibilities.

2. Preliminaries

In what follows, we will use the vector form of the model because of its effectiveness in
representing mathematical concepts and the proof of the main statements. For this purpose,
throughout the paper we shall denote A(t), B(t) as p × p matrix functions, as follows,

A(t) =


a1(t) 0 . . . 0

0 a2(t) . . . 0
...

... . . .
...

0 0 . . . ap(t)

, B(t) =


b11(t) b12(t) . . . b1p(t)
b21(t) b22(t) . . . b2p(t)

...
... . . .

...
bp1(t) bp2(t) . . . bpp(t)

, t ∈ R.

Moreover, Ak and Bk as p × p matrix-sequences

Ak =


α1k 0 . . . 0
0 α2k . . . 0
...

... . . .
...

0 0 . . . αpk

, Bk =


β11k β12k . . . β1pk
β21k β22k . . . β2pk

...
... . . .

...
βp1k βp2k . . . βppk

, k ∈ Z,

and, F(y), C(t), G(y) are p × 1 vector functions and Γk is p × 1 vector sequence, of the
following vector form:

F(y) =


f1(y1)
f2(y2)

...
fp(yp)

, C(t) =


c1(t)
c2(t)

...
cp(t)

, G(y) =


g1(y1)
g2(y2)

...
gp(yp)

, Γk =


γ1k
γ2k

...
γpk

, t ∈ R, k ∈ Z.

Thus, using the suggested notations, the symmetric discontinuous Hopfield-type
neural networks (2) can be written as follows:

y′ = A(t)y + B(t)F(y) + C(t), t ̸= θk,

∆y
∣∣
t=θk

= Aky + BkG(y) + Γk, (4)

where y = colon(y1, . . . , yp) ∈ Rp, t ∈ R, k ∈ Z.

2.1. Poisson Stable and Unpredictable Continuous and Discontinuous Functions

Let us provide the basic definitions and useful lemmas.

Definition 1 ([37]). A sequence κi, i ∈ Z in R is called Poisson stable, provided that it is bounded
and there exists a sequence ln → ∞ and n ∈ N of positive integers which satisfies κi+ln → κi as
n → ∞ on bounded intervals of integers.

Definition 2 ([37]). A uniformly continuous and bounded function u : R → Rp is Poisson stable
if there exists a sequence tn which diverges to infinity, such that u(t + tn) → u(t) as n → ∞
uniformly on compact subsets of R.

Consider sequences of real numbers tn, θk, with indices n ∈ N, k ∈ Z. They are
assumed to strictly increase with regard to the indices. Sequence θk, k ∈ Z is unbounded
in both directions. Moreover, it satisfies θ ≤ θk+1 − θk ≤ θ with positive numbers θ, θ. We
provide the description of a Poisson couple in the following definition.
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Definition 3 ([12]). A couple (tn, θk) of sequences tn, θk, n ∈ N, k ∈ Z, is called a Poisson couple
if there exists a sequence ln, n ∈ N, which diverges to infinity, such that

θk+ln − tn − θk → 0 as n → ∞, (5)

uniformly on each bounded interval of integers k.

Definition 4 ([18]). A sequence τk, k ∈ Z is said to be part of the (w, p)−property if there exists
a positive real number w and integer p which satisfy τk+p − τk = w for all k ∈ Z.

Lemma 1 ([12]). Assume that sequences tn, θk, n ∈ N, k ∈ Z, satisfy the following conditions

(i) sequence θk admits the (w, p)− property;
(ii) tn = nw, where n ∈ N;

then (tn, θk) is a Poisson couple.

Definition 5 ([18]). Two piecewise continuous functions F(t) and G(t) from D are said to be
ϵ− equivalent on a bounded interval J if the points of discontinuity of the functions F(t) and G(t)
in J can be respectively numerated θF

i and θG
i , i = 1, 2, . . . , k, such that |θF

i − θG
i | < ϵ for each

i = 1, 2, . . . , k, and ||F(t)− G(t)|| < ϵ for each t ∈ J, except those between θF
i and θG

i for each i.

In the case that F and G are ϵ−equivalent on J, we also say that the functions are in
ϵ−neighborhoods of each other. The topology defined with the aid of such neighborhoods
is called the B-topology [18].

Let us consider the set D of conditional uniform continuous vector functions
v(t) = (v1(t), v2(t), . . . , vp(t)), vi(t) : R → R, i = 1, 2, . . . , p. The functions are contin-
uous except at a countable set of moments where they exhibit left continuity. The sets
of discontinuity points are unbounded from both sides and do not have finite accumula-
tion points. There is no requirement for the discontinuity moments to be common across
functions in D.

We will use the following concepts, such as conditional uniform continuity and
B−topology from [18], which create a framework for understanding the Poisson stable
behavior of discontinuous functions.

Definition 6 ([12]). An element v(t) of D with discontinuity moments θk, k ∈ Z, is said to be
a discontinuous Poisson stable function, if there exists a sequence tn → ∞ of real numbers such
that (tn, θk), n ∈ N, k ∈ Z is a Poisson couple and v(t + tn) → v(t) as n → ∞ on each bounded
interval of real numbers in B topology.

The sequence tn in the last definition is called the Poisson or convergence sequence.
As one can see from the Definition 6 for discontinuous Poisson stability, we need

a convergence sequence tn, which is common for both the function convergence and
discontinuity points θk, k ∈ Z, which are connected as Poisson couple (tn, θk).

Then, we write [̂ξ, ζ], ξ, ζ ∈ R to denote the interval [ξ, ζ], if ξ ≤ ζ and interval [ζ, ξ],
if ζ < ξ.

Definition 7 ([12]). A discontinuous Poisson stable function v(t) of D with discontinuity moments
θk, k ∈ Z and convergence sequence tn is said to be discontinuous unpredictable, provided that
(tn, θk), n ∈ N, k ∈ Z, is a Poisson couple, and there exist positive numbers ϵ0, δ and sequences
sn of real numbers and mn of integers, both of which diverges to infinity such that interval [sn −
δ, sn + δ] ⊆ [ ̂θmn , (θmn+ln − tn)] does not contain discontinuity points of v(t) and v(t + tn),
and ∥v(t + tn)− v(t)∥ ≥ ϵ0 on the interval.

The divergence estimated by ϵ0 is said to be separation property, and sn is the
divergence sequence.
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In what follows, we shall say that v(t) is a discontinuous unpredictable function with
Poisson couple (tn, θk) and divergence sequence sn.

2.2. The “Diagonal” Poisson Stability of the Linear Homogenous Impulsive System

Let us denote by Y(t, s) the transition matrix, [18], of the system associated with (4),

y′(t) = A(t)y(t), t ̸= θk,
∆y|t=θk = Aky(θk),

(6)

where t ∈ R.
It is assumed, in the paper, that

(C1) ∥Y(t, s)∥ ≤ Keλ(t−s) with constants K ≥ 1 and λ < 0.

Also, the following assertion is needed for the proof of the Poisson stability in
the paper.

Lemma 2. Assume that the following conditions are valid

• The entries of matrix A(t) are continuously Poisson stable with the sequence of convergence
tn, n ∈ N;

• The sequence Ak, k ∈ Z, is Poisson stable with a convergence sequence ln, n → ∞;
• The convergence sequence tn, n ∈ N, and discontinuity moments θk, k ∈ Z, make a Poisson

couple (tn, θk);
• The condition (C1) is fulfilled.

Then, for arbitrary interval [c, d] and positive number ε, there exists a natural k, such that for
all t ∈ [c, d], |t − θi| > ε, and n > k, the following inequality holds

∥Y(t + tn, s + tn)− Y(t, s)∥ ≤ ε
K
λ
(1 +

1
θ
)e

λ
2 (t−s). (7)

Proof. Due to these conditions, there exists a number k, such that for n > k it is true that
∥A(t + tn) − A(t)∥ < ε, ∥Ai+ln − Ai∥ < ε and |t − ηi| < ε implies that
ηi+ln < t + tn < ηi+ln+1, where ηi = θi − tn, for all i ∈ Z.

Moreover, it is true that

∂Y(t+tn ,s+tn)
∂t = A(t)Y(t + tn, s + tn) + [A(t + tn)−A(t)]Y(t + tn, s + tn), t ̸= ηk,

∆Y(t + tn, s + tn)|t=ηk = AkY(ηk + tn, s + tn) + [Ak+ln − Ak]Y(ηk + tn, s + tn).
(8)

Consequently, if i(s, t) denotes the number of points θi in the interval (s, t),

Y(t + tn, s + tn) = Y(t, s) +
∫ t

s
Y(t, u)[A(u + tn)−A(u)]Y(u + tn, s + tn)du+

∑
s≤ηi<t

Y(t, ηi)[Ai+ln − Ai]Y(ηi + tn, s + tn),

and

∥Y(t + tn, s + tn)− Y(t, s)∥ ≤
∫ t

s
∥Y(t, u)∥∥A(u + tn)−A(u)∥∥Y(u + tn, s + tn∥du+

∑
s≤θi<t

∥Y(t, ηi)∥∥Ai+ln − Ai∥∥Y(ηi + tn, s + tn)∥ ≤
∫ t

s
εKeλ(t−s)du + ∑

s≤θi<t
εKeλ(t−s) =

εK
λ

eλ(t−s)(t − s) + i(s, t)εKeλ(t−s) ≤ ε
K
λ
(1 +

1
θ
)e

λ
2 (t−s).
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3. Main Results

We will study the problem of the existence and uniqueness of discontinuous unpre-
dictable oscillations for system (4).

In this article, the following symbols will be employed:

mB = sup
t∈R

∥B(t)∥, mF = sup
∥u∥<H

∥F(u)∥, mC = sup
t∈R

∥C(t)∥,

mB = sup
k∈Z

∥Bk∥, mG = sup
∥u∥<H

∥G(u)∥, mΓ = sup
k∈Z

∥Γk∥

Lemma 3. A bounded vector function y(t) = (y1(t), . . . , yp(t)) is a solution of system (4) if and
only if it is a solution of the following integral equations:

y(t) =
t∫

−∞

Y(t, s)
[
B(s)F(y(s)) + C(s)

]
ds + ∑

θk<t
Y(t, θk+)

[
BkG(y(θk)) + Γk

]
(9)

for all k ∈ Z.

Consider the subset Q ⊂ D of p−dimensional discontinuous Poisson stable functions
ψ : R → Rp, ψ = (ψ1, ψ2, . . . , ψp) with the set of discontinuity moments θk, k ∈ Z,
and the common convergence sequence tn, n = 1, 2, . . .. In the set, Q determines the norm
∥ψ∥1 = sup

t∈R
∥ψ(t)∥. Moreover, ∥ψ∥1 < H for all ψ(t) ∈ Q, where H is a positive fixed

number, and the convergence sequence tn and discontinuity moments θk, k = 0, 1, 2, . . .
make a Poisson couple (tn, θk).

The following conditions are needed:

(C2) the coefficients of matrices A(t),B(t), and the input C(t), are continuous Poisson
stable and the sequence of convergence tn, n ∈ N, is common for all their coordinates;

(C3) the sequences {Ak}, {Bk}, {Γk}, k ∈ Z are Poisson stable with a common convergence
sequence ln, n → ∞;

(C4) there exist positive numbers lF and lG, such that ∥F(x) − F(y)∥ ≤ lF∥x − y∥,
∥G(x)− G(y)∥ ≤ lG∥x − y∥, for all x, y ∈ Rp;

(C5) K
(

1
−λ

(
mBmF + mC

)
+

1
1 − eλθ

(
mBmG + mΓ

))
< H;

(C6) K
(

lFmB
−λ

+
lGmB

1 − eλθ

)
< 1;

(C7) KlFmB + 1
θ ln(1 + KlGmB) < −λ.

Let us introduce the following integral operator Πψ(t) in the space Q, such that

Πψ(t) =
t∫

−∞

Y(t, s)
[
B(s)F(ψ(s)) + C(s)

]
ds + ∑

θk<t
Y(t, θk+)

[
BkG(ψ(θk)) + Γk

]
for all k ∈ Z.

Lemma 4. If ψ(t) ∈ Q, then Πψ(t) ∈ Q.

Proof. For a function ψ(t) ∈ Q and we have found that
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∥Πψ(t)∥ =
∥∥∥ t∫
−∞

Y(t, s)
[
B(s)F(ψ(s)) + C(s)

]
ds + ∑

θk<t
Y(t, θk+)

[
BkG(ψ(θk)) + Γk

]∥∥∥
≤

t∫
−∞

∥Y(t, s)∥
[
∥B(s)∥∥F(ψ(s))∥+ ∥C(s)∥

]
ds

+ ∑
θk<t

∥Y(t, θk+)∥
[
∥Bk∥∥G(ψ(θk))∥+ ∥Γk∥

]
≤

t∫
−∞

Keλ(t−s)(mBmF + mC
)
ds + ∑

θk<t
Keλ(t−θk)

(
mBmG + mΓ

)
≤ K

−λ

(
mBmF + mC

)
+

K
1 − eλθ

(
mBmG + mΓ

)
.

So, based on condition (C5), it is true that ∥Πψ∥1 < H.
Let us check that the Poisson stability of Πψ(t) is valid.
According to the method of included intervals introduced in [38], we fix a positive

number ϵ and [a, b],−∞ < a < b < ∞ and will prove that ∥Πψ(t + tn)− Πψ(t)∥ < ϵ on
[a, b] for sufficiently large n. Then, we choose real numbers c < a, b < d and ζ > 0 to satisfy
the inequalities

2K
(

mBmF + mC
−λ

+
mBmG + mΓ

1 − eλθ

)
eλ(a−c) <

ϵ

2
, (10)

(1 +
1
θ
)

Kε
(
mBmF + mC

)
−λ2(1 − eλθ)

(
e−λζ − 1

)
<

ϵ

8
, (11)

Kζ

λ

(
mF + lFmB + 1

)
<

ϵ

8
, (12)

2K
(
mBmF + lFmBH + mC

)
−λ

(
1 − eλθ

) (
e−λζ − 1

)
<

ϵ

8
, (13)

and
Kζ

1 − eλθ

(
mBmG + mBlG + mG + mΓ + 1

)
<

ϵ

8
. (14)

To prove convergence, we first introduce the following difference

Πψ(t + tn)− Πψ(t)

=

t+tn∫
−∞

Y(t + tn, s)
[
B(s)F(ψ(s)) + C(s)

]
ds + ∑

θk<t+tn

Y(t + tn, θk+)
[
BkG(ψ(θk)) + Γk

]

−
t∫

−∞

Y(t, s)
[
B(s)F(ψ(s)) + C(s)

]
ds − ∑

θk<t
Y(t, θk+)

[
BkG(ψ(θk)) + Γk

]

=

t∫
−∞

Y(t + tn, s + tn)
[
B(s + tn)F(ψ(s + tn)) + C(s + tn)

]
ds

+ ∑
θk<t

Y(t + tn, θk+ln+)
[
Bk+ln G(ψ(θk+ln)) + Γk+ln

]
−

t∫
−∞

Y(t, s)
[
B(s)F(ψ(s)) + C(s)

]
ds − ∑

θk<t
Y(t, θk+)

[
BkG(ψ(θk)) + Γk

]
.
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For t ∈ [a, b] we find that

∥Πψ(t + tn)− Πψ(t)∥ = ∥
t∫

−∞
Y(t + tn, s + tn)Φ(s + tn)ds + ∑

θk<t
Y(t + tn, θk+ln+)Ψk+ln

−
t∫

−∞
Y(t, s)Φ(s)ds − ∑

θk<t
Y(t, θk+)Ψk∥,

(15)

where Φ(u) = B(u)F(ψ(u)) + C(u) and Ψj = BjG(ψ(θj)) + Γj, with sup
u

∥Φ(ψ(u))

∥ = sup
u

∥B(u)F(ψ(u)) + C(u)∥ ≤ mBmF + mC and sup
j
∥Ψj∥ = sup

j
∥BjG(ψ(θj)) + Γj

∥ ≤ mBmG +mΓ, respectively.
Taking into account the Poisson sequence tn, n ∈ N, and discontinuity moments

θk, k ∈ Z, we make use of the Poisson couple (tn, θk), as well as applying conditions (C2)
and (C3), one can make the number n sufficiently large, such that

∣∣θk+ln − tn − θk
∣∣ < ζ, ∥

ψ(θk+ln) − ψ(θk)∥ < ζ, ∥Bk+ln − Bk∥ < ζ, ∥Γk+ln − Γk∥ < ζ, ∥ψ(t + tn) − ψ(t)∥ < ζ,
and ∥B(t + tn)−B(t)∥ < ζ, ∥C(t + tn)− C(t)∥ < ζ for all t ∈ [c, b], θk ∈ [c, b], k ∈ Z.

So, according to the above inequalities, we have found that

sup
t∈[c,b]

∥Φ(t + tn)− Φ(t)∥ = sup
t∈[c,b]

∥B(t + tn)F(ψ(t + tn)) + C(t + tn)−B(t)F(ψ(t))− C(t)∥

≤ supt∈[c,b]
[
∥B(t + tn)−B(t)∥∥F(ψ(t + tn))∥+ ∥B(t)∥∥F(ψ(t + tn))− F(ψ(t))∥

+∥C(t + tn)− C(t)∥
]
≤ mFζ + lFmBζ + ζ;

(16)

sup
k∈Z

∥Ψk+ln − Ψk∥ = sup
k∈Z, θk∈[c,b]

∥Bk+ln G(ψ(θk+ln)) + Γk+ln − BkG(ψ(θk))− Γk∥

≤ supk∈Z, θk∈[c,b]
[
∥Bk+ln − Bk∥

∥∥G(ψ(θk+ln))
∥∥+ ∥Bk∥

∥∥G(ψ(θk+ln))− G(ψ(θk))
∥∥

+
∥∥Γk+ln − Γk

∥∥]≤ mGζ + lGmBζ + ζ.

(17)

Consider the difference in (15) separately for intervals (−∞, c] and [c, t] to obtain that
∥Πψ(t + tn)− Πψ(t)∥ ≤ J1 + J2, where

J1 =
c∫

−∞
∥Y(t + tn, s + tn)∥∥Φ(s + tn)∥ds + ∑

θk<c
∥Y(t + tn, θk+ln+)∥∥Ψk+ln∥

+
c∫

−∞
∥Y(t, s)∥∥Φ(s)∥ds + ∑

θk<c
∥Y(t, θk+)∥∥Ψk∥

and

J2 =
t∫

c
∥Y(t + tn, s + tn)− Y(t, s)∥∥Φ(s + tn)∥ds +

t∫
c
∥Y(t, s)∥∥Φ(s + tn)− Φ(s)∥ds

+ ∑
c≤θk<t

∥∥Y(t + tn, θk+ln+)− Y(t, θk+)
∥∥∥Ψk+ln∥+ ∑

c≤θk<t
∥Y(t, θk+)∥∥Ψk+ln − Ψk∥.

Let us continue with the estimation of the constants J1 and J1. Firstly, we find that
(10) implies

J1 ≤ 2
c∫

−∞
Keλ(t−s)[mBmF + mC

]
ds + 2 ∑

θk<c
Keλ(t−θk)

(
mBmG + mΓ

)
<

(
2K
−λ

(
mBmF + mC

)
+ 2K

1−eλθ

(
mBmG + mΓ

))
eλ(a−c) < ϵ

2 .

Applying Lemma 2 and estimations (11)–(14), (16) and (17), one can verify that
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J2 ≤ ∑
c≤θk<t

θk+ln−tn∫
θk

ε
K
λ
(1 +

1
θ
)e

λ
2 (t−s)(mBmF + mC

)
ds

+

t∫
c

Keλ(t−s)(mFζ + lFmBζ + ζ
)
ds +

∑
c≤θk<t

θk+ln−tn∫
θk

Keλ(t−s)(2mBmF + lFmB2H + 2mC
)
ds

+ ∑
c≤θk<t

Keλ(t−θk)ζ
(
mBmG + mΓ

)
+ ∑

c≤θk<t
Keλ(t−θk)

(
mGζ + lGmBζ + ζ

)
≤ ε

K
λ
(1 +

1
θ
)

e−λζ − 1
−λ(1 − eλθ)

(
mBmF + mC

)
+

Kζ

−λ

(
mF + lFmB + 1

)
+

2K(e−λζ − 1)
−λ(1 − eλθ)

(
mBmF + lFmBH + mC

)
+

Kζ

1 − eλθ

(
mBmG + mΓ

)
+

Kζ

1 − eλθ

(
mG + lGmB + 1

)
<

ϵ

2
.

Thus, we have determined that ∥Πψ(t + tn)− Πψ(t)∥ ≤ J1 + J2 < ϵ, for t ∈ [a, b].
Therefore, Πψ(t + tn) → Πψ(t) uniformly in B-topology as n → ∞ on each bounded
interval.

Lemma 5. The operator Π : Q → Q is contractive.

Proof. For elements φ and ψ of the set Q, we have found that

∥Πφ(t)− Πψ(t)∥ =

t∫
−∞

∥Y(t, s)∥
[
∥B(s)∥∥F(φ(s))− F(ψ(s))∥

]
ds

+ ∑
θk<t

∥Y(t, θk+)∥
[
∥Bk∥∥G(φ(θk))− G(ψ(θk))∥

]
≤

t∫
−∞

Keλ(t−s)lFmB∥φ(s)− ψ(s)∥ds

+ ∑
θk<t

Keλ(t−θk)lGmB∥φ(θk)− ψ(θk)∥

≤ K
−λ

lFmB∥φ(t)− ψ(t)∥+ K
1 − eλθ

lGmB∥φ(t)− ψ(t)∥

≤
( K
−λ

lFmB +
K

1 − eλθ
lGmB

)
∥φ(t)− ψ(t)∥1.

Therefore, the inequality ∥Πφ(t) − Πψ(t)∥1 ≤ K
(

1
−λ lFmB + 1

1−eλθ lGmB

)
∥φ(t) −

ψ(t)∥1 . Thus, the operator Π is contractive by means of condition (C6).

Theorem 1. If conditions (C1)–(C7) are fulfilled, then impulsive system (4) has a unique globally
exponentially stable discontinuous Poisson stable solution.

Proof. To demonstrate the completeness of Q, we begin by considering a Cauchy sequence
ϕr(t), r ∈ N, contained within Q, which converges to the limit function ϕ(t) on R. Then,
we fix a closed and bounded interval I ⊂ R. We write θk, k = j, j + 1, . . . , j + m to denote
the discontinuity points of both ϕ(t) and ϕr(t), and θn

k = θk+ln − tn, k = j, j + 1, . . . , j + m,
the discontinuity points of ϕ(t + tn) and ϕr(t + tn) within interval I. Then, we choose n
to be sufficiently large that |θn

k − θk| < ϵ, k = j, j + 1, . . . , j + m. Due to the convergence of
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ϕr(t), it follows that ||ϕ(t + tn)− ϕr(t + tn)|| < ϵ
3 and ||ϕr(t)− ϕ(t)|| < ϵ

3 for a sufficiently
large r. Since the sequence ϕr(t) ∈ Q, for a sufficiently large n ||ϕr(t + tn)− ϕr(t)|| < ϵ

3 for

t /∈ [θ̂k, θn
k ], while |θn

k − θk| < ϵ, k = j, j + 1, . . . , j + m. Thus, for a sufficiently large r and n,
it is true that

||ϕ(t + tn)− ϕ(t)|| < ||ϕ(t + tn)− ϕr(t + tn)||+ ||ϕr(t + tn)− ϕr(t)||
+ ||ϕr(t)− ϕ(t)|| < ϵ

(18)

for all t /∈ [θ̂k, θn
k ], k = j, j + 1, · · · , j + m. That is, ϕ(t + tn) → ϕ(t) in B-topology as n → ∞

on I. The completeness of Q is proved.
When we apply the contraction mapping theorem, due to Lemmas 4 and 5, there exists

a unique solution ω(t) ∈ Q of the system (4).
Finally, we will study the asymptotic stability of the oscillation ω(t). It is true that [18],

ω(t) = Y(t, t0)ω(t0) +

t∫
t0

Y(t, s)
[
B(s)F(ω(s)) + C(s)

]
ds + ∑

θk<t
Y(t, θk+)

[
BkG(ω(θk)) + Γk

]
for all k ∈ Z.

Let z(t) = (z1, z2, . . . , zp) be another solution of system (4). One can write

z(t) = Y(t, t0)z(t0) +

t∫
t0

Y(t, s)
[
B(s)F(z(s)) + C(s)

]
ds + ∑

θk<t
Y(t, θk+)

[
BkG(z(θk)) + Γk

]
for all t ∈ R.

Making use of the relation

ω(t)− z(t) = Y(t, t0)[ω(t0)− z(t0)]

+

t∫
t0

Y(t, s)B(s)
[
F(ω(s))− F(z(s))

]
ds

+ ∑
t0≤θk<t

Y(t, θk+)Bk
[
G(ω(θk))− G(z(θk))

]
we find that

∥ω(t)− z(t)∥ ≤ Keλ(t−t0)∥ω(t0)− z(t0)∥

+

t∫
t0

Keλ(t−s)mB∥
∥∥F(ω(s))− F(z(s))

∥∥
+ ∑

t0≤θk<t
Keλ(t−θk)mB

∥∥G(ω(θk))− G(z(θk))
∥∥

≤ Keλ(t−t0)||ω(t0)− z(t0)||

+ KlFmB

t∫
t0

eλ(t−s)||ω(s)− z(s)||ds

+KlGmB ∑
t0≤θk<t

eλ(t−θk)||ω(θk)− z(θk)||.

Thus, it can be confirmed that
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∥ω(t)− z(t)∥ ≤ Keλ(t−t0)∥ω(t0)− z(t0)∥

+ KlFmB

t∫
t0

eλ(t−s)∥ω(s)− z(s)∥ds

+KlGmB ∑
t0≤θk<t

eλ(t−θk)∥ω(θk)− z(θk)∥.

Now, applying the Gronwall–Bellman Lemma for discontinuous functions [18], one
can determine that

∥ω(t)− z(t)∥ ≤ K∥ω(t0)− z(t0)∥e(λ+KlFmB)(t−t0)(1 + KlGmB)
k(t0,t).

From the last inequality, it follows that

∥ω(t)− z(t)∥ ≤ K∥ω(t0)− z(t0)∥e(λ+KlFmB+
1
θ ln(1+KlGmB))(t−t0) (19)

for t ≥ t0.
Consequently, condition (C7) implies that ω(t) is an exponentially stable solution of

(4).

From now on, we shall need the following condition.

(C8) The vector function C(t) in system (4) satisfies condition C(2), and there exist positive
numbers ϵ0, δ and sequence sn, which diverge to infinity, such that ∥C(t+ tn)−C(t)∥ ≥ ϵ0
for each t ∈ [sn − δ, sn + δ] and n ∈ N.

The unpredictability of the solution for the system (4) is established by the next theorem.

Theorem 2. If conditions (C1)–(C8) are valid, then system (4) has a unique exponentially stable
unpredictable solution.

Proof. In accordance with the Theorem 1, system (4) has a unique exponentially stable
Poisson stable solution ω(t) = (ω1(t), . . . , ωp(t)). So, to prove this theorem, we need only
to show that the solution of (4) satisfies the separation property.

Corresponding to Definition 7, the interval [sn − σ, sn + σ] ⊆ [θ ̂mn , θmn+ln
− tn] does

not admit discontinuity points of functions ω(t), ω(t + tn). That is why studies of unpre-
dictability ignore the presence of a discontinuity moments.

We have determined that

ω(t) = ω(sn) +

t∫
sn

A(s)ω(s)ds +
t∫

sn

B(s)F(ω(s))ds +
t∫

sn

C(s)ds.

and

ω(t + tn) = ω(sn + tn) +

t∫
sn

A(s + tn)ω(s + tn)ds +
t∫

sn

B(s + tn)F(ω(s + tn))ds +
t∫

sn

C(s + tn)ds.

Therefore, it is true that

ω(t + tn)− ω(t) = ω(sn + tn)− ω(sn) +

t∫
sn

A(s + tn)ω(s + tn)ds

−
t∫

sn

A(s)ω(s)ds +
t∫

sn

B(s + tn)F(ω(s + tn))ds −
t∫

sn

B(s)F(ω(s))ds

+

t∫
sn

C(s + tn)ds −
t∫

sn

C(s)ds.
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To check the unpredictability of the solution, we choose a positive number η and
r, k ∈ N, such that the following inequalities

η < δ, (20)

∥A(s + tn)−A(s)∥ < (
1
r
+

2
k
)ϵ0, t ∈ R, (21)

∥B(s + tn)−B(s)∥ < (
1
r
+

2
k
)ϵ0, t ∈ R, (22)

η
[1

2
− (

1
r
+

2
k
)
[
H + µ + mF + lFmB

]
≥ 3

2r
, (23)

and
∥ω(t + s)− ω(t)∥ < ϵ0 min{1/k, 1/4r}, |s| < η, t ∈ R, (24)

are satisfied.
Next, we fix the numbers η, r, k and n ∈ N.
Then, we denote

∆ = ∥ω(sn + tn)− ω(tn)∥

and consider the two alternatives: (a) ∆ ≥ ϵ0/r, (b) ∆ < ϵ0/r.
(a) If ∆ ≥ ϵ0/r holds, we find that

∥ω(t + s)− ω(t)∥ ≥ ∥ω(sn + tn)− ω(sn)∥ − ∥ω(sn)− ω(t)∥
− ∥ω(t + tn)− ω(sn + tn)∥ > ϵ0/r − ϵ0/4r − ϵ0/4r = ϵ0/2r,

for t ∈ [sn − η, sn + η], n ∈ N.
(b) If ∆ < ϵ0/r is true, then from (22), it follows that

∥ω(t + tn)− ω(t)∥ ≤ ∥ω(sn + tn)− ω(sn)∥+ ∥ω(sn)− ω(t)∥
+ ∥ω(t + tn)− ω(sn + tn)∥
< ϵ0/r + ϵ0/k + ϵ0/k = (1/r + 2/k)ϵ0,

for t ∈ [sn, sn + η].
Applying (20)–(24) and due to the condition (C8), one can find that

∥ω(t + tn)− ω(t)∥ ≥
∥∥ t∫

sn

(C(s + tn)− C(s))ds
∥∥− ∥ω(sn + tn)− ω(sn)∥

+
∥∥ t∫

sn

(A(s + tn)−A(s))ω(s + tn)
∥∥+ ∥∥ t∫

sn

A(s)(ω(s + tn)− ω(s))ds
∥∥

+
∥∥ t∫

sn

(B(s + tn)−B(s))F(ω(s + tn))ds
∥∥+ ∥∥ t∫

sn

B(s)[F(ω(s + tn))− F(ω(s))]ds
∥∥

≥ ϵ0
η
2 − ϵ0

r
+ ϵ0(

1
r
+

2
k
)η

[
H + µ

]
+ ϵ0(

1
r
+

2
k
)η

[
mF + lFmB

]
≥ − ϵ0

r
+

3ϵ0

2r
≥ ϵ0

2r

(25)

for t ∈ [sn + η/2, sn + η]. Thus, we determine that

∥ω(t + tn)− ω(t)∥ ≥ ϵ0

2r

for t ∈ [sn +
η
2 , sn + η]. In accordance with the inequalities obtained in cases (a) and (b),

we see that the solution ω(t) is discontinuous and unpredictable with δ = η
4 and the

divergence sequence sn = sn +
3η
4 , n ∈ N.
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So, we have obtained the unpredictability of the solution ω(t) of the system (4).

4. An Example

We consider an example of a Hopfield neural network where the coefficients besides
the inputs are Poisson stable functions and the inputs are unpredictable ones. Given that
periodic, quasi-periodic, and almost-periodic functions fall within the class of Poisson
stable functions, we opt for quasi-periodic coefficients as Poisson stable components in
the example.

Construction of an unpredictable sequence as the solution of the logistic equation

κk+1 = µκk(1 − κk), k ∈ Z, (26)

can be found in [6]. It was proved that for each µ ∈ [3 + (2/3)1/2, 4], there exists an
unpredictable solution τk, k ∈ Z of (26), which belongs to the interval [0, 1].

There is an example of an unpredictable function in [6],

U(t) =
∫ t

−∞
e−4(t−s)Ω(s)ds,

where Ω(t) is a piecewise constant function defined on the real axis through the equation
Ω(t) = τk for t ∈ [k, k + 1), k ∈ Z. It is worth noting that U(t) is bounded on the whole real

axis, such that sup
t∈R

|U(t)| ≤ 1
4

.

Let us consider the symmetrical impulsive Hopfield-type neural networks

dyi(t)
dt

= ai(t)yi(t) +
p

∑
j=1

bij(t) f j(yj(t)) + ci(t), t ̸= θk,

∆yi

∣∣∣
t=θk

= αikyi(θk) +
p

∑
j=1

βijkgj(yj(θk)) + γik,
(27)

where p = 3, the self regulation a1(t) = −0.8 + 0.1(sint + cos
√

2t), a2(t) = −1.6 + 0.1
(sint + cos

√
2t), a3 = 0.23 + 0.1(sin

√
2t + cost), the synaptic connection weights

b11 = 0.02(sint + cos
√

3t), b12 = 0.02(sint + cos
√

2t), b13 = 0.02(sint + cos
√

5t),
b21 = 0.02(sint + cos

√
2t), b22 = 0.02(sint + cos

√
3t)), b23 = 0.02(sin

√
3t + cost),

b31 = 0.02(sin
√

2t + cost), b32 = 0.02(sin
√

3t + cost), b33 = 0.02(sin
√

2t + cost) are quasi
periodic, and the external inputs c1(t) = 0.05U3(t), c2(t) = 0.24U(t), and c3 = −0.18U3(t)
are unpredictable functions. The set of discontinuity moments of the system θk is defined
by the sequence θk = 3k + τk, k ∈ Z. The impulsive rates are equal to α1k = 0.5 − 0.1|
sink+ cos

√
5k|, α2k = 0.7−0.1|sin

√
2k+ cosk|, α3k = 0.78−0.1|sink+ cos

√
3k|, and the instan-

taneous synaptic connection weights β11k = 0.02(sink + cos
√

3k), β12k = 0.02(sin
√

5k + cosk),
β13k = 0.02(sin

√
5k + cosk), β21k = 0.02(sink + cos

√
3k), β22k = 0.02(sink + cos

√
2k),

β23k = 0.02(sink + cos
√

5k), β31k = 0.02(sink + cos
√

3k), β32k = 0.02(sin
√

2k + cosk),
β33k = 0.02(sink + cos

√
2k) are also quasi-periodic sequences, and the external impulsive

inputs are equal to γ1k = 0.06τk, γ2k = −0.08τk, γ3k = −0.07τk. The activation functions are
presented by f (s) = 0.08 sin( s

2) and impact activations g(s) = 0.05 arctan( s
5).

Moreover, the functions F(y) and G(y) are bounded; that is, there exist positive num-
bers mF = 0.08, mG = 0.05, and Lipschitz conditions are met, i.e., lF = 0.04 and lG = 0.01.
By verifying that the coefficients of the system satisfy K = 4.54 and λ = −0.152, one
can find that the condition (C1) is valid. Moreover, one can check that the conditions
(C2)–(C8) are satisfied. Thus, according to the Theorem 2, there exists a unique asymptoti-
cally stable discontinuous unpredictable solution, ω(t), of the system (27).

It is worth noting that the simulation of a unpredictable solution is not possible, since
the initial value is unknown. That is why we will simulate a solution y(t) which approaches
the unpredictable solution ω(t) as time increases. Instead of the curve describing the
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almost periodic solution, one can take the graph of y(t), as shown in Figures 1 and 2.
The graphs of coordinates and trajectory of the function with the initial values (y1(0),
y2(0), y2(0)) = (0.734,−0.455, 1.065).
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Figure 1. The coordinates of function y(t).
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Figure 2. The trajectory of function y(t).
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