

Revisiting Technical Debt Types and Indicators for Software
Systems

Dilek Çağlayan1,2
1Information Management Directorate

ASELSAN A.S.
Ankara, Türkiye

dilek.caglayan@metu.edu.tr

Özden Özcan-Top2
2Dept. of Information Systems, Graduate of Informatics

Middle East Technical University
Ankara, Türkiye

ozdenoz@metu.edu.tr

ABSTRACT
Technical Debt (TD) 1 term in software systems was introduced
over two decades ago and remains a critical concern in software
development. It has the potential to evolve into a liability that
necessitates refactoring or rewriting code over time. Regardless of
its significance, there exists a notable gap in literature concerning a
comprehensive list of technical debt indicators. The purpose of this
study is to re-evaluate existing TD categorization and extend TD
indicators and offer a complete and validated TD Type and TD
Indicator list. In this study, we adopted a qualitative research
approach and used mapping and expert opinion techniques as the
research approach. The number of TD indicators extracted from
existing formal literature was 60 which was extended to 92 by
reviewing gray literature. This list was then subjected to the expert
review, and with their feedback, grew by an additional 21%.
Consequently, we present 10 distinct TD types, accompanied by
120 TD indicators that would aid in TD identification, resolution
and minimizing the risks and costs associated with technical debt
in software development.

KEYWORDS

Technical Debt, Technical Debt Types, Technical Debt Indicators,
TD Categorization, TD identification

1 INTRODUCTION
The metaphorical term of “technical debt (TD)” was coined in

the beginning of the 90’s [1]. It was proposed as an analogy by
Ward Cunningham, and its occurrence and TD management
activities are still being investigated in today’s IT world. Technical
debt concept emerges from developing a proper product with a
“not-quite-right” code intentionally or unintentionally [1]. Even
though the product with a non-ideal solution is accepted by the
customer, it could turn into a liability issue that needs to be
refactored or redeveloped again.

In Agile projects, the fast-paced feedback mechanisms and
iterative nature of development makes the occurrence of technical
debt highly possible [1]. The iterative nature of Agile
methodologies often prioritizes the delivery of functional software.
This focus can potentially lead to shortcuts or temporary solutions
that accumulate as technical debt. Furthermore, this issue is
compounded by the growing complexity and interdependency of
modern software systems. These factors present significant
challenges in managing technical debt in Agile development.

Similar to how financial debt creates interest, technical debt also
builds up interest over time. Organizations with accumulated TD
are likely to encounter negative impacts in the long term [2]. These
include reduced agility, increased maintenance costs, and
diminished software quality. This, in turn, can lead to a loss of
competitive advantage and decreased customer satisfaction.

Technical debt can take many forms in software systems. To
share a common vocabulary with the TD research community, it is
important to organize existing knowledge about TD types and TD
indicators [3]. TD types refer to categories of misapplications made
and shortcuts taken in software systems. TD indicators are
measurable attributes or signs that point to the presence or degree
of technical debt within a software project [4].

Both TD types and TD indicators help differentiate the root
causes of issues; identifying, managing, and resolving different
forms of technical debt in software systems.

Although technical debt is readily discussed in the literature
[2,3,5,9,10,12,13], there is no consensus on technical debt types
and associated indicators in software projects. While such studies
have delved into the subject of technical debt, the focus has
predominantly been on a narrow range of indicators, often featuring
the same few measures in a repetitive manner and the abstraction
levels of the TD types were diverged. This inconsistency hinders
understanding different facets of technical debt but also restricts the
scope for effective management and mitigation strategies.

From this perspective, the primary purpose of this paper is to
address this gap by providing a detailed catalog of technical debt
indicators associated with various TD types. . To achieve this
purpose, we followed a two-staged research approach: (1)

SAC’24, April 8 –April 12, 2024, Avila, Spain
© 2024 Copyright held by the owner/author(s). 979-8-4007-0243-3/24/04. . . $15.00
DOI: 10.1145/3605098.3636043

834

This work is licensed under a Creative Commons Attribution‐NonCommercial‐
ShareAlike International 4.0 License.

https://creativecommons.org/licenses/by-nc-sa/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3605098.3636043&domain=pdf&date_stamp=2024-05-21

SAC’24, April 8 – April 12, 2024, Avila, Spain Caglayan & Ozcan-Top

specification and mapping of existing TD types and indicators from
the literature; (2) revising and extending the existing TD indicators
through experts’ review.

The rest of this paper is structured as follows: Section 2 outlines
the research methodology and highlights the threats to the validity
of this research; Section 3 contains the results of the mapping and
expert opinion interviews; Sections 4 presents and discusses the
results obtained; and finally, Section 5 contains the conclusions and
future studies.

2 RESEARCH METHODOLOGY
In this study, a qualitative research methodology was preferred

to explore technical debt phenomena in software systems [6].
We basically followed a combination of a literature mapping

study [7] and expert opinion (i.e. expert judgment) [8] to ensure
both breadth and depth of our findings. We preferred the mapping
approach for the structured analysis of the diverse TD types and
indicators documented in the literature. It also allowed us to group
similar indicators together, recognize patterns, and identify
inadequately represented or overrepresented categories.
Additionally, this approach helped us to identify gaps in the
existing literature by mapping out the existing evidence and
pinpointing areas that require further exploration. To further
validate the initial list derived from the literature, we employed the
“Expert Opinion” approach which involved consulting with subject
matter experts to confirm, revise, or expand the TD types and
indicators identified.

Each step we followed is depicted in Figure 1 and explained in
detail below.

Figure 1: Followed research steps

Step 1: Formal and Gray Literature Research on TD Types and
Indicators

The first step in our methodology was an in-depth literature
review focused on identifying various types of technical debt. In
this step, as the beginning of the mapping study, we searched for
relevant, peer-reviewed studies in ACM Digital Library,

SpringerLink, and ScienceDirect databases. The search strings used
are “Technical Debt OR TD”, “technical debt type* or TD Type*”,
“technical debt indicator* OR TD indicator*”. To ensure a
comprehensive scope, we also applied the snowballing technique,
checking the references of each selected study to find more
potential studies for inclusion. As a result, we selected ten studies
published over a ten-year period from 2011-2021. These studies
[2,4,5,9,10,11,12,13,15,16] focus on specification or evaluation of
TD types/indicators in software systems.

As we aimed for a more complete understanding of TD
indicators, our research on TD indicators was supported by the
findings from gray literature sources. These sources include
internet blog posts, lecture notes, and white papers. In gray
literature search, we targeted specific terms that had broad
meanings to point out a single indicator. While the first step
provided the “what” part (i.e. the types of technical debt), the
second step aimed to define the “how” part (i.e. the specific
indicators outline the existence of each debt category).
Step 2 - Step 3: Extracting Data on TD Types and Indicators,
and Mapping Process

TD Type Specification. We determined that the number of TD
types vary among research papers. For example, Alves et al. [3]
have mentioned 15 distinctive categories in their systematic
mapping study; both Lenarduzzi et al. [9] and Li et al. presented 10
distinct categories [5]. Upon examining the gathered data, we have
noticed that some TD types overlap with others. For example,
“defect debt” may fit under “test debt”, and “build debt” could be
seen as a subset of “code debt” category. We studied all TD types
mentioned in the literature and identified eight distinct categories.
These are Architecture Debt, Code Debt, Design Debt,
Documentation Debt, Infrastructure Debt, People Debt,
Requirements Debt, and Test Debt. These categories clearly
differentiate the various indicators from one another.

However, we also detected gaps in the categorization. To make
it more comprehensive, we added two new TD types:
Configuration Debt and Management Debt. This resulted in a
refined list of ten distinct technical debt categories.

TD Indicator Specification and Mapping. In this step, first we
focused specifically on extracting the indicators associated with
each technical debt type from formal literature. The initial list of
technical debt indicators that we found in formal literature
comprised 60 indicators across 10 technical debt types. We
identified 32 TD indicators from gray literature sources, which
were highlighted with gray color on the Final TD Indicators List.
By the end of Step 2, our list comprised 92 TD indicators linked to
the 10 TD types.

Upon collecting data related to the TD indicators both from
formal and gray literature, it was observed that certain TD
indicators were recurring in multiple sources. To correctly extract
information from each study, we explored the meanings of the
repeated indicators. To avoid indicator duplication, we combined
the ones with similar meanings. Brief explanation of each indicator
was added to the initial TD types and indicators list so as to avoid
different interpretations of the indicators.

835

Revisiting Technical Debt Types and Indicators for Software
Systems

SAC’24, April 8 – April 12, 2024, Avila, Spain

The process specifying TD indicators from the literature was
iterated five times until we could not add new TD indicators
anymore.
Step 4: Initial Review

After completing the mapping study, an initial review was
carried out on the compiled list of Technical Debt (TD) types along
with their corresponding indicators. In this phase, the authors
collaboratively examined the list, and identified certain TD types
that were not comprehensively covered by the existing indicators.
As a result of the analysis of indicators found, nine more indicators
were added to these TD types to achieve a more complete coverage.
The output of this step has served as the initial list that outlines
various types of TD and corresponding indicators, serving as a
basis for further validation.
Step 5: Decision Point

This step served as a critical point in the research process in
which we assessed whether the initial list was sufficiently
comprehensive and robust for the next phase in an iterative way. If
the list meets the predefined criteria for completeness and accuracy,
the process proceeds to Step 6. If not, it cycles back to Step 3 for
revision.

After five cycles, we determined that the list was ready to
discuss with the experts, so we moved on to Step 6.

Step 6: Expert Opinion

This step started with the selection of the experts. After
choosing the experts, the interviews were conducted with each one
of them.
Selection of the Experts. After finalizing the initial TD list, we
focused on selecting experts. We choose five experts with senior or
executive-level experience from both academic and industry
perspectives to achieve a more holistic understanding of technical
debt, its implications, challenges, and strategies for management.
Four experts were chosen from the IT industry, spanning roles from
a CTO to senior developers. Their diverse experiences, as shown in
Table 1, cover a range of projects including software product
development, e-commerce platform development, business process
automation, system and website development, mobile app
development, and cloud migration and integration. Hence, these
professionals offered practical insights into the day-to-day
management of technical debt and its impact on various types of
projects.
The fifth expert was a professor from academia. His expertise
ensured that our study aligns with current academic theories and
methodologies related to technical debt. The professor's insights
offered a broad, theoretical perspective and deepened our
understanding of technical debt's long-term implications.
The combination of a professor and industry professionals allowed
for a detailed exploration of technical debt. The CTO and professor
offered a macro, strategic viewpoint, aligning technical debt with
broader organizational objectives and academic theories. On the
other hand, the technical lead and senior developers provided a
micro, operational perspective, focusing on immediate challenges
and practical solutions in software development. This diverse group

ensured that our study encapsulated both the high-level strategic
implications and the ground-level operational challenges of
technical debt, leading to a balanced integration of academic and
real-world practices.
Conducting Interviews with the Experts. Before the interviews we
developed a spreadsheet including an introduction page detailing
the study’s general information and the TD Types and Indicators
List page, which lists the 10 technical debt types and associated 101
indicators. Another section, the Expert Data page, was dedicated to
recording demographic details of the interviewed experts. On the
TD Types and Indicators List page, we left space under each TD
Type so that experts could suggest new indicators, accompanied by
brief explanations. We conducted the interviews via online
platforms, each session lasting between 45 to 60 minutes. During
the interviews, we shared the spreadsheet with every expert. We
began each interview by clarifying the interview's purpose.
Subsequently, we discussed the definitions of the technical debt
types and associated indicators along with an explanation of how
we compiled the TD Types and Indicators List. The experts were
asked to verify if each indicator was correctly categorized under its
respective TD type and, if they disagreed, to suggest either an
alternative existing category or a new one. We carefully noted all
feedback in a dedicated section for future revisions. A detailed
overview of the experts’ feedback and their contributions to the list
can be found in the Results section.

Table 1: Experts’ Characteristics

ID Role Field Years of Exp. Project Type/Fields of
Interest

E1 CTO IT &

Services 15 Software Product

Development

E2

Senior

Software
Developer

Tourism 12

E-commerce Platform
Development,
Business Process
Automation,
System Development

E3
Senior

Software

Developer
Defense 16 Software Product

Development

E4
Lead

Developer Tourism 10

Website Development,
Mobile App Development,
Cloud Migration and
Integration,
Software Product
Development

E5 Professor Info.

Systems 30

Computer Networks,
Software Engineering, Big

Data, Machine Learning,
Internet of Things

836

SAC’24, April 8 – April 12, 2024, Avila, Spain Caglayan & Ozcan-Top

Step 7: Revision
The final step involved revisiting the list in light of the experts’
feedback. After completing all five interviews, a consolidated
spreadsheet was prepared to compare answers of the experts. Any
recommended modifications, additions, or deletions were
implemented to produce the final list of TD types and indicators.
This finalized list serves as the key output of our research process
and aims to present the most comprehensive and validated
catalogue of TD types and their indicators to date.

Threats to the Validity

The validity threads and associated solutions are discussed
below.

First, the data collection and analysis have been conducted by
the authors’ judgment, which could impact the consistency of
mapping technical debt types and indicators. To address this threat,
a clear set of criteria was established beforehand to guide the
mapping process and minimize subjective bias. Second, the
selection of experts for review may introduce bias, as their views
are shaped by their own experiences and may not be universally
applicable. To mitigate this, experts with varying backgrounds and
expertise were selected to provide a wider perspective. Third, the
scope of the literature review is constrained by database availability
and the chosen search strings, potentially overlooking relevant
studies. In order to broaden the scope, multiple databases were
searched and gray literature sources were also included in the final
source list. The search strings were carefully constructed to be
inclusive of a wide range of relevant terms. Lastly, while the
iterative process of revising the list aims to improve accuracy,
there’s a risk that some indicators might be overemphasized or
underrepresented. To respond to this, regular cross-checks were
performed during the revision process to ensure a balanced
representation of indicators.

3 RESULTS
In this section, we present the overview of revisions and the

final TD Types and Indicators List.

3.1 Overview of Changes

The process of refining and validating the list of Technical Debt
(TD) indicators led to several modifications to the initial list. These
modifications were crucial as they contribute to the enhancement
of the list’s comprehensiveness and accuracy. They helped to align
the final list more closely with the expert opinions.

The extension of the initial list of technical debt indicators was
an important aspect of our findings. Initially, we specified 60
indicators from formal literature review which was then increased
to 92 indicators with inclusion of the gray literature sources. The
indicators added based on gray literature sources were given as gray
colored in Table 3. The remarkable expansion of the initial list
represents an 91.67% increase. It is a meaningful improvement that
substantially enriches the foundation for analyzing technical debt.
With the total count of indicators from 60 to 101, our study has
substantially bridged the identified gaps.

After contributing the initial list, the results of the expert
reviews expanded the initial list further. The changes made after the

expert reviews are categorized into five distinct types, each
representing a specific kind of modification made to the initial list
of TD indicators. The categories are given as follows: “Remained
Same”, “Name Changed”, “Removed”, “Category Changed”, and
“Newly Added” indicators. A significant portion of the indicators,
precisely 58.78%, remained unchanged after the experts’ review.
This percentage shows the high level of initial accuracy in the
mapping study and the authors’ contribution. The approval rate of
recently added TD indicators is approximately 93.75% (30 out of
32) which shows the precision and relevance of the indicators that
were added by the authors. However, an observable portion was
subjected to alterations for better alignment and clarity. A total of
9.16% had their names changed to better reflect the indicators’
meaning. The portion of 7.63% were removed for reasons such as
redundancy or irrelevance. The category of the indicators was
changed for 3.05% of them to better fit their characteristics.
Notably, a substantial 21.37% of the indicators were new additions
to the list by the experts. This reflects the insights acquired from
the expert opinions that have contributed to the final list,
considerably.

Figure 2: Pie Chart illustrating the distribution of changes

3.2 Revisions Made in Technical Debt Types and
Indicators

Upon reviewing expert feedback, several adjustments were
made to the initial list of 101 indicators:

Stability of Indicators. Out of the 101 indicators, 77 remained
unchanged.

Category Changes. Two indicators shifted categories based on
majority’s opinion. Specifically: (i) “Poor release planning”,
originally under Infrastructure Debt, was recategorized to
Management Debt. (ii) “Poor handling of error conditions or
exceptions”, initially under Code Debt, was moved to Management
Debt.

Name Adjustments. Twelve indicators underwent name
changes due to ambiguities or incorrect phrasing. Notably, Code
Debt indicators, mainly patterns or anti-patterns from Object-
Oriented Programming (OOP), were rephrased for clarity. For
instance, terms like "information hiding" or "encapsulation"
became "lack of information hiding" or "lack of encapsulation".
Contrarily, anti-patterns, such as "feature envy", remained

837

Revisiting Technical Debt Types and Indicators for Software
Systems

SAC’24, April 8 – April 12, 2024, Avila, Spain

unchanged. Overall, eight Code Debt indicators were modified in
this manner.

Removals. 10 indicators were deleted due to redundancy or
were replaced with clearer indicators. As an example, “inaccurate
or duplicate requirements” was split into “ambiguous functional or
non-functional requirements” and “incorrect functional or non-
functional requirements”. Also, "insufficient documentation" was
removed in favor of “incomplete documentation”.

Specific Additions. Test Debt indicators were expanded to
encompass the entire testing process, adding areas like lacking
software tests. While Code Debt indicators were primarily OOP-
focused, additions were made to represent other programming
paradigms, introducing terms like “Spaghetti Code”, “Golden
Hammer” and “Boat Anchor”. Requirements Debt indicators were
restructured in line with the IEEE 830-19T98 Recommended
Practice for Software Requirements Specifications Standard [17].

The number of changes made in each TD Type based on expert
opinion is given in Table 2. In Table 2 and Table 3, we presented
each TD Type with a four-character abbreviation. TD indicators
were assigned two-digit number IDs linked with TD Types. The
abbreviations for each TD type are:

● Architecture Debt (ARCH)
● Code Debt (CODE)
● Configuration Debt (CONF)
● Design Debt (DESG)
● Documentation Debt (DOCT)
● Infrastructure Debt (INFR)
● Management Debt (MANG)
● People Debt (PPLE)
● Requirements Debt (REQS)
● Test Debt (TEST)
●

Table 2: Distribution of Changes by Technical Debt Types

According to the experts’ contribution, a total of 28 new

indicators were added to five technical debt types which were

architecture debt, code debt, management debt, requirements debt,
and test debt. Test debt indicators were the most increased by 9
more indicators. It is followed by both 6 more indicators for
management debt and requirements debt. The only category that
remined unchanged was People Debt.

3.3 Final TD Indicators List
In this section, we present the finalized list of TD indicators

mapped with the TD types. The list is organized by unique TD
identifiers (ID), TD indicator names, their primary references in the
literature, and any modifications made based on expert opinions. In
the list, indicators highlighted in gray are notable contributions
from the authors. These indicators are not directly sourced from
formal academic literature but were instead derived from gray
literature sources such as blogs, whitepapers, and industry reports.

Table 3: Final TD Types and Indicators List

ID TD Indicators Source

Changes

Made after

Experts Opinion

ARCH01 Timing or sequencing
dependencies among resources

[11] Name Changed

ARCH02
violations of defined

architectural styles
[5] Remained Same

ARCH03
incorrect interactions between

major system components
[11] Remained Same

ARCH04
violations of principles such as

separation of concerns
[5], [13] Remained Same

ARCH05
insufficient consideration for

non-functional requirements
[11] Remained Same

ARCH06 violation of modularity [3] Remained Same

ARCH07
non-uniformity of patterns and

policies
[11] Remained Same

ARCH08
complex architectural

behavioral dependencies
[5], [11] Remained Same

ARCH09

solutions that become sub-

optimal as technologies and

patterns become superseded

[4] Remained Same

ARCH10 low system operability [18] Remained Same

ARCH11 lack of architectural analysis Expert Opinion Newly added

ARCH12
not having architectural

documentation
Expert Opinion Newly added

ARCH13

inconsistency between

documented and implemented

architecture

Expert Opinion Newly added

CODE01 duplicate code [2], [5], [11] Remained Same

CODE02 incohesive code [5] Name Changed

CODE03
inconsistent coding style that

reduces the readability of code
[2] Name Changed

838

SAC’24, April 8 – April 12, 2024, Avila, Spain Caglayan & Ozcan-Top

CODE04

poorly organized logic that

makes it easy for a software

solution to break when updated

[2] Remained Same

CODE05
deviations from coding

standards (SOLID)
[2], [5], [13] Remained Same

CODE06 lack of information hiding [10], [12] Name Changed

CODE07 lack of encapsulation [10], [12] Name Changed

CODE08 improper use of inheritance [10], [12] Name Changed

CODE09 god classes
[3], [5], [10],

[12]
Remained Same

CODE10 brain class/method [12] Remained Same

CODE11 feature envy [12] Remained Same

CODE12 undesired/high coupling [12] Name Changed

CODE13 dispersed coupling [12] Remained Same

CODE14 shotgun surgery [12] Remained Same

CODE15
inconsistent naming

conventions
[19] Remained Same

CODE16 unused or dead code [19] Remained Same

CODE17

overcomplicated or convoluted

algorithms or lack of

algorithmic complexity

[2], [3] Name Changed

CODE18 lack of code reuse [11] Name Changed

CODE19
lack of reusability of

components
Expert Opinion Newly added

CODE20 spaghetti code Expert Opinion Newly added

CODE21 golden hammer Expert Opinion Newly added

CODE22 boat anchor Expert Opinion Newly added

CODE23
poor handling of error

conditions or exceptions
Gray Literature Cat. Changed

CONF01 unnecessary code forks [3], [5] Remained Same

CONF02 multi-version support [5] Remained Same

CONF03
inconsistent or scattered

configuration files
[20] Remained Same

CONF04
lack of version control for

configuration items
[20] Remained Same

CONF05
manual or ad-hoc configuration

management
Gray Literature Remained Same

CONF06
overly complex or convoluted

configurations
Gray Literature Remained Same

CONF07
poor visibility into

configuration changes
[20] Remained Same

DESG01
inadequate or inconsistent use

of data structures
Gray Literature Remained Same

DESG02 design pattern grime [3], [5], [12] Remained Same

DESG03 design pattern rot [12] Remained Same

DESG04

abstraction smells (imperative,

multifaceted, unnecessary,

unutilized, duplicate

abstraction)

[14] Remained Same

DESG05
encapsulation smells (deficient,

unexploited encapsulation)
[14] Remained Same

DESG06

modularization smells (broken,

insufficient, cyclically-

dependent, hub-like

modularization)

[10], [14] Remained Same

DESG07

hierarchy smells (missing,

wide, deep, rebellious, broken,

multipath, cyclic, unfactored

hierarchy)

[14] Remained Same

DOCT01 out-of-date documentation [5] Remained Same

DOCT02 incomplete documentation [3] Remained Same

DOCT03 missing documentation [3] Remained Same

INFR01
delaying an upgrade or

infrastructure fix
[3] Remained Same

INFR02
inadequate network

infrastructure
Gray Literature Remained Same

INFR03
lack of disaster recovery and

backup mechanisms
Gray Literature Remained Same

INFR04
insufficient scalability and

capacity planning
Gray Literature Remained Same

INFR05
outdated or unsupported

infrastructure components
Gray Literature Remained Same

INFR06
lack of automation and

orchestration
Gray Literature Remained Same

INFR07 poor performance Gray Literature Remained Same

INFR08 inefficient resource utilization Gray Literature Remained Same

INFR09

inflexible or lack of

adaptability infrastructure

architecture

Gray Literature Remained Same

INFR10 inadequate security measures Gray Literature Remained Same

MANG01 inadequate resource planning Gray Literature Remained Same

MANG02 constant firefighting Gray Literature Remained Same

MANG03 frequent budget overruns Gray Literature Remained Same

MANG04 excess overtime Gray Literature Remained Same

MANG05 lack of strategic alignment Gray Literature Remained Same

MANG06 lack of skill alignment Gray Literature Remained Same

MANG07 incorrect effort estimation [5] Remained Same

MANG08 lack of monitoring Expert Opinion Newly added

MANG09 lack of measurement Expert Opinion Newly added

MANG10 lack of risk management Expert Opinion Newly added

MANG11 lack of training Expert Opinion Newly added

MANG12
problems with ownership

management
Expert Opinion Newly added

MANG13 poor release planning [5] Cat. Changed

MANG14 lack of task prioritization Expert Opinion Newly added

PPLE01
expertise concentrated in too

few people
[3] Remained Same

839

Revisiting Technical Debt Types and Indicators for Software
Systems

SAC’24, April 8 – April 12, 2024, Avila, Spain

PPLE02 high employee turnover Gray Literature Remained Same

PPLE03 low employee morale Gray Literature Remained Same

PPLE04 ineffective communication Gray Literature Remained Same

PPLE05
lack of collaboration and

teamwork
Gray Literature Remained Same

PPLE06 inadequate leadership Gray Literature Remained Same

PPLE07 lack of diversity and inclusion Gray Literature Remained Same

PPLE08 absence of knowledge sharing Gray Literature Remained Same

REQS01
partially implemented

functional requirements
[3] Name Changed

REQS02
lack of non-functional

requirements specification
[3] Name Changed

REQS03

lack of traceability between

requirements and

implementation

[3] Remained Same

REQS04
changing requirements without

proper impact analysis
Gray Literature Remained Same

REQS05
lack of user involvement in

requirements elicitation
Gray Literature Remained Same

REQS06
lack of requirements review or

validation
Gray Literature Remained Same

REQS07 scope creep Gray Literature Remained Same

REQS08
incorrect functional or non-

functional requirements
Expert Opinion Newly added

REQS09
ambiguous functional or non-

functional requirements
Expert Opinion Newly added

REQS10
incomplete functional or non-

functional requirements
Expert Opinion Newly added

REQS11
inconsistent functional or non-

functional requirements
Expert Opinion Newly added

REQS12
unverifiable functional or non-

functional requirements
Expert Opinion Newly added

REQS13
inflexible functional or non-

functional requirements
Expert Opinion Newly added

TEST01
planned tests that were not

run/lack of functional testing
[3] Remained Same

TEST02 low code coverage [2], [3], [5] Remained Same

TEST03 lack of test automation [2], [3] Remained Same

TEST04
residual defects not found in

tests
[3], [5] Remained Same

TEST05 expensive tests [5] Remained Same

TEST06 lack of test environment Gray Literature Name Changed

TEST07
lack of/poor test data

management
Gray Literature Remained Same

TEST08 Inadequate performance testing [21] Remained Same

TEST09 lack of regression testing [21] Remained Same

TEST10 poor test case design [3] Remained Same

TEST11 limited usability testing [21] Remained Same

TEST12 inadequate security testing [21] Remained Same

TEST13 outdated test cases [3] Remained Same

TEST14
lack of unit/module/component

tests
Expert Opinion Newly added

TEST15 lack of integration tests Expert Opinion Newly added

TEST16 lack of acceptance tests Expert Opinion Newly added

TEST17 lack of system tests Expert Opinion Newly added

TEST18 lack of maintenance testing Expert Opinion Newly added

TEST19 inadequate portability testing Expert Opinion Newly added

TEST20 lack of static testing Expert Opinion Newly added

TEST21 lack of chaos engineering Expert Opinion Newly added

TEST22
lack of conducting drills for

disaster recovery
Expert Opinion Newly added

4 DISCUSSION

In this study, a comprehensive technical debt (TD) types and
their indicators was explored. The procedure of mapping and expert
opinion led to an enriched TD list with 120 TD indicators
associated with 10 TD Types. The initial list was enhanced by
21.37%. TD categorization was extended beyond common
categories to include newly introduced categories, "Management
Debt” and “Configuration Debt”. These additions demonstrate the
potential for a more holistic approach in identifying and managing
technical debt in software projects. The employed methodology
emphasizes the importance of combining empirical data with
industry expertise to achieve a comprehensive understanding.
Despite the methodical approach, the study acknowledges certain
validity threats before mentioned. The discussion with experts
validated the compiled list. Also, it brought invaluable insights into
the practical implications and challenges faced in managing
technical debt. This study, not only contributes to the academic
understanding of technical debt but also develops informative
approaches in tackling technical debt in software projects.

5 CONCLUSIONS
There is no doubt that technical debt is a potential threat for

software development organizations if it is not paid. For effective
repayment of TD, organizations need to identify what TD types
they do have. This research underlines the critical necessity of
addressing technical debt by indicating causes of TD. We aimed to
fill a significant gap in existing literature by providing a
comprehensive list of technical debt indicators. Consequently, we
now present 10 distinct TD categories, associated with a
comprehensive set of 120 TD indicators, designed to assist in the
identification, resolution, and management of Technical Debt. Our
methodology was adopted to combine mapping with expert
consultations to produce the final list. We offer a valuable resource
for software engineers, researchers, and IT managers aiming to
more effectively identify, manage, and ultimately mitigate
technical debt.

840

SAC’24, April 8 – April 12, 2024, Avila, Spain Caglayan & Ozcan-Top

As future research direction, organizations can apply our
extended list of TD indicators in real-world software projects
across various domains. The assessment of TD indicators
realization and their impact on project outcomes can be assessed
through case studies. These empirical findings will enhance the
list’s practical value for both industry professionals and
researchers.

ACKNOWLEDGMENTS

We would like to thank the experts who generously contributed
their time and insights during the interview phase of this research.
Their expertise greatly enriched the quality and depth of our
findings. We also thank our colleagues and reviewers who provided
invaluable feedback and guidance throughout the course of this
study.

REFERENCES
[1] Ward Cunningham. 1992. The WyCash Portfolio Management System. In

Addendum to the Proceedings on Object-Oriented Programming Systems,
Languages, and Applications (Addendum) (OOPSLA '92). Association for
Computing Machinery, New York, NY, USA, 29–30. DOI:
https://doi.org/10.1145/157709.157715

[2] Edith Tom, Aybüke Aurum, Richard Vidgen. 2013. An exploration of technical
debt. Journal of Systems and Software 86, 6 (2013), DOI:
https://doi.org/10.1016/j.jss.2012.12.052

[3] Nicolli S.R. Alves, Thiago S. Mendes, Manoel G. de Mendonça, Rodrigo O.
Spínola, Forrest Shull, Carolyn Seaman. 2016. Identification and management
of technical debt: A systematic mapping study. Information and Software
Technology. 100-121. DOI: https://doi.org/10.1016/j.infsof.2015.10.008

[4] Nicolli S. R. Alves, Leilane F. Ribeiro, Vivyane Caires, Thiago S. Mendes, and
Rodrigo O. Spínola. 2014. Towards an Ontology of Terms on Technical Debt.
In Proceedings of the 2014 Sixth International Workshop on Managing
Technical Debt (MTD '14). IEEE Computer Society, USA, 1–7.
https://doi.org/10.1109/MTD.2014.9

[5] Zengyang Li, Paris Avgeriou, and Peng Liang. 2015. A systematic mapping
study on technical debt and its management. Journal of Systems and Software.
101, C (March 2015), 193–220. DOI: https://doi.org/10.1016/j.jss.2014.12.027

[6] C.B. Seaman. 1999. Qualitative methods in empirical studies of software
engineering. IEEE Transactions on Software Engineering, 25, 4, 557-572. DOI:
10.1109/32.799955.

[7] Kai Petersen, Robert Feldt and Shahid Mujtaba, Michael Mattsson. 2008.
Systematic Mapping Studies in Software Engineering. 12th International
Conference on Evaluation and Assessment in Software Engineering (EASE),
DOI: 10.14236/ewic/EASE2008.8

[8] Roger M. Cooke. 1992. Experts in uncertainty: Opinion and subjective
probability in science. Oxford University Press.

[9] Valentina Lenarduzzi, Terese Besker, Davide Taibi, Antonio Martini, Francesca
Arcelli Fontana. 2021. A systematic literature review on Technical Debt
prioritization: Strategies, processes, factors, and tools. Journal of Systems and
Software, 171, 110827. DOI: https://doi.org/10.1016/j.jss.2020.110827.

[10] Clemente Izurieta, Antonio Vetro', Nico Zazworka, Yuanfang Cai, Carolyn
Seaman, Forrest Shull. 2012. Organizing the technical debt landscape. In
Proceedings of the Third International Workshop on Managing Technical Debt
(MTD '12). IEEE Press, 23–26. DOI: 10.1109/MTD.2012.6225995

[11] Antonio Martini, Jan Bosch, Michel Chaudron. 2015. Investigating Architectural
Technical Debt accumulation and refactoring over time: A multiple-case study.
Information and Software Technology, 67, 237-253. DOI:
https://doi.org/10.1016/j.infsof.2015.07.005.

[12] Nico Zazworka, Antonio Vetro', Clemente Izurieta, Sunny Wong, Yuanfang Cai,
Carolyn Seaman, Forrest Shull. 2013. Comparing Four Approaches for
Technical Debt Identification. Software Quality Journal. 22. 1-24. DOI:
10.1007/s11219-013-9200-8

[13] Woubshet Nema Behutiye, Pilar Rodríguez, Markku Oivo, Ayşe Tosun. 2017.
Analyzing the concept of technical debt in the context of agile software
development: A systematic literature review. Information and Software
Technology, 82, 139-158. DOI: https://doi.org/10.1016/j.infsof.2016.10.004

[14] Tushar Sharma, Paramvir Singh, Diomidis Spinellis. 2020. An empirical
investigation on the relationship between design and architecture smells.

Empirical Software Engineering, 25, 5, 4020–4068. DOI:
https://doi.org/10.1007/s10664-020-09847-2

[15] Francesca Arcelli Fontana, Valentina Lenarduzzi, Riccardo Roveda, Davide
Taibi. 2019. Are architectural smells independent from code smells? An
empirical study,
Journal of Systems and Software, 154, 139-156. DOI:
https://doi.org/10.1016/j.jss.2019.04.066.

[16] Nico Zazworka, Michele A. Shaw, Forrest Shull, and Carolyn Seaman. 2011.
Investigating the impact of design debt on software quality. In Proceedings of
the 2nd Workshop on Managing Technical Debt (MTD '11). Association for
Computing Machinery, New York, NY, USA, 17–23.
https://doi.org/10.1145/1985362.1985366

[17] IEEE 830-19T98 Recommended Practice for Software Requirements
Specifications Standards

[18] J. Garcia, D. Popescu, G. Edwards and N. Medvidovic, "Toward a Catalogue of
Architectural Bad Smell", Proceedings of the 5th International Conference on
the Quality of Software Architectures: Architectures for Adaptive Software
Systems (QoSA), pp. 146-162, 2009. DOI:10.1007/978-3-642-02351-4_10

[19] X. Han, A. Tahir, P. Liang, S. Counsell and Y. Luo, "Understanding Code Smell
Detection via Code Review: A Study of the OpenStack Community," 2021
IEEE/ACM 29th International Conference on Program Comprehension (ICPC),
Madrid, Spain, 2021, pp. 323-334, doi: 10.1109/ICPC52881.2021.00038.

[20] L. A. Rosser and J. H. Norton, "A Systems Perspective on Technical Debt," 2021
IEEE Aerospace Conference (50100), Big Sky, MT, USA, 2021, pp. 1-10, doi:
10.1109/AERO50100.2021.9438359.

[21] Guo, Y., Spínola, R.O. & Seaman, C. Exploring the costs of technical debt
management – a case study. Empir Software Eng 21, 159–182 (2016).
https://doi.org/10.1007/s10664-014-9351-7

841

	MAIN MENU
	Search
	Print
	View Full Page
	View Page Width
	Author Index
	Table of Contents

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: fix size 8.500 x 11.000 inches / 215.9 x 279.4 mm
 Shift: none
 Normalise (advanced option): 'original'

 32

 D:20120516081844
 792.0000
 US Letter
 Blank
 612.0000

 Tall
 1
 0
 No
 675
 320
 None
 Up
 0.0000
 0.0000

 Both
 AllDoc

 PDDoc

 Uniform
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 8
 7
 8

 1

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: none
 Shift: move up by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Up
 1.8000
 0.0000

 Both
 AllDoc

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 8
 7
 8

 1

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: none
 Shift: move up by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Up
 1.8000
 0.0000

 Both
 AllDoc

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 8
 7
 8

 1

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: none
 Shift: move up by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Up
 1.8000
 0.0000

 Both
 AllDoc

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 8
 7
 8

 1

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: none
 Shift: move up by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Up
 1.8000
 0.0000

 Both
 AllDoc

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 8
 7
 8

 1

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: none
 Shift: move up by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Up
 1.8000
 0.0000

 Both
 AllDoc

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 8
 7
 8

 1

 HistoryList_V1
 qi2base

