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ABSTRACT

RECURRENT NEURAL NETWORK BASED MODEL DISCOVERY OF
NONLINEAR VISCOELASTICITY

Masood, Saım
M.S., Department of Civil Engineering

Supervisor: Assoc. Prof. Dr. Serdar Göktepe

July 2024, 83 pages

This thesis introduces a novel framework for automated model discovery in the con-

text of nonlinear viscoelasticity. The framework leverages a recurrent neural net-

work (RNN) model representing the stress update procedure that inherently satisfies

necessary physical constraints. We trained the model on data comprising temporal

sequences of applied deformation and resulting stresses. We use gradient-based opti-

mization for the parameter identification, with gradients evaluated analytically via a

recurrent derivative update algorithm.

The loss function comprises two terms: one quantifying the accuracy of the predic-

tions and another inducing sparsity. The sparsity term encourages some learnable

parameters to be zero, resulting in interpretable models with a few meaningful pa-

rameters. We demonstrate the ability of the framework to produce interpretable sparse

models on synthetically generated data and experimental datasets of VHB 4910 and

HNBR50 polymers. Further validation and applicability of the framework are illus-

trated through a finite element simulation using the model learned from the experi-

mental dataset of HNBR50 polymer.
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ÖZ

DOĞRUSAL OLMAYAN VİSKOELASTİSİTE İÇİN TEKRARLAYAN SİNİR
AĞI TABANLI MODEL KEŞFİ

Masood, Saım

Yüksek Lisans, İnşaat Mühendisliği Bölümü

Tez Yöneticisi: Doç. Dr. Serdar Göktepe

Temmuz 2024 , 83 sayfa

Bu tez, doğrusal olmayan viskoelastisite bağlamında otomatik model keşfi için ye-

nilikçi bir çerçeve sunmaktadır. Çerçeve, gerekli fiziksel kısıtlamaları doğal olarak

karşılayan bir gerilme güncelleme prosedürünü temsil eden bir tekrarlayan sinir ağı

(RNN) modelinden yararlanmaktadır. Model, uygulanan deformasyonların ve sonuçta

ortaya çıkan gerilmelerin zaman serilerini içeren veriler üzerinde eğitilmiştir. Para-

metre tanımlama için gradyan tabanlı optimizasyon kullanılmakta, gradyanlar bir tek-

rarlayan türev güncelleme algoritması aracılığıyla analitik olarak değerlendirilmekte-

dir.

Kayıp fonksiyonu iki terimden oluşmaktadır: Biri tahminlerin doğruluğunu ölçmekte,

diğeri ise seyreklik sağlamaktadır. Seyreklik terimi, bazı öğrenilebilir parametrele-

rin sıfır olmasını teşvik ederek, az sayıda anlamlı parametreye sahip yorumlanabi-

lir modellerin elde edilmesini sağlar. Çerçevenin, sentetik olarak üretilen veriler ve

VHB 4910, HNBR50 polimerlerine ait deneysel veri kümeleri üzerinde yorumlana-

bilir seyrek modeller üretebilme yeteneğini gösterilmektedir. Çerçevenin daha fazla

doğrulama ve uygulanabilirliği, HNBR50 polimerine ait deneysel veri kümesinden

vii



öğrenilen model kullanılarak yapılan bir sonlu eleman simülasyonu ile gösterilmek-

tedir.

Anahtar Kelimeler: Tekrarlayan sinir ağı, Model keşfi, Doğrusal olmayan viskoelas-

tisite
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CHAPTER 1

INTRODUCTION

This thesis aims to develop a framework that converts experimental data of a material

exhibiting finite viscoelastic behavior into a physically interpretable and numerically

efficient constitutive model. We build a neural network architecture based on a custom

recurrent unit to represent a generalized model of finite nonlinear viscoelasticity. For

the parameter identification of the model, we supply a recurrent derivative update

function alongside the stress update to analytically calculate the derivatives needed

for the gradient-based optimization. To validate the effectiveness of the framework,

we test the framework on three distinct datasets: one synthetically generated and two

obtained from real-world experimental data.

In this chapter, we outline the motivation for this study and provide a concise literature

review of related subjects. We introduce the theory of finite nonlinear viscoelasticity

and examine existing data-driven methods for constitutive modeling. Furthermore,

we describe the specific aim of this work and list the contributions. Lastly, we present

the outline of the subsequent chapters.

1.1 Motivation

Materials that exhibit finite viscoelastic behavior, characterized by large deformation

while displaying both viscous and elastic behavior, are crucial for many applications

in various engineering fields. Polymers, a prevalent example, play a vital role in the

production of everyday items like rubber bands and tires, as well as in the develop-

ment of high-performance materials for aerospace and biomedical applications. Sim-

ilarly, the finite viscoelastic properties of many biological tissues - including tendons,

1



cartilage, and skin - are critical to their functional roles in the human body, making

them a subject of great interest in medical research. Despite the importance of these

materials, developing accurate and reliable constitutive models to predict their behav-

ior remains a challenge. Existing literature offers a variety of finite-viscoelastic mod-

els to describe their deformation response. Broadly, these models fall under two ap-

proaches: purely phenomenological [1–8] and micromechanically-motivated [9–13].

Selecting an appropriate model or developing a new one for a given material requires

expertise and careful consideration. Considering this requirement, this thesis devel-

ops a framework that automatically discovers a model of finite viscoelasticity from a

material’s experimental data. The framework generates a physically constrained con-

stitutive model while accurately identifying a set of material parameters. By stream-

lining the traditionally complex processes of model formulation and calibration, this

tool aims to alleviate a significant bottleneck faced by engineers who routinely work

with new materials. This advancement significantly reduces the time and specialized

knowledge required to develop functional and reliable models for materials exhibit-

ing finite viscoelastic behavior, accelerating their implementation and evaluation in

practical settings. Ultimately, this thesis is a contribution to the research aimed at

enhancing the efficiency and precision with which new viscoelastic materials are in-

tegrated and utilized across various industries.

1.2 Finite Viscoelasticity

Finite viscoelasticity refers to the behavior of solids exhibiting both elastic and vis-

cous characteristics when subject to large deformations. The word "finite" pertains

to considering large deformations that require equations of nonlinear continuum me-

chanics for characterization. Elasticity is the property of materials that store and

release energy without dissipation; a perfectly elastic material immediately returns to

its original shape after removing stress. The stress calculation of an elastic response

depends only on the deformation’s current value without considering the path taken to

reach that state of deformation or strain. On the other hand, the viscous part of a ma-

terial’s response is time- and rate-dependent—the viscous response results from inter-

nal energy dissipative mechanisms that evolve even after stopping external loading. A
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viscoelastic material’s combined viscous and elastic response is commonly observed

and explained through creep and relaxation. Creep refers to the time-dependent in-

crease in strain observed when subjecting a body to constant stress. Relaxation is the

decrease in stress over time to its underlying elastic response at constant strain, as

shown in Figure 1.1.

Figure 1.1: Uniaxial stress-stretch response of an HNBR50 polymer subjected to

loading and unloading at a constant stretch rate of |λ̇| = 5 (1/min) (Non-equilibrium

response). The orange curve represents the underlying elastic response using data

points obtained by relaxation periods during the cyclic loading in both the loading

and unloading paths (Equilibrium response). The arrow represents the full relaxation

of the viscous overstress from Point A to Point B.

From a macroscopic constitutive modeling viewpoint, one needs two equations to

characterize viscoelastic behavior: one relating to the storage of energy in the ma-

terial, known as the free energy function, and the other describing the dissipative

viscous phenomena. Existing standard models account for the viscous phenomena

arising from the internally evolving mechanisms by employing internal variables

and supplying equations describing their evolution. The first category of formula-

tions [3–5] defines stress-like internal variables by additively dividing the stress into

an equilibrium part and several non-equilibrium components. Linear ordinary dif-

ferential equations (ODEs) govern the evolution of the non-equilibrium overstresses,
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for which closed-form solutions exist in the form of convolution integrals. Although

this approach is computationally efficient, it limits dissipation phenomena to small

deviations from thermodynamic equilibrium, known as finite linear viscoelasticity.

To account for large deviations, the second category [1, 2, 6, 7, 9, 10, 14] employs a

multiplicative decomposition of the deformation gradient into elastic and inelastic

parts. Quantities derived from the inelastic parts constitute the internal variables, and

nonlinear ODEs generally define the evolution of these variables. We use the latter

approach, employing the multiplicative decomposition, as it is more comprehensive

in characterizing the so-called finite nonlinear viscoelasticity and is necessary to fit

the data used in this study. We provide the details of the approach to model finite

nonlinear viscoelasticity in Chapter 2.

1.3 Data Driven Approaches

The literature presents a range of models for both finite linear and nonlinear viscoelas-

ticity. We can broadly divide these models into two categories. The first category

comprises purely phenomenological models [1–8] that are based on empirical obser-

vations and designed to accurately describe macroscopic behavior without delving

into micromechanics. The second category consists of micromechanically-motivated

models [9–13] that are formulated based on the interactions and properties of the ma-

terial’s microstructure. Despite extensive research and the availability of numerous

models, there is yet to be a consensus on a single best model for characterizing the

behavior of any specific material. This lack of consensus poses a challenge for engi-

neers when selecting an appropriate model and accurately identifying its parameters

for novel materials. Researchers have turned to data-driven methods as a potential

solution to this challenge, leading to developments in two fundamentally distinct re-

search directions.

The first direction led to a new computing paradigm that eliminates the need for mate-

rial modeling by directly utilizing raw data in simulations [15,16]. These approaches,

often called the "model-free" methods, solve boundary value problems by assigning a

stress-strain pair from an experimental dataset to each material point that most closely

satisfies the physical constraints and conservation laws. The underlying motive is to
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address solid mechanics by adhering to the definitive conservation laws while replac-

ing the uncertain material laws with actual experimental data. This method efficiently

bypasses the material (constitutive) modeling step in cases where the stress-strain re-

lationship is bijective, such as in hyperelastic materials. However, this approach faces

significant challenges when extended to behavior with non-unique, history-dependent

relationships in inelasticity [17–19] like viscoelasticity, often requiring a large dataset

to model arbitrary inelastic loading paths accurately.

In a different direction, researchers have utilized machine learning methods to de-

velop generalized models. Flaschel et al. [20] introduced the EUCLID (Efficient Un-

supervised Constitutive Law Identification and Discovery) framework, which relies

solely on global force and displacement data to “discover” a hyperelastic model from

a large catalog of functions through sparsity-inducing regularization while minimiz-

ing residual forces. Subsequent research extended the framework to include plastic-

ity models [21] by incorporating a Fourier series representation of the yield function,

and linear viscoelastic models [22] by employing a generalized Maxwell model rep-

resented by a Prony series to describe viscoelastic behavior. Additionally, Flaschel et

al. [23] expanded the framework to handle materials with unknown constitutive be-

havior by identifying two scalar thermodynamic potentials: the Helmholtz free energy

and the dissipation potential. However, to our knowledge, the EUCLID framework

has yet to be extended to nonlinear viscoelasticity or incorporate finite deformations

in the case of inelasticity.

Research has also explored using neural networks in constitutive modeling due to

their ability to approximate any continuous function, as outlined in the Universal Ap-

proximation Theorem [24]. These networks are adept at capturing complex, nonlin-

ear relationships in data, making them ideal for modeling intricate material behaviors.

The early applications of neural networks in this field include the work by Ghaboussi

et al. [25]. Recurrent Neural Networks (RNNs), known for handling temporal de-

pendencies, are particularly suitable for modeling the history-dependent behavior of

viscoelastic materials. For example, Ghavamian and Simone [26] used RNNs as sur-

rogates for history-dependent micromechanical models to accelerate multiscale sim-

ulations. Gorji et al. [27] employed a Gated Recurrent Unit (GRU)-based RNN for

modeling path-dependent plasticity, while Chen [28] used a Long-Short Term Mem-
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ory (LSTM)-based RNN to capture the viscoelastic response of a Maxwell model.

However, employing neural networks as black boxes in material modeling can vio-

late kinematical, thermodynamical, and physical constraints when tested beyond their

training regime [29, 30].

To integrate necessary constraints into deep-learning models, Raissi et al. [31] intro-

duced Physics-Informed Neural Networks (PINNs) that integrate physical principles

into the architecture by embedding these principles as penalty terms in the loss func-

tion. Following this innovation, He and Chen [32] and Danoun et al. [33] applied

this methodology by including the violation of the second law of thermodynamics

in the loss function to ensure thermodynamic consistency. Additionally, Haghighat

et al. [34] utilized this approach by incorporating inequality constraints of elasto-

plasticity into the loss function, thus ensuring adherence to the fundamental laws of

elastoplasticity, such as yield conditions and plastic flow directions. Further applying

PINNs, Rezaei et al. [35] trained the networks to learn the solutions of constitutive

equations, effectively bypassing the repetitive Newton iterations required for solving

nonlinear material equations. However, this method “weakly” enforces constraints,

which does not guarantee adherence to these constraints during inference on unseen

data [30].

As an alternative, designing neural network architectures to satisfy physical con-

straints inherently from the outset can “strongly” enforce these constraints. Thakolka-

ran et al. [36] adapted the EUCLID framework to discover hyperelastic models by uti-

lizing Input-Convex Neural Networks (ICNNs) specifically tailored to adhere to the

physical laws of hyperelastic materials. Similarly, Rosenkranz et al. [37] and Asad

and Farhat [38] used ICNNs, while Tac et al. [39] leveraged the so-called Neural Or-

dinary Differential Equations (NODEs) to define the potentials required for modeling

nonlinear viscoelasticity, thus ensuring the network’s compliance with essential con-

straints from the beginning. Moreover, Linka et al. [40, 41] developed Constitutive

Artificial Neural Networks (CANNs). These networks leverage existing constitutive

models to create generalized, invariant-based models that are intrinsically physics-

informed, allowing the parameters learned to be physically interpretable. Researchers

have extended the application of CANNs to include quasi-linear viscoelasticity [42],

nonlinear finite viscoelasticity [43], and general inelastic behavior [44].
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The works of Tac et al. [39], Holthusen et al. [44], and Abdolazizi et al. [43] build

strongly physics-informed neural network architectures that are capable of model dis-

covery of finite nonlinear viscoelasticity. Tac et al. [39] modeled anisotropic finite

viscoelasticity by replacing the Helmholtz free energy function and the dissipation

potential with NODEs, successfully leveraging the flexibility of NODEs to capture the

complex viscoelastic behavior and achieving superior predictive accuracy compared

to traditional closed-form models. However, the learned parameters lack physical in-

terpretability, and the model is complex and computationally inefficient compared to

conventional models. On the other hand, Holthusen et al. [44] developed inelastic

CANNs (iCANNs) using feed-forward networks for the Helmholtz free energy and

pseudo potential combined with a recurrent neural network setup, while Abdolaz-

izi et al. [43] introduced viscoelastic CANNs (vCANNs) based on the generalized

Maxwell model using a hereditary integral approach with the time-dependent kernel

function influenced by the strain and strain rate to model nonlinear viscoelasticity.

Both iCANNs and vCANNs feature physically interpretable parameters. However,

iCANNs lack sparsity induction, and both rely on explicit update equations for au-

tomatic differentiation, enforcing a maximum time step size in the temporal datasets

requiring comparatively finer data points to train.

1.4 Aim and Contributions

In light of the reviewed literature on data-driven approaches for constitutive modeling,

this thesis aims to build a recurrent neural network-based framework for the model

discovery of finite viscoelasticity. We highlight the key aspects and features of the

framework below:

• We build the recurrent neural network architecture in a way that a priori satisfies

necessary physical constraints.

• We specify equations to build a generalized constitutive model with physically

interpretable parameters. Additionally, we suggest a novel polynomial-type

evolution equation for the internal variables. The developed model is capable

of characterizing finite nonlinear viscoelastic behavior.
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• The model uses implicit update equations, allowing model training with scarce

data. We supply a derivative update function to calculate the derivatives instead

of using automatic differentiation.

• The framework uses sparsity-inducing regularization. Subsequently, the dis-

covered model has a few non-zero parameters, which gives us insight into the

physical nature of the material.

We train and validate the framework using three distinct datasets. We generate the

first dataset synthetically, characterized by highly nonlinear viscoelastic behavior, and

obtain the other two experimental datasets from published studies on the VHB 4910

[45] and HNBR50 polymer [11]. Notably, previous model discovery efforts have not

addressed the dataset related to the HNBR50 polymer. Previous efforts to characterize

HNBR50 material have relied exclusively on complex, micromechanically-motivated

models [11, 12, 46, 47]. Our framework effectively characterizes this material using a

significantly simplified model approach.

1.5 Outline

The subsequent chapters are structured as follows:

Chapter 2 presents the theory of macroscopic finite viscoelasticity. Firstly, we present

the decoupled volumetric-isochoric response and then the further decoupled isochoric

equilibrium-overstress response. Secondly, we present details relating to the thermo-

dynamical consistency and the form of the evolution law. Additionally, we give the

algorithmic update procedure for the stress update. Finally, we specify constitutive

equations of the generalized constitutive model we use in the framework.

In Chapter 3, we delineate the entire model discovery framework. We explain the

custom recurrent unit we use in the RNN architecture. Furthermore, we develop the

loss function along with the sparsity-inducing term. Finally, we provide details of the

parameter identification algorithm, derivative calculation, and hyperparameter tuning.

In Chapter 4, we assess the framework’s effectiveness across the three datasets and

present the numerical results. We discuss each dataset’s features and the insights
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gained regarding the material’s physical properties from the results. We also imple-

ment the discovered model of the HNBR50 polymer in a finite element program and

compare the results with actual experimental data.

Chapter 5 offers concluding remarks, addressing the framework’s limitations and sug-

gesting potential future research directions based on our findings.
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CHAPTER 2

FINITE NONLINEAR VISCOELASTICITY

In this chapter, we present the fundamental geometric and balance equations that gov-

ern a displacement boundary value problem and outline the theory of macroscopic fi-

nite nonlinear viscoelasticity we utilize. We derive the general form for the Helmholtz

free energy function and derive an expression for the evolution equation of the internal

variables that satisfies thermodynamical consistency. We also provide the algorithmic

update equations using the general form of the Helmholtz free energy function and

the evolution equation. Finally, we propose a specific constitutive model consistent

with the general constitutive equations for use in the framework.

2.1 Fundamental geometric and balance equations

We define the deformation map φ : X 7→ x of a deformable body that maps points

X ∈ B in the reference configuration B ⊂ R3 to points x(X, t) ∈ S in the spatial

configuration S ⊂ R3 at time t ∈ R+. Let F := ∇φ(X; t) denote the deformation

gradient that maps referential tangent vectors T ∈ TXB to spatial tangent vectors

t = FT ∈ TXS, and let the Jacobian J := det(F ) denote the volume map that

is restricted to positive real numbers R+ ensuring non-interpenetrability of the solid.

Furthermore, G = GAB and g = gab are the reference and spatial configurations

metrics, respectively. These metrics are equal to Kronecker’s deltas, G = δAB and

g = δab, for Cartesian coordinate systems. The balance of linear momentum governs

the boundary value problem of a deformable body

ρ0φ̈ = Div
[
τF−T

]
+ γ̄ in B (2.1)
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along with the displacement boundary conditions φ = ¯φ (X; t) on ∂Bφ and traction

boundary conditions
[
τF−T

]
N = t̄ (X; t) on ∂Bt with the referential outward unit

normal N. Moreover, ρ0 is the reference density, and γ̄ is the body force for a unit

volume in the reference configuration. For a viscoelastic body, we assume the Kirch-

hoff stress τ to be a function of the deformation gradient F and internal variables I
to account for the viscous phenomena

τ = τ̂ (g,I,F ) . (2.2)

2.2 Free energy function

Let Ψ denote the Helmholtz free energy function of a viscoelastic body. Staying con-

sistent with Equation (2.2), we define Ψ to be a function of the deformation gradient

F and internal variables I as well

Ψ = Ψ̂(g,I,F ) . (2.3)

We assume the nearly incompressible behavior of the material and decouple the free

energy function into volumetric and isochoric parts. The unimodular part of the de-

formation gradient

F̄ := J−1/3F (2.4)

is assumed to govern the isochoric response. Additionally, we assume the viscous re-

sponse to be purely isochoric. The Helmholtz free energy function takes the particular

form

Ψ = U(J) + Ψ̂iso(g,I; F̄ ) , (2.5)

where the potential U acts as a penalty function to enforce the assumed incompress-

ibility.

Based on the idea of a generalized Maxwell model, we consider the further decompo-

sition of the isochoric part into an elastic equilibrium branch and an arbitrary number

of viscous branches, as shown in Figure 2.1. For any given viscous branch, we multi-

plicatively decompose the unimodular part of the deformation gradient into an elastic

and a viscous part

F̄ = F e
kF

v
k , (2.6)
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Figure 2.1: Rheological representation of a generalized Maxwell model for the iso-

choric response of a viscoelastic body. The response is decomposed into a single

elastic branch (Ψ̄e, b̄) and an arbitrary number nbranch of viscous branches (Ψ̄v
k, bek).

where the subscript k denotes the branch number. The isochoric part of the free

energy function takes the form

Ψ̄iso(g,F e
k, F̄ ) = Ψ̄e(g, F̄ ) +

nbranch∑
k=1

Ψ̄v
k(g,F

e
k) , (2.7)

where the elastic part of the deformation gradient F e
k enters the formulation as the

internal variable and is assumed to govern the viscous response of the kth branch.

Furthermore, we assume the response to be isotropic and thus represent Ψ̄e and Ψ̄v
k

as functions of the unimodular part of the left Cauchy-Green deformation tensor b̄ :=

F̄G−1F̄
T and the elastic left Cauchy-Green deformation tensor bek := F e

kG̃
−1

k F eT
k ,

respectively, where G̃k = δÃB̃ is the metric of the intermediate configuration of the

kth branch coming from the multiplicative decomposition

Ψ̄iso = Ψ̄e(g, b̄) +

nbranch∑
k=1

Ψ̄v
k(g, b

e
k) . (2.8)

The principle of material frame invariance demands Ψ(g,I,F ) = Ψ(g,I,QF ) for

all rotations Q ∈ SO(3). For free energy functions defined using b̄ and bek, this

principle further reduces the above equation to be an isotropic function of the tensors.
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To this end, we express Ψ̄e and Ψ̄v
k in terms of the first two invariants of b̄ and bek

Ψ̄iso = Ψ̄e(Ī1, Ī2) +

nbranch∑
k=1

Ψ̄v
k(I

e
1k, I

e
2k) (2.9)

with Ī1 := tr(b̄) ,

Ī2 :=
1

2

(
(Ī1)

2 − tr(b̄
2
)
)
,

Ie1k := tr(bek) and

Ie2k :=
1

2

(
(Ie1k)

2 − tr(be2k )
)
,

where tr(A) = A : g−1 represents the trace operation on tensor A. The third invari-

ant that describes the volume change is irrelevant as it is constant for the isochoric

response.

2.3 Thermodynamical consistency

The second law of thermodynamics restricts the constitutive equations by the internal

dissipation inequality for isothermal processes

S :
1

2
Ċ − Ψ̇ ≥ 0 , (2.10)

where S is the second Piola-Kirchhoff stress tensor and C := F TgF is the right

Cauchy-Green deformation tensor. The invariants of b̄ and bek are equal to the invari-

ants of unimodular part of the right Cauchy-Green deformation tensor C̄ := F̄
T
gF̄

and the elastic right Cauchy-Green deformation tensor Ce
k := F eT

k gF e
k, respectively.

This allows us to define our free energy function in an alternative manner

Ψ = U(J) + Ψiso with Ψiso := Ψ̃e(C̄) +

nbranch∑
k=1

Ψ̃v
k(C

e
k) . (2.11)

We can also obtain Ce
k by a push-forward operation on C̄ to the intermediate config-

uration

Ce
k = F v−T

C̄F v−1

. (2.12)

14



Taking the material time derivative of Equation (2.11), and inserting it into Equation

(2.10) gives us[
S − 2

∂U

∂J

∂J

∂C
−

(
2
∂Ψ̃e

∂C̄
+

nbranch∑
k=1

2
∂Ψ̃v

k

∂Ce
k

:
∂Ce

k

∂C̄

)
:
∂C̄

∂C

]
:
1

2
Ċ−

nbranch∑
k=1

∂Ψ̃v
k

∂Ce
k

:
∂Ce

k

∂F v
k

: Ḟ v
k ≥ 0 .

(2.13)

Using the argument of Coleman and Gurtin [48], the inequality in Equation (2.13)

must be satisfied for an arbitrary value of Ċ. This reasoning demands that the first

term equal zero, giving us the following form for the second Piola-Kirchhoff stress

S = Svol +

(
S̄

e
+

nbranch∑
k=1

S̄
v
k

)
:
∂C̄

∂C
(2.14)

with Svol := 2
∂U

∂J

∂J

∂C
,

S̄
e
:= 2

∂Ψ̃e

∂C̄
and

S̄
v
k := 2

∂Ψ̃v
k

∂Ce
k

:
∂Ce

k

∂C̄
= F v−1

2
∂Ψ̃v

k

∂Ce
k

F v−T

.

The dissipation inequality then reduces to

− ∂Ψ̃v
k

∂Ce
k

:
∂Ce

k

∂F v
k

: Ḟ v
k ≥ 0 , (2.15)

where we have dropped the summation over the branches as each branch’s viscous

behavior is independent, and the inequality must be satisfied for each branch sepa-

rately, giving us a stronger constraint. Using Equation (2.12) in Equation (2.15) gives

us
∂Ψ̃v

k

∂Ce
k

:
(
lv

T

k Ce
k +Ce

kl
v
k

)
≥ 0 , (2.16)

where lvk := Ḟ
v

kF
v−1

denotes the viscous part of the spatial velocity gradient of the

kth branch. Utilizing the symmetry of Ce
k, we obtain

2
∂Ψ̃v

k

∂Ce
k

: (lvkC
e
k) ≥ 0 , (2.17)

and further reduce it to (
τ̄ v
kb

e−1

k

)
:
(
F e

kl
v
kF

eT

k

)
≥ 0 , (2.18)
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where we define τ̄ v
k := F̄ S̄

v
kF̄

T . The tensors τ̄ v
k and be

−1

k commute and are symmet-

ric, which allows us to take the symmetric part of
(
F e

kl
v
kF

eT

k

)
and recast it as

sym
(
F e

kl
v
kF

eT

k

)
= −1

2
F̄

˙
Cv−1

k F̄
T
= −1

2
£vb

e
k . (2.19)

Here, £vb
e
k is the Lie-derivative of bek, and Cv

k denotes the viscous right Cauchy-

Green deformation tensor of the kth branch. Furthermore, bek relates to (Cv
k)

−1

through the push-forward operation

bek = F̄ (Cv
k)

−1F̄
T
. (2.20)

The dissipation inequality can now be written as

τ̄ v
k : −

1

2
(£vb

e
k) b

e−1

k ≥ 0 . (2.21)

We will use the following form of the evolution law proposed by Bergstrom and

Boyce [9]

−1

2
(£vb

e
k) b

e−1

k := γ̇kNk , (2.22)

where

Nk =
τ v,iso
k

∥τ v,iso
k ∥

(2.23)

with τ v,iso
k := P : τ̄ v

k and

∥τ v,iso
k ∥ :=

√
τ v,iso
k : τ v,iso

k ,

where Pab
cd = [δac δ

b
d+δadδ

b
c]/2−δabδcd/3 is the fourth-order deviatoric projection tensor.

Moreover, γ̇k denotes the effective creep rate and is a scalar quantity. We can insert

Equation (2.22) into Equation (2.21) and utilize the deviatoric nature of the evolution

law to replace τ̄ v
k with τ v,iso

k to obtain

τ v,iso
k : γ̇kNk ≥ 0 . (2.24)

We note that the thermodynamical consistency (2.21) is apriori satisfied for γ̇k ≥ 0.

2.4 Algorithmic Update Equations

Here, we provide the algorithmic setting of the model for a finite element imple-

mentation. We will derive the stress and moduli terms using the general form of

the Helmholtz free energy function and evolution equation developed in the previous

section.
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2.4.1 Decoupled volumetric-isochoric response

We use a push forward operation on Equation (2.14) of the second Piola-Kirchhoff

stress tensor S to obtain the Kirchhoff stress tensor τ = FSF T in the following

form

τ = pg−1 + P :

(
τ̄ e +

nbranch∑
k=1

τ̄ v
k

)
, (2.25)

where the stress update equations for τ̄ e and τ̄ v
k will be derived in the subsequent

sections. Furthermore, the moduli term can be additively decomposed into volumetric

and isochoric parts.

C = Cvol + Ciso (2.26)

with Cvol := 4∂2
ggU(J) and

Ciso := 4∂2
ggΨ̂

iso (g; F̄ ) .
For the volumetric part, we obtain

Cvol = (p+ s)g−1 ⊗ g−1 − 2pI , (2.27)

where Iabcdg−1 = [δacδbd + δadδbc]/2 is the fourth-order identity tensor. The volumetric

stress p and modulus s in Equations (2.25) and (2.27) are defined as the following

derivatives of the volumetric part of the free energy function U(J)

p := JU ′(J) and s := J2U ′′(J) . (2.28)

For the isochoric part of the moduli, we obtain

Ciso = P :

[
C̄+

2

3
(τ̄ : g) I− 2

3

(
τ̄ ⊗ g−1 + g−1 ⊗ τ̄

)]
: P (2.29)

with C̄ := C̄e +

nbranch∑
k=1

C̄v
k,algo ,

where C̄e and C̄v
k,algo will be derived in the subsequent sections.

2.4.2 Isochoric elastic response

For the elastic part of the isochoric response, we define

τ̄ e := 2∂gΨ̄
e(Ī1, Ī2) and C̄e := 4∂2

ggΨ̄
e(Ī1, Ī2) . (2.30)
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After taking the derivatives, we obtain the following for the stress and moduli

τ̄ e = Ψ̄e
1b̄+ Ψ̄e

2

(
Ī1b̄− b̄

2
)

and (2.31)

C̄e =
[
Ψ̄e

11b̄+ Ψ̄e
21

(
Ī1b̄− b̄

2
)]
⊗ b̄ +[

Ψ̄e
12b̄+ Ψ̄e

22

(
Ī1b̄− b̄

2
)]
⊗
(
Ī1b̄− b̄

2
)
+ (2.32)

2Ψ̄e
2

(
b̄⊗ b̄− Ib̄

)
,

where we have defined the fourth order tensor Iabcd
b̄

= [b̄acb̄bd + b̄adb̄bc]/2 and the

partial derivatives of Ψ̄e

Ψ̄e
i := 2

∂Ψ̄e

∂Īi
and (2.33)

Ψ̄e
ij := 4

∂

∂Īj

(
∂Ψ̄e

∂Īi

)
. (2.34)

2.4.3 Isochoric viscous response

For the viscous part of the isochoric response of the kth branch, we define the stress

τ̄ v
k := 2∂gΨ̄

v
k(I

e
1k, I

e
2k) , (2.35)

which results in

τ̄ v
k = Ψ̄v

k,1b
e
k + Ψ̄v

k,2

(
Ie1kb

e
k − be

2

k

)
(2.36)

with Ψ̄v
k,i := 2

∂Ψ̄v
k

∂Iei
. (2.37)

2.4.3.1 Integration of the evolution law

The evaluation of Equation (2.36) requires the value of the updated bek at the current

time step tn+1. To obtain this value, we need to perform integration of the evolution

law defined in Equation (2.22). The integration of the evolution law is based on the

operator split of the material time derivative of bek into an elastic predictor E and an

inelastic corrector I as suggested by [6, 49, 50]

ḃek := lisobek + bekl
isoT︸ ︷︷ ︸

E

+£vb
e
k︸ ︷︷ ︸

I

, (2.38)
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where liso := ˙̄F F̄
−1 is the unimodular part of the spatial velocity gradient.

In the elastic predictor step, the material time derivative of (Cv
k)

−1 is set to zero,

giving us the intermediate trial value of bek

(Cv,tr
k )−1 = (Cv

k)
−1
n ⇒ be,trk = F̄ (Cv

k)
−1
n F̄

T (2.39)

The subscript denoting the current time step tn+1 is dropped for convenience. In the

inelastic corrector step, the spatial velocity gradient is set to zero, which results in

ḃek = £vb
e
k. Inputting the defined evolution law (2.22), we get the following

ḃek = [−2γ̇kNk] b
e
k . (2.40)

This equation is solved using the so-called exponential mapping, and the resultant

integral is discretized to give us

bek ≈ exp [−2∆tγ̇kNk] b
e,tr
k . (2.41)

For our assumed isotropic case, τ v,iso
k and consequently Nk commute with both bek

and be,trk . This allows us to write (2.41) in the principal stretch directions

Λe
k,α ≈ exp

[
−
√
2∆t

τ vk
γ̇kτ

′
k,α

]
Λe,tr

k,α , (2.42)

where τ vk := ∥τ v,iso
k ∥/

√
2. Here, we make use of the following spectral decomposi-

tions

F e =
3∑

α=1

λe
k,α nk

α ⊗N k
α , F e,tr =

3∑
α=1

λe,tr
k,α nk

α ⊗N k
α , (2.43)

bek =
3∑

α=1

Λe
k,α nk

α ⊗ nk
α , be,trk =

3∑
α=1

Λe,tr
k,α nk

α ⊗ nk
α and (2.44)

τ v,iso
k =

3∑
α=1

τ ′k,α nk
α ⊗ nk

α , (2.45)

where Λe
k,α := (λe

k,α)
2 and Λe,tr

k,α := (λe,tr
k,α)

2. Taking the natural logarithm of both

sides of Equation (2.42) gives us

εk,α ≈ −
∆t√
2

γ̇k
τ vk

τ ′k,α + εtrk,α (2.46)

with εk,α := lnλe
k,α and

εtrk,α := lnλe,tr
k,α .
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The nonlinear Equation (2.46) can be solved using the Newton-Raphson iterative

scheme. To solve the nonlinear equation, we first define the residual as a function of

the vector of the elastic principal logarithmic stretches εk := [εk,1 εk,2 εk,3]
T

rk(εk) := εk +
∆t√
2

γ̇k
τ vk

τ ′
k − εtrk = 0 , (2.47)

where τ ′
k :=

[
τ ′k,1 τ

′
k,2 τ

′
k,3

]T is a vector of the principal viscous isochoric stresses.

We linearize the residual in the neighborhood of the value of εk at the mth iteration

Lin rk(εk)
∣∣
εk,m

= rk(εk,m) +Kk

∣∣
εk,m

∆εk = 0 , (2.48)

where we define the local tangent of the Newton iteration as

Kk :=
∂rk

∂εk
. (2.49)

The solution of the linearized residual (2.48) gives us the local Newton update step at

the mth iteration

εk,m+1 ← εk,m −K−1
k

∣∣
εk,m

rk(εk,m) . (2.50)

We compute the local tangent Kk as follows

(Kk)αβ = δαβ +
∆t√
2

τ ′k,α
τ vk

∂γ̇k
∂εk,β

+
∆t√
2

γ̇k
τ vk

∂τ ′k,α
∂εk,β

+
∆t√
2
γ̇kτ

′
k,α

∂τ v
−1

k

∂εk,β
. (2.51)

After taking the required derivatives, we get

(Kk)αβ = δαβ +
∆t√
2

τ ′k,α
τ vk

∂γ̇k
∂εk,β

+
∆t√
2

γ̇k
τ vk

(
T̄k
)
αβ
− ∆t

2
√
2

γ̇k

τ v
3

k

τ ′k,α(Dk)β (2.52)

with
(
T̄k
)
αβ

:= (Tk)αβ −
1

3

3∑
η=1

(Tk)ηβ ,

(Dk)β :=
3∑

η=1

τ ′k,η(Tk)ηβ and

(Tk)αβ :=
∂τk,α
∂εk,β

with τ̄ v
k =

3∑
a=1

τk,α nk
α ⊗ nk

α .

The solution of the nonlinear Equation (2.46) using a Newton-Raphson iterative scheme

is summarized in Algorithm 1. Once we get bek and τ̄ v
k, we perform a pull back oper-

ation on bek to update and obtain the value of (Cv
k)

−1 for the next time step

(Cv
k)

−1 = F̄
−1
bekF̄

−T
. (2.53)
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Algorithm 1: Newton-Raphson algorithm to solve for bek and τ̄ v
k

for k = 1 to nbranch do
Given:

be,trk =
∑3

α=1 Λ
e,tr
k,α nk

α ⊗ nk
α , εtrk,α = ln(Λe,tr

k,α)/2

Initialize:

m = 0 , εk,0 = εtrk , rk = 1× 108

while TOL ≤ |re
k| do

Calculate required terms:

εk,α = (εk,m)α

bek =
∑3

α=1 Λ
e
k,α nk

α ⊗ nk
α , Λe

k,α = exp(2εk,α)

τ̄ v
k = Ψ̄v

k,1b
e
k + Ψ̄v

k,2

(
Iv1kb

e
k − be

2

k

)
τ v,iso
k = P : τ̄ v

k , τ v,iso
k =

∑3
α=1 τ

′
k,α nk

α ⊗ nk
α

τ vk = ∥τ v,iso
k ∥/

√
2

γ̇k can be a function of bek and τ v,iso
k ; a specific form for γ̇k is

proposed in Equation (2.72).

Calculate residual and local tangent:

rk(εk,m) = εk,m +
∆t√
2

γ̇k
τ vk

τ ′
k − εtrk

Kk =
∂rk

∂εk

∣∣∣∣
εk,m

using Equation (2.52); or using Equation (2.83)

for the specific model.

Update:

εk,m+1 ← εk,m −K−1
k

∣∣
εk,m

rk(εk,m)

m← m+ 1

end

Output:

bek and τ̄ v
k

end

2.4.3.2 Algorithmic moduli

We can use an alternative multiplicative decomposition of F̄ using F e,tr
k = F̄ (F v

k)
−1
n

F̄ = F e,tr
k (F v

k)n , (2.54)
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where (F v
k)n is the viscous part of the deformation gradient of the kth branch from

the previous time step tn. Because (F v
k)n is a constant, we can define the change in

F̄ as

∆F̄ = ∆F e,tr
k (F v

k)n . (2.55)

This allows us to define the moduli C̃v
k,algo in the trial intermediate configuration as

follows

∆S̃
v

k = C̃v
k,algo :

1

2
∆Ce,tr

k and C̃v
k,algo := 2∂Ce,tr

k
S̃

v

k , (2.56)

where we have defined a stress measure S̃
v

k in the intermediate configuration coming

from the alternative multiplicative decomposition (2.54)

S̃
v

k := F e,tr−1

k τ̄ v
kF

e,tr−T

k . (2.57)

We can write S̃
v

k in the principal stretch directions

S̃
v

k =
3∑

α=1

S̃k,αN
k
α ⊗N k

α

=
3∑

α=1

τk,α

Λe,tr
k,α

N k
α ⊗N k

α , (2.58)

and take its derivative with respect to Ce,tr
k to obtain

C̃v
k,algo =

3∑
α=1

3∑
β=1

(
1

Λe,tr
k,αΛ

e,tr
k,β

∂τk,α
∂εtrk,β

− 2τk,α

Λe,tr
k,αΛ

e,tr
k,β

δαβ

)
N k

α ⊗N k
α ⊗ ∂Ce,tr

k
Λe,tr

k,β

+
3∑

α=1

2
τk,α

Λe,tr
k,α

∂Ce,tr
k

(
N k

α ⊗N k
α

)
.

(2.59)

We take the partial derivatives of the eigenvalues

∂Ce,tr
k

Λe,tr
k,α = N k

α ⊗N k
α (2.60)

and eigenvectors

∂Ce,tr
k

(
N k

α ⊗N k
α

)
=

3∑
β ̸=α

1

2

1

Λe,tr
k,β − Λe,tr

k,α

(
Gk

αβ +Gk
βα

)
(2.61)

with
(
Gk

αβ

)ABCD
:=
(
Mk

α

)AC (
Mk

β

)BD
+
(
Mk

α

)AD (
Mk

β

)BC

M k
α := N k

α ⊗N k
α ,

(
Mk

α

)AB
:=
(
Nk

α

)A (
Nk

α

)B
.
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We also need
∂τk,α
∂εtrk,β

=
∂τk,α
∂εk,η

∂εk,η
∂εtrk,β

= (Tk)αη
∂εk,η
∂εtrk,β

(2.62)

for which we use the consistency condition, which requires the total derivative of the

residual expression (2.47) with respect to the trial principal logarithmic stretches to

equal zero
drk,α
dεtrk,β

=
∂rk,α
∂εtrk,β

+
∂rk,α
∂εk,η

∂εk,η
∂εtrk,β

= 0 (2.63)

= δαβ + (Kk)αη
∂εk,η
∂εtrk,β

= 0 .

Using (2.63), we obtain
∂εk,α
∂εtrk,β

= (Kk)
−1
αβ . (2.64)

We reach the following final form for C̃v
k,algo in the intermediate configuration

C̃v
k,algo =

3∑
α=1

3∑
β=1

(
(Tk)αη(Kk)

−1
ηβ − 2τk,αδαβ

Λe,tr
k,αΛ

e,tr
k,β

)
M k

α ⊗M k
β

+
1

2

3∑
α=1

3∑
β ̸=α

S̃k,α − S̃k,β

Λe,tr
k,α − Λe,tr

k,β

(
Gk

αβ +Gk
βα

)
.

(2.65)

One notes that there is a singularity in Equation (2.65) when two eigenvalues are

equal

lim
Λe,tr
k,α→Λe,tr

k,β

S̃k,α − S̃k,β

Λe,tr
k,α − Λe,tr

k,β

=
0

0
. (2.66)

We can use L’Hopital’s rule and take the derivative of both the numerator and the

denominator with respect to Λe,tr
k,α to get the following for equal eigenvalues

lim
Λe,tr
k,α→Λe,tr

k,β

S̃k,α − S̃k,β

Λe,tr
k,α − Λe,tr

k,β

=
1

2

(Tk)αη(Kk)
−1
ηα − 2τk,α

Λe,tr2

k,α

. (2.67)

Finally, we push forward C̄v
k,algo from the intermediate configuration to the spatial

configuration using(
C̄v

k,algo

)abcd
=
(
F e,tr
k

)a
A

(
F e,tr
k

)b
B

(
F e,tr
k

)c
C

(
F e,tr
k

)d
D

(
C̃v

k,algo

)ABCD

. (2.68)

2.5 Specific constitutive model

In this section, we propose a specific constitutive model to be used in this work that is

consistent with the general constitutive equations described for finite viscoelasticity

above.
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2.5.1 Helmholtz free energy function and effective creep rate

For the Helmholtz free energy functions, we use

U(J) =
κ

4

(
J2 − 1− 2 ln J

)
, (2.69)

Ψ̄e(Ī1, Ī2) = c1(Ī1 − 3) + c2(Ī2 − 3) and (2.70)

Ψ̄v
k(I

e
1k, I

e
2k) = cv1k(I

e
1k − 3) + cv2k(I

e
2k − 3) , (2.71)

where U is taken as the default volumetric function from FEAP (Finite Element Anal-

ysis Program) [51] that we used for the finite element implementation in Section 4.3.4.

The material parameter κ is taken large enough to enforce incompressibility. The

functions Ψ̄e and Ψ̄v
k are inspired by the Mooney-Rivlin [52,53] hyperelastic material

model. In the above equations, c1, c2, cv1k, c
v
2k are the identifiable material parameters.

We suggest the use of five Maxwell viscous branches (nbranch = 5) in the subsequent

sections to allow for a model with a high enough capacity to fit the data. We propose

a polynomial-type equation for the required effective creep rate of each branch

γ̇k =

npow∑
q=1

ak,q

(
τ vk
τ̂k

)q

, (2.72)

where ak,q and τ̂k are the identifiable material parameters in the above equation. We

use five power terms (npow = 5) for the rest of the paper. With cv1k, cv2k, τ̂k and the

coefficients ak,q of the five power terms, we have eight learnable parameters for each

branch. For the five viscous branches, in addition to the two learnable parameters of

the elastic branch, the total number of learnable parameters equals 42. The aim is to

represent this model using the recurrent neural network architecture described in the

forthcoming chapter and identify a select number of important material parameters.

2.5.2 Algorithmic setting of the constitutive model

The volumetric response requires the values of the volumetric stress p and modulus s

which we calculate as

p =
κ

2
(J2 − 1) and s =

κ

2
(J2 + 1) . (2.73)
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For the elastic part of the isochoric response, we only need to take the following first

and second order partial derivatives of Ψ̄e with respect to the invariants

∂Ψ̄e

∂Ī1
= c1 , (2.74)

∂Ψ̄e

∂Ī2
= c2 and (2.75)

∂2Ψ̄e

∂Ī21
=

∂2Ψ̄e

∂Ī2 ∂Ī1
=

∂2Ψ̄e

∂Ī1 ∂Ī2
=

∂2Ψ̄e

∂Ī22
= 0 . (2.76)

The equations of the stress τ̄ e and moduli C̄e follows from the above results

τ̄ e = 2c1b̄+ 2c2

(
Ī1b̄− b̄

2
)

(2.77)

C̄e = 4c2
(
b̄⊗ b̄− Ib̄

)
. (2.78)

Similary, for the viscous part of the isochoric response, we need the partial derivatives

of Ψ̄v
k with respect to the invariants

∂Ψ̄v
k

∂Ie1k
= cv1k and (2.79)

∂Ψ̄v
k

∂Ie2k
= cv2k , (2.80)

which gives us the equation for the stress τ̄ v
k

τ̄ v
k = 2cv1kb

e
k + 2cv2k

(
Ie1kb

e
k − be

2

k

)
. (2.81)

The evaluation of Equation (2.81) requires bek which can be obtained through Algo-

rithm 1. For the computation of local tangent (2.52), we need the following derivative

of the effective creep rate

∂γ̇k
∂εk,β

=
1

2τ̂ 2k

npow∑
q=1

qak,q

(
τ vk
τ̂k

)q−2

(Dk)β . (2.82)

Using (2.82) in (2.52), we can write the local tangent Kk in the following compact

form

(Kk)αβ = δαβ + µ1kτ
′
k,α(Dk)β + µ2k

(
T̄k
)
αβ

(2.83)

with µ1k :=
∆t

2
√
2

1

τ̂ 3k

npow∑
q=2

ak,q(q − 1)

(
τ vk
τ̂k

)q−3

and

µ2k :=
∆t√
2

γ̇k
τ vk

.
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The final quantity required to compute C̄v
k,algo and Kk is the derivative of the principal

viscous isochoric stresses

(Tk)αβ =
∂τk,α
∂εk,β

= 4Λe
k,α

[
cv1kδαβ + cv2k

(
Ie1kδαβ + Λe

k,β + 2Λe
k,βδαβ

)]
. (2.84)

We now have all the required quantities to perform an algorithmic stress update for a

finite element implementation. We summarize this stress update in Algorithm 2.

Algorithm 2: Stress and Moduli update algorithm for the specific constitu-

tive model
Given: F , ∆t, (Cv

k)n, θ = {c1, c2, cv1k, cv2k, τ̂k, ak,q}
Elastic stress and moduli:

b̄ = F̄ gF̄
T with F̄ = J−1/3F

τ̄ e = 2c1b̄+ 2c2

(
Ī1b̄− b̄

2
)

C̄e = 4c2
(
b̄⊗ b̄− Ib̄

)
Viscous stress and moduli:

Elastic Predictor: be,trk = F̄ (Cv
k)

−1
n F̄

T

Inelastic Corrector: Find values of bek and τ̄ v
k using Algorithm 1 where

τ̄ v
k = 2cv1kb

e
k + 2cv2k

(
Ie1kb

e
k − be

2

k

)
with Ie1k = tr(bek)

History variable update: Cv
k = F̄

T
bekF̄

C̃v
k,algo =

3∑
α=1

3∑
β=1

(
(Tk)αη(Kk)

−1
ηβ − 2τk,αδαβ

Λe,tr
k,αΛ

e,tr
k,β

)
M k

α ⊗M k
β

+1
2

3∑
α=1

3∑
β ̸=α

S̃k,α − S̃k,β

Λe,tr
k,α − Λe,tr

k,β

(
Gk

αβ +Gk
βα

)
(
C̄v

k,algo

)abcd
=
(
F e,tr
k

)a
A

(
F e,tr
k

)b
B

(
F e,tr
k

)c
C

(
F e,tr
k

)d
D

(
C̃v

k,algo

)ABCD

T k and Kk are calculated using Equations (2.83) and (2.84), respectively.

Combine Isochoric and Volumetric parts:

τ = pg−1 + P :

(
τ̄ e +

nbranch∑
k=1

τ̄ v
k

)

C̄ = C̄e +

nbranch∑
k=1

C̄v
k,algo

Ciso = P :

[
C̄+

2

3
(τ̄ : g) I− 2

3

(
τ̄ ⊗ g−1 + g−1 ⊗ τ̄

)]
: P

Cvol = (p+ s)g−1 ⊗ g−1 − 2pI

C = Cvol + Ciso

Return: τ , Cv
k, C
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CHAPTER 3

MODEL DISCOVERY FRAMEWORK

In this chapter, we briefly overview recurrent neural networks (RNNs) and explain

the details of the model discovery framework. We describe the recurrent unit we use

in the RNN architecture and construct the corresponding loss function explaining the

terms included. Additionally, we provide details of the algorithm employed for model

training, covering critical aspects such as derivative calculation and hyperparameter

tuning.

3.1 Recurrent neural networks

Here, we give a brief introduction of neural networks and activation functions. We

also explain the importance of recurrent neural networks in handling sequential data,

and how advanced recurrent units handle long-term dependencies effectively.

3.1.1 Neural Networks

Neural networks (NNs) are computational models inspired by the human brain. They

are designed to recognize patterns and solve problems by learning from data. Neu-

ral networks consist of layers of interconnected nodes (neurons). Each connection

has an associated weight that is adjusted during training. A typical neural network

comprises an input layer that receives data, one or more hidden layers that perform

computations, and an output layer that produces the final result. The neural network

shown in Figure 3.1 has a single input layer, two hidden layers, and one output layer.
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Figure 3.1: A simple neural network with an input layer with two nodes (blue), two

hidden layers with three nodes each (orange), and an output layer with a single node

(green). The output of this network can be calculated from the inputs using Equation

(3.1).

The output can be calculated using

h(1) = f1(W
(1)x+ b(1)) ,

h(2) = f2(W
(2)h(1) + b(2)) and

y = f3(W
(3)h(2) + b(3)) ,

(3.1)

where x is the input vector, h(i) is the hidden vector of the ith layer and y is the output

vector. W (i) are the weight matrices corresponding to the connections between the

neurons of two adjacent layers, b(i) is the bias vector of the ith layer, and fi is the

activation function of the ith layer.

3.1.2 Activation Functions

Activation functions play a critical role in neural networks by introducing nonlinear-

ities into the model, enabling it to learn complex patterns and perform tasks beyond

mere linear classification. These functions help determine the output of individual
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Figure 3.2: Plots of common activation functions for input values between -10 and

10.

neurons and, ultimately, the overall output of the network. If we remove the activa-

tion functions from Equation (3.1), the neural network would essentially function as

a linear regression model, significantly limiting its ability. Activation functions like

the ones shown in Figure 3.2 ensure that neural networks can generalize and adapt to

varied datasets, making them indispensable for effective deep learning.

3.1.3 Recurrent units

Traditional NNs like the one in Figure 3.1 assume that inputs are independent. How-

ever, many applications, including viscoelastic modeling, involve sequential data

where current inputs depend on previous ones. Recurrent neural networks (RNNs)

address this by maintaining a memory of previous inputs. In an RNN, each hidden

neuron receives inputs from the current and previous time steps, as shown in Figure

3.3, allowing the network to maintain a state over time. The hidden state hn+1 and

the output yn+1 at time step tn+1 are given by

hn+1 = fh(W xhxn+1 +W hhhn + bh) and

yn+1 = fy(W hyhn+1 + by) ,
(3.2)

where xn+1 denotes the input vector at time step tn+1, while weight matrices W and

bias-vectors b are parameters shared across all time steps of the RNN. The symbols
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Figure 3.3: A recurrent neural network architecture with each node representing ei-

ther an input x (blue), hidden h (orange), or output y (green) vector. This architec-

ture’s hidden state vectors and outputs can be calculated using Equation (3.2).

fh and fy denote activation functions of the hidden and output layers, respectively.

This structure allows RNNs to capture dependencies in sequential data. However,

standard RNNs struggle with long-term dependencies due to issues like vanishing

and exploding gradients. The vanishing gradient problem occurs when gradients be-

come exceedingly small, leading to insignificant weight updates, while the exploding

gradient problem involves gradients growing exponentially, causing unstable weight

updates. To address these problems, more advanced units such as Long Short-Term

Memory (LSTM) [54] and Gated Recurrent Units (GRU) [55] were developed.

LSTM units include input, forget, and output gates to regulate information flow, en-

abling better long-term dependency management. The input gate controls new infor-

mation addition, the forget gate discards unnecessary information, and the output gate

determines the output. The following equations can describe an LSTM cell

in+1 = σ(W xixn+1 +W hihn + bi) ,

fn+1 = σ(W xfxn+1 +W hfhn + bf ) ,

on+1 = σ(W xoxn+1 +W hohn + bo) ,

c̃n+1 = tanh(W xcxn+1 +W hchn + bc) ,

cn+1 = fn+1 ⊙ cn + in+1 ⊙ c̃n+1 and

hn+1 = on+1 ⊙ tanh(cn+1) ,

(3.3)
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where in+1, fn+1, and on+1 are the input, forget, and output gates, respectively. cn+1

is the cell state, and hn+1 is the hidden state. σ denotes the sigmoid function, and ⊙
denotes element-wise multiplication. The input gate in+1 decides which new informa-

tion to add to the cell state by processing the current input xn+1 and previous hidden

state hn. The forget gate fn+1 determines which information from the previous cell

state cn should be discarded, using the same inputs. The output gate on+1 determines

the next hidden state hn+1 by filtering the current input and previous hidden state.

The candidate cell state c̃n+1 is generated from the current input and previous hid-

den state. The new cell state cn+1 is computed by combining the previous cell state,

regulated by the forget gate, and the new candidate cell state, regulated by the input

gate. Finally, the new hidden state hn+1 is derived by applying the output gate to the

updated cell state.

GRU units streamline the gating mechanisms found in LSTM by merging the in-

put and forget gates into a single update gate and by incorporating a reset gate that

controls the influence of the past hidden state. The GRU cell operates based on the

following equations

zn+1 = σ(W xzxn+1 +W hzhn + bz) ,

rn+1 = σ(W xrxn+1 +W hrhn + br) ,

h̃n+1 = tanh(W xhxn+1 + rn+1 ⊙ (W hhhn) + bh) and

hn+1 = (1− zn+1)⊙ hn + zn+1 ⊙ h̃n+1 ,

(3.4)

where zn+1, the update gate, combines the functions of the input and forget gates

from the LSTM, deciding both which past information to retain and which new in-

formation to add. rn+1, the reset gate, determines how much of the past hidden state

hn should be forgotten, influencing the creation of the candidate hidden state h̃n+1.

The candidate hidden state h̃n+1 is generated based on the current input xn+1 and

the conditioned past hidden state, affected by the reset gate. The new hidden state

hn+1 is then calculated by a weighted update between the old hidden state and the

new candidate hidden state, as controlled by the update gate. This structure allows

GRUs to effectively manage long-term dependencies in a more streamlined manner

than LSTMs.
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3.2 Specialized recurrent unit

In this work, we build a customized recurrent unit to perform the algorithmic stress

update. The stress update is consistent with the finite viscoelastic model formulations

of the previous chapter. The recurrent unit that performs the stress update from time

tn to tn+1 is shown in Figure 3.4. Subscripts n+1 of the current time step are dropped

for convenience.

Figure 3.4: Recurrent unit representing the stress update. Subscripts n + 1 of the

current time step are dropped for convenience. Each node denotes a second-order

tensor, and we use rectangular boxes to reference equations used for the calculations.

Inputs to the recurrent unit are ∆t and F . (Cv
k)

−1
n also acts as an input coming from

the previous time step’s unit. The main output of the unit is τ , while (Cv
k)

−1 is the

secondary output fed to the next time step’s unit. The iterative update (orange ellipse)

relates to the implicit update Equation required to calculate bek and τ̄ v
k.

The inputs to the recurrent unit are the deformation gradient F and the change in

time ∆t. The internal variables (Cv
k)

−1
n of each Maxwell branch, an output from the
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previous time step’s stress update, are also an input to the recurrent unit as a hidden

state in the context of an RNN. The recurrent unit calculates the unimodular part

of the deformation gradient F̄ using F . For the elastic part of the isochoric stress,

the recurrent unit uses F̄ to calculate the invariants I1 and I2 and, subsequently, to

calculate τ̄ e. For the viscous branches, the change in time ∆t, the internal variables

(Cv
k)

−1
n , and F̄ act as inputs to the iterative update scheme that outputs bek and τ̄ v

k.

Adding up the τ̄ v
k of each branch and τ̄ e gives us the total isochoric Kirchhoff stress τ̄ .

The recurrent unit uses boundary conditions to calculate the pressure p. The addition

of p1 and τ̄ results in the final output, the total Kirchhoff stress τ . Additionally, a

pull-back operation on bek outputs the internal variables (Cv
k)

−1 that act as inputs to

the next time step’s recurrent unit.

3.3 Loss function

We assume that sufficient data, either generated synthetically or obtained from physi-

cal experiments, is available to characterize the macroscopic finite viscoelastic behav-

ior of the material in question. The dataset comprises multiple temporal sequences,

each representing a distinct loading path where an evolving deformation gradient F

is applied over time, resulting in corresponding stress measurements τ at each time

step. We regard z
(s)
n =

(
F (s)

n , τ
(s)
n , t

(s)
n

)
as a data point at time tn of experiment

number s. Let D =

{{
z
(s)
n

}Ns

n=1

}nexp

s=1

denote the training dataset where Ns is the

total number of time steps of experiment number s, and nexp is the total number of

experiments. We define the set of identifiable parameters as θ, and nparams denotes the

number of identifiable parameters. We construct the loss function,

L(θ;D) =
1(

nexp∑
s=1

Ns

) nexp∑
s=1

Ns∑
n=1

∥∥∥∥τ̂(θ;{F (s)
i , t

(s)
i

}n

i=1

)
− τ (s)

n

∥∥∥∥2 + η1

nparams∑
j=1

|θj|

(3.5)

where τ̂ is the predicted value of the stress as a function of the history of the inputs F

and t up to the current time step. τ is the true value of the stress and ∥·∥ :=
√

(·) : (·)
denotes the norm of a second-order tensor. The first term quantifies the accuracy of

the RNN’s predictions by calculating the mean squared error of the predicted stresses.
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An additional L1-regularization term, which calculates the sum of the absolute value

of the parameters, is incorporated to promote sparsity. The strength of the spar-

sification is controlled by the regularization parameter η1. As shown in [56], the

L1-regularization term pushes some of the learnable parameters to zero, resulting in

interpretable models with a few meaningful non-zero parameters.

3.4 Model training

In the process of model training, values of material parameters are identified that

minimize the loss function constructed in Equation (3.5)

min
θ

L(θ;D) . (3.6)

We use the so-called Adam optimizer [57] for the gradient-based optimization of the

defined problem. Calculating the output stresses at each time step requires an iterative

update, as shown in Figure 3.4. The iterative update necessitates the calculation of

the derivatives analytically as commonly used automatic differentiation (AD) is not

possible due to the information flow in the RNN architecture not being unidirectional.

Supplying derivatives and allowing the stress update to have an implicit update equa-

tion permits using very few data points with bigger time steps to train the model, as

the implicit update scheme is unconditionally stable. One can see all the parameter

identification algorithm steps in Algorithm 3.

The parameter identification algorithm operates by taking the following inputs: a

training dataset D, a randomly initialized set of identifiable parameters θ, the number

of update steps nsteps, and a specific set of hyperparameters. We initialize the iden-

tifiable parameters with small random values to break symmetry and to avoid large

initial values that could potentially overshoot towards zero in the first few steps. It is

important to note that a non-negativity constraint is included within the algorithm to

ensure thermodynamic consistency; this condition sets any parameter that becomes

negative after an update to zero. The process runs for the designated nsteps, during

which θ is updated at each iteration. The algorithm loops through each experiment

within D, and within each experiment, it proceeds through the complete temporal

sequence. At every time step, the stress and derivative update is performed. Once
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Algorithm 3: Optimization algorithm
Input: Training dataset D, Randomly initialized parameters θ, Number of

update steps nsteps, Set of hyperparameters α, η1, β1, β2

Output: Learned parameters θ

Initialize moment estimates for Adam optimizer

mj = 0, vj = 0 for j = 1 to nparams ;

for l = 1 to nsteps do
Initialize derivatives of parameters with respect to loss
dL

dθj
= 0 for j = 1 to nparams ;

for s = 1 to nexp do
Initialize internal variable and it’s derivative
I0 = 0,

dI0

dθj
= 0 for j = 1 to nparams ;

for n = 1 to Ns do

τ̂n,In = stress_update (θ,F n,∆tn,In−1) ;

dτ̂n

dθ
,
dIn

dθ
= derivative_update

(
θ,F n,∆tn,In−1

dIn−1

dθ
,In

)
;

dL

dθj
← dL

dθj
+ 2

∥∥∥τ̂n − τ (s)
n

∥∥∥ dτ̂n

dθj
for j = 1 to nparams ;

end

end

dL

dθ
←

(
nexp∑
s=1

Ns

)−1
dL

dθ
;

for j = 1 to nparams do

mj = β1(mj) + (1− β1)

(
dL

dθj

)
;

vj = β2(vj) + (1− β2)

(
dL

dθj

)2

;

m̂j =
mj

1− (β1)l
, v̂j =

vj
1− (β2)l

;

θj ← θj − α

[(
m̂j√

v̂j + 1× 10−8

)
+ η1

θj
|θj|

]
end

end

return θ ;
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all experiments have been processed for all time steps, the derivatives are averaged

across the total number of data points. Subsequently, the algorithm updates the mo-

ment estimates used by the Adam optimizer and updates each one of the identifiable

material parameters. Ultimately, the algorithm concludes by returning an optimized

set of identified parameters θ.

3.4.1 Calculation of Derivatives

For the calculation of derivatives of the loss function, we require the derivative of the

output stresses with respect to the material parameters. From Equation (3.5), we see

that the predicted stress τ̂ depends on the entire history of inputs up to that time step.

Based on Equation (2.2) and our use of an RNN to represent the stress update, we

can use the reduced form for the Kirchhoff stress τ n+1 at time tn+1 in terms of the

temporal inputs and internal variables

τ n+1 = τ̂ (θ,F n+1,∆tn+1;In+1) , (3.7)

where F n+1 and ∆tn+1 are inputs at the current time step as shown in Figure 3.4,

while In+1 represents the internal variables. The calculation of the internal variables

requires another equation describing their evolution. We can write the general form

of the nonlinear update equation governing the evolution of the internal variables as

f (θ,In,F n+1,∆tn+1;In+1) = 0 (3.8)

which requires an iterative update scheme to be solved. Equations (3.7) and (3.8)

constitute the total stress update from time tn to tn+1. The values of τ n+1, In+1, and

In depend on the set of learnable parameters θ and only F n+1 and ∆tn+1 are fully

independent inputs to this system of equations. If we take the derivative of Equations

(3.7) and (3.8) with respect to a single parameter θj , we obtain

dτ n+1

dθj
=

∂τ̂

∂θj
+

∂τ̂

∂In+1

:
dIn+1

dθj
(3.9)

∂f

∂θj
+

∂f

∂In

:
dIn

dθj
+

∂f

∂In+1

:
dIn+1

dθj
= 0 (3.10)

Equations (3.9) and (3.10) constitute the analytical recurrent derivative update from

time tn to tn+1. The solution of these equations gives us the derivative of the current
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time step’s stress dτ n+1/dθj and internal variables dIn+1/dθj with respect to the pa-

rameter θj . The derivative of the previous internal variables dIn/dθj comes from the

previous time step’s derivative update. During the identification procedure, the algo-

rithm executes both the stress and derivative updates at each time step, as shown in

Algorithm 3. We refer the interested reader to the work of Mahnken and Stein [58],

which provides a detailed formulation for the calculation of the analytical derivatives

for internal variables-based material models and the related stability investigations

for the identification procedure. For the exact equations of the stress and derivative

update of the homogenous uniaxial response for the model used in the framework,

please see Appendix A. In this work, we used no deep-learning libraries for the op-

timization algorithm, the stress update procedure, or the derivative update procedure.

All functions were implemented using Python and its NumPy [59] library.

3.4.2 Hyperparameter Tuning

The identification procedure in Algorithm 3 requires the user to provide the four hy-

perparameters. The characteristics of the four hyperparameters are as follows:

• The learning rate α controls the size of the step taken in the direction of the

calculated gradient.

• The regularization parameter η1 penalizes the magnitude of the coefficients to

prevent overfitting and promote sparsity.

• The first-moment β1 and second-moment β2 hyperparameters, relating to the

Adam optimizer, control the exponential decay rate for the moving averages of

past gradients and past squared gradients, respectively.

A small learning rate ensures avoiding overshooting the minimum but slows down

the overall convergence. On the other hand, a larger learning rate can accelerate

convergence but might overshoot the minimum. For the regularization parameter, a

larger η1 can lead to underfitting if too large, oversimplifying the model. Conversely,

a smaller value of η1 may result in an uninterpretable complex model with more than

necessary non-zero parameters. For all the representative examples in the subsequent
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chapter, we set β1 to 0.9 and β2 to 0.999, as the original paper that introduced the

Adam optimizer recommended [57].

We find reasonable values of α and η1 by multiple short runs of training the model

with small changes to the values of both hyperparameters. We begin with an ini-

tial learning rate α = 1 × 10−3, which we observed to produce a continuous and

gradual decrease in loss without oscillations when training without regularization on

our datasets. Starting with α = 1 × 10−3, we chose an initial value of 1 for η1 as

this resulted in an increase in loss during training on the datasets, indicating over-

regularization. With this combination, we expect the initial training run to produce an

oversimplified model with low accuracy, reflecting underfitting of the dataset.

The next step is to decrease η1 in a logarithmically spaced sequence: 1, 3 × 10−1,

1× 10−1, 3× 10−2, and so on, until the model’s loss plot shows a consistent decrease

during the entire short training run instead of increasing or flattening at a high value.

Once we finalize η1, we proceed to increase the learning rate α in the sequence:

1 × 10−3, 3 × 10−3, 1 × 10−2, and 3 × 10−2, progressively. We continue this until

the final run’s lowest loss is greater than that of the previous run, indicating potential

overshooting. We then select the penultimate α value.

We run each combination of α and η1 for 1000 update steps to identify the optimal

combination. Using the final selected hyperparameters, we conduct an extended run

of 10,000 update steps to finalize the model. The value of 10,000 was chosen for the

number of steps because the number of non-zero parameters stabilized before the end

of the extended training run for the datasets used in this study. From these 10,000

update steps, we select the learnable parameters corresponding to the lowest loss as

the final result.
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CHAPTER 4

REPRESENTATIVE EXAMPLES

This chapter showcases the proposed framework’s applicability to perform model

discovery on different datasets. We generate the first dataset synthetically using the

model proposed in Section 2.5. The other two datasets are experimental datasets ob-

tained from the literature: one of the VHB 4910 polymer [45], and another of the

HNBR50 polymer [11]. We train the model on each dataset’s training split and evalu-

ate the predictions on the test split, which is unseen during training. Moreover, we as-

sess the performance of the model learned on the HNBR50 polymer’s dataset through

a finite element simulation and compare the results with shear loading experimental

data.

4.1 Synthetic Data

We generate the synthetic data using a reduced version of the specific constitutive

model proposed in Section 2.5. We use two Maxwell viscous branches (nbranch = 2)

in addition to the elastic branch

Ψ̄e(Ī1, Ī2) = c1(Ī1 − 3) + c2(Ī2 − 3) (4.1)

Ψ̄v
k(I

e
1k, I

e
2k) = cv1k(I

e
1k − 3) + cv2k(I

e
2k − 3) for k = 1, 2 (4.2)

Furthermore, we use five power terms in the effective creep rate (npow = 5) with only

one term active in each branch.

γ̇k =
5∑

q=1

ak,q

(
τ vk
τ̂k

)q

(4.3)
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4.1.1 Data

We have summarized the values of the material parameters used to generate the data

under the column labeled "True" in Tables 4.1 and 4.2. The two active values of

the coefficients ak,q are different in their magnitudes to simulate the activation of the

viscoelastic behavior of each branch at different loading rates. Moreover, we use

different orders of the active power terms - 5th for the first branch and 2nd for the

second branch - to simulate different levels of nonlinearity in the viscous response.

We generate the temporal sequences of data by simulating a homogenous uniaxial

tension-compression loading that starts at the undeformed state λ1 = 1 and is loaded

up to a maximum tensile stretch of λmax
1 = 3 and a minimum compressive stretch of

λmin
1 = 0.75 as shown in Figure 4.1.

Figure 4.1: Uniaxial tension-compression loading plot for the absolute stretch rate

|λ̇1|. The loading starts at the undeformed state λ1 = 1. Then it is loaded to a maxi-

mum tensile stretch of λmax
1 = 3 followed by unloading and subsequent compressive

loading to a minimum compressive stretch of λmin
1 = 0.75. Finally, the compressive

load is removed to return to the undeformed state.

We simulate the loading using four different stretch rates, |λ̇1| = 5× 10−3, 5× 10−2,

5 × 10−1, 5 s−1, and store data points at time steps ∆t = 0.05/|λ̇| s. The resultant

uniaxial nominal stress P11 against the uniaxial stretch λ1 of the generated data can

be seen in Figure 4.2
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Figure 4.2: Uniaxial nominal stretch-stress response of the synthetically generated

dataset. The response is stiffer for higher loading rates (c) and (d) as relaxation of

the stress of the second viscous branch, with a smaller coefficient a2,2 = 0.10 in γ̇2,

is relatively slower. The relaxation over time is smoother for the slowest rate (a)

compared to the highest one (d) due to the difference in order of the selected power

terms.
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4.1.2 Parameter Identification

For the parameter identification, we train the model using only sequences of the

fastest and slowest loading rates. Instead of using the entire sequence, we sample

every fourth data point to make the training process faster and showcase the frame-

work’s ability to identify parameters with scarce data availability. The sampling is

shown in Figure 4.3.

Figure 4.3: Training sampling of the synthetic dataset using the uniaxial nominal

stretch-stress response corresponding to the slowest (a) and fastest (b) loading rates.

Every fourth data point (blue) is selected from the original sequence (black).

Using the hyperparameter tuning instructions detailed in Section 3.4.2, we identify

the suitable combination of hyperparameters as α = 1 × 10−2 and η1 = 3 × 10−1.

We execute two separate training sessions with 10,000 update steps (nsteps = 10, 000)

following Algorithm 3. The first session included regularization (η1 = 3 × 10−1),

while the second had no regularization (η1 = 0). We select the final set of parameters

corresponding to the lowest loss of each training session.

For plotting the loss, we use only the first term in Equation (3.5), quantifying the

accuracy of the predictions. The variation in the loss of both training sessions against

the step number is shown in Figure 4.4. The training without regularization resulted

in a lower loss compared to the regularized model. We anticipated this outcome, as

regularization tends to drive the learnable parameters towards zero, which reduces ac-
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curacy but helps prevent overfitting. However, the minimal difference in loss suggests

that the regularized model, despite having significantly fewer parameters as reported

in Table 4.2, learned the training dataset almost as effectively.

Interestingly, we observe intermittent spikes in the loss curves of both training ses-

sions. Upon investigation of the evolution of the learnable parameters around these

spikes, we found these spikes occur when a previously inactive branch (with zero

cv1k or cv2k) becomes active (non-zero cv1k or cv2k). This activation increases the overall

elastic response, causing the derivatives of cv1k and cv2k of other branches to indicate

decreasing these parameters to fit the dataset better. Such disturbances induce an os-

cillation in the derivatives, but the Adam optimizer, crafted to accelerate convergence,

quickly suppresses these oscillations.

Figure 4.4: Semi-logarithmic plot of the training loss for the synthetically generated

data versus the update-step number of the parameter identification procedure. The

loss associated with the procedure run without regularization (blue) is lower than that

with regularization (orange).

4.1.3 Results

For the training procedure, we used only a sparsely sampled subset of the loading

sequences of the two extreme (fastest and slowest) loading rates, excluding the data

43



corresponding to the intermediate loading rates. We plot the predictions of the learned

models on both the training and testing splits of the dataset in Figure 4.5.

Firstly, we observe no visible difference between the predictions of the models learned

with and without regularization. For the training split, the simulations and data are

closely aligned, which was expected since the model used to generate the data is the

same as the one that was trained. This means that the model’s capacity to fit the data

is sufficient. However, the fit on the test split is not as precise, though we still con-

sider it highly satisfactory. We attribute this imprecision to the training data not being

comprehensive enough to characterize the overall behavior of the material.

In addition to evaluating the model’s accuracy in fitting the data, we also examine the

framework’s capability to produce interpretable models with few non-zero parame-

ters. We present the parameters used to generate the data and the learned parameters

in Tables 4.1 and 4.2. We already know from Figures 4.4 and 4.5 that predictions

of the models trained with and without regularization show negligible differences.

However, for the identified parameters of the elastic branch reported in Table 4.1, the

values obtained using regularization are closer to the true values than those obtained

without regularization.

Table 4.1: True and identified material parameters of the elastic branch for the syn-

thetically generated data set

Elastic Branch

Parameter True Identified

(η1 = 0)

Identified

(η1 = 3× 10−1)

c1 (MPa) 0.10 0.03 0.10

c2 (MPa) 0.10 0.09 0.09

For the identified parameters of the viscous branches reported in Table 4.2, we ob-

serve many non-zero identified parameters for the model learned with η1 = 0. All

the viscous branches are active, which is unnecessary since we generate the data

using only two branches. With this set of identified parameters, we can make no as-

sumptions about the underlying viscous behavior of the material. Additionally, the
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Figure 4.5: Predictions of the learned models on the synthetically generated uniax-

ial nominal stretch-stress response. Subplots (a) and (d) represent the fastest and

slowest loading rates used for training, while subplots (b) and (c) show intermediate

loading rates from the test split. Simulations of the regularized η1 = 3 × 10−1 and

unregularized η1 = 0 models show no difference.
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learned model is computationally inefficient for finite element implementation due to

the many non-zero parameters and excessive viscous branches.

In contrast, the model learned with η1 = 3 × 10−1 accurately identifies the need for

only two active viscous branches. Moreover, branch number 1 has an active coeffi-

cient corresponding to the 5th power term, matching branch number 1 of the original

model. Similarly, branch number 5 of the learned model has the highest coefficient

for the 2nd power term, aligning with branch number 2 of the model used for gener-

ating the data. Even though the learned parameters of the regularized model are not

exactly the same as the original model, we can infer that the material exhibits viscous

phenomena at two distinct loading rates and understand the nonlinearity of the vis-

coelastic behavior. Moreover, the regularized model’s computational efficiency for

finite element implementation will be considerably higher than the implementation

of the model learned without regularization.

Table 4.2: True and identified material parameters of the viscous branches for the

synthetically generated data set

Branch Number

True Identified (η1 = 0) Identified (η1 = 3× 10−1)

Parameter 1 2 1 2 3 4 5 1 2 3 4 5

cv1 (MPa) 0.40 0.20 0.32 0.07 0.03 0.07 0.09 0.21 - - - 0.18

cv2 (MPa) - - 0.14 - - 0.02 0.03 0.25 - - - 0.04

τ̂−1 (MPa−1) 1.00 1.00 2.05 - 0.86 0.48 0.45 1.90 - - - 0.20

a1 - - - - 0.20 0.02 - - - - - 0.02

a2 - 0.10 - 0.31 3.27 2.40 1.65 - - - - 1.79

a3 - - - 0.87 2.51 3.86 0.57 - - - - 1.32

a4 - - - 0.88 2.91 4.21 0.05 - - - - -

a5 100.00 - 3.19 0.34 1.85 2.01 0.40 4.18 - - - -

4.1.4 Robustness of identification in the presence of noise

In this section, we analyze the robustness of the parameter identification procedure in

the presence of noise in the experimental data. We again generate the synthetic data

set visualized in Figure 4.2 but with added Gaussian noise. We plot the generated

noisy data in Figure 4.7 where we add the noise by sampling random values drawn

from a normal distributionN (µ, σ) with a mean µ of zero and a standard deviation σ
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of 0.1 MPa.

Figure 4.6: Semi-logarithmic plot of the training loss for the synthetically generated

noisy data versus the update-step number of the parameter identification procedure.

Similar to the training sampling illustrated in Figure 4.3, we select the fastest and

slowest experiments from the noisy dataset and sample every fourth data point. We

execute the training procedure with regularization (η1 = 3× 10−1) and plot the train-

ing loss for the parameter identification of the noisy dataset in Figure 4.6. Due to

the added noise, the loss values are higher in Figure 4.6 than those in Figure 4.4, that

is obtained through training on the dataset without noise. We also observe similar

spikes, indicating inactive branches’ activation during training.

The predictions of the learned model shown in Figure 4.7 illustrate that the learned

model accurately predicts the nonlinear viscoelastic behavior of the training and test

data even in the presence of noise. We also report the parameters used to generate the

data and the learned parameters in Tables 4.3 and 4.4. For the elastic branch, similar

to the previous section, the values of the true and identified parameters are close.

For the identified parameters of the viscous branches reported in Table 4.4, we first

notice that the model correctly predicts the need for two branches to characterize the

behavior. Moreover, it predicts the nonlinearity of the two branches sufficiently. The

power term with the highest value in the first branch of the identified model matches
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Figure 4.7: Predictions of the learned model on the synthetically generated noisy data.

Table 4.3: True and identified material parameters of the elastic branch for the syn-

thetically generated noisy data set

Elastic Branch

Parameter True Identified

c1 (MPa) 0.10 0.09

c2 (MPa) 0.10 0.12
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the first branch of the model used to generate the data. Moreover, the third power

term has the maximum value for the fifth branch of the learned model that is close to

the active second power term of the second branch of the true model.

Table 4.4: True and identified material parameters of the viscous branches for the

synthetically generated noisy data set

Branch Number

True Identified

Parameter 1 2 1 2 3 4 5

cv1 (MPa) 0.40 0.20 0.02 - - - 0.20

cv2 (MPa) - - 0.49 - - - -

τ̂−1 (MPa−1) 1.00 1.00 1.82 - - - 0.20

a1 - - - - - - -

a2 - 0.10 - - - - 1.57

a3 - - - - - - 3.17

a4 - - 0.72 - - - 0.10

a5 100.00 - 3.66 - - - 0.09

The results obtained by training the model on data with added noise show the frame-

work’s robustness in accurately predicting the viscoelastic behavior and identifying

important characteristics of the material, even in the presence of noise in the experi-

mental data.

4.2 VHB 4910 polymer Data

In this section, we train the model and evaluate the results using the experimental

dataset of the VHB 4910 polymer. We selected this dataset because it has been pre-

viously used for validation by similar studies on data-driven approaches to finite vis-

coelasticity [43, 44].
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4.2.1 Data

The VHB 4910 polymer is a commercially available acrylic polymer. The dataset we

use was generated by Hossain et al. [45] through tensile loading and unloading exper-

iments at different stretch rates. Figure 4.8 shows 11 uniaxial loading sequences from

the dataset, where the specimen is loaded to four distinct maximum deformations of

λ1 = 1.5, 2.0, 2.5, and 3.0 at three different loading rates: |λ̇1| = 0.01, 0.03, and

0.05 s−1.

Figure 4.8: Uniaxial nominal stretch-stress response of the VHB 4910 polymer under

tensile loading and unloading. Subplots (a), (b), (c), and (d) correspond to maximum

deformations of λ1 = 1.5, 2.0, 2.5, and 3.0, respectively. Each maximum deformation

is loaded at three distinct loading rates, except for λ1 = 3.0, which is loaded at two.
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4.2.2 Parameter identification

For model training, we split the dataset into training and test sets. The training set

consists of the two loading sequences corresponding to the highest maximum defor-

mation of λ1 = 3.0 illustrated in subplot (d) of Figure 4.8. This set should com-

prehensively characterize the viscoelastic behavior represented in the other loading

sequences. Similar to the approach used for the synthetically generated data, we

sample every fourth data point from the training set. We ensure that we preserve

the curve’s shape characteristics when we sparsely sample the data for faster model

training. Figure 4.9 illustrates the training sampling.

Figure 4.9: Training sampling of the VHB 4910 polymer data using the uniaxial

nominal stretch-stress response for the two rates at the maximum deformation of λ1 =

3.0. Every fourth data point (blue) is selected from the original sequence (black).

We tune and identify the optimal hyperparameters as α = 1×10−3 and η1 = 1×10−1.

Using these hyperparameters, we perform an extended run of 10,000 learnable pa-

rameter update steps and select the final parameters corresponding to the lowest loss

within these steps. The progression of the root mean squared error loss is illustrated

in Figure 4.10.

The training reaches a loss value lower than 1 × 10−4 kPa within the 10,000 steps,

which is sufficiently low, and the learned model should accurately fit the training

data. We have explained the reasoning behind the spikes observed in the loss curves
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Figure 4.10: Semi-logarithmic plot of the training loss for the VHB 4910 polymer

data versus the update-step number during the parameter identification procedure.

in Section 4.1.2.

4.2.3 Results

We selected the sparsely sampled temporal sequences loaded to the highest maximum

deformation of λ1 = 3.0 at the fastest and slowest loading rates to train the model.

We plot the predictions of the learned model on both the training and testing splits of

the dataset in Figure 4.11.

The model’s predictions on the training data are accurate. For the predictions on the

test data, we observe satisfactory predictions of the maximum nominal stresses and

relatively adequate alignment of the loading and unloading curves for the maximum

deformations λ1 = 1.5 and 2.0. However, the model’s predictions on the stretch-

stress response for the maximum deformation of λ1 = 2.5 are inadequate. The results

of the model learned using this framework are on par with previous studies that used

this dataset. The original study [45] that produced this dataset, as well as later stud-

ies employing data-driven approaches [43, 44], to characterize this dataset reported

similar inadequacies in the prediction of this dataset.
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Figure 4.11: Predictions of the learned model on the VHB 4910 polymer’s uniaxial

nominal stretch-stress response. Solid lines represent the simulations, and the scatter

plot represents the experimental data. Subplot (d) shows the training data, while

subplots (a), (b), and (c) present the model’s predictions on the test data.
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Figure 4.12: Inconsistency in the experimental data (a, b) and consistency in the

learned model’s simulations (c, d). Subplots (a) and (b) illustrate the misalignment

of the stretch-stress response in the experimental data for a specific loading rate at

different maximum deformations. In contrast, subplots (c) and (d) demonstrate that

the learned model’s simulations align.
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We analyze the experimental dataset by plotting the loading and unloading curves of

the same loading rate together in Figure 4.12. The figure reveals misalignment in the

loading curves for the same loading rate, which should align, indicating a possible

error in the conducted experiments. The curve showing the highest misalignment

corresponds to the maximum deformation of λ1 = 2.5, the subset for which our

model’s predictions were the most inaccurate. On the other hand, the simulations

produced by the learned model for the same loading rates show perfect alignment of

the loading curves. This alignment demonstrates that our model maintained physical

consistency by not fitting to inconsistent data, a quality that might not be present if

we used a black-box neural network.

Table 4.5: Identified material parameters of the elastic branch for the VHB 4910

polymer

Parameter Elastic Branch

c1 (kPa) 0.08

c2 (kPa) -

We report the identified elastic branch parameters in Table 4.5. Only the c1 parameter,

corresponding to the first invariant Ī1 term in the free energy function, is non-zero.

The second parameter, c2, associated with the second invariant Ī2, is zero. The second

invariant Ī2 relates to the response under changes in cross-sectional area, which is

highly active during compressive loading. Since the VHB 4910 polymer dataset does

not include compressive loading data, this explains why c2 is zero.

Similar to the elastic branch, only the parameters corresponding to the first invariant

Iv1k are active in the viscous branch, as summarized in Table 4.6. The identified pa-

rameters show that only two viscous branches are needed to fit the training data. The

algorithm outputs an efficient constitutive model with eight non-zero identified pa-

rameters, a significant reduction from the available 42 parameters. Additionally, the

active coefficients correspond only to the first power term, indicating that the dataset

requires only a model of linear viscoelasticity to characterize the behavior. This indi-

cation contrasts with the suggestion made by Hossain et al. [45] to use finite nonlinear

viscoelasticity to improve the accuracy of the predictions.
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Table 4.6: Identified material parameters of the viscous branches for the VHB 4910

polymer

Branch Number

Parameter 1 2 3 4 5

cv1 (kPa) 0.29 - 0.07 - -

cv2 (kPa) - - - - -

τ̂−1 (kPa−1) 0.77 - 0.11 - -

a1 0.55 - 0.31 - -

a2 - - - - -

a3 - - - - -

a4 - - - - -

a5 - - - - -

4.3 HNBR 50 polymer Data

We selected the experimental dataset of the HNBR50 polymer due to the highly non-

linear viscoelastic behavior exhibited by the material. Interestingly, previous data-

driven approaches have yet to attempt to characterize the behavior of the HNBR50

polymer. Past efforts have exclusively relied on micromechanically-motivated mod-

els [11, 12, 46, 47].

In this section, we train the model and evaluate the results using the experimental

data of the HNBR50 polymer. Additionally, we implement the discovered model in a

finite element program to demonstrate the framework’s compatibility with simulation

software and compare the simulation results with actual experimental data.

4.3.1 Data

We obtained this dataset containing experimental data for a highly saturated nitrile

rubber (HNBR50) from the study by Miehe and Göktepe [11], which develops the

micro-sphere model of finite rubber viscoelasticity. The dataset includes data from
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homogeneous uniaxial experiments: tension-compression cyclic loadings (Figure 4.13),

compressive cyclic loadings (Figure 4.17), and tension-compression cyclic loading

with relaxation breaks (Figure 4.18). Additionally, the dataset contains data from a

non-homogeneous three-dimensional experiment using a hyperboloid specimen (Fig-

ure 4.21).

Figure 4.13: Uniaxial nominal stretch-stress response of the HNBR50 polymer under

tension-compression cyclic loading. The specimen is loaded for two cycles at three

distinct loading rates: |λ̇1| = 5×10−2, 5×10−1, and 5 (1/min) between maximum and

minimum stretch values of λmax
1 = 2.0 and λmin

1 = 0.75, respectively. The response is

stiffer, and the hysteresis is larger at higher loading rates.

4.3.2 Parameter identification

For the parameter identification procedure, we select two temporal sequences corre-

sponding to the fastest |λ̇1| = 5 (1/min) and slowest |λ̇1| = 5× 10−2 (1/min) loading

rates of the tension-compression cyclic loading experiments. We will test the model
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learned using these data sequences on the rest of the dataset. Similar to the approach

used for the other two datasets, we sample every tenth and fifteenth data point from

the slowest and fastest loadings, respectively. We select the sampling intervals, ensur-

ing we do not lose the definition of the viscoelastic response. The training sampling

is shown in Figure 4.14.

Figure 4.14: Training sampling of the HNBR50 polymer data using tension-

compression cyclic loading for the two extreme loading rates (fastest and slowest).

Every tenth data point (blue) is selected from the original slowest sequence (black),

and every fifteenth data point (blue) is selected from the original fastest sequence

(black).

We tune the hyperparameters through repeated training procedures with incremental

adjustments, as detailed in Section 3.4.2. The final combination of hyperparameters

is found to be α = 3 × 10−3 and η1 = 3 × 10−1. Using these values, we execute the

parameter identification procedure with Algorithm 3 for an extended 10,000 update

steps. The progression of the loss, specifically the first term in Equation (3.5), which

quantifies accuracy, is shown in Figure 4.15.

In Figure 4.15, we observe that the loss has flattened on the logarithmic axis to a value

below 1 × 10−3 MPa, indicating convergence of the training procedure. As reported

with the other datasets in previous sections, we observe a spike, suggesting the ac-

tivation of a previously inactive viscous branch. We select the final set of learnable

parameters corresponding to the lowest loss among the 10,000 update steps.
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Figure 4.15: Semi-logarithmic plot of the training loss for the HNBR50 polymer data

versus the update-step number during the parameter identification procedure.

4.3.3 Results

We trained the model using data from the fastest and slowest tension-compression

loading experiments, excluding the data corresponding to the intermediate loading

rate. Figure 4.16 shows the experimental data and the learned model’s predictions

on the nominal stretch-stress response for each tension-compression cyclic loading

experiment.

The learned model effectively captures the rate-dependent response in the training

data, as shown in Figure 4.16 subplots (b) and (d). Additionally, the simulation

for the intermediate loading rate in subplot (c) adequately matches the experimen-

tal data, demonstrating the model’s excellent interpolation capabilities for unseen

data. Overall, the results highlight the relatively simple model’s ability to charac-

terize the nonlinear viscoelastic behavior of the material as accurately as previous

attempts [11, 12, 46, 47].

We further investigate the learned model’s capability to fit unseen data from cyclic

compressive loading experiments. We did not train the model using any of the loading

sequences shown in Figure 4.17. The model’s simulation curves align closely with

the experimental data corresponding to the slowest loading rate. While the model’s
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Figure 4.16: Experimental data and corresponding learned model simulations of the

HNBR50 polymer under tension-compression cyclic loading. Subplots (b) and (d)

show predictions on the training data for the slowest and fastest loading rates, respec-

tively. Subplot (c) presents the model’s prediction on the unseen intermediate loading

rate data.
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Figure 4.17: Experimental data and corresponding learned model simulations of the

HNBR50 polymer under cyclic compressive loading. Subplot (a) presents the ex-

perimental data for three loading rates: |λ̇1| = 5 × 10−2, 5 × 10−1, and 5 (1/min).

Subplots (b), (c), and (d) show the model’s predictions on the unseen cyclic compres-

sive loading experimental data.
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predictions for the two faster loading rates could be more precise, the results are still

adequate and comparable to previous efforts fitting this data.

Figure 4.18: Experimental data and learned model simulations of the HNBR50 poly-

mer under tension-compression loading at a rate of |λ̇1| = 3 (1/min) with 12 one-hour

relaxation breaks. Subplot (a) shows the nominal stress versus stretch, while subplot

(b) shows the nominal stress versus time for the same experiment.

Furthermore, we analyze the model’s ability to characterize the viscous behavior in

relaxation curves obtained from cyclic tension-compression loading with 12 one-hour

relaxation breaks. The experimental data and the model’s simulations are shown in

Figure 4.18. We observe that the predictions of the learned model are fairly adequate

compared to past attempts. Overall, we demonstrate that the proposed framework suf-

ficiently captures the finite nonlinear viscoelastic behavior of the HNBR50 polymer

using a much simpler model.

Table 4.7: Identified material parameters of the elastic branch for the HNBR50 poly-

mer

Parameter Elastic Branch

c1 (MPa) 0.11

c2 (MPa) 0.17

We examine the two identified material parameters of the elastic branch, as reported

in Table 4.7. Both parameters corresponding to the two invariants are active. The
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training process identifies a larger value for the c2 parameter, indicating that changes

in the specimen’s cross-sectional area more influence the underlying elastic response,

which is especially significant under compression.

Table 4.8: Identified material parameters of the viscous branches for the HNBR50

polymer

Branch Number

Parameter 1 2 3 4 5

cv1 (MPa) 0.36 - - - 0.08

cv2 (MPa) - - - - -

τ̂−1 (MPa−1) 2.61 - - - 0.44

a1 - - - - 0.02

a2 - - - - 0.86

a3 5.92 - - - 6.04

a4 13.30 - - - 8.13

a5 13.45 - - - 4.12

The identified parameters are reported in Table 4.8 for the viscous part. The training

procedure reveals that only two viscous branches are necessary, and the active power

terms indicate the need for a nonlinear viscoelastic model to characterize the behav-

ior of the HNBR50 polymer. Additionally, we observe that the cv1 parameter of one

branch is approximately four times higher than that of the other, indicating that one

branch exhibits significantly more stress relaxation. Finally, the τ̂ parameters suggest

that the two branches’ viscous behavior activates at different loading rates.

4.3.4 Finite Element Implementation

In the previous section, we analyzed the learned model’s ability to capture the nonlin-

ear viscoelastic behavior of the HNBR50 polymer for homogeneous uniaxial loading

experiments. In this section, we implement the same learned model in the finite ele-

ment analysis program (FEAP) [51] and simulate three-dimensional non-homogeneous

experiments to compare with experimental data. The geometry and spatial discretiza-
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tion of the specimen into 1,152 eight-node Q1P0 mixed brick finite elements are

shown in Figures 4.19 and 4.20.

Figure 4.19: Geometry and spatial discretization of the specimen for the finite element

analysis. All three axes are in millimeters.

The bottom face of the specimen is fixed, while the top face is deformed only in the

x-direction, with movement in the y and z-directions constrained, as shown in Figure

4.20. The actual experiment involved loading the specimen up to a displacement of 10

mm in the positive and negative x-directions for two cycles at two different absolute

loading rates, |u̇(t)| = 4 and 40 mm/min. For the simulations, we divided each cycle

into 240 time steps. Further refinement of the time step has not led to any significant

changes in the results. The load versus deflection curves of the experiments and the

corresponding simulations are illustrated in Figure 4.21.

The load-deflection curves in Figure 4.21 show that the learned model sufficiently

predicts the maximum loads and reasonably approximates the hysteresis curves. The

simulations do not indicate non-physical behavior, as the model is physics-informed

from the outset and computationally efficient for finite element implementation. Al-

though the curves do not precisely align, these results demonstrate the model’s capa-

bility to be integrated into finite element software and adequately predict the nonlin-
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Figure 4.20: Geometry and spatial discretization of the specimen for the finite element

analysis. The bottom face, aligned with the x-axis, is fixed in all directions, while the

top face is constrained in the y and z-directions. The prescribed displacement in the

x-direction on the top face is labeled with u(t). All dimensions are in millimeters.

Figure 4.21: Load versus deflection curves of the experimental data and learned

model simulations for three-dimensional non-homogeneous loadings at rates of

|u̇(t)| = 4 and 40 mm/min. The specimen is loaded up to a displacement of 10

mm in the negative and positive x-direction.
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ear response of the HNBR50 rubber, even for three-dimensional non-homogeneous

loadings.
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CHAPTER 5

CONCLUDING REMARKS

This study presents the development of a framework based on a recurrent neural net-

work designed to discover sparse, interpretable models of finite viscoelasticity. A

generalized model of finite nonlinear viscoelasticity is constructed, and a specialized

recurrent unit is designed to handle the stress update equations. An algorithm with an

analytical derivative update function is detailed for efficient parameter identification.

The framework’s ability to effectively discover models and characterize finite nonlin-

ear viscoelastic behavior is demonstrated through model training and evaluation on

three unique datasets.

First, we outlined the theory of macroscopic finite viscoelasticity used in this study.

We employed strain-based internal variables based on the multiplicative decomposi-

tion of the deformation gradient into elastic and inelastic parts to model nonlinear vis-

cous phenomena. Assuming near incompressibility, we decoupled the response into

volumetric and isochoric parts, further decomposing the isochoric part into elastic and

viscous components following the generalized Maxwell model. Assuming isotropy,

we developed invariant-based Helmholtz free energy functions for the response. To

satisfy the second law of thermodynamics, we derived the thermodynamically con-

sistent evolution law of the internal variables. Additionally, we derived equations for

the general algorithmic setting of the model, including the implicit update equations

required for the integration of the evolution law. We proposed simple constitutive

equations that possess a high capacity for modeling finite nonlinear viscoelasticity

within the developed framework.

Following the development of the constitutive model, we detailed the architecture of

the recurrent neural network with a specialized recurrent unit to handle the stress up-
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date equations. We constructed the loss function and incorporated a sparsity term to

aid in the model discovery process, ensuring the output of sparse, interpretable mod-

els. For the parameter identification procedure, we explained the concept of recurrent

derivative calculations and provided analytical derivative update functions for a ho-

mogeneous uniaxial response. Additionally, we outlined the process followed to tune

the hyperparameters for use in the optimization algorithm finalizing the framework.

The developed framework, which fits the parameters of a generalized model of finite

viscoelasticity using a recurrent neural network, can be generalized for varying levels

of incompressibility and modified to account for anisotropic material responses. For

model discovery, we incorporate a sparsity-inducing term based on the L1 norm of

the learnable parameters, though future research could explore the potential benefits

of using other Lp norms where p < 1. Additionally, while this framework requires the

supply of a recurrent derivative update function, it allows for building a generalized

model with an implicit update equation, enabling faster model training with smaller

datasets. Future work could develop these implicit update equations to be compat-

ible with automatic differentiation, eliminating the need to supply derivative update

functions and allowing the use of advanced deep-learning libraries like PyTorch [60]

or TensorFlow [61]. These libraries also facilitate automated hyperparameter tun-

ing with built-in tools that systematically explore different combinations of hyperpa-

rameters to optimize model performance. Furthermore, this study only constructed

functions for a homogeneous uniaxial response, but future research could extend this

framework to fit datasets involving different homogeneous deformation modes (e.g.,

biaxial, pure shear) or non-homogeneous three-dimensional loadings.

Finally, we trained and tested the developed framework on three datasets with vary-

ing characteristics. We generated the first dataset synthetically and showcased the

framework’s ability to discover the underlying model used to create the data. We

also compared the effects of the sparsity-inducing regularization term by training the

model with and without regularization. For the second dataset, consisting of VHB

4910 polymer data, we demonstrated that the neural network, based on the viscoelas-

tic model, was physically informed and failed to fit inconsistent data. Moreover,

the interpretable model revealed that a linear viscoelastic model was sufficient to

characterize the behavior of the VHB 4910 polymer. For the final dataset involving
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the HNBR50 polymer, we showcased the model’s ability to effectively capture the

material’s highly nonlinear viscoelastic behavior with a simpler model compared to

previous attempts from the literature. The results showed that the model trained on

tension-compression cyclic experiments could adequately predict the behavior under

compression and relaxation loadings. Finally, we demonstrated the model’s com-

putational efficiency by implementing it into finite element software, illustrating its

capability to predict a non-homogeneous three-dimensional response.

Overall, this thesis has demonstrated the developed framework’s ability to discover

sparse and interpretable models of finite viscoelasticity from experimental data. The

framework represents a significant advancement, potentially reducing the time and

specialized effort required to develop functional and reliable constitutive models of

finite viscoelasticity for novel materials.
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APPENDIX A

EXACT EQUATIONS OF THE STRESS AND DERIVATIVE UPDATE FOR A

HOMOGENOUS UNIAXIAL RESPONSE

This appendix specifies equations for the stress and derivative update functions used

in Algorithm 3 for a homogenous uniaxial stretch-stress response.

A.1 Stress update

For a homogenous loading, we can use a diagonal representation for the deformation

gradient

F =


λ1 0 0

0 λ2 0

0 0 λ3

 , (A.1)

where only the principal stretch component λ := λ1 is prescribed for a uniaxial load-

ing. Due to the assumed incompressibility (J = det(F ) = 1) and isotropy (λ2 = λ3),

the deformation gradient takes the following form

F =


λ 0 0

0 λ− 1
2 0

0 0 λ− 1
2

 . (A.2)

For the incompressible case, the unimodular part of the deformation gradient F̄ = F .

Subsequently, the unimodular part of the left Cauchy-Green deformation tensor b̄ =

F̄ F̄
T is equal to the following

b̄ =


λ2 0 0

0 λ−1 0

0 0 λ−1

 , (A.3)
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where det(b̄) = 1. For the tensors relating to the viscous branches, we first specify

the initial value for the stored history variable (bek)0 = 1 as the identity tensor. For

the elastic predictor step, we obtain the trial value of the elastic left Cauchy-Green

deformation tensor be,trk using Equation (2.39) for the first time step as

be,trk = F̄
(
F̄
)−1

0
(bek)0

(
F̄
)−T

0
F̄

T
. (A.4)

The determinants of all tensors on the right-hand side of Equation (A.4) are one,

which results in

det(be,trk ) = 1 . (A.5)

From Equation (2.41), which is obtained after exponential mapping and subsequent

discretization of the evolution law, we get the following for the determinant of the

elastic left Cauchy-Green deformation tensor

det(bek) = det(exp [−2∆tγ̇kNk]) , (A.6)

where we have used det(be,trk ) = 1. For the determinant of the exponential tensor, we

use the principal values of the tensor and represent the determinant as

det(exp [−2∆tγ̇kNk]) =
3∏

α=1

exp

[
−
√
2∆t

τ vk
γ̇kτ

′
k,α

]

= exp

[
−
√
2∆t

τ vk
γ̇k tr

(
τ v,iso
k

)]
= exp[0] = 1 ,

(A.7)

where we have utilized the fact that the tensor τ v,iso
k is deviatoric. From the above

result, we can conclude that the determinant of det(bek) = 1 at each time step. Using

this result and our assumed isotropy, we can define

bek :=


Λe

k 0 0

0 (Λe
k)

− 1
2 0

0 0 (Λe
k)

− 1
2

 , (A.8)

where only Λe
k := Λe

k,1 will be the stored history variable. The trial value be,trk takes a

similar form

be,trk =


Λe,tr

k 0 0

0
(
Λe,tr

k

)− 1
2 0

0 0
(
Λe,tr

k

)− 1
2

 with Λe,tr
k := Λe,tr

k,1 = (Λe
k)n

λ2

λ2
n

. (A.9)
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We employ the boundary condition τ22 = τ33 = 0 for the homogenous uniaxial

response to get stress τ as

τ =


τ 0 0

0 0 0

0 0 0

 , (A.10)

where τ := τ11. We then calculate the value of the volumetric stress p using

τ22 = p+ (τ iso)22 and

p = − (τ iso)22
(A.11)

and get the final form for the output uniaxial stress

τ = (τ iso)11 − (τ iso)22 . (A.12)

Using the obtained results, we summarize the stress update algorithm for a homoge-

nous uniaxial case in Algorithm 4.

Algorithm 4: Stress update algorithm for the homogenous uniaxial case
Given: λ, (Λe

k)n, λn, ∆t, θ = {c1, c2, cv1k, cv2k, τ̂k, ak,q}
Get b̄ using Equation (A.3) from λ.

τ̄ e = 2c1b̄+ 2c2

(
Ī1b̄− b̄

2
)

with Ī1 = tr(b̄)

for k = 1 to nbranch do
Get be,trk using Equation (A.9) from λ, (Λe

k)n and λn.

Calculate values of bek and τ̄ v
k using Algorithm 1 where

τ̄ v
k = 2cv1kb

e
k + 2cv2k

(
Ie1kb

e
k − be

2

k

)
with Ie1k = tr(bek)

History variable:

Λe
k = (bek)11

end

τ̄ = τ̄ e +

nbranch∑
k=1

τ̄ v
k

τ iso = P : τ̄

τ = (τ iso)11 − (τ iso)22

Return: τ , Λe
k
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A.2 Derivative update

In the recurrent derivative update, we calculate the derivatives of the output stress

τ and the internal variable Λe
k of the current time step with respect to each learn-

able parameter. For the parameters c1 and c2 of the elastic branch, the calculation is

straightforward

dΛe
k

dθj
= 0 and (A.13)

dτ

dθj
=

(
∂τ e,iso

∂θj

)
11

−
(
∂τ e,iso

∂θj

)
22

, (A.14)

where τ e,iso := P : τ̄ e. The following partial derivatives are required to complete the

evaluation

∂τ e,iso

∂c1
= P : 2b̄ and (A.15)

∂τ e,iso

∂c2
= P : 2(Ī1b̄− b̄

2
) . (A.16)

On the other hand, for the viscous parameters of the kth branch, we consider the

equation of the output stress

τ = τ̂(θj; Λ
e
k) (A.17)

and the nonlinear equation governing the internal variable update of the kth branch

fk(θj,Λ
e
k, (Λ

e
k)n) = 0 . (A.18)

Taking the derivatives of Equations (A.17) and (A.18) with respect to a parameter θj ,

we get

dτ

dθj
=

∂τ̂

∂θj
+

∂τ̂

∂Λe
k

dΛe
k

dθj
and (A.19)

∂fk
∂θj

+
∂fk
∂Λe

k

dΛe
k

dθj
+

∂fk
∂(Λe

k)n

d (Λe
k)n

dθj
= 0 , (A.20)

which can be recast into the following form1 −
∂τ̂

∂Λe
k

0
∂fk
∂Λe

k


︸ ︷︷ ︸

A


dτ

dθj
dΛe

k

dθj


︸ ︷︷ ︸

x

=


∂τ̂

∂θj

−∂fk
∂θj
− ∂fk

∂(Λe
k)n

d (Λe
k)n

dθj


︸ ︷︷ ︸

y

. (A.21)
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The matrix A and the partial derivative
∂fk

∂(Λe
k)n

is independent of the parameters,

and the value
d (Λe

k)n
dθj

comes from the previous time step’s derivative update. The

function τ̂ is the same as Equation (A.12) and the function fk can be obtained using

Equation (2.42)

fk = Λe
k − exp [νkγ̇k] Λ

e,tr
k with νk := −

√
2∆t

τ vk
τ ′k,1 . (A.22)

For the first term
∂τ̂

∂Λe
k

in matrix A, we get

∂τ̂

∂Λe
k

=

(
∂τ v,iso

k

∂Λe
k

)
11

−

(
∂τ v,iso

k

∂Λe
k

)
22

, (A.23)

where

∂τ v,iso
k

∂Λe
k

= P : 2

(
(cv1k + Ie1kc

v
2k)

∂bek
∂Λe

k

+ cv2kb
e
k

∂Ie1k
∂Λe

k

− cv2k
∂be

2

k

∂Λe
k

)
(A.24)

with
∂bek
∂Λe

k

=


1 0 0

0 −1
2
(Λe

k)
− 3

2 0

0 0 −1
2
(Λe

k)
− 3

2

 ,

∂Ie1k
∂Λe

k

= 1− (Λe
k)

− 3
2 and

∂be
2

k

∂Λe
k

=


2Λe

k 0 0

0 − (Λe
k)

−2 0

0 0 − (Λe
k)

−2

 .

Furthermore, for the second term
∂fk
∂Λe

k

, we obtain

∂fk
∂Λe

k

= 1− Γk :
∂τ v,iso

k

∂Λe
k

, (A.25)
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where
∂τ v,iso

k

∂Λe
k

is already calculated in Equation (A.24) and we have defined the second-

order tensor Γk as

Γk :=
∂
(
exp [νkγ̇k] Λ

e,tr
k

)
∂τ v,iso

k

= exp [νkγ̇k] Λ
e,tr
k

(
νk

∂γ̇k

∂τ v,iso
k

+ γ̇k
∂νk

∂τ v,iso
k

)
(A.26)

with
∂γ̇k

∂τ v,iso
k

=

(
1

2τ̂ 2k

npow∑
q=1

ak,q(q − 1)

(
τ vk
τ̂k

)q−2
)
τ v,iso
k and

∂νk

∂τ v,iso
k

= νk

(
∂τ ′k,1/∂τ

v,iso
k

τ ′k,1
− Nk√

2τ vk

)
with

∂τ ′k,1

∂τ v,iso
k

=


1 0 0

0 0 0

0 0 0

 .

(A.27)

Lastly, we get the partial derivative of Equation (A.22) with respect to the internal

variable of the previous time step (Λe
k)n

∂fk
∂(Λe

k)n
= − exp[νkγ̇k]

λ2

λ2
n

. (A.28)

For the term
∂τ̂

∂θj
in vector y of Equation (A.21), we obtain

∂τ̂

∂θj
=

(
∂τ v,iso

k

∂θj

)
11

−

(
∂τ v,iso

k

∂θj

)
22

. (A.29)

We only need the partial derivatives
∂τ v,iso

k

∂θj
and

∂fk
∂θj

for each individual parameter of

the viscous branches. The values are given as

∂τ v,iso
k

∂cv1k
= P : 2bek and

∂fk
∂cv1k

= −Γk :
∂τ v,iso

k

∂cv1k
, (A.30)

∂τ v,iso
k

∂cv2k
= P : 2

(
Ie1kb

e
k − be

2

k

)
and

∂fk
∂cv2k

= −Γk :
∂τ v,iso

k

∂cv2k
, (A.31)

∂τ v,iso
k

∂ak,q
= 0 and

∂fk
∂ak,q

= νk exp[νkγ̇k]

(
τ vk
τ̂k

)q

, (A.32)

∂τ v,iso
k

∂τ̂k
= 0 and

∂fk
∂τ̂k

= −νk exp[νkγ̇k]
1

τ̂k

npow∑
q=1

qak,q

(
τ vk
τ̂k

)q

.

(A.33)

With the equations above, we complete all equations needed to construct the matrix

A and vector y of Equation (A.21) for each individual parameter to solve for the

vector x = A−1y containing the updated derivatives at each time step.
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