THE INVESTIGATION OF PSYCHO-EDUCATIONAL CONSTRUCTS IN
RELATION TO MIDDLE SCHOOL STUDENTS’ LEARNING OF BASIC
COMPUTER PROGRAMMING CONCEPTS

A THESIS SUBMITTED TO
THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES
OF
MIDDLE EAST TECHNICAL UNIVERSITY

BY

PINAR KEFELI BERBER

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR
THE DEGREE OF DOCTOR OF PHILOSOPHY
IN
COMPUTER EDUCATION AND INSTRUCTIONAL TECHNOLOGY

JULY 2024

Approval of the thesis:

THE INVESTIGATION OF PSYCHO-EDUCATIONAL CONSTRUCTS IN
RELATION TO MIDDLE SCHOOL STUDENTS’ LEARNING OF BASIC
COMPUTER PROGRAMMING CONCEPTS

submitted by PINAR KEFELI BERBER in partial fulfillment of the requirements
for the degree of Doctor of Philosophy in Computer Education and Instructional

Technology, Middle East Technical University by,

Prof. Dr. Naci Emre Altun
Dean, Graduate School of Natural and Applied Sciences

Prof. Dr. Soner Yildirim
Head of the Department, Comp. Edu. and Inst. Tech.

Prof. Dr. Soner Yildirim
Supervisor, Comp. Edu. and Inst. Tech.,, METU

Examining Committee Members:

Prof. Dr. Halil Yurdugiil
Comp. Edu. and Inst. Tech., Hacettepe University

Prof. Dr. Soner Yildirim
Comp. Edu. and Inst. Tech., METU

Prof. Dr. Omer Delialioglu
Comp. Edu. and Inst. Tech., METU

Assoc. Prof. Dr. Evren Sumuer
Comp. Edu. and Inst. Tech., Kocaeli University

Assoc. Prof. Dr. Erkan Er
Comp. Edu. and Inst. Tech., METU

Date: 05.07.2024

I hereby declare that all information in this document has been obtained and
presented in accordance with academic rules and ethical conduct. I also declare
that, as required by these rules and conduct, I have fully cited and referenced
all material and results that are not original to this work.

Name Last name : Pinar Kefeli Berber

Signature :

v

ABSTRACT

THE INVESTIGATION OF PSYCHO-EDUCATIONAL CONSTRUCTS IN
RELATION TO MIDDLE SCHOOL STUDENTS’ LEARNING OF BASIC
COMPUTER PROGRAMMING CONCEPTS

Kefeli Berber, Pinar
Doctor of Philosophy, Computer Education and Instructional Technology
Supervisor: Prof. Dr. Soner Yildirim

July 2024, 296 pages

The main purpose of this study was to investigate the cognitive and motivational
factors contributing to the acquisition of fundamental computer programming
concepts at the middle school level. Employing a mixed-method embedded design
approach, the study aimed to explore how personal achievement goal orientations,
perceived classroom goal structures, academic-related perceptions, beliefs and
strategies, attitude towards coding education, cognitive load, mathematics and
reading comprehension achievement, gender, and geographical school location
predict students’ achievement scores in programming. Participants of the study
included 199 fifth-grade students. The implementation was conducted over ten
weeks in the Information Technologies and Software course across three public
middle schools. Data were collected through surveys, achievement tests, and
interviews. Data analysis involved both quantitative and qualitative approaches. For
the analysis of quantitative data, various methods were employed, including
independent samples t-test, repeated measures ANOVA, mulrank function, doubly

repeated MANOVA, and hierarchical regression. The study’s results revealed that

mathematics achievement was the strongest predictor of programming achievement,
followed by reading comprehension achievement, geographic school location,
extraneous load, attitude towards coding education, and academic self-handicapping
strategies. Furthermore, changes were observed in students’ cognitive load levels
throughout the programming learning process, particularly concerning certain
programming topics. While the results indicated no significant differences based on
gender regarding the variables investigated, significant differences were found
concerning geographical school location in terms of academic achievement and
motivational factors. Students’ experiences with programming and the online coding

platform used in the research were generally positive.

Keywords: Computer Programming Education for Children, Coding, Cognitive

Load, Motivation

Vi

0z

ORTAOKUL OGRENCILERININ TEMEL BiLGiSAYAR
PROGRAMLAMA KAVRAMLARINI OGRENMELERINE iLiSKIiN
PSIKO-EGITSEL YAPILARIN iNCELENMESI

Kefeli Berber, Pinar
Doktora, Bilgisayar ve Ogretim Teknolojileri Egitimi
Tez Yoneticisi: Prof. Dr. Soner Yildirim

Temmuz 2024, 296 sayfa

Bu c¢aligmanin temel amaci, ortaokul diizeyinde temel bilgisayar programlama
kavramlarinin kazanimima katkida bulunan biligsel ve motivasyonel faktorleri
aragtirmaktir. Karma yontemli gOmiilii tasarim yaklasiminin kullanildigi bu
caligmada, kisisel bagar1 hedef yonelimleri, algilanan simif hedef yapilari, akademik
algilar, inanglar ve stratejiler, kodlama egitimine yonelik tutum, biligsel yiik,
matematik ve okudugunu anlama basarisi, cinsiyet ve cografi okul konumunun
ogrencilerin programlama basar1 puanlarmi1 nasil etkiledigi incelenmistir.
Calismanin katilimceilarini 199 besinci sinif 6grencisi olusturmaktadir. Uygulama, {i¢
devlet ortaokulunda, on hafta boyunca Bilisim Teknolojileri ve Yazilim dersi
kapsaminda gergeklestirilmistir. Veriler anketler, basari testleri ve miilakatlar
yoluyla toplanmigtir. Verilerin analizinde hem nicel hem de nitel yaklagimlardan
faydalanilmistir. Nicel verilerin analizi i¢in bagimsiz Orneklem t-testi, tekrarl
Olgtimler ANOVA, mulrank fonksiyonu, iki yonli tekrarlt dl¢timler MANOVA ve
hiyerarsik regresyon gibi ¢esitli yontemler kullanilmistir. Calismanin sonuglari,
matematik basarisinin programlama basarisinin en giiclii yordayicisi oldugunu, bunu

okudugunu anlama basarisi, cografi okul konumu, konu dis1 yiik, kodlama egitimine

vii

yonelik tutum ve akademik kendini engelleme stratejilerinin takip ettigini ortaya
koymustur. Ayrica, programlama 6grenme siirecinde, 6zellikle belirli programlama
konulariyla ilgili olarak &grencilerin bilissel yiikk seviyelerinde degisiklikler
gozlemlenmistir. Sonuglar, incelenen degiskenler agisindan cinsiyete gore anlamh
bir fark olmadigini gdsterirken, cografi okul konumuna gore akademik basar1 ve
motivasyonel faktdrler acisindan anlamli farkliliklar elde edilmistir. Ogrencilerin
programlama ve arastirmada kullanilan g¢evrimig¢i kodlama platformuna yonelik

deneyimlerinin genellikle olumlu oldugu goriilmiistiir.

Anahtar Kelimeler: Cocuklar i¢in Bilgisayar Programlama Egitimi, Kodlama,

Biligsel Yiik, Motivasyon

viii

To all street animals, for the colors you bring to our lives...

X

ACKNOWLEDGMENTS

First and foremost, I would like to express my deepest gratitude to my supervisor,
Prof. Dr. Soner Yildirim, for his invaluable patience, guidance, and feedback
throughout this research. This endeavor would not have been possible without his

support.

I also could not have undertaken this journey without the knowledge and expertise
of my dissertation committee members, Prof. Dr. Omer Delialioglu and Assoc. Prof.
Dr. Evren Sumuer. Additionally, I extend my heartfelt thanks to my jury members,
Prof. Dr. Halil Yurdugiil and Assoc. Prof. Dr. Erkan Er, for their insightful

contributions.

Words cannot express my gratitude to Assoc. Prof. Dr. Sacip Toker who generously

provided knowledge and expertise during data analysis process.

I would like to express my appreciation to the school administrators, teachers, and
students who participated in this study. Their collaboration and support were
essential to the research process. I am particularly grateful to Vesile Celik for her
assistance during data collection. I am deeply indebted to Kemal Giindiiz for his
unwavering support throughout the pilot and main studies. I had the pleasure of

working with each of them.

I would like to express my sincere gratitude to my colleague, Nuray Toplu, for her
exceptional work as a second coder in the qualitative analysis. Her dedication and
support were invaluable. I would also like to thank Asli Boyraz for her timely
assistance. I am grateful for the support and encouragement of my friends and

colleagues, who were always there to offer guidance and support.

I would like to express my heartfelt gratitude to my family for their unconditional
love and support. My mother, Belgin Kefeli, has always believed in me; my father,

[lkay Kefeli, has been a constant source of support; my grandparents, Abbas Kefeli

and Perihan Kefeli, have shaped me with their love; and my sister, Bahar Kefeli Col,
has always been by my side. My husband, Kasim Berber, has been an incredible
source of strength and encouragement throughout this journey, and I am deeply

thankful for his unwavering support and understanding.

Lastly, I would like to thank my beloved children, Lokum and Picos, who brought

joy and inspiration to my life during this challenging journey.

Xi

TABLE OF CONTENTS

ABSTRACT ..ottt sttt ettt ettt sbeene e enes v
OZ oottt vii
ACKNOWLEDGMENTS ...ttt X
TABLE OF CONTENTS ..ottt xii
LIST OF TABLES ...ttt Xvii
LIST OF FIGURESoooiiiiiiiieeeee et Xix
LIST OF ABBREVIATIONSoiiiiiiiieeeeesetee ettt XX
CHAPTERS
I INTRODUCTIONc.coitiiiiiiieettetieteeeete ettt 1
1.1 Background of the Studycccoeoiiiiiiiiiie 1
1.2 Purpose of the StUAY......coooiieiiieiiiiieeiicee e 8
1.3 Research QUESHIONSceeviiiiiiieciieccee et e 9
1.4 Significance of the Study........ccoceeiiiiiiiiiiiiee e, 11
2 LITERATURE REVIEW ...c.occiiiiiiiiiiiieesteeeeee e 15
2.1 Cognitive Load Theory.......cccecvuieiiiiiieiieriieiieeie e 15
2.1.1 Human Cognitive ArcChiteCture.........ccueevuveriieniieniieiieeie e 15
2.1.2 Foundations of Cognitive Load Theoryccecevvieriienieniiennnns 21
2.1.3 Types of Cognitive Load.........ccoecveviieiiiiniiiiieieceee e 23

2.14 Research on the Role of Cognitive Load Theory in Computer

Programming EdUcCation..............ccceeiiiiiiiiiiiiiieicce e 27
2.2 Motivation and Learningcceecvervreriieniieriienieeiiesie e sve e 30
2.2.1 Goal Orientation TheOoTY........cccveeviieriieiieiecieee e 30

Xii

222 Self=effICaACY it 33

223 Academic Self-Handicapping Strategiesccceeeveeveerveenivennenne 34
224 AEUAR .o 36
2.2.5 Cheating Behaviorccceeviieiienieeiieciecieee e 37
2.2.6 Research on the Impact of Motivational Factors on Students'
Learning of Computer Programming.............cccceeeeveerieeieenieniieeneeeieesieeeeens 38
23 Programming Education for Young Learners.........c.ccoccevceeverieneenennens 40
2.3.1 Block-based Programming Environmentscc.ccocevveeverienenee. 43
2.4 SUMMATY ...ttt ettt e ettt e st e e sbreesabeeesaaeees 45
METHODOLOGY ..ottt sttt 49
3.1 Research QUESHIONSceeeuviiiiiiieeciiee et e 49
3.2 PartiCIPANES....ccciieiiieiiieiie ettt ettt ettt ettt st e eneeeareens 51
3.2.1 Participants in the Quantitative Phase..........ccccoeceevenienenicnienennne. 51
322 Participants in the Qualitative Phase...........cccccoeeeviniincnninicnenne. 54
33 Research Design of the Studycceeeiieiiieiiieiiiiieeeeeee e 55
3.4 Procedure of the StUAYcceoviiiiiiiiiiiieieeieeeeeee e 58
34.1 Preliminary Investigation...........cceeeveeviieriienieniieiecie e 58
34.2 Adaption Process of the Lesson Planscccocveviieniiniieniennnn. 62
343 Lesson Plan Evaluation Workshopccoeveeciiiiiiniiiniiiiicne 63
3.5 Data Collection INStrumentscecuereerieriuenienenienienienieseeseeee e 64
3.5.1 Coding Achievement TeSt........cceevueeriienieeiiienieeieeee e 64
3.5.2 Cognitive Load Scale.........ccccuveoiieiiiiiieieeiiee e 71
3.53 Patterns of Adaptive Learning Scales (PALS)........ccccceevieviienennne. 79
3.54 Attitudes Towards Coding Education Scale (ATCES)................... 79

Xiii

3.5.5 Reading Comprehension Achievement Testccceeecvveriienieennnn. 80
3.5.6 5th Grade Mathematics Achievement Testcccoeveeviieniiennnnnne. 80
3.5.7 Student Interview Protocol.........c.ccooeviieriiniiiinieniiieneceeeee 80
3.6 PAlot StUAY .ooeeieieeee e 82
3.7 Implementation of the Studyccoooiiiiiiiiiiii e, 85
3.8 Data ANalySiS....cccieruiiiiieiieeiieiee et 86
3.8.1 Quantitative Data ANalysiS........ccceeviieiiierieeiiienieeieeee e 86
3.8.2 Qualitative Data ANalysSiS........ccceceevieeiiienieeieenie e 87
3.9 Trustworthiness for Qualitative Part of the Study........c.ccccvvviiniieennnnn. 89
3.9.1 Internal Validity (Credibility)........ccooevirrieniiieiiiiieieeieeeeeie e 89
39.2 External Validity (Transferability).........cccccceevierviirnieniiienienieeiens 91
393 Researcher Role and Bias.........cccoooeviiniiiiiiiniiiiiceccee 92
3.10 Ethical ISSUES ...coueeiiriiiiieiecieritetese ettt 93
3.11 Limitations of the Studycccceviiiiiiiiiee e, 94
4 RESULTS ettt ettt ettt et sttt 97
4.1 Results of the Quantitative Data AnalysiS.........cccceeveveeviencieenieenieeieeee. 97
4.1.1 Correlation Between Variables of the Studyccoecvveiiininnnnnnn. 97
4.1.2 Results of the Research Question 1..........cccoeeeveiiiiiiieeiiieecieeeeien, 100
4.1.3 Results of the Research Question 2..........cceeeeveeeiiieieeiiieecieeeeien, 103
4.1.4 Results of the Research Question 3ccceeeeviieiiiiieeiieeciee e, 108
4.1.5 Results of the Research Question 4cceevveevviiieeieeeeieeeiien, 114
4.2 Results of the Qualitative Data Analysis..........cceeveeriiinieniiienienieeiens 122
4.2.1 Results of the Research Question S.........ccceeeevviiviiieeiiieeeieeeie, 122

5 DISCUSSION AND CONCLUSIONcceotiiriiniinienieeeeeiesiese e 187

Xiv

5.1 Major Findings and DiSCUSSIONcceeviieriieriiieiieniieiieeie et 187
5.1.1 Cognitive Load.......ccceeviiieiiieiieieeieee e 187
5.1.2 GONAET ...ttt 192
5.1.3 Geographical School Location............cceecueeriieriienieeniienieeieeeieane 195
5.1.4 Mathematics SKillS.......ccooieririiiiiniiiiieeeeeeseeee e 197
5.1.5 Reading Comprehension SKills..........cccoeviieiiinieniiienieeiieiieee 201
5.1.6 Attitude Toward Programming............ccceeeveeviieriieneenieenieeeeeenen. 204
5.1.7 Patterns of Adaptive Learningcccoeceevviienieeiiienienieeieene 207

5.2 CONCIUSION .outiiiiiiiiieiie ettt sttt sttt 208

53 Implications of the FINdingsccoeoiiviieiieniiiiieeieeeee e, 212

54 Recommendations for Further Research...........cccccooieiiniininiinnncnnne. 216

REFERENCES ..ottt sttt 217
APPENDICES ...ttt sttt ettt eneas 249

A. Lesson Plan Evaluation FOrmcccoceviiiiniiniiniiinieecececee 249

B. Coding Achievement Test..........ccceviiriiiriiieniieeieeieee e 251

C. Cognitive Load Scale........ccoeviieiiiiiiiiiieie ettt 257

D. Patterns of Adaptive Learning Scale...........cccceeeveevieniiienieniieiieeieeene 258

E. Attitudes Toward Coding Education Scale...........cccceecueeviieniinnieniieenne, 261

F. Reading Comprehension Achievement Test.........ccccevcvieriieniienienieeneenne. 263

G. 5th Grade Mathematics Achievement Test.........cccevvieviiienienciienienieene. 269

H. Interview ProtoCol.........ccoooiiiiiiiiiiiiiinciecieee e 271

I Sample Lesson Planccccoociiiiiiiiinieiieeiee e 273

J. Approval of Human Subjects Ethics Committee at METU -1I................. 275

K. Approval of Human Subjects Ethics Committee at METU - II................. 276

XV

L. Approval of Provincial Directorate of National Education.......................

M. The Original Turkish Versions of the Quotescccccecvevieveriencnnnene

CURRICULUM VITAE

Xvi

LIST OF TABLES

TABLES

Table 3.1 Participants of the Study by Schoolscccceeviieiiiiiiiiiieee 51
Table 3.2 Characteristics of the Participants...........c.ccoecvevieeiiienieniiienieeieeeeene 52
Table 3.3 Parental Education Level of the Participants.............ccoeceeviiiciieniennnn. 53
Table 3.4 Demographic and School Information of Interviewed Students 55
Table 3.5 Content Validity Values of the Test I[tems.........ccccecveveenerienieniniennne 66
Table 3.6 Item Analysis Results of the Coding Achievement Test............cc..c....... 69
Table 3.7 The Distribution of the Items According to Learning Objectives 70
Table 3.8 Items of the Cognitive Load Scale..........cccoeeuieviieiieniiiiiiiecieeeeee 71
Table 3.9 Distribution of Participants to SChoolsc.cceceveviieiiiniiiiniiiiieieee 73
Table 3.10 Normality Distribution of The Cognitive Load Scale Scores............... 74
Table 3.11 DeScriptive StatiStiCS......euruierieeiiierieeieerieeieeriie ettt et saeesreeeeesaeeens 75
Table 3.12 Descriptive Statistics for Subfactors...........cceeveeevieniinciiniiiiieieee 75
Table 3.13 Factor Correlationscceeuereerierieneenenienieeieete et 77
Table 3.14 Factor Loadings of the Ttemscccceeviieiiiiniieiiiieciieeceeeee 77
Table 3.15 Reliability Analysis Results of the CLS ..o 79
Table 3.16 Weekly Learning Objectives, Lesson Plans and Activities 83
Table 3.17 Data Collection Proceduresc..ccoceeveriinienenienienienienceceeeenne 86
Table 4.1 Correlation Coefficients Between the Variables..........cccccooeveeniniennnene. 99

Table 4.2 Descriptive Statistics for Repeated Cognitive Load Measures Across
Seven Programming CONCEPLSueevuieriieiiieiiieiieeieeieeeieeiee et see e e sene e 101

Table 4.3 Results of One-way Repeated Measures ANOVA Comparing Cognitive

Load Scores Across Seven Different Programming Conceptscccceeveennennee. 102
Table 4.4 Results of t-test and Descriptive Statistics for ATCE, MA, RCA and CA
DY GONACT ...ttt ettt et ettt e et esabeebeeenbeebeeeaaaens 104

Table 4.5 Descriptive Statistics for Cognitive Load Measures for Gender Across

Seven Programming CONCEPLSeevuieriieriieiiieiieeieeiee et eiee et eeeeaeesne e 106

xvii

Table 4.6 Results of Doubly Repeated MANOVA for Cognitive Load Types by

GOINAELT ...ttt bttt et 107
Table 4.7 Mann-Whitney U Test Results for PALS by Geographical School
LOCAION ...ttt e 109

Table 4.8 Results of t-test and Descriptive Statistics for ATCE, MA, RCA and CA
by Geographical SChool Locationccccueeiieriieiiieniieiecie e 110
Table 4.9 Descriptive Statistics for Cognitive Load Measures for School Location
Across Seven Programming CONCEPLSccueerueeriieriierieeriieeieeiee e eieeseve e 111

Table 4.10 Results of Doubly Repeated MANOVA for Cognitive Load Types by

Geographical School LoCationccceevueriiniiriiniiieiiesceeeeeee e 112
Table 4.11 Collinearity Statistics of the Predictor Variablescccccveeuennnenne. 115
Table 4.12 Standardized Residual StatiStiCs.........cocveverierieneriienienerieseeeeeee 116
Table 4.13 Four-Step Hierarchical Multiple Regression Analysis Results........... 120

Table 4.14 Distribution of Code Frequencies by the Theme of Cognitive Demands
and Instructional FaCtOrscceeviiiiiiiiiiiiiiiceeee e 124
Table 4.15 Distribution of Code Frequencies by the Theme of Effective
Instructional APProaches..........c.cccieriiiiiieiiieeiieie ettt 137
Table 4.16 Distribution of Code Frequencies by the Theme of Collaborative

Learning APPIrOaChes.cocuieruiieiiienieeiieeie ettt ettt ettt e staesbeeaeesneeneens 147
Table 4.17 Distribution of Code Frequencies by the Theme of Independent

Learning APProOaChEs.cecuieruiieiiienieeiieeie ettt ettt ete et e eaeesteessaeeaeesneeseens 162
Table 4.18 Distribution of Code Frequencies by the Theme of Goal Setting 168

Table 4.19 Distribution of Code Frequencies by the Theme of Affective Aspects

xviii

LIST OF FIGURES

FIGURES

Figure 3.1. Scree Plot for CLS ..o 76
Figure 3.2. Path Analysis Diagram for CLS within CFAc.cccooiiiniinininne 78
Figure 3.3. First Cycle and Second Cycle Coding Methods.........c.ccccevieniiniennee. 88

Figure 4.1 Plot of Estimated Marginal Means of Intrinsic Load by Gender 113
Figure 4.2 Normal Probability Plot (P- P) of the Regression Standardized Residual

FOT CA ettt sttt e 117
Figure 4.3 Histogram of Regression Standardized Residual for CA 117
Figure 4.4 Scatterplot of Standardized Residuals and Standardized Predicted

VAALUCS e 118
Figure 4.5 Themes and Their Corresponding Categoriesccceeeeveereverveenenne. 123

Figure 4.6 (a) Sample programming task on code.org (Course F-Lesson 8: Nested

Loops in Maze/Level 10) about nested loops and (b) possible solution to this task

Figure 4.7 (a) Sample programming task on code.org (Course 2 — Lesson 13: Bee

Conditionals/Level 8) about conditional statements and (b) its solution.............. 133

Xix

LIST OF ABBREVIATIONS

ABBREVIATIONS

CLS: Cognitive Load Scale

IL: Intrinsic Load

EL: Extraneous Load

GL: Germane Load

ATCES: Attitudes Toward Coding Education Scale
PALS: Patterns of Adaptive Learning Scale

MA: Math Achievement

RCA: Reading Comprehension Achievement

CA: Coding Achievement

MGO: Mastery Goal Orientation

PApGO: Performance-Approach Goal Orientation
PAvGO: Performance-Avoid Goal Orientation

AE: Academic Efficacy

ASHS: Academic Self Handicapping Strategies

CB: Cheating Behavior

CMGS: Classroom Mastery Goal Structure

CPApGS: Classroom Performance-Approach Goal Structure
CPAvVGS: Classroom Performance-Avoid Goal Structure

CA: Coding Achievement

XX

CHAPTER 1

INTRODUCTION

This study aims to investigate the factors influencing the academic achievement of
middle school students in learning fundamental computer programming concepts.
The introduction provides a contextual background, outlines the study's purpose and
research questions, and concludes with a discussion of the study's significance and

contribution to the existing body of knowledge.

1.1 Background of the Study

As computer technology advances, computers have entwined in almost every part of
our daily lives. They became an integral part of our workplaces, schools, and homes.
In response to technological advancements, a growing demand has emerged for
computer programs that can enhance the quality of human life. Despite rising
demand for computer programs, programming courses continue to exhibit high
failure rates (Robins et al., 2003; Watson & Li, 2014). Teaching computer
programming to beginners in various disciplines has been identified as a challenging
task (Abdul-Rahman & Du Boulay, 2014). The difficulty of acquiring knowledge
and skills necessary for programming computers has been frequently mentioned in
the related literature on teaching computer programming (Blanco et al., 2009; Hawi,
2010; Kelleher & Pausch, 2005; Pokorny, 2009; Schulte & Bennedsen, 2006;
Thomas & Greene, 2011; Watson & Li, 2014; White & Ploeger, 2004).

Teaching and learning programming presents a complex challenge for instructors
and students. This phenomenon remains a significant challenge in the field of
computer science education. Consequently, a substantial body of literature has

investigated ways to improve computer programming education to enhance novice

students' learning of programming skills more efficiently (e.g., Abdul-Rahman & Du
Boulay, 2014; Caspersen & Bennedsen, 2007; Coleman & Nichols, 2011; Haden et
al., 2016; Harms, 2013; Looker, 2021; Van Merrienboer & Krammer, 1987). Within
introductory programming courses, novice learners confront multifaceted learning
challenges. They must concurrently acquire novel programming concepts, navigate
unfamiliar development tools (e.g., Integrated Development Environments), and
adapt to a paradigm shift in their problem-solving approaches (Mayer, 1987, as cited
in Bucks & Oakes, 2011). These fundamental skills, coupled with their lack of
familiarity with programming structure, design, and programming language syntax,
present a significant challenge for many students (Baist & Pamungkas, 2017).
Furthermore, programming concepts often appear abstract and lack a readily
apparent connection to real-world phenomena. This disconnection hinders students'
ability to link these concepts with their prior knowledge and experiences, which are

crucial for meaningful learning (Myers, 1986).

Despite the established challenges in teaching programming to older age groups,
such as university students, programming is now being introduced to younger
children under the name of "coding." Recognizing the importance of early exposure
to computational thinking and programming skills, many countries have integrated
computer science and coding-related competencies into education curricula,
including those for younger age groups (Fluck et al., 2016; Webb et al., 2017). In
contrast to traditional text-based programming languages, which can be challenging
for younger learners, a new trend in coding education is emerging with the use of
graphical programming environments and block-based programming approaches. To
make programming more accessible and engaging for children, graphical
programming environments and block-based programming languages, such as
code.org, Scratch and Tynker, have been used in their instruction (Grover & Pea,
2013; Resnick et al., 2009). These languages have many advantages over traditional
text-based programming since they enable users to use graphical representations for
programming (Koray & Bilgin, 2023; Meerbaum-Salant et al., 2013; Yang & Lin,
2019).

Teaching a subject that is already challenging for older groups to younger children
will undoubtedly present its own set of difficulties. Research has identified various
factors affecting programming learning, such as cognitive load (Grover & Basu,
2017), previous experience (Hinckle et al., 2020), mathematical background
(Bennedsen & Caspersen, 2005; Bergin & Reilly, 2006; Grover et al., 2015;
Mathews, 2017; Nasution et al., 2022), reading comprehension skills (Grover et al.,
2016; Ma et al., 2023), misconceptions about programming (Grover & Basu, 2017),
self-efficacy (Ketenci et al., 2019; Kinnunen & Simon, 2011; Kukul et al., 2017;
Toma & Vahrenhold, 2018), gender (Beyer et al., 2003; Cheryan et al., 2015),
socioeconomic status (Akpomudjere, 2020; Marks et al., 2006), learning styles
(Abdul-Rahman & Du Boulay, 2014), learning goals (Hazley et al., 2015; Shell et
al., 2013), and attitude (Ching et al., 2019; Sun et al., 2022).

Examining programming learning from a cognitive perspective is necessary for
building a more generalizable understanding of effective programming education
practices. Within this framework, cognitive load theory plays a significant role, as
existing research studies suggest that a predominant challenge in programming lies
in decomposing a problem into its constituent elements and articulating these
components as programming code. Programming heavily relies on working memory,
which exhibits limited capacity for storing and processing items, thereby potentially
resulting in significant levels of cognitive load. Therefore, assessing the cognitive
load encountered by students throughout the educational process is critical, given the
multifaceted nature and inherent challenges associated with programming skill

development (Berssanette & De Francisco, 2022).

Gender is another important variable that must be considered when examining
factors influencing success in computer science. Despite increased female
participation in Science, Technology, Engineering, and Mathematics (STEM), the
IT sector continues to be male-dominated. The literature on Computer Science
consistently highlights gender as a persistent inequity in computer science (Luxton-
Reilly, 2016). While the roots of this issue are complex, factors such as stereotypes,

prior experience, and self-efficacy have been identified as contributing to this

disparity. Stereotypes portraying computer specialists as male have been linked to
lower interest in programming among girls compared to boys (Master et al., 2016).
Consequently, female students often exhibit lower levels of self-efficacy in computer
science (Beyer, 2014; Doubé & Lang, 2012). Boys typically have more prior
programming experience (Bruckman et al., 2002) which results in a more positive
attitude towards programming (Beyer et al., 2003) and higher levels of achievement
(Guzdial et al., 2014). Nevertheless, research findings on the gender gap in computer
programming have been inconsistent. While some studies indicate no significant
gender differences among students (Akinola, 2015; Bennedsen & Caspersen, 2005;
Bruckman et al., 2002; Gunbatar & Karalar, 2018; Qian & Lehman, 2016), others
reveal persistent disparities (Guenaga et al., 2021; Tellhed et al., 2022). Efforts to
introduce coding into early childhood education aim to address these inequities by
providing equal opportunities for all children to develop digital competencies,

potentially leading to a more diverse and inclusive IT workforce.

Socioeconomic status, a complex construct encompassing income, education,
occupation, and perceived social standing, is another factor contributing to
disparities in educational outcomes among students. Moreover, the geographical
location of a school, often closely tied to socioeconomic status, has been shown to
influence a range of educational outcomes. The concept of geographic location,
described by Back (2016, p. 436) as “well-documented, less researched”,
encompasses far more than just physical space. The location of the school, whether
rural, suburban, or urban, impacts factors such as accessibility, resource allocation,
and overall learning environment, thereby exacerbating educational inequalities
(Chand & Mohan, 2019). Particularly in the realm of programming education, a
school's geographical location plays a crucial role in influencing students' access to
technology. Rural or suburban schools may encounter challenges in providing
students with equitable access to advanced technological resources compared to their
urban counterparts. In rural schools, the absence of up-to-date hardware and software
has posed significant challenges for administrators and educators in effectively

implementing computer programming curricula (Agnello et al., 2019). Adequate

resources are crucial for engaging young learners in programming and facilitating
their comprehension of the subject matter (Yusof et al., 2021). Previous research has
recorded teachers' complaints about the insufficiency of teaching resources
(Greifenstein et al., 2021). Furthermore, research studies have shown that early
exposure to digital technology (Gerson et al., 2022) and prior coding experience
(Bowman et al., 2019; Bruckman et al., 2002; Grover et al., 2016) have an impact on
programming learning. These factors are often mediated by socioeconomic variables
such as social class, income level, and parental attitudes toward programming
(Gerson et al., 2022), which could be indirectly linked to the geographical location

of schools.

Motivational factors have also been highlighted in the literature as influential in
programming education. The relationship between children’s programming learning
and motivational factors such as self-efficacy, attitude, and goal orientation is
multifaceted and significant. The literature has demonstrated a positive relationship
between self-efficacy, academic achievement, and performance (Bergey et al.,
2015). Self-efficacy is a critical motivational construct that influences an individual's
effort, resilience, and perseverance when faced with challenges (Bandura, 1977). In
the context of programming education, students may encounter difficulties with
complex programming and algorithmic problems. Individuals with low self-efficacy
are likely to exhibit less perseverance in overcoming these obstacles, potentially
hindering their progress and success in learning programming (Kovari & Katona,
2023; Ramalingam et al., 2004). While self-efficacy plays a significant role in
influencing performance in computer programming courses, self-efficacy is also
intricately linked to and influenced by other coding-related factors, including
attitudes (Kovari & Katona, 2023), enjoyment (Kanaparan et al., 2017), prior
programming experience (Ramalingam et al., 2004), as well as interest in computer
science (Beyer, 2014). In addition to self-efficacy, attitude toward programming
plays a pivotal role in student motivation and learning outcomes. However, the
relationship between young learners' attitudes toward programming and their

subsequent programming achievement remains inconclusive. While some studies

have suggested a significant correlation, others have found no such link (Baser,
2013). Given the relatively nascent nature of research on young children's attitudes
toward programming, many studies have relied on broader measures of STEM
attitudes (Ober et al., 2024). However, emerging research on the attitudes of middle
school students toward computer science and programming suggests that these
attitudes may be crucial in shaping long-term career aspirations, particularly in

STEM-related fields.

Another fundamental component of motivation is the goals that are influenced by
both individual and contextual factors. According to the goal orientation theory,
students establish a range of goals to guide their performance across various
academic tasks, including assignments, examinations, laboratory work, and overall
course engagement (Elliot et al., 2011; Senko et al., 2011; Shell & Soh, 2013).
Research indicates that adopting a goal-oriented approach to learning computer
science enhances academic performance and student persistence (Shell et al., 2016).
Generally, mastery-oriented and task-oriented goals exhibit a positive correlation
with academic performance, whereas the impact of performance goals on course
outcomes can be either adaptive or maladaptive (Elliot et al., 2011; Hazley et al.,
2015; Hulleman et al., 2010; Tomi¢ et al., 2020). However, students often have a
complex interplay of multiple achievement goals, each influencing their motivation
and behavior differently. Therefore, it is more accurate to adopt a comprehensive
perspective rather than attributing a singular achievement goal orientation to them

(Peteranetz, 2021).

Classroom goal structures are an integral component of goal orientation theory. In
classroom settings, the types of goal orientations adopted by students are influenced
by their perceptions of classroom goal structures (Midgley & Urdan, 2001). Studies
have established that a perceived classroom mastery goal structure predicts personal
mastery goal orientation and is positively associated with academic performance
across multiple disciplines, such as mathematics (Guo & Hu, 2022; Urdan &
Midgley, 2003). Conversely, a competitive classroom environment that emphasizes

grades and social comparison tends to foster performance-oriented goals among

students (Meece et al., 2006). Therefore, the structure of classroom goals
significantly impacts the behavior of students and their process of learning by
influencing the types of personal goals students establish. Students' academic
behaviors and strategies are influenced by both personal achievement goals and
perceived classroom goal structures. Research findings indicate a positive
relationship between self-handicapping behaviors and personal performance-
avoidance goals. Moreover, classroom environments emphasizing performance-
oriented goals have been associated with a rise in student engagement in self-
handicapping strategies (Midgley & Urdan, 2001). Conversely, personal mastery
goals and perceived classroom mastery goal structures have demonstrated weaker or

negligible relationships with self-handicapping (Urdan et al., 1998).

Furthermore, with regard to goal orientation, cheating is another important concept
studied in the literature. Studies have indicated that individuals with performance-
oriented goals are more prone to engaging in behaviors associated with plagiarism
than those with mastery-oriented goals (Anderman & Midgley, 2004). In computer
science (CS) education, the majority of research on cheating behaviors has centered
on higher education institutions and programming environments that are based on
text. Particularly, studies have extensively examined cheating incidents within online
programming courses and take-home assignments, where teachers have more
difficulty monitoring students and students can easily share information and codes
via the Internet (Abou Naaj & Nachouki, 2023; Hellas et al., 2017; Kim & Lee,
2022). Studies have found that plagiarism and cheating behaviors are associated with
lower academic achievement, a desire to surpass peers, and the fear of failing.
Furthermore, these behaviors have been shown to be less prevalent among female
students (Abou Naaj & Nachouki, 2023; Newstead et al., 1996). This study
investigated cheating behaviors among middle school students during in-class
activities and collaborative learning sessions. However, the relevant literature
suggests that students may misinterpret collaborative learning as an opportunity for
dishonest behaviors, such as cheating, copying, or collusion (Barros et al., 2021).

Furthermore, among the various factors influencing programming learning,

academic background emerges as a particularly significant predictor of success.
Mathematics, in particular, has long been recognized as a strong predictor of
programming achievement (Bennedsen & Caspersen, 2005). Moreover, research has
provided evidence of a correlation between reading comprehension and

programming proficiency (e.g., Lopez et al., 2008).

In conclusion, in reference to related literature, a large proportion of students have
failed to reach a sufficient level of proficiency in their first computer programming
course or even after they have taken more than one programming course. This
problem is common in computer science education in many countries despite
numerous research studies attempting to improve programming education. Teaching
programming to younger children is a relatively new phenomenon, necessitating a
deeper exploration of the unique challenges and influencing factors in this age group.
Research studies have identified various factors affecting programming learning.
Therefore, it is essential to investigate these factors, specifically in the realm of
younger learners, to comprehend their influence on the learning process and to

develop effective instructional strategies tailored to their needs.

1.2 Purpose of the Study

This study undertakes a comprehensive investigation into the factors that contribute
to the acquisition of fundamental computer programming concepts among fifth-
grade students within the framework of middle education. The primary objective is
to gain an understanding of these multifaceted elements and their collective impact
on students' programming proficiency. Through an in-depth exploration of
sociodemographic and educational background, affective learner characteristics,
motivation, learning environment, and cognitive load, this research seeks to unveil

the dynamics inherent in the interplay of these factors.

Study variables encompassed a range of variables, including personal achievement

goal orientations (mastery goal orientation, performance-approach goal orientation,

and performance-avoid goal orientation), perceived classroom goal structures
(classroom mastery goal structure, classroom performance-approach goal structure
and classroom performance-avoid goal structure), academic-related perceptions,
beliefs and strategies (academic efficacy, academic self-handicapping strategies and
cheating behavior), and attitude toward coding education. Additionally, the cognitive
load was examined through the intrinsic, extraneous, and germane load. Educational
background variables included mathematics and reading comprehension
achievement, while sociodemographic background was assessed by examining the
students’ gender and the geographical location of their schools (urban vs. suburban).
By addressing these factors, the study seeks to offer an in-depth understanding of the
determinants in teaching programming to younger students, thereby contributing to

the advancement of computer science education.

1.3 Research Questions

The main research question that guided this investigation was: ‘What factors
influence the acquisition of fundamental computer programming concepts in fifth-
grade students?’ This overarching research question serves as the focal point for
investigating the complex relationships and interactions among various factors
influencing students' acquisition of computer programming skills. The study will
address this main research question through a detailed examination of the sub-

research questions listed below:

1. Is there a significant difference in cognitive load experienced by students
across seven fundamental programming topics?

2. Isthere a significant difference in students' PALS (personal achievement goal
orientations, perception of classroom goal structures, academic-related
perceptions, beliefs and strategies), attitudes towards coding education,
achievement in mathematics, achievement in reading comprehension,

achievement in coding and cognitive load scores based on their gender?

Is there a significant difference in students’ PALS scores based on
their gender?

Is there a significant difference in students’ attitudes toward coding
education scores based on gender?

Is there a significant difference in students’ mathematics scores based
on gender?

Is there a significant difference in students’ reading comprehension
scores based on gender?

Is there a significant difference in students’ coding achievement
scores based on gender?

Is there a significant difference in students’ cognitive load scores

across seven fundamental programming topics based on gender?

Is there a significant difference in PALS (personal achievement goal

orientations, perception of classroom goal structures, academic-related

perceptions, beliefs and strategies), attitudes towards coding education,

achievement in mathematics, achievement in reading comprehension,

achievement in coding, and cognitive load scores between students from

urban schools and suburban schools?

a.

Is there a significant difference in PALS scores between students
from urban schools and suburban schools?

Is there a significant difference in attitudes toward coding education
scores between students from urban schools and suburban schools?
Is there a significant difference in mathematics scores between
students from urban schools and suburban schools?

Is there a significant difference in reading comprehension scores
between students from urban schools and suburban schools?

Is there a significant difference in coding achievement scores between

students from urban schools and suburban schools?

10

f. Is there a significant difference in cognitive load scores across seven
fundamental programming topics between students from urban
schools and suburban schools?

4. How do research variables predict students’ achievement scores in
programming?
5. What are the students’ experiences and opinions on the factors that affect

their learning fundamentals of programming?

Examining these sub-research questions intended to gain insights into the specific
aspects of learner characteristics that may impact students' coding performance and,
ultimately, enhance the overall comprehension of the factors influencing their

academic achievement in computer programming.

1.4 Significance of the Study

The teaching and learning of computer programming present persistent challenges,
documented by high failure rates across various levels, courses, and teaching
contexts (Abdul-Rahman & Du Boulay, 2014; Watson & Li, 2014). There have been
many research studies that aim to explore different course design approaches, tools,
and instructional strategies that facilitate learning the computer programming
process by helping students acquire the required knowledge and skills. Some
attempts result in substantial success while others do not, but still, the leading reasons
behind students’ success or failure in programming are not fully understood. This
study aimed to address this gap through a multifaceted lens by examining the factors

influencing students' achievement in fundamental programming skills.

This study goes beyond cognitive factors by incorporating motivational variables
derived from goal orientation theory, which emphasizes the substantial influence of
student goals on academic achievement (Meece et al., 2006). The intricate
relationship between affective, motivational, and environmental factors and their

impact on students’ achievement in the context of programming remains

11

inadequately understood. Traditionally, programming education research has
focused on undergraduate or graduate-level fields such as engineering, mathematics,
and computer science, where introductory programming has fundamental
importance for any student. However, the recent emphasis on introducing
programming to younger learners necessitates a shift in research focus. While many
studies implement innovative learning tools and methodologies for younger students,
they often lack a deep understanding of the complex and interrelated challenges in
programming instruction and learning. These challenges encompass not only
instructional approaches but also students' cognitive abilities, motivational factors,
and the learning environment. Considering the multitude of variables affecting
learning in a broad sense and the specific domain of learning programming, there is
a compelling need to comprehensively evaluate factors influencing students’
achievement in the fundamentals of computer programming, encompassing both

cognitive and motivational aspects.

Building upon the established challenges in teaching computer science and the
growing trend of introducing programming concepts to younger children, this study
holds significant practical value for educators, curriculum developers, and
policymakers. By investigating the multifaceted determinants that influence middle
school students' acquisition of fundamental programming principles, the results can
contribute to the development of enhanced instructional strategies tailored to this age
group. Given the complex nature of computer programming, which demands
proficiency across multiple domains and is widely recognized as challenging to
acquire, it is imperative to consider the cognitive load placed on learners and their
capacity to process information during instruction (Berssanette & De Francisco,
2022). Understanding the interplay between sociodemographic background,
educational experiences, learner characteristics, motivational factors, learning
environment, and cognitive load can equip educators with a comprehensive
framework to respond to the varied needs of students in their classrooms. This

knowledge can be translated into the creation of differentiated learning experiences

12

that address various learning styles and abilities, fostering a learning environment

that is more inclusive and interactive for computer science education.

The findings of the study can make a valuable contribution to curriculum
development by providing a profound understanding of the appropriate level of
complexity and the specific programming concepts most conducive to successful
learning for middle school students. This information can guide the creation of age-
appropriate and engaging curriculum materials that stimulate a desire to develop
proficiency in coding and equip young learners with the foundational knowledge and
abilities required for thriving in the era of digital advancements. Ultimately, by
identifying the factors that shape programming achievement within this age group,
this study aims to contribute valuable insights that can inform educational practices
and pave the way for more effective pedagogical approaches and instructional

strategies for teaching computer science to younger learners.

13

CHAPTER 2

LITERATURE REVIEW

This chapter serves as a theoretical foundation for contextualizing and framing the
research questions through a detailed examination of existing research. The primary
aim is to reveal a complete comprehension of the theoretical underpinnings of
cognitive load theory and motivational factors, particularly regarding the context of

computer programming education for children.

2.1 Cognitive Load Theory

Cognitive Load Theory (CLT) posits that the capacity of working memory to process
information is a critical factor in learning outcomes. This theory emphasizes the
importance of optimizing cognitive resources to enhance learning efficiency. To
investigate how CLT can be applied to enhance computer programming instruction,
the fundamentals of CLT, including the architecture of human cognition, core
principles of the theory, and the classification of cognitive load were examined.
Furthermore, the role of CLT in shaping effective programming instruction was

explored.

2.1.1 Human Cognitive Architecture

Human cognitive architecture provides insight into the processes of learning,
thinking, and problem-solving. This architecture, resembling a natural system for
information processing, employs various strategies to manage cognitive load. A key
focus of cognitive load theory is to identify strategies for decreasing this load,
thereby facilitating the transition of information from working memory to long-term

memory, where biologically secondary knowledge resides. The following sections

15

provide an in-depth examination of the role of information categories, long-term

memory, working memory, and schema theory within this framework.

2.1.11 Categories of Information

A diverse array of classification schemes exists for knowledge, with one notable
classification distinguishing between biologically primary and biologically
secondary knowledge. This distinction is substantial because the acquisition,
organization, and storage of various categories of knowledge may require different

instructional methodologies.

From Geary's (2008) evolutionary perspective, biologically primary knowledge
pertains to information that humans have naturally developed the capacity to acquire.
In contrast, biologically secondary knowledge encompasses information that has not
been naturally acquired through human evolution and has become essential due to
cultural influences (Sweller et al., 2011). Biologically primary knowledge
encompasses abilities and skills that humans have developed through natural
selection. They encompass the differentiation of facial features and vocal patterns,
the utilization of general problem-solving strategies, and fundamental rudimentary
social interactions. Competencies grounded in biologically primary knowledge are
typically acquired automatically and, more frequently, subconsciously, devoid of
formal educational intervention. For example, we are not taught how to talk via any

curriculum since we have evolved to acquire this skill (Sweller, 2016).

Biologically, primary knowledge serves as the foundation for the majority of human
cognition. Although biologically primary knowledge is essential to human cognition,
it does not directly lead to intelligent behavior. However, for complex problem-
solving and reasoning, biologically primary knowledge must be integrated with and
built upon biologically secondary knowledge. The cognitive processing required for
biologically evolved primary abilities differs from the typical information processing

required to obtain biologically secondary knowledge. For instance, cognitive

16

processing for learning to speak, which requires biologically primary knowledge, is
not the same as that for learning to write, which requires biologically secondary

knowledge (Geary, 2008; Sweller et al., 2011).

Instructional design primarily focuses on biologically secondary knowledge,
encompassing activities such as reading, writing, and other subjects taught through
instruction (Cowan, 2014; Sweller, 2016). However, it is important to recognize the
value of biologically primary knowledge. Since acquiring primary knowledge
requires minimal conscious cognitive resources, a strategic approach could involve
utilizing these inherent abilities as a scaffolding for learning secondary knowledge.
In other words, instructional design can leverage the efficiency of primary
knowledge to minimize the load on working memory associated with acquiring

complex skills and concepts (Paas & Sweller, 2012).

2.1.1.2 Long-Term Memory

Long-term memory serves as a vast storage for knowledge and skills that we retain
in a way that allows for more or less permanent access. All the things we "know,"
such as our name, the alphabet, reading, writing, and swimming, are retained within

our long-term memory, ready to be accessed whenever needed (Cooper, 1998).

A valid argument may be made that a substantial portion of the data retained in long-
term memory comprises biologically primary knowledge (Sweller, 2020). Many
tasks that we often perceive as effortless and uncomplicated are facilitated by our
primary knowledge because all biologically primary skills are perceived as easy and
simple. Conversely, activities such as chess, which rely on secondary knowledge that
has not been naturally acquired through evolution, are seen as exceedingly difficult.
This distinction between primary and secondary knowledge highlights the crucial
role of long-term memory in facilitating higher-level cognitive processes. While

primary knowledge allows for seemingly effortless tasks, long-term memory plays a

17

much more substantial role in human cognition, particularly in areas like thinking

and problem-solving (Sweller et al., 2011).

Long-term memory is essential for all higher-level cognitive processes, including
thinking and problem-solving (Bliss & Collingridge, 1993). It is critical not only for
human cognition but also for those facets of cognition considered the highest levels
of human intelligence. The role of long-term memory goes beyond facilitating the
retrieval of past events, whether meaningful or not (Kandel et al., 2014). The impact
of long-term memory on cognition and the nature of the cognitive changes that
resulted from practice were revealed by investigations conducted by De Groot (1978)
and Chase and Simon (1973). In his research with chess players, De Groot (1978)
identified only one distinction that separated players of different skill levels, and it
appeared unrelated to their problem-solving proficiency. Instead, De Groot's (1978)
focus revolved around the concept of memory. In a parallel study, Chase and Simon
(1973) arranged the chess pieces in a random configuration. No distinctions were
observed between chess players with different levels of proficiency with regard to
random configurations. The findings of these two research studies hold the potential
to provide a comprehensive understanding of chess expertise in a manner that does
not require consideration of additional variables. Chess proficiency does not
primarily revolve around thinking skills; instead, it is derived from the capacity to
recognize numerous configurations for chess boards and identify the optimal
strategies for each. When chess players have no knowledge stored in their long-term
memory, they are required to formulate strategies through problem-solving searches.
While thinking skills are necessary for novices, experts require fewer problem-
solving searches as their expertise increases (Sweller et al., 2011). Explanations
offered to distinguish the cognitive processes between expert and novice chess
players can be expected to be extrapolated to encompass all processes demanding
the utilization of secondary knowledge (Sweller, 1988). From this perspective,
possessing information about specific problem situations and their accompanying
moves should be the primary factor in improving problem-solving skills rather than

acquiring general problem-solving strategies (Gilhooly & Green, 1988). In essence,

18

these findings suggested that for complex domains requiring secondary knowledge,
a focus on building a rich knowledge base of specific examples and solutions may

be more effective than generic problem-solving approaches (Sweller et al., 2011).

2.1.1.3 Working Memory

Working memory is a construct introduced by psychologists in the mid-20th century.
It refers to the system responsible for temporarily holding and manipulating
information. Working memory holds significant theoretical weight in psychology,
particularly because it highlights the limitations of our cognitive capacity. Early
discussions hinted at working memory being essential for our everyday lives,
especially when it comes to planning tasks. The concept later broadened to
encompass the mental ability to remember plans in general, not just those related to
daily routines. This cognitive system with limited capacity is crucial for the
temporary retention and active information management in a readily accessible state.
This processed information plays a critical role in facilitating higher-order cognitive
processes such as planning, comprehension, reasoning, and problem-solving

(Cowan, 2014).

Over the years, debates have emerged about the specific limitations of working
memory. Some key questions include its capacity, processing speed, duration of
retaining information, and interference properties. While working memory capacity
can hold around seven chunks of information (Miller, 1956), the ability to actively
process that information is more limited. Working memory capacity is estimated to
be closer to two to three chunks for tasks requiring manipulation, such as organizing,
contrasting, or comparing information. Interactions among elements maintained
within the working memory itself consume additional working memory resources.
This effectively reduces the number of unique elements that can be actively
processed concurrently (Sweller et al., 1998). This number falls far short of the
complex interactions that occur in most intellectual endeavors. Working memory

alone would only permit rudimentary cognitive activities (Paas et al., 2003).

19

However, by leveraging long-term memory and established knowledge structures

(schemas), more complex tasks could be handled more effectively.

2.1.14 Schema Theory

Schema theory posits the existence of cognitive constructs called schemas stored in
long-term memory (Rumelhart & Norman, 1976). These schemas act as fundamental
units or chunks of knowledge, categorizing information about the world around us.
Schemas play a crucial role in information processing by influencing how we
perceive and interpret new experiences. However, these frameworks are personal,
and individual experiences can influence how schemas are formed and modified. In
the process of accretion, a new experience seamlessly integrates into an existing
schema without causing substantial modifications to the schema. Any incoming
information perceived as aligning with a particular schema will be processed in a
consistent manner, facilitating efficient storage and retrieval (Sweller et al., 2011).
This is because new knowledge is often assimilated into existing schemas during
learning, leveraging established connections. Conversely, tuning occurs when a
novel experience challenges the existing schema, leading to the adaptation of the
structure to integrate new information. Finally, when a new experience deviates
significantly from existing frameworks, a process of restructuring takes place,

leading to the creation of a new schema (Rumelhart & Norman, 1976).

In addition to facilitating the organization and storage of knowledge, schemas also
have a critical function in reducing the cognitive load on working memory. Through
continuous learning experiences, schemas may encompass extensive amounts of
information. Serving as a framework for interpreting new information based on
existing knowledge structures, schemas effectively reduce the load placed on
working memory (Van Merriénboer & Sweller, 2010). This allows for the
distribution of these limited working memory resources to more complex cognitive
tasks. Over time, schemas develop into complex networks of information through a

cumulative process of continuous addition, combination, and rearrangement. This

20

evolution enhances knowledge representation and processing efficiency.
Automation plays a significant role in this development. In contrast to conscious
processing, automatic processing, arising from extensive practice, significantly
reduces the reliance on working memory. Constructed schemas can become
automated through repeated application. From an instructional design standpoint,
effective instruction should aim to promote both schema construction and schema
automation for consistent aspects of tasks across various problems (Sweller et al.,

1998).

2.1.2 Foundations of Cognitive Load Theory

Cognitive load (CL), proposed by Sweller in the 1980s, refers to the amount of
cognitive resources allocated to working memory that a learner is expected to
dedicate to processing new information (Berssanette & De Francisco, 2022). This
theory is grounded in the well-established model of human cognitive architecture,
which encompasses both working memory and long-term memory. Cognitive Load
Theory (CLT) posits that human cognitive processing is heavily influenced by the
constraints on the capacity and duration of working memory. Since newly acquired
information necessitates initial conscious processing within limited capacity and
short-duration working memory, this can hinder learning effectiveness (van

Merriénboer & Sweller, 2005).

Expertise emerges gradually as individuals progressively integrate simpler concepts
into more complex schemata. These schemata organize and store knowledge for
efficient processing, thereby reducing the load on working memory. This is because
even highly complex schemata can be treated as single units within working
memory, reducing the number of independent elements requiring processing (van
Merriénboer & Sweller, 2005). Conversely, working memory capacity exhibits
limitations when encountering novel information. This stems from the absence of
pre-existing schemata, which act as a central executive, facilitating the processing

and organization of familiar concepts. Furthermore, the challenge is compounded by

21

the exponential growth in complexity as the number of elements within novel
information increases linearly. Unlike readily organized knowledge integrated into
schemata, novel information lacks a pre-established framework, imposing a load on

working memory's limited processing capabilities (Sweller et al., 1998).

Contrary to prevailing beliefs and several cognitive theories, CLT asserts that
specific forms of problem-solving activities may impede the learning process.
Sweller (1988) underscored, in summarizing the findings of his study, that
conventional problem-solving may not contribute to schema acquisition, given the
substantial differences in the mechanisms required for problem-solving and schema
acquisition. As schema acquisition represents a critical element of problem-solving
expertise, an excessive emphasis on the problem-solving process may place a high
level of cognitive load and impede the development of expertise. Although schemas
serve as a template that simplifies complex problem-solving tasks, conversely, they
might complicate the resolution of simple problems when erroneously assuming the
schema's relevance to the problem and its provision of an appropriate template.
Utilizing an inappropriate problem-solving schema resulted in Einstellung, also
recognized as a mental set that obstructs our perception of apparent details (Sweller
et al., 2011). Utilization of complicated problem-solving techniques, such as means-
ends analysis, might result in an increased cognitive load on the learner, potentially
resulting in a more pronounced hindrance to the learning process. Engaging in
problem-solving tasks that require storing many items in short-term memory may

lead to an excessive cognitive load (Sweller, 1988).

Cognitive load (CL) denotes the extent of resources allocated to working memory,
anticipated for a learner to allocate in order to process new information. With this
approach, CLT, which serves as an instructional design theory, attempts to explain
the impact of the information processing load generated by learning tasks on
learners’ capacity for information processing and constructing knowledge in long-
term memory (Berssanette & De Francisco, 2022). Chandler and Sweller (1994)
asserted that learning may be more difficult from materials that include large

amounts of information than learning from materials that have less information.

22

When students are exposed to excessive amounts of information and inadequate
regulation of the complexity of instructional materials, this will lead to an excessive

cognitive load due to the constrained capabilities of short-term memory.

Different instructional strategies and media are used in instruction. According to
CLT, their effectiveness cannot be ensured if the cognitive architecture of the brain
is not considered during instruction. Information is retained within the long-term
memory in a vast number of schemas. Schemas organize categories and elements of
data, as well as the relationships among them (Chi et al., 1982). These schemas are
constructed in working memory. For highly skilled performance, exceedingly
complicated schemas, which incorporate ‘“elements consisting of lower-level
schemas into higher-level schemas”, are constructed (Paas et al., 2004, p.2). But, as
a consequence of the limitations of working memory capacity, dealing with this kind
of complex schemas may exceed working memory capacity. However, due to
comprehensive and sufficient practices, schemas can be automated. The automation
of those schemas allows them to be processed unconsciously, thereby decreasing the

working memory load.

The primary focus of cognitive load theory is to manipulate working memory load
in a way that facilitates the construction of schema within the long-term memory for
automation of schemas, which results in learning. CLT is concerned with the ease of
processing information within working memory. The cognitive load imposed on
working memory can be influenced by two key factors: the inherent complexity of
the learning tasks themselves (intrinsic cognitive load) and the way these tasks are

presented (extraneous cognitive load) (van Merriénboer & Sweller, 2005).

2.13 Types of Cognitive Load

Traditional cognitive load theory delineates three primary types of cognitive load:
intrinsic, extraneous, and germane. Intrinsic cognitive load, defined as the load that

stems from the inherent complexity of learning materials and the learner's expertise

23

level, is considered independent of the educational methods implemented (Sweller
et al., 2011). This independence arises because the number of elements requiring
simultaneous processing in working memory depends on the degree of element
interactivity within the learning materials or tasks. Understanding materials with
highly interactive elements presents a significant challenge. However, the key to
fostering comprehension lies in developing cognitive schemata that integrate these
interacting elements. Consequently, what a novice learner perceives as a large
number of interacting elements may be a single element for a more experienced

learner with a well-developed schema (van Merri€nboer & Sweller, 2005).

Extraneous cognitive load arises from the tasks learners perform or the way
information is presented. Within this type of cognitive load, the instructional design
employed to deliver the material may additionally impose a load that is extraneous
and unrelated to the intended learning objectives (Sweller et al., 2011). In contrast to
intrinsic cognitive load, extraneous cognitive load is not essential for the process of
knowledge acquisition, such as schema construction and automation. Unlike intrinsic
load, extraneous cognitive load can be effectively reduced or eliminated through the
implementation of targeted instructional interventions (van Merriénboer & Sweller,

2005).

Intrinsic and extraneous cognitive load have an additive effect on the learner's
working memory. Thus, the impact of extraneous cognitive load on student learning
outcomes depends on the intrinsic cognitive load. In situations where the intrinsic
load is elevated, instructional design should prioritize minimizing extraneous
cognitive load. This ensures that the overall cognitive load is kept at a level that
aligns with the limitations of working memory and facilitates successful knowledge
acquisition. Conversely, for tasks with a lower intrinsic load, a moderate level of
extraneous cognitive load, even if stemming from instructional design shortcomings,
may not necessarily impede learning. However, it is important to acknowledge that
even in low intrinsic load situations, excessive extraneous cognitive load can still
hinder learning by exceeding working memory limitations (van Merriénboer &

Sweller, 2005).

24

In earlier versions of CLT, the germane load (GL) was introduced by Sweller et al.
(1998) as an additional beneficial load on the learning process. This construct aimed
to explain the positive impact of certain variations within learning materials on the
learner's cognitive processes during knowledge acquisition. Research studies have
demonstrably shown that variability in practice activities while increasing cognitive
load, facilitates schema construction and enhances the transfer of training. Paas and
Van Merriénboer (1994) proposed that the observed increase in cognitive load
stemmed from processes directly contributing to learning, such as automation and
schema construction, rather than from extraneous cognitive load that does not
promote learning. The introduction of germane load in CLT emphasizes the
importance of active learner engagement for successful learning. While CLT focuses
on managing cognitive load, germane load underlines the necessity for learners to
invest mental effort in processing information relevant to building knowledge and
schemas. This processing requires some level of motivation and willingness to
engage with the learning materials. While instructional strategies can be employed
to minimize extraneous load and free up cognitive resources, this approach is only
effective if learners are motivated to invest these freed resources in germane
cognitive activities that promote schema development and knowledge acquisition. In
essence, effective learning depends on optimizing instructional design to reduce
extraneous load and foster learner motivation to engage in germane cognitive

processing actively (van Merriénboer & Sweller, 2005).

While traditional conceptualizations of CLT involve the three types of cognitive
load, as previously outlined, recent years have seen growing debate regarding the
germane load construct. Research studies within CLT have emphasized that
cognitive load does not consistently hinder the process of learning. In fact, it is
essential for facilitating meaningful learning, particularly complex learning, which
necessitates effortful cognitive processing and the load that is linked with working
memory. However, when CLT was first introduced, intrinsic and extraneous loads
were considered loads to be properly managed or minimized to prevent cognitive

overload. Consequently, the germane load construct was introduced to reflect the

25

purposeful cognitive effort invested in learning and the associated demands placed
on working memory during knowledge acquisition. Unlike intrinsic and extraneous
cognitive load, the construct of germane load was introduced within the CLT
framework based primarily on theoretical considerations. While the additive
hypothesis, which posits a cumulative effect of the three load types on learners,
provided initial support for the framework, empirical evidence specifically
demonstrating the need for germane load remains a topic of ongoing discussion
(Greenberg & Zheng, 2023; Kalyuga, 2011). However, over time, the limitations of
this additive framework have begun to be discussed by the researchers as it does not
fully capture the complex interactions between these loads. Critics argue that
germane load and intrinsic load are not entirely distinct. They contend that germane
load inherently relies on intrinsic load. Without the inherent challenge presented by
the material (intrinsic load), there would be no need for the learner to exert effort in
processing it (germane load) to build new knowledge (Greenberg & Zheng, 2023).
Therefore, a debate was started on whether germane load should be regarded as a
discrete form of cognitive load or a germane resource in working memory (Leppink
& van den Heuvel, 2015). In their 2019 revisit of the topic titled "Cognitive
Architecture and Instructional Design”, Sweller et al. emphasized that the growing
body of empirical research consistently demonstrated a key finding: reducing
extraneous cognitive load led to a corresponding decrease in overall cognitive load.
The new formulation of CLT presumes that germane cognitive load doesn't simply
increase overall cognitive load. Instead, it reallocates working memory resources
from irrelevant tasks to core learning activities, enabling efficient processing of task-

intrinsic information.

There have been some research studies that provide evidence supporting a
framework in cognitive load theory that emphasizes the role of germane resources in
working memory on shaping learners' cognitive effort during learning. Findings from
a study by Kalyuga (2011) supported the notion that the traditional CLT framework
might be redundant. This study suggested that germane load might not be a distinct

category but could potentially overlap with, or even be indistinguishable from,

26

intrinsic load. Similarly, findings from a recent study by Greenberg and Zheng
(2023) suggested that germane load might not be a direct predictor of performance
outcomes, while intrinsic load was the primary variable influencing performance
outcomes. This finding led them to propose that mental activity directly relevant to
learning (germane activity) might be more closely linked to the cognitive resources
available in working memory rather than constituting a separate type of cognitive

load.

Additionally, they found that individuals with greater working memory capacity
could effectively manage complex learning tasks while still allocating cognitive
resources to learning, proposing that the exertion of cognitive effort during the
process of acquiring knowledge is influenced by germane resources stored in
working memory, as opposed to the germane load. On the other hand, a meta-
analysis of cognitive load questionnaires found that the concept of germane load
continues to provoke debate with regard to its measurement and theoretical
integration, supporting the need for further investigation (Krieglstein et al., 2022). In
recent frameworks of cognitive load theory, the term “self-perceived learning” has
been widely used to refer to germane load. Self-perceived learning emphasizes the
learner's own perception of how much they are acquiring knowledge (Bergman et
al., 2015; Fredericks et al., 2021; Quintero-Manes et al., 2022). Due to the ongoing
research on the cognitive load imposed during learning, this study utilized the term
"germane load" to address the germane resources, thereby avoiding potential

conflicts.

2.14 Research on the Role of Cognitive Load Theory in Computer

Programming Education

Computer programming represents a cognitively complex domain characterized by
necessitating mastery across various competencies, which often leads to significant
challenges for learners due to the high CL it imposes on their working memory

(Berssanette & De Francisco, 2022). Working memory is critical for solving

27

problems like programming comprehension as it allows us to hold relevant
information in mind, manipulate it, and make connections to reach solutions. The
limitations of working memory pose a significant challenge in computer
programming education. Cognitive Load Theory arises as a beneficial framework in
computing education by addressing this challenge. One of the fundamental
challenges, particularly in introductory computer programming education, lies in the
subject matter's inherent complexity. This complexity generally stems from two
factors: the number of new concepts students must learn and the requirement to
integrate these concepts with previously learned ones to solve problems. From a
perspective rooted in CLT, the process of integration increases the cognitive load
encountered by students, thereby hindering their learning and problem-solving
process. CLT sheds light on the impact of human cognitive architecture limitations
on the process of learning and offers guidance for optimizing learning processes
(Duran et al., 2022). Research studies have shown that the application of CLT in
teaching computer programming involves various strategies, including applying
concepts like the worked example effect, the development and use of instructional

resources or tools, and pedagogical strategies based on measuring cognitive load.

Related literature has shown that instructional methods based on CLT impact the
effectiveness of teaching computer programming. Effective learning in
programming education can be achieved through methods that reduce extraneous
load and optimize intrinsic and germane loads. Besides that, by leveraging CLT
principles, educators could differentiate intrinsic from extraneous cognitive load.
This distinction empowers them to design instructional strategies that effectively
manage the learning process and optimize students' cognitive resources (Looker,
2021). One of the most widely employed strategies in computer science education
(CSE) for aiding students’ knowledge acquisition is worked examples (Abdul-
Rahman & Du Boulay, 2014; Caspersen & Bennedsen, 2007; Derry, 2000; Garner,
2002; Gray et al., 2007; Hsu et al., 2012; Lim, 2019; Mason & Cooper, 2013;
Muldner et al., 2022; Nainan & Balakrishnan, 2019; Sands, 2019; Takir, 2011).

Worked examples, comprising a problem statement, solution steps, and the final

28

result, have demonstrated the enhancement of learning outcomes by reducing
cognitive load, shortening learning time, and facilitating the construction of
cognitive schemas. Consequently, this enables students to solve similar problems
more with increased efficiency and effectiveness (Sweller & Cooper, 1985). While
worked examples have been shown to be a valuable tool in programming education,
particularly for novice learners encountering complex technical concepts for the first
time, their effectiveness is influenced by their design and implementation. These
examples may cover different problem types, programming paradigms, and
visualization techniques to address a variety of learning styles and deepen
understanding. Programming education utilizes a variety of design types for worked
examples, including text-based static examples, modeling examples, dynamic code-
tracing, animated examples, and incomplete examples (Muldner et al., 2022).
Despite the benefits of worked examples, one potential drawback of them lies in their
passivity; they may not inherently compel learners to engage in a meticulous analysis
of the presented solution. To address this shortcoming, Van Merrienboer and
Krammer (1987) introduced the utilization of completion problems in introductory

computer programming education.

Empirical studies have demonstrated various innovative educational tools and
techniques aimed at enhancing the instruction and comprehension of computer
science. This emphasis on innovative approaches underscores the inherent
challenges students face in grasping complex concepts within the field. In this
context, CLT provides valuable insights into how to design these educational tools
and techniques. One such tool is linked list visualization software designed based on
Cognitive Load Theory's split-attention effect, which integrates diagrams and code.
Results showed that this approach could help students with prior programming
knowledge gaps visualize and understand linked lists more effectively, thereby
reducing cognitive load and fostering a deeper grasp of data structures (Arevalo-
Mercado et al., 2023). The findings of another study demonstrated that a new
teaching method using a custom visualization tool helped novice programmers grasp

function-based problem-solving in a visual setting. Compared to traditional teaching

29

methods, students using the new approach performed significantly better on tests and
assignments (Winter et al., 2019). Another study, drawing on principles from CLT,
proposed by Harms, (2013), suggested that developing personalized tutorials tailored
to a user's programming expertise could enhance the effectiveness of novice
programmers in learning new programming concepts encountered in unfamiliar
code. The main purposes of the proposed tutorials were to predict the learners’
potential cognitive load by modeling their expertise in programming and to minimize
the extraneous cognitive load by presenting programming concepts that prevent
exceeding the working memory capacity of a learner. According to the findings of
the studies, by effectively managing cognitive load, these innovative approaches

hold great promise for improving computer programming education.

2.2 Motivation and Learning

Numerous theories of motivation in learning have been developed through research
from diverse perspectives, offering significant insights into the factors driving
student engagement and achievement. Educators have access to an extensive array
of resources related to student motivation. These theories provide essential
understandings of the underlying sources of curiosity and persistence in learners.
Among these, goal orientation theory examines how students' goals influence their
motivation and learning behaviors, providing a framework for understanding student

engagement.

2.2.1 Goal Orientation Theory

Goals are the cornerstone of human motivation, propelling us to strive for
achievement and growth. Achievement Goal Theory offers insights into how
individuals set goals within various contexts, including education. This theory,
initially applied to understand young athletes, posits that their perceptions of ability

(shaped by past achievements and comparisons with others) and their definitions of

30

successful outcomes significantly influence the types of goals they set for themselves
(Nicholls 1984, 1989). These goals, in turn, shape their overall motivational

processes and influence their training and performance behaviors.
Personal Achievement Goals

Goal orientation theory, building on achievement goal theory, proposes that students'
motivation and learning behaviors are influenced by the types of goals they set for
themselves. Numerous models of goal structure have been created to enhance
understanding of the motivations driving achievement behaviors. Early research
within achievement goal theory explored goal structure through two dimensions,
focusing on mastery and performance goals. Individuals who possess mastery goals
prioritize learning and improvement by focusing on acquiring knowledge and
developing skills. Their success is measured by personal growth, not just achieving
a specific grade. For mastery goal-oriented learners, the desire to learn and improve
is their primary motivator, even when encountering difficult problems. On the other
hand, performance goal orientation encompasses a range of goals focused on relative
achievement. The goal of performance-oriented learners is to demonstrate
competence and outperform others. The emphasis is less on mastery of the concept
itself and more on their performance and how it compares to others (Ames & Archer,

1988; Elliott & Dweck, 1988).

Self-theories, such as Dweck's self-belief theory, further explain how students'
perceptions of their abilities influence their goal-setting. For instance, students who
possess a growth mindset tend to be more inclined to accept challenges and establish
goals aimed at achieving mastery (Dweek, 1986). Subsequently, avoidance goals
were incorporated into the framework, specifically as performance-avoidance goals
(Skaalvik, 1997). Contrary to performance-approach goals, students with
performance-avoidance goals are motivated by a concern about the possibility of not
succeeding, focusing on avoiding negative outcomes rather than embracing

challenges and aiming for improvement. These performance-avoidance goals are

31

generally less effective in driving academic achievement (Liem et al., 2008; Shell

et al., 2013; Shell & Soh, 2013).

Elliot and McGregor (2001) sought to refine the understanding of mastery goals by
proposing a 2x2 model. This model differentiates between mastery-approach goals
and mastery-avoidance goals. Mastery-approach goals, similar to the original
conceptualization, emphasize a desire for learning and improvement. However,
mastery-avoidance goals, a recent addition to the framework, are driven by a fear of
failing to master the task or knowledge. Critics of this new framework have argued
that the 2x2 structure might be too complex and difficult to measure in real-world
settings. Another version of this model was then proposed and tested by Elliot et al.
(2011) as a 3x2 model, including three approaches and avoidance goals: task, self,
and other. Furthermore, some researchers raise doubts about the presence of a
distinct mastery-avoidance goal orientation, suggesting that it might conceptually
overlap with performance-avoidance goals (Pintrich, 2000). Current research
suggests a further refinement of performance goals by distinguishing between
normative and appearance goals (Hulleman et al., 2010). Normative goals emphasize
social comparison, motivating learners to outperform others or avoid
underperforming relative to their peers. In contrast, appearance goals center on
managing self-presentation, driving learners to either showcase their abilities or
conceal their shortcomings from others. Normative goals appear less likely to lead
to negative outcomes. However, appearance goals, with their focus on avoiding
negative self-evaluation and potential public shame, might be more closely linked to

maladaptive behaviors (Zingaro et al., 2018).
Classroom Goal Structures

The goal-oriented messages perceived by students in the classroom form the
classroom goal structures. Analysis of the Patterns of Adaptive Learning Scales
(PALS) instrument has revealed that personal achievement goal orientations and

classroom goal structures are distinct constructs. However, related literature

32

indicates that perceived classroom goals act as predictors of personal achievement

goals.

Perceptions of the learning environment focusing on effort and understanding are
positively associated with the adoption of mastery-oriented goals by students (Meece
et al., 2006; Turner et al., 2002; Urdan, 2004). Students who perceived a classroom
environment that emphasized mastery goals reported employing more effective
learning approaches, demonstrating a preference for more challenging tasks, and
exhibiting a more positive disposition towards the learning environment (Ames &
Archer, 1988). Research studies have discussed the influence of teachers on the
formation of the classroom goal structure. The evaluation strategies or group
strategies employed by teachers significantly impact how these structures are
formed. For instance, creating ability groups or employing evaluation strategies that
foster a competitive climate in the classroom can strengthen perceived performance-
goal structures (Meece et al., 2006). Soltani et al. (2022) further revealed that
students' perceptions of competition, the perceived significance of the subject matter,
and their personal orientation towards mastery goals all positively contributed to
their academic performance. While performance-approach goals can be beneficial
for students, their effectiveness may vary depending on factors such as gender, age,
and the learning environment. Research conducted by Midgley et al. (2001)
suggested that these goals may be more advantageous for boys compared to girls and
for older students compared to younger ones. Additionally, the presence of mastery
goals alongside performance-approach goals may further enhance these benefits,

particularly in competitive learning environments.

2.2.2 Self-efficacy

Self-efficacy, a concept central to Bandura's Social Cognitive Theory, refers to a
learner's belief in their capabilities to master knowledge and skills. This belief acts
as a cornerstone of motivation, directly influencing how much effort and

perseverance a learner is willing to invest (Bandura, 1977). Several factors shape this

33

crucial belief, including previous success or failure experiences, social persuasion,

emotional states, and observational learning.

Individuals use various information sources to evaluate their capabilities.
Performance accomplishments, referring to past successes and failures, are
considered the most reliable source of information for self-efficacy appraisal. They
provide concrete evidence of one's capabilities, directly demonstrating what one can
accomplish. Overcoming challenges builds confidence, while repeated failures can
undermine self-belief. Furthermore, indirect experiences, such as observing others
succeed in similar tasks, can boost confidence in one's own abilities. Conversely,
witnessing failures can lower self-efficacy. Social influences and interactions also
play a significant role in self-efficacy. Social persuasion, which refers to positive
encouragement, commendation, and expressions of confidence from others,
strengthens an individual's confidence in their capabilities. Learners who receive
encouragement and support from peers, teachers, or mentors are more likely to
develop strong self-efficacy. For example, teacher acknowledgment (environmental)
reinforces students' perception of progress (personal), fostering intrinsic motivation
and self-efficacy to support ongoing learning. Finally, physiological and emotional
states encountered during the learning process, such as anxiety or confidence, also
play a role in self-efficacy appraisal. Individuals experiencing lower anxiety in a
situation may interpret this as a sign of greater capability, while higher anxiety levels
might be perceived as indicating lower competence (Bandura, 1977; Schunk &

DiBenedetto, 2020; Usher, 2009).

2.2.3 Academic Self-Handicapping Strategies

Students who are concerned about failing exams or assignments may perceive their
self-esteem to be at risk. A common coping mechanism for this concern is the use of
self-handicapping strategies (Schwinger et al., 2014). Academic self-handicapping
strategies involve behaviors in which students create impediments either before or

during the task they need to accomplish, thereby hindering their success. Examples

34

of academic self-handicapping behaviors exhibited by some students include
procrastinating and spending excessive time on other activities, such as socializing,
thus leaving them very little time to study. The purpose of these strategies is to
provide an excuse for failure so that the failure can be attributed to these self-imposed

impediments rather than to a lack of ability (Urdan, 2004).

Research in early childhood education has established a connection between self-
handicapping behaviors and achievement goals. For instance, Midgley and Urdan
(2001) identified a significant positive relationship between personal performance-
avoidance goals and self-handicapping behaviors among 7th graders, while no such
association was observed for personal performance-approach goals. Leondari and
Gonida (2007) compared different age groups and concluded that students begin to
adopt academic self-handicapping strategies earlier in their academic careers. They
found that while academic achievement remains a significant predictor of self-
handicapping behavior in the upper elementary grades, in the process of shifting to
high school, performance-avoidance goals become a stronger predictor of self-

handicapping than achievement itself.

Research studies have also highlighted the relationship between personal
achievement goals, classroom goal structures, and self-handicapping behaviors
(Midgley & Urdan, 2001; Urdan et al., 1998). Studies have shown that students who
focus on personal performance goals and perceive a strong emphasis on performance
in the classroom structure are more inclined to exhibit self-handicapping behaviors.
In contrast, students who focus on mastery goals and perceive a classroom
environment that promotes mastery are less prone to engage in self-handicapping
behaviors (Leondari & Gonida, 2007; Urdan et al., 1998). However, it is essential to
mention that changing the classroom goal structure will not have the same impact on

all students, as indicated by other studies (Urdan, 2004).

35

224 Attitude

Student attitudes are a critical factor influencing success and sustained interest in
programming education. Research indicates that well-designed learning experiences
and supportive instructional practices can significantly enhance these attitudes.
Studies have demonstrated that effectively structured courses and activities can
maintain or even improve positive student dispositions toward programming (Asad
et al.,, 2016; de Vink et al., 2023). This underscores the importance of fostering
engaging learning environments that stimulate both interest and motivation.
Furthermore, the implementation of supportive instructional approaches has yielded
positive results. These approaches include the utilization of block-based
programming environments (Deniz & Korucu, 2023; Lambi¢ et al., 2021; Totan &
Korucu, 2023) and the integration of foundational theoretical knowledge with
practical activities (Tasdondiiren & Korucu, 2022). Such methods can empower
students to overcome challenges, develop a deeper comprehension of programming
concepts, and ultimately cultivate a more positive perception of the subject matter.
However, it is essential to consider the developmental stage of the students. Lambi¢
et al. (2021) discovered that younger students (7-8 years old) using a challenging
curriculum experienced a decline in positive attitudes compared to older students.
This finding underscores the significance of tailoring the difficulty and complexity
of learning activities to students' capabilities in order to maintain positive
dispositions. In conclusion, these studies emphasize the significance of employing
engaging and well-structured instructional approaches that provide students with the
necessary support to develop a positive attitude toward programming. This positive
attitude is paramount for promoting student success and fostering continued interest

in the field (Love, 2023).

36

2.2.5 Cheating Behavior

Within the academic field, cheating refers to the act of presenting the work or ideas
of another individual as one's own, typically for the purpose of attaining higher
grades. The relationship between cheating behavior and goal theory has been
extensively studied, providing insights into how students' achievement goals can

influence their propensity to engage in dishonest practices.

Studies examining the relationship between cheating behavior and goal orientations
have shown that certain achievement orientations can lead to cheating behavior.
Performance goals have been found to lead to cheating more frequently than mastery
goals (Meece et al., 2006; Senko et al., 2011). Additionally, in the context of
programming education, several studies have investigated the effect of pair
programming on reducing or inadvertently encouraging cheating behavior among
students. Collaborative learning, particularly within the context of programming
education, is a widely employed approach, especially for practical tasks. When pair
programming first became widespread, there were expectations that it would help
teachers prevent cheating behaviors. It was believed that, due to peer pressure,
students would work more systematically on their projects and have someone to
assist them, thus reducing the need to cheat (Williams & Upchurch, 2001). However,
subsequent studies have shown that this method can be susceptible to
misinterpretation by students, who may perceive it as an opportunity for dishonest
behaviors such as cheating. This misinterpretation could stem from a misconception
that cheating is synonymous with collaborative learning and information sharing
(Barros et al., 2021; Williams, 1999). Cheating behavior has been examined in
various studies, particularly concerning undergraduate and graduate students in
computer science (Schulz et al., 2023). In their study involving undergraduate
students, Hawi (2010) identified cheating as one of the causal attributions for
programming achievement. Another study emphasized the presence of cheating
behavior among students even during the initial stages of gamification

implementation (Ibanez et al., 2014).

37

2.2.6 Research on the Impact of Motivational Factors on Students'

Learning of Computer Programming

There is an expanding body of research investigating the multifaceted nature of
achievement in computer science education, especially in the context of learning
programming. These studies go beyond the cognitive aspects of programming and
explore how factors like students' motivation, emotional experiences, learning

behaviors, and the classroom environment all interact to influence achievement.

Research by Shell et al. (2013) contributed to the expanding body of research that
explores factors beyond cognitive abilities influencing achievement in computer
science education. Prior research has primarily focused on the cognitive or technical
dimensions of learning programming, such as syntax and algorithms. However, this
study investigated how motivational orientations, emotional experiences in the
classroom, and self-regulation strategies were associated with course grades,
knowledge retention, and ultimately, the long-term learning of computational
thinking in introductory CS-1 courses. Their work established a clear link between
mastery-oriented goals and positive academic outcomes. Additionally, the study
supported the connection between positive emotions in the classroom and higher
achievement. These findings underscored the importance of fostering an
environment that encourages students to set deep learning goals, a notion further
emphasized by Peteranetz (2021). To achieve this, a 3x2 goal orientation framework
was utilized, and the study encompassed two separate investigations. They observed
a concerning decline in all approach goals (learning, performance, and task) in upper-
level CS courses. While performance-avoid goals showed significant decreases,
which could be positive, there were no significant changes in task/work avoidance
goals. Similarly, a study by Shell et al. (2016) provided evidence that while initial
motivations are important, they do not always translate into long-term success.
Although the study initially focused on understanding students' reasons for enrolling
in the course and identifying those at risk from the outset, it ultimately highlighted

the significance of the course itself in influencing motivation and how motivation

38

evolves throughout the course. On the other hand, Hazley et al., 2015 investigated
the dynamic nature of goal orientation in post-secondary STEM courses. They
observed shifts in goal orientation throughout a semester, with some changes
(increased task-approach goals, decreased learning-avoidance goals) positively
impacting achievement. However, the results showed that changes in performance-
approach goals were not strongly influenced by classroom climate, although negative
emotions were linked to a decrease in these goals. The findings of these studies

emphasize the importance of a positive learning environment.

Patterns of achievement goal orientations in programming education have been
assessed not only in face-to-face education but also in distance education. Polso et
al. (2020) investigated student motivation in an open online introductory
programming course by identifying five distinct achievement goal orientation
profiles using a person-oriented approach that incorporates appearance, normative,
and mastery goals. Results of the study indicated that learners with combined
mastery and performance goals displayed slightly better outcomes compared to those
with low goals. The study found no significant link between goal orientation profiles
and overall course grades. Similar results were obtained in another study where task
avoidance, self-approach/avoidance, and other-approach goals were not directly
correlated with final exam scores (Tomi¢ et al., 2020). This finding was in contrast
to Shell et al.'s (2016) study, which identified goal orientation as a key factor for
student success. While social comparison aspects of goal orientation, which focus on
outperforming others, were not strongly linked to achievement in some studies
(Tomi¢ et al., 2020), others suggested potential beneficial outcomes. Peteranetz
(2021) observed a decrease in performance-avoidance goals (fearing looking bad),
which might be a positive development, as it could indicate a shift towards a more
growth-oriented mindset, where challenges are seen as opportunities for learning. In
another research, Gaddy and Ortega (2022) explored student enrollment decisions
using a novel approach: virtual reality (VR). This innovative method revealed that
scenarios highlighting goal orientation and career opportunities significantly

influenced participants’ enrollment decisions in CS courses, whereas focusing on

39

demographics had a negative impact. This suggests that potential CS students are
more engaged by messages that connect to their aspirations and future goals rather

than those that emphasize demographic characteristics.

In conclusion, student success in CS education transcends technical skills. A
supportive learning environment that fosters goals and actively acknowledges the
dynamic nature of motivation is crucial. By exploring the motivational factors,
educators can develop targeted interventions to nurture student engagement, address
challenges specific to gender, and empower students to navigate the evolving field

of CS education.

23 Programming Education for Young Learners

There is a growing worldwide interest in the instruction of programming skills at
elementary, middle, and high schools. In many countries, there has been intensive
work carried out by governments on incorporating computer programming into
school curricula. A wide range of studies explore the efficacy of programming
languages that use blocks as their primary method of coding in teaching computer
programming fundamentals. These studies highlight both the advantages and
drawbacks of block-based programming tools. These tools affect students’
motivation, interest, and engagement in a positive way compared to traditional
methods. For example, a study by Ouahbi et al. (2015) explored the impact of block-
based programming on high school students' motivation in programming.
Researchers divided science majors into groups learning with either Scratch, a game-
creation platform, or the traditional Pascal language. Students using Scratch
displayed significantly higher interest in continuing programming compared to
Pascal groups. Engagement with Scratch was also evident, as 85% of those students
installed it on their home computers, far exceeding the 17.2% in the Pascal groups.
Students were drawn to block-based programming due to its user-friendly nature.
Compared to text-based programming, block-based environments offer visual cues,

visual manipulation of code blocks, and natural language labels, making them easier

40

for novice learners to grasp. These environments also support learning by offloading
memory tasks through block design (shape and color). Block-based programming,
therefore, provides a valuable foundation for learning core programming concepts

(Weintrop & Wilensky, 2015).

However, block-based programming might be perceived as less powerful than text-
based programming. These tools may not offer the same level of complexity and
power as traditional text-based programming languages (Weintrop & Wilensky,
2015). Block-based programming tools enhance the initial learning experience while
preparing students for more complex programming tasks. Although block-based
programming environments are highly effective for beginners and provide a smooth
transition to text-based programming languages (Bau et al., 2017), they might be
perceived as less powerful than text-based programming. These tools may not offer
the same level of complexity and power as traditional text-based programming
languages. Additionally, some research studies highlight the challenges associated
with moving from block-based to text-based programming environments (Weintrop
& Wilensky, 2015). To address this challenge, Bau et al. (2017) suggested a dual-
mode approach that proposes bidirectional mode switching between block and text
representations, leveraging the ease of blocks for learning syntax and the efficiency

of text-based coding.

In the literature, there are numerous efforts to develop or adapt the computer
programming self-efficacy scales designed to measure students' self-efficacy in
programming across middle, high school, and undergraduate levels (Altun &
Kasalak, 2018; Askar & Davenport, 2009; Cesur Ozkara & Yanpar Yelken, 2020;
Karalar, 2023; Kittur, 2020; Korkmaz & Altun, 2014; Kukul et al., 2017,
Ramalingam & Wiedenbeck, 1998; Tsai et al., 2019). The systematic literature
review conducted by Luxton-Reilly et al. (2018) mentioned that academic success is
demonstrably influenced by students' self-efficacy and engagement. Research
suggested that female and minority students tend to exhibit lower levels of self-

efficacy compared to their peers.

41

A variety of pedagogical approaches have been investigated in computer education
research. For instance, the master's thesis by Erdem (2018) investigated how 5%
graders learned Scratch programming through two different approaches: traditional
face-to-face instruction and flipped learning with technology support. The research
revealed no substantial difference in educational achievements between the two
teaching methods. Wells LeRoy's (2022) dissertation explored the potential of
Minecraft for teaching logic gates with the participation of 122 college students. The
study investigated two instructional design principles, guided discovery and
pretraining, with a particular focus on their impact on cognitive load. While no
notable disparities were observed in the learning outcomes between discovery
approaches, Minecraft groups learned to build logic gates more effectively than the
PowerPoint group. Besides, students in the direct instruction condition experienced

significantly higher extraneous cognitive load.

While the importance of programming education has gained widespread recognition,
the effective assessment of student learning in this domain has become a prominent
areca of research (Grover, 2020; Newton et al., 2021). Some researchers have
explored a variety of assessment methods to assess the comprehension of
programming principles among students. Some researchers attempted to develop
traditional written exams. To this end, Grover, (2020) developed and evaluated a
summative paper-hand assessment for measuring student learning in introductory
programming courses tailored for grades 6-8 in middle school. This assessment
incorporated a combination of multiple-choice and open-response question formats,
all focusing on core programming concepts (“variables, expressions, loops,
conditionals, and abstraction”) using Scratch as a familiar platform for students (p.
678). The analyses of validity, reliability, and item discrimination, coupled with the
results of pre-and-post tests, suggest the assessment's effectiveness as a reliable
measure of learning in introductory programming. Notably, this study also provides
evidence for the effectiveness of well-designed multiple-choice items in assessing

the comprehension of programming concepts by students. Another study by Newton

42

et al. (2021) demonstrated the effectiveness of the Evidence-Centered Design (ECD)

framework in developing assessments for high school computer science courses.

The limited availability of computers in computer science classrooms has, to some
extent, necessitated the adoption of pair programming. This circumstance may
account for the significant amount of research devoted to exploring the impacts of
pair programming. Albayrak and Polat (2022) carried out a mixed-methods study to
investigate the experiences of students with pair programming. This study
underscores the benefits of pair programming at the undergraduate level. Throughout
a semester-long programming course, students worked in pairs, completed
assessment forms after each lesson, and participated in in-depth interviews at the
term's end. The findings revealed that students generally had positive experiences
with pair programming, reporting enhanced academic performance, faster problem-
solving, increased motivation, reduced anxiety, and improved communication skills.
However, some challenges were noted, such as disagreements on problem-solving
approaches and difficulty progressing when stuck together. Despite these challenges,
the study suggested that pair programming could be a valuable teaching method,

potentially addressing issues like student motivation and course completion rates.

2.3.1 Block-based Programming Environments

Block-based programming environments are commonly employed in early grades to
instruct students lacking previous exposure to programming. Numerous block-based
environments have been developed for teaching programming to young learners and
novice programmers, including Scratch, Code.org, MIT Applnventor, Alice and
CodeAcademy, among others. These tools enable students to create programs,
games, applications, and animations without the need to type commands and deal
with syntax errors, as is typical in traditional text-based programming languages.
Block languages reduce the cognitive load for new programmers by eliminating
syntax frustration (Bau et al., 2017; Luxton-Reilly et al., 2018). Moreover, these

applications can be utilized on computers, laptops, or mobile phones. Through these

43

platforms, students can gain a comprehensive understanding of fundamental
programming concepts like algorithms, loops, conditional statements, variables,
functions, and events. These introductory programming environments leverage
block-based programming languages, where each block encapsulates a specific
programming concept. Learners construct executable computer programs by
manipulating and connecting these blocks, similar to assembling a puzzle through a
drag-and-drop interface. Block-based programming relies heavily on visual design
to guide users. The shapes of the blocks themselves hint at their function, while
colors categorize functionally similar blocks. Additionally, each block is clearly
labeled, explicitly describing its purpose. One of the significant roles of visual cues
is to facilitate understanding, while instructional scaffolding helps learners grasp
fundamental programming concepts more effectively (Bau et al., 2017). Most block-
based programming tools offer a dedicated workspace where users can visualize the
execution of their program constructs. These tools then provide real-time visual or
auditory feedback to the user, indicating the validity of the constructed program
(Weintrop & Wilensky, 2015). Some block-based code editors, such as Blockly,
offer the simultaneous display of the user's constructed code in both a visual block
format and its corresponding text-based representation in specific programming

languages.

Block-based programming environments serve as a novice-friendly introduction to
programming fundamentals, acting as a stepping stone for a future transition to text-
based programming languages. Despite their drag-and-drop interface, block-based
tools maintain fidelity to core programming concepts. They incorporate instructional
scaffolding similar to structured editors, ensuring learners' acquisition of essential
programming principles while experiencing the core tenets of code writing.
Essentially, block-based programming environments offer a transparent and
accessible initial experience with programming, while establishing a foundation for
further exploration within the realm of more complex programming languages that

rely on text for coding (Weintrop & Wilensky, 2015).

44

Code.org

Numerous platforms are utilized at the K-12 level to teach programming, with
Code.org being one of the most widely implemented in Turkey, particularly in
middle schools, for introducing children to the fundamentals of computer
programming. Code.org is an educational visual programming environment
dedicated to broadening access to computer science education and ensuring its
availability to all, with a particular emphasis on children and young learners. This
initiative also conducts the annual Hour of Code campaign, engaging over 15% of
students globally (Code.org, 2024). According to their 2022 Annual Report, it has
amassed 80 million student accounts, with 47% identifying as female or gender-
expansive and 48% representing underrepresented racial or ethnic groups (Code.org,
2022). By using this platform, children can design and develop their own games,
animations, and applications. For educators and schools, Code.org provides
resources, including lesson plans to help integrate computer science curricula into

classrooms.

2.4 Summary

Computer programming, characterized by its cognitive complexity, imposes a
significant cognitive load on learners, challenging their working memory. Cognitive
Load Theory provides a valuable framework for addressing these challenges in
programming education. The inherent complexity of programming, due to the
integration of numerous new concepts, increases cognitive load and can hinder
learning and problem-solving. Research has applied CLT to develop instructional
strategies and tools aimed at optimizing cognitive load in programming education.
Effective learning is achieved by minimizing extraneous load and optimizing
intrinsic and germane loads. Innovative educational tools and techniques, informed

by CLT, address the complexities of programming education.

45

Research on student motivation in computer science education reveals a complex
interplay of factors influencing learning outcomes. While mastery goals are
consistently associated with favorable academic outcomes, the role of performance
goals is more differentiated. Performance-approach goals can be beneficial under
certain conditions, but performance-avoidance goals are generally detrimental. The
concept of classroom goal structures adds another layer, influencing their
engagement and academic achievement. The influence of classroom goal structures,
shaped by teacher practices and feedback, significantly impacts students' motivation
and achievement. In conjunction, self-efficacy, a key determinant of motivation, is
influenced by various factors, including past experiences, social support, and
emotional states. Students' perceptions of their abilities in programming are shaped

by their interactions with the subject matter and the learning environment.

Contextual factors such as gender, socioeconomic status, and learning styles also
contribute to student motivation and achievement in computer science. The use of
gamification and interactive learning environments can positively impact students'
attitudes and motivation, but careful consideration must be given to the
developmental levels of learners. Besides that, academic self-handicapping
strategies are closely tied to performance-avoidance goals and are supported in
environments that emphasize performance over mastery. Additionally, the
occurrence of cheating behavior, which is notably observed in programming
education, highlights the ethical concerns related to performance goals.
Collaborative learning methods, while intended to enhance learning, can

inadvertently facilitate dishonest behaviors if not carefully managed.

Block-based programming languages have been recognized as a successful tool for
introducing fundamental programming concepts, offering a user-friendly approach
that enhances student motivation and engagement compared to traditional text-based
methods. Studies have shown that block-based platforms significantly increase
students' interest and engagement and simplify code manipulation, making it
accessible for novices. Despite their benefits, block-based environments are

sometimes viewed as less powerful than text-based languages. Various pedagogical

46

strategies, including traditional instruction and innovative approaches like game-
based learning, have been explored, with mixed results regarding their effectiveness
in improving learning outcomes. Pair programming has been identified as a
beneficial practice, enhancing academic performance and reducing anxiety, though

it also presents challenges, such as conflicts over problem-solving approaches.

In conclusion, effective programming education requires a multifaceted approach
that considers cognitive, motivational, and contextual factors. Cognitive Load
Theory offers valuable insights into optimizing learning by minimizing cognitive
overload and maximizing meaningful engagement with the material. Understanding
and addressing students' motivation, including the interplay of mastery and
performance goals, self-efficacy, attitude, and classroom goal structures, is crucial
for fostering a positive learning environment. The strategic use of block-based
programming environments can serve as an effective entry point to the field.
Additionally, research on the impact of pedagogical approaches, such as pair
programming, is essential for enhancing student learning outcomes. By addressing
the cognitive, motivational, and contextual challenges of programming education,
educators can lead to the development of more engaging and efficient learning

experiences that empower students to succeed in this rapidly evolving field.

47

CHAPTER 3

METHODOLOGY

This chapter outlines the research methodology employed in this study. Initially, the
research questions were identified. Following this, the chapter introduces the
participants, details the research design, describes the study procedure, and
elaborates on the data collection instruments. Furthermore, it addresses the pilot
study, the implementation of the main study, the data analysis procedures, issues of

validity and reliability, and ethical considerations.

3.1 Research Questions

To comprehensively explore the factors affecting the learning of basics of computer
programming among middle school students, this study formulated the following

questions:

1. Is there a significant difference in cognitive load experienced by students
across seven fundamental programming topics?

2. Isthere a significant difference in students' PALS (personal achievement goal
orientations, perception of classroom goal structures, academic-related
perceptions, beliefs and strategies), attitudes towards coding education,
achievement in mathematics, achievement in reading comprehension,
achievement in coding, and cognitive load scores based on their gender?

a. Is there a significant difference in students’ PALS scores based on
their gender?

b. Is there a significant difference in students’ attitudes toward coding
education scores based on gender?

c. Isthere a significant difference in students’ mathematics scores based

on gender?

49

Is there a significant difference in students’ reading comprehension
scores based on gender?
Is there a significant difference in students’ coding achievement
scores based on gender?
Is there a significant difference in students’ cognitive load scores

across seven fundamental programming topics based on gender?

Is there a significant difference in PALS (personal achievement goal

orientations, perception of classroom goal structures, academic-related

perceptions, beliefs and strategies), attitudes towards coding education,

achievement in mathematics, achievement in reading comprehension,

achievement in coding, and cognitive load scores between students from

urban schools and suburban schools?

a.

Is there a significant difference in PALS scores between students
from urban schools and suburban schools?

Is there a significant difference in attitudes toward coding education
scores between students from urban schools and suburban schools?
Is there a significant difference in mathematics scores between
students from urban schools and suburban schools?

Is there a significant difference in reading comprehension scores
between students from urban schools and suburban schools?

Is there a significant difference in coding achievement scores between
students from urban schools and suburban schools?

Is there a significant difference in cognitive load scores across seven
fundamental programming topics between students from urban

schools and suburban schools?

How do research variables predict students’ achievement scores in

programming?

What are the students’ experiences and opinions on the factors that affect

their learning fundamentals of programming?

50

3.2 Participants

3.2.1 Participants in the Quantitative Phase

The present study was conducted in three public middle schools situated within the
Rize province. Participant selection employed a nonprobability convenience
sampling method. While acknowledging limitations in generalizability due to the
potential for self-selection bias, this method was chosen for its pragmatic advantages.
Considering the research questions at hand, it was reasoned that a convenience
sample drawn from these schools could provide appropriate information to test and
investigate the research questions (Creswell, 2012). A total of 281 fifth-grade
students were enrolled in the three participating schools. Of those students, 199 who
regularly attended Information Technologies and Software (ITS) classes,
consistently completed the data collection tools and obtained parental consent were

selected as participants for the study on a voluntary basis.

Table 3.1 provides a distribution of participants from different geographical
locations. School A, classified as an urban school, had the highest number of
participants with 112 students, which constitutes 56.3% of the total sample. On the
other hand, the other two schools are classified as a suburban school. Seventy-four
participants of the study were from School B, accounting for 37.2% of the total
participants. School C had the fewest participants among the schools, with 13

students making up 6.5% of the sample.

Table 3.1 Participants of the Study by Schools

Characteristics f %

Urban School School A 112 56.3

Suburban School School B 74 372
School C 13 6.5

51

Table 3.2 provides an analysis of the characteristics of participants from urban and
suburban schools. As seen in the table, 92 female and 107 male students participated
in this study. A disparity was observed in the ownership of computers at home, with
80.4% of urban school students having a computer, compared to 55.2% of suburban
school students. Household internet access was almost universal among urban
students (99.1%) but slightly lower among suburban students (93.1%). The
frequency of computer usage also varies, with urban students using computers more
frequently on a weekly basis (38.4%) compared to suburban students (21.8%). Prior
coding experience is more common among urban students (27.7%) than suburban
students (11.5%). Overall, these findings emphasize the differences in access to

technology and prior experience between students from urban and suburban schools.

Table 3.2 Characteristics of the Participants

Characteristic Category Urban Suburban Total

f % f % f %

Gender Female 53 473 39 448 92 46.2
Male 59 527 48 552 107 53.8
Having a computer Yes 90 804 48 552 138 693
at home No 22307 39 448 61 307
Household internet ~ Yes 111 991 81 93.1 192 96.5
No 1 09 6 69 7 3.5
Frequency of Never 14 125 23 264 37 18.6
computer A few days a month 5 45 9 103 14 70
e A few days a week 43 384 19 21.8 62 312
Less than 1 hour a day 15 134 12 138 27 13.6
1-3 hours a day 25 233 15 172 40 20.1
More than 3 hoursaday 10 89 9 103 19 9.5
Prior coding No prior experience 81 723 77 885 158 794
experience With prior coding 31 277 10 115 41 206
experience

52

The education levels of the parents of participants were provided in Table 3.3. Most
participants’ mothers and fathers had graduated from high school (45.2% of mothers
and 44.2% of fathers). Similarly, a high percentage of urban mothers (47.3%) and
suburban mothers (42.5%) had high school degrees. A significant portion of urban
mothers hold bachelor’s degrees (17.9%), whereas 6.9% of suburban mothers
attained this level of education. Conversely, suburban mothers were more likely to
have primary school degrees (23.0%) and middle school degrees (21.8%). A small
percentage of mothers in urban areas had master’s or PhD degrees (1.8%), while this
level of education was not present among suburban mothers. Additionally, the
percentage of illiterate mothers is higher in suburban areas (4.6%) compared to urban

areas (0.9%).

Table 3.3 Parental Education Level of the Participants

Characteristic Category Urban Suburban Total
f % f % f %
The education Illiterate 1 0.9 4 4.6 5 2.5
Ezerlnther Primary school degree 15 134 20 230 35 176
Middle school degree 11 9.8 19 21.8 30 15.1
High school degree 53 473 37 425 90 452
Associate degree 10 8.9 1 1.1 11 5.5
Bachelor's degree 20 17.9 6 6.9 26 13.1
Master’s/PhD degree 2 1.8 - - 2 1.0
The education Illiterate 1 0.9 2 23 3 1.5
Ezefla(t)}fer Primary school degree 8§ 71 15 172 23 116
Middle school degree 17 15.2 16 184 33 16.6
High school degree 50 446 38 437 88 442
Associate degree 8 7.1 7 8.0 15 7.5
Bachelor's degree 25 223 9 103 34 17.1
Master’s/PhD degree 3 2.7 - - 3 1.5

53

When the education level of fathers was examined, similar trends were observed. A
larger proportion of urban fathers (44.6%) and suburban fathers (43.7%) held high
school degrees. Bachelor’s degrees were more common among urban fathers
(22.3%) than suburban fathers (10.3%). However, suburban fathers had higher
percentages of primary school degrees (17.2%) and middle school degrees (18.4%)
compared to urban fathers. A small number of urban fathers held master’s or PhD
degrees (2.7%), whereas this level of education was not present among suburban
fathers. The percentage of illiterate fathers is slightly higher in suburban areas (2.3%)

compared to urban areas (0.9%).

3.2.2 Participants in the Qualitative Phase

At the end of the implementation phase, semi-structured interviews were carried out
with selected students. Participants were purposively selected based on teacher
recommendations to represent a range of academic achievements in the ITS course.
Three students were selected from each of the ten participating classes (six from
School A, three from School B, and one from School C), one representing low, one
moderate, and one high academic achievement. As detailed in Table 3.4, the

interview participants included 14 female and 16 male students.

54

Table 3.4 Demographic and School Information of Interviewed Students

ID Gender School Geographical School Location Class
S1 Male School A Urban 5A
S2 Female School A Urban 5A
S3 Male School A Urban S5F
S4 Female School A Urban 5F
S5 Male School A Urban S5F
S6 Male School A Urban 5D
S7 Male School A Urban 5D
S8 Female School A Urban 5D
S9 Female School B Suburban 5A
S10 Male School B Suburban 5A
S11 Male School B Suburban 5A
S12 Male School B Suburban 5C
S13 Female School B Suburban 5C
S14 Female School B Suburban 5C
S15 Male School B Suburban 5B
S16 Female School B Suburban 5B
S17 Male School B Suburban 5B
S18 Male School A Urban 5B
S19 Male School A Urban 5B
S20 Female School A Urban 5B
S21 Female School A Urban 5E
S22 Female School A Urban 5E
S23 Male School A Urban S5E
S24 Male School A Urban 5C
S25 Female School A Urban 5C
S26 Male School A Urban 5C
S27 Female School C Suburban 5A
S28 Female School C Suburban 5A
S29 Male School C Suburban 5A
S30 Female School A Urban 5A

33 Research Design of the Study

The current study aimed to explore and analyze the factors that influence middle
school students' acquisition of foundational computer programming knowledge and
skills. To achieve this objective, the study utilized a mixed-methods research design

that offers a comprehensive approach to exploring complex research questions.

55

A mixed-methods research design outlines a systematic approach for integrating
quantitative and qualitative data within the same study. This approach strategically
leverages the advantages of both qualitative and quantitative methods. Quantitative
methods are useful in educational research for identifying patterns and relationships
through numerical data analysis (Creswell, 2015). Quantitative methods play a
crucial role in educational research by facilitating the identification of patterns and
relationships through numerical data analysis. On the other hand, qualitative
methods offer distinct advantages over quantitative approaches in several ways: they
investigate participants’ inner experiences, explore how individuals construct and
understand meaning in their world, provide in-depth exploration in emerging
research areas, identify variables for further investigation through quantitative
methods, and foster a holistic and comprehensive understanding of phenomena
(Corbin & Strauss, 2012). Combining these methodologies can yield a more
comprehensive picture of the phenomenon under study than either method could

achieve alone.

Although mixed-methods studies have drawbacks, such as the need for substantial
time, resources, and the researcher's expertise in both qualitative and quantitative
research methods, they offer a multitude of advantages for research. One strength of
this method is its capacity to enrich the understanding of underlying relationships
between variables. Furthermore, mixed-methods research facilitates an in-depth
exploration of the relationships between variables. Additionally, mixed-methods
designs can contribute to the confirmation or cross-validation of relationships

identified between variables (Fraenkel et al., 2012).

In mixed-methods design, the combination of qualitative and quantitative data goes
beyond simply aggregating them into a single dataset. Instead, this process involves
a rigorous approach that aims to achieve a comprehensive and multifaceted
understanding of the research phenomenon (Creswell, 2015). Within the field of
mixed-methods research, various frameworks exist for conceptualizing research
designs. For instance, Creswell (2015) categorized mixed-methods designs into basic

and advanced groups. While this framework provides a general structure, Fraenkel

56

et al. (2012) offered a complementary perspective by identifying three specific
designs frequently used in educational research: exploratory, explanatory, and
triangulation designs. According to the framework defined by Creswell (2012,
2015), basic designs, encompassing convergent, explanatory sequential, exploratory
sequential, and embedded designs, involve the collection and analysis of quantitative
and qualitative data in different ways. In a convergent parallel design, data from both
methodologies are collected simultaneously and analyzed independently, with
subsequent comparison to identify convergence or divergence in the findings.
Sequential designs involve data collection in two distinct phases. The explanatory
sequential design begins with the collection of quantitative data, which is then
followed by qualitative data to explain the “why” behind the quantitative findings.
The exploratory sequential design follows the opposite sequence, starting with
qualitative data for the initial exploration of the variables associated with the
phenomenon and then utilizing quantitative data to explore the relationships between
these variables (Fraenkel et al., 2012). The embedded design is similar to the
convergent and sequential designs in that quantitative and qualitative data are
collected concurrently or sequentially. However, in this type of design, one data type
serves a supplementary role in enhancing the understanding derived from the
primary data type. While these basic mixed-methods designs are identified as distinct
approaches, they can be nested within advanced designs. Examples include framing
a basic design within an experiment, a social justice inquiry, or an evaluation process

(Creswell, 2015).

Mixed-methods designs are helpful for a comprehensive understanding of complex
educational phenomena by integrating qualitative and quantitative approaches. This
study aims to investigate the multifaced nature of learning programming that
involves not only cognitive aspects but also social and behavioral aspects. In this
study, the quantitative data identified predictors of programming achievement. The
qualitative component then explored deeper into these relationships, providing richer
insights and different perspectives. By integrating the findings from both

approaches, the study aimed to achieve a more through comprehension of the ways

57

in which different factors impact students' learning of programming. In particular, in
this study, a convergent embedded mixed-methods design, in which a qualitative
component is embedded within a quantitative design, was utilized. Both quantitative
and qualitative data were collected simultaneously in order to explore different
research questions, where the focus is on the quantitative data, and the qualitative
data supports the quantitative data (Fraenkel et al., 2012). The qualitative data served
to enrich our understanding of the quantitative findings by providing insights into

the underlying reasons or experiences associated with the quantitative results.

3.4 Procedure of the Study

34.1 Preliminary Investigation

The preliminary investigation served as a critical first step in preparing for this study.
It focused on the phenomenon of "teaching programming to children" within the
context of Turkey's middle school curriculum. At the time the study commenced, the
teaching of programming to younger age groups was just beginning to become
widespread in Turkey, even though the relevant learning outcomes had been included
in the curriculum previously. This study aims to evaluate factors that affect students'
programming learning within the existing teaching processes rather than intervening

in the learning environment.

When the research concept was initially developed, the "Middle School and Imam
Hatip Middle School Information Technologies and Software Course (Grades 5, 6,
7, and 8) Curriculum," published by the National Ministry of Education, Board of
Education and Training in 2012, was in effect (since access to past curriculum
documents is only possible through an official application/petition to the Ministry of
National Education, this curriculum cannot be referenced, Presidency of the Board
of Education, n.d.). This standard-based curriculum comprises four categories of
competencies along with standards that express the knowledge and skills pertaining

to information and communication technologies for each competency. In the

58

curriculum, there are no specific levels or topics designated for teaching a particular
grade. Instead, the selection of levels and current topics is left to the discretion of the
teacher. Subsequently, in 2018, a new curriculum for grades five and six was
published by the Ministry of National Education along with the Teacher's Guide and
Student Materials.

Therefore, this investigation was conducted to gain an understanding of the current
state of programming instruction in Turkey's middle schools, determine the research
needs, and tailor the research design accordingly. This involved conducting
exploration with IT teachers who had direct experience teaching programming to
children. In this regard, data were collected from 319 volunteer IT teachers across
71 Turkish cities. A total of 303 teachers completed the online survey, while 16
participated in interviews. Data was gathered through online surveys and semi-
structured interviews. The survey consisted of eight general demographic questions,
two yes-no questions, eight multiple-choice questions with closed-ended response
options, and thirty-two open-ended questions. In the survey, close-ended questions
were followed by open-ended questions, where participants described their
experiences in detail based on their responses to the closed-ended questions.
Consequently, the number of open-ended questions varied for each participant. The
survey questions were reviewed by two subject matter experts and checked by a
Turkish language expert for any obscure expressions. Additionally, a pilot survey
was conducted with two IT teachers. The semi-structured interview questions were

developed using the survey questions as a guide.

LimeSurvey, an open-source online survey application, was used to develop and
administer the survey. The survey was published on a personal website. The survey
invitation, either as a text or image, was disseminated on various social media
platforms to invite IT teachers to participate in the study. Furthermore, an invitation
letter was emailed to the corporate mail addresses of schools. Following the survey
administration, interviews were conducted with volunteer teachers. At the outset of
each interview, participants were briefed on the study's purpose and permission was

obtained for audio recording. The interviews were carried out over the telephone,

59

and each session was recorded. These interviews lasted approximately 20 to 55
minutes. The data obtained from this preliminary investigation and the main study
were analyzed using the same qualitative data analysis procedure. The detailed

analysis procedure is presented under the 'Qualitative Data Analysis' section (p. 78).

The following section presents the main results obtained from the examination of the
survey and interviews, along with a discussion of how these findings shaped the

subsequent stages of the research study:

e Survey results showed that 63.04% (N = 191) of the teachers involved in the
research incorporated programming instruction in their classes. The primary
reason cited by teachers who did not incorporate programming instruction

was technological deficiencies.

e According to the interview results, students entering the Information
Technologies and Software course in grades 5 or 6 have little to no prior

exposure to foundational information technology concepts.

e While survey participants indicated which learning objectives they included
in their lessons, interviews with teachers revealed confusion about
integrating these objectives into their lesson plans. Some teachers were
unaware of the new curriculum. Additionally, some teachers did not follow
a specific annual or daily plan and taught the Information Technologies and
Software courses independently of the curriculum's learning objectives. Even
when using common plans provided by their departments or shared on online
platforms, some teachers stated that they focused on solving specific puzzles,
particularly those using the Code.org coding environment, instead of
ensuring alignment with specific learning objectives. On these platforms,
teachers selected examples or courses for their students to complete each

week but often overlooked aligning them with specific learning objectives.

60

Considering the preliminary research findings, the following adjustments were made

to the study:

e The absence of standardized programming instruction practices in middle
education, such as inconsistencies in curriculum implementation and
variations in the specific programming outcomes addressed, posed a
significant challenge for conducting a comprehensive study that
encompasses data from multiple schools. This lack of standardization could
lead to inconsistencies in the pace and depth of programming instruction,
making it difficult to draw meaningful comparisons and identify patterns
across different learning environments. To address this challenge and ensure
the collection of consistent data that facilitates meaningful analysis, the
establishment of weekly learning objectives and lesson plans was deemed
essential. Weekly learning objectives were intended to serve as a common
framework for all participating schools, ensuring that students are exposed to
a consistent sequence of programming concepts and skills throughout the
study period. Additionally, aligned lesson plans were intended to provide
teachers with a detailed guide for each week's instruction, including activities

and resources.

e Given the prevalence of Code.org as the preferred block-based coding
platform for introductory programming instruction at the middle level and
recognizing the teachers' existing familiarity with this tool, the decision was
made to adapt and utilize lesson plans from Code.org curriculums. For this
purpose, to ensure appropriate difficulty and alignment with middle-level
learning objectives, Course F, originally designed for fifth grade, was

carefully reviewed and adapted.

61

3.4.2 Adaption Process of the Lesson Plans

In preparation for the study, 27 of the 28 programming-related lesson plans from
Course F on Code.org were translated from English to Turkish. This translation
process involved two language experts: one for the initial translation and another for
a thorough review. A researcher then made the final corrections to ensure accuracy
and clarity. A pilot study was conducted to evaluate the feasibility of the lesson plans
in a classroom setting. The lesson plans were distributed to 15 IT teachers based on
their students' readiness and pre-learning levels, as well as teacher preferences. The
teachers were informed about the research goals and participated voluntarily. They
were encouraged to contact the researcher with any questions throughout the pilot.
The researcher provided support via phone calls, text messages, or in-person visits
to the schools. After implementing each lesson plan, teachers were asked to complete
a Lesson Plan Evaluation Form (Appendix A) and send it electronically to the
researcher. Data from the Lesson Plan Evaluation Form was used to identify

suggestions and problems reported by the teachers, as listed below:

e It was reported that some lesson plans, especially those with extensive

unplugged activities, could not be completed within a two-hour class period.

e Providing the materials to be used in the course for unplugged activities was
not easy for some teachers. The preparation process for these courses was

considered time-consuming by some of them.

e The pilot study revealed issues with clarity in some lesson plans, especially
those with extensive unplugged activities. Teachers found the language
confusing and the instructions insufficient, making it difficult to understand
the intended activities. To address this, simplifying the language and

providing more detailed explanations were suggested.

e Teachers recommended incorporating more in-class practice with digital
puzzles before transitioning to independent or paired work. This would

provide scaffolding to ensure student understanding.

62

e It was stressed that sometimes students had difficulty making connections

between activities and the related concepts covered in the lesson.

e Concepts requiring specific mathematical knowledge, such as angles,

presented challenges for student comprehension and application.

e Feedback from the pilot study highlighted that some lesson plan elements

(e.g., playing cards) were considered distracting by the participating teachers.

The pilot study yielded feedback from teachers on the lesson plans, highlighting

areas for improvement. Based on these findings lesson plans were revised.

343 Lesson Plan Evaluation Workshop

Following the implementation and revision of the lesson plans based on teacher
feedback, a two-day workshop was conducted with IT teachers. The workshop aimed
to refine the piloted course content for the research study, focusing on teaching
programming fundamentals to novice students in fifth grade. The workshop began
with participants collaboratively identifying suitable learning objectives from the
official 2018 curriculum. These objectives then guided the selection of lesson plans
and activities. The teachers structured a ten-week program by selecting appropriate
elements from both adapted Code.org lesson plans and the official 5th Grade
Computer Technologies and Software Teacher Guide. The workshop involved four
IT teachers, with two participants working in public schools and the other two
employed by private schools. Lesson plans were distributed to the teachers in
advance of the workshop. They were requested to review the materials beforehand
to facilitate a productive discussion during the sessions. Additionally, printed copies
of the lesson plans were provided to each participant at the workshop's start for easy
reference. To capture the workshop discussions and activities, all sessions were
video recorded. This resulted in approximately 10 hours of data. Based on the

researcher's field notes and the video recordings of the workshop sessions, the

63

targeted learning outcomes, corresponding lesson plans, and activities for the

implementation of the study were identified.

3.5 Data Collection Instruments

3.5.1 Coding Achievement Test

The Information Technologies and Software course Coding Achievement Test was
developed for Sth-grade students to evaluate their understanding of the basics of

programming (see Appendix B).

3.5.1.1 Development of the Coding Achievement Test

Some items of the test were developed by the researcher through a literature review,
while others were developed by revising the questions of the coding achievement
tests developed in the previous research studies and the questions from the coding
textbooks recommended by the interviewed IT teachers during the lesson plan
development process. In the development of the questions regarding measuring
competencies in block-based coding, code.org and Scratch block-based coding
platforms were used. The candidate achievement test was developed with 46 items,
which were formed based on the learning outcomes defined in the fifth-grade
curriculum of the Information Technologies and Software course published by the

Ministry of National Education in 2018.

As a first step towards evaluation of the achievement test, it was reviewed by an
assessment and evaluation expert in terms of construct validation and reviewed by a
language expert and an IT teacher for language suitability. Subsequently, as the
second step, the Content Evaluation Panel was established, comprising four subject
matter experts and nine IT educators. Each IT educator was employed at a public
school and possessed over five years of experience in teaching programming at the

middle school level, particularly in fifth and sixth grades. One of the subject matter

64

expert panelists was selected from the Department of Computer Programming,
having graduated from the Department of Computer Education and Instructional
Technology (CEIT). Another subject matter expert was chosen from the Department
of Computer Engineering, also a graduate of CEIT. Besides that, one subject matter
expert from the Department of Computer Programming with over ten years of
experience in teaching programming at a vocational school and one subject matter
expert from the Department of CEIT were included. The expert evaluation form,
consisting of four questions, was subsequently developed to investigate the content
validity of the instrument. It aimed to evaluate the appropriateness of the instrument
for the target audience, as well as the comprehensibility and difficulty levels of the

items.

Content validity was investigated with the question (1)"Does the item represent the
property to be measured?”” The response options for this question were: “Essential”,
“Useful but insufficient” and “Not necessary”. Response options for the other
questions ((2) Is the item appropriate for the target audience? (this question just
asked panelists who were working at middle school and/or graduated from CEIT),
(3) Is the item sufficiently clear?, (4) What is the difficulty level of the item?) were:
“Appropriate”, “Appropriate but needs revision” and ‘“Not appropriate” for the
second question, “Clear”, “Clear but needs revision” and “Not clear” for the third
question; and “Simple”, “Medium” and “Difficult” for the last question (Yesilyurt &
Capraz, 2018). Besides, a column labeled “comments” was added to the far right of
the table to provide space for respondents to optionally add their comments regarding
each item. At the end of the evaluation form, subject matter experts were also asked

if they had any further comments regarding the overall test.

Forty-six candidate items were submitted to the panel for expert opinion. Panelists
were asked to grade each item for each question on the evaluation form by selecting
one of the given options. The content validity of the achievement test was evaluated
by the determination of content validity rates by using the Lawshe technique

(Lawshe, 1975). It was ascertained how many panelists selected the 'Essential’ option

65

for each item, and then the content validity ratio (CVR) for each item was calculated

by utilizing the following equation:

(ne- Number of panelists indicating "essential", N= Total number of panelists)

The content validity index of individual items (I-CVI) was calculated by dividing the
number of panelists considering an item as ‘essential’ by the total number of experts.

CVR and I-CVR values for each item are presented in Table 3.5.

Table 3.5 Content Validity Values of the Test Items

Ttem CVR I-CVI A (%) C (%) DL (%)
E M D
1 1.00 1.00 1.00 1.00 077 023 -
2 0.85 0.92 1.00 0.92 069 031 -
3 1.00 1.00 0.92 0.92 008 046 046
4 0.69 0.85 0.75 0.92 054 031 0.15
5 0.85 0.92 1.00 1.00 077 023 -
6 1.00 1.00 1.00 1.00 062 038 -
7 1.00 1.00 0.92 0.85 069 031 -
8 1.00 1.00 1.00 1.00 023 023 054
9 0.69 0.85 0.92 1.00 008 054 038
10 0.54 0.77 0.67 0.92 031 038 031
11 1.00 1.00 1.00 1.00 008 062 031
12 1.00 1.00 0.92 0.85 023 062 0.15
13 1.00 1.00 1.00 0.85 008 077 0.15
14 0.85 0.92 0.92 1.00 031 038 031
15 0.85 0.92 0.92 0.02 008 023 0.9
16 0.54 0.77 0.67 0.85 - 023 077
17 0.85 0.92 0.92 1.00 008 062 031
18 0.85 0.92 0.75 0.85 092 - 008
19 0.85 0.92 0.83 1.00 077 0.5 0.08
20 0.85 0.92 1.00 1.00 054 046 -
21 0.54 0.77 0.75 0.77 023 054 023
22 0.69 0.85 0.83 0.85 - 038 062

66

Table 3.5 Content Validity Values of the Test Items (cont’d)

23 0.54 0.77 0.83 0.85 0.15 046 038
24 0.54 0.77 0.75 0.77 0.08 062 031
25 0.54 0.77 0.83 0.85 0.15 062 023
26 0.85 0.92 0.75 0.46 0.69 0.15 0.15
27 1.00 1.00 0.83 0.92 0.54 046 -

28 0.08 0.54 0.58 0.62 031 046 0.15
29 1.00 1.00 1.00 0.85 - 0.85 0.15
30 1.00 1.00 0.92 1.00 0.08 062 031
31 0.85 0.92 0.92 0.92 0.77 0.15 -

32 0.69 0.85 0.92 1.00 092 0.08 -

33 0.69 0.85 0.92 0.92 0.69 0.15 0.15
34 0.54 0.77 0.92 0.85 046 038 0.15
35 0.54 0.77 0.75 0.77 038 038 0.15
36 0.23 0.62 0.75 0.77 031 054 0.15
37 0.85 0.92 0.83 0.92 - 0.69 031
38 1.00 1.00 1.00 0.92 0.15 0.69 0.15
39 0.85 0.92 0.92 0.92 0.08 046 046
40 1.00 1.00 1.00 0.92 023 054 023
41 1.00 1.00 1.00 0.77 038 0.62 -

42 1.00 1.00 1.00 0.77 0.08 0.15 0.77
43 0.85 0.92 0.83 0.85 023 0.69 0.08
44 0.85 0.92 0.92 0.85 - 0.54 046
45 0.69 0.85 1.00 0.92 038 038 0.23
46 1.00 1.00 1.00 1.00 0.08 054 038

CVI=0.89, S-CVI/Ave=.94

Note. A= Appropriate, C= Clear, DL= Difficulty level of an item, E= Easy, M= Medium,
H=Hard

Items were eliminated due to the critical CVR and I-CVI values (a0 = .05), which
were defined according to the panelist numbers. When the panel was composed of
13 panelists, a minimum CVR value of .54 (Ayre & Scally, 2014; Lawshe, 1975)
and a minimum [-CVI value of .78 were required for any item to be valid and
included in the instrument. Two items with a CVR value below .54 and eight items
that achieved an [-CVI value below .78 were excluded from the test. Additional
changes were also made to the items based on the comments and suggestions written

by the panelists. Consequently, 36 items were identified to be included in the last

67

draft form of the achievement test. Following that, the content validity index (CVI)
was determined for the entire test by computing the mean of CVR values of the 36
items that were kept, resulting in a CVI of .89 (Lawshe, 1975); and S-CVI/Ave value
obtained by computing the mean of [-CVI values of all retained items as .94 which
indicates the high content validity for the achievement test. The final draft form of
the coding achievement test was piloted by administering it to the three fifth-grade

students to ensure that all of the items were clear and understandable.

3.5.1.2 Item Analysis of the Coding Achievement Test

The draft coding achievement test was administered to 414 5th-grade students from
public middle schools in Rize for the item analysis of the test. Each student's correct
responses were encoded as 1, while the incorrect ones were encoded as 0. To
calculate the discrimination levels of the items, the students’ total scores were ranked
from the highest to the lowest using SPSS statistical software, and the upper group
and the lower group were identified using the critical value of 27 percent. Item
discrimination index (D) was computed for each item by using the following
equation D=(UG-LG)/n, where UG is the total number of students in the upper 27%
(n=112), and LG is the total number of students in the lower 27% (n=112) who
responded the item correctly. In addition, the DL=(UG+LG)/n+n formula was used
to find the difficulty levels of the items. The results of the analysis are displayed in
Table 3.6. The test results showed that one question (Q4) was too difficult, four
questions (Q3, Q12, Q20, and Q21) were easy, twelve questions (Q5, Q10, Q11,
Q17, Q23, Q24, Q25, Q28, Q30, Q34, Q35 and Q36) were difficult and the
remaining nineteen questions were moderately difficult. As seen in Table 3.6, the
discrimination indices of the 23 items were ideal. Five items with discrimination
indices within the normal range were deemed to be acceptable. However, eight items
(Q4,Q5,Q11,Q17,Q24, Q25, Q30, and Q34) that had discrimination indices below

.30, indicating too low or low discrimination power, were removed from the test.

68

Table 3.6 Item Analysis Results of the Coding Achievement Test

Item DI DI interpretation DL DI interpretation
Q1 0.54 Ideal 0.55 Moderately difficult
Q2 0.54 Ideal 0.58 Moderately difficult
Q3 0.36 Normal 0.77 Easy
Q4 -0.16 Unsatisfactory 0.19 Too Difficult
Q5 0.27 Low 0.35 Difficult
Q6 0.61 Ideal 0.50 Moderately difficult
Q7 0.51 Ideal 0.58 Moderately difficult
Q8 0.56 Ideal 0.56 Moderately difficult
Q9 0.41 Ideal 0.44 Moderately difficult

Q10 0.44 Ideal 0.37 Difficult

Q11 0.21 Low 0.30 Difficult

QIl2 0.52 Ideal 0.72 Easy

Q13 0.62 Ideal 0.57 Moderately difficult

Q14 0.55 Ideal 0.58 Moderately difficult

Q15 0.56 Ideal 0.42 Moderately difficult

Q16 0.51 Ideal 0.58 Moderately difficult

Q17 0.19 Too low 0.37 Difficult

Q18 0.55 Ideal .53 Moderately difficult

Q19 0.61 Ideal .57 Moderately difficult

Q20 0.54 Ideal .60 Easy

Q21 0.64 Ideal .63 Easy

Q22 0.62 Ideal 42 Moderately difficult

Q23 0.34 Normal 35 Difficult

Q24 0.26 Low 30 Difficult

Q25 0.13 Too low .26 Difficult

Q26 0.54 Ideal .54 Moderately difficult

Q27 0.38 Normal 42 Moderately difficult

Q28 0.46 Ideal 33 Difficult

Q29 0.35 Normal 47 Moderately difficult

Q30 0.27 Low 35 Difficult

Q31 0.71 Ideal 43 Moderately difficult

Q32 0.47 Ideal .54 Moderately difficult

Q33 0.51 Ideal 42 Moderately difficult

Q34 0.24 Low 34 Difficult

Q35 0.31 Normal 30 Difficult

Q36 0.43 Ideal 37 Difficult

69

Considering the findings from the analysis of the items, the final form of the fifth-
grade coding achievement test was composed of 28 items. Cronbach’s Alpha value
was computed for retained 28 items as 0.84 indicating good internal consistency.

Items and corresponding learning objectives are outlined in Table 3.7.

Table 3.7 The Distribution of the Items According to Learning Objectives

Learning Outcomes (Students will be able to...) ‘ Item
IT.5.5.1.6. Explain the variables, constants and operations required to solve 1,2
the problem.
IT.5.5.1.7. Give examples of operators that can be used in problem solving. 3
IT.5.5.1.10. Use operators to solve a given problem. 10
IT.5.5.1.12. Explain the concept of algorithm. 6,7
IT.5.5.1.13. Develop an algorithm for solving a problem. 13,15
IT.5.5.1.14. Explain flowchart components and functions. 16
IT.5.5.1.15. Draw a flowchart for an algorithm. 20
IT.5.5.1.16. Debug an algorithm by testing it. 14,21
IT.5.5.2.1. Explain the basic concepts of programming. 8,9
IT.5.5.2.2. Recognize the interface and features of the block-based 12, 18
programming tool.
IT.5.5.2.3. Create the appropriate algorithm to achieve the goals presented 22,26,
in the block-based programming environment. 28, 29,
31,32,33
IT.5.5.2.4. Explain the structure of linear logic. -
IT.5.5.2.5. Develop algorithms using linear logic structure. 22
IT.5.5.2.6. Explain the decision structure and its functions. 23
IT.5.5.2.7. Develop algorithms with decision structures. 26,31, 32
IT.5.5.2.8. Explain the loop structure and its functions. 19
IT.5.5.2.9. Create algorithms with loop structure. 28,29, 33
IT.5.5.2.10. Debug the algorithms created for different structures by 27,35, 36

predicting the results of it.

70

3.5.2 Cognitive Load Scale

3.5.21 Translation and Adaption of the Scale

Cognitive Load Scale (CLS), an 11-point Likert Type scale developed by (Leppink
et al., 2013) to assess three types of cognitive load (intrinsic, extraneous, and
germane load) in statistic lectures, was adapted and its applicability for middle
school students and programming teaching was verified. As seen in Table 3.8, CLS
consisted of 10 items; three items measuring intrinsic load (items 1, 2, and 3), three
items measuring extraneous load (items 4, 5, and 6), and four items (items 7, 8, 9,

and 10) measuring germane load.

Table 3.8 Items of the Cognitive Load Scale

Items

1 The topic/topics covered in the activity was/were very complex.

2 The activity covered formulas that [perceived as very complex.

3 The activity covered concepts and definitions that I perceived as very complex.
4 The instructions and/or explanations during the activity were very unclear.

5 The instructions and/or explanations were, in terms of learning, very ineffective.
6 The instructions and/or explanations were full of unclear language.

7 The activity really enhanced my understanding of the topic(s) covered.

8 The activity really enhanced my knowledge and understanding of statistics.

9 The activity really enhanced my understanding of the formulas covered.

10 The activity really enhanced my understanding of concepts and definitions.

3.5.2.1.1 Translation process

For this purpose, firstly, ten items of the scale were translated into Turkish by three
English language experts, and then these three translations were compared and
combined into one common version by one Turkish language expert to ensure the
naturalness of the language (Erten, 2012). Secondly, three different English language
experts, blind to the original instrument, performed a back translation of these

Turkish versions of the items into the original language (Geisinger, 1994).

71

CLS was adapted for the domain of Computer Science in different research studies
(Harms et al., 2016; Morrison et al., 2014) and for the middle school context (Weng
et al., 2018). In a similar way, items of the scale were adjusted to suit better to the
terminology used in computer programming at the middle school level in this study.
For this purpose, the terms used in 3 items were changed. Namely, the term
“statistics” was replaced by the term “programming” as deemed appropriate by
Leppink et al. (2013). Besides, the word “formulas” in items 2 and 9 was replaced
by “algorithms/problems.” In addition to that, the 10-point Likert response was
changed to a 5-point Likert format ranging from strongly to disagree (1) to strongly

agree (5) in order to ensure middle school students understanding.

The items of the original English and the translated Turkish versions were compared
and rated independently and blindly by three experts to check the linguistic and
semantic equivalence of the two versions. The rating was realized on a 10-point
Likert scale format, ranging from “not related at all” (1) to “100% synonymous”
(10). The mean score of the raters’ responses (M = 9.50) showed that the Turkish
version had a high level of equivalence with the original English version. In other
respects, the items in both their original English and back-translated English versions
were evaluated by another three English language experts for semantic equivalence
again on a 10-point Likert scale format, ranging from “not related at all” (1) to “100%
synonymous” (10). Results indicated a high level of equivalence between the back-
translated and original English versions (M = 9.27). The opinions of the two
Information Technologies and Software teachers were obtained for the clarity of the
scale and the appropriateness of the translation to the concepts of programming.
Scale was piloted with ten sixth-grade students (three students with low academic
achievement, three students with average academic achievement, and four students
with high academic achievement). In the selection of students, academic success in
Information Technology and Software courses was taken into consideration with the
guidance of the IT teacher. Students were asked to complete one activity (namely,
Robot Route is Flow Chart) from the Second-term Materials Book published by the
Ministry of Education in 2018 and then fill in the Cognitive Load scale. Then, they

72

filled in the Cognitive Load scale and three open-ended questions which aimed to
determine the unclear statements for the students. Informal interviews were
conducted with the students who had difficulties in understanding or answering the
items on the scale. In accordance with the feedback received from the students,
statements were revised by one IT teacher and 3 Turkish teachers working at a
middle school by focusing on the statements that were not understood by the
students. Herewith, the process of translation and adaption of 10 scale items was

completed (see Appendix C).

3.5.2.1.2 Exploratory and Confirmatory Factor Analysis Results of the
Cognitive Load Scale

The scale was applied to 804 sixth-grade students at the end of the two-hour
Information Technologies and Software class at eight different middle schools in
Rize. The data were gathered from students in the sixth grade as programming
concepts were generally introduced to the students in the last one or two weeks of
the fall semester for fifth-grade students in schools located Rize. As shown in Table
3.9, a total of 47 cases, including missing data, were excluded from the analysis, so

757 responses were analyzed.

Table 3.9 Distribution of Participants to Schools

School Name N
School 1 29
School 2 169
School 3 55
School 4 189
School 5 69
School 6 70
School 7 52
School 8 124
Total 757

73

Exploratory Factor Analysis (EFA) was conducted to determine if the questions
adapted from the original scale load onto three types of cognitive load. Additionally,
Confirmatory Factor Analysis (CFA) was conducted to test the scale for
measurement of specific cognitive load factors. Before conducting the analyses, the
data were screened to identify univariate and multivariate outliers, as well as
multicollinearity and violations of normality. When the original mean score of each
item and the trimmed mean scores were compared, the results indicated that the
extreme scores did not have a strong influence on the mean. Skewness and kurtosis
values of each item were all within the cutoff point value + 2 for large samples
(Tabachnick & Fidell, 2012), which indicated that the data were normally
distributed, as shown in Table 3.10.

Table 3.10 Normality Distribution of The Cognitive Load Scale Scores

Items M 5% Trimmed Mean SD Skewness Kurtosis
1 2.12 2.03 1.16 0.78 -0.26
2 2.23 2.16 1.18 0.61 -0.64
3 2.19 2.11 1.18 0.73 -0.41
4 1.92 1.81 1.09 1.19 0.57
5 1.84 1.72 1.08 1.34 1.22
6 2.10 2.01 1.15 0.84 -0.14
7 3.95 4.04 1.18 -0.90 -0.00
8 3.90 4.00 1.17 -0.92 -0.02
9 3.72 3.80 1.22 -0.73 -0.38
10 3.82 391 1.21 -0.83 -0.20

Then, the histograms for these items were checked, and it was found that all items 1,
2,3,4,5, and 6 appeared especially positively skewed and items 7, 8, 9, and 10 were
negatively skewed in their unreversed form. The reversed version of these items was
found to be positively skewed. This was an expected result of the analyses
considering the underlying theory of the scale. Additionally, in order to get a more
distinct form of the distribution, normal probability plots were examined. The

findings indicated that the instruments exhibited a normal distribution, as evidenced

74

by relatively straight lines. Descriptive statistics were calculated for each item and

each subfactor, with the results detailed in Table 3.11.

Table 3.11 Descriptive Statistics

Item N Mean Std. Deviation
Q5 757 1.84 1.08
Q4 757 1.92 1.09
Q6 757 2.10 1.15
Q1 757 2.12 1.16
Q3 757 2.19 1.18
Q2 757 2.23 1.18
Q9 757 3.72 1.30
Q10 757 3.82 1.22
Q8 757 3.90 1.18
Q7 757 3.95 1.18
Valid N (listwise) 757

Items 5 (M=1.84) and 4 (M=1.92) received the lowest mean scores. On the other
hand, items 8 (M=3.90) and 7 (M=3.95) received the highest mean scores. As for the
sub-factors, the germane load was found to be the most highly endorsed dimension
(M= 3.85), whereas the extraneous was the least endorsed dimension (M=1,95)

among the participants (see Table 3.12).

Table 3.12 Descriptive Statistics for Subfactors

N Mean Std. Deviation
Extraneous load 757 1.95 .86
Germane load 757 3.85 95
Intrinsic load 757 2.18 97
Valid N (listwise) 757

75

Exploratory Factor Analysis

In order to evaluate the construct validity of the ten items from CLS, Exploratory
Factor Analysis (EFA) was carried out. Kaiser-Meyer-Olkin (KMO) and Bartlett's
Test of Sphericity were used for the assessment of sampling adequacy. Test results
showed that the size of the sample was adequate (KMO=.872, Bartlett’s y*(45)
=2406, p < .001). Based on the original three-factor structure of the scale and scree
plot (Figure 3.1), three factors were rotated using Oblique (Oblimin) rotation, which
allows for correlations between factors. In this way, a three-factor solution was

found, which explained 64.27% of the total variance in CLS.

Scree Plot

4

w
1

Eigenvalue

Component Number

Figure 3.1. Scree Plot for CLS

Inter-factor correlation showed that the observed correlations were all less than .80,
which indicated that each factor measured a unique type of cognitive load. Besides,
it was observed that there was a negative correlation between IL-GL and EL-GL and
a positive correlation between IL-EL (see Table 3.13). These findings aligned with

the results of previous studies.

76

Table 3.13 Factor Correlations

IL EL GL
IL 1.00 515 -.387
EL 1.00 -.374
GL 1.00

Table 3.14 shows the factor loads of the items. All three-factor loadings of the items
were greater than .60, indicating a reasonably high correlation between items and
delineated factors. As seen from the table, the factor loading of items ranged between

.639 and 864.

Table 3.14 Factor Loadings of the Items

Factor Item Factor Loading
IL Item1 811
Item?2 .828
Item3 814
EL Item4 .864
Item$5 789
Item6 .639
GL Item7 776
Item8 793
Item9 817
Item10 792

Confirmatory Factor Analysis

The goodness of fit of the three-factor model obtained in EFA to the data was
measured through a Confirmatory Factor analysis. Analyzes were performed by
using AMOS. Findings indicated that the three-factor model had acceptable
goodness of fit indices: y %(32) = 68.184, p <0.01, RMSEA = 0.039, TLI = .979,

77

CFI= .985. As seen in Figure 3.2, the path diagram with standardized estimates of
the model represents the loadings associated with each item. In addition, it can be

seen that error variances did not exceed the threshold of .90.

Figure 3.2. Path Analysis Diagram for CLS within CFA

3.5.2.1.3 Reliability Analysis of the Cognitive Load Scale

The instrument yielded high reliability for the overall scale (alpha = .84) and two
factors (intrinsic load: alpha = .77; germane load: alpha = .81). However, the
extraneous load factor had a slightly lower alpha of .67 (see Table 3.15). Given the
acceptable overall scale reliability, shortness of the scale and the findings from the
previous studies (Hadie & Yusoff, 2016; Leppink et al., 2013; Morrison et al., 2014),

it was decided to retain the extraneous load factor in the scale.

78

Table 3.15 Reliability Analysis Results of the CLS

Cronbach’s Alpha

Leppink et al., Morrison et Hadie & Current study
2013 al., 2014 Yusoff, 2016
Intrinsic .81 .86 .88 77
Extraneous 75 .85 .82 .67
Germane .82 .93 .95 .81
Overall scale - .89 .84

353 Patterns of Adaptive Learning Scales (PALS)

Patterns of Adaptive Learning Scales (PALS) were developed by Midgley et al.
(2000) in order to investigate the relationship between the characteristics of the
learning environment and the motivation, affect, and behaviors of students. The
adaptation of the instrument in Turkish language for usage in Science courses was
conducted by Tas (2008) as part of a PhD thesis and the reliability of the scale was
calculated as 0.81. The scale consisted of 42 items in a 5-point Likert form. This
scale was adapted for the purpose of this study by replacing the term “Science” with
Information Technology and Software (see Appendix D). For the new adapted
version of the scale, pilot implementation was carried out with a sample of 601 sixth
grade students. 82 subjects with missing values were excluded from the analysis, so
reliability analysis was performed for 519 subjects. The reliability of the scale was

found to be .922.

3.54 Attitudes Towards Coding Education Scale (ATCES)

The Attitudes Towards Coding Education scale (ATCES) was developed by
(Karaman & Biiyiikalan Filiz, 2019) and comprises 41 items rated on a 5-point Likert
scale (Appendix E). ATCES consists of two dimensions: "General Positive Attitude
Towards Coding Education," which includes 28 items, and "General Negative

Attitude Towards Coding Education," which includes 13 items. The response

79

choices on the Likert scale were established as "(1) strongly disagree, (2) disagree,
(3) partly agree / partly disagree, (4) agree, (5) strongly agree". In another study using
this scale, the Cronbach’s alpha coefficient was reported as .956 (Ozeren, 2022). The
scale was administered to 420 fifth-grade students and Cronbach’s alpha coefficient
was found as .793, indicating a good level of reliability for the instrument. In the
main study, Cronbach’s alpha coefficient was found to be .941, indicating good

reliability.

3.5.5 Reading Comprehension Achievement Test

The Reading Comprehension Achievement Test, developed by Kusdemir Kayiran
(2014) as part of a PhD thesis, consists of 29 items (Appendix F). In the study KR-
20 reliability was determined to be .85, the average difficulty of the test was .68, and
the standard deviation of the test was 5.58. Similarly, in the current study Cronbach's

alpha coefficient value was found as .895.

3.5.6 5th Grade Mathematics Achievement Test

5th Grade Mathematics Achievement Test prepared by Ozcan (2016) within the
scope of the master's thesis (Appendix G). The four-option multiple-choice questions
of the test were developed in alignment with the learning outcomes of the sub-
learning areas "Natural Numbers" and "Four Operations Problems in Natural
Numbers" included in the 5th-grade mathematics curriculum. The test was found to
have good internal consistency with Cronbach's alpha coefficient of .88. For the

current study, Cronbach's alpha coefficient value was found as .930.

3.5.7 Student Interview Protocol

The semi-structured interview protocol aimed to gather in-depth information from

students regarding their perspectives on the factors that influence their coding

80

success. This qualitative approach provided a deeper understanding of students'
experiences, beliefs, and attitudes toward coding education and its impact on their
achievements. The interview protocol was subjected to a thorough review by a
middle school Turkish language teacher, a university subject matter expert, and two
information technologies and software teachers. The experts evaluated the protocol
for any questions that were confusing, misleading or did not adequately elicit the
desired information from the students. The experts provided detailed feedback on the
protocol, identifying areas that needed improvement and suggesting specific
revisions. According to the feedback provided by the experts, some questions were
revised to enhance their clarity and grammatical structure. This ensured that the
questions were easy to understand and unambiguous for students. To assess the
effectiveness and understandability of the revised interview protocol, a pilot test was
conducted with three fifth-grade students who were currently learning programming.
Based on the feedback from the students, the researchers identified specific areas
where additional questions or sub-questions could provide deeper insights into their
perspectives. For instance, in response to questions about pair programming, they

added sub-questions related to task switching and collaboration dynamics.

The interview protocol consisted of a total of 19 main questions, some of which have
sub-questions (Appendix H). The main questions covered a broad range of topics
related to coding success, including attitude, learning experiences, perceived
challenges, self-efficacy beliefs, and the other factors affecting coding learning. Four
questions were specifically tailored to students who have primarily engaged in paired
programming throughout the semester. These questions explored the unique aspects
of collaborative coding and its impact on their learning and success. Two questions
were specifically designed for students who had primarily engaged in individual
programming throughout the semester. These questions addressed the challenges and
benefits of independent coding and its influence on their learning. Students who
engaged in both paired and individual programming throughout the semester would
be asked questions from both sets of questions. This allowed for a comprehensive

assessment of their experiences and perspectives across different coding modalities.

81

3.6 Pilot Study

The pilot study was conducted in the fall semester of the 2021-2022 academic year
at a public school in Rize. Due to the ongoing COVID-19 pandemic and schools
transitioning to remote learning, the pilot study was also implemented remotely. The
participating school was selected using purposive sampling. This method allows
researchers to select participants based on their judgments to ensure the data
collected is most relevant to the study's goals (Fraenkel et al., 2012). The IT teacher
at the selected pilot school participated in studies for the adaptation of lesson plans
and a workshop related to the selection of lesson plans to be implemented, which
were part of the preparation process for this study. Consequently, he was familiar
with the content of the study. The teacher's familiarity with the lesson plans became
the main criterion for selecting this school. Due to the pandemic's restrictions on
face-to-face meetings, the teacher's existing knowledge of the lesson plans was
essential in ensuring successful implementation during the remote pilot study. There
were 167 fifth-grade students enrolled in the participating school. From these, 43
students who regularly attended ITS classes and completed the required scales
throughout the seven weeks were selected to participate in the pilot study. Owing to
the inherent difficulties associated with facilitating unplugged activities in a remote
learning environment, the originally planned ten-week pilot study was abridged to a
seven-week implementation period. This modification necessitated the removal of
some unplugged activities from the curriculum. Additionally, since a class period
was rescheduled to 30 minutes during the remote education process, some of the
existing plugged activities were also excluded from the pilot study. Basic concepts
of computer programming were aimed to be covered as much as possible in the
selected lesson plans. All these modifications were made after consultation with the
course instructor and in accordance with his recommendations; however, it is
important to note that these changes were implemented specifically for the pilot

study and may not be reflected in the main study.

82

The objective of the pilot study was to conduct a small-scale evaluation of the
proposed main study to identify any potential issues that might arise during actual
implementation. Following the pilot study, discussions with the IT teacher
highlighted the need to incorporate Code.org puzzles from different courses
addressing various student levels. These puzzles were subsequently added to the
lesson plans and arranged in a progression from easy to difficult. The final version
of the programming course content, including learning objectives, corresponding
lesson plans, and associated activities is presented in Table 3.16. Unplugged

activities are marked with parentheses in the table. A sample lesson plan is provided

in Appendix I (Week 3: Debugging with Scrat).

Table 3.16 Weekly Learning Objectives, Lesson Plans and Activities

Wee Learning objectives (Students will be Lesson Plans and Activities

k able to...)

1 5.5.1.12. Explain the concept of Course F - Lesson 1: My Robotic
algorithm. Friends (Unplugged activity)
5.5.1.13. Develops an algorithm for
solving a problem.
5.5.2.1. Explain the basic concepts of
programming.

2 5.5.1.14. Explain flowchart components I'm Changing the Flow
and functions. (Unplugged activity)
5.5.1.15. Draw a flowchart for an Rabit and carrot (Unplugged
algorithm. activity)
5.5.1.16. Debug an algorithm by testing it. If-then life of Tortop (Unplugged

activity)
Alas, Flowcharts Are Confused
(Unplugged activity)

3 5.5.2.2. Recognize the interface and Course 2 - Lesson 3: Maze:

features of the block-based programming
tool.

5.5.2.3. Create the appropriate algorithm
to achieve the goals presented in the
block-based programming environment.
5.5.2.4. Explain the structure of linear
logic.

5.5.2.5. Develop an algorithm using linear
logic structure.

Sequence

&3

Table 3.16 Weekly Learning Objectives, Lesson Plans and Activities (cont’d)

5.5.1.16. Debug an algorithm by testing it.

Course F - Lesson 4: Debugging
with Scrat

4 5.5.2.3. Create the appropriate algorithm Course F (2018) - Lesson 5:
to achieve the goals presented in the Creating art with code
block-based programming environment.
5.5.2.5. Develop an algorithm using linear
logic structure.

5 5.5.2.8. Explain the loop structure and its ~ Course 2 - Lesson 6: Maze loops
functions. Course F (2018) - Lesson 7:
5.5.2.9. Create algorithms with loop Drawing shapes with loops
structure. Course 2 - Lesson 7: Artist loops

6 5.5.2.8. Explain the loop structure and its ~ Course F (2018) - Lesson 8:
functions. Nested loops in maze
5.5.2.9. Create algorithms with loop Course F (2018) - Lesson 9:
structure. Nested loops with Frozen

Coding with Anna and Elsa

7 5.5.1.7. Give examples of operators that Wheel of conditional statements
can be used in problem solving. (Unplugged activity)
5.5.1.10. Use operators to solve a given
problem.
5.5.2.6. Explain the decision structure and
its functions.
5.5.2.7. Develop algorithms with decision
structures.

8 5.5.2.6. Explain the decision structure and Course 3 - Lesson 7: Bee
its functions. conditionals
5.5.2.7. Develop algorithms with decision Course D (2017) - Lesson 11:
structures. Conditionals in bee

Course 2 - Lesson 13: Bee
conditionals

9 5.5.1.6. Explain the variables, constants Data, put it there (Unplugged
and operations required to solve the activity)
problem. Course F (2018) - Lesson 14:

Envelope variables (Unplugged
activity)

10 5.5.1.6. Explain the variables, constants Course 4 - Lesson 6: Artist

and operations required to solve the
problem.

5.5.2.10. Debug the algorithms created for
different structures by predicting the
results of it.

variables
Course F (2018) - Lesson 15:
Variables with artist

84

3.7 Implementation of the Study

Prior to the main implementation of the study, revised lesson plans and activity
sheets were shared with teachers on a website developed by the researcher
(www.bikod.co). All the materials and data collection tools were provided to the
teachers prior to classes, and teachers were briefly informed about the topic and the
activities of the week on an instant messaging application on a weekly basis.
However, the teachers were free to decide whether to teach the lessons in accordance
with the provided lesson plans, provided that the topics and the learning outcomes
of the weeks would not be altered. Ultimately, a 10-week implementation was
conducted in the spring semester of the 2021/22 academic year in three public

schools in Rize, Turkey.

At the beginning of the implementation, the Student Information Form, Mathematics
Achievement Test, and Reading Comprehension Achievement Test were
administered to all participating students (Table 3.17). During the implementation
process, the Cognitive Load Scale was administered to all participating students at
the end of each two-hour class. Throughout the implementation, the researcher took
part in the lessons to observe the learning environment and gather details on the
characteristics of the target group by taking notes regarding unfavorable and
favorable aspects of the class, changes made in the daily lesson plans, student
participation, pair-programming behaviors of the students and general remarks about
the class. The researcher attended six classes each week for nine weeks. During these
classes, the researcher also assisted IT teachers in handing out and collecting activity
sheets and data collection tools. Additionally, getting to know the students through
attendance enabled students to feel more comfortable during the one-on-one data
collection procedures conducted at the end of the implementation. At the end of the
implementation, interviews were held with students through semi-structured
interview forms. Three students from each class were selected in line with the
teachers’ suggestions based on their academic achievement in the ITS course (one

with low, one with moderate and one with high academic achievement). A total of

&5

30 students were individually interviewed, and the interviews varied in length,

ranging from 10 to 25 minutes.

Table 3.17 Data Collection Procedures

Duration Data Collection Instrument

Student Information Form
Prior to the implementation Mathematics Achievement Test

Reading Comprehension Achievement Test

At the end of each two-hour ITS class Cognitive Load Scale

Coding Achievement test

. Attitudes Towards Coding Education Scale
At the end of the implementation
Patterns of Adaptive Learning scales

Student interview protocol

3.8 Data Analysis

3.8.1 Quantitative Data Analysis

Following the completion of the data collection phase, the data was imported into
IBM's Statistical Package for Social Sciences (SPSS) software for analysis. Prior to
initiating the analysis, a data screening process was undertaken to identify and
address any discrepancies or errors within the dataset. To ensure data validity, the
maximum and minimum values for each variable were analyzed to confirm that no
values exceeded the permissible range. Descriptive statistics and inferential statistics
were then used to analyze the data. For the analysis of the quantitative data, SPSS

software version 26 and R Statistical Package version 4.4.1 were utilized.

To answer the first research question of the study, which explores differences in
cognitive load experienced by students across different fundamental programming

topics, repeated measures ANOVA was employed. To address the second and third

86

research questions, independent samples t-tests were employed to investigate gender
and geographical school location (urban vs. suburban) differences in attitudes
towards coding education, mathematics achievement, reading comprehension
achievement, and coding achievement scores. Additionally, the mulrank function
was used to analyze gender and geographical school location-based variations in the
subscales of PALS (personal achievement goal orientations, perception of classroom
goal structures, academic-related perceptions, beliefs, strategies) scores.
Furthermore, to explore if there were gender and geographical school location-based
differences in students' cognitive load scores across different fundamental
programming topics, a doubly repeated MANOVA test was utilized. Lastly,
hierarchical regression was employed to analyze how the variables used in the study

predict students' achievement scores in programming.

3.8.2 Qualitative Data Analysis

The recorded interview data was transcribed using the verbatim transcription
process. Subsequently, each transcript was reviewed while simultaneously listening
to the corresponding audio record to ensure completeness and accuracy. The length
of the interview transcripts ranged from 4 to 8 one-and-half-spaced pages.
Pseudonyms were assigned to each participant, designated by the letter “S” followed
by a number in the sequence of the interviews (e.g., S1, S2, etc.), and transcripts
were titled with these pseudonyms. Qualitative data analysis software NVivo was

employed to analyze the qualitative data.

Initially, each transcript was read several times and analytic memos were written.
The process of writing analytic memos continued through the coding process to
facilitate the researcher's critical reflection on the process and to reflect on “emergent
patterns, categories and subcategories, themes, and concepts in the data” (Saldafa,
2009, p. 42). Coding occurred in a cyclical manner, where the researcher coded and
recoded the data. According to Saldafia (2009), coding is a linking process rather

than a labeling process. Data analysis was conducted using Saldafia's (2009) first-

87

cycle and second-cycle data analysis approaches. The coding cycles selected for the

coding process, based on Saldana’s Generic List are illustrated in Figure 3.3 below.

Attribute

s Initial
Coding
Structural Magnitude In Vivo
Coding coding Coding
First Cycle Coding First Cycle Coding Second Cycle Coding
Methods Methods Methods

Figure 3.3. First Cycle and Second Cycle Coding Methods

In the first cycle of the coding process, a multifaceted approach was employed to
extract meaning from the interview data. This approach encompassed grammatical
coding methods, including attribute coding and magnitude coding. Additionally,
elemental methods were utilized, including structural coding, in vivo coding and
initial coding. The attributed coding method was utilized to categorize basic
descriptive information about the participants. This method is particularly
advantageous for qualitative studies involving multiple participants, as it facilitates
the organization of participant data based on predefined attributes. At the outset of
the study, gender, school name, and overall academic achievement status were coded
for each student to establish a baseline understanding of the participants'
backgrounds and academic characteristics. The structural coding method generally
provides a basis for further detailed analysis. Interview data was segmented
according to their relationship with specific research questions for further and
detailed analysis. The initial coding, also known as open coding, method was used
to break data into smaller and discrete sections. The in vivo coding method was
employed to preserve participants’ voices by utilizing their everyday language,

specifically their words, terms, or phrases as codes. The magnitude coding was used

88

to denote the intensity of specific code. These coding methods were used
concurrently and repeated multiple times. At the end of the first cycle coding process,
a codebook was developed. In the second cycle coding, focused coding was
employed to categorize and explain in detail the findings from the first cycle coding.
Additionally, pattern coding was used to develop categories major and themes

(Saldana, 2009).

3.9 Trustworthiness for Qualitative Part of the Study

The credibility and transferability of findings are fundamental concerns in qualitative
research, similar to reliability and validity in quantitative studies. However, due to
the interpretive nature of qualitative inquiry, alternative approaches are necessary to
establish these qualities effectively. To enhance the trustworthiness of this study,

several strategies were employed.

3.9.1 Internal Validity (Credibility)

Prolonged Engagement and Persistent Observation in the Field

This strategy involves spending adequate time in the field to develop relationships
with participants and understand the cultural context of the phenomenon, thereby
facilitating the avoidance of inaccuracies caused by the researcher or informants
(Creswell, 2007). In the current study, throughout the research, the researcher
actively participated in all classes of six out of ten classrooms for nine weeks where
the study was conducted. This involved attending two-hour classes each week.
During this time, the researcher not only took field notes but also assisted the teacher

in data collection activities.
Intercoder Reliability

Intercoder reliability is a statistical metric used to assess the level of agreement

between multiple coders when applying a coding scheme to the same data set

&9

(O’Connor & Jofte, 2020). Although this strategy is criticized by some researchers
for relying solely on coder agreement, which may not guarantee reliable results, it is
perceived as an effective method for enhancing the consistency of qualitative
research findings (Merriam, 2009). Reporting intercoder reliability can help assure
readers that the analysis was performed conscientiously and consistently (Kurasaki,
2000). This study employed an experienced colleague in qualitative data analysis as
the second researcher. Before the coding process, the second coder was thoroughly
informed about the research purpose, research questions, sample, and research
process. Subsequently, all transcripts were independently coded by the researcher
and the second coder. Upon completion of the coding process, the researcher and
second coder met for the consistency check. Intercoder reliability was evaluated
using Miles & Huberman's (1994) method [(consensus / (consensus + disagreement))
x 100]. For the first phase of the process, the calculation of the intercoder reliability
resulted in an 85.02% agreement, indicating a high level of consistency among the
coders. Subsequently, the two coders engaged in meetings to discuss the similarities
and differences in their coding. These discussions led to the identification of
discrepancies and the refinement of the coding scheme. For codes that were similar
and expressed the same concept, a common code was determined. For codes that
were different and expressed different concepts, discussions were held to decide
which code would be retained. After reaching a consensus on the codes and recoding
the transcripts, the result reached %93.1. This percentage surpasses the commonly
accepted threshold of 90% for reliable coding (Miles & Huberman, 1994),
suggesting that the coding process was dependable. For the final round, the codes

were revised and organized under emergent themes.
Peer review or debriefing

Peer review or debriefing serves as another procedure for establishing credibility,
involving an evaluation of the research data and methodology by someone
knowledgeable about the research or the phenomenon being studied. This strategy
establishes the research’s credibility by offering assistance, critically examining the

researchers' assumptions, encouraging them to advance methodologically, and

90

asking challenging questions about their methods and interpretations (Creswell &
Miller, 2000). In this study, the thesis advisor closely monitored the thesis process.
Additionally, the dissertation committee members were regularly informed about the

progress of the study and provided suggestions and critiques related to the process.
Triangulation

Triangulation is collecting data from various sources and looking for patterns or
themes that appear consistently across those sources (Creswell & Miller, 2000).
Combining various methods, data sources, viewpoints, and researchers in a single
study strengthens the investigation by adding depth, richness, and a broader
perspective. Data source triangulation strengthens research by looking for
consistency. This can involve using the same method with different data sources
(e.g., interviews at different times) or comparing data from people with contrasting
perspectives (Denzin, 2012). This study employed triangulation by gathering data
from multiple locations and utilizing various data collection techniques. It involved
the participation of fifth-grade students from three different schools. To explore the
factors influencing student programming learning, the researcher implemented three

distinct surveys and an interview protocol.

3.9.2 External Validity (Transferability)

Thick, rich description

External validity pertains to the to the extent to which research findings can be
applied or generalized to a broader population, settings, or range of situations. This
comprehensive description empowers readers to assess the generalizability of the
findings to other situations by facilitating a critical evaluation of the extent to which
the research context and participant characteristics are comparable (Cohen et al.,
2017). Given the purposive sampling method employed in this study, the

generalizability of the results is constrained. Nonetheless, to ensure the

91

transferability of the research outcomes to comparable contexts, this chapter offers

an in-depth description of the sample, context, and role of the researcher.

3.9.3 Researcher Role and Bias

Researchers bring their unique experiences, beliefs, and characteristics to the study,
which can be valuable for choosing the research problem, research questions, and
target audience. However, these same experiences can introduce bias during

analysis, affecting how data is interpreted and presented (Corbin & Strauss, 2012).

In this study, the researcher's prior experience as a middle school IT teacher and
subsequent role teaching computer programming in a vocational school, coupled
with beliefs about the importance and challenges of programming education, could
introduce potential biases. To mitigate these potential biases and ensure the
research's objectivity, the researcher implemented a series of strategies. Firstly, the
researcher abstained from teaching the participating students, minimizing the impact
of personal beliefs. Secondly, the researcher maintained a neutral stance during
interviews to avoid influencing participant responses. Thirdly, the researcher acted
as a moderator, facilitating the natural teaching process and avoiding interference
with lesson plans and assessments. Finally, the interview protocol and coding
achievement test underwent a rigorous process of expert review, teacher review, and
pilot testing to ensure their validity. Furthermore, the researcher employed additional
strategies to enhance the objectivity of the findings. A second coder was involved in
the qualitative data analysis process, providing an external perspective and assisting
in identifying and addressing potential biases. The second coder also revisited the
coded data and the results of the analysis to refine interpretations. By implementing
these proactive measures, the researcher demonstrates a commitment to minimizing
bias and upholding the trustworthiness of the study. These efforts contribute
significantly to the overall credibility of the research and strengthen the confidence

in the findings.

92

3.10 Ethical Issues

Professional associations, such as the American Psychological Association's
Committee on Scientific and Professional Ethics, outline crucial ethical
considerations for researchers conducting human subject studies. Fraenkel et al.
(2012) categorized these considerations into three key principles: “protecting
participants from harm, ensuring the confidentiality of research data, and addressing
potential deception of subjects” (p. 63). The researcher ensured that these ethical
principles were followed throughout the research process. Prior to commencing the
study, the researcher obtained the necessary approvals by submitting an application
to the Middle East Technical University's Committee on Human Ethics (Appendix J
and K). This application outlined the study's objectives, data collection procedures,
data collection instruments, and informed consent forms. Subsequently, to collect
data from middle school students in Rize, an application was submitted to the Rize
Provincial Directorate of National Education, outlining the study's objectives,
research process, and data collection instruments to obtain the necessary official
permission (Appendix L). Additionally, approval to carry out the research was
granted by the school administrations and IT teachers of the three middle schools
participating in the study. Informed consent forms were used to inform the parents
of the students participating in the study about the study's objectives, the
confidentiality of the participants, and the potential benefits of the study. Written
informed consent was obtained from the parents prior to their children’s participation
in the study. At the outset of the study, the purpose, aims, and all aspects of the
research process, including how the results would be used, were explained to the
students, and their verbal consent to participate voluntarily in the study was obtained.
The students were notified that their involvement in the study was voluntary and that
they had the freedom to discontinue their participation at any point. They were also
informed that even if they chose to participate, they could request that their collected
data not be used and be deleted at any time. Great care was taken to ensure the

anonymity of the participants. During the qualitative data analysis process,

93

identifying information such as school, class, and student names were removed from
the transcripts before sending them to the second coder. When presenting findings
related to qualitative data, student codes were used instead of student names for
citations. Collected data was stored in private application accounts and password-
locked private devices. The data will be retained in the same format for a period of

five years following the conclusion of the research, after which it will be removed.

3.11 Limitations of the Study

This study has certain limitations that should be considered when interpreting the
result. Firstly, the participant schools were selected using convenience sampling,
which means that they were not randomly selected from a representative population.
This method could introduce selection bias, potentially restricting the
generalizability of the findings to a wider population. While the study included
schools from both urban and suburban areas, the data was collected from schools
within the same city. Secondly, the study was limited by the scope of one online
block-based programming environment (code.org) and the selected tasks in that
environment, which may not cover all relevant programming skills comprehensively.
Using the same learning tool throughout the semester may have been restrictive for
students, especially for students with advanced programming abilities. Thirdly, the
limited number of computers available forced some students to work in pairs. While
paired programming has its benefits, it can also introduce challenges and
disadvantages. This could have hindered some students' learning experiences and
outcomes. Lastly, only written tests were used to measure student success in
programming. The limited number of computers prevented the use of process-
oriented or project-based assessments, especially in suburban schools. Additionally,
in the implemented Code.org examples, students worked on solving problems based
on the provided examples rather than creating projects from scratch. Teachers were

not allowed to assign tasks that required students to develop original projects.

94

Written tests may not fully capture students' practical programming skills and

problem-solving abilities.

95

96

CHAPTER 4

RESULTS

This chapter presents the research findings derived from both quantitative and
qualitative data analyses. The findings are presented in parallel with the

corresponding research questions and sub-questions.

4.1 Results of the Quantitative Data Analysis

This section presents the findings derived from the quantitative data analysis to
address the corresponding research questions. First, the correlation analysis results
are provided to explore the relationships between variables, followed by the
presentation of statistical test results. These include descriptive statistics to present a
summary of the data's characteristics, assumption tests to ensure that the chosen
statistical tests met the necessary underlying assumptions, and the results and

findings of the relevant statistical analysis approach.

4.1.1 Correlation Between Variables of the Study

The Pearson product-moment correlation findings for the relationship between study
variables revealed that intrinsic load and extraneous load were very strongly
correlated (r = .843, p <.01). Both intrinsic (» = -.623, p <.01) and extraneous load
(r=-.694, p < .01) were negatively correlated with germane load. The relationship
between intrinsic load and extraneous load with attitudes toward coding education
(IL: r=-.456, p <.01; EL: r = -.468, p < .01), coding achievement (IL: » = -.434, p
<.01; EL: »=-.451, p <.01), mathematics achievement (IL: » = -.368, p <.01; EL:
r=-.356, p <.01) and reading comprehension achievement (IL: » = -.253, p < .01,

EL: r=-.297, p <.01) were negative. While germane load positively and moderately

97

correlated with attitudes toward coding education (» = .522, p < .01), coding
achievement (= .456, p <.01) and mathematics achievement (» = .434, p <.01), the
relationship between reading comprehension achievement was weak (r = .363, p <

01).

Upon examining the interrelationships among the subscales of the PALS and their
relationships with other variables, it has been observed that MGO was positively and
very strongly correlated with AE (= .881, p <.01), strongly correlated with CMGS
(r=.736, p <.01), moderately correlated with PAvGO (r =.577, p <.01), CPApGS
(r=.486, p <.01) and CPAvVGS. Besides that, there was a positive weak correlation
between MGO and PApGO (r = .369, p <.01), coding achievement (» = .291, p <
.01) and mathematics achievement (» = .211, p <.01). On the other hand, test results
showed that MGO was negatively and strongly correlated with cheating behavior (»
= -742, p < .01), indicating that higher MGO is associated with lower cheating
behavior. Similarly, the correlation between MGO and ASHS was negative but
weak, r = -.264, p < .01. Additionally, test results exhibited positive and strong
relationship between CMGS and CPApGS (r =.701, p <.01), PApGO and PAvGO
(r=.607,p <.01), AE and CMGS (r=.696, p <.01), CMGS and CPAvGS (r = .640,
p <.01), CPApGS and CPAVGS (r = .630, p <.01), and MA and CA (r=.638,p <
.01). It was observed that, CPAvGS was positively and moderately correlated with
PApGO (r = .521, p <.01), PApGO (r = .515, p < .01) and AE (r = .487, p < .01).
Besides that the correlation between PApGO and CMGS (r = .412, p <.01), PApGO
and CPApGS (r = .400, p < .01), PAvGO and AE (r = .552, p < .01), PAvGO and
CMGS (r=.497, p <.01), AE and CPApGS (r = .526, p <.01), ASHS and CB (r =
414, p <.01), ATCE and CA (r = .465, p < .01), MA and RCA (r = .586, p < .01),
RCA and CA (r = .518, p < .01) were positive and moderate. Test results also
indicated significantly negative correlations between variables such as AE and
ASHS (r=-.249,p <.01), AE and CB (r=-.682, p <.01), CB and CMGS (r =-.560,
p <.01) and CB and CPApGS (r =-.462, p <.01).

98

66

Table 4.1 Correlation Coefficients Between the Variables

Variables IL av EL av GL av MGO PApGO PAvGO AE ASHS CB CMGS CPApGS CPAvGS ATCE MA RCA
EL av .843™

GL av 623" -.694™

MGO -149° -131 .047

PApGO -104 -116 .057 369"

PAvGO -167° -084 066 577" .607"

AE -200" -165" .093 881" 361" 552*

ASHS 1041437 -120 -264 092 -039 -249

CB A24 119 -.056 -742" -121 -335" -.682" 414™

CMGS -070 -.053 .025 736" 412" 497 6967 -.079 -.560"

CPApGS -028 -.036 .00l .586™ .400™ 374 5267 -.064 -.4627 7017

CPAvGS 025 -018 .006 .486™ .521™ 5157 487 031 -312" 640 630"

ATCE -456™ -468" 522" 122 -.012 .072 A23 0 -2127 -190™ 120 .016 .025

MA -368" -356" 4347 2117 .102 A58° 201" -.098 -.159° 133 191 161" 3417

RCA -253" =297 363 .030 -.016 .038 .029 -028 -090 .012 -.001 -.034 356" 586"

CA -434" -451" 4567 2917 .106 183" 2567 -239" -259" 2317 212" 171" 4657 638" 518"

**_Correlation is significant at the 0.01 level (2-tailed).

*. Correlation is significant at the 0.05 level (2-tailed).

(IL_av = Intrinsic Cognitive Load Average, EL_av = Extraneous Cognitive Load Average, GL_av = Germane Load Average, MGO = Mastery Goal Orientation, PApGO
= Performance-Approach Goal Orientation, PAvGO = Performance-Avoid Goal Orientation, AE = Academic Efficacy, ASHS = Academic Self Handicapping Strategies,
CB = Cheating Behavior, CMGS = Classroom Mastery Goal Structure, CPApGS = Classroom Performance-Approach Goal Structure, CPAvGS = Classroom
Performance-Avoid Goal Structure, ATCE= Attitude Towards Coding Education, MA= Mathematics Achievement, RCA= Reading Comprehension Achievement, CA=

Coding Achievement)

4.1.2 Results of the Research Question 1

The first research question of this study aimed to examine the differential cognitive
load experienced by students across various fundamental programming concepts. A
within-subjects analysis of variance (ANOVA) was conducted to examine the effect
of programming concepts (basic sequences, flowcharts, testing and debugging,
loops, nested loops, conditionals, and variables) on cognitive load as measured by
the Cognitive Load Scale. This analysis employed a repeated-measures design with
seven measurement points representing the seven topics of the programming
instruction. The means, standard deviations, skewness, and kurtosis values for the
observed variables are presented in Table 4.2. The students exhibited the highest
mean scores for intrinsic load on the concepts of nested loops (M = 2.131, SD =
1.196), basic sequences (M =2.114, SD = 0.772), and loops (M =2.003, SD = 1.083),
respectively. The highest extraneous load was observed for the concepts of nested
loops (M = 2.029, SD = 1.035), basic sequences (M = 1.964, SD = 0.687), and
flowcharts (M = 1.945, SD = 0.849). On the other hand, the mean of the students’
germane load scores was lowest for basic sequences (M = 3.706, SD = 0.810),
flowcharts (M = 3.756, SD = 1.073), and debugging (M = 3.808, SD = 1.095).
Notably, germane load exhibited an increase across weeks for all concepts except for
nested loops, where a decrease occurred when transitioning from loops to nested
loops concept. Descriptive statistics revealed that skewness and kurtosis values for
intrinsic, extraneous, and germane load scores across the seven programming
concepts fell within the acceptable range of +2, suggesting the normality of the data
(Joseph F. Hair, 2021).

100

Table 4.2 Descriptive Statistics for Repeated Cognitive Load Measures Across
Seven Programming Concepts

Dependent Variable M SD Variance Skewness Kurtosis
IL sequences 2.114 0.772 0.595 0.399 -0.492
IL flowcharts 1.930 0.888 0.789 0.870 0.357
IL debugging 1.739 0.947 0.897 1.205 0.386
IL loops 2.003 1.083 1.173 0.936 0.156
IL nested loops 2.131 1.196 1.431 0.814 -0.364
IL conditionals 1.650 0.765 0.584 1.129 0.420
IL variables 1.658 0.814 0.662 1.185 0.588
EL sequences 1.964 0.687 0.472 0.537 -0.283
EL flowcharts 1.945 0.849 0.720 0.818 0.467
EL debugging 1.776 0.862 0.742 1.150 0.868
EL loops 1.846 0.974 0.948 1.029 0.239
EL nested loops 2.029 1.035 1.070 0.825 -0.096
EL conditionals 1.826 0.923 0.852 1.119 0.486
EL variables 1.787 0.931 0.867 1.078 0.325
GL sequences 3.706 0.810 0.656 -0.396 -0.322
GL flowcharts 3.756 1.073 1.151 -0.690 -0.256
GL debugging 3.808 1.095 1.199 -0.675 -0.446
GL loops 3.888 1.099 1.209 -0.771 -0.205
GL nested loops 3.864 1.104 1.220 -0.713 -0.351
GL conditionals 3.988 0.977 0.954 -0.854 0.115
GL variables 4.046 1.045 1.093 -1.009 0.175

To test the assumption of sphericity, the differences between each pair of measures
were calculated, and their variances were compared separately for IL, EL and GL. It
was observed that there was a big difference between variations of some differences.
For instance, the variance of the difference between IL for conditional statements
and variables was .643 while the variance of the difference between IL for flowcharts
and loops were 1.385. Besides that, Mauchly’s test results indicated the violation of
the assumption of sphericity for IL (x*(20) = 101.24, p < .001), EL (%*(20) = 79.29,
p < .001) and GL (¥*(20) = 125.98, p < .001). Therefore, Greenhouse-Geisser
correction was used for three measures (¢ = .85 for IL, € = .88 for EL and € = .86 for

GL) (Field, 2005).

101

Separate one-way repeated-measures ANOVAs were employed for each dependent
variable (IL, EL, and GL). Test results revealed significant effects of programming
concepts on intrinsic load (F£(5.12, 1013.57) = 15.06, p < .001, multivariate w? = .07),
extraneous load (F(5.30, 1049.56) = 4.38, p = .001, multivariate w? = .02), and
germane load (F(5.02, 994.69) = 5.03, p < .001, multivariate w? = .03) (Table 4.3).
These findings indicated significant variations in all three types of cognitive load
scores across the seven basic programming concepts. Findings suggested a medium
effect size for intrinsic load and small effect sizes for extraneous and germane load

(Pallant, 2016).

Table 4.3 Results of One-way Repeated Measures ANOVA Comparing Cognitive
Load Scores Across Seven Different Programming Concepts

Variable df F p n
Intrinsic Load 5.12 15.06 .000 .07
Extraneous Load 5.30 4.38 .000 .02
Germane Load 5.02 5.03 .000 .03

The results of follow-up pairwise comparison using Holm’s sequential Bonferroni
procedure to control for type 1 error revealed that students exhibited higher intrinsic
load when learning basic sequences (p < .001), flowcharts (p < .005), loops (p =
.001), and nested loops (p <.001) compared to conditionals and variables. Similarly,
the intrinsic load was higher for basic sequences (p < .001), loops (p < .05), and
nested loops (p < .001) compared to testing and debugging. Examination of the
extraneous load showed that students experienced significantly higher levels of
extraneous load during the learning process of basic sequences compared to testing
and debugging (p < .05). Additionally, students exhibited significantly higher
extraneous load when learning nested loops compared to learning concepts of testing
and debugging (p < .05), conditionals (p < .005), and variables (p < .05). However,
regarding germane load, it was observed that during lessons focused on variables,
students demonstrated significantly higher germane load compared to learning basic
sequences (p < .001) and flowcharts (p < .05). Similarly, when conditionals were

taught, students exhibited significantly higher germane load compared to learning

102

basic sequences (p < .001). These findings suggest that certain programming
concepts, such as basic sequences, loops, and nested loops, impose a higher cognitive
load on students regarding both intrinsic and extraneous load. Moreover, the
emphasis on certain concepts, such as variables and conditionals, seems to facilitate

higher levels of germane cognitive processing among students.

4.1.3 Results of the Research Question 2

The second research question of this study aimed to explore whether students'
adaptive learning patterns, attitudes toward coding education, cognitive load, and
achievement in programming vary according to gender. To further investigate RQ1,

three sub-questions were examined

4.1.3.1 Results of the Sub-Research Question 2a

Analysis of variance (ANOVA) is a statistical method used to compare groups based
on a single dependent variable. Multivariate analysis of variance (MANOVA) is an
extension of the ANOVA. MANOVA is used when there are multiple dependent
variables to evaluate the statistical differences between dependent variables based
on the independent grouping variable. The dependent variables should exhibit a
conceptual association or possess a rationale justifying for being considered together
(Pallant, 2016). To conduct the MANOVA test, there are some assumptions to be
met. In the current study to test the multivariate normality, Mardia’s measure of
multivariate kurtosis was implemented using AMOS software. Mardia’s multivariate
kurtosis value was found to be 8.03. The critical ratio (c.r.) for kurtosis was 4.48.
The significant result (c.r. = 4.48, p < 0.05) suggested that the data did not follow a
multivariate normal distribution. Therefore, a robust MANOVA test was carried out
on the ranked data using Munzel & Brunner's (2000) method to examine the gender
differences in PALS (MGO, PApGO, PAvGO, CMGS, CPApGS, CPAVGS, AE,
CB, and ASHS) scores of the students. The analysis was conducted in the R

103

Statistical Package using the ‘mulrank()’ function from the WRS package. Since the
newest version of the WRS2 package does not contain this function, the analysis was
conducted utilizing the original WRS package (Field, et al., 2016). Test results
indicated that differences between female and male students on the dependent

measures were statistically nonsignificant, "= 1.28, p = .28.

4.1.3.2 Results of the Sub-Research Questions 2b, 2¢, 2d, and 2e

Separate independent-samples #-tests were conducted to evaluate whether there was
a significant difference in attitude toward coding education, mathematics
achievement, reading comprehension achievement, and coding achievement scores
between males and females. The results indicated no significant differences in
attitudes towards coding education (#(197) = 0.57, p > .05), mathematics
achievement (#(184.08) = -0.02, p > .05), reading comprehension achievement
(#(197) = -0.89, p > .05), or coding achievement (#(197) = 0.30, p = .76) scores

between males and females (Table 4.4).

Table 4.4 Results of t-test and Descriptive Statistics for ATCE, MA, RCA and CA
by Gender

Males Females t p Cohen’s d
M SD M SD
ATCE 153.09 27.47 150.86 27.27 0.57 57 0.080
MA 15.49 6.08 15.51 6.82 -0.22 .98 0.003
RCA 13.16 5.98 13.90 5.71 -0.89 37 0.130
CA 50.56 10.20 50.14 9.31 0.30 .76 0.040

4.1.3.3 Results of the Sub-Research Question 2f

A doubly multivariate repeated-measures MANOV A was conducted on measures of
three types of cognitive load: intrinsic load, extraneous load, and germane load,
across seven topics within computer programming. This statistical technique is

particularly suited for studies involving multiple dependent variables measured

104

repeatedly at different time points. The doubly multivariate repeated-measures
MANOVA was employed in this study to investigate the multivariate main effects

of programming topics and gender on cognitive load.

The descriptive statistics of the observed variables over all combinations of gender
and programming topics are presented in Table 4.5. The intrinsic load mean score of
the females (M =3.77, SD = 1.01) and males (M = 3.75, SD = 1.13) for conditionals
was the highest among all seven topics covered in the introductory programming
fundamentals. Both females (M = 3.97, SD = 1.07) and males (M = 3.82, SD =1.13)
had the highest mean scores for extraneous load on nested loops than on any other
subjects. The mean values of germane load scores revealed that female students
exhibited the highest germane load when dealing with variables (M = 4.07, SD =
0.97), while male students showed the highest germane load when handling loops

(M =4.06, SD = 0.96).

Despite unequal female and male group sizes, the analysis proceeded because both
groups were large, had more cases than dependent variables, and exhibited no
significant size discrepancy (Tabachnick & Fidell, 2012). Skewness and kurtosis
values for the three cognitive load types across seven programming concepts in both
female and male participants supported the assumption of normality. All variables
exhibited skewness and kurtosis values within the range of +2. Furthermore, the
highest Cook’s distance value for each measurement was below the commonly
accepted threshold of 1.0, suggesting the absence of significant outliers (Field,
2005). Correlation analysis revealed that Pearson's correlation coefficients between
all pairs of Cognitive Load measures across the seven topics did not exceed 0.80.

Therefore, the assumption of multicollinearity was established.

Box’s M Test of Equality was significant (F(231,107831) = 1.53, p < .001),
suggesting a departure from the assumption of homogeneity of variance-covariance
matrices. This finding aligns with the increased risk of alpha-level distortion
associated with a larger number of dependent variables, as noted by Tabachnick &

Fidell (2012). In this study, with twenty-one dependent variables, such an outcome

105

is not entirely unexpected. However, further examination of individual variable
variances within each group demonstrated minimal variance disparity across groups.
No variable exhibited a largest-to-smallest variance ratio approaching 10:1,
suggesting a limited impact on the analysis. Consequently, the analysis can proceed
to the next step with relative confidence. Given the potential for assumption
violation, Pillai's Trace was employed instead of Wilks' Lambda to evaluate
multivariate significance due to its robustness (Tabachnick & Fidell, 2012). Thus,
the evaluation of assumptions for the doubly-multivariate analysis of variance

(IMANOVA) yielded acceptable results.

Table 4.5 Descriptive Statistics for Cognitive Load Measures for Gender Across
Seven Programming Concepts

Females (N =92) Males (N =107)
M SD Skewness Kurtosis M SD Skewness Kurtosis
IL sequences 222 0.79 0.27 -0.48 2.02 0.75 0.49 -0.45
IL flowcharts 1.96 0.64 0.16 -0.68 1.97 0.73 0.75 -0.14
IL debugging 3.72 0.80 -0.39 -0.24 3.70 0.82 -0.40 -0.35
IL loops 1.88 0.82 1.00 1.16 1.97 0095 0.77 -0.09
IL nested loops 1.89 0.77 0.56 -0.48 1.99 0.92 0.90 0.66
IL conditionals 3.77 1.01 -0.72 0.17 3.75 1.13 -0.67 -0.51
IL variables 1.86 1.01 0.95 -0.37 1.63 0.88 1.49 1.51
EL sequences 1.84 0.86 1.02 0.71 1.72 0.87 1.29 1.19
EL flowcharts 3.85 0.95 -0.55 -0.42 3.78 1.21 -0.68 -0.66
EL debugging 2.14 1.12 0.82 0.17 1.89 1.04 1.06 0.21
EL loops 1.86 0.98 1.19 1.12 1.84 0.98 0.90 -0.46
EL nested loops 397 1.07 -0.96 0.29 3.82 1.13 -0.64 -0.47
EL conditionals 2.10 1.17 0.89 0.03 2.16 1.23 0.76 -0.61
EL variables 1.99 0.92 0.68 -0.23 2.07 1.12 0.86 -0.22
GL sequences 399 1.05 -0.90 0.09 3.76 1.15 -0.57 -0.58
GL flowcharts 1.71 0.76 0.95 -0.01 1.60 0.77 1.32 0.98
GL debugging 1.83 0.88 1.26 1.32 1.82 0.96 1.04 0.01
GL loops 3.90 1.00 -0.81 0.24 4.06 0.96 -0.91 0.05
GL nested loops 1.63 0.75 1.39 1.71 1.68 0.87 1.06 0.001
GL conditionals 1.79 0.85 1.17 1.32 1.78 1.00 1.03 -0.18
GLL variables 4.07 0.97 -1.09 0.64 4.02 1.11 -0.95 -0.10

As presented in Table 4.6, the doubly repeated MANOV A revealed a non-significant
multivariate main effect for the interaction between gender and programming topics,

Pillai's V' =.139, F(18, 180) = 1.62, p > .05, partial > = .139. The interaction effect

106

indicates that different programming topics had no different effects on males and
females in terms of types of cognitive load. Besides that, there was a statistically
significant multivariate main effect for programming topics, Pillai's V' = .424, F(18,
180) = 7.35, p < .001, partial n?> = .424 with a large effect size. There was not a
statistically significant multivariate main effect for gender, Pillai's V' = .021, F(3,
195) = 1.39, p = .021, partial #*> = .021. This finding indicates that there were no
significant differences between male and female students in terms of intrinsic load,
extraneous load, and germane load across the seven topics within computer
programming.

Table 4.6 Results of Doubly Repeated MANOVA for Cognitive Load Types by
Gender

Multivariate Pillai's V¥ F df Error p Partial
Effect df i
Between Subjects Gender .021 1.39 3 195 246 .021
Within Subjects Programming 424 735 18 180 .000 .424
topics
Interaction 139 1.62 18 180 059 139

Follow-up univariate ANOVAs were then examined, and it was observed that
Mauchly's test revealed the violation of the assumption of sphericity for IL (¥*(20) =
101.04, p <.001), EL (¥*(20) = 78.76, p <.001) and GL (¥*(20) = 131.04, p <.001).
Consequently, the degrees of freedom were adjusted using Greenhouse-Geisser
estimates of sphericity (¢ = .85 for IL, ¢ = .88 for EL, and € = .83 for GL). Univariate
test results revealed that intrinsic load differed significantly across topics, F(5.11,
1006.80) = 15.06, p <.001, partial > = .071. Similarly, extraneous load and germane
load also showed significant differences across topics, F(5.30, 1044.32) =4.16,p =
.001, partial n? = .021, and F(5.00, 984.04) = 4.94, p < .001, partial n* = .024,
respectively. These results suggested that the levels of intrinsic, extraneous, and

germane load vary depending on the topic.

107

4.1.4 Results of the Research Question 3

This research question of this study investigated whether there were differences in
students’ adaptive learning patterns, attitudes toward coding education, cognitive
load, and achievement in programming based on geographical school location. To

address this question, three sub questions were further investigated.

4.1.4.1 Results of the Sub-Research Question 3a

Since the multivariate normality assumption was violated for the subscales of the
PALS, as previously indicated, a robust non-parametric version of MANOVA was
conducted in R through mulrank function using Munzel & Brunner's (2000) method
to examine the effect of gender on the scores of the students from the subscales of
the PALS. The results indicated that there were statistically significant differences
based on geographical school location, F = 19.38, p < .001. To determine which
subscales showed significant differences based on geographical school location,
follow-up analyses were conducted using the Mann-Whitney U test. Test results
showed that there were significant differences between students from the school in
the urban area and from the suburban area in all nine subscales of PALS (Table 4.7).
Urban students exhibited significantly higher average ranks compared to their
suburban counterparts in the following subscales: MGO (z = -5.68, p <.001),
PApGO (z=-2.66, p <.05), PAvGO (z=-3.38, p=.001), CMGS (z =-4.76, p <.001),
CPApGS (z=-5.22, p <.001), CPAVGS (z=-3.40, p=.001), and AE (z=-5.82,p <
.001). On the other hand, suburban students scored significantly higher in ASHS (z
=-2.98, p<.05) and CB (z = -4.88, p <.001).

108

Table 4.7 Mann-Whitney U Test Results for PALS by Geographical School Location

Urban (n=112) Suburban (n =97) U z p

Variable Mean Rank Mean Rank

MGO 120.38 73.76 2589.50 -5.68 .000
PApGO 109.54 87.71 3803.00 -2.66 .008
PAvVGO 112.13 84.39 3514.00 -3.38 .001
CMGS 117.08 78.01 2958.50 -4.76 .000
CPApGS 118.72 75.90 2775.50 -5.22 .000
CPAvVGS 112.53 83.87 3469.00 -3.40 .000
AE 120.91 73.09 2530.50 -5.82 .000
ASHS 89.31 113.76 3675.00 -2.98 .003
CB 82.82 122.12 2947.50 -4.88 .000

4.1.4.2 Results of the Sub-Research Questions 3b, 3¢, 3d, and 3e

Separate independent-sample #-tests were conducted to compare the attitude toward
the coding education scale, mathematics achievement test, reading comprehension
achievement test, and coding achievement test scores of the students from urban and
suburban schools. The results indicated significant differences in the MA scores
(#(197)=3.37,p=.001) and CA scores (#(161.93)=3.68, p <.001) between students
from urban and suburban schools (Table 4.8). The effect size, as measured by
Cohen’s d, indicated a small effect size for mathematics achievement and a medium
effect size for coding achievement. These results suggest that students from urban
schools had significantly higher coding scores compared to students from suburban
schools. Similarly, the mathematics scores of the students from urban schools were
higher than the scores of the students from suburban schools. However, the results
showed that there was no significant difference in the ATCE (#(197) = 1.04, p > .05)
and RCA (#197) = -2.00, p = .05) between urban and suburban schools.

109

Table 4.8 Results of t-test and Descriptive Statistics for ATCE, MA, RCA and CA
by Geographical School Location

Urban (n=112) Suburban (n = 87) t P Cohen’s d
M SD M SD
ATCE 153.84 26.13 149.77 28.80 1.04 .30 0.15
MA 16.81 6.38 13.80 6.01 3.37 .001 0.49
RCA 12.78 5.87 14.44 5.74 -2.00 .05 0.29
CA 52.60 8.48 47.49 10.59 3.78 .000 0.53

4.1.4.3 Results of the Sub-Research Questions 3f

The doubly multivariate repeated-measures MANOV A was employed to investigate
the multivariate main effects of programming topics and geographical school
location on intrinsic load, extraneous load, and germane load. The descriptive
statistics of the observed variables over all combinations of school location and
programming topics are presented in Table 4.9. The descriptive statistics of cognitive
load measures across seven programming concepts revealed distinct patterns
between urban (N = 108) and suburban (N = 86) students. In urban settings, the
highest mean values for intrinsic load (IL) were observed in sequences (M = 2.03,
SD = 0.75) and nested loops (M = 1.87, SD = 1.05), whereas suburban students
showed higher means in nested loops (M = 2.38, SD = 1.22) and sequences (M =
2.22, 8D = 0.79). For extraneous load (EL), urban students had the highest means in
sequences (M = 1.80, SD = 0.68) and nested loops (M = 1.83, SD = 0.99), while
suburban students exhibited higher means in nested loops (M =2.19, SD = 0.99) and
flowcharts (M = 2.09, SD = 0.83). Regarding germane load (GL), urban students
reported the lowest means in sequences (M = 3.84, SD = 0.77) and debugging (M =
3.084, SD = 1.15), compared to suburban students who showed the lowest means in

flowcharts (M = 3.56, SD = 1.09) and sequences (M = 3.60, SD = 0.81).

110

Table 4.9 Descriptive Statistics for Cognitive Load Measures for School Location
Across Seven Programming Concepts

Urban (n=112) Suburban (n = 87)
M SD Skewness Kurtosis M SD Skewness Kurtosis
IL sequences 2.03 0.75 0.434 -0.486 222 0.79 0.353 -0.443
IL flowcharts 1.76 0.83 0.931 0.183 2.10 0.87 0.740 0.486
IL debugging 1.60 0.90 1.550 1.359 1.88 0.94 0.841 -0.359
IL loops 1.81 1.07 1.213 0.543 2.17 1.04 0.753 0.260
IL nested loops 1.87 1.05 1.036 0.134 238 1.22 0.507 -0.746
IL conditionals 1.59 0.73 1.518 2.075 1.69 0.77 0.828 -0.579
IL variables 1.61 0.87 1.406 1.061 1.74 0.75 0.794 -0.281
EL sequences 1.87 0.68 0.812 0.291 2.06 0.66 0.248 -0.450
EL flowcharts 1.80 0.84 1.128 1.145 2.09 0.83 0.621 0.443
EL debugging 1.71 0.87 1.240 0.742 1.79 0.73 0.640 -0.289
EL loops 1.71 1.01 1.352 0.834 1.97 0.85 0.504 -0.770
EL nested loops 1.83 0.99 1.151 0.470 2.19 0.99 0.472 -0.386
EL conditionals 1.78 0.97 1.275 0.573 1.79 0.74 0.532 -0.900
EL variables 1.79 1.06 1.156 0.170 1.80 0.78 0.675 -0.475
GL sequences 3.84 0.77 -0.320 -0.525 3.60 0.81 -0.412 -0.263
GL flowcharts 399 098 -0.882 0.287 3.56 1.09 -0.548 -0.437
GL debugging 384 1.15 -0.782 -0.302 3.78 1.01 -0.519 -0.579
GL loops 4.05 1.06 -1.064 0.634 3.78 1.04 -0.395 -0.956
GL nested loops 394 1.16 -0.953 -0.081 3.80 1.02 -0.365 -0.671
GL conditionals 4.01 0.98 -0.831 -0.171 4.05 0.88 -0.691 -0.101
GL variables 4.11 1.06 -1.117 0.326 4.05 094 -0.901 0.271

Although sample sizes were not equal between urban and suburban groups, there
were no significant size discrepancy and both groups had more cases than dependent
variables (Tabachnick & Fidell, 2012). To assess the normality assumption,
skewness and kurtosis values were examined for the three cognitive load types across
seven programming concepts in both urban and suburban schools. The analysis
indicated that all variables exhibited skewness and kurtosis values within the
acceptable range of +2, supporting the assumption of normality. Additionally, the
maximum Cook’s distance value was below the commonly accepted threshold of 1.0
for each measurement,), indicating that there were no significant outliers influencing
the results (Field, 2005). Correlation analysis indicated that Pearson's correlation
coefficients between all pairs of Cognitive Load measures across the seven topics

were below 0.80. Consequently, the assumption of multicollinearity was not

111

violated. The Box's M Test of Equality (F(28, 119003) = 1.43, p > .05) revealed a
nonsignificant result, suggesting that the assumption of homogeneity of variance-
covariance matrices was met. Therefore, it can be concluded that the assumptions

for the IMANOVA were satisfactorily met.

As presented in Table 4.10, the doubly repeated MANOV A revealed a nonsignificant
multivariate main effect for the interaction between school location and
programming topics, Pillai's V' = .126, F(18, 180) = 1.44, p > .05, partial n*> = .126.
There was a statistically significant multivariate main effect for programming topics,
Pillai's V' = .436, F(18, 180) = 7.75, p < .001, partial n?> = .436, indicating a large
effect size. Similarly, test results revealed a significant main effect for geographical
school location, Pillai's V' = .048, F(3, 195) = 3.275, p < .05, partial n? = .048, with

a small effect size.

Follow-up univariate ANOVAs were then examined, and it was observed that
Mauchly's test revealed that the assumption of sphericity was violated for IL (3*(20)
=99.76, p <.001), EL (¥*(20) =77.89, p <.001) and GL (¥*(20) = 124.82, p <.001).
Consequently, the degrees of freedom were adjusted using Greenhouse-Geisser

estimates of sphericity (¢ = .89 for IL, ¢ = .92 for EL, and ¢ = .87 for GL).

Table 4.10 Results of Doubly Repeated MANOVA for Cognitive Load Types by
Geographical School Location

Multivariate Pillai's F df Emor p Partial
Effect 14 df i
Between Subjects School location 048 328 3 195 .022 .048
Within Subjects ~ Programming 436 775 18 180 .000 436
topics
Interaction 126 144 18 180 .118 126

Univariate test results revealed that intrinsic load differed significantly across topics,
F(5.13,1010.36) = 15.86, p < .001, partial n* = .075. Similarly, extraneous load and
germane load also showed significant differences across topics, F(5.30, 1043.77) =
5.07, p = .001, partial n? = .025, and F(5.03, 991.25) = 5.58, p < .001, partial n?> =

.028, respectively. These results suggest that the levels of intrinsic, extraneous, and

112

germane load vary depending on the topic, similar to the results of the doubly
repeated MANOVA test conducted to examine the effects of gender and

programming topics on three types of cognitive load.

When the results for geographical school location were examined, the test of
between-subjects effects indicated that the only statistically significant difference,
using a Bonferroni adjusted alpha level of .017, was obtained for the intrinsic load
(F(1,197)=7.77, p = .006, partial n? = .038). On the other hand, differences between
students from suburban schools and urban schools on the EL (F(1, 197) =2.34,p =
.128 partial n* = .012) and GL (F(1, 197) = 1.28, p = .260 partial n* = .006) variables

were not statistically significant.

Estimated Marginal Means of ICL
Geographical
cho

Location

=== Urban
=== Rural

Estimated Marginal Means

1 2 3 4 5 6 7

programming topics

Figure 4.1 Plot of Estimated Marginal Means of Intrinsic Load by Gender

Post-hoc tests using Bonferroni correction revealed that the intrinsic load of the
students from suburban schools (M = 2.09, SD = 0.09) was significantly higher than
the students from urban schools (M = 1.81, SD = 0.08) for the topics of flowcharts
(p = .026). Similarly, during the week when the topic of loops was covered, students
from suburban schools reported significantly higher intrinsic cognitive load (M =
2.18, SD = 0.12) compared to students from urban schools (M = 1.87, SD = 0.10, p
<.04). Another topic that suburban students experienced higher intrinsic load (M =
2.41, SD = 0.13) than the urban students (M = 1.91, SD = 0.11) was nested loops (p
=.003), as seen in Figure 4.1.

113

4.1.5 Results of the Research Question 4

The fourth research question of the study aimed to explore the predictive power of
research variables in relation to students' coding achievement scores. Hierarchical
regression was conducted to test the fourth hypothesis to determine the relative
strength of the dependent variables in predicting the coding achievement scores of
the students. The regression analysis followed the 4-stage process. In the analysis,
demographic variables (gender and geographic school location) were initially
introduced to the model. Subsequently, mathematics achievement, reading
comprehension achievement, extraneous load, germane load, attitude, and academic
efficacy variables, which have been discussed and evidenced in the related literature
to be associated with programming success, were included in the model. As a third
step, performance-approach goal orientation and performance-avoidance goal
orientation variables were introduced to the model. Finally, exploratory
environmental factors (classroom mastery goal structure, classroom performance-
approach goal structure, and classroom performance-avoid goal structure), cheating
behavior and academic self-handicapping strategies were incorporated into the
model. The order of variable entry into the regression equation was determined by
considering studies in the theoretical framework and related literature that examined

variables associated with the outcome variable.

Prior to conducting hierarchical regression, the underlying assumptions of the
analysis were ascertained. Initially, the minimum sample size was determined by
considering a statistical power of 0.80 and an alpha level of 5%. The effect size
chosen for the multiple hierarchical regression design with fifteen dependent
variables was set at 0.20. Employing a G*Power calculator, it was determined that
the present study required 108 participants. Besides that, the minimum sample size
required for hierarchical regression analysis was calculated by using the formula [50
+ 8*15] suggested by Tabachnick & Fidell (2012) and found to be 170. Based on the
aforementioned considerations, it can be concluded that the sample size for the

analysis was adequate.

114

To evaluate the multicollinearity, the correlations between the predictor variables
were examined. The correlation coefficient values between each variable were below
.80 (Field, 2005), except between MGO and AE (r = 0.881) and between IL and EL
(r = 0.843), as previously mentioned (p. 87). Concerns regarding multicollinearity
potentially biasing the regression model led to the removal of one of the highly
correlated variables. Based on the variance inflation factor (VIF) and tolerance
indices, MGO was chosen for exclusion from the analysis due to its higher VIF and
lower tolerance indices compared to the AE variable. Adopting a similar approach,
it was decided to remove IL from the analysis as well. After the exclusion of these
two variables, tolerance indices and VIF statistics were checked for multicollinearity
(Table 4.11). The analysis results showed that for all predictor variables, the
tolerance indices were above the threshold value of .20 (Menard, 2010, p.76), and
all VIF values were below the threshold value of 5. Additionally, the average VIF
was calculated as 2.103, which is not substantially greater than the suggested value

of 1 (Field, 2005). Therefore, the multicollinearity assumption was met.

Table 4.11 Collinearity Statistics of the Predictor Variables

Variables TI VIF

Geographic school location 0.647 1.545
Gender 0.911 1.098
MAT 0.493 2.029
RCT 0.525 1.904
EL 0.480 2.081
PSL 0.436 2.295
AE 0.308 3.244
ATCE 0.625 1.601
PApGO 0.524 1.907
PAVGO 0.481 2.081
CMGS 0.308 3.243
CPApGS 0.405 2.470
CPAvVGS 0.440 2.270
HANDI 0.748 1.337
CHEAT 0.409 2.444

115

To assess the independence of residuals, the Durbin-Watson statistic was employed.
The test result of 2.255, falling within the range of 1 and 3, suggested that the
assumption of independence was met. Standardized residual statistics were assessed
to identify potential outliers. The analysis revealed eight cases with standardized
residuals falling within the range of -2 to +2 (Table 4.12). As anticipated in a normal
distribution, approximately 95% of the cases are expected to exhibit standardized
residuals within this range. Consequently, the presence of eight cases (less than 10%
of the sample) with standardized residual values outside these limits is not considered
a significant concern. Additionally, Mahalanobis distances were checked to evaluate
multivariate outliers (Pallant, 2016). Based on the critical Chi-Square values table,
critical y2 at a significance level (a) of .001 for fifteen degrees of freedom is 37.7.
The test results showed that the maximum Mahalanobis distance value was 37.186.
Besides that, the maximum Cook’s distance value was 0.059, which is below 1
(Field, 2005). These findings indicated the absence of multivariate outliers for all

independent variables.

Table 4.12 Standardized Residual Statistics

Case Number Std. Residual CA Predicted Value Residual
1 -2.912 19.5 39.0288 -19.52876
3 -2.701 21.75 39.8652 -18.11517
5 -2.720 40.5 58.7444 -18.24440
6 -2.796 17.5 36.2546 -18.75457
12 -2.067 34 47.8630 -13.86300
15 -2.037 22.5 36.1651 -13.66513
20 -2.678 335 51.4590 -17.95896
21 2.200 61 46.2414 14.75857

Note. For the dependent variable coding achievement (CA)

To test the normality of the residual assumption, the probability plot (P- P) and

histogram of the regression standardized residual were examined. As seen in Figure

116

4.2, residuals had a straight-line relationship with predicted CA scores, indicating no
major deviations from normality. Similarly, the histogram of the regression

standardized residual showed a roughly normal distribution for CA scores (Figure
4.3).

Normal P-P Plot of Regression Standardized Residual

o Dependent Variable: CA

0.8
0.6

0.4

Expected Cum Prob

0.2

0.0 0.2 04 0.6 0.8 1.0

Observed Cum Prob

Figure 4.2 Normal Probability Plot (P- P) of the Regression Standardized Residual
for CA

Histogram
Dependent Variable: CA

Mean = -1.93E-16
30 Std. Dev. = 0.961
N =199

20

Frequency

-3 -2 -1 0 1 2 3

Regression Standardized Residual

Figure 4.3 Histogram of Regression Standardized Residual for CA

117

The homoscedasticity assumption was assessed through a scatterplot of standardized
residuals and standardized predicted values (ZRESID vs. ZPRED). Examination of
Figure 4.4 revealed a random scatter of residuals, confirming the assumption of

homoscedasticity.

Scatterplot
Dependent Variable: CA

®

S

3

w

&

°

N °® o "‘ 0® ©0 .0 "O
S 0 ®° o Pp° %9 o Bo °
c ° %0 ° .'o. ° .
s ° °% o "o": of s °
.% °) e®° Lo B © °
2 ° o ° . ° 0%,

8 °
a 2 ® e .:

o

b

> ° ° d °

[

Regression Standardized Predicted Value

Figure 4.4 Scatterplot of Standardized Residuals and Standardized Predicted Values

To assess the linearity assumption, scatterplots were examined between each
predictor variable and the dependent variable. The scatterplots demonstrated a linear
relationship between the predictors and the dependent variable. Besides that, the
linearity tests indicated a linear relationship between the variables. Partial plots were
checked for the homoscedasticity and linearity assumptions. While a strong
correlation between each predictor variable and the outcome variable was not
observed, examination of the scatterplots indicated a lack of prominent outliers.
Moreover, the data points were evenly dispersed around the regression line, implying
homoscedasticity. Additionally, the graphs did not show any pattern indicating there
is no violation of both the assumption of linearity and homoscedasticity (Field,

2005).

118

Hierarchical regression was conducted to predict the overall coding achievement
score from fifteen predictor variables. Demographic variables (age and geographic
school location) were introduced to the model in Step 1, explaining 7% of the
variance in coding achievement scores, R> = .07, F(2, 196) = 7.20, p = .001. Results
indicate that geographic school location was a significant predictor of coding
achievement, B = -5.124, B =-.261, t = -3.781, p < .001. This means that academic
achievement scores decreased significantly more in suburban schools compared to
urban schools. Conversely, gender was not a significant predictor of coding
achievement (R? = .07, F(2, 196) = 7.20, p = .001), which means that there was no
statistically significant difference in predicting the coding achievement scores of

participating students who were girl compared to those students who were boy.

Six variables (mathematics achievement, reading comprehension achievement,
extraneous load, germane load, academic efficacy, and attitude towards coding
achievement) were added to the model in the second step and test results showed that
these variables account for an additional 48% variance in coding achievement
controlling for gender and geographic school location, Rsquared change = .48,
Fchange (2, 190) = 33.19, p < .001. This means that nearly half of the variance in
coding achievement was accounted for by the added variables. Analysis results for
Model 2 indicated that mathematics achievement (B = 0.50, f = .33, t = 4.84, p <
.001), reading comprehension achievement (B = 0.39, f = .24, t = 3.53, p = .001),
extraneous load (B =-0.70, p = -.14, t = -2.06, p < .05), and attitude toward coding
education (B=0.06, 3 =.17,¢1=2.81, p <.01) were statistically significant predictors
of coding achievement. Among these variables, the majority of the variance in the
coding scores was uniquely explained by mathematics achievement scores (sr = .24)
and followed by reading comprehension achievement (sr = .17), attitude toward
coding education (sr = .14), extraneous load (s7 = .10), respectively. These results
showed that the coding achievement scores of the students were higher when their
performance in mathematics and reading comprehension, as well as their attitude
towards coding education and extraneous load were higher. On the other hand,

analysis results showed that germane load (B = 0.08, § = .02, = 0.33, p > .05) and

119

academic efficacy (B=0.10, 3 =.06, 1= 1.07, p > .05) were not significant predictors

of the output variable.

In the third step, two variables (performance-approach goal orientation and
performance-avoidance goal orientation) were added to the model. The test results
showed that including performance-approach goal orientation (B = -0.02, B =-.01, ¢
=-0.18, p > .05) and performance-avoidance goal orientation (B =0.08, f =-.04, t =
0.51, p > .05) variables failed to significantly increase in the explained variance of

coding achievement, Rsquared change = .001, Fchange (2, 188) =.13, p > .05.

In the final step, the inclusion of the last five variables (classroom mastery goal
structure, classroom performance-approach goal structure, classroom performance-
avoid goal structure, academic self-handicapping strategies, and cheating behavior)
resulted in a nonsignificant increase of 2% in the explained variance of coding
achievement, Rsquared change = .02, Fchange (5, 183) =1.59, p > .05. Among these
variables, academic self-handicapping strategies was identified as the sole
significant predictor of coding achievement, exhibiting a negative relationship (B =
-0.16, =-.12, 1= 0.51, p <.05). However, CMGS (B=0.16,3=.11,t=1.23,p>
.05), CPApGS (B=0.04,3=.01,¢=0.19, p > .05), CPAVGS (B=0.07, = .14, t =
0.49,p>.05)and CB (B=10.01, 3 =.16,¢=0.08, p > .05) found to be nonsignificant

predictors of the academic achievement.

Table 4.13 Four-Step Hierarchical Multiple Regression Analysis Results

. . R?
Predicted variables B SE B b t P s Change R?
Model 1 .068* .068
(Constant) 53.403 2.179 24.507 .000
School Location -5.124 1.355 -261 -3.781 .000 -.261
Gender -0.546 1348 -.028 -0.405 .686 -.028

120

Table 4.13 Four-Step Hierarchical Multiple Regression Analysis Results (cont’d)

Model 2 ATTHEE 545
(Constant) 31.517 6.064 5.198 .000

School Location ~ -3.208 1.165 -.163 -2.753 .006 -.135
Gender -0.420 0998 -.021 -0.421 .675 -.021
MATS 0.504 0.104 331 4.840 .000 .237
RCTS 0393 0.111 .235 3.533 .001 .173
EL -0.702 0341 -143 -2.057 .041 -.101
GL 0.079 0.240 .024 0.328 .743 .0l6
EFFI 0.095 0.089 .061 1.065 .288 .052
ASTCE 0.060 0.021 .168 2.809 .005 .137
Model 3 .001 .546
(Constant) 31.477 6.286 5.007 .000

School Location ~ -3.212 1.171 -.163 -2.743 .007 -.135
Gender -0.416 1.003 -.021 -0.415 .679 -.020
MATS 0.502 0.105 .330 4.792 .000 .236
RCTS 0392 0.112 235 3.508 .001 .172
EL -0.714 0.345 -146 -2.069 .040 -.102
GL 0.076 0.241 .024 0317 .752 .0l6
EFFI 0.071 0.102 .045 0.694 489 .034
ASTCE 0.060 0.022 .167 2.764 .006 .136
PApGO -0.022 0.122 -012 -0.184 .855 -.009
PAvVGO 0.078 0.154 .035 0.505 .614 .025
Model 4 .019 .565
(Constant) 34.803 6.859 5.074 .000

School Location ~ -2.802 1.191 -.143 -2.352 .020 -.115
Gender -0.510 0.999 -.026 -0.511 .610 -.025
MATS 0498 0.106 .327 4.703 .000 .229
RCTS 0402 0.112 241 3.584 .000 .175
EL_av -0.756 0.345 -154 -2.192 .030 -.107
GL_av 0.093 0.240 .029 0.38 .700 .019
EFFI -0.097 0.137 -.062 -0.707 .481 -.034
ASTCE 0.048 0.022 .135 2.195 .029 .107
PApGO -0.044 0.130 -.023 -0.336 .738 -.016
PAvVGO 0.059 0.156 .027 0.380 .705 .019
CMGS 0.160 0.130 .108 1.233 .219 .060
CPApGS 0.039 0.208 .014 0.185 .854 .009
CPAvVGS 0.070 0.141 .036 0492 .623 .024
ASHS -0.159 0.074 -121 -2.145 .033 -.105
CHEAT 0.012 0.157 .006 0.077 .939 .004

Note. st = semi partial correlation coefficient, *p=.001, **p <.001.

121

Overall, the final model continued to significantly predict coding achievement and
accounted for 57 percent of the variance in achievement, with an adjusted R? of .53
(R*= .57, F(5, 183) = 15.82, p < .001). Five of fifteen measures, which remained a
robust predictor both in the second and third models and another variable added to
the model in the fourth step statistically significantly contributed to the final model
(Table 4.13). On the other hand, gender, GL, AE, PApGO, PAvGO, CMGS,
CPApGS, CPAVGS, and CB were insignificant in predicting the coding achievement
test scores of the fifth-grade student. When the unique relationship that each
significant predictor has with coding achievement was examined, it was observed
that mathematics achievement was the strongest predictor (s = .23) followed by
reading comprehension achievement (sr = .18), geographic school location (s7 = -
.12), extraneous load (sr = -.11), attitude towards coding education (s» = .11) and
academic self-handicapping strategies (s =-.11). To evaluate the generalizability of
the model, the difference between R? and adjusted R*> was calculated (Diff: .565 -
.529 = .036) and found as 3.6%. This R* shrinkage indicated that if the model had
been estimated using the entire population instead of a sample, about 3.6% less of
the variance would account for in the outcome. Furthermore, considering the
critiques on the R? value regarding its limitations in demonstrating the predictive
capability of the regression model for a different dataset, to evaluate the cross-
validation of the model, adjusted R? was calculated using Stein’s formula and found
as 0.49. As this calculated adjusted R? value did not differ substantially from the

obtained R? value, the cross-validity of the model can be considered good.

4.2 Results of the Qualitative Data Analysis

4.2.1 Results of the Research Question 5

During the qualitative phase of the research, semi-structured interviews were
conducted with a sample of 30 fifth-grade students from a total of 199 who had

participated in the quantitative phase. These students were selected from each

122

participating school, with one student each representing low, medium, and high
academic achievement in the ITS course from each class. A thematic analysis was
conducted on student responses to gain deeper insights into their programming
learning experiences. The analysis of the data revealed six main themes: cognitive
demands, effective instructional approaches, collaborative learning approaches,
independent learning approaches, goal setting, and affective aspects. Each theme is
further categorized to capture specific aspects of the student experiences. The

identified themes and their corresponding categories are presented in Figure 4.5.

Effective Collaborative Independent
Instructional Learning Learning Goal Setting
Approaches Approaches Approaches

Affective
Aspects

Cognitive
Demands

Pair Selection
Criteria Independent Mastery-
Learning Oriented
Strategies Goals

Inherent Plugged
Complexity Activities
of Concepts

ELCRENS Attitude

Role-Sharing

Strategies
Unplugged

Activities

Benefits of Benefits of Performance
Collaborative Solo -Oriented
Learning Programming Goals

Instructional
Factors

Blended
Approaches Challenges of
Collaborative

Learning Self-efficacy

Challenges of Performance
Solo -Avoidance
Seeking Programming Goals
Assistance

General
Barriers Teacher
Effectiveness

Figure 4.5 Themes and Their Corresponding Categories

4.2.1.1 Theme 1: Cognitive Demands

This theme explored the complexities that participants encountered while learning
programming. The aim of this theme was to identify the factors contributing to their

cognitive load by examining the inherent complexity of programming concepts and

123

tasks, the impact of instructional design, and the challenges posed by the learning
environment. Table 4.14 provides a detailed overview of the categories under this
theme, their corresponding codes, and the frequency of statements associated with

each code.

Table 4.14 Distribution of Code Frequencies by the Theme of Cognitive Demands
and Instructional Factors

Categories Codes f
Inherent Complexity of Concepts Diagramming programming logic 15
and Tasks difficulties
Spatial reasoning challenges 14
Managing iterative logic 6
Limited code blocks challenges 3
Comprehending code blocks 3
functionality
Integration of multiple concepts 2
Sequencing and logical flow 1
difficulties
Instructional Factors Abstract concepts and confusing 24
explanations
Time constraints 8
Unstructured learning 5
Unclear task instructions 4
Unsuitable scaffolding 1
Learning Environment Challenges Access and equity issues 21
Foreign language-related problems 4
Login problems 3

4.2.1.1.1 Inherent Complexity of Programming Concepts and Tasks

This category examined the intrinsic aspects of programming concepts and tasks that
significantly impact students' cognitive load. These intrinsic factors encompassed
various challenges that learners face, influencing the mental effort required to grasp
and apply programming concepts. The data revealed that participants frequently
reported difficulties with programming logic, as evidenced by fifteen mentions of

flowcharts as a particular challenge. Similarly, spatial reasoning posed a notable

124

obstacle for students learning to program, as highlighted in fourteen distinct
instances within the data. Furthermore, the data indicated a significant challenge in
managing iterative logic and loop structures, as evidenced by six mentions. Other
challenges identified by students included problem-solving within constrained code
blocks, understanding code block functionality, and difficulties with tasks requiring

the integration of multiple concepts, algorithmic sequencing, and logical flow.
Diagramming Programming Logic Difficulties

Flowcharts are visual tools used to represent program logic. However, student
feedback revealed difficulties in understanding which command to place inside
which flowchart shapes, complicating their ability to effectively diagram coding
logic (f'= 15). This complexity was compounded by the need to grasp the abstract
relationships between various shapes and their underlying concepts, such as
processes and decisions. S27's confusion regarding "triangles" (referring to decision
diamonds) exemplified this challenge. If students did not understand the purpose of
decision diamonds and how to formulate questions or conditions within them, even

a simple flowchart could become overwhelming.

[S27]: In it, for example... When [started with a triangle, I didn't have any
questions; I didn't know what to start with. I was struggling. Which command

should I write and how should I write it?

Additionally, four students expressed difficulty in identifying the specific actions or
decisions represented by different flowchart symbols (e.g., decision diamonds and
input/output boxes). These students struggled with remembering and distinguishing
the meanings of different shapes in flowcharts, indicating challenges with concept
retention and understanding. Understanding the abstract relationships between these
shapes and their underlying concepts inherently demanded significant cognitive
effort from the students. Moreover, student statements indicated that the way
information was presented significantly affected the cognitive load they experienced.
Poorly explained or inadequate practice in distinguishing different flowchart

symbols led to memorization difficulties and confusion between shapes, which

125

added to the cognitive load as students struggled to recall the meaning of each

symbol and how they connected to program logic.

[S27]: I was confused about the questions. There were triangles,
parallelograms, etc. I had some difficulty there. It was confusing. ...I didn't

know what to put and which shape to put.
Spatial Reasoning Challenges

Analysis of interviews revealed that many of the students struggled with tasks
requiring spatial reasoning skills (= 14). These skills, encompassing concepts like
geometry (angles, degrees, and rotations) and distance calculations, are crucial for
translating abstract geometric ideas into algorithms. Based on student feedback,
integrating knowledge from geometry with programming skills was inherently
complex and demanding. Participants’ responses indicated challenges with tasks like
navigating mazes requiring specific turns or manipulating shapes with precise
rotations (as mentioned by S24). These tasks necessitated not only an understanding
of programming concepts but also the application of geometric knowledge.
Additionally, two participants (S15 and S26) expressed difficulty with directional
commands ("left" and "right"). This issue was related to spatial orientation, which
involved understanding and manipulating objects in relation to oneself. In
programming tasks in the class, spatial orientation was essential for comprehending
and using directional movement commands ("move forward," "turn left/right").
Student feedback indicated that those struggling with spatial orientation had
difficulty visualizing how these commands translated to on-screen movements (as

mentioned by S26).

[S19]: I am not good at angles at all because I am not good at angles in math
either. So, it affects my performance in the IT (Information Technology and

Software) class as well.

126

[S24]: There are shapes there, for example, go 180. You will make it 120 or
145. I was undecided there, what should I do, 145, 120, 100? So, it was

always necessary to try.
Managing Iterative Logic

This code explores the challenges students encountered when working with nested
loops, a fundamental programming concept that introduces multiple levels of
iteration. Notably, the student tasks in this analysis specifically involved nested loops
with only two iteration structures. Students struggled to understand the logic and
structure of these constructs, particularly when determining which code blocks
should repeat within nested loop structures (f = 6). This was evident in the feedback
from S30. The analysis of feedback from S22 also revealed difficulties in managing
nested loop structures. Student reported challenges understanding the behavior of
nested loops, particularly when the total number of iterations became large. This
suggested a struggle with conceptualizing the interplay between nested loops and the

resulting flow of control.

[S22]: For example, when a character is there, it is a bit difficult for me to
use that loop twice. For example, after repeating something three times, for
example, when we put one more thing, a loop on the top layer, for example,
when it was five times, something strange was happening. I couldn't really

understand it.

S6 expressed in the interview the challenges faced when applying nested loops in
problem-solving tasks that involved navigating obstacles. These tasks required
students to control a character and navigate through a complex environment filled
with obstacles like ice patches and hazards (e.g., wildflowers). The inherent
complexity lay in the need to manage multiple elements simultaneously, such as
planning a route, executing movements, and adjusting strategies in real-time. This
multitasking demanded strategic planning, spatial awareness, and a high level of

problem-solving and decision-making skills. According to student comments, the

127

need to consider the location and behavior of multiple obstacles simultaneously

increased the intrinsic cognitive load.

[S6]: I had a hard time getting the zombie to the sunflower, it was difficult to
get the zombie to the sunflower. Because, teacher, there are other flowers,
wildflowers, you have to escape from them. Because there are broken ices,

you are careless, you step on it, you fall anyway. Then the code is wasted.

répeat times

do | repeat B times

do | move forward
S

tﬁrn lefto v
N

repeat times
do | repeat times

_
do | move forward
S

turn

(a) (b)

Figure 4.6 (a) Sample programming task on code.org (Course F-Lesson 8: Nested

Loops in Maze/Level 10) about nested loops and (b) possible solution to this task

While game design elements like unnecessary distractions could add extraneous
load, in this case, the ice patches and wildflowers appeared to be strategically placed.
As illustrated in Figure X(a), these obstacles likely served a pedagogical purpose: to
challenge students' understanding of nested loops and their ability to apply this
concept in a practical setting. The complexity of navigating around these obstacles

necessitated the use of nested loops to control the character's movement effectively.
Limited Code Blocks Challenges

This code captures feedback where S6 expressed that they struggled with tasks
requiring the use of a limited number of code blocks, indicating challenges with

coding efficiency and strategic problem-solving (f = 3). Code.org's puzzles often

128

challenged students with limited code blocks, including limitations on the total
number of blocks and the number of times a specific block could be used. For
example, maze navigation with limited moves puzzles that restricted the number of
"move forward" blocks challenged students to carefully plan their route, considering
the most efficient path and avoiding unnecessary moves. Similarly, loops and nested
loops were also introduced as a way to solve problems with limited resources,
requiring students to strategically plan code repetition. While constraints like limited
block usage might seem challenging, they also aimed to encourage students to think
creatively, optimize their solutions, and develop a deeper understanding of
programming principles. This involved selecting the most efficient blocks and
combining them in a way that achieves the desired outcome within constraints. Such
tasks demanded higher-order cognitive skills such as analyzing, evaluating, and
creating, as the student had to think critically about which blocks to use and how to

use them effectively.

[S6]: Code.org is actually great, but sometimes it makes you think that you
should only be allowed to use it once. It's not difficult to set up normally, it's

easy, but you really have to think about where to put it.
Comprehending Code Blocks Functionality

Code blocks, fundamental building blocks in many programming environments,
allow students to visually construct programs. Each code block has specific
functionality and interaction patterns. However, challenges in understanding and
using code blocks, particularly with variables, were mentioned in three different
expressions. Students' statements revealed difficulties with grasping how variables
work within code blocks. While they might understand the concept of variables
theoretically (storing data), applying them practically in code blocks proved
challenging. This finding suggested that difficulties with understanding how to
connect code blocks involving variables, as well as assigning and manipulating
values stored in variables within the code block structure, could be a contributing

factor.

129

[S20]: I don't understand how to use it.

[S12]: I had the most difficulty with the blocks we made in the last lesson
because there were blocks I did not know. Because I don't know the codes. |

barely learned how to use them.
Integration of Multiple Concepts

Long-answer questions in programming often necessitate a deep understanding of
complex material. They require students to integrate multiple concepts and
synthesize information from various sources. The analysis of student feedback
revealed a struggle with integrating multiple concepts within long-answer questions
(f=2). Answering these questions demanded not only recalling information but also
applying, analyzing, and evaluating it. The emphasis on higher-order thinking skills

also appeared to contribute to the intrinsic load.

[S16]: For example, I had a lot of difficulty with the zombie, because I didn't
know whether it would go to the right or to the left. It turns to the right. When
there were too many blocks, I had a lot of difficulty. For example, I was doing
it like this: I was turning to the bird's place, and I was trying to figure out
which way it would go. Then, I was getting confused, and I was starting to

slow down.
Sequencing and Logical Flow Difficulties

Understanding the correct order of coding blocks requires a grasp of logical
sequencing and control flow. S18 reflected in the interview that they struggled with
maintaining the correct order of code blocks, often placing one block in the wrong
position, indicating challenges with understanding the logical sequence and structure
of code. This was complex because it involved understanding the cause-and-effect
relationships between different parts of the code. The students had to understand
what each block does and how they interact with each other to achieve the desired

outcome. This foundational knowledge was critical to correctly sequencing the

130

blocks. Students also needed to develop the ability to debug their code by checking

if the blocks were in the correct order and making adjustments as needed.

[S18]: ... I'd mix up the codes. 1'd accidentally substitute one for the other. It

got mixed up.

4.2.1.1.2 Instructional Factors

This category investigated the impact of instructional design on cognitive load. It
explored how the design and delivery of instructional materials and activities
contributed to unnecessary cognitive load for learners. The focus was on how poorly
crafted instructional elements created confusion, hindered understanding, and
ultimately impeded learning effectiveness. Key factors contributing to this issue
included abstract concepts, confusing explanations, time pressures, lack of clear

learning paths, unclear task instructions, and insufficient support for learners.
Abstract Concepts and Confusing Explanations

This code addressed the challenges in understanding abstract programming concepts
due to inconsistent or misleading explanations. Variables, fundamental building
blocks in programming, represent concepts that can store and manipulate data.
However, grasping their purpose and functionality could be challenging for students,
as evidenced by the difficulties being emphasized 24 times by participants in this
study. Two of the students (S26 and S21) expressed that they struggled with
understanding and working with variables because the examples or explanations
provided seemed inconsistent or misleading. For instance, S26's confusion about
"five fingers changing" highlighted how real-world analogies could be

misinterpreted, leading to a distorted understanding of variable behavior.

[S26]: For example, the teacher tells me that five fingers never change, but
when [do it like this, it becomes ten fingers, I think it changes. There was a
little bit of a discussion there. After that, I started to have a lot of trouble. 1

was a little surprised there.

131

[S21]: I mean, it always seems to me... It is variable, for example, it seems
like they can all change. But this depends on the thing, that is, it depends on
the puzzle there. If the puzzle is like that, it is constant. But it can also be
variable. ... The basis of the constant actually depends on the thing; this is
another strange idea of mine; the basis of the constant depends on the
program there. Whatever it is set up, that's the constant. But if we look at it,

everything can change. That makes it difficult for me to understand.
Time Constraints

Student feedback highlighted the issue of insufficient class time for effective
learning, particularly for complex topics like nested loops and variables (f =
8). Students expressed a desire for more frequent or longer class sessions to allow
for deeper understanding and practice. Restricted class time could hinder students'
ability to grasp complex concepts thoroughly. In the case of nested loops and
variables, students mentioned encountering difficulties and having areas where they
still need improvement. This suggested that the current class duration is inadequate

for providing sufficient exposure and practice with these challenging topics.

[S3]: More lessons per week... Two lessons per week is not enough. A topic
can be emphasized more. For example, when we moved on to nested loops,
there were points where I encountered problems that I sometimes could not
solve in my head. Or in variables... For example, there were places in
variables that I still could not do. The subject could have been emphasized

more. It would be better if there were more lessons per week.
Unstructured Learning

Five of the students’ expressions showed difficulty with the puzzle set, exemplified
by the screenshot of a sample level in Figure 4.7. This puzzle set, which involved
tasks requiring an understanding and application of various programming concepts
such as conditional statements, loops, and variables, could be challenging for

students new to programming (as explained under the code of ‘integration of multiple

132

concepts’). However, these students were introduced to conditional statements
before learning about variables. As a result, they might have struggled to understand
the conditions for moving the bee (e.g., 'if there is nectar') without knowing how to

store and manipulate data related to nectar availability using variables.

[S9]: We didn't know how much nectar there was. It was very difficult; if there
was nectar, we had to take the nectar and move forward. We had difficulty
with that. I mean, it was like this, there was one square, there was nectar all

around. I was confused about whether to move the bee forward or take the

nectar.

repeat (£J times
do | move forward
|
[nectar v | Q
do | get nectar
S—

répeat times

do [turn (GiAA

repeat times

do [move forward
| —

f necter v J > v J[0)

do | get nectar
S

(a) (b)

Figure 4.7 (a) Sample programming task on code.org (Course 2 — Lesson 13: Bee

Conditionals/Level 8) about conditional statements and (b) its solution

Unclear Task Instructions

Clear and concise instructions are crucial for minimizing cognitive load and
maximizing learning in coding education. This is especially important for unplugged
activities, which involve using physical objects to represent programming concepts.
Four students’ statements indicated that they experienced significant difficulty when
interacting with unplugged objects due to the unclear instructions. In these cases,
unclear instructions for using physical objects like cups to represent direction

changes led to confusion because students were unsure how to manipulate these

133

physical objects to practice programming logic and required students to exert extra
mental effort to interpret meaning, fill in gaps, and understand the task requirements.
This might increase extraneous cognitive load, diverting resources away from the

core learning objectives of the unplugged activity.

[S17]: And those non-digital, non-computerized ones confused me. That glass

confused me so much that my brain burned.
Unsuitable Scaffolding

Student feedback underscored the critical importance of appropriate pacing and
scaffolding in programming education. S3 detailed their initial ease with learning
basic loops on code.org but expressed significant frustration with the sudden
introduction of nested loops. This sudden transition from simple to complex
examples overwhelmed students, thereby hindering their effective learning. When
students were confronted with challenging concepts such as nested loops without
adequate preparatory instruction, they might have experienced cognitive overload.
This overload might have occurred due to the necessity of processing excessive
information simultaneously, which complicated the comprehension of underlying

concepts.

[S3]: In nested loops, it was like this. We were playing very simple when we
were training on code.org at the beginning: Go 4 steps forward or... At first,
we learned repeated loops. It was easier to repeat instead of writing too

much. It wasn't too hard to learn. But the nested loops suddenly became

difficult.

4.2.1.1.3 Learning Environment Challenges

The learning environment can significantly impact student success. This category
explored three key challenges identified through student feedback: access and equity

issues, foreign language-related problems and login problems.

134

Access and Equity

The study highlighted concerns regarding access and equity in technology resources
(f=21). Several students pointed to difficulties caused by outdated or malfunctioning
computers, which hindered their participation in essential educational learning
environments like Code.org. This issue particularly disadvantaged students lacking
reliable equipment, especially in suburban schools. S9 specifically mentioned the
added struggle of using a malfunctioning computer to access Code.org, a crucial tool
for their coding education. Furthermore, the lack of technology at home further
restricted learning opportunities, as evidenced by eight students who expressed
difficulty engaging in coding activities due to the absence of essential devices, such
as computers or tablets. These concerns underscored the potential for unequal

learning experiences and the critical importance of addressing the digital divide.
[S13]: Also, computers break down a lot, I would like to change them.

[S9]: I didn't work on coding because... I didn't work on it. I don't have a

computer.
Foreign language-related problems

Participants’ statements pointed to problems with Turkish language support within
the digital programming learning environment during their interviews (f = 4).
Students S5 and S26 reported that despite selecting the Turkish language option,
some parts of the platform remained in English. These students expressed difficulty
in understanding instructions, introductory videos, and technical terms that were not
in their native language. This language barrier might have added an extra layer of
cognitive load, hindering their ability to grasp complex concepts and follow
instructions effectively. This issue underscored the importance of comprehensive
language support in educational programming environments to ensure that non-

native English speakers could fully engage with the learning material.

[S5]: For example, in Course F, around lesson thirteen, even though I set the

language to Turkish, we still have to speak in English there.

135

[S22]: Well, you know the videos at the bottom, it would be better if they were

translated into Turkish.
Login issues

The coding learning environment offered user-friendly login options for students.
Students could access the platform using a section code provided by their teacher,
followed by their name and a text-based password or picture password. The picture
passwords were printed out and distributed to students as a physical reminder.
Nevertheless, two students expressed challenges related to logging into the coding
website. For instance, S19 highlighted the frustration of forgetting passwords and
the inability to access the learning environment without them. This forgotten
password obstacle could add to the cognitive load and disrupt the learning flow for

students.

[S19]: How can I say? It seemed a bit difficult to have a password. I mean,
when we forget our paper and password, we may not be able to enter without

a password.

4.2.1.2 Theme 2: Effective Instructional Approaches

This theme addressed the design and implementation of teaching strategies that
promote participating students’ learning and engagement in programming education.
It encompassed four categories that reflected diverse methodologies IT teachers
employed to maximize student engagement and learning outcomes. The categories
included plugged activities, unplugged activities, blended approaches, and teacher
effectiveness. The codes under each category and the number of participants stated

in the relevant code are given in Table 4.15.

136

Table 4.15 Distribution of Code Frequencies by the Theme of Effective Instructional
Approaches

Categories Codes f
Plugged Activities Facilitated learning 64
Rich content 14
Permanent learning 13
Learning by doing 5
Debugging tasks 4
Opportunities for revision and mastery 3
Unplugged Activities Introduction and orientation 19
Active engagement 5
Real-world relevance 5
Blended Approaches Blending traditional and digital methods 4
Teacher Effectiveness Clear and effective explanations 23
Supportiveness 9

4.2.1.2.1 Plugged Activities

Plugged activities in this context referred to the direct use of computers and
programming software, enabling students to practice and apply coding concepts
within a digital environment. In the current study, the coding learning environment

Code.org served as the primary tool for all plugged activities.
Facilitated Learning

A substantial number of participants in the study expressed a preference for engaging
in technology-mediated activities, particularly those offered by Code.org, for the
acquisition of programming concepts (f = 64). These participants indicated that such
activities facilitated their comprehension and application of coding skills more
effectively than traditional, non-technology-based methods. One participant, S12,
highlighted the positive impact of Code.org's puzzles on their learning
experience. Furthermore, four participants (S15, S17,S19,and S25) directly
compared technology-mediated activities with non-technology-based methods
and found the former more effective in fostering an understanding of programming

skills. This preference for interacting directly with code blocks on a computer

137

aligned with the participants' perceptions that technology-mediated activities offered
a more advantageous approach to learning programming, as explained by S17. The
feedback was particularly positive towards Code.org, with S18 and S21 appreciating
its clear explanations. Besides that, S9 remarked that the block-based structure of the
coding learning environment simplified the development of codes, making it easier
to piece together solutions. In conclusion, the experiences of the participants
provided strong evidence supporting the efficacy of technology-mediated
activities, particularly those offered by Code.org, in facilitating a more successful

learning experience for programming education.

[S9]: It facilitated my learning and made a significant contribution. By doing
it this way, I got used to it and started to do it very quickly. I improved myself
in coding; code.org was helpful to me. Because I solve it by piecing parts

together, it becomes easier. This way, I was learning coding better.
Rich Content

Fourteen instances of feedback commended the diverse array of activities offered by
Code.org, highlighting its capacity to accommodate various learning styles. The
structured learning approach provided by the learning environment was particularly
valued, as it facilitated a clear, progressive path that not only challenged the students
but also fostered a sense of mastery and bolstered their confidence, as noted by S3.
The rich content available on Code.org was instrumental in maintaining student
engagement (S17, S18, and S29), while its well-conceived activities significantly
deepened their understanding of programming concepts (S3). Furthermore, students
underscored the benefit of Code.org's detailed explanations, which they found
superior to those on other platforms they had experienced. Overall, the positive
feedback on Code.org highlighted its effectiveness in creating a rich and engaging
learning environment that promoted deeper understanding and skill development in

programming.

138

[S3]: I think I learned more in detail thanks to Code.org, in some topics. For
example, I recently learned about variables and really struggled with them.
It was very instructive for me in this regard. As I said, I already knew most
of the terms in Scratch, or most of the block terms. However, I think I learned
better about nested loops and variables. Variables were also covered in
Scratch, but not in such detail. I definitely think I learned variables in more

detail. It was really good.
Permanent Learning

The study revealed a strong connection between hands-on learning and knowledge
retention in programming (f = 13). Students noted that the activities provided by
Code.org played a crucial role in enhancing their long-term understanding of the
subject (S14, S15, S21, S25, and S30), demonstrating the coding platform's
effectiveness in promoting deeper and more enduring learning. Additionally, several
students (S5, S21, S27, and S28) expressed a desire for increased hands-on practice,
believing it would improve their learning outcomes and reinforce knowledge
retention. They emphasized that active engagement with the material, rather than
passive listening in a classroom setting, leads to better comprehension and memory
retention (S21 and S30). This focus on permanent learning underscored the
importance of incorporating active learning strategies into programming education

to facilitate a more profound and lasting understanding of coding principles.

[S21]: I think it becomes more permanent. Because the explanation only goes
so far... In the classroom environment, it's already difficult to understand and

define things well. So, doing it here makes it more permanent.
Learning by Doing

Learning by doing emerged as a powerful learning strategy in fifth-grade students’
experiences within programming education (f = 5). Students highlighted the
effectiveness of hands-on engagement and direct interaction with coding tasks in

their learning. For instance, S16 contrasted the difficulty of understanding concepts

139

explained by a teacher explanation on a board with the ease of using Code.org. This
emphasized how hands-on activities made complex concepts more accessible. S20
discussed how the practical application of coding steps facilitated the internalization
of knowledge. Similarly, S30 emphasized the importance of the ability to "see and
do" in understanding the application of coding concepts. Moreover, he expressed a
preference for self-directed learning through hands-on activities, highlighting the
value of active engagement in promoting a deeper understanding. Collectively, these
student experiences strongly supported learning by doing as an effective approach
for facilitating a more meaningful and successful learning experience in

programming education.

[S16]: It had a lot of impact because if a teacher had explained it by drawing
on the board, I wouldn't have understood it at all. But Code.org was easier
for me. If it weren't for that, and the teacher had explained it by drawing, 1

would have understood a little, but not much.
[S30]: But I think it is of better quality when we do it ourselves.
Debugging Tasks

Results from the study identified debugging tasks, where students correct partially
completed or erroneous code, as an effective learning tool in programming
education, based on four statements from two participants. Results from the study
indicated that debugging tasks, which enabled students to focus on particular parts
of the code rather than constructing the complete program, reduced the mental effort
required. For instance, one student (S9) mentioned that working with a partially
completed solution facilitated a more focused approach to particular code aspects,
making it easier to complete tasks. Another student (S21) valued the structured and
guided nature of debugging tasks, which helped them concentrate on understanding
and applying specific programming concepts more effectively. Overall, debugging
tasks offered a valuable strategic method to enhance programming education for
children by reducing cognitive load, promoting focused practice, and fostering a

deeper understanding of programming fundamentals.

140

[S9]: For example, code.org would create the tasks and ask me for the angles
and such. That made my job easier. It was an advantage. Sometimes it was
easier. It would combine the parts, and I would set the angles, like ninety

degrees...
Opportunity for Revision and Mastery

The study revealed that the computer-based learning environment afforded valuable
opportunities for students to revise their work and achieve mastery (f = 3). One
student (S19) recognized the immediate feedback provided by the computer, which
enabled the prompt identification and correction of errors. This real-time feedback
mechanism facilitated a more effective understanding of concepts and fostered a
sense of self-correction. Moreover, the opportunity to attempt tasks multiple times,
as highlighted by S19, was deemed advantageous. This iterative process allowed
students to refine their code, experiment with different approaches, and enhance their
understanding. Overall, the environment promoted a growth mindset by encouraging
students to learn from their mistakes and persevere through challenges. While
another student (S21) acknowledged the broader value of exploring diverse
perspectives and new approaches, the primary benefit highlighted by the students
was the opportunity to revise and perfect their work, leading to a deeper
understanding of programming fundamentals. This emphasis on revision and
mastery underscored the critical role of adaptive learning technologies in fostering

educational advancement in programming disciplines.

[S19]: Because on the computer, we can see our mistakes immediately. But
on paper, we can't see our mistakes. As I said, on the computer, we can see
our mistakes and correct them accordingly. If there are correct ones, we

review them again, as they might be wrong.

141

4.2.1.2.2 Unplugged Activities

This category investigated the role of unplugged activities in enhancing
programming education. Through an in-depth analysis of student perspectives, how
these computer-free experiences contributed to overall learning outcomes was
assessed. The findings emphasized the benefits of unplugged activities in creating a
dynamic and effective learning environment. The analysis focused on several key
aspects, including introduction and orientation, active engagement, and real-world

relevance.
Introduction and Orientation

Instructor-led introductions were identified as critical for student success in
programming. Nineteen instances emphasized the value of pre-laboratory lectures
and demonstrations in establishing a strong foundation for hands-on practice. These
introductions provided clear explanations of new concepts (S18, S19, S20, S22, and
S24) and demonstrations that facilitated understanding (S22 and S23). Such initial
orientation was efficient in helping students approach practical exercises with a
clearer grasp of expectations and procedures (S24). While some students found
unplugged activities beneficial (S27), the majority highlighted the effectiveness of
the instructor's explanations in preparing them for successful computer-based
learning (S2, S3, S4, S6, and S8). Overall, the importance of well-designed
introductory sessions in programming education was strongly underscored by the

experiences shared by students in this study.

[S19]: First, he showed us on the smart board during the first hour. We
started doing it on the smart board. He began correcting our mistakes. Then
we tried to do it on our own on the computers. So, as I said, first, he teaches
us on the smart board and explains it. Then we do it. It would be nice if it

continued like this;, we would like to keep it this way.

142

Active Engagement

The qualitative analysis underscored that active engagement in unplugged activities
enhanced students' learning experiences by reducing distractions and fostering a
more focused learning environment (f' = 5). Participants (S6, S21, and S22) reported
that unplugged activities allowed them to concentrate intently on the tasks at hand
without being distracted by extraneous elements, thus maximizing their cognitive
resources for processing relevant information. For example, one student (S6) noted
that classroom activities that involved physical movement and hands-on
manipulation of objects were more instructive compared to computer-based tasks, as
they enhanced engagement and learning. Another student (S21) highlighted the
effectiveness of being called to the board to solve problems, describing it as a more
engaging and interactive learning experience that promoted deeper understanding.
Furthermore, S18 emphasized that directly applying concepts themselves led to
better comprehension and skill acquisition. These findings indicated that unplugged
activities, which involved active participation and physical manipulation, not only
improved focus but also significantly enhanced students' engagement and
understanding. This approach provided a valuable contrast to digital methods,
offering a dynamic and interactive learning atmosphere that could lead to more

effective education outcomes.

[S6]: Teacher, I think that what we did in the classroom was more instructive.
Because on the computer, you only move the mouse and the thing. But in the

classroom, you move yourself, you adjust things yourself.
Real-World Relevance

The importance of real-world connections emerged in the study (S23, S26, S29, and
S8), particularly when discussing unplugged activities (= 5). Students indicated that
these activities were essential for demonstrating the practical utility of programming
knowledge in everyday contexts beyond the confines of the classroom. Students
believed that this ability to link programming concepts to real-life scenarios made

the learning material more relatable and meaningful, thereby fostering a deeper

143

understanding of the reasons behind their learning efforts (S8). Witnessing the
practical applications further enhanced student motivation as they recognized the
relevance of programming skills in their personal lives (S23, S26, S29, and S8). By
connecting the theoretical knowledge with practical real-world applications,
unplugged activities provided an engaging and pertinent learning experience that

significantly improved learning outcomes.

[S8]: I learned that we can use coding, that is, commands, in real life as well.

4.2.1.2.3 Blended Approaches

This category illuminated the advantages of blended approaches, demonstrating how
the integration of traditional and digital methods facilitated improved learning

outcomes and enhanced knowledge retention.
Blending Traditional and Digital Methods

While most students expressed enjoyment of computer-based activities and the use
of Code.org, a group of participants (S13, S16, and S21) emphasized the importance
of blending traditional, read-write methods with digital activities (f = 4). They
advocated that this hybrid approach, within a technology-enhanced learning
environment, enhanced learning outcomes and knowledge retention. These students
particularly noted the advantages of transcribing their computer work onto paper,
stating that this practice reinforced their understanding and augmented their ability
to review and retain information. One student (S13) detailed that writing things down
facilitates a deeper engagement with the material, contrasting with the transient
nature of digital interactions where information can be easily accessed but quickly
forgotten. The physical act of writing created a durable record that encourages
students to revisit and consolidate their understanding of the concepts. This student
proposed a system where learners would document their digital work on paper,
effectively creating a personalized study guide for continual reference. This

approach underscored the value of a blended learning environment that leveraged

144

the strengths of both traditional and digital educational practices to foster a more

comprehensive and enduring learning experience.

[S13]: Because, teacher, we are both writing and reading. I mean, we write
with our own hands and we read. ...On the computer, for example, you press
a key, but you can't do it completely. Writing down what we did on paper...
Because, teacher, when you show it on paper, you read it, you read it a second
time, and then you can put it in a folder, and if you forget it, you can look
there and do it. On the computer, you might not be able to access it; it might

not be saved, and it could be lost.

4.2.1.2.4 Teacher Effectiveness

The impact of teacher effectiveness on student learning experiences was examined
under this category. Based on the findings, this examination focused on two key
aspects: the clarity and effectiveness of explanations provided by the teacher and the

level of support and assistance offered to students.
Clear and Effective Explanations

The qualitative analysis underscored the critical role of effective teaching methods
and teacher performance in enhancing students' learning experiences. The ability of
the IT to communicate subject matter effectively was frequently emphasized in
student responses (f = 23). These students expressed high levels of satisfaction with
their teacher's performance, noting that clear and effective explanations significantly
enhanced their understanding of programming concepts. For instance, S26 directly
commended the teacher's lucid explanations, and S15 observed a noticeable increase
in knowledge acquisition from the lessons. S16 specifically appreciated the teacher’s
skill in simplifying complex topics, a sentiment echoed by others who valued the
clarity and efficacy of the instruction (S20 and S21). These positive evaluations of
the teacher's effectiveness underscored the vital role of clear and comprehensive

instruction in improving students' educational experiences and outcomes. Students’

145

statements showed that the teacher's ability to effectively communicate complex

coding concepts helped students overcome challenges.
[S26]: My teacher teaches coding very well. His explanation is very effective.
Supportiveness

The study also highlighted the importance of teacher supportiveness in facilitating
student learning (f = 9). Participating students admired the IT teacher's readiness to
assist students encountering difficulties and to elaborate on concepts as needed. This
illustrated the teacher's proactive approach and effectiveness in addressing student
needs in real-time. Students mentioned the teacher's attentiveness to the entire class
despite its size, their ability to get individual help when needed (S24 and S26), and
their readiness to explain concepts in greater detail upon request (S26). Overall, the
teacher's supportive approach, evident in their attentiveness to student needs and
willingness to provide assistance, contributed positively to the learning environment

and fostered a more inclusive and responsive educational experience.

[S24]: The class is crowded, with 28 people. The teacher attends to all 28 of
us. For example, when I say that I get frustrated when I can't do something,
at those times, I call the teacher. The teacher explains it to me, and then I can

easily get past that part. It really helps a lot.

4.2.1.3 Theme 3: Collaborative Learning Approaches

This theme investigated the social cognitive factors influencing students'
programming experiences and the application of collaborative learning strategies
within the educational context. It examines collaborative learning in programming
education through the following categories: pair selection criteria, role-sharing
strategies, benefits of collaborative learning, challenges of collaborative learning,
and seeking assistance. The categories and sub-categories, along with their
corresponding codes and the frequency with which each issue was reported, are

presented in Table 4.16.

146

Table 4.16 Distribution of Code Frequencies by the Theme of Collaborative
Learning Approaches

Categories/Sub-categories Codes f
Pair Selection Criteria Social compatibility 15
Skill and expertise 2
Role-Sharing Strategies Imbalanced turn-taking 27
Regular turn-taking 26
Benefits of Collaborative Learning Mutual learning and knowledge 42
sharing
General positive perceptions 34
Enhanced problem-solving 22
Shared responsibility 7
Challenges of Collaborative Learning ~ Unequal participation 14
Conflicts over resource sharing 8
Reduced engagement 7
Contflicts over problem-solving 7
approaches
Seeking Assistance
Source of Assistance Teachers as a source of support 32
Peers as a source of support 14
Reasons for seeking assistance Teacher unavailability 3
from peers Familiarity 2
Reasons for seeking assistance Clear explanations and guidance 3
from the teacher Teacher expertise 2
Self-perceived proficiency 1
Peer Support Strategies Unproductive collaboration strategies 16
Constructive collaboration 9

4.2.1.3.1 Pair Selection Criteria

Feedback from students engaged in pair programming suggested a primarily student-
driven approach, with some instances of teacher-assigned pairings. The analysis
revealed that students frequently opted for self-selection, basing their choices on
specific criteria. This category examined students' preferences for pair programming
and the factors they considered when selecting partners or forming collaborative

groups.

147

Social Compatibility

While the analysis revealed self-selection as the predominant approach for pairing,
a deeper examination explored the criteria students employed when choosing
partners. According to the results, when forming pairs for programming tasks, a
significant number of students prioritized social compatibility (f = 15). They
gravitated towards familiar faces and friends, valuing the comfort and ease of
working with someone they knew. This preference for friendly partners, as
evidenced by student feedback, stemmed from the creation of a more supportive
learning environment. Students indicated that existing friendships or prior
acquaintances fostered trust and open communication, which are crucial for effective

collaboration.

[S19]: Because I am better with that friend. I mean, our houses are next to
each other. I have a better relationship with him. We have a better friendship
with him. Firstly, I used to work with another friend of mine. Then our
friendship ended, and we had a fight. So, we asked permission from the

teacher, and I started working with him.
Skill and Expertise

Notably, the emphasis on selecting a partner with strong computer science skills and
knowledge was highlighted only twice in the responses of the interviewed
participants. S17 emphasized the importance of perceived technical expertise. This
perspective underscored the potential advantages of complementary skill sets in pair
programming. The general lack of focus on these complementary skills suggested
that students might not fully appreciate the benefits such an approach could offer in

enhancing collaborative work.

[S17]: He is a computer expert. He can't do the easy stuff. I chose him because

he is a smart kid. Intelligent.

148

4.2.1.3.2 Role-Sharing Strategies

This category explored the methods and approaches used to assign and manage roles
among students during pair programming activities. It specifically examined whether
the role distribution led to balanced or imbalanced turn-taking among the

participants.
Imbalanced Turn-Taking

Fifteen of the students indicated that they adopted imbalanced turn-taking strategies
during pair programming activities (f = 27). Imbalanced turn-taking occurs when
students choose primary roles as either navigator or driver, predominantly
maintaining them throughout the activities. Statements revealed that when students
opted for the driver role, controlling the keyboard and mouse, their partner remained
seated beside them as the navigator, offering verbal assistance in solving
programming tasks. This arrangement resulted in an imbalance in role distribution.
Another example involved dividing keyboard and mouse responsibilities (e.g., S14).
While this approach appeared more balanced, the student controlling the mouse
ultimately played a more dominant role, assuming the driver position during drag-

and-drop puzzles.

[S14]: He usually used the keyboard, I used the mouse. It usually continued
like this.

Regular Turn-Taking

Regularly taking turns emerged as a key feature in many students' pair programming
sessions and was noted with a frequency comparable to that of strategies addressing
imbalanced turn-taking. This balanced approach ensured that both partners actively
participated and contributed. Students such as S10 and S11 highlighted the
importance of equitable participation in programming tasks. Taking turns also
involved rotating tasks, as seen in S16's explanation of switching between playing

different levels. Similarly, S19 described alternating between keyboard and mouse

149

duties. This balanced participation facilitated shared ownership of the problem-

solving process and enhanced collaborative learning.

[S16]: We usually took turns playing with my friend. In the levels from one to
nine, I would play one, then three. So, I play one, they play two, I play three,

they play four.

4.2.1.3.3 Benefits of Collaborative Learning

Pair programming, a collaborative learning approach, had demonstrably positive
effects on student learning outcomes, as evidenced by the interview data. This
category highlighted how collaboration could enhance the programming learning
experience for students. Key benefits of collaborative learning identified by students
included mutual learning and knowledge sharing, general positive perceptions,

enhanced problem-solving and shared responsibility.
Mutual Learning and Knowledge Sharing

Qualitative data revealed that a collaborative learning environment fostered a
powerful dynamic of mutual learning and knowledge sharing (f = 42). Interviewed
students highlighted the value of exchanging ideas, learning from each other's
strengths, and correcting mistakes together. This collaborative approach led to a
deeper understanding of concepts and enhanced problem-solving skills. At the core
of this benefit lay reciprocal learning, as evidenced by student expressions. Students
acted as both teachers and learners, sharing their knowledge and perspectives during
programming tasks (S1, S14, S15, and S17). Students noted that this exchange
broadened their understanding of the subject matter and exposed them to different
viewpoints. Additionally, the study's findings demonstrated that students benefited
from each other's strengths. Stronger partners guided their peers, while those
struggling received valuable support, as evidenced by the statements of S12, S16,
and S26. The findings indicated that collaborative problem-solving facilitated error

correction. According to the statements of S16 and S19, by explaining their thought

150

processes, students were able to identify and rectify mistakes, leading to a more
refined understanding. Finally, mutual learning fostered a deeper understanding of
concepts as students discussed and explained ideas to each other, a process
highlighted by S21 and S24. This approach reinforced comprehension and solidified
knowledge. Examples such as S1 explaining concepts to a peer or S17 learning
coding basics from a friend illustrated the power of this interaction. Overall,
collaborative learning fostered a supportive environment where students were able
to learn from each other's strengths, overcome challenges collectively, and achieve

a deeper understanding of the subject matter.

[S16]: I think he learned, but... I mean, for example, when we first started, he
couldn't understand right and left very well. I explained that to him. I was
confusing things, you know, I was confusing things like repeating this thing
five times. He taught me that too.

[S26]: In general, I taught him a lot on code.org, but beyond that, he taught

me a lot about the basics of computing.
General Positive Perceptions

The research findings indicated that there were 34 statements reflecting students'
general positive views on collaborative programming learning. Eight students (S2,
S4, S10, S11, S14, S19, S22, and S25) reported no drawbacks in pair programming,
especially when working with compatible partners. Fourteen students indicated a
preference for pair programming. This suggested that many students recognized the
benefits of teamwork, communication, and knowledge sharing that pair

programming facilitates.
[S14]: Given the choice, I would sit with my friend again.
Enhanced Problem-Solving

Feedback from students highlighted the significant benefits of collaborative learning
in enhancing problem-solving skills (f=22). Students reported that working together

with peers facilitated a better understanding and quicker solutions to programming

151

challenges. They emphasized the value of diverse perspectives, immediate
assistance, and the combined intellectual effort that comes with teamwork. For
instance, S13 mentioned that working in pairs allowed them to ask a friend for help
instead of relying solely on hints, which facilitated the learning process. S14 and S15
highlighted the ease of getting assistance from friends when stuck on a problem,
while S19 noted the mutual correction of mistakes. S21 also valued the multiple
perspectives that come from collaborative work, explaining that different viewpoints
helped in understanding and solving problems more effectively. One student (S30)
pointed out that collaboration often led to faster problem resolution. Additionally,
S6 referred to the proverb "unity is strength," illustrating the belief that collaboration
enhances problem-solving capabilities. S7 noted that solving problems together was
easier because they could leverage each other's knowledge. Overall, these insights
illustrated that peer collaboration not only enhanced problem-solving efficiency but
also fostered a supportive learning environment where students could share ideas and

overcome challenges together.

[S7]: Because it is easier. It is easier because we both solve it. Both of us can

see what we cannot do, for example, one of us knows, and one of us does not.

[S21]: ... for example, your friend looks at something from one perspective,
you say, let's look at it from this perspective, that is, a multiple perspective.
He says it is necessary to proceed from this logic, for example, you are doing
a different logic. It is a different point of view. In the questions you cannot

solve, you need to change your perspective on the problem.
Shared Responsibility

Shared responsibility emerged as a significant benefit of collaborative learning,
particularly during pair programming, as highlighted by the students (= 7). Based
on student statements, the research findings demonstrated that this shared approach
allowed students to take breaks and avoid burnout. When one student felt tired, the
other could take over, keeping both pairs refreshed and engaged. S6 noted that the

collaborative approach not only helped manage fatigue by distributing the workload

152

but also contributed to maintaining engagement by keeping both partners actively
involved in the problem-solving process. It also facilitated an efficient division of
labor, allowing students to leverage their strengths and interests to deal with tasks,
leading to quicker and more effective task completion. Overall, students found
shared responsibility to be a valuable asset in collaborative learning, making the

experience both enjoyable and highly productive.

[S4]: It is more enjoyable. Instead of working alone, you alternate with your
partner. While he is doing it, you are watching him, while you are doing it,
he is watching you, it can also happen. Also, from time to time, your friend

also rests after writing or using, you also rest, it is nice.

4.2.1.3.4 Challenges of Collaborative Learning

Analysis results showed that while collaborative learning provided numerous
benefits, it also presented several challenges for the participating students. This
category explored key obstacles identified in student interview data, providing
insights into potential areas for improvement. These challenges included unequal
participation, conflicts over resource sharing, reduced engagement, and conflicts

over problem-solving approaches.
Unequal Participation

Several students expressed concerns about not having equal opportunities to
participate and contribute due to imbalanced turn-taking strategies (f'= 14). Student
experiences highlighted various forms of imbalance participation. In some instances,
students intentionally adopted imbalanced turn-taking strategies, with each student
selecting a primary role (navigator or driver) and maintaining that role throughout
the session (e.g., S13). However, there were also instances where one partner
dominated the activity, taking control of the computer and leading the task without
adequate involvement from their partner, leaving the other feeling passive and unable

to contribute meaningfully. According to the students’ expressions, this not only

153

hindered the learning experience of the less active participant but also created a sense
of unfairness. Additionally, S3's statement highlighted that inefficient task
distribution can result in one partner feeling overwhelmed while the other remains
underutilized, thereby disrupting the collaborative flow. Furthermore, as S29 stated,
when one student dominated, the other had limited opportunities to practice their
own skills, potentially hindering their individual growth. These insights highlighted
the challenges of ensuring equal participation in collaborative learning
environments. The findings revealed that uneven engagement led to one student
dominating the task while the other became passive, which negatively impacted the

learning experience and outcomes for both.

[S17]: Because he does not give me control of the computer, he no longer
does. I rest (laughing). I lean back like this again. I take examples from what
he does. Sometimes, he does things so that I can do them; sometimes, he

allows me to do them.
Conflicts Over Resource Sharing

Eight statements from the data highlighted conflicts over resource sharing,
particularly regarding the use of the computer and other equipment, as a significant
challenge in collaborative programming. One student (S12) explicitly mentioned
disliking the need to share a computer with a partner, expressing frustration with
collaboration and resource limitations. Similarly, S13 and S17 described frequent
arguments over who would control the keyboard and mouse, noting that sharing a
computer often led to frustration, especially when students had to wait for their turns.
The findings indicated that this frustration could hinder students' engagement and
motivation in the learning process. S23 pointed out that their partner always wanted
to use the keyboard, leading to constant conflicts. Additionally, students expressed a
preference for solo programming to avoid conflicts arising from shared resources,
indicating that some students prioritize individual work environments for a smoother
learning experience. These insights highlighted the need for better resource

management strategies to enhance the effectiveness of collaborative learning.

154

[S12]: My least favorite thing is that I have problems sharing the computer

with my friend with whom [share the computer.
Reduced Engagement

The analysis of student data revealed another challenge: reduced engagement during
their partner's problem-solving phase (f = 7). The data indicated that while pair
programming was designed to foster collaboration and teamwork, its effectiveness
was diminished when passive participation occurred. Four students (S1, S16, S24,
S8) mentioned not actively participating while their partners were working on
problems. This included not following along with the partner's thought process or
code implementation unless they directly asked for help and offering little feedback
or suggestions during their partner's lead. Limited participation was evident as
students provided minimal verbal or coding contributions during their partner's lead.
S24 highlighted that taking turns without explaining their processes to each other did
not benefit either partner. Similarly, S8 noted that merely alternating the use of the
mouse and keyboard did not contribute to their learning. Research results
demonstrated that students who were not actively engaged in problem-solving but
only observed the process missed the chance to interact deeply with the material and

fully comprehend the concepts being taught.

[S16]: Sometimes, you know, I was staying while he was doing it, I wasn't
looking at him. I helped him when he asked for help, but I usually did not look

at the questions he did.
Conflicts Over Problem-Solving Approaches

Analysis results indicated that while pair programming effectively fostered
teamwork and problem-solving skills, it was undermined by disagreements on
problem-solving approaches (f = 7). Although some disagreements could be
productive, significant conflicts, as reported by four students, could impede
collaboration and communication, thereby diminishing the effectiveness of the pair

programming experience. For instance, S21 described situations where neither

155

partner was willing to compromise on their approach, resulting in persistent
disagreements. Such conflicts could lead to missed learning opportunities, as
highlighted by S3, who mentioned disagreements even when the tasks did not require
multiple approaches. S25 noted that their partner sometimes led them to incorrect
solutions due to a lack of understanding. S6 explained that having a partner could be
confusing, as conflicting ideas sometimes led to mixed results, whereas working
alone allowed them to follow their own clear line of thought. These insights
underscored the difficulties students encountered when collaborating with peers who
employed divergent problem-solving strategies. Unresolved conflicts could impede
progress on tasks, thereby hindering both learning and productivity. Persistent
disagreements might also lead to frustration, creating a negative learning

environment for both partners.

[S21]: Sometimes, of course, it happens; there is a question, and we say this
is the solution. He says something else and insists on it. For example, no one
says it should be like this, no one says let's do this, and then if it doesn't work,

we can try mine. I did this too. It happens sometimes.

4.2.1.3.5 Seeking Assistance

Seeking assistance was identified as a crucial aspect of the learning process,
particularly within collaborative instructional environments. Students reported
frequently seeking help to overcome challenges, enhance their understanding, and
improve their skills. Assistance could be sought from peers or teachers, with each
source offering distinct benefits and addressing specific student needs. The category
of seeking assistance encompassed the various methods by which students obtained
support, the reasons behind their choices, and the strategies they employed for peer

support.

156

Source of Assistance

Teachers or Peers as a Source of Support

Analysis results showed that in situations where group work proved ineffective or
when students lacked group partners, they turned to alternative sources of
assistance. Students indicated that they more frequently sought assistance from their
teachers when they needed help. Students expressed that they sought assistance from
their teachers (f = 32) more frequently than from their peers (f = 14) when they
needed help. Eleven students expressed a preference for seeking guidance from their
instructor, highlighting their trust in the teacher's expertise and commitment to
providing support. Additionally, twelve students reported seeking help from
classmates, reflecting their readiness to engage with the broader learning
community. It is important to acknowledge that students demonstrated a range of
approaches when seeking assistance. Some participants initially sought help from
their peers, reflecting their preference for peer-to-peer learning. Others opted to seek

guidance from the IT instructor directly.

[S14]: I was asking for help from my friend, my group friend or my friend

next to me in the line.

Reasons for seeking assistance from peer

Teacher Unavailability

Teacher unavailability, highlighted by S5 and S27, emerged as a situation where
students relied heavily on peers for support (f = 3). When immediate teacher
assistance was limited due to factors like high student-to-teacher ratios or unexpected
absences, students turned to classmates for help. These instances underscored the
critical role of peer-to-peer learning as a complement to teacher instruction. Peers

could provide immediate clarification, offer alternative explanations, and

157

collaborate on problem-solving, mitigating the impact of teacher unavailability and

ensuring students could continue learning effectively.
[S5]: When the teacher cannot help, we turn to those who can.
Familiarity

The feedback provided by S7 and S19 emphasized the critical role of familiarity in
facilitating effective peer-to-peer learning environments (f = 2). According to their
statements, their preference for seeking assistance from friends stemmed from the
shared routines, established connections, and sense of comfort that familiarity
afforded. These connections promoted open communication and enhanced the

learning experience.

[S19]: The reason why I primarily seek help from my friend is that I feel more
comfortable with myself because I am in the same place with my friend every

day.

Reasons for Seeking Assistance from Teacher

According to the results, students often sought assistance from teachers for various
reasons that reflected the unique advantages teachers offered in the learning process.
These reasons included the desire for clear explanations and guidance, the need for
teacher expertise, and the support required for students with high self-perceived

proficiency.
Clear Explanations and Guidance

Some students (S24, S28, and S29) indicated that they preferred the teacher's clear
explanations and well-structured guidance (f = 3). The findings expressed by the
students indicated that they found these explanations easier to follow and more
comprehensive compared to those from peers who were at a similar learning stage.

Student 29 explicitly mentioned that the teacher's ability to 'show it better directly’'

158

and provide more explanatory instruction was particularly beneficial. This

highlighted the teacher's expertise in crafting clear, organized explanations.

[S29]: My teacher showed it better directly. ... My teacher explained it in a

more detailed way.
Teacher Expertise

S20 and S27 recognized the limitations of peer support for complex topics (f = 2).
The findings indicated that students sought out teacher expertise when challenges
required a deeper understanding of the subject matter than their peers could provide.
This was particularly true for foundational concepts or intricate problems. This
highlighted the vital role teachers play in student learning, as they possess a broader
and deeper knowledge base that allows them to provide comprehensive explanations

and guidance that peers may not be able to offer.
[S20]: Because he is more knowledgeable about these issues.
Self-Perceived Proficiency

The findings revealed that even students who perceived themselves as highly
proficient, such as one participant who stated he was "ahead" of his peers, might still
seek assistance from the teacher (f= 1). This situation underscored the crucial role
teachers play in addressing the needs of all students, ensuring that even those who
consider themselves advanced are appropriately challenged and supported despite

their perception of mastering core programming concepts.

[S30]: Since I usually go ahead of them, they are behind.

Peer Support and Interaction

Participants indicated that they benefited from the diverse perspectives and
knowledge of their peers, which enhanced their understanding and problem-solving
skills. Nevertheless, findings showed that the effectiveness of peer support depended

on the quality of interactions and the strategies employed. Constructive collaboration

159

fostered a deeper engagement with the material, while unproductive collaboration

hindered learning progress.
Unproductive Collaboration Strategies

Student responses indicated that certain behaviors in peer support negatively
impacted their learning, especially during plugged activities (f = 16). These
behaviors mainly included showing their own solution for the peer to copy or
complete the task for them (S10, S11, S14, S21, S24, S5, and S7). Student 21
mentioned the prevalence of simply copying a peer's solution to complete the task.
While this seemed like a quick fix, it failed to promote genuine learning and skill
development. Students 21 and 24 specifically mentioned that copying answers from
their peers without understanding the underlying logic or problem-solving process
did not significantly contribute to their learning. Student 21 added that they
attempted to understand the solution afterward by reviewing it, but this highlights
the limitations of this approach. Additionally, two students (S21, S26) expressed
concerns about peers taking over problem-solving entirely instead of guiding them
through the process to understand the concepts and develop their own solutions. This
hindered the development of problem-solving skills and confidence in the struggling
student. On the other hand, S21°s comment, “I mean, of course, he postpones me a
little bit, then he looks at my question.” suggested that their peer's help was delayed,

potentially hindering their learning progress.

[S21]: I mean, of course, he postpones me a little bit, then he looks at my
question. He tries the question he solved to do it himself first. If he cannot do
it, he opens it from his own computer and gives it to me. ... [mean, when he
does it there, of course, I can't understand it, I can't reason. But when he does
it, I can say that I should have done it like this, for example, to find the answer

to the question.

[S14]: If they passed that question, they would come back and show me that

question. I couldn't understand it very well.

160

Constructive Collaboration

Several students (S12, S13, S15, S19, and S26) mentioned receiving valuable hints
and explanations from their peers when they encountered difficulties (' = 9). This
support took various forms, such as clarifying concepts, identifying errors,
suggesting improvements, and engaging in discussions. For example, S15 explained
that their friend helped by explaining complex concepts. Some students indicated
that their classmates assisted them by identifying errors in logic or code structure
that they might have missed while working independently (e.g., S26 and S19). Others
mentioned receiving hints on how to improve their code (e.g., S13). These helping
approaches also demonstrated the peers' understanding of technical details and their
ability to explain issues in a clear and actionable manner. Discussion was another
helpful strategy, as highlighted by Student 12, who emphasized the value of learning
through discussion and debate with peers. This approach encouraged critical thinking
and challenged students to defend their approaches, leading to a deeper

understanding of the concepts involved.

[S26]: I would go to my friend's side with my teacher’s permission and. For
example, if you do this, you can do this,; you did this wrong, you should have
done it at this angle... Like that. [was helping with codes.

[S12]: I consult, I mean, by discussing with my friends because if I just listen
to what they do, it would still be different, and I wouldn't understand.

4.2.14 Theme 4: Independent Learning Approaches

While collaborative learning and seeking assistance were valuable strategies in
programming education, the analysis of student responses also highlighted the
importance of independent learning approaches. This theme focused on how students
independently enhance their programming skills and understanding. These
approaches included strategies such as utilizing guidance from coding learning

environments, reviewing past solutions, engaging in trial and error, and self-

161

visualization. Furthermore, the results indicated that solo programming offers
several benefits, including enhanced learning through active engagement, improved
focus, and better retention of information. However, according to the students’
statements, it also presented challenges, such as the lack of immediate peer
consultation. Exploring these independent learning strategies provided insights into
how students navigated their programming education autonomously. Table 4.17
displays the frequency with which participants identified codes related to the

categories of the independent learning approach.

Table 4.17 Distribution of Code Frequencies by the Theme of Independent Learning
Approaches

Categories Codes f
Independent Learning Strategies Guidance from the coding 3
platform
Reviewing past solutions 1
Trial and error 1
Self-visualization 1
Benefits of Solo Programming General positive 27
perceptions

Active engagement 8
Improved focus 3
Enhanced retention 2

Challenges of Solo Programming Lack of pair consultation 18

4.2.1.4.1 Independent Learning Strategies

The results obtained from the interviews indicated four strategies employed by
students while learning independently. These strategies were guidance from the

coding platform, reviewing past solutions, trial and error, and self-visualization.
Guidance from the Coding Platform

The study demonstrated that students often relied on guidance from the coding
learning environment as part of their independent learning strategies (f = 3). This

guidance included hints and instructional videos that helped them understand and

162

solve coding problems. For instance, participant S27 expressed a desire for more
hints, indicating their importance in the learning process. Similarly, S4 noted that
videos appearing at the beginning and middle of coding tasks provided clearer
explanations and made it easier to understand programming concepts. It was
observed that these instructional resources were particularly useful when students
encountered difficulties, allowing them to independently navigate challenges and
enhance their problem-solving skills. The incorporation of these tools within the

coding learning environment supported students' independent learning processes.

[S4]: Yes, sometimes when we're just about to start coding, a video pops up
at the beginning and then again in the middle, and we watch them. Watching
them actually makes the explanations clearer. Without watching them,

sometimes you can't understand what something is when it appears.
Reviewing Past Solutions

The reviewing past solutions strategy identified instances where students employed
an independent learning strategy centered on referencing past solutions (f'= 1). S8
mentioned that he often revisited previously encountered code examples when faced
with a programming challenge to find solutions and deepen his understanding of the
subject matter. He added that he then searched for similarities between his current
problem and the reference code, which involved either adapting a similar solution or
skimming past irrelevant parts to explore a new approach. This strategy helped

students by providing a foundation for developing new solutions to similar problems.

[S8]: 1 go back to previous ones, I look at them. If there is something similar,

1 apply those.
Trial and Error

Interview data showed that another approach that students engaged in was trial and
error, as expressed by S24 (f'= 1). This method captured instances where students
mentioned experimenting with different problem-solving strategies and code

variations until they found a solution. This highlighted a crucial aspect of

163

independent learning, emphasizing the importance of experimentation. By trying
different approaches, students developed resilience in the face of challenges. They
learned to troubleshoot, analyze outcomes, and refine their problem-solving
skills. This highlighted a crucial aspect of independent learning, underscoring the
importance of experimentation. By trying different approaches, students developed
resilience in the face of challenges. They learned to troubleshoot, analyze outcomes,

and refine their problem-solving skills.
Self-Visualization

The fourth approach, self-visualization, as described by Student 16, involved using
mental visualization to understand problem-solving processes or potential solutions
(f=1). This strategy enhanced problem-solving skills by encouraging students to
think through different approaches and plan problem-solving steps before coding.
These independent learning strategies enabled students to assume responsibility for

their learning and develop valuable skills.

[S16]: In situations like these, I would imagine myself. For example, those
things, squares, you know, I would feel like I was in the squares and
determine which way to turn. I would imagine myself in the same place and

decide where to go. And it became very easy.

4.2.1.4.2 Benefits of Solo Programming

Students’ statements showed that solo programming, the practice of working
independently on coding tasks, offered several advantages that could enhance the
learning experience for students. Based on student responses, the key benefits
highlighted by student feedback were improved focus, enhanced learning through

active engagement, and enhanced retention.

164

General Positive Perceptions

Nearly half of the students expressed a preference for solo programming in their
statements (f = 27). This indicated that a significant portion of the student
participants recognized the autonomy and self-reliance that solo programming
offers. Additionally, six students (S3, S12, S24, S25, S28, and S30) mentioned the
absence of disadvantages in solo programming and its potential to positively impact

their learning.
Active Engagement

This code captures feedback where students expressed that they learned more
effectively when working alone because they were more conscious, responsible for
all aspects of problem-solving, and focused on understanding the material deeply (f
= 8). Eight of the interviewed students (S7, S8, S13, S16, S17, S22, S23, and S24)
emphasized the value of solo programming as a tool for fostering deeper learning
and understanding. Their statements showed that solo programming encouraged
active engagement by placing the onus of learning squarely on the individual
(S8). This shift in responsibility led to several positive outcomes. S13 reported
feeling more conscious of his learning process when working alone and being more
aware of his own strengths and weaknesses, allowing him to focus on areas that
required improvement. Analysis results showed that solo programming encouraged
students to take ownership of the problem-solving process. They were forced to
analyze concepts, identify solutions, and implement their ideas independently. This
active engagement led to a more profound understanding of the underlying
principles, as noted in S16's statement. Working alone also allowed students to
identify and rectify their mistakes without the immediate intervention of others. This
process of self-correction reinforces learning and promotes a growth mindset, as
demonstrated by S24's experience. In conclusion, solo programming emerged as a
powerful tool for fostering active engagement and enhancing learning outcomes in

programming education.

165

[S_8]: I couldn’t understand the codes he mentioned because I couldn’t grasp
what the code was and how it worked without looking at it myself. But when

I looked at it myself, I understood better.

[S16]: The positive side of coding alone is that you can see all the questions
and answer them yourself. You try to solve them, engage your brain a bit, and

1 think it’s better.
Improved Focus

Students (S17 and S26) mentioned that they were able to concentrate better and listen
to the teacher more attentively when they were working alone, without the presence
of peers causing distractions (f= 3). Besides that, students added that they struggled
with tasks because they were not paying attention during the lesson due to talking
with their pairs. This finding highlighted the positive impact of solo programming

on focus and attentiveness.

[S17]: I would be more open in the informatics (Information Technologies
and Software) class. How can I put it? I would sit calmly and listen to the

lecturer. There would be no one next to me. I get distracted.
Enhanced Retention

Solo programming appeared to contribute to improved information retention and
long-term learning, as highlighted by S13 and S14 (f = 2). According to students’
statements solo work led students to attempt to solve more problems independently.
The findings revealed that this increased practice and exposure to the material could
further solidify students' understanding and enhance their ability to recall

information later.

[S14]: ...but it was more memorable. Because you were solving more

questions.

166

4.2.1.4.3 Challenges of Solo Programming

Lack of Pair Consultation

A significant portion of the students highlighted that the lack of peer consultation
was a major drawback of working alone on programming tasks (f = 18). They
emphasized the importance of immediate support and collaboration, particularly
when encountering complex problems. S26 expressed frustration with the inability
to get assistance when unable to complete tasks on their own. Similarly, S15
mentioned leaving tasks unfinished due to the inability to find solutions on their own.
According to participant S19, the absence of peer support could hinder progress,
particularly when everyone was focused on their individual tasks. This limitation
was further amplified when instructors were unavailable for assistance. S21 also
pointed out that the absence of different perspectives limited their problem-solving
approach. Additionally, students S9, S29, and S30 emphasized the need for a peer to
provide fresh ideas and guidance when progress stalls while working alone. These
insights underscored the importance of peer consultation in the learning process. The
ability to collaborate and seek immediate feedback from peers could significantly
enhance problem-solving capabilities and overall learning outcomes. Analysis
results showed that without this support, students struggled to overcome challenges,

leading to frustration and incomplete tasks.

[S22]: ...for example, when I ask the teacher about a subject I don't
understand, sometimes I can't understand it, [can't find out what to do. When
I had a friend, he helped me, we could find it together, but when he wasn't, I
had some difficulty.

4.2.1.5 Theme 5: Goal Setting

In this study, student responses emphasized goal setting as a crucial element of the
learning process, significantly influencing their approach to and engagement with

learning. The findings revealed that more than half of the students expressed a desire

167

to master programming skills. This theme explored the different types of goals
participants set for themselves and how these goals impacted their motivation and
learning strategies in programming education. As seen in Table 4.18, the codes
identified through qualitative data analysis underscored the varied motivational
orientations of students, encompassing mastery-oriented goals, performance-

oriented goals, and performance-avoidance goals.

Table 4.18 Distribution of Code Frequencies by the Theme of Goal Setting

Categories Codes f
Mastery-Oriented Goals Career-oriented goals 44
Challenge seeking 18
Desire to simplify complex tasks 12
Daily life context relevance 12
Recreational interest in coding 8
Performance-Oriented Goals Completion-driven motivation 11
Competition focus 4
Academic achievement focus 1
Performance-Avoidance Goals Avoidance of challenging tasks 20
Fear of failure 6
Skipping tasks 5

4.2.1.5.1 Mastery-Oriented Goals

This category explored the intrinsic motivation participating students had to learn,
understand new concepts, and master the skills in programming education. The codes
under this category reflect the various ways students approach their learning in
programming education with a mastery-oriented mindset, emphasizing deep

understanding and long-term skill development.
Career Oriented Goals

Half of the participants articulated the significance of programming for their personal
development and future careers, recognizing its essential role in today's technology-
driven world (f=44). This career-oriented motivation served as a significant impetus

for their learning, as students understood programming as an essential tool for

168

achieving their professional goals. They identified the value of programming skills
in various fields, including software engineering, computer engineering, IT, and
game development (S12, S13, S18, and S20). Furthermore, ten students highlighted
the importance of coding skills, acknowledging their potential to unlock various
career paths. They expressed a strong belief that coding could be a critical skill,
enhancing their employability and adaptability in the professional world. This
positive perception could serve as a strong motivator for students to continue

learning and pursuing their programming goals.

[S20]: Because the future profession I think about is software engineering.
That's why I pay attention to it. That's why I'm interested in software... I try

to choose software because I'm interested in it.

[S1]: I mean, I think it will be important when I grow up, when I have a
profession. I already think it will be... I mean, when I grow up now when I
get into jobs, coding will be in jobs because it happens a lot. I'm not sure

right now, so it will definitely be coding when I grow up.
Challenge Seeking

This code captured student feedback that demonstrates a desire for intellectual
growth and a preference for learning experiences (f' = 12). Students expressed their
preferences for stimulating and demanding tasks, highlighting their mastery-oriented
goals. This preference showed that students were intrinsically motivated to
learn, seek challenges to improve their skills, and strive for mastery over a subject.
While nine of the students expressed their enjoyment of overcoming difficulties, S12
and S30 conveyed dissatisfaction with tasks in the digital coding learning
environment they perceived as too easy, indicating a positive attitude towards
challenges and a preference for intellectually stimulating material. For instance, S1
enjoyed the challenge of placing colors together, and S15 found the flowchart
difficult yet fun. S21 emphasized the satisfaction gained from completing
challenging tasks, like puzzles and brain teasers. Similarly, S7 stressed the

excitement that comes with increasing difficulty. This is further reinforced by

169

students like S12, S9, and S30, who expressed a preference for more challenging
tasks and a dislike for overly simple ones. Overall, the students' comments reflected
their desire for intellectual challenges and their enjoyment of overcoming

difficulties, indicating a strong focus on mastery and growth in their coding journey.
[S7]: When things get progressively harder, you get even more excited.
Desire to Simplify Complex Tasks

Twelve statements from the students suggested a strong desire to deeply understand
the concepts behind the tasks rather than merely completing them. This reflected a
mastery-oriented approach to learning. Students actively identified challenging parts
and sought ways to manage their cognitive load. For instance, S10 expressed a
preference for text explanations in flowcharts over visual flowcharts, citing difficulty
with understanding flowchart symbols (as discussed under the category of ‘inherent
complexity of concepts and tasks’). This preference indicated that text descriptions,
particularly writing out the algorithm as a series of steps, provided the clarity needed
to comprehend the underlying algorithm, making the concept more manageable.
Similarly, the other two students (S2 and S18) expressed a desire to simplify difficult
topics altogether. This inclination towards simplification suggested that students
were employing specific learning strategies, aiming to break down complex tasks
into manageable components, ultimately leading to a deeper understanding of core

coding concepts.

[S10]: Teacher, I would like to change the things in the flowcharts, the

visuals. I would prefer them to be written in text, not with shapes.

[S18]: I would like to change the nested loops, teacher. I am very bad at that.

I would like to remove that topic.
Daily Life Context Relevance

Based on the analysis, even students with less defined career goals acknowledged
the long-term value of programming in various aspects of daily life (f= 12). Eight

students (S3, S10, S15, S18, S21, S26, S27, and S30) emphasized the applicability

170

of programming beyond professional settings, recognizing its potential to simplify
tasks, solve problems, and enhance general understanding in daily life. For example,
S15 illustrated how coding concepts like decision-making algorithms and
conditional statements could be applied to real-life scenarios to help structure
decision-making processes and optimize choices in everyday situations. Student 27
highlighted the potential for programming to enhance their life by creating
algorithms or writing down instructions, effectively automating or simplifying tasks
like cooking or other household chores. Additionally, students recognized the
potential for programming to contribute to future technological advancements. The
responses of three students (S10, S18 and S26) suggested that they saw coding as a
valuable tool for understanding the technological world around them. This included
comprehending how technology is used in everyday devices, apps, and services and
developing an informed perspective on the impact of technology on society.
Overall, the student feedback indicated that programming is not just a technical skill
but also has the potential to enhance various aspects of daily life. According to
results of the analysis, this broader understanding of programming's relevance could
serve as a motivator for students to continue learning and explore its applications in

their personal and social spheres.

[S27]: It is important to me. It can help me in difficult situations in my life.
For example, if my mother is going to cook and says, 'Do it yourself, I'm
leaving,' I can ask her to create an algorithm for me. She would ask, 'What's
an algorithm?' Then I would explain it to her, and she would do it for me.

Then I can do it myself.

[S10]: Teacher, it can be useful in technological devices. For example, in

America, we can call Teslas by phone. In that respect, I think it is necessary.
Recreational Interest in Coding

Not all students approach coding with a purely career-oriented mindset. This section
explores the motivations of students who viewed coding as a fun and engaging

activity, separate from professional aspirations (S2, S3, S11, and S16). These

171

students find enjoyment, entertainment, and creative potential in the learning process
itself. For some, like S11, the inherent satisfaction and enjoyment derived from
learning code is the primary motivator. Others, like S2 and S16, highlight the
entertainment value of coding, suggesting it provides a pleasurable learning
experience. Furthermore, S3 views coding as a potential hobby, offering a creative
outlet for their free time. These responses highlight how coding can be perceived as
a source of personal enjoyment and creative exploration. For these students, the
intrinsic pleasure of coding, rather than its potential career benefits, is the primary
driver of their engagement. This recreational interest underscores the importance of
fostering a learning environment that recognizes and supports diverse motivations
for learning coding, ensuring that it remains accessible and enjoyable for all students,

regardless of their professional aspirations.

[S3]: I only do it as a hobby. I will do it as a hobby in the future.

4.2.1.5.2 Performance-Oriented Goals

According to the findings, the performance-oriented goals of the students were
driven by external factors such as completion-driven motivation, competition, and
the desire for academic achievement. Students with these goals were often motivated
by the need to outperform others and gain recognition. This external motivation often
led to a focus on achieving high grades, excelling in tasks, and receiving praise or

recognition from teachers and classmates.
Completion-Driven Motivation

Responses from students (S4, S5, S7, S14, and S21) indicated a strong motivation to
achieve specific performance goals, such as completing all levels or tasks within a
gamified learning environment (' = 11). The digital coding learning environment
used in their coding education lessons featured puzzle sets and levels that turned
green upon completion. As students advanced through levels, each completed level

was marked by a green circle, providing a visual representation of progress.

172

Achieving these targets elicited a sense of accomplishment and satisfaction,
highlighting the students’ intrinsic motivation to meet challenges and attain a sense
of completion. This finding underscored the positive influence of gamification and

goal setting on enhancing student engagement and motivation.

[S4]: Sometimes we do something. We log into my friend's code.org account
who sits next to me, and then we log into my account. When we use his

account, I complete the parts I haven't done at home.
Competition Focus

A competitive focus emerged within the learning environment, as evidenced by the
statements of students S1 and S6 (f = 4). Their primary objective was to complete
tasks quickly and potentially surpass others, prioritizing speed over balanced
participation and collaborative learning. This performance-oriented approach
highlighted a potential pitfall in student motivation, where an emphasis on external
validation through competition can overshadow the intrinsic value of learning. For
instance, S1 readily conceded control of the task, seemingly motivated by surpassing
others. Similarly, S6 focused on personal advancement, framing their actions within
the context of progressing their individual account. This emphasis on individual
achievement could hinder the development of a growth mindset and a deeper

understanding of the material.

[S1]: ...Then he said, ‘Let me do it so that we can beat the others so that we

can do it faster. I said okay.
Academic Achievement Focus

One of the students' perspectives shed light on the positive influence of aligning
coding tools with assessment practices (f= 1). S24 highlighted how the teacher's use
of coding-based tasks and questions in exams directly mirrored the activities
conducted within the coding learning environment. This close connection served as
a motivator for performance-oriented students like S24, who prioritize academic

achievement, as it provided a clear path to attaining high scores. This finding

173

underscored the importance of meaningful assessment practices that were directly
connected to students' learning activities. When coding exercises and tools were
demonstrably relevant to exams, they encouraged students to actively engage with
the material and strive for mastery. This fostered a performance-oriented focus that

was channeled toward developing strong coding skills.

[S24]: For example, when the teacher gives an exam, he always asks coding
questions. He asks questions through coding. He gives such shapes on the
exam paper. For example, we do the same activities and the instructor asks
the same questions, like that. Therefore, it provides me with a benefit in that

respect It also helps me get high scores on exams.

4.2.1.5.3 Performance-Avoidance Goals

This category explored student feedback that highlighted a tendency toward
performance-avoidance in programming education. The theme centered on students'
focus on avoiding negative performance outcomes, negative judgment, and
comparison rather than striving for mastery or intrinsic learning. Students driven by
these performance-avoidance goals often prioritized strategies to minimize the risk

of failure rather than actively seeking challenges to enhance their learning.
Avoidance of Challenging Tasks

Data analysis results showed that participants often expressed a preference for
avoiding challenging tasks, highlighting their reluctance to engage with difficult
programming concepts and activities (f= 20). This aversion was explicitly stated by
six students (S6, S8, S23, S24, S27, and S28) who preferred easier tasks, while
another six (S2, S9, S14, S18, S20, and S22) expressed a dislike for challenging
tasks. These challenging tasks included concepts like conditional statements, nested
loops, and variables. These findings suggested that task avoidance, potentially
driven by a desire to minimize negative emotions associated with difficulty, was a

significant issue in programming education.

174

[S24]: I can say that my least favorite thing is difficult coding.
Fear of Failure

Several participants (S2, S7, S21, and S28) disclosed a fear of making mistakes or
failing, which led them to avoid participation in programming tasks (f = 6). This
reluctance stemmed from anxieties about negative judgment, embarrassment, or
failure in front of others. For example, S7 described feeling ashamed of not being
able to perform adequately in a large group setting. Similarly, S21 expressed
frustration when his code came out wrong, showcasing the discouragement that
mistakes can bring. These student experiences served to underscore the potential

obstacles posed by the apprehension of failure.

[S7]: Because there were many people around. I was ashamed when I

couldn't do it.

[S28]: I can't think of the name, but some things were difficult, teacher. I was
afraid that I couldn't do it.

Skipping Tasks

Analysis results showed that two students (S14 and S21) revealed a tendency to skip
tasks or problems they perceived as too difficult, employing this as a performance-
avoidance strategy (' = 5). This highlighted a potential performance avoidance
approach to learning, where students prioritized avoiding negative emotions over
actively engaging with challenging material. By skipping these tasks, they might
have missed out on crucial learning opportunities and potentially hindered their

overall progress.

[S21]: Mostly, if there were three of us or two of us, we would say, let's skip
it. For example, there were many examples we couldn't do. I think we skipped

all of them.

175

4.2.1.6 Theme 6: Affective Aspects

The purpose of this theme was to examine the emotional and attitudinal aspects of
learning programming. This theme extended beyond the acquisition of technical
skills and knowledge. It explored the feelings, beliefs, and motivations that influence
students' engagement and success in programming education. The affective factors
were examined through two primary aspects: attitude and self-efficacy. Related
categories, sub-categories, and their codes, along with the frequency of participant

responses, are detailed in Table 4.19.

4.2.1.6.1 Attitude

This category focused on students' dispositions towards programming,
encompassing both positive and negative attitudes that shape their learning
experiences. Positive attitudes included an interest in learning programming,
enjoyment of both plugged and unplugged activities, the appeal of familiar
characters, the satisfaction derived from social interactions, a favorable view towards
gamified learning, and a positive classroom atmosphere. Conversely, negative
attitudes involved a general negative disposition towards programming and

frustration from prolonged use and.

176

Table 4.19 Distribution of Code Frequencies by the Theme of Affective Aspects

Categories/Sub-Categories Codes f
Attitude
Positive Attitudes Interest in learning programming 54
Enjoyment of plugged activities 30
Appeal of familiar characters 17
Enjoyment of social interaction 14
Engagement of gamification 9
Enjoyment of unplugged activities 8
Positive classroom atmosphere 6
Negative Attitudes Frustration from prolonged use 14
Negative disposition towards 2
programming
Self-Efficacy
Confidence in Coding Low 11
Abilities Moderate 18
High 27
Determinants of Self- Mastery experiences 12
Efficacy Perceptions Social recognition from peers 4
Peer comparison 4
Perceived cognitive abilities 4
Academic performance 2

Positive Attitudes

Interest in Learning Programming

The findings revealed a predominantly positive sentiment towards programming,
with a significant majority of students (26 participants) expressing interest and
enthusiasm for the subject (= 54). Many students highlighted their fascination with
coding, emphasizing its intriguing and intellectually stimulating nature. For instance,
students S10 and S12 demonstrated a high level of intrinsic motivation and curiosity
about programming. Students consistently described their programming lessons as
engaging and interesting, and Student 18’s mention of enthusiasm underscored the
widespread appeal of programming. Overall, the positive feedback from students

illustrated a pervasive interest in learning programming, driven by its engaging and

177

intellectually stimulating aspects, which highlights the effectiveness of programming

education in fostering lasting enthusiasm for the subject.
[S18]: It's really captivating, teacher. I love coding.
Enjoyment of Plugged Activities

The student feedback overwhelmingly highlighted a strong positive association with
plugged activities, suggesting a high level of intrinsic motivation and engagement (f
=30). Seventeen out of thirty students explicitly mentioned enjoyment, fun, and high
levels of engagement with the activities on the digital coding platform (Code.org).
This underscored the importance of the emotional and affective aspects of the
learning experience. One student expressed a desire to conduct all classes in the
computer lab, suggesting a preference for technology-integrated programming
education. Additionally, S3 and S7 mentioned enjoying being taken to the computer
lab, further indicating a positive attitude towards tech-enhanced learning
environments. These student voices emphasized the positive emotional response
elicited by plugged activities. Analysis results showed that when learning was
perceived as enjoyable and engaging, students were more likely to be intrinsically

motivated and maintain their interest throughout the learning process.

[S3]: Going down to the computer lab was really better for me as well. We

have fun. We receive education in the computer classroom.

[S27]: So, when you enter, you feel like doing it. When you look at the
questions, you feel like doing them. Because there were nice questions. There

was good coding and all.
Appeal of Familiar Characters

The use of sprites within the digital programming learning environment elicited
mixed responses from students (f = 17). Five students (S6, S8, S9, S14, and S27)
expressed positive attitudes towards the learning environment that integrated
characters they recognized and enjoyed from other media. The findings suggested

that the integration of well-known figures into the digital programming environment

178

contributed to a more positive learning experience by enhancing students’ interest
and enjoyment. However, the study also revealed a need for continuous improvement
and diversification of these characters. Three participants (S1, S8, and S22)
expressed a desire for more engaging and relatable characters, suggesting that the
existing options may not resonate with all learners. This underscored the importance
of incorporating a wider range of characters from different sources, along with the
ability to personalize characters, which could improve student engagement and

overall satisfaction with the coding program.

[S8]: I mean, I was more interested in it because it had such well-known game
characters and so on, so I did it more easily. It made it easier, having

characters both excited and made it easier.

[S22]: About coding, you know Angry Birds, there could have been other
films. For example, Bumblebee or something like that would be better about

robots. It would be more fun, so there would be a difference. It would be more

fun.

Enjoyment of Social Interaction

This code examined the social interaction aspects of programming education (f' =
14). Unplugged activities, which involved hands-on, non-digital tasks, emerged as a
contributor to social interaction in programming education. S14 specifically
mentioned enjoying socializing and working with friends during unplugged activities
and emphasized a preference for unplugged learning activities that offer more
opportunities for social interaction and collaboration. Pair programming, on the other
hand, was typically associated with computer-based programming activities. While
pair programming also fostered social interaction and collaboration, it differed from
unplugged activities in that it was specifically focused on programming tasks and
utilized digital tools. Students (S4, S10, S18, S24, and S26) expressed their
enjoyment of working together with friends, indicating a preference for cooperative
learning environments. Students mentioned that collaborative learning provided

opportunities to foster improved communication and teamwork skills, as noted by

179

S24 and S26. Additionally, seven students (S2, S6, S10, S14, S18, S24, and S26)
expressed a preference for collaborative programming over solo programming,
finding solo programming less enjoyable and more tedious due to the lack of social

interaction and conversation that accompanied working independently.

[S14]: But the things we did by socializing were also good. For example, in
some classes, we went out to the schoolyard and... At one point, the IT teacher
brought something to our classes, a rabbit hole thing, a rabbit hole. The
rabbit was trying to reach the carrot. For instance, drawing a larger version

of that on the ground in the schoolyard and playing with it.

[S26]: I socialized a little more there. He also liked coding like me. I mean,

if it wasn't for the computer, we wouldn't have met him.
Engagement of Gamification

The qualitative analysis revealed a positive student response (S1, S2, S3, S4, S14,
and S17) toward the integration of gamified elements within the programming
learning environment (f = 9). This positive reception underscored the potential of
gamification to enhance both student engagement and motivation. Students like S1
and S3 specifically highlighted the enjoyable nature of Code.org games, suggesting
that engaging gameplay mechanics effectively capture student interest. This aligned
with the concept of "flow" in gamified learning, where students were intrinsically
motivated and fully absorbed in the learning process. Additionally, the overall game-
like approach, as described by student S17, contributed to a more enjoyable learning
experience, thereby reducing the perceived difficulty associated with coding. S4 also
noted the effectiveness of gamified elements in promoting active cognitive
engagement. These student experiences provided evidence for the efficacy of
gamified learning in fostering student engagement and motivation within

programming education.

180

[S3]: Anyway, the games we played on code.org were very fun. [mean if we
think about it, we actually write coding, but it was really fun. That ‘go

forward’ or finishing the game. These were really fun in coding.
Enjoyment of Unplugged Activities

While not as numerous as for plugged activities, some students (S4, S5, S7, S22,
S26, and S27) also reported enjoyment and high levels of engagement with
unplugged activities (f = 8). These activities often involved hands-on, collaborative
tasks that did not require digital devices. Student statements reflected feelings of
satisfaction, indicating that the unplugged activities were engaging and enjoyable.
These positive responses highlighted the affective benefits of unplugged activities

and their contribution to a positive learning environment.

[S4]: I really liked that glass game. We also did something like this, we moved
like a robot. The teacher wrote it on the board. We had turned our backs.
One of our friends came out. One of them was a robot and the other one was
saying what was on the board. There were degrees, he said to stay there, he

said to turn right-left. It was a lot of fun. It was good.
Positive Classroom Atmosphere

The study also revealed the importance of positive teacher behavior in fostering a
positive classroom atmosphere (f = 6). Several students (S1, S5, S6, and S12)
specifically commended their teacher's politeness, kindness, and calm demeanor. S1
indicated the teacher's gentle explanations and noted the absence of yelling, even in
frustrating situations. This positive and respectful approach was highly valued by S1
and S6 and was seen as crucial to fostering a more engaging learning environment
by S12. Ultimately, it was seen that the teacher's positive behavior cultivated a sense
of trust and mutual respect, establishing a classroom culture that promoted both

academic learning and personal growth.

181

[S1]: Also, the teacher is kind. He explains things kindly. I am happy because
he doesn't yell. It's the first time I've seen this. He only yells if we make him
very angry, and even then, it passes quickly. I really like our teacher. When

we say something, he says okay.

Negative Attitudes

Frustration from Prolonged Use

Several students (S4, S6, S9, S15, S21, and S23) reported experiencing fatigue or
frustration as a result of prolonged use of specific platforms or instructional methods
(f= 14). Students such as S9, S15, and S21 expressed a desire for increased variety
in instructional approaches and activities to maintain their engagement. For instance,
participant S4 found that moving from one Code.org course to another without
sufficient variation became monotonous, highlighting a need for more diverse and
stimulating activities. This highlighted the importance of integrating a diverse range
of activities and learning environments into the curriculum to prevent student

burnout and sustain engagement.

[S4]: For example, when you finish one course and move on to the next, it

gets a bit overwhelming. It really becomes boring.
[S9]: I would like to try other new things.
Negative Disposition Towards Programming

Two students (S1 and S19) expressed an overall negative outlook toward learning
programming (= 2). Their feedback highlighted significant challenges and a general
lack of enthusiasm for the subject, in contrast to the more positive responses from
other students. S1 succinctly conveyed his negative disposition towards
programming. Similarly, S19 articulated difficulties with programming, reflecting

their struggle and lack of engagement with programming tasks.

182

[S19]: And also, I didn't like coding. I didn't quite understand it. It was a bit
difficult.

4.2.1.6.2 Self-Efficacy

In this study, within the context of programming education, this category
encompassed two primary aspects. The first aspect was confidence in coding
abilities, which highlights the level of self-efficacy students perceived in their coding
skills. The second aspect was the determinants of self-efficacy perceptions, which

investigated the various influences on students' self-efficacy.

Confidence in Coding Abilities

Through in-depth interviews, students revealed a range of self-efficacy in coding,
with some exhibiting high confidence and others struggling. Categorizing their
responses, it was found that five students exhibited low self-efficacy (f=11), twelve
demonstrated moderate self-efficacy (f = 18), and thirteen displayed high self-
efficacy in their coding abilities (f= 27). Students who expressed high self-efficacy
often described coding as easy or simple (e.g., S29, S13, and S25). Their comments
highlighted the confidence and comfort that high-self-efficacy students associated
with coding. While some students expressed overall ease in coding, others
acknowledged that some tasks or concepts were challenging. Students with lower
self-efficacy, like S1, reported difficulty and frustration, highlighting the varying

levels of self-efficacy and perceived difficulty among students.
[S29]: Actually, I didn't have any difficulty. It was all very easy.

[S26]: I also realized that this job is hard. It's not an easy job.

183

Determinants of Self-Efficacy Perceptions

This sub-category examined students' reflections on their self-efficacy and explored
the factors that influenced their perceptions of self-efficacy in programming. Several
key determinants emerged, including mastery experiences, social recognition from

peers, peer comparison, perceived cognitive abilities, and academic performance.
Mastery Experiences

Findings showed that successfully completing coding exercises or challenges,
regardless of difficulty, fostered a sense of accomplishment in students (S2, S5,
S8, S9, S12, S20, S25, S27, and S29), (f = 12). This positive reinforcement,
exemplified by S8 feeling like a "programmer" after completing a task, built
confidence and contributed to a strong sense of self-efficacy in problem-solving.
This finding exemplified the connection between successful problem-solving and
confidence. When students experienced the satisfaction of completing tasks, they
developed a sense of competence and a belief in their ability to achieve future
challenges. Additionally, the findings suggested that the duration of task completion
played a role in students' perception of their programming success (S9 and
S26). Students who completed tasks quickly tended to feel even more successful in
coding. However, struggling with tasks could lead to frustration and potentially

hinder self-efficacy, as observed in students like S21 and S24.

[S9]: Because once, while the teacher was explaining, I understood the topic.
I completed it in no time. That's when [realized I was successful, considering

how quickly I did it.
Social Recognition from Peers

One key factor affecting self-efficacy perceptions in programming education was
identified as social recognition from peers (f=4). The study found that students who
received help requests from their classmates regarding coding tasks demonstrated

greater confidence in their abilities (S8 and S26). This positive reinforcement from

184

peers contributed to a strong sense of self-efficacy. For example, student S26
described feeling like a professor when helping classmates, which significantly
boosted his self-confidence. Similarly, student S8 shared that his classmates
frequently sought his help, which also enhanced his self-efficacy. These findings
indicated that peer interactions and the opportunity to assist others reinforced a

student’s belief in their coding skills.

[S26]: For example, when we log in, I somehow feel like a professor. I feel
like someone who has become an expert in these things. My friends ask me
questions, and I tell them, 'You can do it this way.' At those times, I feel really

good.
Peer Comparison

Analysis results showed that peer comparison played a significant role in shaping
self-efficacy or belief in participants’ ability when learning to program (f'=4). As a
result of the social nature of learning, students compared their skills and performance
to their peers, impacting their self-efficacy. The data showed that three students were
influenced by this phenomenon. For instance, participant S26 felt a sense of
accomplishment by observing their classmates struggle with a particular section,
contrasting it with their own progress. On the contrary, S7, despite acknowledging
his achievements, felt inadequate compared to his stronger peers. This comparison-
based assessment reinforced their belief in their abilities and contributed to their

overall self-efficacy in programming.

[S7]: I see myself as successful, but I can't say I'm very good. Because there
are others who are better than me. I'm not at their level. Just a bit above

average.
Perceived Cognitive Abilities

Statements from students revealed a connection between their self-assessment of
cognitive skills (thinking and learning abilities) and perceived self-efficacy (f = 4).
S1, S8, S17, and S29 discussed how their thinking and learning abilities influenced

185

their confidence in coding. Those who believed they had strong thinking and learning
skills, like S29, tended to feel more confident in their ability to learn and succeed in
coding. Conversely, those who doubted their cognitive abilities, like S1, were more
likely to experience lower self-efficacy, potentially leading to struggles with
motivation and engagement in coding. This highlighted the importance of self-

perception in students' motivation and engagement.
[S29]: Because my understanding capacity is higher...
[S1]: Because my brain couldn't take it in much...
Academic Performance

Students' comments also illuminated the relationship between course grades and self-
efficacy (f = 2). Students like S25, who mentioned good grades in their IT and
Software courses, perceived them as validating their coding abilities. This
highlighted the potential of academic performance to act as positive reinforcement.
The findings indicated that strong grades could enhance self-efficacy, motivating

students such as S6 to persist in their learning and embrace new challenges in coding.

[S6]: I received a score of 100 on three assignments. I know from that I'm

good at coding

186

CHAPTER 5

DISCUSSION AND CONCLUSION

The aim of this study was to investigate the factors influencing middle school
students' learning of programming fundamentals. To address this aim, the primary
research question, ‘What factors influence the acquisition of fundamental computer
programming concepts in fifth-grade students?” was examined. To further
contextualize the inquiry, five sub-research questions and their corresponding sub-
questions were also examined. In this mixed-methods study, the quantitative and
qualitative data were analyzed independently. The major findings from both data sets
were then discussed within the framework of the research questions, considering the
variables under investigation. Following this discussion, the chapter concluded with
a synthesis of the key findings. Finally, the implications of the results and directions

for future research were outlined.

5.1 Major Findings and Discussion

5.1.1 Cognitive Load

The study revealed that extraneous load significantly predicted coding performance.
Although germane load was not found to be a significant predictor, its substantial
correlation with extraneous load necessitated its exclusion from the regression
model. As a result, the independent contribution of intrinsic load to coding

achievement could not be assessed.

The study findings indicated that students encountered their most substantial
cognitive load, both intrinsic and extraneous when engaged in learning the nested-
loop concept. Loops were also identified as the third most challenging concept in

terms of intrinsic cognitive load and the fourth most challenging in terms of

187

extraneous cognitive load. The research findings indicate that students' intrinsic
cognitive load was significantly higher during the week when they learned about
loops and nested loops compared to the weeks focusing on conditionals, variables,
and testing and debugging. Furthermore, it was found that the cognitive load
associated with nested loops was significantly higher than that associated with
conditionals, variables, and testing and debugging. While students experienced a
relatively high level of germane load during the week dedicated to nested loops, the
overall increasing trend of germane load across weeks exhibited a decline,
specifically for the nested loops topic. However, this decline in germane load for

nested loops was not statistically significant.

Interview data also revealed that participants perceived nested loops as a more
significant challenge than simple loops. The concept of nested loops was the third
most commonly highlighted topic within the thematic category of "inherent
complexity of concepts and tasks”. These results align with the existing literature,
which categorizes the learning of simple loops and nested loops as some of the most
challenging foundational programming concepts for novices, both at higher
education levels (Gomes et al., 2019; Winslow, 1996) and in elementary education
(Grover & Basu, 2017). In the present study, participants reported difficulties in
determining the number of iterations for each code block within nested loops,
particularly when the total number of loops increased. Consistent with this study’s
findings, Gomes et al. (2019) reported that students in their CS1 course encountered
greater difficulties with internal loops compared to external loops, particularly when
the external loop completed its second iteration. Similarly, participants in this study
reported difficulties in determining which code blocks would be executed when curly
braces ({}) were omitted. Although in the current study, code blocks for both inner
and outer iterations were visually represented, novice programmers may still need
help comprehending the hierarchical structure of nested loops and the order of
execution. This suggests that understanding the hierarchical structure of nested loops

and the order of execution is a common challenge for novice programmers.

188

Sleeman et al. (1984) further clarified the challenges students face in comprehending
loops by emphasizing the difficulties in understanding the role of the control variable
within loops. This study emphasizes the cognitive challenges associated with
comprehending the iterative nature of loops and the management of loop variables.
While constructs such as loops are often associated with procedural programming,
their significance in object-oriented languages like Java underscores the hybrid
nature of modern software development. The challenges encountered by
programmers in mastering these constructs highlight the need for a comprehensive
approach that encompasses both procedural and object-oriented concepts (Dale,
2006). The findings of another study suggested that while sixth-grade students
encountered some difficulties with loop concepts, the visual nature of the Scratch
environment may have reduced some of the cognitive challenges typically associated
with programming. Additionally, the positive impact of prior experience with digital
tools on students' ability to adapt to the Scratch interface highlights the importance
of providing students with opportunities to engage with technology from an early

age (Cakiroglu et al., 2018).

Building upon the challenges presented by nested loops, basic sequences emerged as
the second most demanding concept in terms of cognitive load. The intrinsic
cognitive load associated with basic sequences was significantly greater than that
associated with conditionals, variables, and testing and debugging. However,
significant differences in extraneous cognitive load were only observed for testing
and debugging when learning basic sequences. Similarly, the germane load
experienced for this topic was significantly lower than for variables and conditionals.
These results could be attributed to students’ perceptions of coding during the initial
week. The singular occurrence of the code pertaining to "sequencing and logical flow
difficulties”" in the qualitative data provides additional evidence to support this
interpretation. This finding can be explained by the unfavorable attitudes held by the
students toward coding, stemming from their limited exposure to programming
before commencing the course (Cakiroglu et al., 2018). On the other hand, as

proficiency and familiarity with the learning environment increase, a learner can

189

reduce their cognitive load (Sweller, 2010). The empirical evidence from this study,
characterized by an upward trend in germane load across most topics, excluding
nested loops, aligns with the proposed explanation. Inexperienced learners are more
likely to give up on learning computer programming if the task they are attempting
to complete is complex. Inexperienced learners are more susceptible to experiencing
cognitive overload and frustration in the context of learning programming (Bounajim
et al., 2021). The high extraneous cognitive load observed in the first week suggests
that the unplugged activity may not have been entirely clear to the students. The
complexity of the task may result in cognitive overload, which may interfere with
the performance of the task and/or the learning of the subject matter. This
interpretation is further supported by the students' statements during interviews,
which indicated difficulties in understanding and implementing the unplugged
activity due to unclear task instructions. Besides that, findings of the related literature
indicate that block-based coding platforms such as Scratch and code.org make
coding easier, particularly by preventing children from encountering syntax errors
(Resnick et al., 2009). The findings that such coding environments reduce extraneous
cognitive load can be associated with the lower cognitive load of students in plugged
activities in this study (Meerbaum-Salant et al., 2013). This study's observation of
higher cognitive load during unplugged activities may be partially explained by
findings from previous research. Studies have shown that block-based coding
platforms like Scratch and code.org simplify coding, particularly by preventing
children from encountering syntax errors (Resnick et al., 2009). By eliminating the
need to focus on syntax, these platforms are thought to reduce extraneous cognitive
load (Meerbaum-Salant et al., 2013). Considering the additive nature of types of
cognitive load, excessively high levels of intrinsic and extraneous load can
detrimentally impact the learning process. Therefore, the observed low germane
loads in the initial week, characterized by increased intrinsic and extraneous load

levels, were an anticipated outcome (Chandler & Sweller, 1996).

The research findings revealed an unexpected inconsistency, with the intrinsic and

extraneous cognitive loads associated with the topic of variables being among the

190

lowest, while the germane load was notably the highest. This outcome was
unexpected, particularly given that qualitative data indicated students frequently
mentioned challenges in understanding the concept of variables (f = 24). Despite
these reported difficulties, the corresponding cognitive load measurements did not
align. In a study conducted with 6th, 7th, and 8th-grade students, Grover and Basu
(2017) noted that students were unfamiliar with variable usage and held
misconceptions, consistent with the findings of this research. In the present study,
students reported finding the examples provided by the teacher during the
explanation of the topic confusing and inconsistent. Additionally, they expressed
difficulty in understanding how to use the variable code blocks, which differed

slightly from what they had used previously in the digital programming environment.

The concept of variables constitutes a fundamental element of programming, yet it
has been recognized as a challenging topic to both learn and teach (Dale, 2006;
Holland et al., 1997). It is often perceived as abstract and challenging for novice
programmers (Kohn, 2017). Studies have reported that students encounter
difficulties in various aspects of variable usage, including establishing appropriate
variable names, selecting suitable data types, distinguishing between mathematical
symbols and programming operators, and correctly applying assignment and
comparison operators (Mohamad Gobil et al., 2009). The lower intrinsic cognitive
load observed in the current study regarding variables might be attributed to the less
complex implementation of variables within the block-based programming
environment employed. Since students were working with pre-defined code blocks,
there was no requirement for them to explicitly define variables, specify data types,
or assign values according to the data types. Similarly, the use of dropdown menus
for selecting relational operators likely minimized the possibility of errors associated
with these operators. Furthermore, it is also possible that students' prior exposure to
variables within the context of loops, nested loops, and conditionals, without explicit
instruction on variables, contributed to their apparent ease with this concept.
However, qualitative data revealed a substantial knowledge gap regarding the

fundamental nature and operation of variables despite their ability to complete tasks

191

by following procedural steps. While block-based environments alleviate the
syntactic challenges associated with programming, they do not necessarily mitigate
the conceptual difficulties inherent in understanding core programming constructs
such as variables and loops. As Grover and Basu (2017) noted, students often
struggle with grasping the essence of variables. In fact, the ability to successfully
manipulate code blocks without a deep understanding of the underlying variable
concepts might create an illusion of proficiency. There are studies in the literature
that report contrary findings. For instance, in alignment with the quantitative results
of this study, Grandell et al. (2006) found that variables were among the least
challenging topics in their study conducted with high school students utilizing a text-
based programming language. They also suggested that the deviation from the
general understanding in the literature could be attributed, in part, to the type of

programming language used in their study.

5.1.2 Gender

This study explored the potential gender disparities in middle programming
education. The findings of this study revealed no statistically significant gender
differences in programming education. Boys and girls displayed similar attitudes
towards coding, had similar goal orientations and levels of self-efficacy, perceived
similar classroom goal structures, used similar academic self-handicapping
strategies, exhibited similar cheating behaviors, experienced similar cognitive load
while learning to program, and ultimately achieved similar results on the

programming achievement tests.

In contrast to the present study's findings, prior research has frequently documented
a gender gap in programming education, with boys generally showing higher levels
of interest, confidence, and performance in coding activities and technology-related
careers compared to girls (e.g., Bergin & Reilly, 2006; Beyer et al., 2003; Cheryan
et al., 2015; Doubé & Lang, 2012; Guzdial et al., 2014). These studies also explored

the interaction of self-efficacy, intrinsic and extrinsic goal orientations,

192

programming success, and metacognitive strategies, finding that these factors impact
student performance differently for males and females (Lishinski et al., 2016).
Besides that, gender differences in programming beliefs were identified, where boys
were more inclined towards computational thinking and saw programming as
practical, while girls perceived programming as a creative and communicative
activity (Tellhed et al., 2022), indicating that different aspects of programming
appeal to boys and girls. The data from related studies suggested that these disparities
were influenced by a combination of sociocultural factors, gender stereotypes,
beliefs, the availability of role models, interest, computing self-efficacy, and prior

experiences (Beyer, 2014; Cheryan et al., 2015; Doub¢ & Lang, 2012).

Although the gender gap in programming learning is a common narrative in
literature, studies on gender differences have also shown mixed results. In the
literature, there is a considerable number of studies that align with the findings of
this research. For example, in the study by Kong et al. (2018), no significant
difference was observed in the programming self-efficacy of the young learners
despite the lower interest of the girls. Doubé & Lang (2012) also found similar results
to those in this study, indicating no gender differences in terms of how much students
valued computer programming, and both boys and girls seemed equally driven by a
combination of wanting to achieve good grades or recognition and an interest in the
subject matter. Additionally, there are studies in which no gender differences have
been found in programming achievement scores, as in this study (Akinola, 2015;
Bennedsen & Caspersen, 2005). Similarly, Qian & Lehman (2016) emphasized that
differences in programming performance among middle school students are better
explained by non-programming subjects rather than by gender. This consistency
suggests that the lack of observed gender differences in programming education may

be a more general phenomenon, not restricted to the specific context of this study.

Considering these previous research studies, several factors related to the absence of
statistically significant differences in the investigated programming education
variables in this study can be discussed. Studies suggest that when a field aligns with

traditionally masculine traits in a specific culture (e.g., social isolation, intense focus

193

on technology, and innate brilliance), females tend to exhibit lower interest
compared to males (Cheryan et al., 2015). These stereotypes and the gender
construction of the discipline might explain the lack of adequate representation of
females in disciplines such as computer science and engineering (Doubé & Lang,
2012). However, in research studies, it was emphasized that altering cultural
perceptions and stereotypes surrounding computer science and engineering can
positively influence girls' engagement and participation in these fields. Additionally,
the role of media in shaping such stereotypes was highlighted, suggesting that media
representations contribute to how girls perceive computer science courses and
environments, ultimately impacting their interest in these fields (Cheryan et al.,
2015). In the current study, given the unique characteristics of the study region,
including its small-town setting and the fact that nearly half of the students reside in
rural areas, the absence of observed gender differences compared to previous
research suggests that media exposure may play a significant role in shaping
students' perceptions and behaviors. This has arguably led to a shift in female
students' perspectives on technology, potentially diminishing the previously
observed gender gap reported in previous studies. Furthermore, there has been
increased emphasis on coding education globally, including in Turkiye, and efforts
have been made at the middle school level to promote this education. In this context,
programming-related topics within the ITS curriculum were revised, and initiatives
like the KodlaRize project championed programming education across all schools in
the study's province. Additionally, there was an increased emphasis on integrating
coding skills into classroom learning through various projects and technological
equipment support for schools, as well as the establishment of coding centers. These
initiatives likely contributed to a more standardized approach to programming
education nationwide and within the study's province, potentially explaining the
absence of significant variations in the investigated factors. Moreover, the increased
emphasis on programming education has fostered a broader societal awareness of its
importance. This is evident in the greater encouragement observed for girls to pursue

computer-related fields compared to previous generations (Wang et al., 2015).

194

This study employed a block-based programming environment to introduce
fundamental programming concepts to middle school students. Given the impact of
block-based programming environments on students' attitudes towards
programming, it can be inferred that the use of these environments might have
contributed to the absence of a gender difference (Gunbatar & Karalar, 2018).
However, the relatively low complexity of the programming tasks due to the
circumscribed nature of block-based environments may have limited the potential
for observing significant gender differences, which are more apparent in more
complex programming contexts. Furthermore, the focus on introductory concepts
might not fully capture the challenges associated with more advanced programming

topics (Sullivan & Bers, 2016).

51.3 Geographical School Location

This study investigated the effects of geographical school location on programming
success, math success, reading comprehension success, and various motivational
constructs, including goal orientations, classroom goal structures, academic efficacy,
cheating behavior, self-handicapping strategies, and attitudes toward programming
education. The research involved students from three schools: one located in a
central urban area with higher-income parents and two located in suburban areas
with lower-income families and smaller student populations. The findings revealed
significant differences between these groups, highlighting the importance of school
location as a predictor of programming success and its impact on related motivational

factors.

According to the results of this study, geographical school location was a strong
predictor of the programming success of fifth-grade students. This finding aligns
with previous research indicating that students from urban schools tend to achieve
higher academic success compared to their suburban or rural counterparts (Bonilla-
Mejia & Londofio-Ortega, 2021; Chand & Mohan, 2019; Panizzon, 2015). The

reasons for this discrepancy include differences in both school and student

195

characteristics (Cresswell & Underwood, 2004). Urban schools generally provide
better access to resources, better student exposure to technology, more experienced
teachers, and a more stimulating educational environment, and are typically attended
by students from higher socioeconomic backgrounds (Akpomudjere, 2020; Bouck,
2005; Chand & Mohan, 2019). Conversely, suburban and rural schools often face

challenges in providing the same level of resources and support.

Socioeconomic factors are seen as a significant cause of the gap between schools
from different geographical locations (Panizzon, 2015). Program for International
Student Assessment (PISA) test results consistently demonstrate a strong correlation
between socioeconomic status and student performance. PISA 2022 data aligns with
the finding of this study, showing a gap of 82 points in mathematics scores between
socio-economically advantaged and disadvantaged students from Turkiye (OECD,
n.d.). Hanushek & Woessmann's (2012) research provided additional evidence that
student and family background significantly impact educational outcomes. This
aligns with the discussed point about the strong association between socioeconomic
status and PISA results. Although this study did not directly investigate the impact
of family factors as subfactors of geographical school location, considering the
characteristics of the participants, it is evident that the family backgrounds of
students in urban and suburban areas likely differed in terms of both education level
and income status (see p. 51). Based on relevant literature, for instance, research by
Marks et al. (2006), it could be suggested that these family background differences

might have influenced the study's outcomes.

When examining the phenomenon within the specific context of programming
learning, the importance of prior computing experience in programming success is
particularly noteworthy (Grover et al., 2016; Zingaro, 2014). In this study, it was
noted that students do not receive any formal computing-related instruction as part
of the curriculum until the fifth grade. This means prior computing experience relies
heavily on parental awareness and support. Parents with higher education levels and
greater financial resources can provide more advantages for their children. This may

include guiding them toward computing opportunities or providing more exposure

196

to technology, both of which can facilitate the development of computing skills at an
early age (Metin et al., 2023). Additionally, related literature showed that the
availability and quality of technological resources in schools also significantly
impact programming success (Salleh Hudin, 2023). All the schools involved in the
study had computer laboratories; however, the suburban schools faced challenges
with older and fewer computers, as students mentioned in the interviews. During the
study, a new computer lab was installed in one of the suburban schools as part of a
project, but this improvement only occurred towards the end of the study period and

did not significantly affect the outcomes.

In addition to programming success, geographical school location significantly
influenced various motivational constructs. The study found significant differences
in goal orientations and classroom goal structures between the two geographical
locations. Urban school students exhibited higher performance-approach goal
orientations and more favorable perceptions of classroom goal structures. This is
consistent with previous research indicating that urban schools, with their higher
resources and better-trained teachers, can create a more achievement-oriented
environment that encourages students to set and pursue higher academic goals (Sun

et al., 2022).

5.14 Mathematics Skills

One of the conclusions drawn from this research is that, among the various factors
examined for success in computer programming, the most significant predictor was
proficiency in mathematics. Given that the roots of computer programming lie in
mathematics, a strong relationship between coding and mathematics is an expected

outcome.

The emphasis on the strong positive correlation between students' mathematical
abilities and their performance in introductory computer programming courses

suggests that mathematical skills are crucial for understanding programming

197

concepts and logic. The relationship between mathematical and coding success is
explored across various dimensions in the literature and is evidenced by multiple
studies. Investigations into the relationship between mathematics achievement and
programming performance have been conducted across various educational levels,
spanning from primary and middle school (Bozal & Sendurur, 2024; Brannon &
Novak, 2019; Calder, 2010; Grover et al., 2015, 2016; Hu et al., 2018; Qian &
Lehman, 2016; Salac et al., 2021) to high school (Bennedsen & Caspersen, 2005;
Erdogan et al., 2008; Nasution et al., 2022) and undergraduate or graduate (Baist &
Pamungkas, 2017; Bergin & Reilly, 2006; Bubnic et al., 2024). For instance,
Mathews (2017) emphasized the predictive power of prior mathematics performance
on success in learning programming. Their study highlights that average
mathematics grades from the previous year could strongly indicate of a student's
ability to grasp programming concepts. Erdogan et al. (2008) conducted a study with
high school students and found a significant relationship between mathematics
achievement and programming achievement, although they did not find mathematics
achievement to be a predictor of programming achievement. Grover et al. (2015)
employed a design-based research approach to investigate students aged eleven to
fourteen. Notably, their study yielded significant results, demonstrating that
mathematical ability, alongside prior computing experience, serves as a highly
strong predictor of successful learning outcomes in programming. The authors of
the aforementioned study attributed this finding to the inherent nature of the
assessments used to evaluate programming performance. These assessments
frequently necessitate the application of mathematical knowledge. These findings
directly align with the current study's emphasis on the critical role that a strong

foundation in mathematical concepts plays in effectively completing coding tasks.

Similarly, Bennedsen & Caspersen (2005) investigated potential factors influencing
success in an introductory programming course. Their analysis revealed that only
two of the eight indicators were statistically significant. Mathematics grades from
high school stood out as one of these critical predictors, explaining over 15% of the

variation observed in exam grades. Bergin & Reilly (2006) corroborated the finding

198

that mathematics achievement strongly predicts performance in introductory
programming courses. Bubnic et al. (2024) found that students with strong, complex
problem-solving skills tended to perform better in introductory programming
courses. The structural equation modeling results revealed that 64% of the variance
in programming performance can be attributed to complex problem-solving skills.
Similarly, Nasution et al. (2022) conducted a study in high school and found a
positive correlation between the problem-solving abilities of students and their

achievements in programming assignments.

Upon reviewing the literature, it becomes evident that several studies have identified
mathematics as a significantly stronger predictor compared to the findings presented
in this research. These results may stem from the investigation's focus on a lower
grade level. Additionally, the study's measurement of programming knowledge and
understanding among fifth graders who were newly introduced to computer science
could contribute to this observation. This aligns with prior research that has
established a moderate predictive role of mathematics in programming performance

for younger students (e.g., Bennedsen & Caspersen, 2005).

The qualitative part of this research shed light on the specific difficulties students
faced and the underlying factors that influenced their success in programming.
According to the research findings, not only skills but also prior knowledge in
mathematics emerged as a significant factor influencing programming success.
Interviews with students revealed that mathematical concepts frequently posed
difficulties when solving problems in the programming environment they used in
their lessons. For instance, students often mentioned struggling with puzzles that
required rotating characters at specific angles, indicating a lack of understanding of
which angles to use. The qualitative analysis of this study goes beyond the initial
finding of student difficulty with angles. Student interviews revealed challenges with
other foundational mathematical concepts as well. These include directionality, the
ability to understand and represent movement along a designated path, which is
crucial for tasks involving directional commands within code. Spatial reasoning, the

cognitive skills necessary to manipulate and understand objects in a spatial context,

199

also proved challenging. This is particularly relevant for tasks requiring the
manipulation of on-screen objects or characters within a programmed environment.
Finally, the framework for describing and locating points within a two-dimensional

space, or coordinate systems, presented difficulties for students.

These findings highlight the importance of a strong foundation in these mathematical
concepts for successful programming, as students struggled with specific coding
examples that required applying these specific concepts. Calder (2010) employed a
block-based programming environment that demonstrably fostered deeper
engagement with geometric and measurement concepts. His study found that
students readily grasped concepts of positionality, measurement (including
coordinates, angles, and length), and spatial awareness within this environment. This
aligns with the current study's findings, suggesting a potential link between a robust
foundation in these mathematical concepts and success in programming tasks.
Furthermore, Brannon & Novak (2019) directly corroborates this connection. Their
investigation revealed that students encountering difficulties with mathematical
content on the coding platform used in this study also exhibited struggles with

geometric shapes, measurement, angles, and the coordinate system.

In a newly study, Bozal & Sendurur (2024) found no significant difference in
computational thinking test scores between elementary school students who learned
programming with math-supported activities and those who learned traditionally.
The researchers explained the study's unexpected results in two ways. Firstly, the
basic sorting tasks involved very beginner-level coding commands like moving and
turning. These tasks likely didn't require advanced mathematical thinking, leading to
similar scores across both groups. Secondly, the authors pointed out that current
teaching methods might not be effective in truly merging mathematics and
introductory computer science education. As the students' programming success in
the current study was also assessed based on fundamental programming concepts, it
is believed that the second factor (limitations in teaching methods) mentioned in the
aforementioned study likely explains the absence of significant differences. These

findings indicated that it is essential to ensure that computer science curricula

200

acknowledge the close relationship with mathematics. This underscores the need for
improved pedagogical approaches to leverage the connection between mathematics
and introductory computer science education for better learning outcomes in lower

grades.

Teachers also play a vital role in this process. Preliminary research within this study
showed that teachers, especially at the introductory level (such as fifth grade),
frequently utilize learning platforms focused on coding, with code.org being a
prominent example. Students typically engage in individual learning on these
platforms in a computer lab setting, where teachers provide support by moving
around the classroom. While teachers strive to assist students during individual
computer-based learning, the number of students and time constraints can hinder
their ability to provide adequate support and feedback, as emphasized by the
interviewed students. Therefore, the appropriateness of tasks to students' readiness
levels is paramount in such learning approaches. Teachers should carefully consider
the mathematical connections of selected topics and examples when structuring
lesson content, considering students' mathematical preparedness. Therefore, within
the trend of teaching coding to all children, it is essential that students first build a

strong foundation in mathematics to succeed in learning programming.

5.1.5 Reading Comprehension Skills

According to the findings of this study, reading comprehension achievement
emerged as the second strongest predictor of academic success among middle school
students. Given the nature of programming languages as high-level languages, which
demand the skill to interpret meaning beyond literal statements and recognize
patterns, reading proficiency is considered a fundamental prerequisite for effectively
learning and utilizing a programming language. Additionally, these languages
require the ability to synthesize information from code segments that might not be
presented in a sequence and build mental models of abstract concepts (Salac et al.,

2021; Schoeman, 2019). The relationship between reading comprehension ability

201

and programming success is multifaceted and significant in the related literature.
While this study utilized pre-built code blocks, the findings aligned with existing
research emphasizing the crucial role of code comprehension in successful

programming.

There is a growing body of study that established reading comprehension as a
significant predictor of programming success, underscoring the crucial role of
effective code comprehension in programming proficiency. Lopez et al. (2008)
investigated the relationship between code reading and code writing skills in novice
programmers. They analyzed student performance on exam questions that involved
code reading, tracing, and writing. Their findings showed a strong positive
correlation between these skills, with code reading skills explaining 31% of the
variation in student performance on code writing tasks. Similarly, Qian & Lehman
(2016) conducted a study on Chinese students who were not native English speakers
and found that proficiency in English was the strongest predictor of achievement in
introductory programming. In this study, while mathematic ability also showed a
correlation with performance, English proficiency emerged as the most significant
factor. Grover et al. (2016) further supported this notion by demonstrating that,
alongside math achievement, English ability served as a predictor of programming
outcomes. These findings are consistent with the current study’s emphasis on

identifying key predictors of programming performance.

Reading comprehension is critically important for students to make sense of the code
examples presented to them. This skill forms the foundation of programming
learning by enabling them to decode the concepts, relationships, and logic within the
code. As Lister et al. (2004) pointed out, students must be able to understand and
analyze code examples to learn programming concepts effectively. In the current
study, students did not have access to textbooks or printed materials. The absence of
these materials in this block-based programming environment presented a unique
challenge. While traditional classrooms might rely on students independently
understanding code examples from textbooks, this was not an option in this study

setting. Therefore, teachers became even more crucial in providing and explaining

202

code examples before transitioning students to practical exercises. This teacher-led
approach ensures that students grasp the concepts and are prepared to apply their
knowledge in real-world programming scenarios. Students' feedback during
interviews aligns with this notion. When discussing unplugged activities (activities
without computers), students mentioned the importance of understanding the
concepts before moving on to practical exercises when answering related questions.
This situation underscores the critical role of reading comprehension in block-based
programming. Students could independently analyze and understand code examples
by fostering reading comprehension skills, ultimately laying the foundation for

successful application in practical exercises.

The literature also emphasizes the importance of reading comprehension,
particularly in debugging. Reading code goes beyond just skimming it; it involves
genuinely understanding what the code does. This allows programmers to identify
and fix errors more easily (Perkins & Martin, 1986). While pre-built code blocks
were used instead of traditional text-based programming in this study, the findings
emphasized a similar relationship to text-based code reading. This suggests that code
reading and comprehension skills are essential for debugging and overall code

writing in programming, regardless of whether text-based or block-based.

Beyond traditional research methods, recent studies explore the link between reading
comprehension and programming proficiency through eye-tracking and brainwave
data. These studies reveal a fascinating connection: successful programmers exhibit
distinct eye movement patterns and brain activity patterns. For instance, research by
Ishida et al. (2020) and Ishida and Uwano (2019) suggested skilled programmers can
rapidly shift their focus between problem specifications and the actual code.
Additionally, their brainwaves showed an increase in specific frequencies over time,
indicating heightened mental engagement. Further evidence comes from longitudinal
eye-tracking studies by Andrzejewska and Kotoniak (2020). Their findings show that
as students' programming skills improve, their eye movements become more
efficient. This translates to increased distance traveled between fixations (saccade

amplitude) and shorter fixation durations. These findings go beyond traditional text-

203

based assessments, suggesting that eye-tracking and brainwave data can offer
valuable information about the cognitive processes underlying successful
programming. This research not only supports the link between reading
comprehension and programming but also highlights the value of alternative

measurement methods.

While the majority of research underscores the positive influence of reading
comprehension on programming proficiency, the bidirectional nature of this
relationship has also been explored. Studies have demonstrated that computer
instruction can enhance mathematical skills but may have less consistent effects on
reading comprehension (Salac et al., 2021). Additionally, the impact of
programming instruction on reading skills, as evidenced by Papatga and Ersoy

(2016), suggests a potential complementary relationship between these two domains.

5.1.6 Attitude Toward Programming

This study identified attitude as a significant predictor of programming success. The
research employed in-depth student interviews to gain a richer understanding of the
factors influencing these attitudes. These interviews explored both positive and
negative student perceptions of programming. In a qualitative analysis, the attitude
was understood in a broader sense, reflecting an individual's expressed preferences
and feelings toward engaging in a particular behavior (Fishman et al., 2021). This
approach complements the investigation of other psychosocial constructs, such as

goal orientation and self-efficacy, explored in this study.

Researchers have consistently identified attitude as a critical factor influencing
student achievement. This holds true across various educational settings, including
the field of computer science education. While a significant body of research has
explored the attitudes of older students toward programming, investigations into the
attitudes of younger learners are gaining increasing attention, and studies directly

examining the impact of attitude on computer programming achievement are limited

204

(e.g., Deniz & Korucu, 2023; Love, 2023; Sun et al., 2022). Early studies primarily
focused on the direct link between attitude and programming learning. More recent
investigations have expanded the scope to examine the association between attitude
and computational thinking, as well as its role in STEM education. It is noteworthy
that a significant portion of the existing research aligns with the findings of this
study, further reinforcing the notion that attitude plays a pivotal role in shaping

student outcomes in computer science education (Sun et al., 2022).

In the literature, mathematics attitude has been identified as a factor positively
influencing the computer programming learning of K-12 students (Ching et al., 2019;
Ober et al., 2024). While a direct relationship between mathematics attitude and
programming achievement was not explicitly tested in this study, the significant
predictive power of mathematics achievement test scores for coding performance
suggests that mathematics attitude may also play a positive role. This interpretation
is supported by the established positive correlation between mathematics attitude and

mathematics achievement in this study.

This study employed a combination of plugged and unplugged programming
activities, with unplugged activities serving as an introduction to the concepts and
plugged activities involving programming tasks on the code.org digital coding
platform within a computer lab. Qualitative analysis revealed that students generally
expressed more positive attitudes towards the plugged activities. In contrast to this
study's finding, Love's (2023) study revealed a significant impact of physical
computing activities on five attitude constructs among students: “definition, comfort,
interest, classroom applications, and career/future use”. Additionally, in this study,
it was reported that 77% of the students expressed a preference for these physical
activities over screen-based programming instruction. It is crucial to distinguish the
physical activities employed in Love's study from the unplugged activities discussed
in the present research. The former involved the interactive physical systems or
devices that students program using software to create user-driven responses and
behaviors, while the latter encompassed paper-based activities, games, and other

unplugged experiences devoid of any integrated systems. In addition to the distinct

205

nature of the physical activities employed, several other factors could have
contributed to the contrasting findings between Love's study and the present
research. One potential explanation lies in the methodological approach. Love's
study utilized a purely physical computing approach, while the present research
utilized a mixed-methods approach that incorporated both unplugged and plugged
(computer-based) programming activities. This difference in instructional strategies
could have influenced student engagement and attitude formation. Moreover, the
relative weight of unplugged and computer-based activities could have played a role
in shaping the results. A greater emphasis on plugged activities might have resonated
more strongly with students' desire for hands-on learning and potentially led to more
positive attitudes. Additionally, considering the growing interest in technology

among students, the present study’s findings are not entirely surprising.

The results revealed a generally positive attitude towards programming. Students
expressed a stronger preference for computer-based activities compared to
unplugged activities that do not involve computers. Students were frequently
observed to characterize this learning platform as enjoyable. This aligns with existing
research suggesting a positive correlation between students' positive attitudes toward
computers and their willingness to engage with programming. These results
underscore the significance of considering student preferences when designing and

developing programming education.

A notable finding from this study is the positive perception of enjoyment expressed
by participants towards the unplugged activities. This aligns with previous research,
such as Taub et al. (2012), where students consistently reported positive attitudes
towards unplugged activities, often characterizing them as "fun" and engaging. In
this study, while most of the students expressed a preference for computer-based
(plugged) activities, they also highlighted positive aspects of unplugged activities,
particularly emphasizing the value of social interaction in these settings, which was

coded as "enjoyment of social interaction".

206

A separate study investigating the impact of pair programming on programming
learning outcomes and attitudes revealed that attitudinal factors did not exert a
significant influence on student learning within the pair programming setting
(Vandenberg et al., 2021). This could be attributed to the collaborative nature of pair
programming, where the shared learning environment and active engagement with a

partner may mitigate the influence of individual attitudinal factors.

5.1.7 Patterns of Adaptive Learning

Among the subscales of the PALS, only the academic self-handicapping strategies
variable emerged as a predictor of programming success in this study. The
relationship between achievement and handicapping strategies was found to be
negative. Although there has been limited research on self-handicapping strategies
in programming, particularly in middle school contexts, studies in other domains
have produced varying results regarding its relationship with achievement
(Schwinger et al., 2014). However, the general trend, parallel to the findings of this
study, suggests a negative correlation between self-handicapping and academic
achievement (Urdan, 2004; Urdan et al., 1998). Schwinger et al. (2014) emphasized
the influence of school type on this relationship. The finding that handicapping
strategies emerged as a significant predictor in this study could be attributed, in part,
to the school level, aligning with previous research suggesting a stronger association
between self-handicapping and achievement in elementary schools compared to high

schools (Leondari & Gonida, 2007).

Given the assumption that contextual and motivational factors can shape students'
attitudes and behaviors, it is reasonable to expect disparities in academic self-
handicapping strategies between urban and suburban school environments (Urdan &
Midgley, 2001). While personal goal orientations and perceived classroom goal
structures did not directly and significantly influence programming achievement in
this study, the observed differences between urban and suburban schools in these

variables suggest a more complex interplay between individual and contextual

207

factors that could potentially moderate the relationship with self-handicapping.
Although the specific relationships between goal orientations and perceived goal
structures with other variables were beyond the scope of this study, the literature
points to a positive association between self-handicapping strategies and
performance-avoid goals and classroom performance goal structure (Leondari &
Gonida, 2007; Urdan, 2004) and a negative association with mastery goals (Midgley
& Urdan, 2001).

The qualitative data from this study indicated a higher frequency of expressions
related to mastery goal orientations among the students, such as career-oriented
goals, challenge seeking, and relevance to daily life. However, there were also a
notable number of expressions related to performance approach and performance-
avoidance goals. Specifically, codes such as competition focus (f = 4), completion-
driven motivation (f= 11), and fear of failure (f= 6) were identified as significant in
the context of academic self-handicapping. The instructional environment used for
the plugged activities in this study was game-based, where students progressed to
the next level by completing puzzles designed to teach programming concepts. This
type of performance-focused instructional practice has been reported to increase
perceived classroom performance goals, which in turn can predict the use of self-
handicapping strategies (Urdan et al., 1998). The emphasis on completing tasks to
advance in levels may inadvertently encourage students to adopt self-handicapping

behaviors to protect their self-esteem and mitigate fear of failure.

5.2 Conclusion

Programming education has increasingly become an essential skill and field to be
introduced at various educational levels, including early childhood. However, as
extensively discussed in the literature, students often face difficulties when learning
programming. This study, utilizing a mixed-method design, investigated the
computer programming learning processes of fifth-grade students who are new to

coding and even computer science over a ten-week period. The study evaluated the

208

effects of sociodemographic attributes, educational background, affective and
motivational learner characteristics, attitudes toward programming, and cognitive

load levels of students on their programming learning.

A total of 199 students from three different schools participated in the study, with
one school located in an urban area and the other two in suburban areas. Five research
questions were addressed within the scope of this study. The first research question
examined the changes in different types of cognitive load experienced by students
while learning seven different coding topics (basic sequences, flowcharts, testing and
debugging, loops, nested loops, flowcharts, variables). The second and third research
questions investigated whether there were differences in the research variables based
on students' gender and the geographical location of their schools. The fourth
research question explored the extent to which the research variables explained
changes in students' coding achievement. The final research question aimed to
examine students' perspectives and experiences regarding the programming

instruction process.

The study results indicated that students experienced high cognitive load,
particularly with the concept of nested loops, due to its intrinsic complexity. On the
other hand, it was unexpectedly found that students had difficulty with basic
sequences in the first week. The interview findings revealed that the unplugged
activity during the first week increased the students' intrinsic and extraneous
cognitive load. Another example is the concept of variables. Although the intrinsic
and extraneous loads for this topic were quite low, interviews indicated that students
found the topic abstract and confusing. The examples provided during unplugged
activities did not help in fully understanding this abstract concept. Furthermore,
students reported that they did not fully understand how to use the relevant code
block in a block-based programming environment that they applied to the same topic
on the computer. This also highlights the importance of providing adequate pre-
instructional guidance for self-regulated learning, especially since the sample

consisted of students with no prior knowledge of computer science.

209

Unplugged activities were observed to be less preferred than computer-based
activities, and students expressed less positive attitudes towards them. One of the
reasons for this may be that some of these activities caused an increase in the

cognitive load of the students.

Another factor that contributed to increased cognitive load and negatively affected
the programming learning process was the students' lack of mathematical
knowledge. Students particularly struggled with topics such as angles and the
coordinate plane due to insufficient prior knowledge. Analysis results, consistent
with the literature, also demonstrated that mathematical achievement is a significant

predictor of coding success.

When examining whether gender characteristics developed a difference in the
research variables, it was found that gender did not result in a significant difference
for any of the variables. However, the geographical school location caused
differences in both the affective and motivational variables, academic achievements,
and the cognitive loads experienced by the students, all favoring urban schools.
Students in suburban areas were typically of lower socioeconomic status and had
less exposure to computers, significantly impacting their programming achievements
and other programming-related variables. One unexpected finding was the lack of
difference in attitudes between urban and suburban students. This can be attributed
to several factors: the general fondness for computers among students, the teacher's
efforts to create a positive classroom atmosphere, and the absence of programming
questions in high-stakes exams like the high school entrance exams, students being
exposed to ITS (Information Technology and Software) classes for only two years,

which may contribute to more positive attitudes.

The study identified several variables that predict differences in students'
programming achievement, including mathematics and reading comprehension
performance, extraneous load, attitude, and academic self-handicapping strategies.

The relationship between reading comprehension and programming learning has

210

been increasingly discussed in recent years, with a growing body of evidence

supporting this connection.

In this study, the relationship was not influenced by the fact that programming
languages are typically in English, as students created algorithms using a block-
based application and selected the Turkish language option (their native language)
on the website. This finding underscores the importance of language skills in
understanding problem scenarios effectively, as programming requires an effective

problem-solving approach.

Another significant variable closely related to coding success was extraneous load.
In particular, poorly structured examples can increase extraneous load, especially for
students with no prior experience or lower skills in mathematics and programming,
thereby affecting their performance. Additionally, academic self-handicapping
strategies emerged as an important predictor of coding success. The necessity of pair
programming due to the lack of sufficient computers for each student led to some
students not participating actively in the problem-solving process, as they relied on
their partners. Interviews revealed that students who did not consider themselves
successful often left the entire process to their partners and did not even look at the

computer while their partners were solving the problems.

Given that a significant portion of the lessons involved computer-based activities,
students who did not engage actively in these activities missed out on essential
programming practice. Consequently, it is not surprising that academic self-
handicapping strategies predict programming success. In pair programming, a
student's passivity can also result from the dominance of the other student. This
highlights the importance of carefully selecting pairs for pair programming and
providing adequate guidance on how to engage effectively in this collaborative

approach.

The large class size often limited the assistance teachers could provide during hands-
on programming sessions, necessitating peer learning. While peer learning has

benefits, such as promoting information sharing and supporting collaborative and

211

social learning, it also has drawbacks. For instance, dominant peers can overshadow
others, some students might withdraw without challenging themselves, and peers
might not always have the necessary knowledge or skills to explain concepts
effectively to their peers. These issues sometimes led to students copying solutions
from their peers. Furthermore, game-based learning activities, which were intended
to engage students, also contributed to cheating behaviors. However, these behaviors
were not found to be significant predictors of programming success. Although the
relationship between game-based learning environments and students' performance-
approach goal orientations was noted in interviews, these orientations, like other goal
orientations and perceived classroom goal structures, were not significant predictors

of coding success.

In summary, this study investigated the learning of fundamental programming
concepts by fifth-grade students using a multifaceted approach. The findings
revealed that students' academic backgrounds, specifically in mathematics and
reading comprehension, were the most significant predictors of programming
achievement. The study highlighted the difficulty in teaching concepts such as nested
loops and variables in programming lessons. The importance of extraneous load in
programming learning underscored the significance of instructional design. Among
the affective and motivational factors, attitude and academic self-handicapping

strategies were found to have a significant impact.

5.3 Implications of the Findings

Based on the findings of this study, the following recommendations are proposed for
instructors and policymakers to effectively teach programming to middle school

students who are novices in the subject:

e Introducing foundational skills before teaching coding can create a more
positive and productive learning environment for students with no prior

computer science experience. Initial lessons or activities aimed at

212

strengthening these foundational skills in computer science can help reduce
feelings of frustration and overwhelm common among beginners. This
approach can lead to a more sustained interest in programming, higher
motivation, and a willingness to persevere through difficulties.

Developing and maintaining an inclusive curriculum that highlights the
relevance and application of programming skills to diverse fields is crucial.
The relationship between programming and other fields can enhance
students' learning experiences and outcomes.

Mathematics is a critical foundation for programming success, making it
essential to integrate mathematical considerations into computer science
curricula. Incorporating mathematical principles such as algorithms, logic,
data structures, and problem-solving techniques into programming education
can strengthen students' mathematical skills and reinforce the connection
between programming and mathematics. This approach can lead to improved
learning outcomes and a deeper understanding of both subjects.

Task design should align with students' mathematical readiness levels. It's
important to be aware of students' mathematical backgrounds and provide
additional support for those struggling with concepts like angles and
coordinates, which can impact programming success. This approach ensures
that all students, regardless of their initial proficiency, can engage with and
succeed in programming tasks.

Considering the role of reading comprehension in computer programming
education is essential. Developing these skills helps students to understand
the problem scenario, identify key information, and break down complex
problems into manageable steps. This forms the foundation for writing
efficient and accurate code.

The findings suggest that interventions aiming to improve coding
achievement should focus on reducing extraneous cognitive load. Paying
close attention to activity design and examples can help minimize this load,

especially for beginners. This might involve simplifying initial activities and

213

explanations or providing more scaffolding. Additionally, bridging the gap
between unplugged activities and computer-based coding is crucial.
Revisiting unplugged activities after the related coding concepts are learned
may ensure a clear connection between unplugged activities and the
programming concepts they introduce.

The absence of textbooks limits the resources and materials available to
students for their courses. If students also lack technological resources, they
have no means to practice programming outside of school. Therefore, it is
crucial to provide students with the necessary resources. Sharing these
essential materials ensures that students can continue their learning and
practice programming even outside the classroom, thereby supporting their
educational development and success.

Encouraging collaboration between teachers from different subjects might
help create engaging and effective learning experiences that blend various
concepts. By working together, teachers might develop lessons that integrate
programming with other disciplines, making the learning process more
dynamic and relevant. This interdisciplinary approach might also allow
students to see the practical applications of programming in various fields
and help them understand how knowledge from different areas interconnects,
leading to a deeper and more comprehensive understanding of the material.
Addressing the specific challenges faced by rural and suburban students
highlights the need for a comprehensive approach. This includes improving
educational resources in rural areas, supporting foundational academic skills,
and creating an engaging learning environment that minimizes unnecessary
cognitive load. Such efforts might help ensure that all students, regardless of
their location, have access to high-quality education and opportunities for
success in programming and other subjects.

To optimize pair programming, educators should adopt a structured
approach. This includes strategically pairing students based on skill, learning

style, and personality to create a balanced learning environment. It is

214

important to provide clear guidelines for effective collaboration to prevent
students from becoming passive learners. Monitoring and intervention
strategies like targeted support and potential re-pairing might address
imbalances and ensure all students benefit. Leveraging social learning
dynamics through positive reinforcement, peer evaluation, and group
discussions strengthens collaboration skills, might promote knowledge
sharing, and fosters a deeper learning experience for all students.

To foster positive attitudes towards coding, which might contribute to better
learning outcomes, it is recommended to create an engaging and supportive
learning environment. Integrating real-world applications of coding and
highlighting its relevance across various fields might motivate students and
enhance their interest in learning coding.

While block-based programming environments are valuable for introducing
younger students to coding, they can inadvertently create a competitive
learning atmosphere through game-based elements. Structuring game-based
learning activities around shared goals can help encourage students to work
together towards a common objective. This fosters collaboration,
communication, and problem-solving as a team rather than promoting
individual competition. Such an approach helps to avoid outcomes that
negatively impact students' learning and discourage self-handicapping
behaviors.

This study’s findings showed that resource availability significantly affects
programming education, suggesting that schools need to invest in up-to-date
hardware and software to facilitate effective learning. Ensuring that students
have access to the necessary technological tools is essential for providing a
high-quality computer education and improving overall educational

outcomes.

215

5.4 Recommendations for Further Research

This study investigated the variables associated with middle school students' success
in learning fundamental computer programming concepts. To assess the model's
generalizability, future research should explore its effectiveness in diverse
educational settings, encompassing different schools, districts, or even countries.
Additionally, researchers should employ a variety of programming languages and
platforms to determine if the model applies equally well across diverse coding
environments. The qualitative portion of this research identified other factors
potentially influencing programming success that warrant further investigation.
These include prior experiences with coding or technology, the effectiveness of
paired programming compared to solo programming approaches, and the impact of
technology exposure on learning outcomes. Notably, this study did not examine the
changes in students' motivational factors throughout the educational process.
Experimental studies could be designed to explore these changes and their potential
relationship to programming success. It is also important to incorporate a wider range
of assessment techniques to capture a more comprehensive picture of student
learning. While this study did not directly link motivational variables to
programming success, examining their relationships within the context of
programming instruction for middle school students remains valuable. Furthermore,
research should explore the effectiveness of different interventions in programming
education to specifically address and potentially reduce the achievement gaps
between students from diverse sociodemographic backgrounds. By pursuing these
research avenues, future studies could contribute significantly to a deeper
understanding of the factors that contribute to successful programming learning in
middle school. This knowledge can then be used to develop more effective strategies

for engaging and empowering all students in this critical field.

216

REFERENCES

Abdul-Rahman, S. S., & Du Boulay, B. (2014). Learning programming via worked-
examples: Relation of learning styles to cognitive load. Computers in Human
Behavior, 30(1), 286-298. https://doi.org/10.1016/j.chb.2013.09.007

Abdul Rahman, S. S. (2012). Learning programming via worked-examples: The
effects of cognitive load and learning styles (Publication No. 1442498903.)
[Doctoral dissertation, University of Sussex]. ProQuest Dissertations & Theses
Global.

Abou Naaj, M., & Nachouki, M. (2023). Students’ perception of academic
dishonesty in programming courses. Journal of Further and Higher Education,
47(1), 72-88. https://doi.org/10.1080/0309877X.2022.2093630

Agnello, M. F., Araki, N., & Domenach, F. (2019). Building human infrastructure
through programming and English Education in rural Japan. International
Journal for Talent Development and Creativity, 7(1-2), 91-97.
https://files.eric.ed.gov/fulltext/EJ1297223 .pdf

Akinola, S. O. (2015). Computer programming skill and gender difference: An
empirical study. American Journal of Scientific and Industrial Research, 7(1),
1-6. https://doi.org/10.5251/ajsir.2016.7.1.1.9

Akpomudjere, O. (2020). Effects of School location and teachers’ quality on students
performance in business studies examination in public secondary schools in
Sapele local government area of Delta State. Higher Education Studies, 10(2),
114-121. https://doi.org/10.5539/hes.v10n2p114

Albayrak, E., & Polat, E. (2022). Pair programming experiences of prospective
information technologies teachers. Bartin University Journal of Faculty of
Education, 11(2), 342-354. https://doi.org/10.14686 / 991448

Altun, A., & Kasalak, 1. (2018). Blok temelli programlamaya (kodlama) iliskin 6z-
yeterlik algis1 Olgegi gelistirme c¢alismasi. Egitim Teknolojisi Kuram ve
Uygulama, 8(1), 209-225. https://doi.org/10.17943/etku.335916

217

Ames, C., & Archer, J. (1988). Achievement goals in the classroom: Students’
learning strategies and motivation processes. Journal of Educational
Psychology, 80(3), 260-267. https://doi.org/10.1037//0022-0663.80.3.260

Anderman, E. M., & Midgley, C. (2004). Changes in self-reported academic cheating
across the transition from middle school to high school. Contemporary
Educational Psychology, 29(4), 499-517.
https://doi.org/10.1016/j.cedpsych.2004.02.002

Andrzejewska, M., & Kotoniak, P. (2020). Development of program comprehension
skills by novice programmers — longitudinal eye tracking studies. Informatics
in Education, 19(4), 521-541. https://doi.org/10.15388/infedu.2020.23

Arevalo-Mercado, C. A., Munoz-Andrade, E. L., Cardona-Reyes, H., & Romero-
Juarez, M. G. (2023). Applying cognitive load theory and the split attention
effect to learning data structures. Revista Iberoamericana de Tecnologias Del
Aprendizaje, 18(1), 107—113. https://doi.org/10.1109/RITA.2023.3250580

Asad, K., Tibi, M., & Raiyn, J. (2016). Primary school pupils’ attitudes toward
learning programming through visual interactive environments. World Journal
of Education, 6(5), 20-26. https://doi.org/10.5430/wje.v6n5p20

Askar, P., & Davenport, D. (2009). An investigation of factors related to self-efficacy
for java programming among engineering students. Turkish Online Journal of
Educational Technology, 8(1), 26-32. http://hdl.handle.net/11693/22504

Atkinson, R. K., Derry, S. J., Renkl, A., & Wortham, D. (2000). Learning from
examples: Instructional principles from the worked examples research. Review
of educational research, 70(2), 181-214. hptts://
doi:10.3102/00346543070002181

Ayre, C., & Scally, A. J. (2014). Critical values for Lawshe’s content validity ratio:
Revisiting the original methods of calculation. Measurement and Evaluation in
Counseling and Development, 47(1), 79-86.
https://doi.org/10.1177/0748175613513808

Back, U. D. K. (2016). Rural location and academic success—remarks on research,
contextualisation and methodology. Scandinavian Journal of Educational
Research, 60(4), 435—448. https://doi.org/10.1080/00313831.2015.1024163

218

http://hdl.handle.net/11693/22504

Baist, A., & Pamungkas, A. S. (2017). Analysis of student difficulties in computer
programming. VOLT : Jurnal Illmiah Pendidikan Teknik Elektro, 2(2), 81.
https://doi.org/10.30870/volt.v2i2.2211

Bandura, A. (1977). Self-efficacy: Toward a unifying theory of behavioral change.
Psychological ~ Review, 84(2), 191-215. https://doi.org/10.1037/0033-
295X.84.2.191

Barros, B., Conejo, R., Ruiz-Sepulveda, A., & Triguero-Ruiz, F. (2021). I explain,
you collaborate, he cheats: An empirical study with social network analysis of
study groups in a computer programming subject. Applied Sciences , 11(19), 1-
32. https://doi.org/10.3390/app11199328

Baser, M. (2013). Attitude, gender and achievement in computer programming.
Middle East Journal of Scientific Research, 14(2), 248-255.
https://doi.org/10.5829/idosi.mejsr.2013.14.2.2007

Bau, D., Gray, J., Kelleher, C., Sheldon, J., & Turbak, F. (2017). Learnable
programming: Blocks and beyond. Communications of the ACM, 60(6), 72—80.
https://doi.org/10.1145/3015455

Bennedsen, J., & Caspersen, M. E. (2005). An investigation of potential success
factors for an introductory model-driven programming course. Proceedings of
the Ist International Computing Education Research Workshop, ICER 2005,
155-163. https://doi.org/10.1145/1089786.1089801

Bergey, B. W., Ketelhut, D. J., Liang, S., Natarajan, U., & Karakus, M. (2015).
Scientific inquiry self-efficacy and computer game self-efficacy as predictors
and outcomes of middle school boys’ and girls’ performance in a science
assessment in a virtual environment. Journal of Science Education and

Technology, 24(5), 696—708. https://doi.org/10.1007/s10956-015-9558-4

Bergin, S., & Reilly, R. (2006). Predicting introductory programming performance:
A multi-institutional multivariate study. Computer Science Education, 16(4),
303-323. https://doi.org/10.1080/08993400600997096

Bergman, E. M., De Bruin, A. B. H., Vorstenbosch, M. A. T. M., Kooloos, J. G. M.,
Puts, G. C. W. M., Leppink, J., Scherpbier, A. J. J. A., & Van Der Vleuten, C.
P. M. (2015). Effects of learning content in context on knowledge acquisition

219

and recall: A pretest-posttest control group design. BMC Medical Education,
15(1), 1-12. https://doi.org/10.1186/s12909-015-0416-0

Berssanette, J. H., & De Francisco, A. C. (2022). Cognitive load theory in the context
of teaching and learning computer programming: A systematic literature
review. [EEE Transactions on Education, 65(3), 440-449.
https://doi.org/10.1109/TE.2021.3127215

Beyer, S. (2014). Why are women underrepresented in Computer Science? Gender
differences in stereotypes, self-efficacy, values, and interests and predictors of
future CS course-taking and grades. Computer Science Education, 24(2-3),
153-192. https://doi.org/10.1080/08993408.2014.963363

Beyer, S., Rynes, K., Perrault, J., Hay, K., & Haller, S. (2003). Gender differences
in computer science students. Proceedings of the 34th SIGCSE Technical

Symposium on Computer Science Education, USA, 34(1), 49-53.
https://doi.org/10.1145/611892.611930

Blanco, J., Losano, L., Aguirre, N., Novaira, M. M., Permigiani, S., & Scilingo, G.
(2009). An introductory course on programming based on formal specification
and program calculation. SIGCSE Bulletin Inroads, 41(2), 31-37.
https://doi.org/10.1145/1595453.1595459

Bliss, T. V. P., & Collingridge, G. L. (1993). A synaptic model of memory: Long-
term potentiation in the hippocampus. Nature, 361(6407), 31-39.
https://doi.org/10.1038/361031a0

Bonilla-Mejia, L., & Londofio-Ortega, E. (2021). Geographic isolation and learning
in rural schools (BDE Publication No. 1169). Borradores de Economia.
https://repositorio.banrep.gov.co/server/api/core/bitstreams/0a9e6cc6-89b0-
4d3b-a255-03db6556b42f/content

Bouck, E. C. (2005). Service delivery and instructional programming in rural,
suburban, and urban secondary special education: An exploratory study. Rural
Special Education Quarterly, 24(4), 18-25.
https://doi.org/10.1177/875687050502400404

Bounajim, D., Rachmatullah, A., Hinckle, M., Mott, B., Lester, J., Smith, A.,
Emerson, A., Fahid, F. M., Tian, X., Wiggins, J. B., Boyer, K. E., & Wiebe, E.

220

(2021). Applying cognitive load theory to examine STEM undergraduate
students’ experiences in an adaptive learning environment: A mixed-methods
study. Proceedings of the Human Factors and Ergonomics Society, 65(1), 556—
560. https://doi.org/10.1177/1071181321651249

Bowman, N. A., Jarratt, L., Culver, K. C., & Segre, A. M. (2019). How prior
programming experience affects students’ pair programming experiences and
outcomes. Proceedings of the ACM Conference on Innovation and Technology
in Computer Science Education, ITiCSE, UK, 24(1), 170-175.
https://doi.org/10.1145/3304221.3319781

Bozal, M., & Sendurur, P. (2024). The effect of introductory programming education
on computational thinking. Instructional Technnology and Lifelong Learning,
5(1), 21-46. https://doi.org/10.52911/itall.1394556

Brannon, M., & Novak, E. (2019). Coding success through math intervention in an
elementary school in rural Amish Country. Journal of Computer Science
Integration, 2(2). https://doi.org/10.26716/jcs1.2019.02.2.1

Bruckman, A., Jensen, C., & Debonte, A. (2002). Gender and programming
achievement in a CSCL environment. Proceedings of the Conference on
Computer Support for Collaborative Learning: Foundations for a CSCL
Community, USA, 4(1), 119-127.
https://dl.acm.org/doi/10.5555/1658616.1658634

Bubnic, B., Mernik, M., & Kosar, T. (2024). Exploring the predictive potential of
complex problem-solving in computing education: A case study in the

introductory ~ programming course. Mathematics, 12(11), 1-27.
https://doi.org/10.3390/math12111655

Bucks, G., & Oakes, W. C. (2011). Phenomenography as a tool for investigating
understanding of computing concepts. Proceedings of ASEE Annual
Conference and Exposition, Texas, 3(1), 1-22. https://doi.org/10.18260/1-2--
18485

Cakiroglu, U., Suigmez, S. S., Kurtoglu, Y. B., Sari, A., Yildiz, S., & Oztiirk, M.
(2018). Exploring perceived cognitive load in learning programming via
scratch. Research in Learning Technology, 26(1), 1-20.
https://doi.org/10.25304/rlt.v26.1888

221

https://doi.org/10.52911/itall.1394556

Calder, N. (2010). Using Scratch: An integrated problem-solving approach to
mathematical thinking. Australian Primary Mathematics Classroom, 15(4), 9—
14. https://files.eric.ed.gov/fulltext/EJ906680.pdf

Caspersen, M. E., & Bennedsen, J. (2007). Instructional design of a programming
course — A learning theoretic approach. Proceedings of the 3™ International
Workshop on Computing Education Research, USA, 3(1), 111-122.
https://doi.org/10.1145/1288580.1288595

Cesur Ozkara, E., & Yanpar Yelken, T. (2020). Ortadgretim dgrencilerine yonelik
programlama 6z yeterlik Olgeginin gelistirilmesi: Gegerlik ve giivenirlik
calismasi. Egitim Teknolojisi Kuram ve Uygulama, 10(2), 345-365.
https://doi.org/10.17943/etku.632606

Chand, D., & Mohan, P. (2019). Impact of school locality on teaching and learning:
A qualitative inquiry. Waikato Journal of Education, 24(2), 65-72.
https://doi.org/10.15663/wje.v24i2.672

Chandler, P., & Sweller, J. (1994). Why some material is difficult to learn. Cognition
and Instruction,12,(3)185-233. https://doi.org/10.1207/s1532690xci1203 1

Chandler, P., & Sweller, J. (1996). Cognitive load while learning to use a computer
program. Applied Cognitive Psychology, 10(2), 151-170.
https://doi.org/10.1002/(SICI)1099-0720(199604)10:2<151::AID-
ACP380>3.0.CO;2-U

Chase, W. G., & Simon, H. A. (1973). Perception in chess. Cognitive Psychology,
4(1), 55-81. https://doi.org/10.1016/0010-0285(73)90004-2

Cheryan, S., Master, A., & Meltzoff, A. N. (2015). Cultural stereotypes as
gatekeepers: Increasing girls’ interest in computer science and engineering by
diversifying stereotypes. Fronmtiers in Psychology, 6(1), 1-8.
https://doi.org/10.3389/fpsyg.2015.00049

Chi, M. T. H., Glaser, R., & Rees, E. (1982). Expertise in problem solving. In R.J.
Sternberg (Ed.), Advances in the Psychology of Human Intelligence (Vol. 1, pp.
7-75). Erlbaum

Ching, Y. H., Yang, D., Wang, S., Baek, Y., Swanson, S., & Chittoori, B. (2019).

222

https://doi.org/10.1145/1288580.1288595
https://doi.org/10.17943/etku.632606

Elementary school student development of STEM attitudes and perceived
learning in a STEM integrated robotics curriculum. TechTrends, 63(5), 590—
601. https://doi.org/10.1007/s11528-019-00388-0

Code.org. (2022). Code.org 2022 Annual Report. https://code.org/about/2022

Code.org. (2024). About us. https://code.org/about

Cohen, L., Manion, L., & Morrison, K. (2017). Research Methods in Education.
Routledge. https://doi.org/10.4324/9781315456539

Coleman, S. A., & Nichols, E. (2011). Embedding inquiry based learning into
programming via paired assessment. [TALICS Innovations in Teaching and
Learning in Information and Computer Sciences, 10(1), 72-77.
https://doi.org/10.11120/ital.2011.10010072

Cooper, G. (1998). Research into cognitive load theory and instructional design at
UNSW. Cognitive Load Theory and Instructional Design at UNSW.
http://penta2.ufrgs.br/edu/edu3375/CLT NET Aug 97.HTML

Corbin, J., & Strauss, A. (2012). Basics of qualitative research: Techniques and
procedures for developing grounded theory (4th ed.). SAGE.

Cowan, N. (2014). Working memory underpins cognitive development, learning,
and education. Educational Psychology Review, 26(2), 197-223.
https://doi.org/10.1007/s10648-013-9246-y

Cresswell, J., & Underwood, C. (2004). Location, location, location: Implications of
geographic situation on Australian student performance in PISA 2000 (ACER
Research Monograph Publication No.58).
https://research.acer.edu.au/acer monographs/2

Creswell, J. W. (2007). Qualitative Inquiry and Research Design. SAGE

Creswell, J. W. (2012). Educational research; planning, conducting, and evaluating
quantitative and qualitative research (4th ed.). Pearson Education.

223

Creswell, J. W. (2015). Educational research: Planning, conducting, and evaluating
quantitative and qualitative research (5th ed.). Pearson Education.

Creswell, J. W., & Miller, D. L. (2000). Determining validity in qualitative inquiry.
Theory Into Practice, 39(3), 124-130.
https://doi.org/10.1207/s15430421tip3903 2

Dale, N. B. (2006). Most difficult topics in CS1. ACM SIGCSE Bulletin, 38(2), 49—
53. https://doi.org/10.1145/1138403.1138432

De Groot, A. D. (1978). Thought and Choice in Chess (2nd ed.). Walter De Gruyter

de Vink, I. C., Tolboom, J. L. J., & van Beekum, O. (2023). Exploring the effects of
near-peer teaching in ro-botics education: The role of STEM attitudes.
Informatics in Education, 22(2), 329-350.
https://doi.org/10.15388/infedu.2023.10

Deniz, T., & Korucu, A. T. (2023). The effect of coding education designed with
different visual programs on academic success and attitudes and self-

efficiencies of secondary school students. Journal of Teacher Education and
Lifelong Learning, 5(1), 307-323. https://doi.org/10.51535/tell.1279547

Denzin, N. K. (2012). Triangulation 2.0*. Journal of Mixed Methods Research, 6(2),
80-88. https://doi.org/10.1177/1558689812437186

Doubé, W., & Lang, C. (2012). Gender and stereotypes in motivation to study
computer programming for careers in multimedia. Computer Science
Education, 22(1), 63—78. https://doi.org/10.1080/08993408.2012.666038

Duran, R., Zavgorodniaia, A., & Sorva, J. (2022). Cognitive Load theory in
computing education research: A review. ACM Transactions on Computing
Education, 22(4), 1-27. https://doi.org/10.1145/3483843

Dweek, C. S. (1986). Dweck (1986). Motivational processes affecting
learning. American Psychologist, 41(10), 1040—
1048. https://doi.org/10.1037/0003-066X.41.10.1040

Elliot, A. J., & McGregor, H. A. (2001). A 2 x 2 achievement goal framework.

224

https://psycnet.apa.org/doi/10.1037/0003-066X.41.10.1040

Journal of Personality and Social Psychology, 80(3), 501-519.
https://doi.org/10.1037/0022-3514.80.3.501

Elliot, A. J., Murayama, K., & Pekrun, R. (2011). A 3 x 2 achievement goal model.
Journal of Educational Psychology, 103(3), 632-648.
https://doi.org/10.1037/a0023952

Elliott, E. S., & Dweck, C. S. (1988). Goals: An approach to motivation and
achievement. Journal of Personality and Social Psychology, 54(1).
https://doi.org/10.1037/0022-3514.54.1.5

Erdem, E. (2018). Blok tabanli ortamlarda programlama 6gretimi siirecinde farkl
ogretim stratejilerinin ¢esitli degiskenler acisindan incelenmesi. [Master
Thesis, Baskent Universitesi]. BU Repository.
http://acikerisim.baskent.edu.tr:8080/handle/11727/2903

Erdogan, Y., Aydin, E., & Kabaca, T. (2008). Exploring the psychological predictors
of programming achievement. Journal of Instructional Psychology, 35, 264—
271. http://imo.pau.edu.tr/tolga/predictor programming.pdf

Erten, I. H. (2015). Validating Myself-As-A-Learner Scale (MALS) in the Turkish
Context. Novitas-ROYAL (Research on Youth and Language), 9(1), 46-59.
https://files.eric.ed.gov/fulltext/EJ1167210.pdf

Field, A., Miles, J., & Field, Z. (2016). Discovering statistics using R. SAGE
Field, A. (2005). Discovering Statistics Using SPSS (3" ed.). SAGE.

Fluck, A., Webb, M., Cox, M., Angeli, C., Malyn-Smith, J., Voogt, J., & Zagami, J.
(2016). Arguing for computer science in the school curriculum. Educational
Technology & Society, 19(3), 38-46.
https://www.jstor.org/stable/jeductechsoci.19.3.38

Fraenkel, J. R., Wallen, N. E., & Hyun, H. H. (2012). How to design and evaluate
research in education (8th ed.). McGraw-Hill.

Fredericks, S., ElSayed, M., Hammad, M., Abumiddain, O., Istwani, L., Rabeea, A.,
Rashid-Doubell, F., & Bella, A. M. E. (2021). Anxiety is associated with

225

extraneous cognitive load during teaching using high-fidelity clinical
simulation. Medical Education Online, 26(1), 1-8.
https://doi.org/10.1080/10872981.2021.1994691

Gaddy, V., & Ortega, F. R. (2022). Exploring factors associated with retention in
computer science using virtual reality. Proceedings of the Conference on
Virtual Reality and 3D User Interfaces Abstracts and Workshops, VRW, New
Zealand, 27(1), 271-276. https://doi.org/10.1109/VRW55335.2022.00062

Garner, S. (2002). Reducing the cognitive load on novice programmers. In P. Barker
& S. Rebelsky (Eds.), Proceedings of World Conference on Educational
Multimedia, Hypermedia & Telecommunications (pp. 578-583). Denver,
Colorado, USA: Association for the Advancement of Computing in Education
(AACE). https://www.learntechlib.org/p/10329.

Geary, D. C. (2008). An evolutionarily informed education science. Educational
Psychologist, 43(4), 179-195. https://doi.org/10.1080/00461520802392133

Geisinger, K. F. (1994). Cross-cultural normative assessment: Translation and
adaptation issues influencing the normative interpretation of assessment
instruments. Psychological Assessment, 6(4), 304-312.
https://doi.org/10.1037/1040-3590.6.4.304

Gerson, S. A., Morey, R. D., & van Schaik, J. E. (2022). Coding in the cot? Factors
influencing 0-17s’ experiences with technology and coding in the United
Kingdom. Computers and Education, 178(1), 1-16.
https://doi.org/10.1016/j.compedu.2021.104400

Gilhooly, K. J., & Green, A. J. K. (1988). The use of memory by experts and novices.
Advances in Psychology, 55(1), 379-395. https://doi.org/10.1016/S0166-
4115(08)60635-4

Gomes, A., Ke, W., Lam, C. T., Teixeira, A. R., Correia, F. B., Marcelino, M. J., &
Mendes, A. J. (2019). Understanding loops: a visual methodology.
International Conference on Engineering, Technology and Education, China,
3(1), 1-7. https:// doi.org/10.1109/TALE48000.2019.9225951

Grandell, L., Peltoméki, M., Back, R. J., & Salakoski, T. (2006). Why complicate
things? Introducing programming in high school using Python. Proceedings of

226

https://www.learntechlib.org/p/10329
https://doi.org/10.1109/TALE48000.2019.9225951

the 8" Australasian Conference on Computing Education, Australia, 52(1), 71—
80. https://dl.acm.org/doi/pdf/10.5555/1151869.1151880

Gray, S., Clair, C. S., James, R., Park, W., & Mead, J. (2007). Suggestions for
graduated exposure to programming concepts using fading worked examples.
Proceedings of the 3™ International Workshop on Computing Education
Research, USA, 3(1), 99-110. https://doi.org/10.1145/1288580.1288594

Greenberg, K., & Zheng, R. (2023). Revisiting the debate on germane cognitive load
versus germane resources. Journal of Cognitive Psychology, 35(3), 295-314.
https://doi.org/10.1080/20445911.2022.2159416

Greifenstein, L., GraB3l, I., & Fraser, G. (2021). Challenging but full of opportunities:
Teachers’ perspectives on programming in primary schools. ACM International
Conference Proceeding Series, Finland, 21(1), 1-10.
https://doi.org/10.1145/3488042.3488048

Grover, S. (2020). Designing an assessment for introductory programming concepts
in middle school computer science. Annual Conference on Innovation and
Technology in Computer Science Education, ITiCSE, 20(1) 678-684.
https://doi.org/10.1145/3328778.3366896

Grover, S., & Basu, S. (2017). Measuring student learning in introductory block-
based programming: Examining misconceptions of loops, variables, and
Boolean logic. Proceedings of the Conference on Integrating Technology into
Computer Science Education, ITiCSE, 267-272.
https://doi.org/10.1145/3017680.3017723

Grover, S., & Pea, R. (2013). Computational thinking in K-12: A review of the state
of the field. Educational Researcher, 42(1), 38-43.
https://doi.org/10.3102/0013189X12463051

Grover, S., Pea, R., & Cooper, S. (2015). Designing for deeper learning in a blended
computer science course for middle school students. Computer Science
Education, 25(2), 199-237. https://doi.org/10.1080/08993408.2015.1033142

Grover, S., Pea, R., & Cooper, S. (2016). Factors influencing computer science
learning in middle school. Proceedings of the 47th ACM Technical Symposium
on Computing Science Education, USA, 47(1), 552-557.

227

https://doi.org/10.1145/1288580.1288594

https://doi.org/10.1145/2839509.2844564

Guenaga, M., Eguiluz, A., Garaizar, P., & Gibaja, J. (2021). How do students
develop computational thinking? Assessing early programmers in a maze-based
online game. Computer Science Education, 31(2), 259-2809.
https://doi.org/10.1080/08993408.2021.1903248

Gunbatar, M. S., & Karalar, H. (2018). Gender differences in middle school students’
attitudes and self-efficacy perceptions towards MBlock programming.
European Journal of Educational Research, 7(4), 925-933.
https://doi.org/10.12973/eu-jer.7.4.923

Guo, M., & Hu, X. (2022). Relationship of classroom goal structures to Chinese
Miao and Han students’ goal orientations and mathematics achievement. Asia-
Pacific Education Researcher, 31(4), 345-355. https://doi.org/10.1007/s40299-
021-00576-8

Guzdial, M., Ericson, B., McKlin, T., & Engelman, S. (2014). Georgia computes!
An intervention in a US state, with formal and informal education in a policy
context. ACM Transactions on Computing Education, 14(2), 1-29.
https://doi.org/10.1145/2602488

Haden, P., Gasson, J., Wood, K., & Parsons, D. (2016). Can you learn to teach
programming in two days? ACM International Conference Proceeding Series,
1(1), 1-7. https://doi.org/10.1145/2843043.2843063

Hadie, S. N. H., & Yusoff, M. S. B. (2016). Assessing the validity of the cognitive
load scale in a problem-based learning setting. Journal of Taibah University
Medical Sciences, 11(3), 194-202.
https://doi.org/10.1016/j.jtumed.2016.04.001

Hanushek, E. A., & Woessmann, L. (2012). Do better schools lead to more growth?
Cognitive skills, economic outcomes, and causation. Journal of Economic
Growth, 17(4), 267-321. https://doi.org/10.1007/s10887-012-9081-x

Harms, K. J. (2013). Applying cognitive load theory to generate effective
programming tutorials. Proceedings of IEEE Symposium on Visual Languages
and Human-Centric ~ Computing, VL/HCC, USA, 1(1), 179-180.
https://doi.org/10.1109/VLHCC.2013.6645274

228

Harms, K. J., Chen, J., & Kelleher, C. (2016). Distractors in parsons problems
decrease learning efficiency for young novice programmers. /CER 2016 -

Proceedings of the 2016 ACM Conference on International Computing
Education Research, 241-250. https://doi.org/10.1145/2960310.2960314

Hawi, N. (2010). Causal attributions of success and failure made by undergraduate
students in an introductory-level computer programming course. Computers
and Education, 54(4), 1127-1136.
https://doi.org/10.1016/j.compedu.2009.10.020

Hazley, M. P., Shell, D. F., Soh, L. K., Miller, L. D., Chiriacescu, V., & Ingraham,
E. (2015). Changes in student goal orientation across the semester in

undergraduate computer science courses. Proceedings - Frontiers in Education
Conference, FIE, USA, 1(1), 1-7. https://doi.org/10.1109/FIE.2014.7044366

Hellas, A., Leinonen, J., & Thantola, P. (2017). Plagiarism in take-home exams:
Help-seeking, collaboration, and systematic cheating. Annual Conference on
Innovation and Technology in Computer Science Education, ITiCSE, Italy,
22(1), 238-243. https://doi.org/10.1145/3059009.3059065

Hinckle, M., Rachmatullah, A., Mott, B., Boyer, K. E., Lester, J., & Wiebe, E.
(2020). The relationship of gender, experiential, and psychological factors to
achievement in computer science. Annual Conference on Innovation and
Technology in Computer Science Education, ITiCSE, Norway, 25(1), 225-231.
https://doi.org/10.1145/3341525.3387403

Holland, S., Griffiths, R., & Woodman, M. (1997). Avoiding object misconceptions.
Proceedings of the 28" SIGCSE Technical Symposium on Computer Science
Education, USA, 29(1). 131-134. https://doi.org/10.1145/268084.268132

Hsu, J. M., Chang, T. W., & Yu, P. T. (2012). Learning effectiveness and cognitive
loads in instructional materials of programming language on single and dual
screens. Turkish Online Journal of Educational Technology, 11(2), 156—166.
https://files.eric.ed.gov/fulltext/EJ989024.pdf

Hu, X., Gong, Y., Lai, C., & Leung, F. K. S. (2018). The relationship between ICT
and student literacy in mathematics, reading, and science across 44 countries:

A multilevel analysis. Computers and Education, 125(1), 1-13.
https://doi.org/10.1016/j.compedu.2018.05.021

229

Hulleman, C. S., Schrager, S. M., Bodmann, S. M., & Harackiewicz, J. M. (2010).
A Meta-analytic review of achievement goal measures: Different labels for the

same constructs or different constructs with similar labels? Psychological
Bulletin, 136(3), 422—449. https://doi.org/10.1037/a0018947

Ibanez, M. B., Di-Serio, A., & Delgado-Kloos, C. (2014). Gamification for engaging
computer science students in learning activities: A case study. [EEE

Transactions on Learning Technologies, 7(3), 291-301.
https://doi.org/10.1109/TLT.2014.2329293

Ishida, T., & Uwano, H. (2019). Synchronized analysis of eye movement and EEG
during program comprehension. Proceedings of International Workshop on Eye
Movements in Programming, USA, 6(1), 26-32.
https://doi.org/10.1109/EMIP.2019.00012

Ishida, T., Uwano, H., & Ikutani, Y. (2020). Combining biometric data with focused
document types classifies a success of program comprehension. /EEE

International Conference on Program Comprehension, South Korea, 28(1),
366-370. https://doi.org/10.1145/3387904.3389291

Hair, J.F., Hult, G.T.M., Ringle, C.M., Sarstedt, M.(2021). 4 primer on partial least
squares structural equation modeling (PLS-SEM) (3rd ed.).SAGE

Kalyuga, S. (2011). Cognitive load theory: How many types of load does it really
need? Educational Psychology Review, 23(1), 1-19.
https://doi.org/10.1007/s10648-010-9150-7

Kanaparan, G., Cullen, R., & Mason, D. (2017). Effect of self-efficacy and emotional
engagement on introductory programming students. Australasian Journal of
Information Systems, 23(1), 1-21. https://doi.org/10.3127/ajis.v23i0.1825

Kandel, E. R., Dudai, Y., & Mayford, M. R. (2014). The molecular and systems
biology of memory. Cell, 157(1), 163-186.
https://doi.org/10.1016/j.cell.2014.03.001

Karalar, H. (2023). Adaptation of computer programming self-efficacy scale for
computer literacy education into Turkish for middle school students.
International Technology and Education Journal, 7(2), 51-59.
http://itejournal.com/

230

Karaman, U., & Biiyilikalan Filiz, S. (2019). Kodlama egitimine yonelik tutum
dlceginin (KEYTO) gelistirilmesi. Gelecek Vizyonlar Dergisi, 3(2), 36—47.
https://doi.org/10.29345/futvis.80

Kelleher, C., & Pausch, R. (2005). Lowering the barriers to programming: A
taxonomy of programming environments and languages for novice
programmers. ACM Computing Surveys, 37(2), 83-137.
https://doi.org/10.1145/1089733.1089734

Ketenci, T., Calandra, B., Margulieux, L., & Cohen, J. (2019). The relationship
between learner characteristics and student outcomes in a middle school
computing course: An exploratory analysis using structural equation modeling.
Journal of Research on Technology in Education, 5I1(1), 63-76.
https://doi.org/10.1080/15391523.2018.1553024

Kim, Y., Lee, K. & Park, H. (2022). Watcher : Cloud-based coding activity tracker
for fair evaluation of programming assignments. Sensors, 22(19)1-18.
https://doi.org/10.3390/s22197284

Kinnunen, P., & Simon, B. (2011). CS majors’ self-efficacy perceptions in CS1:
Results in light of social cognitive theory. Proceedings of the International
Computing Education Research, US4, 7(1), 19-26.
https://doi.org/10.1145/2016911.2016917

Kittur, J. (2020). Measuring the programming self-efficacy of electrical and
electronics engineering students. I[EEE Transactions on Education, 63(3), 216—
223. https://doi.org/10.1109/TE.2020.2975342

Kohn, T. (2017). Variable evaluation: An exploration of novice programmers’
understanding and common misconceptions. Proceedings of the Conference on
Integrating Technology into Computer Science Education, ITiCSE, Italy, 22(1),
345-350. https://doi.org/10.1145/3017680.3017724

Kong, S. C., Chiu, M. M., & Lai, M. (2018). A study of primary school students’
interest, collaboration attitude, and programming empowerment in

computational thinking education. Computers and Education, 127(3), 178—189.
https://doi.org/10.1016/j.compedu.2018.08.026

Koray, A., & Bilgin, E. (2023). The effect of block coding (Scratch) activities

231

https://doi.org/10.1145/1089733.1089734
https://doi.org/10.3390/s22197284

integrated into the S5E Learning Model in science teaching on students’
computational thinking skills and programming self-efficacy. Science Insights
Education Frontiers, 18(1), 2825-2845. https://doi.org/10.15354/sief.23.0r410

Korkmaz, O., & Altun, H. (2014). Adapting computer programming self-efficacy
scale and engineering students’ self-efficacy perceptions. Participatory
Educational Research, 1(1),20-31. https://doi.org/10.17275/per.14.02.1.1

Kovari, A., & Katona, J. (2023). Effect of software development course on
programming self-efficacy. Education and Information Technologies, 28(9),
10937-10963. https://doi.org/10.1007/s10639-023-11617-8

Krieglstein, F., Beege, M., Rey, G. D., Ginns, P., Krell, M., & Schneider, S. (2022).
A systematic meta-analysis of the reliability and validity of subjective cognitive
load questionnaires in experimental multimedia learning research. Educational
Psychology Review, 34(4), 2485-2541. https://doi.org/10.1007/s10648-022-
09683-4

Kukul, V., Gokgearslan, S., & Giinbatar, M. S. (2017). Computer Programming Self-
Efficacy Scale (CPSES) for secondary school students: Development,
validation and reability. Egitim Teknolojisi Kuram Ve Uygulama, 7(1), 158—
179. https://doi.org/10.17943/etku.288493

Kurasaki, K. S. (2000). Intercoder reliability for validating conclusions drawn from
open-ended interview data. Field Methods, 12(3), 179-194.
https://doi.org/10.1177/1525822X0001200301

Lambi¢, D., Pori¢, B., & Ivaki¢, S. (2021). Investigating the effect of the use of
code.org on younger elementary school students’ attitudes towards
programming. Behaviour and Information Technology, 40(16), 1784—-1795.
https://doi.org/10.1080/0144929X.2020.1781931

Lawshe, C. H. (1975). A quantitative approach to content validity. Personnel
Psychology, 28(4), 563-575. https://doi.org/10.1111/j.1744-
6570.1975.tb01393.x

Leondari, A., & Gonida, E. (2007). Predicting academic self-handicapping in
different age groups: The role of personal achievement goals and social goals.
British ~ Journal of Educational Psychology, 77(3), 595-611.

232

https://doi.org/10.17943/etku.288493

https://doi.org/10.1348/000709906X 128396

Leppink, J., Paas, F., Van der Vleuten, C. P. M., Van Gog, T., & Van Merriénboer,
J. J. G. (2013). Development of an instrument for measuring different types of
cognitive load. Behavior Research Methods, 45(4), 1058-1072.
https://doi.org/10.3758/s13428-013-0334-1

Leppink, J., & van den Heuvel, A. (2015). The evolution of cognitive load theory
and its application to medical education. Perspectives on Medical Education,
4(3), 119-127. https://doi.org/10.1007/s40037-015-0192-x

Liem, A. D., Lau, S., & Nie, Y. (2008). The role of self-efficacy, task value, and
achievement goals in predicting learning strategies, task disengagement, peer
relationship, and achievement outcome. Contemporary Educational
Psychology, 33(4), 486—512. https://doi.org/10.1016/j.cedpsych.2007.08.001

Lim, S. (2019). Implementing Social Learning for More Equitable Collaboration in
Introductory ~ Computer Science Education (Publication No.
0058F11657) [Doctoral dissertation, Cornell University]. Cornell Theses and
Dissertations. https://doi.org/10.7298/hjfz-t152

Lishinski, A., Yadav, A., Good, J., & Enbody, R. (2016). Learning to program:
Gender differences and interactive effects of students’ motivation, goals, and
self-efficacy on performance. ICER 2016 - Proceedings of the 2016 ACM
Conference on International Computing Education Research, Australia, 12(1),
211-220. https://doi.org/10.1145/2960310.2960329

Lister, R., Fone, W., McCartney, R., Seppild, O., Adams, E. S., Hamer, J., Mostrom,
J. E., Simon, B., Fitzgerald, S., Lindholm, M., Sanders, K., & Thomas, L.
(2004). A multi-national study of reading and tracing skills in novice
programmers. SIGCSE Bulletin, 4(1), 119-150.
https://doi.org/10.1145/1041624.1041673

Looker, N. (2021). A pedagogical framework for teaching computer programming:
A social constructivist and cognitive load theory approach. ICER 2021 -
Proceedings of the 17th ACM Conference on International Computing
Education Research, USA, 17(1), 415-416.
https://doi.org/10.1145/3446871.3469778

233

https://doi.org/10.7298/hjfz-t152

Lopez, M., Whalley, J., Robbins, P., & Lister, R. (2008). Relationships between
reading, tracing and writing skills in introductory programming. ICER’0S -
Proceedings of the ACM Workshop on International Computing Education
Research, Australia, 1(1), 101-111. https://doi.org/10.1145/1404520.1404531

Love, T. S. (2023). Examining middle school students’ attitudes toward computing
after participating in a physical computing unit. Interactive Learning
Environments, 31(1), 1-20. https://doi.org/10.1080/10494820.2023.2194326

Luxton-Reilly, A. (2016). Learning to program is easy. Annual Conference on
Innovation and Technology in Computer Science Education, Peru, 21(1), 284—
289. https://doi.org/10.1145/2899415.2899432

Luxton-Reilly, A., Simon, Albluwi, 1., Becker, B. A., Giannakos, M., Kumar, A. N.,
Ott, L., Paterson, J., Scott, M. J., Sheard, J., & Szabo, C. (2018). Introductory
programming: A systematic literature review. Annual Conference on
Innovation and Technology in Computer Science Education, Cyprus, 23(1), 55-
106. https://doi.org/10.1145/3293881.3295779

Ma, N., Qian, J., Gong, K., & Lu, Y. (2023). Promoting programming education of
novice programmers in elementary schools: A contrasting cases approach for
learning programming. Education and Information Technologies, 28(7), 9211-
9234. https://doi.org/10.1007/s10639-022-11565-9

Marks, G. N., Cresswell, J., & Ainley, J. (2006). Explaining socioeconomic
inequalities in student achievement: The role of home and school factors.
Educational Research and Evaluation, 12(2), 105-128.
https://doi.org/10.1080/13803610600587040

Mason, R., & Cooper, G. (2013). Mindstorms robots and the application of cognitive
load theory in introductory programming. Computer Science Education, 23(4),
296-314. https://doi.org/10.1080/08993408.2013.847152

Master, A., Cheryan, S., & Meltzoff, A. N. (2016). Computing whether she belongs:
Stereotypes undermine girls’ interest and sense of belonging in computer
science. Journal of Educational Psychology, 108(3), 424-437.
https://doi.org/10.1037/edu0000061

Mathews, D. K. (2017). Predictors of success in learning computer programming

234

(Publication No. 10266241) [Doctoral dissertation, University of Rhode
Island]. ProQuest Dissertations & Theses Global.
https://www.proquest.com/openview/4939e3c¢51db03598b9d99a0dc3e3e361/1
7pg-origsite=gscholar&cbl=18750

Meece, J. L., Anderman, E. M., & Anderman, L. H. (2006). Classroom goal
structure, student motivation, and academic achievement. Annual Review of
Psychology, 57(1), 487-503.
https://doi.org/10.1146/annurev.psych.56.091103.070258

Meerbaum-Salant, O., Armoni, M., & Ben-Ari, M. (Moti). (2013). Learning
computer science concepts with Scratch. Computer Science Education, 23(3),
239-264. https://doi.org/10.1080/08993408.2013.832022

Menard, S. (2010). Applied logistic regression analysis (2nd ed.) Sage

Merriam, S. B. (2009). Qualitative research: A guide to design and implementation.
John Wiley & Sons. https://doi.org/10.1097/NCI.0b013e3181edd9b1

Metin, S., Basaran, M., & Kalyenci, D. (2023). Examining coding skills of five-year-
old children. Pedagogical Research, 8(2), 1-13.
https://doi.org/10.29333/pr/12802

Midgley, C., Kaplan, A., & Middleton, M. (2001). Performance-approach goals:
Good for what, for whom, under what circumstances, and at what cost? Journal
of Educational Psychology, 93(1), 77-86. https://doi.org/10.1037/0022-
0663.93.1.77

Midgley, C., & Urdan, T. (2001). Academic self-handicapping and achievement
goals: A further examination. Contemporary Educational Psychology, 26(1),
61-75. https://doi.org/10.1006/ceps.2000.1041

Miles, M. B., & Huberman, A. M. (1994). Qualitative Data Analysis Second Edition:
Expanded Sourcebook. Sage.

Miller, G. A. (1956). The magical number seven, plus or minus two: some limits on
our capacity for processing information. Psychological Review, 63(2), 81-97.
https://doi.org/10.1037/h0043158

235

Mohamad Gobil, A. R., Shukor, Z., & Mohtar, 1. A. (2009). Novice difficulties in
selection structure. Proceedings of the 2009 International Conference on
Electrical Engineering and Informatics, Malaysia, 2(1), 351-356.
https://doi.org/10.1109/ICEEL.2009.5254715

Morrison, B. B., Dorn, B., & Guzdial, M. (2014). Measuring cognitive load in
introductory CS: Adaptation of an instrument. /CER 2014 - Proceedings of the

10th Annual International Conference on International Computing Education
Research, UK, 10(1), 131-138. https://doi.org/10.1145/2632320.2632348

Muldner, K., Jennings, J., & Chiarelli, V. (2022). A Review of Worked Examples in
Programming Activities. ACM Transactions on Computing Education, 23(1),
1-35. https://doi.org/10.1145/3560266

Munzel, U., & Brunner, E. (2000). Nonparametric tests in the unbalanced
multivariate one-way design. Biometrical Journal, 42(7), 837-854.
https://doi.org/10.1002/1521-4036(200011)42:7<837::AID-
BIMJ837>3.0.CO;2-S

Myers, B. A. (1986). Visual programming, programming by example, and program
visualization: a taxonomy. ACM SIGCHI Bulletin, 17(4), 59-66.
https://doi.org/10.1145/22339.22349

Nainan, M., & Balakrishnan, B. (2019). Design and Evaluation of Worked Examples
for Teaching and Learning Introductory Programming at Tertiary Level.
Malaysian Online Journal of Educational Technology, 7(4), 30-44.
https://doi.org/10.17220/mojet.2019.04.003

Nasution, S., Asmin, A., & Lubis, A. (2022). Analysis of mathematical problem
solving ability through application of think aloud pair problem solving learning
model in State Junior High School Al Manar. Proceedings of the 7th Annual
International Seminar on Transformative Education and Educational
Leadership, Indonesia, 7(1), 408-418. https://doi.org/10.4108/eai.20-9-
2022.2324713

Newstead, S. E., Franklyn-Stokes, A., & Armstead, P. (1996). Individual differences
in student cheating. Journal of Educational Psychology, 88(2), 229-241.
https://doi.org/10.1037/0022-0663.88.2.229

236

Newton, S., Alemdar, M., Rutstein, D., Edwards, D., Helms, M., Hernandez, D., &
Usselman, M. (2021). Utilizing evidence-centered design to develop

assessments: A high school introductory computer science course. Frontiers in
Education, 6(1), 1-19. https://doi.org/10.3389/feduc.2021.695376

Nicholls, J. G. (1984). Achievement motivation: Conceptions of ability, subjective
experience, task choice, and performance. Psychological Review, 91(3), 328—
346. https://doi.org/10.1037/0033-295X.91.3.328

Nicholls, J. G. (1989). The competitive ethos and democratic education. Harvard
University Press

O’Connor, C., & Joffe, H. (2020). Intercoder Reliability in Qualitative Research:
Debates and Practical Guidelines. [International Journal of Qualitative
Methods, 19(1), 1-13. https://doi.org/10.1177/1609406919899220

Ober, T. M., Cheng, Y., Coggins, M. R., Brenner, P., Zdankus, J., Gonsalves, P.,
Johnson, E., & Urdan, T. (2024). Charting a path for growth in middle school

students’ attitudes toward computer programming. Computer Science
Education, 34(1), 4-36. https://doi.org/10.1080/08993408.2022.2134677

OECD. (2022). PISA 2022 results (Vol. I-1I) Country Notes: Turkiye (OECD
Publication No. d67e6¢05).
The Organisation for Economic Co-operation and Development (OECD).
https://www.oecd.org/en/publications/pisa-2022-results-volume-i-and-ii-
country-notes_ed6fbccS-en/turkiye d67e6c05-en.htmlhttps://

Ouahbi, 1., Kaddari, F., Darhmaoui, H., Elachqar, A., & Lahmine, S. (2015).
Learning basic programming concepts by creating games with Scratch
programming environment. Procedia - Social and Behavioral Sciences, 191(1),
1479-1482. https://doi.org/10.1016/j.sbspro.2015.04.224

Ozeren, E. (2022). Proje tabanli Ogrenmede sabit ve paylasilan liderlik
uygulamalart ile desteklenmis blok tabanli kodlama ogretiminin bilgi islemsel
diisiinmeye, giidiilenmeye ve kodlama egitimine yonelik tutuma etkisi
(Publication No. 718958) [Master Thesis, Bartin University]. BU Repository.
http://hdl.handle.net/11772/16033

Paas, F. G. W. C., & Van Merriénboer, J. J. G. (1994). Variability of worked

237

http://hdl.handle.net/11772/16033

examples and transfer of geometrical problem-solving skills: A cognitive-load
approach. Journal of Educational Psychology, 86(1), 122-133.
https://doi.org/0022-0663/94/$3.00

Paas, F., Renkl, A., & Sweller, J. (2003). Cognitive load theory and instructional
design: Recent developments. Educational Psychologist, 38(1), 1-4.
https://doi.org/10.1207/S15326985EP3801 1

Paas, F., Renkl, A., & Sweller, J. (2004). Cognitive load theory: Instructional
implications of the interaction between information structures and cognitive

architecture. Instructional Science, 32(1-2), 1-8.
https://doi.org/10.1023/b:truc.0000021806.17516.d0

Paas, F., & Sweller, J. (2012). An Evolutionary Upgrade of Cognitive Load Theory:
Using the Human Motor System and Collaboration to Support the Learning of
Complex Cognitive Tasks. Educational Psychology Review, 24(1), 27-45.
https://doi.org/10.1007/s10648-011-9179-2

Pallant, J. (2016). SPSS Survival Manual Survival Manual (6th ed). McGraw-Hill
Education. https://doi.org/10.4324/9781003117452

Panizzon, D. (2015). Impact of Geographical Location on Student Achievement:
Unpacking the Complexity of Diversity. In A. Bishop, H. Tan & T.N. Barkatsas
(Eds.), Diversity in Mathematics Education (pp. 41-61). Springer International
Publishing. https://doi.org/10.1007/978-3-319-05978-5 3

Papatga, E., & Ersoy, A. (2016). Improving reading comprehension skills through
the SCRATCH program. [International Electronic Journal of Elementary
Education, 9(1), 124-150. https://files.eric.ed.gov/fulltext/EJ1126664.pdf

Perkins, D., & Martin, F. (1986). Fragile knowledge and neglected strategies in
novice programmers. Papers Presented at the First Empirical Studies of
Programmers: First Workshop, USA, 1(1), 213-229.
https://dl.acm.org/doi/abs/10.5555/21842.28896

Peteranetz, M. S. (2021). Shifting goals in introductory and advanced computer
science courses: The effects of gender and major. Proceedings - Frontiers in
Education Conference, USA, 51(1),1-8.
https://doi.org/10.1109/FIE49875.2021.9637156

238

https://doi.org/10.4324/9781003117452

Pintrich, P. R. (2000). The Role of Goal Orientation in Self-Regulated Learning. In
M. Boekaerts, P.R. Pintrich & M. Zeidner (Eds.), Handbook of Self-Regulation,
(pp. 451-502). Academic Press. https://doi.org/10.1016/B978-0-12-109890-
2.X5027-6

Pokorny, K. (2009). Introduction to computing: a fresh breadth of disciplines.
Journal of Computing Sciences in Colleges, 24(5), 166-172.
https://dl.acm.org/doi/abs/10.5555/1516595.1516630

Polso, K. M., Tuominen, H., Hellas, A., & Ihantola, P. (2020). Achievement Goal
Orientation Profiles and Performance in a Programming MOOC. Proceedings
of the Annual Conference on Innovation and Technology in Computer Science
Education, ITiCSE, Norway, 25(1), 411-417.
https://doi.org/10.1145/3341525.3387398

Presidency of the Board of Education. (n.d.). Sik¢a Sorulan Sorular.
https://ttkb.meb.gov.tr/www/sss.php

Qian, Y., & Lehman, J. D. (2016). Correlates of success in introductory
programming: A study with middle school students. Journal of Education and
Learning, 5(2), 73. https://doi.org/10.5539/jel.v5n2p73

Quintero-Manes, R., Vieira, C., & Hernandez-Vargas, N. (2022). Measuring
cognitive loads while learning computational statistics. Proceedings - Frontiers
in Education Conference, FIE, Sweden, 52(1), 1-4.
https://doi.org/10.1109/FIE56618.2022.9962606

Ramalingam, V., LaBelle, D., & Wiedenbeck, S. (2004). Self-efficacy and mental
models in learning to program. Proceedings of the 9th Annual SIGCSE
Conference on Innovation and Technology in Computer Science Education,
US4, 9(1), 171-175. https://doi.org/10.1145/1007996.1008042

Ramalingam, V., & Wiedenbeck, S. (1998). Development and validation of scores
on a computer programming self-efficacy scale and group analyses of novice
programmer self-efficacy. Journal of Educational Computing Research, 19(4).
https://doi.org/10.2190/C670-Y3C8-LTJ1-CT3P

Resnick, M., Maloney, J., Monroy-Hernéndez, A., Rusk, N., Eastmond, E., Brennan,
K., Millner, A., Rosenbaum, E., Silver, J., Silverman, B., & Kafai, Y. (2009).

239

https://doi.org/10.1016/B978-0-12-109890-2.X5027-6
https://doi.org/10.1016/B978-0-12-109890-2.X5027-6

Scratch: Programming for all. Communications of the ACM, 52(11), 60-67.
https://doi.org/10.1145/1592761.1592779

Robins, A., Rountree, J., & Rountree, N. (2003). Learning and teaching
programming: A review and discussion. [International Journal of
Phytoremediation, 21(1), 137-172.
https://doi.org/10.1076/csed.13.2.137.14200

Rumelhart, D. E., & Norman, D. A. (1976). Accretion, Tuning and Restructuring:
three modes of learning. (N° 7602). Personnel and Training Research
Programs Office of Naval Research, 7602(1), 37-53.
https://files.eric.ed.gov/fulltext/ED134902.pdf

Salac, J., Thomas, C., Butler, C., & Franklin, D. (2021). Understanding the Link
between Computer Science Instruction and Reading and Math Performance.
Annual Conference on Innovation and Technology in Computer Science
Education, ITiCSE, Germany, 26(1), 408—414.
https://doi.org/10.1145/3430665.3456313

Saldana, J. (2009). Qualitative Researchers.
http://stevescollection.weebly.com/uploads/1/3/8/6/13866629/saldana_2009 t
he-coding-manual-for-qualitative-researchers.pdf

Salleh Hudin, S. (2023). A Systematic Review of the Challenges in Teaching
Programming for Primary Schools’ Students. Online Journal for TVET
Practitioners, 8(1), 75-88. https://doi.org/10.30880/0jtp.2023.08.01.008

Sands, P. (2019). Addressing cognitive load in the computer science classroom.
ACM Inroads, 10(1), 44-51. https://doi.org/10.1145/3210577

Schoeman, M. (2019). Reading skills can predict the-programming performance of
novices: An eye-Tracking study. Perspectives in Education, 37(2), 35-52.
https://doi.org/10.18820/2519593X/pie.v37i2.3

Schulte, C., & Bennedsen, J. (2006). What do teachers teach in introductory
programming? ICER 2006 - Proceedings of the 2nd International Computing
Education Research Workshop, USA2(1), 17-28.
https://doi.org/10.1145/1151588.1151593

240

Schulz, S., Berndt, S., & Hawlitschek, A. (2023). Exploring students’ and lecturers’
views on collaboration and cooperation in computer science courses - a

qualitative analysis. Computer Science Education, 33(3), 318-341.
https://doi.org/10.1080/08993408.2021.2022361

Schunk, D. H., & DiBenedetto, M. K. (2020). Motivation and social cognitive
theory. Contemporary Educational ~ Psychology, 60(1), 1-10.
https://doi.org/10.1016/j.cedpsych.2019.101832

Schwinger, M., Wirthwein, L., Lemmer, G., & Steinmayr, R. (2014). Academic self-
handicapping and achievement: A meta-analysis. Journal of Educational
Psychology, 106(3), 744—761. https://doi.org/10.1037/a0035832

Senko, C., Hulleman, C. S., & Harackiewicz, J. M. (2011). Achievement goal theory
at the crossroads: Old controversies, current challenges, and new directions.
Educational Psychologist, 46(1), 26-47.
https://doi.org/10.1080/00461520.2011.538646

Shell, D. F., Hazley, M. P., Soh, L.-K., Ingraham, E., & Ramsay, S. (2013).
Associations of students’ creativity, motivation, and self-regulation with
learning and achievement in college computer science courses. 2013 [EEE
Frontiers in Education Conference (FIE), USA, 43(1), 1637-1643.
https://doi.org/10.1109/FIE.2013.6685116

Shell, D. F., & Soh, L. K. (2013). Profiles of Motivated Self-Regulation in College
Computer Science Courses: Differences in Major versus Required Non-Major
Courses. Journal of Science Education and Technology, 22(6), 899-913.
https://doi.org/10.1007/s10956-013-9437-9

Shell, D. F., Soh, L. K., Flanigan, A. E., & Peteranetz, M. S. (2016). Students’ initial
course motivation and their achievement and retention in college cs1 courses.
SIGCSE 2016 - Proceedings of the 47th ACM Technical Symposium on
Computing Science Education, USA, 47(1), 639-644.
https://doi.org/10.1145/2839509.2844606

Skaalvik, E. M. (1997). Self-enhancing and self-defeating ego orientation: Relations
with task and avoidance orientation, achievement, self-perceptions, and
anxiety. Journal of Educational Psychology, 89(1), 71-8l.
https://doi.org/10.1037//0022-0663.89.1.71

241

Sleeman, D., Putnam, R. T., Baxter, J., & Kuspa, L. (1984). Pascal and high-school
students: A study of misconceptions. Journal of Educational Computing
Research, 2(1), 5-23. http://server4.isearch-it-
solutions.net:80/pubpsych/Search.action?q=ID%3DACCNO_ED258552&isF
ullView=true&stats=BMD&search=

Soltani, A., Boka, R. S., & Jafarzadeh, A. (2022). Students’ perceptions of learning
environment: associations with personal mastery goal orientations, regulations,
and academic performance in biology. International Journal of Science
Education, 44(9), 1462—-1480.
https://doi.org/10.1080/09500693.2022.2082578

Sullivan, A., & Bers, M. U. (2016). Girls, boys, and bots: Gender differences in
young children’s performance on robotics and programming tasks. Journal of
Information Technology Education: Innovations in Practice, 15(1), 145-165.
https://doi.org/10.28945/3547

Sun, L., Hu, L., & Zhou, D. (2022). Programming attitudes predict computational
thinking: Analysis of differences in gender and programming experience.
Computers and Education, 181(127), 104457.
https://doi.org/10.1016/j.compedu.2022.104457

Sweller, J. (1988). Cognitive load during problem solving: Effects on learning.
Cognitive Science, 12(2), 257-285. https://doi.org/10.1016/0364-
0213(88)90023-7

Sweller, J. (2010). Element interactivity and intrinsic, extraneous, and germane
cognitive load. Educational Psychology Review, 22(2), 123-138.
https://doi.org/10.1007/s10648-010-9128-5

Sweller, J. (2016). Working memory, long-term memory, and instructional design.
Journal of Applied Research in Memory and Cognition, 5(4), 360-367.
https://doi.org/10.1016/j.jarmac.2015.12.002

Sweller, J. (2020). Cognitive load theory and educational technology. Educational
Technology Research and Development, 68(1), 1-16.
https://doi.org/10.1007/s11423-019-09701-3

Sweller, J., Ayres, P., & Kalyuga, S. (2011). Cognitive load theory. Springer.

242

https://doi.org/10.1007/978-1-4419-8126-4

Sweller, J., & Cooper, G. A. (1985). The use of worked examples as a substitute for
problem solving in learning algebra. Cognition and Instruction, 2(1), 59—89.
https://doi.org/10.1207/s1532690xci0201 3

Sweller, J., Merrienboer, J. J. G. van, & Paas, F. G. W. C. (1998). Cognitive
architecture and instructional design. Educational Psychology Review, 10(3),
251-296. https://noic.com.br/wp-
content/uploads/2022/02/Worked Examples.pdf

Sweller, J., van Merriénboer, J. J. G., & Paas, F. (2019). Cognitive architecture and
instructional design: 20 years later. Educational Psychology Review, 31(2),
261-292. https://doi.org/10.1007/s10648-019-09465-5

Tabachnick, B. G., & Fidell, L. S. (2012). Using multivariate statistics (6th ed.).
Harper and Row.

Takir, A. (2011). The effect of an instruction designed by cognitive load theory
principles on 7th grade students’ achievement in algebra topics and cognitive
load (Publication No. 300705) [Doctoral Dissertation, Middle East Technical
University]. ODTU Repository. https://go.exlibris.link/KszTQDfd

Tasdondiiren, T., & Korucu, A. T. (2022). The effect of secondary school students
"perceptions of computing technologies and self-efficiency on attitudes towards
coding. Journal of Learning and Teaching in Digital Age, 7(2), 200-2009.
https://doi.org/10.53850/joltida.1035448

Taub, R., Armoni, M., & Ben-Ari, M. (2012). CS unplugged and middle-school
students’ views, attitudes, and intentions regarding CS. ACM Transactions on
Computing Education, 12(2), 1-29. https://doi.org/10.1145/2160547.2160551

Tellhed, U., Bjorklund, F., & Kallio Strand, K. (2022). Sure I can code (but do I want
to?). Why boys’ and girls’ programming beliefs differ and the effects of
mandatory programming education. Computers in Human Behavior, 135(1), 1-
11. https://doi.org/10.1016/j.chb.2022.107370

Thomas, M. K., & Greene, B. A. (2011). Fostering 21st century skill development
by engaging students in authentic game design projects in a high school

243

computer programming class. Journal of Educational Computing Research,
44(4), 383-400. https://doi.org/10.2190/EC.44.4.b

Toma, L., & Vahrenhold, J. (2018). Self-efficacy, cognitive load, and emotional
reactions in collaborative algorithms labs - A case study. ICER 2018 -
Proceedings of the 2018 ACM Conference on International Computing
Education Research, USA, 14(1), 1-10.
https://doi.org/10.1145/3230977.3230980

Tomi¢, B., Miliki¢, N., Jovanovi¢, J., & Devedzi¢, V. (2020). Examining attendance
, performance and interest in a CS course in relation to students’ achievement
goal orientation and self- evaluation. International Conference on Information
Technology and Development of Education, Serbia, 11(1), 1.7.
http://www.tfzr.rs/itro/arhiva/itro/FILES/21.PDF

Totan, H. N., & Korucu, A. T. (2023). The effect of block based coding education
on the students’ attitudes about the secondary school students’ computational
learning skills and coding learning: Blocky sample. Participatory Educational
Research, 10(1), 443—461. https://doi.org/10.17275/per.23.24.10.1

Tsai, M.-J.,, Wang, C.-Y., & Hsu, P.-F. (2019). Developing the computer
programming self-efficacy scale for computer literacy education. Journal of
Educational Computing Research, 56(8), 1345-1360.
https://doi.org/10.1177/0735633117746747

Turner, J. C., Midgley, C., Meyer, D. K., Gheen, M., Anderman, E. M., Kang, Y., &
Patrick, H. (2002). The classroom environment and students’ reports of
avoidance strategies in mathematics: A multimethod study. Journal of
Educational Psychology, 94(1), 88-106. https://doi.org/10.1037/0022-
0663.94.1.88

Urdan, T. (2004). Predictors of academic self-handicapping and achievement:
Examining achievement goals, classroom goal structures, and culture. Journal
of Educational Psychology, 96(2), 251-264. https://doi.org/10.1037/0022-
0663.96.2.251

Urdan, T., & Midgley, C. (2001). Academic self-handicapping: What we know, what
more there is to learn. Educational Psychology Review, 13(2), 115-138.
https://doi.org/10.1023/A:1009061303214

244

Urdan, T., & Midgley, C. (2003). Changes in the perceived classroom goal structure
and pattern of adaptive learning during early adolescence. Contemporary
Educational Psychology, 28(4), 524-551. https://doi.org/10.1016/S0361-
476X(02)00060-7

Urdan, T., Midgley, C., & Anderman, E. M. (1998). The role of classroom goal
structure in students’ use of self-handicapping strategies. American Educational
Research Journal, 35(1), 101-122.
https://doi.org/10.3102/00028312035001101

Usher, E. L. (2009). Sources of middle school students? self-efficacy in
mathematics: A qualitative investigation. American Educational Research
Journal, 46(1), 275-314. https://doi.org/10.3102/0002831208324517

Van Merrienboer, J. J. G., & Krammer, H. P. M. (1987). Instructional strategies and
tactics for the design of introductory computer programming courses in high
school. Instructional Science, 16(3), 251-285.
https://doi.org/10.1007/BF00120253

van Merriénboer, J. J. G., & Sweller, J. (2005). Cognitive Load theory and complex
learning: Recent developments and future directions. Educational Psychology
Review, 17(2), 147-177. https://doi.org/10.1007/s10648-005-3951-0

Van Merriénboer, J. J. G., & Sweller, J. (2010). Cognitive load theory in health
professional education: Design principles and strategies. Medical Education,
44(1), 85-93. https://doi.org/10.1111/j.1365-2923.2009.03498 x

Vandenberg, J., Rachmatullah, A., Lynch, C., Boyer, K. E., & Wiebe, E. (2021). The
relationship of cs attitudes, perceptions of collaboration, and pair programming
strategies on upper elementary students’ CS learning. Proceedings of the
Annual Conference on Innovation and Technology in Computer Science
Education, ITiCSE, USA, 26(1), 46-52.
https://doi.org/10.1145/3430665.3456347

Wang, J., Hong, H., Ravitz, J., & Ivory, M. (2015). Gender differences in factors
influencing pursuit of computer science and related fields. Proceedings of the
Annual Conference on Innovation and Technology in Computer Science
Education, ITiCSE, US4, 20(1), 117-122.
https://doi.org/10.1145/2729094.2742611

245

Watson, C., & Li, F. W. B. (2014). Failure rates in introductory programming
revisited. ITICSE 2014 - Proceedings of the 2014 Innovation and Technology
in Computer Science Education Conference, USA, 19(1), 39-44.
https://doi.org/10.1145/2591708.2591749

Webb, M., Davis, N., Bell, T., Katz, Y., Reynolds, N., Chambers, D. P., & Systo, M.
M. (2017). Computer science in K-12 school curricula of the 2Ist century: Why,
what and when? Education and Information Technologies, 22(2), 445-468.
https://doi.org/10.1007/s10639-016-9493-x

Weintrop, D., & Wilensky, U. (2015). To block or not to block , that is the question :
Students’ perceptions of blocks-based programming. Proceedings of the 14th

International Conference on Interaction Design and Children, Denmark, 14(1),
199-208.

Wells LeRoy, A. K. (2022). A mixed methods approach to understanding the effect
of applying multimedia principles to a Minecraft STEM lesson (Publication No.
29395202) [Doctoral Dissertation, University of California]. ProQuest
Dissertations & Theses Global.

Weng, C., Otanga, S., Weng, A., & Cox, J. (2018). Effects of interactivity in E-
textbooks on 7th graders science learning and cognitive load. Computers and
Education, 120(1), 172—184. https://doi.org/10.1016/j.compedu.2018.02.008

White, G., & Ploeger, F. (2004). Cognitive characteristics for learning visual basic.
Journal of Computer Information Systems, 44(3), 58-66.
https://doi.org/10.1080/08874417.2004.11647582

Williams, L. (1999). But, Isn’t That Cheating ? Proceedings of the 29th Annual
Frontiers in Education Conference, USA, 29(1), 26-27.
https://www.computer.org/csdl/proceedings/fie/1999/120mNC8dg8Z

Williams, L., & Upchurch, R. L. (2001). In support of student pair-programming.
SIGCSE Bulletin (Association for Computing Machinery, Special Interest
Group on Computer Science Education), USA, 52(1), 327-331.
https://doi.org/10.1145/366413.364614

Winslow, L. E. (1996). Programming pedagogy - A psychological overview.
SIGCSE Bulletin (Association for Computing Machinery, Special Interest

246

Group on Computer Science Education), 28(3), 17-23.
https://doi.org/10.1145/234867.234872

Winter, V., Friend, M., Matthews, M., Love, B., & Vasireddy, S. (2019). Using
visualization to reduce the cognitive load of threshold concepts in computer

programming. Proceedings - Frontiers in Education Conference, FIE, USA,
49(1), 1-9. https://doi.org/10.1109/FIE43999.2019.9028612

Yang, K. H., & Lin, H. Y. (2019). Exploring the effectiveness of learning Scratch
programming with Code.org. Proceedings of the 8th International Congress on
Advanced Applied Informatics, Japan, 8(1), 1057-1058.
https://doi.org/10.1109/11AI-AAL.2019.00225

Yesilyurt, S., & Capraz, C. (2018). 4 road map for the content validity used in scale
development studies. Erzincan Universitesi Egitim Fakultesi Dergisi, 20(1),
251-264. https://doi.org/10.17556/erziefd.297741

Yusof, M. M., Jalil, H. A., & Perumal, T. (2021). Exploring teachers’ practices in
teaching robotics programming in primary school. Asian Social Science,
17(11), 122. https://doi.org/10.5539/ass.v17nl1p122

Zingaro, D. (2014). Peer instruction contributes to self-efficacy in CS1. Proceedings
of the 45th ACM Technical Symposium on Computer Science Education, USA,
45(1), 373-378. https://doi.org/10.1145/2538862.2538878

Zingaro, D., Craig, M., Porter, L., Becker, B. A., Cao, Y., Conrad, P., Cukierman,
D., Hellas, A., Loksa, D., & Thota, N. (2018). Achievement goals in CS1:
Replication and extension.Proceedings of the 49th ACM Technical
Symposium on Computer Science Education, USA, 49(1), 687-692.
https://doi.org/10.1145/3159450.3159452

247

https://doi.org/10.17556/erziefd.297741

248

APPENDICES

A. Lesson Plan Evaluation Form

Boliim 1: Demografik Bilgiler

Adiniz-Soyadiniz

Cinsiyetiniz O Kadin O Erkek

Yasimiz

Mesleki deneyiminiz
(vl olarak)

[Lisans [Yiiksek Lisans O Doktora

Egitim diizeyiniz
& Y O Diger: ..oovviiiiiiiiiiiiie,

O Bilgisayar ve Ogretim Teknolojileri Ogretmenligi
O Bilgisayar Ogretmenligi
O Bilgisayar Sistemleri Ogretmenligi

Mezun oldugunuz O Bilgisayar ve Kontrol Ogretmenligi

lisans programi i o . .
O Elektronik ve Bilgisayar Ogretmenligi

O Bilgisayar Teknolojisi Boliimi
O Bilgisayar Teknolojisi ve Bilisim Sistemleri Boliimii

Gorev yapmakta

oldugunuz okul tiirii [Deviet L Ozel

Gorev yapmakta
oldugunuz okulda
bilgisayar laboratuvari
mevcut mu?

O Evet O Hayr

Ortaokul 6grencilerine
programlama dgretimi
deneyiminiz (yil olarak)

Boliim 2- Ders Plant Degerlendirme

Ders Plani: | Evet/Hayir | Aciklama
Boliim1
code.org sitesinde yer alan bu ders planini daha O Evet O Hayir

once derslerinde kullanmig miydiniz?

Kazanmimlar agik ve anlagilir bir sekilde belirtilmis | (0 Evet [0 Hayir
mi?

Kazanimlar 6grenci diizeyine uygun mu? O Evet O Hayir

Kazanimlar belirlenen siirede ulasilabilir mi? O Evet O Hayir

249

Kazanimlar Ortaokul Bilisim Teknolojileri ve
Yazilim Dersi Ogretim Programinin amaglari ile
uyusuyor mu?

O Evet 1 Hayir

Planda yer alan anahtar kelimeler dogru ve
anlagilir bir sekilde tanimlanmig m1?

O Evet 1 Hayir

Ders plani, planda belirtilen siirede tamamland1
m1?

O Evet 1 Hayir

Igerik, kazanimlar ile uyumlu bir sekilde
planlanmig m?

O Evet 1 Hayir

Derse hazirlik siirecinde zorlandiniz mi?

O Evet LI Hayir

Ders plani, 6grenci seviyesine ve konuya uygun
arag — gerecleri iceriyor mu?

Etkinlikler 6grenci diizeylerine uygun mu?

O Evet I Hayir

Etkinlikler konuya uygun mu?

O Evet I Hayir

Etkinliklerin ne zaman ve nasil gerceklestirilecegi
acik ve anlasilir mi1?

O Evet 1 Hayir

Etkinlikler 6grencilerin dikkatini gekme
konusunda etkili mi?

O Evet 1 Hayir

Etkinlikler 6grencilerin dikkatinin devamim
saglama konusunda etkili mi?

O Evet 1 Hayir

Boliim 2

Ders planindan ¢ikartmak istediginiz herhangi bir
sey var m1? Varsa nedenleriyle birlikte belirtiniz.

Ders planinda yeniden diizenlemek istediginiz bir
boliim var m1? Varsa neden ve ne sekilde bir
diizenleme yapmak istersiniz?

Ders planina eklemek istediginiz herhangi bir sey
var mi1?

Ders planinda uygulamasini zor buldugunuz bir
boliim oldu mu? Agiklaymiz.

Ogrencilerin anlamakta/uygulamakta zorluk
cektiklerini diistindiigiiniiz bir boliim oldu mu?
Aciklaymniz.

Ders plani ile ilgili genel bir degerlendirmede
bulunur musunuz?

Eklemek istediginiz baska bir sey var mi1?

250

Coding Achievement Test

AD-SOYAD:

Bilisim Teknolojileri ve Yazilim Dersi 5. Simif Kodlama Basar Testi

Smav Yonergesi: Bu test, kodlama konusundaki bilgi diizeyinizi 6l¢gmek amaciyla hazirlanmustir. Testte 36 adet ¢oktan
se¢meli soru bulunmaktadir. Her sorunun yalmz bir dogru cevab: bulunmaktadir. Sorularin cevaplarini. smav kagidinin en

sonundaki Cevap Alanina “X” ile isaretleyiniz. Katilimimz i¢in tesekkiir ederiz.

Ogr. Gor. Pinar KEFELI BERBER
fletisim: pinar.kefeli@erdogan.edu.tr

1. Kodlamada, verileri saklamak amaciyla kullanilan ve
degeri degistirilebilen yapilar asagidakilerden
hangisidir?

a) Problem b) Sabit

c) Algoritma d) Degisken

2. Asagidakilerden hangisi sabit yapisina drnek olarak
verilemez?
a) Futboldaki oyuncu sayisi
b) Trafikteki arag sayisi
¢) Bir eldeki parmak sayis1
d) Bir yildaki ay sayisi

3. Asagidakilerden hangisi matematiksel (aritmetiksel)
operatorlere ornek olarak verilemez?
a)+ b) - o)! d)/

4. Asagidakilerden hangisi mantiksal operatorlere 6rnek
olarak verilemez?

a)veya b)ve c)degil d)eger
r Fpua}\ | 850 Karar yapilar,
: lgertsmde verilen kosul

saglandiginda “Dogru” degerini verir. Buna gore
yanda verilen kod blogu icin asagidaki ifadelerden
hangisi dogrudur?
a) puan degiskeninin degeri 49 ise “Dogru” degerini verir.
b) puan degiskeninin degeri 50 ise “Dogru” degerini verir.
¢) puan degiskeninin degeri 51 ise “Dogru” degerini verir.
d) puan degiskeninin degeri 50 ya da 51 ise “Dogru”
degerini verir.
6. “Bir problemin ¢6ziimiinde izlenmesi gereken

admmlarm, sirali bir sekilde ifade edilmesidir.” ifadesi
asagidaki kavramlardan hangisini aciklamaktadir?

a) Algoritma b) Program c) Veri d) Operator

7. Asagida verilen adimlarindan hangisinin bir
algoritmada mutlaka bulunmas: gerekmektedir?

a) Basla b) X kez tekrarla
c) Eger biiyiikse ~ d) Sonucu ekrana yazdur.

8. Bilgisayarda kod yazan ve komutlar1 bilgisayara
ileten kisi asagidakilerden hangisidir?

a)Kod b)Komut c)Programc1 d) Algoritma

9. “Bir cihazin ya da yazihmin gerceklestirmesi istenilen
islemlere iliskin yonergelerin, bilgisayara,
programlama dili komutlar1 halinde girilmesidir.”
ifadesi asagidakilerin hangisini tanimlamaktadir?

b) Akis
d) Kosul

a) Programlama (kodlama)
¢) Bilgisayar programcisi

10. Bir bilgisayar oyununda, “puan > 500 ve
hamle sayis1 < 20” kosulunu saglayan oyuncu bir {ist
seviyeye geemektedir. Buna gore asagida bilgileri
verilen oyunculardan hangisi bir iist seviyeye geger?

Ovyuncu Bilgileri a) Dilek
oyuncunun adi | puan | hamle sayist | b) Ahmet
Dilek 500 20 ¢) Sena
Ahmet 600 25 d) Leyla
Leyla 700 15
Sena 400 5

11. Asagida, akis semas: olustururken kullanilan

semboller ve yanlarinda gérevleri verilmistir. Buna
gore hangi eslestirme yanhstir?

) Mantiksal karsilastirma (kosullu
karsilastirma) ifadelerini

gostermek i¢in kullanilir.

Bagsla ve bitir komutlarini temsil
eder.

Tekrar eden komutlar belirtir.

Disaridan bilgi/veri girisini
belirler.

12. 10 kez tekrar etmesini istedigimiz olaylar icin
asagidaki kod bloklarindan hangisini kullanmamiz
uygun olur?

sarece [N var

ca
a)

bu islemieri [l koz tekraria

Arka sayfaya geginiz.

251

13. Yandaki sekilde baslangic konumu,
* sembolil ile belirtilen karedir. Bu
noktadan baslayarak. asagidaki
algoritmalarin hangisi ile yanda
verilen ¢izim elde edilebilir?

a) Adim 1: Basla. b)
Adim 2: Bir kare saga git.

Adim 1: Basla.

Adim 2: Bir kare saga git.

Adim 3: Kareyi boya. Adim 3: Kareyi boya.
Adim 4: Bir kare asag: git. Adim 4: Bir kare asag git.
Adim 5: Kareyi boya. Adim 5: Kareyi boya.
Adim 6: Bir kare saga git. Adim 6: Bir kare sola git.
Adim 7: Kareyi boya. Adim 7: Kareyi boya.
Adim 8: Bitir. Admm 8: Bitir.

¢) Adim 1: Basla. d) Adim 1: Basla.
Adim 2: Bir kare sola git. Adim 2: Bir kare saga git.

Adim 3: Kareyi boya. Adim 3: Kareyi boya.
Adim 4: Bir kare asag: git. Adim 4: Bir kare asag git.
Adimm 5: Kareyi boya. Adim 5: Kareyi boya.
Adim 6: Bir kare saga git. Adim 6: Bir kare asag git.
Adim 7: Kareyi boya. Adim 7: Kareyi boya.
Adim 8: Bitir. Admn 8: Bitir.

I. Ayrani bardaga doldur.

II. Yogurdun iizerine su ekle.
III. Bitir.

IV. Yogurdu kaba koy.

V. Basla.

VI. Yogurt ve suyu ¢irp.

14. Yukanida karigik swada verilen ayran yapma
algoritmasmin dogru swalamis1 asagidakilerin
hangisinde verilmistir?
a) V-VI-IV-II-III-I
¢) V-IV-II-VI-III-I

b) V-IV-II-VI-I-IIT
d) V-IV-II-I-VI-IIT

15. Asagidakilerden hangisi girilen iki saymin
ortalamasini hesaplayip ekrana yazdiran
algoritmadir?

a) Adim 1: Basla.
Adim 2: Birinci say1y1 gir.
Adim 3: Ikinci say1y1 gir.
Adim 4: Tki say1y1 topla.
Adum 5: Toplamu ikiye bl
Adumn 6: Bitir.

b) Adim 1: Basla.
Adim 2: Birinci say1y1 gir.
Adim 3: Tkinci say1y1 gir.
Adimn 4: Tki say1y1 topla.
Adim 5: Toplamu ikiye bésl.
Adim 6: Sonucu ekrana yazdir.

¢) Adim 1:
Adim 2:
Adim 3: Tkinci say1y1 gir.
Adim 4: Tki say1y1 topla.
Adim 5: Toplami ikiye bél.
Adim 6: Sonucu ekrana

Basla.
Birinci say1y1 gir.

d) Adim 1: Basla.
Adim 2: Birinci say1y1 gir.
Admm 3: Tkinci say1y1 gir.
Adim 4: Tki sayy1 topla.
Adim 5: Sonucu ekrana yazdir.
Adimn 6: Bitir.

yazdir.

Adun 7: Bitir.

252

16. Asagidaki sekillerden

olustururken kullanilan sembollerden biri d

SN

Adimm 1: Basla

Adim 2: Eve git

Adim 3: EGER 6devin
varsa 4. adima git, YOKSA
5. adima git.

Adm 4: Odevini yap.
Adm 5: Cizgi film izle.
Admm 6: Bitir

a) Bagla

k2

< Odevinvarm? E"—“»{ Odevini yap l

Gizgi film izle

hangisi akis semast

egildir?

17. Yanda verilen
algoritmaya en uygun akis
semast asagidakilerden
hangisidir?

<_Odevin var mi? Ei)
Hayir
Gizgi fikn izle:

Bitr

Odevini yap

)
Ewgt
W Bdovinvarm? =2 5 Goviniyap
5
i
d) Basla
‘ Eve git
-
<_Odevinvarmi? >

Evet
‘Odevini yap
Glzgi fim izl

v

Bitir

18. = /—l Yanda verilen blok altinda yer

alan bloklar hangi olay gerceklestiginde calisir?

a) Stirekli olarak

b) Adim diigmesine tiklandiginda
¢) Varsayilana sifirla diigmesine tiklandiginda
d) Calistir diigmesine tiklandiginda

Diger sayfaya geginiz.

19. Kodlamada (bilgisayar programlamada). bir seyi
tekrar tekrar yapma, bir kodu tekrarlama eylemi
asagidakilerden hangisi ile ifade edilir?

a)Kod b)Dongii c) Program d) Hata

Adim 1: Basla.

Adim 2: Baslat meniisiine tikla.

Admm 3: Kapat secenegini tikla.

Adin 4: Bilgisayarm kapanmasini bekle.
Admm 5: Elektrik fisini ¢ek.

Adim 5: Bitir.

20. Yukarida verilen algoritmaya en uygun akis semasi
asagidakilerden hangisidir?

a b)
.'i/ Bagla \\/w ‘ Basla :,
v
e
Baglat mendstine tikla

19) _;"’w.

< :Blglsnyam@k m? >

Evet

Baglal mendstne tikla

Kapat sagecegine tidla

Bilgisayarin kapanmasini bekie

Bitir)

) oae
=

Hayr -~ Co Evet
m~ Bilgisayer agk mi? >—— > Kapat sececedine tikia
é 1 Baglat mendsine tikla
i Bilgisayarin kapanmasin bekie

(mr)

253

Adim 1: Basla
Adim 2: Tlerle
Adm3:
Adim 4: Ilerle
Adim 5: Ilerle
Adim 6: Ilerle
Adim 7: Ilerle
Admn 8: Saga dén
Adim 9: Tlerle

21. Yukarida Angry Bird karakterinin, domuzcuga
ulasabilmesi icin gerekli olan algoritma verilmistir.
Buna gore algoritmada “...... ” ile belirtilen “Adim 3~
yerine asagidakilerden hangisi gelmelidir?

a) Ilerle

b) Saga don

¢) Sola dén

d) 3. aduma gerek yok. algoritma dogrudur.

R

Sekil A Sekil B

22. Asagidaki kod bloklarmmdan hangisi, baslangi¢ yoni
Sekil-A’daki gorselde verilen Artist karakterine, Sekil-
B’de verilen gorseldeki gibi 45 derecelik bir ac1
¢izdirir?

Calistigi zaman

atamak Sunu yapmak igin | 19
atamak EEFAM Sunu yapmak icin | E)
L) Cofar (< V]

Sl "Merhaba" |

23. Yukarida verilen kod blogu setine gore, programin
“Merhaba” yorumu yapmasi icin [sayi2] nin degeri,
asagidakilerden hangisi ile degistirilmelidir?

a)2 b) 4 ¢S5 d)6

Arka sayfaya geciniz.

24. Yanda verilen kod blogu
setinde: izlenecek adimlarmn sirayla,
birbiri ardina gerceklestirilecek
sekilde tanimlandig1 goriilmektedir.
Buna gore, bu kod blogu setinde
kullanllan ~ yap:1 asagidakilerden
hangisidir?

Calistigi zaman

ilerle

ilerle

ilerle

a) Karar yapisi

b) Dongii yapist

¢) Dogrusal mantik yapisi

d) Dogrusal olmayan mantik yapisi

25. Asagidaki kod blogu seti, “nektar = 4” icin
caligtirtlirsa sonug ne olur?

Calistigi zaman a) Nektari alir.
b) Ilerler.
b SR ¢) 5 kez ilerler.

degilse ilerle
-

26. Yanda verilen gorsele gore
cicekte nektar olup olmadigi
bilinmemektedir. Arnin, ¢icekte bir
nektar var ise nektari alacak yoksa
ilerleyecek sekilde hareket etmesini
saglayan kod blogu asagidakilerden
hangisidir?

Calistigi zaman Calistigi zaman

ilerle

yap nektan al yap ilerle
S S

degilse | ilerle degilse | nektari al
S S

Calistigi zaman

Calistigr zaman

yap | nektan al
S

yap | ilerle
S

nektar al

Calistigr zaman

ilerle

sola dén s v

ilerle

ilerle

ilerle

27. Yukaridaki gorselde verilen kimizi kusun
(Angry Bird karakterinin). yesil domuzcuga en kisa
yoldan ulasabilmesi i¢in soru isareti (?) ile belirtilen
bosluga hangi kod blogu gelmelidir?

a)Sagadon b)Soladén c)ilerle d) Higbir sey.

254

d) Once nektar alir, sonra ilerler.

28. Yanda, iki basamakl
merdiven ¢izdiren kod blogu
seti verilmistir. Bu kod blogu

Calistigl zaman
tas [§9) pikseller
kadar don ElY) derece

tas! [E2) pikseller seti, dongii yapisi
kadar ERD don E) derece kullanilarak yeniden
(EITXD tas E) pikseller diizenlenmek istenmektedir.

[ELET saga ¥ Jellall 90 ol
[TO7RD tasi E[0) pikseller
kadar ERD don EL) derece

Buna gore en dogru ¢oziim
asagidakilerden hangisidir?

Calistigi zaman
bu islemieri [kez tekrarla
vap |(EETED tasi 1) pikseller
| kadar EEFRD ddn €L derece

bu islemleri 3 kez tekrarla

([Z07ED tasi E2) pikseller

kadar E2X-ERD don EY) derece
—

Calistigr zaman
bu islemleri £ kez tekrarla
yap |[E5TRM tas: 1) pikseller
kadar TR don EL) derece
(E0TED tas E2) pikseller
| kadar L2 don EL) derece

bu islemleri) kez tekrarla
vap |([EZ07EA tasi E°) pikseller
kadar EERA don L2 derece
(5T tas! E9) pikseller
hkadar (E=EXED don EL) derece

a

29. Yanda verilen
gorseldeki Zombi
karakterinin, aycicegine
ulagmasini saglayan blok seti
asagidakilerden hangisidir?

Calstigi zaman

bu islemleri) kez tekrarla
Calistigr zaman vap
bu islemleri [kez tekrarla ilerle
yap

ilerle ilerle
~—~ —

Calistigl zaman Calistigi zaman
bu islemleri E) kez tekrarla
vap ilerle
L|Ierle bu islemleri [EJ kez tekrarla

“saga don v v |
e ony

- ilerle
ilerle —

Calistig zaman
bu islemleri) kez tekrarla
yap | buislemleri) kez tekrarla

vap | ilerle
=

30. Yukanida verilen kod blogu setine gore m kod
blogu kag kez calisir?

a)3 b4 ¢)7 d)l12

Diger sayfaya geciniz.

“Tekin, eger hava giinesli ise piknige gitmek,
hava giinesli degilse evde film izlemek istiyor.”
31 ve 32. sorulari bu bilgiye gore cevaplayiniz.

31. Bu duruma en uygun sekilde hazirlanmis akis semasi
asagidakilerden hangisidir?

a)

b)

)

d) (nege :

255

5

32. Bu duruma en uygun sekilde hazirlanmis kod blogu
asagidakilerden hangisidir?

Asagida verilen kod
blogu setlerinden hangisi,
yanda goriilen Angry Bird
karakterinin, domuzcuga
ulagmasini saglamaz?

Calistigi zaman SRl seman

ilerle =7
ilerle

ilerle ilerle

ilerle

ilerle ilerle

ilerle ilerle

a) b)

Calistigi zaman

Calistig1 zaman
bu islemleri [EJ kez tekrarla

bu islemleri [E) kez tekrarla

yap | ilerle
—

yap _ilerle
—

bu islemleri |3 kez tekrarla bu islemleri [kez tekrarla

i yap | ilerle
yap Jerle yep =

) d)

Calstigi zaman
bu islemleri kez tekrarla

vap | ilerle
1 ¢cikarin

ilerle

Calistig) zaman

ilerle

ilerle

ilerle

ilerle

ilerle

Sekil-I | Sekil-TT

Sekil II

34. Yukarida Sekil-I"de verilen bulmacada amag,
dort toprak yi1ginini tarladan kaldirmaktir. Sekil-IT’de ise
bu amacla hazirlanan kod blogu seti verilmistir. Kod
blogu setinde kullanilan “1 ¢ikarin™ kod blogu, toprak
varsa kaldirir yoksa cukur olugturur. Buna gore program
calistirildiginda ne olur?

a) Ciftci, tarladaki dort toprak yigmini kaldirir ve hi¢
cukur olusturmaz.

b) Ciftci, tarladaki dort toprak yigmimi kaldurir ve tic
adet ¢ukur olusturur.

¢) Ciftei, tarladaki ti¢ toprak yiginini kalduir ve dort
adet cukur olusturur.

d) Ciftci, tarladaki toprak yigmlarindan hicbirini

36. Yukarida Sekil-II’de verilen kod blogu seti
cabistinldiginda, Sekil-I"deki Scrat karakteri mese
palamuduna ulasir mi?

a) Scrat, mese palamuduna ulasir. Kodda herhangi bir
hata yoktur.

b) Scrat, mese palamuduna ulasamaz ciinkii yanls
yone doner.

¢) Scrat, mese palamuduna ulasamaz c¢iinkii yeterli
“ileri” hareket blogu yoktur.

d) Scrat, mese palamuduna ulasamaz ¢iinkii hem yanlis
yone doner hem de yeterli “ileri” hareket blogu yoktur.

kaldirmaz ve yedi adet cukur olusturur. CEVAP ALANI
. A |B |[C |D A B |[C |[D
e : =
D/" 2 bu islemleri 2] kez tekrarla 2 20
o yap Jerle
. % . N l 3 21
| [: 7
‘.‘,
Sekil-T SeKilIT ? -
6 24
35. Yukarida Sekil I'deki gorselde goriilen Scrat 7 25
karakterinin, mese palamuduna erismesi icin Sekil
II"deki kod blogu seti olusturulmustur. Ancak program 8 26
calistirlldiginda Scrat mese palamuduna
ulasamamaktadir. Buna goére programdaki hatalar 9 27
ayiklandiginda program asagidakilerden hangisi gibi 10 28
olmalidir?
11 29
Calistigi zaman
bu islemleri £ kez tekrarla bu islemleri 5 kez tekrarla 12 30
vap | ilerle yap | ilerle
ilerle ilerle 13 31
ilerle ilerle 14 32
ilerle ilerle
= = 15 33
16 34
Calistidi zaman Calistigi zaman
bu islemleri g2 kez tekrarla bu islemleri [kez tekrarla 17 35
yap | bu islemleri g0 kez tekrarla yap [bu islemleri I kez tekraria
vr S vap (ilirle 18 36

256

Sinav bitmistir.

C.

Cognitive Load Scale

Bilissel Yiik Olgegi

Sevgili 6grenciler;

Bu 6lgek, Bilisim Teknolojileri ve Yazilim dersinde gergeklestirdiginiz kodlama etkinliklerdeki biligsel
yik diizeyinizin belirlenmesi amaciyla hazirlanmigtir. Asagida yer alan sorulari, bugiin Bilisim
Teknolojileri ve Yazilim dersinde ¢ozdiigiiniiz Ders 13-Art Kosullandiricilar code.org bulmacalarint g6z
oniinde bulundurarak cevaplandirmamz gerekmektedir. Olgekte yer alan sorulan cevaplandirmamz
yaklasik olarak 5 dakika siirecektir. Higbir climlenin dogru ya da yanlis cevabi yoktur. Verilen ifadeleri
dikkatlice okuduktan sonra her biri i¢in “l: Hi¢ katilmiyorum, 2: Katilmiyorum, 3: Kararsizim, 4:
Katiliyorum, 5: Tamamen Katiliyorum” segeneklerinden size en uygun olam “X” ile isaretleyiniz. Her
ifadeyi yanmitlandirmamz ve her ifade icin sadece bir yamt alanim isaretlemeniz 6nemlidir. Asagidaki
alana ad, sgyagd, ve smif bilgilerini yazmay liitfen unutmayiniz.

) Pinar KEFELI BERBER
letigim: pinar.kefeli@erdogan.edu.tr

Adimiz ve Soyadimz:

Sinifimz:

Sorular

1 2 3 4 5
S Ele|g|ss
~Sl S| §| 5|65
A= B e S & >
“E E|f|E|EZ
= G = =
g 2| %279

1

. Etkinligin kapsadig1 konular ¢ok karmagikti.

Etkinlik, bana gok karmagik gelen algoritmalan igeriyordu.

. Etkinlik, bana ¢ok karmagik gelen kavram ve tanimlar igeriyordu.

. Etkinligin yonergeleri ve/veya agiklamalari yeterince agik degildi.

. Yonerge ve/veya agiklamalar, 6grenme agisindan ¢ok etkisizdi.

. Yonerge ve/veya agiklamalarin dili tamamen karmasikti.

. Etkinlik, islenen konular1 kavramama gergekten katk: sagladi.

. Etkinlik, bilgi-islem/programlama bilgimi ve kavrayisim gergekten gelistirdi.

. Etkinlik, kapsadig: algoritmalar1 kavramama gergekten katki sagladi.

10. Etkinlik, kapsadig1 kavram ve tanimlar1 anlamama gergekten katki sagladi.

257

D. Patterns of Adaptive Learning Scale

Uyumsal Ogrenme Oriintiileri Olcegi
Degerli katilimei,

Bu anket sizin Bilisim Teknolojileri ve Yazilm dersine yonelik tutum ve hedeflerinizi 6lgmeyi
amaglamaktadir. Sorular1 yamtlamadan 6nce dikkatle okuyunuz. Anketteki sorularin dogru yada yanhs
cevab1 yoktur; her soruda size en yakin olan segenegi isaretleyiniz. Bu anketteki bazi sorular digerlerine
benzemektedir. Bu konuda endiselenmeyin. Tercihlerinizin dogru ya da yanhs olarak bir
degerlendirilmesi yapilmayacaktir.

Ankete vereceginiz cevaplariniz kesinlikle gizli tutulacak, kimseyle paylasilmayacak ve sadece bilimsel
aragtirma amaciyla kullanilacaktir. Bu aragtirmaya iligkin tiim bilimsel yayinlarda, “takma isim”
kullanilacak olup, bireylere ait herhangi bir isim kullanilmayacaktir.

ifadelere, diisiinerek ve igtenlikle vereceginiz cevaplar igin tesekkiir ederiz.

Adiniz Soyadiniz:cooiiiiiiiiii s

Asagida Bilisim Teknolojileri ve Yazihm dersinin bir 6grencisi olarak sizinle

ilgili baz1 sorular yer almaktadir. Asagidaki ifadelerin sizin i¢in ne kadar = 5 5 s
gegerli oldugunu, her madde igerisinde sunulan 5 secenekten (1-Kesinlikle |22 2 [£
Katihyorum, 2-Katihyorum, 3-Kararsizim, 4-Katilmiyorum, 5-Kesinlikle ;:‘E E i

Katilmiyorum) size en uygun olani isaretleyerek belirtiniz.

Katilmiyorum

Kesinlikle
Katilmiyorum

1. Bilisim Teknolojileri ve Yazilim dersini en iyi sekilde anlamak benim igin
Snemlidir.

2. Smuftaki diger 6grencilerle karsilastirildigimda zeki goriinmek benim igin
Snemlidir.

3. Siniftaki diger 6grencilerin, Bilisim Teknolojileri ve Yazilim dersinde iyi
oldugumu diisiinmeleri benim i¢in énemlidir.

4. Bilisim Teknolojileri ve Yazilim dersinde birgok yeni kavram 6grenmek benim
igin 6nemlidir.

5. Bilisim Teknolojileri ve Yazilim dersindeki en zor ¢alismalar (aligtirma,
ddev, etkinlik,...) bile yapabilecegime eminim.

6. Sinav sirasinda cevaplari bazen arkadaslarimdan alirim.

7. Bilisim Teknolojileri ve Yazilim dersindeki hedeflerimden biri, 6grenebilecegimin
en fazlasim 6grenmektir.

8. Hedeflerimden biri, baskalarina Bilisim Teknolojileri ve Yazilim dersinde iyi
oldugumu gostermektir.

9. Hedeflerimden biri, Bilisim Teknolojileri ve Yazilim dersinde birgok yeni beceri
kazanmaktir.

10. Gayret edersem Bilisim Teknolojileri ve Yazilim dersindeki en zor seyleri bile
yapabilirim.

11. Smuf i¢i Bilisim Teknolojileri ve Yazilim ¢aligmalarinda (alistirma, 6dev
etkinlik) bazen kopya ¢ekerim.

12. Bilisim Teknolojileri ve Yazilim dersindeki hedeflerimden biri, baskalarinin,
benim zeki olmadigimi diisiinmelerini 6nlemektir.

13. Biligim Teknolojileri ve Yazilim dersinde &gretilenleri en iyi sekilde
Ogrenebilecegime eminim.

14. Bilisim Teknolojileri ve Yazilim ¢aligmalarini yaparken bazen cevaplari
arkadaglarimdan yazarim.

15. Hedeflerimden biri bagkalarina, Biligim Teknolojileri ve Yazilim dersinin benim
i¢in kolay oldugunu géstermektir.

258

16. Hedeflerimden biri, simftaki diger 6grencilerle karsilagtirildigimda zeki
goriinmektir.

17. Bilisim Teknolojileri ve Yazilim dersini anlamiyormus gibi goriinmek istemem.

18. Becerilerimi gelistirmek benim i¢in 6nemidir.

19. Ogretmenimin, benim smiftakilerden daha az bildigimi diisiinmemesi benim igin
onemlidir.

20. Pes etmezsem, Bilisim Teknolojileri ve Yazilim dersindeki hemen hemen her
¢aligmay1 yapabilirim.

21. Hedeflerimden biri, Bilisim Teknolojileri ve Yazilim dersinde zorlaniyormus gibi
goriinmemektir.

22. Yapilmas: veya 6grenilmesi gereken sey zor olsa bile 6grenebilirim.

Asagidaki ifadelerin sizin i¢in ne kadar gegerli oldugunu, her madde
igerisinde sunulan 5 secenekten (1-Kesinlikle Gegerli, 2-Gegerli, 3-Kararsizim,
4-Gegersiz, 5-Kesinlikle Gegersiz) size en uygun olam isaretleyerek belirtiniz.

23. Baz1 dgrenciler sinavdan bir giin dnce vaktini boga gegiriyorlar. Sonra da sinavda
iyl yapmazlarsa bunu sebep olarak gosteriyorlar. Bu senin i¢in ne kadar gegerli?

24. Bazi 6grenciler kendi istekleriyle bir siirii etkinlige katiliyorlar. Sonra da simf
cahgmalamm iyi yapamazlarsa bagka seylerle ugrastiklari igin bdyle oldugunu
sOyliiyorlar. Bu senin i¢in ne kadar gegerli?

25. Baz1 ogrenciler ders galismamak igin sebep aryorlar (kendini iyi hissetmemek,
annesi ve babasina yardim etmek, kardesine bakmak gibi). Sonra da simf
¢aligmalarini iyi yapamazlarsa, sebebin bu oldugunu sodyliiyorlar. Bu senin igin ne
kader gegerli?

26. Bazi 6grenciler arkadaglarinin, kendi dikkatini dagitmalarina ya da 6devlerini
yapmasini engellemelerine izin veriyorlar. Sonra da siif ¢aligmalarini iyi
yapamazlarsa arkadaglarinin ¢aligmalarina engel olduklarini séyliiyorlar. Bu senin
icin ne kadar gegerli?

27. Baz1 6grenciler derste kasitli olarak ¢ok gayret etmiyorlar. Sonra da siif
¢aligmalarini iyi yapamazlarsa gayret etmedikleri i¢in oldugunu sdyliiyorlar. Bu senin
i¢in ne kadar gegerli?

28. Bazi1 6grenciler Bilisim Teknolojileri ve Yazilim ¢aligmalarin1 yapmay1 son
dakikaya birakiyorlar. Sonra da derslerini iyi yapamazlarsa bu yiizden iyi
yapamadiklarini soylityorlar. Bu senin igin ne kadar gegerli?

Asagidaki sorular Bilisim Teknolojileri ve Yazilim dersinde sinifimzin durumu
ile ilgilidir. Gergekten ne hissediyorsaniz onu isaretlemeyi unutmaymn. Her madde
igerisinde sunulan 5 segenekten (1-Kesinlikle Katiliyorum, 2-Katiliyorum, 3-
Kararsizim, 4-Katilmiyorum, 5-Kesinlikle Katilmiyorum) size en uygun olani
isaretleyiniz.

29. Bizim simifta gayret etmek ¢ok 6nemlidir.

30. Bizim siifta asil hedef, iyi not almaktir.

31. Bizim simfta asil hedef, derste islenen konular1 gergek anlamda anlamaktir.

32. Bizim siifta dogru cevap vermek gok onemlidir.

33. Bizim simfta kimse, diger 6grencilerden basarisiz olmak istemez.

34. Bizim smfta diger 6grencilerin oniinde hata yapmamak onemlidir.

35. Bizim siifta ne kadar ilerleme gosterdigin gergekten onemlidir.

259

Kesinlikle
Gegerli
Gegerli

Kararsizim
Gegersiz
Kesinlikle
Gegersiz

Kesinlikle
Katiliyorum
Katiliyorum

Kararsizim
Katilmiyorum
Kesinlikle
Katilmiyorum

36. Bizim simfta dersi ezberlemek degil anlamak 6nemlidir.

37. Bizim siufta diger 6grencilere, derste basarisiz olmadigim gostermek gergekten
Snemlidir.

38. Bizim sinfta yeni fikir ve kavramlar1 6grenmek ¢ok 6nemlidir.

39. Bizim smmfta derse ilgisiz goriinmemek ¢ok 6nemlidir.

40. Bizim simfta eger bir seyler 6greniyorsak, yanlig yapmamiz 6nemli degildir.

41. Bizim simfta sinavlardan yiiksek not almak ¢ok onemlidir.

42. Bizim simfta kimse dersi anlamiyormus gibi goriinmek istemez.

260

Attitudes Toward Coding Education Scale

Kodlama Egitimine Yonelik Tutum Olcegi (KEYTO)

Degerli 6grenciler,
Bu 6lcek. Bilisim Teknolojileri ve Yazilim dersinde yer alan Kodlama egitimi ile ilgili gériisleriniz hakkinda bilgi
edinmek amaciyla hazirlanmistir.

Kodlama (Bilgisayar programlama); problemleri ¢6zmek. insan-bilgisayar etkilesimini saglamak ve belirli bir
gorevi bilgisayarlar tarafindan gerceklestirmek icin cesitli komut setleri ile yapilan uygulama ve gelistirme
stirecidir.

Bu 6l¢ekte yer alan maddelerin hi¢birisinin dogru ya da yanlis yaniti yoktur. Bu 6lgege bireysel olarak vereceginiz
yamitlar kesinlikle iigiincii sahislara ve diger resmi kurum ve kuruluslara bildirilmeyecektir. Olgek sonuglarmnin
saglikli olabilmesi icin, sorular1 samimi ve dogru olarak yamtlamaniz biiyilk énem tasimaktadir. Yanitlamaya
baslamadan énce ciimleyi dikkatlice okuyunuz. Sizden istenen. maddelere 1°den 5°e kadar bir puan vermenizdir.
1-Kesinlikle Katilmiyorum
2-Katilmiyorum
3- Kismen Katiliyorum / Kismen Katilmiyorum
4- Katiliyorum
5-Kesinlikle Katihyorum

Arastirmaya katildigmiz i¢in tesekkiir eder. derslerinizde basarilar dilerim.

Ogr. Gor. Pmar KEFELI BERBER
Recep Tayyip Erdogan Universitesi/Bilgisayar Teknolojileri Boliimii

fletisim: pinar.kefeli@erdogan.edu.tr

Ad-Sovad:

1) Kesinlikle Katilmiyorum
2) Katilmiyorum

(3) Kismen Katihyorum /
Kismen Katilmiyorum

(4) Katihyorum

(5) Kesinlikle Katihyorum

—

Kodlama egitimini severim.

Kodlama egitiminin ne anlama geldigini bilirim.

Kodlama egitimi bana ¢ok kolay geliyor.

Bircok dersi yapabiliyorum ama kodlama konusunda hi¢ yetenegim yok.

Kodlama $grenirken hi¢ zorlanmiyorum.

Kodlama egitimini giinliik hayatta kullanabilecegimi diistiniiyorum.

Kodlama yaparken mutlu olurum.

Kodlama yaparken kendimi mutsuz hissederim.

Ol | 9| ||| wWw| N

Kodlama egitimi sirasinda eglenirim.

—
(=}

Kodlama egitimi sirasinda sikilirim.

—
—

Kodlama egitimi alirken bir seyler 6grendigimi hissederim.

—_
(5]

Kodlama yarismalarmda derece almak beni cok mutlu eder.

Liitfen arka sayfaya gecin.

261

E E
£E
S 2o
z =
E |ZE| =
= < =
= ¥ = = 2
25| 2|52 5|28
= £ ES| = | £5
£ 2 = - = sz
g E T | 23| 2 | 2=E
XE| X |a¥| g a8
a 5"‘ &l e N OB
13 |Kodlama egitimi bana ¢ok zor geliyor.
14 |Kodlama yaparken kendime giivenirim.
15 |Kodlama egitimi sirasinda hicbir sey 6grenemiyorum.
16 |Kodlama egitimi diger derslerdeki basari durumumu olumlu etkiliyor.
17 Kodlama yaparken bir problemle karsilastigim zaman ¢6ziime
ulasamazsam vazgecerim.
18 |Kodlama 6grenirken ¢ok zorlaniyorum.
19 |Kodlama egitiminin ileride isime yarayacagmi diistiniiyorum.
20 |Kodlama yapmay bilmek, is bulma konusunda ¢ok isime yarayacak.
21 |Kodlama egitiminin oldugu giin okula gitmek istemem.
22 |Kodlama grenmeye ¢alismak zaman kaybidir.
23 |Kodlama egitimi sirasinda 6grendigim bilgileri diger derslerde de
kullanabilirim.
24 |Kodlama egitimini sevimem.
25 |Kodlama yapmaktan zevk alirim.
26 |Cok ugrasmama ragmen kodlama bana zor geliyor.
27 |Kodlama 6grenmek benim i¢in énemlidir.
28 Kodlama egitimi aldigim dersteki yiiksek basar1 durumum, diger
derslerime de olumlu katk: saglamaktadir.
29 |Kodlama grenmenin ileride isime yarayacagina inanirim.
30 |Kodlama egitiminin oldugu giin okula mutlu giderim.
31 Kodlama ile ugrasirken karsilastigim problemlerin ¢6ziimiinde kendime
giiveniyorum.
32 |Kodlama yapmayi "kesinlikle" §grenecegimi diisiinityorum.
33 |Kodlama egitimini ¢ok énemsiyorum.
34 | En basarisiz oldugum sey kodlama yapmaktir.
35 Tleride karsilasacagim daha zor kodlama ¢alismalarinin iistesinden
gelebilecegimi diisiiniiyorum.
36 |Kodlama egitimi aldigim dersten iyi not alabilirim.
37 |Kodlama yaparken bir problemle karsilastigim zaman c¢oziime ulasana
kadar ugrasirim.
38 |Kodlama konusunda biiyiiklerimden yardim almadan basarili olabilirim.
39 Kodlama egitimi sirasmda égretmenim tarafindan émek gosterilmek beni
gururlandirir.
40 |Kodlama egitimi aldigim dersten yiiksek not almak beni mutlu eder.
41 |Kodlama egitimini hi¢ 6nemli gérmiiyorum.

262

F. Reading Comprehension Achievement Test

Admz-Soyadimz:

Okulunuz:

Sinifiniz ve okul numaramz:

Okudugunu Anlama Basan Testi

Sevgili 6grenci,

Okudugunu anlamaya yénelik olarak hazirlanmis bu testte, farkli okuma pargalar ile ilgili sorular bulunmaktadir.
Parcalar dikkatli bir sekilde okuyarak okudugunuz parcayla ilgili verilen sorular1 yanitlayiniz. Sorularin hepsini
yanitlamaya calisimiz. Her soru i¢in verilen se¢eneklerden yalnizca birini isaretleyiniz. Yukaridaki alana ad-soyad.
okul. simf ve okul numarasi bilgilerinizi yazmay: unutmayimz.

Bu testte aldiginiz puanlar ders basar1 notunuza etki etmeyecektir ve cevaplariniz arastirmaci tarafindan 6zenle
saklanarak kimseyle paylasilmayacaktir.

“1. METIN”

Basarili olma yolunda senin ilk biiyiik diismanin tembelliktir. Burada sana tembelligi tarif edecek degilim.
Onu sen, ben hepimiz az ¢ok taniriz. Yalniz ben sana sunu sdyleyecegim ki, tembellik insan karsisina ¢ikip da
mertce savasan bir diisman degildir. Aksine, eski peri hikayelerindeki kahramanlar gibi, sekilden sekle girerek
ve bin bir hile kullanarak alt etmege ¢alisan bir korkaktir. Tehlikesinin biiyiikliigii de buradan gelmektedir.

Tembelligin. yerine. adamina ve ¢cagma gére girmedigi kalip yoktur. Herkesin huyuna gére tavir alir ve
konusur. Dilimizde aldigi ¢esitli isimler, onun bu sinsiligini gdsterir. Tembelligin adi havailiktir. Bir ad:
gevseklik ve hoppalik, diger bir ad1 da uyusukluk, iisengeclik ve keyfine diiskiinliiktiir. Tembellik herkesin
karsisina her zaman aym kilikta ¢ikmaz. O, mesleksiz aktor gibi her zaman rol degistirir. Bazen gegerli bir
mazeret kiligina girer: hasta olur, yorgun diiser ve haline acindirir. Bazen tatl bir dille konusur. géniil ¢eler.

Tembelligin kitabinda daha pek ¢ok sey vardir. Yalmz sunu soyleyeyim ki, eger tembel isen ve
tembelligin organlarla ilgili bir hastaliktan ileri gelmiyor da ruhsal bir gevseklik, uyusukluk. iisengeclik.
hoppalik ve havailik seklinde ise, iradeni kullanmak suretiyle basarmin bir diismanini yenebilirsin.

Anonim

1. “O, mesleksiz aktor gibi daima rol degistirir.” 3. Asagidakilerden hangisi bu par¢aya en uygun
ciimlesi nasil bir karakterin ifadesidir? baglik olur?
A) Tutarli-sinsi-girisken A) Basarmin Diigsmant
B) Tutarsiz-degisken-sinsi B) Maskesiz Aktér
C) Dengesiz-inandirici-caligkan C) Basarmnmn Yolu
D) Tutarsiz-giivenilir-degisken D) En Biiyiik Diisman
2. Asagidakilerden hangisi, tembelligin 4. Asagdaki seceneklerden hangisi tembel bir
tehlikelerinden biri olamaz? insanin soyleyeceklerine ters diiser?
A) Herkesin huyuna gére tavir alip. konusmasi A) Smavlar olmasaydi. hi¢ ders ¢alismazdim.
B) Bin bir hile kullanarak insam alt etmege ¢alismasi B) Sansin varsa her seyin var demektir.
C) Tembelligin, aktor gibi daima rol degistirmesi C) Emek olmadan yemek olmaz.
D) Insanin karsisina ¢ikip. korkmadan savasmasi D) Kiitiiphanede pineklemekten hoslanmam.

Arka sayfaya geciniz.

263

“2. METIN”

Yiicel besinci smufa gidiyordu. Zeki, caliskan bir 6grenciydi. Az énce okuldan déndii. Ogretmeninin
verdigi ev ddevlerini yapti. Sonra gazeteyi alip okumaya basladi.

Gazetenin ilk sayfasinda bir uzay roketinin resmi vardi. Bu, kocaman bir roketti. Ust kisnu sivri, kenarlart
diizgiin yuvarlakti. Yiicel uzun uzun bu resme bakti, onu evirdi ¢evirdi. Aklina bir soru takilmisti. Bu kocaman
sey. nasil oluyor da gékyiiziiniin ugsuz bucaksiz derinliklerine kadar yiikselebiliyor? Yeryiiziinden nasil
ayriliyor. havayi nasil deliyor?

Diisiindiikce. Yiicel’in merak: daha da artiyordu. Ne yapmalrydi? Bunu nasil 6grenmeliydi? Aklina bir
soru takildi m1 hep béyle oluyordu. Ogrenmeden rahat edemezdi.

Yiicel, aklina takilan soruyu ablasina sordu. Fakat sorusuna tam yanit alamadi. Ablasi:

- Git, Zeki amcana sor. O bilir, dedi.

Zeki Bey, Yiicellerin kap1 komsusuydu. Uzun yillar pilotluk yapmus. sonra emekli olmustu. Yiicel
gazeteyi alip ona gitti:

- Zeki amca. size bir sorum var. dedi. Resimdeki su roket. nasil oluyor da Diinya’mizdan ayrilip ¢cok
yiikseklere kadar ¢ikabiliyor? Bana, bunu anlatir misimz?

Zeki amca, biraz diisiindiikten sonra anlatmaya basladi:

- Bir balonu sisirip havaya birakalim. Balonun u¢tugunu gériiriiz. Ciinkii balonu sisirdigimiz zaman, dar
bir yere hava sikistirmis oluruz. Balonu birakinca da i¢indeki hava disar1 ¢ikmak ister, ¢ikan bu havanmn
basict. balonu ugurur. Iste roket de béyle ugar.

- Yani rokete de hava m1 doldurulur, Zeki amca?

- Hayir, hava doldurulmaz. Rokette itici giicii ok daha kuvvetli bir gazdan yararlanilir.

- Roketin havalanisi nasil olur? O zaman neler goriiliir, Zeki amca?

- Bunu sirastyla anlatacagim. Firlatilacak roket hazirlanir. Ozel giysiler giymis adamlar, once rokete
gerekli yakiti koyarlar. Bu tehlikeli bir istir. yangin ¢ikabilir. Bunun i¢in orada stirekli bir yangin arabasi
bekler. Yakit koyma isi bitince sira. roketin ateslemesine gelir. Bu sirada herkes koruma odasina girer. Roketin
yaninda kimse bulunmaz. Koruma odasinda sdyle bir geri sayis baglar: 10-9-8-7-6-5-4-3-2-1. ardindan ates
emri verilir.

Roket alevler sacarak yiikselir. Gittikce hizlanir. Gok giiriiltiisiinii andiran bir ses ¢ikararak hizla gézden
kaybolur.

Yiicel. roketin nasil atildigim. nasil yiikseldigini 6grenmisti. Zeki amcasma tesekkiir ederek oradan
ayrildi.

5. Yiicel’in gazetede gordiigii roket nasildi?

A) Kiigiik, iist kismu sivri, kenarlan diizgiin ve
yuvarlak

B) Kocaman, iist kismu diizgiin, kenarlar
yuvarlak

C) Kiigiik. tist kismu sivri, kenarlar diizgiin

D) Kocaman, iist kismu sivri, kenarlar diizgiin ve
yuvarlak

6. Asagida karisik olarak verilmis ciimlelerin
dogru siralanis: hangisidir?

1.Koruma odasinda geri say1s baslar
2.Firlatilacak rokete gerekli yakit konur.
3.Roket alev alarak yiikselir.

4.Roketin atesleme islemine gegilir.

A)1.2.3.4 B)1.3.4.2
C)2.4.1.3 D)2.4.3.1
Diger sayfaya geciniz.

264

“3. METIN”

Japonya’da ay 15131 seyretme toplantisi yaparlar, sizi oraya ¢agirirlar ancak orada hi¢ konusulmaz. Giizel
ve zevkli bir bah¢ede oturur, ayin dogmasini seyreder ve bundan zevk almay: dgrenirsiniz.

Japonlar dogaya, bizim anlayamayacagimiz kadar hayranlik duyarlar. Kism ilk yagan kar1 seyretmek ve
kutlamak icin toplantilar yaparlar. Karin ¢evreyi birden nasil degistirdigini ve yumusattigini. 1sik golge
arasindaki farklar ortadan kaldirmasmin zevkini tadarlar. Japonlar giizel bir yaz gecesi kirlarda dinlemege
giderler. Evet dinlemege giderler. Neyi biliyor musunuz? Béceklerin miizigini. ..

Bir giin beni pek cok kibar bayanin mangal gibi bir seyin cevresinde oturduklari bir toplantiya
cagirmislardi. Mangal kémiirii yanarken icine degisik odun parcalari atiyor, biraz yanincaya kadar icinde
birakiyorlardi. Sonra duman ¢ikarken bu odun parcalarini, 6zel bir tepsi icinde herkes koklasim diye. sira ile
gezdiriyorlardi. Insan ilk kez orada seftali. cam, kiraz gibi odunlarin, miizik notalar1 gibi birbirinden ayr

kokulari olabileceginin farkina variyordu.

7. Degisik odun parcalarmin “mangalda
yakilmas1” neyi gostermektedir?

A) Japon kadinlarinin sanatei ruhlu oldugunu

B) Her bitkinin farkli kokusunun bulundugunu
C) Yanan odun parcalarinin tepsiyle tasindigini
D) Yanan odunlarin farkli kokular ¢ikardigimi

8. Pargada hangi duyumuzla ilgili ayrintiya yer
verilmemistir?
A) Goérme
C) Tatma

B) Isitme
D) Koklama

9. Parcaya gore Japonlar kisin neyi seyrederler?
A) Ilk karin getirdigi degisiklikleri

B) Degisen cevre kosullarini

C) Isikla golge arasindaki farklar

D) Yumusayan insan ¢izgilerini

10. Parcaya gére “boceklerin miizigini dinlemek™
hangi anlamda kullanilmistir?

A) Sevilen miizik parcalarim dinlemek

B) Hayvanlar sevmek ve onlarla ilgilenmek

C) Béceklerin ¢ikardid: sesleri ayirt etmek

D) Dogadan gelen sesleri dinlemek

11. Japonya’da ay 15131 seyretme toplantisi
diizenlenmesinin asil amaci nedir?

A) Konuklar ile iyi zaman geg¢irmek

B) Ayin nasil dogdugunu gostermek

C) Ay dogusundan zevk almak

D) Konuklarmni bahcede agirlamak

12. Parcaya en uygun baslik asagidakilerden
hangisidir?

A) Japon Gelenekleri

B) Doga Sevgisi

C) ilk Diisen Kar

D) Béceklerin Miizigi

Arka sayfaya geciniz.

265

“4, METIN”

Bir komsu der ki Hoca’ya:
“Esegimi ettim kayip.
Belki inmistir ¢aya,

Sana zahmet aray1p.,

Bul da getir cabucak™
Rahmetli kiy1 bucak,
Arayacagi yerde,

Bas1 havada, tiz perde
Bir sarki tutturur:

Bahge. bag gezip durur.
Biri Hoca’ya rastlar,

Der: “Bagda ne isin var?”

13. Asagidakilerden hangisi bu siire en uygun
baslik olur?

A) Hoca’'nin esegi B) Ancak béyle aranir
C) Hoca’'nin nesesi D) Dostluk
14. Esegin sahibi kimdir?
A) Nasrettin Hoca

C) Hoca’nin komsusu

B) Hoca’nin karist
D) Hoca’nin akrabasi

- Esegi artyorum.
Dereye vartyorum.

- Isi tutarak gevsek.
Aranmaz béyle esek,
Burakir sarkiy1.
Firildar kése kiy1.
Sendeki bu neseyi,
Goren diigiinde sanur.
- El alemin esegi
Ancak béyle aranir.

Hasan Ali YUCEL

15. Hocayla neden
elestiriyor?

A) Kendisini hi¢ arayip sormadig: i¢in

karsilasan kisi Hoca’y1

B) Borcunu 6demedigi igin
C) Ustlendigi isi 6zenli yapmadig1 igin
D) Bahgeye izinsiz girdigi i¢in

“5, METIN”

Denizle i¢ ice olmus insanlar i¢in bile buzkiranla yolculuk etmek ¢ok garip bir deneyimdir. Denizci, agik
sularda, geminin dalgalar boyunca ne sekilde tepki gésterecegini dgrenir. Buzla kapli bir denizde ise. diizenli
hareketler yoktur. Onun yerine. orada gemiciyi hayrete diisiiren beklenmedik sarsmtilar vardir.

Dev gibi buz pargalari, ¢elik geminin gévdesine carpar. Carpma sirasinda ¢ikan ses, geminin su seviyesini
gosteren ¢izgi boyunca giiriiltii ¢ikaran yiizlerce ¢op tenekesinin sesine benzer. Geminin i¢inde. o anda gérevli
olmayan gemiciler dinlenmeye ¢alisir. ancak bu giiriiltiiden kagmak miimkiin degildir.

Gemi buz kirma islemi basladiginda. buzlardan olusan genis bir alana girer ve aniden yavaslar. Sonra
geminin celik govdesi kalm buz pargasinin iizerinde yiikselir. Bu yiizden bir siire suyun yiizeyinde hareketsiz
kalir. Geminin agirlig1 buzu kirar. Motorlarinin biitiin giiciiyle ¢alisan gemi tekrar geri doner ve tekrar buzlari
i¢ine gémiiliir. Bu islem, gemi donmus sular arasindan yol bulup hareket edene kadar siirer.

16. Asagdakilerden
dinlenmesini engellemektedir?
A) Gemi motorunun giiriiltiisii
B) Gemiye carpan dalgalar

C) Gilriiltii yapan gemiciler
D) Gemiye carpan buzlar

hangisi gemicilerin

17. Asagidakilerden hangisi bu par¢aya en uygun
baslik olur?

A) Gemiciligin Zorluklar:

B) Kuzey Buz Denizleri

C) Bir Gemici Anlatiyor

D) Buzkiranla Yolculuk

Diger sayfaya geciniz.

266

“6. METIN”

Bugiin yeni eve tasindik. Yeni evimiz ¢ok giizel. Odamin penceresinden deniz gériiniiyor. Annem bu oda
senin dediginde, hemen pencereden disar1 baktim. Denizi gériince kendimi kaptan késkiinde sandim. Deniz
deyince gemi. gemi deyince kaptan. kaptan deyince de kaptan koskii gelir aklima. Adalara sefer yapan. yiiziinii
hi¢ gérmedigim kaptan gibi ben de késkiimii ciceklerle siisleyecegim.

Ilk benim esyalarim odama yerlestirdik. Ortada genis. bos bir alan kaldi. Eski odam kiiciiktii.
Oyuncaklarim, kitaplar, defterler... hepsi tikis tikisti. Bu oda genis. Yeni evimizin biiyiikce bir salonu ve
mutfag: var. Ev ferah. Annem bu yiizden yeni evimizde daha mutlu olacagimizi séyliiyor.

18. Parcada anlatilmak istenen temel diisiince
nedir?

A) Ev tasimanin ne kadar zor oldugu

B) Eski evlerinin ne kadar kétii oldugu

C) Yeni tasindiklar evin 6zellikleri

D) Odalar nasil diizenledikleri

20. Cocuk odasma girince neden kendini kaptan
koskiinde zannediyor?

A) Gegen gemilerin siren seslerini isittigi i¢in

B) Odasinin penceresinden deniz gériindiigii i¢in
C) Kendisini adalara sefer yapan kaptanlara
benzettigi i¢in

D) Biiyiidiigiinde gemilerde kaptan olmak istedigi

19. Yeni evde neden daha mutlu olacaklar? icin
A) Daha genis ve ferah oldugu igin
B) Binas1 yeni yapildig: i¢in
C) Yeni komsular iyi oldugu i¢in
D) Deniz kenarinda oldugu i¢in
“7. METIN”

Bir adam bir esek satin almak istedi. Hayvan pazarinda satilik bir esek buldu. Satin almadan énce onu

denemek i¢in esek sahibiyle anlasti. Hayvani eve gétiirdii ve diger eseklerle birlikte ahira koydu. Esek, ahirda
diger eseklerden ayrildi ve en degersiz. haylaz olaniyla arkadaslik etmeye basladi. Adam. yeni esegine hemen
bir yular takt: ve sahibine geri gotiirdii. Bu kadar kisa siire icerisinde uygun bir deneme yapilmasina sasiran
esek sahibine: “Daha fazla denemeye ihtiyacim yok. arkadas olarak sectigi esekten onun ileride nasil bir esek

olabilecegini tahmin ediyorum™ dedi.

21. Esegi almak isteyen kisinin hangi hareketi esek
sahibini sasirtt1?

A) Boyle bir esegi satin almak istemesi

B) Bir ahir dolusu esege sahip olmasi

C) Esegi bu kadar hizla geri getirmesi

D) Esegi hemen denemek istemesi

22. Esek sahibinin esegini hemen satamamasinin
nedeni asagidakilerden hangisidir?

A) Esegi almak isteyen kisi ile beraber ¢alismak
istemesi

B) Esegin denenmek iizere gotiiriilmesine izin
vermesi

C) Esek icin degerinden ¢ok daha yiiksek fiyat
istemesi

D) Esegi almak isteyen kisiyi aldatmay1 denemesi

23. Esegi almak isteyen adam icin asagidakilerden
hangisi sdylenemez?

A) Dikkatli

B) Kurnaz

C) Akillx

D) Cimri

24. Pargada anlatilmak istenen temel diisiince
nedir?

A) Bir mali satin alirken dikkatli olmaliyiz.

B) Arkadaslarimizi segerken dikkatli olmaliyiz.
C) Denemeden higbir sey satin almamaliyiz.

D) Tek bir kisiyle arkadaslik etmemeliyiz.

Arka sayfaya geginiz.

267

“8, METIN”

“Ister kagit iizerinde olsun ister agizla, benim sevdigim konusma diipediiz. igten gelen, tatli, biiyiilii ve
kisa siiren bir konusmadir. Gii¢ olsun, zarar1 yok: ama sikici olmasm: siisten, 6zentiden kagsin: diizensiz.
gelisigiizel ve korkmadan yiiriisiin. Dinleyen her yedigi lokmayi tadarak yesin.”

25. “Dinleyen her yedigi lokmay: tadarak yesin.” 26. Asagidakilerden hangisi yazarmn sevdigi
Ciimlesinde anlatilmak istenen duygu nedir? konusma tarzina girmez?
A) Dinlemekten zevk almak. A) Kisa siireli konusmalar
B) Dinlemek zorunda olmak. B) I¢ten gelen konusmalar
C) Dinleme kurallarma uymak. C) Ozentili konusmalar
D) Iyi bir dinleyici olmak. D) Gelisigiizel konusmalar
“9. METIN”

Kecicigin akli bir karis havada ya. siiriistinii bir yana birakmus. bir basina otlaya otlaya ¢ekip gitmis. Hain
koca kurt, kacirir mi; hemen gormiis kecicigi: “Hah, iste agzima layik bir lokma. Yasasin!” demis.

Kecicik, bakmuis, can pazari. Hi¢ kurtulusu yok. “Eh ne yapalim, demek kaderimizde sana yem olmak
varmus, kurt kardes.” demis. “Madem 6liim kapiya geldi, bari bana biraz kaval ¢al ki neseleneyim, kendimi
unutup dyle éleyim...”

Kurt, “son istegi zavallinin.” demis. bulmus bir kaval. ¢calmaya baslamus. Kurt ¢almus. kegicik oynamis.
Derken otelerden kaval sesini duyan kopekler kosturmuslar, gelmisler, kurdu onlerine diisiiriip bir giizel
kovalamislar. Kagmadan énce kurt durumu anlayip oyuna geldigini sezinlemis: “Sug sende degil bende. Neme
gerekti benim kaval ¢almak. neme gerekti bana kocekli kurban!...” demis.

Zamansiz bir ige kalkismanin sonu budur. Olemeli, bigmeli, adimini ona gére atmali. Tersi oldu mu, iste
boyle Dimyat’a pirince giderken evdeki bulgurdan olunur.

27. Asagidaki ciimlelerin hangisinde “can pazar1™ 29. Asagidaki kelimelerden hangisi parcada
s6zii parcadaki kullanimiyla ayni1 anlamdadir? anlatilan keci icin sdylenemez?

A) Bugiin can pazarinda her sey ucuzdu. A) Inatg1 B) Kurnaz

B) Sizinle can pazarina gelmeyi ¢ok isterdim. C) Acikgoz D) Sorumsuz

C) Bizim kegciyi diin can pazarinda sattik.
D) Depremde yasanan can pazari bizi tizdii.

28. Bu parcadan cikaracagmmiz ders asagidaki
ifadelerden hangisiyle yakin anlamlidir?

A) Av avlanmus. tav tavlanms.

B) Bin 6l¢iip bir bigmeli.

C) Kurt dumanli havay1 sever.

D) Kopeksiz siiriiye kurt girer.

268

G. 5th Grade Mathematics Achievement

Test

Ad-Soyad:

Numara:

Sinif:

5. Smif Matematik Basar Testi

Sevgili 6grenci,

Cevaplarinizi hem cevap siklarmin iizerinde hem

okuyup. anlayarak cevaplandiracagimizdan eminim.

Katkilarimiz i¢in ¢ok tesekkiir ederim.

Elinizdeki testte “Dogal sayilar”. “Dogal sayilarda dért islem problemleri” alt 6grenme alanlarindan
olusan Matematik Basar1 Testinin sorular1 yer almaktadir. Bu sorular sizlerin adi gegen konulari
kavrama diizeyinizle ilgili olarak degerlendirilecek olup bu uygulamanin sonuglar hicbir sekilde
notlarimiz: etkilemeyecektir. Vereceginiz yanitlar kesinlikle gizli tutulacaktir.

anahtarinda ilgili sorunun karsisindaki uygun cevap sikkma ait kutucuga “X” isareti koyarak
belirtiniz. Her soru icin yalmzca bir segenegi isaretleyiniz. Verilen sorular1 dikkatli bir sekilde

de arka sayfanmn sonunda yer alan cevap

1) 560 060 250 sayisin okunusu asagidakilerden hangisidir?
A) Elli alt1 milyon alt1 yiiz iki bin elli

B) Elli alt milyon altmus bin iki yiiz elli

C) Bes yiiz altnus milyon alt1 bin iki yiiz elli

D) Bes yiiz altnus milyon altnus bin iki yiiz elli

2) 273 TL’yi 540°a tamamlamak i¢in ka¢ TL’ye ihtiya¢ vardir?
Problemini gosteren matematik ciimlesi asagidakilerden

hangisidir?
A) 273+540="? B) 273+ 2=540
C) 273 x 7=540 D) 273x 540=2?

3) Bir otobiiste 55 kisi vardir. Bunlarn 32 tanesi bayandir.
Durakta yolculardan 3 erkek 7 bayan indigine gore otobiiste
kag kisi kalmistir? Yukanida verilen problem ciimlesinde hangi
bilgi fazla verilmistir?

A) Otobiisteki toplam kisi sayis1

B) Durakta inen bayan say1st

C) Durakta inen erkek sayis1

D) Otobiiste bulunan bayan sayist

4) 19°un iki kat1 ile 9’un 3 katinin farki kactir?
A)24 B) 20 C)38 D) 11

5) Hiilya 990 liraya satilan bir bilgisayar1, 120 lira pesin 6deyip
geri kalan 6 esit taksitle aliyor. Hiilya her bir taksit icin kag
lira 6deyecektir?

A) 140 B) 145 C) 150 D) 165

6) 20 sayismin 3 katinin 5 fazlasi asagidakilerden hangisidir?
A) 60 B) 65)70 D) 75

269

7) Asagidakilerin hangisinde binler boliigiindeki rakamlarn
say1 degerlerinin toplanu, birler boliigiindeki rakamlarin sayr

degerlerinin toplanuindan biiyiiktiir?
A) 123 456 987 B) 456 123 987
C) 987 123 456 D) 123 987 456

8) Tiirkiye’nin 2008 yilindaki niifusu 8 basamakli bir dogal
sayidir. Bu sayin birler béliigiinde 100, binler boliigiinde 517
ve milyonlar béliigiinde 70 bulunduguna gére, 2008 yilinda
Tiirkiye’ nin niifusu asagidakilerden hangisidir?

A) 700 517 100 B) 517 070 100

C) 100 517 070 D) 70 517 100

9) 0, 3, 1, 4 rakamlarinin tamanu kullanilarak, yazilabilecek en
biiyiikk ve en kiiciik dort basamakli sayilarin arasindaki fark
kagtir?

A) 2970 B) 3106 C) 3276 D) 4176 84

10) Bir smftaki dgrencilere 200 ml’lik kutu siitlerden ikiser
tane dagitiliyor. Bu siifta 25 dgrenci olduguna gore, toplam
kag ml siit dagitilmustir?

A) 400 B)1000 C)10000 D) 40000

11) Serap, pazardan kilogramu 3 TL olan elmalardan 6 kg,
kilogram1 4 TL olan muzdan 2 kg almustir. Serap pazarciya
toplam ka¢ TL para 6deyecektir?

A)25 B) 26 C) 27 D) 28

12) Bir 6gretmen 96 tane cikolatayr 24 kisilik bir simftaki
ogrencilere her birine esit sayida cikolata diisecek sekilde
paylastirmak istiyor. Buna gore her 6grenciye kag tane ¢ikolata
diigmiistiir?

A)4 B)6 08 D) 10

13) “Bes yiiz iki milyon iki yiiz i{i¢” sayismun yazlis

hangisidir?
A) 502.000.203 B) 50.200.203
C) 500.200.203 D) 500.202.003

14) Bir usta 30 giin calismasina karsilik 2400 lira aldigina gore
ustanin giindeligi kag liradir?
A) 60 B) 70 C) 80 D) 90
15) Asagidaki sayilardan hangisinin binler boliigiindeki
rakamlarin say1 degerleri toplamu 11°dir?

A) 281347 B) 280346

C) 282064 D) 181506

16) Atatiirkiin 6liim y1l1 olan 1938 sayisimn basamak degerleri
toplamundan, dogum y1l1 olan 1881 sayisin say1 degerlerinin
toplanu cikarildiginda fark kag olur?

A) 1918 B) 1920

C) 1922 D) 1923

17) Aylin 8 yil sonra 18 yasnda olacagma gore dort yil dnce
kag yasindaydi?
A)4 B)6 08 D) 14
18) 15 in 3 katimn 11 eksigi kag eder? Problemini ifade eden
matematik climlesi asagidakilerden hangisidir?

A) 15+3-11 B) 15/3-11

C) 15x3-11 D) 15x11-3

19) 5 tanesi 350 TL olan sabunlarin 45 tanesi kag liradir?
A) 1750 B) 2250
C)3150 D) 4 000

20) 685 sayisinn 30 fazlasimn 25 eksigi nedir? Yukarida
verilen sorunun cevabi hangisinin cevabi ile aynidir?

A) 685 sayisiun 10 fazlasi

B) 685 sayisiun 5 fazlasi

C) 685 sayisumun 5 eksigi

D) 685 sayisuun 30 fazlasi

21) Ahmet, pazartesi giinii 850 metre yol yiirtimiistiir. Salt
giinil ise pazartesi giinii yiiriidiigii yolun yanism yiiriimiistiir.
Buna gore Ahmet iki giinde toplam kag metre yol yiiriimiistiir?
A) 1200 B) 1275
C) 1400 D) 1550

22) Hangi saymun 50 kat1 150°dir?

A)2 B)3 04 D)5

23) Hakan’mn boyu Kemal’ den 8 cm kisa, Orhan’dan 5 cm
uzundur. Orhan’m boyu 135 cm olduguna gore iigiiniin boy
uzunluklan toplama kag santimetredir?

A) 439 B) 423

C) 412 D) 399

24) Bir siuftaki 38 6grencisinin her birine altisar ¢ikolata veren
dgretmenin 16 ¢ikolatas: kaltyor. Ogretmenin smifa getirdigi

cikolatalar ka¢ tanedir?
A) 158 B) 200
C) 230 D) 244

25) Bir tavuk ciftliginde giinde 5640 tane yumurta
tiretilmektedir. Bu yumurtalanin her biri 20 yumurta alan
kolilere yerlestirilerek satildigina gore bu ¢iftlikte 10 giinde ka¢
paket yumurta iiretilmistir?

A) 2380 B) 2640
C) 2760 D) 2820
CEVAP ANAHTARI
A|B|C|D A|B|C|D

1 16
2 17
3 18
4 19
5 20
6 21
7 22
8 23
9 24
10 25
11

12

13

14

15

270

H. Interview Protocol

Interview Protocol for Students

Goriigme tarihi: Goriisiilen Kisi:
Goriigme saati: Yer:
Merhaba,

Ben Pnar KEFELI BERBER, Orta Dogu Teknik Universitesi Bilgisayar ve Ogretim Teknolojileri
Egitimi Anabilim Dalinda doktora Ogrencisiyim. Ayni1 zamanda Recep Tayyip Erdogan
Universitesi’nde Bilgisayar Teknolojileri Béliimii’'nde 6gretim gorevlisiyim. Oncelikle bana vakit
ayirarak bu goriismeyi kabul ettigin igin tesekkiir ederim. Bu goriisme ortaokul 6grencilerinin kodlama
basarilarim1 etkileyen faktorlerin belirlenmesine yonelik yiiriitiilen bir ¢aligma kapsaminda
gergeklestirilmektedir. Bu amagla Bilisim Teknolojileri ve Yazilim dersinde aldigin kodlama egitimine
yonelik bazi sorular sormak istiyorum. Soracagim sorular bilgi 6l¢gme amagh degildir. Sadece, senin
konu ile ilgili diisiincelerini 6grenmek istiyorum. Arastirma siiresince kisisel bilgilerin gizli tutulacaktir.
Bu goriigme sadece aragtirmacilar tarafindan incelenerek sadece bu aragtirma igin kullanilacaktir.
Goriigme sonunda degistirmek ya da kayit disi tutmak istedigin herhangi bir sey olursa bunlan
degistirebilir ya da silinmesini isteyebilirsin.

Goriisme ortalama 15-20 dakika siirecektir. Eger iznin olursa goriismeyi ses kayit cihazi ile kaydetmek
istiyorum.

Goriismeye baglamadan 6nce sormak istedigin herhangi bir soru var mi?
Hazirsan goriismeye baslamak istiyorum.

Sorular

1. Bu dénem boyunca Bilisim Teknolojileri ve Yazilim dersinde kodlama ile ilgili neler 6grendin?
Kisaca 6zetler misin?

2. Kodlama ile ilgili en ¢gok hangi kavramlar1 ve konulan 6grenmede/hangi konularla ilgili etkinlikleri
tamamlamada/code.org bulmacalarin1 ¢6zmede zorlandin?

o Sence neden zorlandin?

3. Code.org kodlama platformunun kodlama &grenmen agisindan olumlu yonleri nelerdi? Olumsuz
yonleri nelerdi?

4. Bu donem boyunca smifta gergeklestirdiginiz bilgisayarsiz etkinliklerin kodlama &grenmen
agisindan olumlu yonleri nelerdi? Olumsuz yo6nleri nelerdi?

5. Kodlama ogrenirken Bilisim Teknolojileri gretmeninin sana nasil yafdimer oldugunu
diisiiniiyorsun?

6. Donem boyunca kodlama 6grendigin derslerde en ¢ok sevdigin seyler nelerdi? Neden?

Doénem boyunca kodlama &grendigin derslerde en az sevdigin seyler nelerdi? Neden?

=

gergeklestirdin?
o Bu senin tercihin miydi?
o Sen hangisini tercih ederdin? Neden?

(Esli kodlama yapan 6grenciler igin)

9. Kodlama etkinliklerinde birlikte galisacagin grup arkadasini nasil segtin?
o Her derste aym kisiyle mi grup arkadas1 oldun?

271

10.

11.

12.

13.
14.

15.

16.
17.
18.
19.

Doénem boyunca esli programlama yaparken daha ¢ok hangi rolii iistlendin: Siiriicii/Y 6nlendirici?
o Bu senin tercihin miydi? Neden?
o Bilgisayardaki etkinlikler esnasinda esinle gorevlerinizi degistirdiniz mi?
o Gorev degisimini hangi araliklarla gergeklestirdiniz?
Bir arkadasinla birlikte kodlama yapmanin sana gore olumlu yanlar nelerdi?
o Grup arkadaginin, senin kodlama dgrenmene katki sagladigim diisiiniiyor musun? Ne sekilde
katki saglad1?
o Senin, grup arkadaginin kodlama 6grenmesine katki sagladigini diisiiniiyor musun? Ne sekilde
katki sagladin?
Bir arkadasinla birlikte kodlama yapmanin sana gére olumsuz yanlar nelerdi?

(Bireysel kodlama yapan égrenciler igin)
Bireysel kodlama yapmanin sana gore avantajlari nelerdi?
Bireysel kodlama yapmanin sana gore dezavantajlari nelerdi?

(Ortak)
Programlama etkinliklerinde takildiginda, sorunun ¢oziimiinii bulamadiginda genellikle ne
yapiyordun?

o Arkadasin/6gretmenin sana ne sekilde yardimer oluyordu?
Kodlama konusunda basarili oldugunu diigtiniiyor musun? Neden bagarili oldugunu diigiiniiyorsun?
Kodlamadaki bagarim nelerin etkiledigini diigiiniiyorsun?
Kodlama 6grenmek senin igin dnemli mi? Neden?
Ogretmenin kodlama o6gretimini daha iyi yapilabilmesi igin tavsiyede bulunmak istesen ne
sOylerdin?

Kodlama egitimi ile ilgili olarak eklemek istedigin herhangi bir sey var mi?

Tesekkiir ederim.

272

I. Sample Lesson Plan

7. Scrat ile Hata Ayiklama (3. Hafta)

Onerilen Ders Siiresi: 1ders saati

Tahmini Hazirhk Siiresi: 10 dk.

Kazammlar BT.5.5.1.16. Bir algoritmay: test ederek hatalar1 ayiklar.
BT.5.5.2.10. Farkli yapilar i¢in olusturdugu algoritmalarin sonucunu yordayarak hatalarin1 ayiklar.

ﬁ“ﬁ::al' e Yazilim Hatas1 (Bug) — Diizgiin ¢aligmayan bir programin pargas.
€ eler:
e Hata ayiklama — Bir algoritma veya programdaki sorunlari bulma ve diizeltme.

Hazirhk e Smifiniz i¢in sorun olusturabilecek alanlar1 belirlemek igin Kurs F Cevrimici
Bulmacalar — 2018 — Web sitesinde yer alan Ders 4: Scrat ile Hata Ayiklama
bulmacalarini ¢oziin.

o (Istege bagl) Simfinizla birlikte ¢6zmek igin birkag bulmaca segin. Iﬁ% !
e “Bilgisayar Bilimi Temelleri Ana Aktivite Ipuglar1 — Ders Onerileri”ni)
. . Kurs F — Ders 4
inceleyin. (bkz. s. 44) . Scrat ile Hata Ayiklama
e Hata Ayiklama Yontemi — Ogrenci Dokiimanini sinifla birlikte gézden Bulmacalari
gegirin.
Giris Ogrencilerden giinliik yasamda ¢ozmeleri gereken problemleri diisiinmelerini isteyin.

« Caligmayan bir seyi nasil diizeltirsiniz?

« Belirli bir dizi adim takip ediyor musunuz?

« Bu iinitedeki bulmacalar zaten sizin igin ¢6ziildii (oley!), ancak galigiyor gibi goriinmiiyorlar
(yaaaaaa!)

* Programlardaki bu sorunlar1 “yazilim hatalar1 (bugs)” olarak adlandiriyoruz ve burada “hata
ayiklamak” sizin isiniz olacak.

Hata ayiklama bir siiregtir. [k dnce, programinizda bir hata oldugunu anlamalisiniz. Ardindan hatay1
bulmak igin programinizi adim adim ayrintili bir sekilde incelersiniz. “Ilk adimi dene, ise yaradi m1?
Sonra ikinci, peki ya simdi?” Her seyin satir satir galigtigindan emin olursaniz, kodunuzun gerektigi
gibi ¢aligmadig1 bir noktaya geldiginizde, bir hata buldugunuzu bilirsiniz. Hataniz1 kesfettikten sonra,
diizeltmek (veya “hata ayiklamak™) igin galigabilirsiniz!

Sinifta heyecan yaratacagini diisliniiyorsaniz, bugiinkii bulmacalarda yer alan ¢izgi film karakterini,
yani Buz Devri ¢izgi filminden Scrat’1 tanitabilirsiniz. Eger 6grenciler Scrat’i bilmiyorlarsa, ilging
sincaplarin basinin derde girdigini gosteren bir video izletin.

273

Etkinlik

Ana Etkinlik (20 dk.)

Kurs F Cevrimici Bulmacalar — 2018 — web sitesi

Oprencilerin bilgisayarda bulmacalar1 ¢ézmeye baslamalarina izin vermeden once, onlara Esli
Programlama — Ogrenci Videosu’nda (link: Pair Programming — Student Video) anlatildig: sekilde esli-
programlamanin avantajlarin1 hatirlatin ve grup arkadaslarindan yardim istemelerini sdyleyin.
Ogrencileri giftler halinde oturtun ve yardim igin size bagvurmadan 6nce en az iki siif arkadagindan
yardim istemelerini tavsiye edin.

Ders ipucu

Ogrenci seviyesine gore yukaridaki bulmacalar yerine Kurs 2 Ders 11 Sanatci: Hata Ayiklama
bulmacalarini ¢6zdiirebilirsiniz.

274

J. Approval of Human Subjects Ethics Committee at METU - I

APRLIED ETHIES RESEARCIEENTER / MIDDLE EAST TECHNICAL UNIVERSITY

y/

UYGULAMALI ETiK ARASTIRMA MERKEZI (D\.‘ ORTA DOGU TEKNIK UNIVERSITESI

JPINAR BULVARI 06800

Say1: 28620816 /

20 May1s 2021
Konu : Degerlendirme Sonucu
Gonderen: ODTU Insan Aragtirmalar1 Etik Kurulu (IAEK)

Tlgi . Insan Arastirmalar Etik Kurulu Bagvurusu

Saym Prof.Dr. Soner YILDIRIM
Danigmanhigini yiiriittiigiiniiz Pinar KEFELI BERBER'in “Cocuklara Programlama
Temellerinin Ogretimine Yénelik Biligsel Tabanh Bir Ogretim Tasarimi1 Model Onerisi”

basglikli aragtirmamz Insan Arastirmalart Etik Kurulu tarafindan uygun goriilmis ve

221-ODTU-2021 protokol numarasi ile onaylanmistir.

Saygilarimizla bilgilerinize sunariz.

Dr.Ogretim Uyesi Ali Emre TURGUT
IAEK Baskan Vekili

275

K. Approval of Human Subjects Ethics Committee at METU - 11

UYGULAMALI ETiK ARASTIRMA MERKEZI \\' DRTA DOGU TEKNIK UNIVERSITESI
APPLIED ETHICE RESEAREHICENTER)/ MIDDLE EAST TECHNICAL UNIVERSITY

DUMLUPINAR BULVARI 06800
CANKAYA ANKARA/TURKEY
T: +90 312 2 1
F: +90 312 210 79 59
ueam@metu.edu.tr
www.ueam.metu.edu.tr

Say1: 28620816 /
14 NISAN 2022
Konu . Degerlendirme Sonucu

Gonderen: ODTU Insan Arastirmalari Etik Kurulu (IAEK)

Tlgi : Insan Arastirmalar1 Etik Kurulu Basvurusu

Saym Prof.Dr. Soner YILDIRIM

Danigmanhigini yiiriittiigiiniiz Pinar KEFELI BERBER’in “Gocuklara Programlama
Temellerinin Ogretimine Yonelik Bilissel Tabanli Bir Ogretim Tasarimi Model Onerisi”
baslikli arastrmaniz Insan Arastirmalar1 Etik Kurulu tarafindan uygun gériilmis ve
230-ODTUIAEK-2022 protokol numarasi ile onaylanmustir.

Saygilarimizla bilgilerinize sunariz.

Prof Dr. Miné MISIRLISOY
IAEK Baskam

276

Approval of Provincial Directorate of National Education

T.C.
RIZE VALILIGI
11 Milli Egitim Mudirligii

Say1 :E-57774812-605.01-47594595 11.04.2022
Konu : Tez Cahgmas: izni

VALILIK MAKAMINA

flgi : a)Recep Tayyip Erdogan Universitesi Ardesen Meslek Yiiksekokulunun 04/04/2022 tarihli ve
4940 sayili yazisi.
b) Milli Egitim Bakanligmin 21/01/2020 tarihli ve 1563890 (2020/2) sayil1 Genelgesi.

Recep Tayyip Erdogan Universitesi Ardesen Meslek Yiiksekokulu ¢gretim elemanlarindan Ogr.
Gor. Pmar KEFELI BERBER'in " Ortaokul Ogrencilerine Programlama Temellerinin Ogretimine
Yonelik Biligsel Tabanli Bir Ogretim Tasarim Modeli Onerisi" konulu bilimsel arastirmast kapsaminda
ekte sunulan form ve testleri 2021-2022 Egitim Ogretim Yilinda ilimiz bulunan Resmi Ortaokul
Ogrencilerine Programlama Temellerinin Ogretimine Yonelik Bilissel Tabanli Bir Ogretim Tasarimi
Modeli Onerisi uygulama istegi ilgi yazi ile bildirilmektedir.

Soz konusu form ve testlerin 2021-2022 Egitim Ogretim Yilinda denetimi okul idaresinde
olmak tizere, tiim salgn tedbirlerine uyularak, kurum faaliyetlerini aksatmadan, goniilliiliik esasina gore
ilimiz Resmi Ortaokul Ogrencilerine Programlama Temellerinin Ogretimine Yonelik Biligsel Tabanli
Bir Ogretim Tasarim Modeli Onerisi uygulanmasi Miidiirliigiimiizce uygun gériilmektedir.

Makamlarinizca da uygun gériilmesi halinde olurlariniza arz ederim.

Ahmet GURBUZ
Miidiir a.
Miidiir Yardmecisi

OLUR

Engin EMEN
Vali a.
Milli Egitim Mudiirii

Bu belge givenli elekwronik imza ile imzalanmustir.
Adres - 11 Milli Egitim Miidiirligii RiZE Belge Dogrulama Adresi : htips://www.turkiye.gov.tr/meb-ebys
Bilgi igin: Hamit GOMLEKSIZ
Telefon No : 0 (464) 280 53 0D Unvan : Sefl
E-Posta: rizemem{@meb.gov.tr intemet Adresi: rize.meb.gov.tr Faks:4642805316

Kep Adresi : meb@hs01Lkep.ir
Bu cvrak giivenli clektronik imza il imzalansugier, htps:/cvraksorgu.meb.gov.tr adresinden 9ff9-a850-337d-bc95-c989 kodu ile teyit edilebili.

277

M. The Original Turkish Versions of the Quotes

Theme 1: Cognitive Demands
Inherent Complexity of Programming Concepts and Tasks
Managing Iterative Logic

[S22 in Turkish]: Mesela bir karakter oradayken mesela iki kere o dongiiyii
kullanmak biraz zor geliyor bana. Mesela {i¢ kez bir seyi tekrar ettikten sonra mesela
iist katmanda bir tane daha sey, dongii koydugumuz zaman, mesela bes kere oldugu

zaman biraz boyle garip bir seyler oluyordu. Anlayamiyordum pek.

[S6 in Turkish]: Hocam ben bunlarin zombiyi seye ulastirmada ¢ok zorlandim,
zombiyi ay¢icegine ulastirmak zorluydu. Ciinkii hocam diger ¢icekler de var ya vahsi
cicekler, onlardan bir de kagman gerekiyor. Ciinkii hocam kirtk buzlar oluyor ya,

dikkatsizligine geliyor ona basiyorsun, diigiiyorsun zaten. Ondan kod boga gidiyor.
Limited Code Blocks Challenges

[S6 in Turkish]: Code.org giizeldi aslinda ama bazen bir tane kullanma hakkimiz
olmasim diigiindiirmek gerekiyor insani. Onu ayarlamak zor degil normalde kolay

da nerede koyacagini diisiinmek gerek aslinda.
Sequencing and Logical Flow Difficulties

[S18 in Turkish]: ...Kodlari karigstirnyordum. Digerini yanlslikla digerinin yerine
koyuyordum. Karisiyordu.

Diagramming Programming Logic Difficulties

[S27 in Turkish]: I¢ine mesela... Basla ile baslayinca aklima soru gelmiyordu ne ile

baslayayim falan gelmiyordu. Zorlaniyyordum. Hangi komutu nasil yazmaliyim?

[S27 in Turkish]: Sorularda aklim karismisti. Béyle soru sorma degil de ti¢gen vardi,
paralelkenar falan vardi. Orada biraz zorlaniyordum. Karisiklik yapryordu. ...Neyi,
hangi sekli koyacagim bilemiyordum.

278

Spatial Reasoning Challenges

[S19 in Turkish]: Ben a¢ilar konusunda hig iyi degilim ¢iinkii matematikte de a¢ilar
konusunda hig iyi degilim. O yiizden bilisime (Bilisim Teknolojileri ve Yazilim dersi)

de yanstyor.

[S24 in Turkish]: Orada sekillerde var mesela 180 ilerle. Onu sen 120 edeceksin ya
da 145 edeceksin. Orada kararsiz kaliyordum ne etsem ya 145 mi, 120 mi, 100 mii
yvapsam? O yiizden hep denemek gerekiyordu.

Comprehending Code Blocks Functionality
[S20 in Turkish]: Nasil kullanacagimi anlamadim.

[S12in Turkish]: En ¢ok son yaptigimiz derste yaptigimiz bloklarda zorlandim ¢iinkii
bilmedigim bloklar vardi. Bilmedigim icin yani kodlari. Onlart kullanmay1 zar zor

ogrendim yani.
Integration of Multiple Concepts

[S16 in Turkish]: Mesela bir seyi, zombiyi seye gotiir diyordu ya, iste onlarda fazla
zorlandim ¢iinkii saga mi gidecek, sola mi gidecek. Saga doniiyor. Iste ¢ok fazla blok
oldugu zaman ben ¢ok zorlaniyordum. Mesele séyle yapiyordum doniiyordum kusun
verine, ne tarafa gidecek o tarafa sey yapryordum. Sonra da kafam karisiyordu ve

vavaglamaya baglyordum.
Instructional Factors
Unclear Task Instructions

[S17 in Turkish]: Ve o canli olmayanlar, bilgisayardan olmayanlari kafami

karigtirdi. O bardak ¢ok kafami karistirdi, beynim yandi.
Abstract Concepts and Confusing Explanations

[S26 in Turkish]: Degiskenlerde mesela sey 6gretmen bana sey bes parmak hig

degismez diyor ama ben boyle yapinca on parmak oluyor, bence degisir diyorum.

279

Orada birazcik tartisma oldu. Ondan sonra ben ¢ok sikinti yasamaya basladim.

Orada birazcik sasirdim.

[S21 in Turkish]: Yani bana hep sey geliyor... Degisken mesela hepsi degisebilir gibi
geliyor. Ama bu seye bagli yani oradaki bulmacaya bagli. Bulmaca oyleyse sabit
oluyor. Ama yani degisken de olabilir. ... Sabitin temeli aslinda seye bagh, bu da
benim bir garip diisiincem yani, sabitin temeli oradaki programa bagl yani. Ne
kurduysa sabit o oluyor. Ama ona bakarsak her sey degisebilir. O da benim.

anlamami zorlastirtyor.
Unstructured Learning

[S9 in Turkish]: Bilmiyorduk ne kadar nektar oldugunu. O ¢ok zordu boyle, eger
nektar varsa nektart al, ilerle, onu yaptirtyorduk. Onda zorlanmistik. Yani, sey
oluyordu béyle bir tane kare vardi, her tarafta nektar vardr boyle. Ariyt ilerletecegiz

mi, nektart mi aldiracagiz diye sasiriyordum.
Unsuitable Scaffolding

[S3 in Turkish]: I¢-ice dongiilerde de séyleydi genelde. Code.org iizerinden en basta
egitim goriirken ¢ok diiz oynuyorduk: 4 adim ileri git veyahut da... Ilk basta
tekrarlanan dongiileri 6grendik. Cok fazla yazmak yerine daha kolay bir sekilde
tekrarlamiyordu. Ogrenmek cok fazla zor degildi. Ama i¢-ice dongiiler bir anda

zorlastt yani.
Time Constraints

[S3 in Turkish]: Daha fazla haftada ders... Haftada iki ders olmuyor. Bir konu
lizerinde daha fazla durulabilir. Mesela i¢-ice dongiilere gegildiginde sorunla
karsilastigim bazen kafamda ¢ozemedigim noktalar olmustu. Ya da degiskenlerde...
Iste mesela degiskenlerde hala yapamadigim yerler vardi. Konunun iizerinde daha

fazla durulabilirdi. Daha iyi olurdu, haftada daha fazla ders olsaydi.
Learning Environment Challenges

Access and Equity

280

[S13 in Turkish]: Bir de bilgisayarlar ¢ok bozuluyor, onu degistirmek isterdim.

[S9 in Turkish]: Kodlama ile ilgili ¢alismadim. Ciinkii... Calismadim yani.
Bilgisayarim yok.

Login issues

[S19 in Turkish]: Nasil desem? Sifreli olmast biraz zor gibi geldi. Yani kagidimizi,

sifreyi unuttugumuz zaman §ifresiz giremeyebiliyoruz.
Foreign language-related problems

[S5 in Turkish]: Mesela Kurs F’de on iigiincii derste falan ben Tiirk¢e yapmama

ragmen dili orada Ingilizce konusturmamiz gerekiyor.

[S22 in Turkish]: Sey hani alttaki videolar vardi ya, onlar: Tiirkgeye ¢evirseydi daha

iyi olurdu ama.

Theme 2: Effective Instructional Approaches
Plugged Activities

Facilitated Learning

[S9 in Turkish]: Ogrenmemi kolaylastird, biiyiik bir katki sagladi. Onu yaparak
boyle alistim, ¢ok hizli yapmaya basladim. Kendimi gelistirdim kodlamada yani
yvardimct oldu bana code.org. Ciinkii ¢oziiyorum boyle pargalart birlestirerek

yaptigim i¢in daha kolay oluyor. Kodlamay1 daha iyi 6greniyordum béyle.
Learning by Doing

[S16 in Turkish]: Etkileri ¢ok fazla oldu ¢iinkii bir ogretmen tahtada c¢izerek
anlatsaydi hi¢hbir sekilde anlamazdim. Ama Code.org daha kolay geldi bana. O

olmasaydi, hoca ¢izerek anlatsaydi mesela yine anlardim ama az anlardim.
[S30 in Turkish]: Ama kendimiz yaptigimizda daha kaliteli oluyor bence.

Debugging Tasks

281

[S9 in Turkish]: Mesela kendisi, code.org, seylerini olusturuyordu, bana
derecelerini falan soruyordu. O da isimi kolaylastiriyordu. Avantaji o oluyordu.
Bazen daha kolay oluyordu. O birlestiriyordu pargalari, ben de derecelerini

yvapiyordum, doksan derece falan...
Rich Content

[S3 in Turkish]: Code.org sayesinde daha detayli 6grendigimi diisiiniiyorum, bazi
konularda. Mesela yeni gecenlerde degiskenleri oOgrendim ve gercekten
degiskenlerde zorlandim. Bu konuda ¢ok ogretici oldu benim icin. Dedigim gibi
Scratch’de onceden ¢ogu terimi biliyordum veyahut da ¢ogu blok terimlerini. Ama
su i¢c-ice dongiilerde ve degiskenlerde daha iyi o6grendigimi diistintiyorum.
Scratch’de de degiskenler iizerinde duruluyordu ama bu kadar detayli
durulmuyordu. Degiskenleri kesinlikle daha detayli ogrendigimi diistintiyorum.

Gergekten de iyi.
Opportunity for Revision and Mastery

[S19 in Turkish]: Ciinkii bilgisayarda goriiyoruz, yanlislarimizi gorebiliyoruz
hemen. Ama kagit iizerinde yanhslaruimizi gorvemiyoruz. Yani dedigim gibi
bilgisayarda yanlislarimizi goriiyoruz ve ona gore yanhiglarimizi diizeltebiliyoruz.

Dogrularimiz varsa bir daha gozden gegiriyoruz, yanlis olabilir falan.
Permanent Learning

[S21 in Turkish]: Daha kalict olur diye diistiniiyorum. Ciinkii o anlatim yani bir yere
kadar... Zaten sinif ortaminda da oyle iyi anlamak yani 6yle tanimlamak o is zor

swnif ortaminda. O yiizden yani burada yapmak daha kalici oluyor.
Unplugged Activities
Introduction and Orientation

[S19 in Turkish]: Ilk énceden, birinci saat akilli tahtadan gosterdi. Akilli tahtadan
biz yapmaya basladik. Yanlislarimizi diizeltmeye basladi. Sonra bilgisayarlardan tek
basimiza yapmaya ¢alistik. Yani dedigim gibi ilk 6nce akilli tahtadan bize ogretiyor,

282

anlatiyor. Sonra biz yapiyoruz. Yani boyle yapsa giizel olur yani boyle devam etmek

isteriz.
Active Engagement

[S6 in Turkish]: Hocam bence en ¢ok sinifta ettigimiz daha ogreticiydi. Ciinkii
bilgisayarda sadece mouse (fare) ve seyi oynatiyorsun. Ama sinifta ettigimiz, kendin

hareket ediyorsun, kendin ayarlyyorsun esyalari.
Real-World Relevance

[S8 in Turkish]: Yani bunu gercek hayatta da kullanabildigimizi ogrendim

kodlamay1 yani komutlari.
Blended Approaches
Blending Traditional and Digital Methods

[S13 in Turkish]: Ciinkii hocam hem yaziyoruz hem okuyoruz. Yani kendi elimizle
vaziyoruz, okuyoruz. ...Bilgisayarda mesela bir tusa basiyyorsun hani sey
yapamiyorsun tam. Yaptigimiz seyleri bir kagida yazmak... Ciinkii hocam kagitta
gosterince hem okumus oluyorsun, ikinci kez okumugs oluyorsun hem de onu mesela
dosyasina koysun, unuttugu zaman orvaya bakip yapsin. Bilgisayarda hani

bakamayacak, gidecek, kaydetme diyecek, gidecek.

Teacher Effectiveness

Clear and Effective Explanations

[826 in Turkish]: Ogretmenim cok giizel kodlama ogretiyor. Anlatmasi ¢ok etkili.
Supportiveness

[S24 in Turkish]: Sunif kalabalik, 28 kisi. 28 kisiyle de ilgileniyor. Mesela hani ben
dedim ya yapamadigimda sinir oluyorum, o zamanlar hocayr ¢agiriyorum. Hoca

bana anlatiyor oylece kolayca geciyorum o boliimii. Yani iyi katki oluyor.

Theme 3: Collaborative Learning Approaches

283

Pair Selection Criteria
Skill and Expertise

[S17 in Turkish]: Bilgisayar ustasidir. Oyle kolaylari yapamaz. Zeki bir ¢ocuk

oldugu icin onu segtim. Akill.
Social Compatibility

[S19 in Turkish]: Ciinkii o arkadasimla daha iyiyim. Yani evlerimiz yan yana. Daha
iyi iliskim var onunla. Hem daha iyi arkadashgimiz var onunla. Ik énceden ben
baska bir arkadasimla oturuyordum. Ondan sonra onunla arkadashgimiz bitti yani

kiistiik birbirimize. O yiizden hocadan izin aldik ve onunla oturmaya basladim.
Role-Sharing Strategies
Imbalanced Turn-Taking

[S14 in Turkish]: Genelde klavyeyi o kullandi, mouseu ben kullandim. Genelde boyle

devam etti.
Regular Turn-Taking

[S16 in Turkish]: Genellikle arkadasimla sira sira oynuyorduk. Birden dokuza kadar
olan seviyelerde ben birini oynuyordum, iigtinii oynuyordum. Sey, ben biri

oynuyorum, o ikiyi oynuyor, ben ii¢ti oynuyorum, o dordii oynuyor.
Benefits of Collaborative Learning

General Positive Perceptions

[S14 in Turkish]: Arkadasimla oturmak isterdim

Shared Responsibility

[S4 in Turkish]: Daha giizel oluyor. Yani boyle tek basina yapmak yerine
arkadasinla degisimli kullantyorsun. O yaparken sen onu izliyorsun, sen yaparken

de o da seni izliyor, o da olabiliyor. Hem de arada sirada arkadasin da dinlenmig

284

oluyor yazdiktan sonra veya kullandiktan sonra, sen de dinlenmis oluyorsun, giizel

oluyor.
Enhanced Problem-Solving

[S7 in Turkish]: Ciinkii daha kolay oluyor. Ikimiz birden ¢ozdiigiimiiz i¢in daha kolay
oluyor. Hem ikimiz de yapamadigimiz seyi, mesela birimiz biliyor birimiz bilmiyoruz,

oyle gorebiliyoruz.

[S21 in Turkish]: ... bir seye mesela arkadagsin buna bir yénden bakiyor, sen buna
diyorum ki bir de bu yonden bakalim, yani ¢oklu bakis. Bu mantiktan ilerlemek
gerekiyor diyor, mesela sen farkli bir mantik sey yapryorsun. Farkli bir bakis agisi

oluyor. Cozemediginiz sorularda bakis acini degistirmen gerekiyor probleme.
Mutual Learning and Knowledge Sharing

[S16 in Turkish]: Bence 6grendi ama... Yani mesela, ilk once basladigimizda sagi-
solu pek anlayamiyordu. Ben ona anlatmistim. Ben seyleri karistirtyordum, hani bu

seyi bes kez tekrarla gibi seyleri karistirtyordum. Onu da bana o 6gretmisti.

[S26 in Turkish]: Genelde code.org olarak ben ona ¢ok fazla sey ogrettim ama onun

disinda bilgisayarin temel seyleri olarak o bana ¢ok sey ogretti.
Challenges of Collaborative Learning
Unequal Participation

[S17 in Turkish]: Bilgisayarin bana hakimiyetini vermedigi icin, artik vermiyor.
Dinleniyorum (giilme). Yine boyle yaslaniyorum arkama. Yaptig1 seylerden ornek

alryorum. Bazen de ben yapabileyim diye sey yapiyor, bazen izin veriyor.
Reduced Engagement

[S16 in Turkish]: Bazen hani sey oluyordu .. o yaparken ben kaliyordum oyle,
bakmiyordum ona da. Yardim istediginde yardim ediyordum ama genellikle onun

vaptigi sorulara bakmiyordum.

Conflicts Over Problem-Solving Approaches

285

[S21 in Turkish]: Bazen tabi ki sey oluyor, bir soru var, ¢oziimii su diyoruz. O baska
bir sey diyor ve bunda inat ediyor inat. Mesela boyle olmali tamam demiyor kimse,
bunu yapalim demiyor, sonra olmazsa benimkisi deneriz demiyor. Ben de yaptim

bunu. Oluyor bazen.
Conflicts Over Resource Sharing

[S12in Turkish]: En az sevdigim sey bilgisayar: paylastigim arkadasimla bilgisayart

paylasma sorunu yasadigim igin.

Seeking Assistance

Source of Assistance

Peers or Teachers as a Source of Support
Reasons for seeking assistance from peer
Familiarity

[S19 in Turkish]: Arkadasimdan oncelikle yardim almamin nedeni, arkadasimla her

gtin ayni yerde oldugumuz i¢in kendime daha ¢ok sicak hissediyorum.
Teacher Unavailability

[S5 in Turkish]: Hoca yardim edemeyince yapanlara bas vuruyoruz.
Reasons for Seeking Assistance from Teacher

Teacher Expertise

[S20 in Turkish]: Ciinkii bu konularda daha bilgili.

Clear Explanations and Guidance

[S29 in Turkish]: Ogretmenim direkt daha giizel gésteriyordu.

Ogretmenim anlatarak daha aciklayici gésteriyordu.

Self-Perceived Proficiency

286

[S30 in Turkish]: Ben genelde onlardan onde gittigim icin onlar geride

oluyor..
Peer Support and Interaction
Constructive Collaboration

[S26 in Turkish]: Ya geliyorum, ogretmenimden izin alarak, yanina. Mesela
sunu soyle yaparsan yapabilirsin, sunu yanls yapmigsin su kadar acryla

yapacaktin... Oyle. Kodlarla yardim ediyordum.

[S12 in Turkish]: Istisare ederim yani arkadaslarimla tartisarak ciinkii

direkt onlarin yaptiklarini dinlersem yine de farkl olur, anlayamam.
Unproductive Collaboration Strategies

[S21 in Turkish]: Yani beni biraz tabi ki erteliyor, sonra bakiyor benim
soruma. Deniyor ilkten kendi yapmayr ¢ozdiigii soruyu. Yapamadiysa
gidiyor kendi bilgisayarindan a¢ip bana veriyor. ... Yani kendisi orada
vaptiginda ben tabi ¢ok anlayamiyorum, mantik yiiriitemiyorum. Ama o
vaptiginda demek ki béyle yapmalyymisim diyebiliyorum mesela sorunun

cevabini.

[S14 in Turkish]: Eger o soruyu gegtilerse geri gelip o soruyu bana

gosteriyorlardi. Pek anlayamiyordum.

Theme 4: Independent Learning Approaches
Independent Learning Strategies

Reviewing Past Solutions

[S8 in Turkish]: Eskilerine donerim, onlara bakarim. Onlara benzeyen bir

sey varsa onlari gegiririm.
Trial and Error

Self-Visualization

287

[S16 in Turkish]: Bu gibi durumlarda kendimi hayal ediyordum. Mesela bu
seyler, kare, sunlar var ya, kareler, karelerde kendim gibi hissediyordum ve
ne tarafa donecegimi kendim belirliyordum. Atiyorum bir boydan seklimi
ayni yerde oldugumu diigiiniiyordum ve nereye gidecegimi yapryordum. Ve

¢ok kolay oluyordu.
Guidance from the Coding Platform

[S4 in Turkish]: Evet bazen béyle tam béyle kodlamaya girdigimizde en
basta video ¢ikiyor bir de ortalarda ¢ikiyor onlart izliyoruz. Izleyince daha
aciklayict oluyor ashinda ¢ikanlar. Izlemeyince hani bunun ne oldugunu

anlayamiyorsun bazen hani bir sey ¢iktiginda.
Benefits of Solo Programming

General Positive Perceptions

Improved Focus

[S17 in Turkish]: Bilisim (Bilisim Teknolojileri ve Yazilim) dersinden daha
actk olurdum. Nasil desem? Boyle sakince otururdum hocayt dinlerdim.

Yanimda biri olmazdi. Dikkatim dagiliyor.
Active Engagement

[S 8 in Turkish]: Onun séyledigi kodlart kendim anlayamiyordum ¢iinkii
kendim bakmadan yani kodun ne oldugunu, nasil c¢alistigin

anlayamiyordum. Ama kendim baktigimda daha iyi anlyyorum.

[S16 in Turkish]: Tek basina kodlama yapmanin olumlu yani bence biitiin
sorulart gérebiliyorsun ve biitiin sorulara kendin cevap veriyorsun.
Yapmaya ¢alisiyorsun, biraz beynini ¢alistirtyorsun falan bence daha iyi

oluyor.

Enhanced Retention

288

[S14 in Turkish]: ...ama daha ¢ok aklinda kaliyordu. Daha ¢ok soru

¢oziiyordun ¢tinkii.
Challenges of Solo Programming
Lack of Pair Consultation

[S22 in Turkish]: ...mesela anlamadigim bir konuyu hocaya sordugum
zaman bazenleri anlayamiyorum, ne yapacagimi bulamiyorum. Arkadasim
oldugu zaman yardim ediyordu, bulabiliyorduk beraber ama olmadig

zaman biraz zorlaniyordum.
Theme 5: Goal Setting
Mastery-Oriented Goals

Desire to Simplify Complex Tasks

[S10 in Turkish]: Akis semalarindaki hocam seyleri degistirmek isterdim,
gorselleri. Hocam yaziyla yazmalarini isterdim. Sekillerle olmasin,

vazilarla...

[S18 in Turkish]: I¢-ice dongiileri degistirmek isterdim hocam. O konuda
¢ok koétiiyiim. O konuyu ¢ikartmak isterdim.

Challenge Seeking

[S7 in Turkish]: Gittikce daha zor seyler geldi mi daha da

heyecanlantyorsun.
Career Oriented Goals

[S20 in Turkish]: Ciinkii diistindiigiim ilerideki meslek yazilim
miihendisligi. O yiizden 6nem gosteriyorum. Ilgim var yazilima o yiizden...

Ilgim oldugu yéonden yazilimi se¢meye calisiyorum.

[S1 in Turkish]: Yani biiyiidiigiim zaman, meslek sahibi oldugum zaman

onemli olacak diye diigiiniiyorum. Yani simdi biiyiidiigiim zaman islere

289

girdigim zaman kodlama olur islerde ¢iinkii ¢cok oluyor. Su an pek emin

degilim yani biiyiidiigiim zaman olacak kesinlikle kodlama.
Daily Life Context Relevance

[S27 in Turkish]: Benim igin onemli. Hayatimda zor durumlarda yardim
edebilir bana. Mesela annem yemegi yapacak. Ama ‘Kendin yap, ben
gidiyorum’ diyecek. ‘Anne bana algoritma yapar misin?’ diyebilirim.
‘Algoritma ne?’ der. Ben de derim, ona anlatirim. O da yapar bana. Ben de

kendim yaparim yani.

[S10 in Turkish]: Hocam, teknolojik aletlerde falan isimize yarayabilir.
Mesela Amerika’da Tesla’lar telefonla ¢agirabiliyoruz. O yonden bence

gerekli.
Recreational Interest in Coding

[S3 in Turkish]: Ben bunu sadece hobi olarak yapiyorum. Ileride de hobi

olarak yaparim sadece.
Performance-Oriented Goals
Competition Focus

[S1 in Turkish]: ...Sonra dedi ki ya biraz daha digerlerini gecelim diye, hizli
vapalim diye ben yapayim dedi. Ben tamam dedim.

Completion-Driven Motivation

[S4 in Turkish]: Bazen biz sey yapryoruz. Bir yanmimda oturan arkadasimin
Code.org’una giriyoruz bir benim hesabima giriyoruz. Onun hesabina

girdigimizde bende yapiimayan yerleri evde tamamliyorum.
Academic Achievement Focus

[S24 in Turkish]: Mesela hoca sinav yaptiginda hep kodlamalardan
soruyor. Kodlama iizerinden soruyor. Oyle sekiller veriyor sinav kagidinda.

Mesela aymi etkinlikleri yapiyoruz, hoca da aymisini soruyor, oyle. O

290

yiizden, o agidan bir fayda saglyyor bana. Bir de sinavlardan yiiksek almami

sagliyor.

Performance Avoidance Goals

Fear of Failure

[S7 in Turkish]: Ciinkii etrafta ¢ok kigi vardi. Yapamadigimda utaniyordum.

[S28 in Turkish]: Adi aklima gelmiyor ama bazi seyler zordu hocam.

Yapamam diye korkuyordum.

Avoidance of Challenging Tasks

[S24 in Turkish]: En az sevdigim sey zorlu kodlamalar diyebilirim yani.
Skipping Tasks

[S21 in Turkish]: Yani ¢ogunlukla orada ii¢ kisiysek, iki kisiysek atlayalim
diyoruz. Mesela yapamadigimiz ¢ok fazla érnek oldu bence. Hepsini de

atladik.

Theme 6: Affective Aspects

Attitude

Positive Attitudes

Interest in Learning Programming

[S18 in Turkish]: Cok sariyor hocam. Kodlamay: seviyorum.
Enjoyment of Plugged Activities

[S3 in Turkish]: Bilgisayar sinifina inmek gergekten daha iyi oldu benim
icin de. Egleniyoruz. Egitim goriiyoruz bilgisayar sinifinda.

[S27 in Turkish]: Boyle yani girince yapasin geliyor. Bakinca sorulara

vapasin geliyor. Ciinkii hos sorular vardi. Giizel kodlama falan vard.

Enjoyment of Unplugged Activities

291

[S4 in Turkish]: Gergekten o bardak oyununu ¢ok sevmistim. Bir de sey
vapmistik boyle robot seklinde hareket etmistik. Tahtaya yazmisti hoca.
Arkamizi donmiistiik. Bir tane arkadasimiz ¢ikmisti. Birisi robot oluyordu
digeri de tahtadakileri séyliiyordu. Iste dereceler oluyordu, orada kal

diyordu, saga-sola don diyordu. O ¢ok eglenceli olmustu. Giizel olmustu.
Enjoyment of Social Interaction

[S14 in Turkish]: Ama sosyalleserek yaptiklarimiz da (bilgisayarsiz
etkinlikler), onlar da giizeldi. Mesela bazi derslerde okul bahgesine ¢ikip
orada... Bir ara bilisim hocast bizim siniflara sey getirmigti, bir tane tavsan
deligi seyi, tavsan deligi. Tavsan havuca ulagsmaya calisiyordu. Mesela
onun gibi, onun biraz daha biiyiigiinii okulun bahgesinde yere resim olarak

¢izip oynamak.

[S26 in Turkish]: Birazcik daha sosyallestim orada. O da benim gibi

kodlamayr seviyordu. Yani bilgisayar olmasa onunla tanisamazdik ¢iinkii.
Appeal of Familiar Characters

[S8 in Turkish]: Yani béyle bilinen oyun karakterleri falan oldugu i¢cin daha
cok ilgimi ¢ekti ve boylece yani daha kolay yaptim. Kolaylastird,

karakterlerin olmasi hem heyecan verdi hem de kolaylastird.

[S22 in Turkish]: Kodlamayla ilgili, hani Angry Birds var ya, baska bir
filimler de olabilirdi. Mesela Bumblebee falan, boyle robotlarla ilgili daha
glizel olurdu. Daha eglenceli olurdu, yani bir farklilik olurdu. Eglenceli
olurdu daha fazla.

Engagement of Gamification

[S3 in Turkish]: Zaten o code.org tizerinden oynadigimiz oyunlar falan ¢ok
eglenceliydi. Yani diisiiniirsek aslinda kodlama yaziyoruz ama gergekten
cok eglenceliydi. O ‘ileri git’ veyahut da oyunu bitirmek falan. Bunlar
gercekten eglenceliydi kodlamada.

292

Positive Classroom Atmosphere

[S1 in Turkish]: Bir de nazik bir hoca. Nazik anlatiyor. Yani ben de mutlu
oluyorum yani bagirmiyor. Ilk defa gériiyorum. Yani ¢cok ¢ok kizdirdigimiz
zaman bagiriyor o kadar yani. O da direk gegiyor zaten. Hocamizi ¢ok

seviyorum. Bir sey soyledigimiz zaman o tamam diyor.

Negative Attitudes

Negative Disposition Towards Programming

[S19 in Turkish]: Sevmedim kodlamayi. Biraz anlamadim. Biraz zordu.
Frustration from Prolonged Use

[S4 in Turkish]: Mesela bir kursu bitirdiginde digerine gectiginde sikici

oluyor sadece. Biraz daraliyor insan. Sikict oluyor gergekten de.

[S9 in Turkish]: Baska yeni seyler denemek isterdim.

Self-Efficacy

Confidence in Coding Abilities

[S29 in Turkish]: Ya aslinda zorlanmadim ben yani. Cok kolaydi hepsi.

[826 in Turkish]: Bir de bu isin zor oldugunu fark ettim yani. Oyle kolay bir
is degil.
Determinants of Self-Efficacy Perceptions

Social Recognition from Peers

[S26 in Turkish]: Mesela béyle giriyoruz ya kendimi profesér gibi
hissediyorum nedense. Bu islerde uzman olmus birisi gibi hissediyorum.
Arkadaslarim bana soru soruyor, ben de ‘Soyle soyle yaparsan

vapabilirsin’ diyorum. O zaman yani kendimi ¢ok iyi hissediyorum.

Peer Comparison

293

[S7 in Turkish]: Basarili goriiyorum ama ... ¢ok da iyi diyemiyorum. Ciinkii
benden iyi olanlar da var. Onlarin seviyesinde degilim. Ortalamanin biraz

LSt
Mastery Experiences

[S9 in Turkish]: Ciinkii bir keresinde hoca anlatirken ben konuyu
anlamigtim. Biranda boyle bitirmistim onu. Basarili oldugumu oradan

anlamigtim, ne kadar hizli yaptim diye.
Academic Performance

[S6 in Turkish]: U¢ yazilim 100 geldi. Ondan biliyorum kodlamada basarili

oldugumu.
Perceived Cognitive Abilities
[S29 in Turkish]: Anlama kapasitem daha yiiksek oldugu icin...

[S1 in Turkish]: Beynim de ¢ok almadig icin...

294

CURRICULUM VITAE

Surname, Name: Kefeli Berber, Pinar

EDUCATION
Degree Institution Year of
Graduation
MS KTU Computer Education and 2013
Instructional Technology
BS OMU Computer Education and 2008

Instructional Technology
High School =~ Samsun Anatolian High School, Samsun 2004

WORK EXPERIENCE
Year Place Enrollment
2014-Present RTEU Computer Technologies Lecturer
2010-2014 Dogankdy Middle School, Trabzon ICT Teacher
2008-2010 Karaagacli Middle School, Trabzon ICT Teacher

FOREIGN LANGUAGES

English

PUBLICATIONS

1. Kefeli Berber P., Keles E. (2022). Tele Calisma: Kapsam ve Dogasi. In Y. Karal
(Ed.), Bilgi ve lletisim Teknolojileri Araciligiyla Uzaktan Caligsma (pp. 1-34).
Pegem A Yayinlar.

2. Kefeli Berber P., Toplu N. (2022). Topics in Technology Enhanced Language
Learning. In A. Ceki¢ (Ed.), Topics in Technology Enhanced Language Learning
(pp. 107-130). Cumhuriyet Universitesi Yayinlari.

295

3. Celik, S., Saylan, E., Caylak, N., & Berber, P. K. (2021). ingilizce Ogretmen
Adaylarinin Toplumsal Duyarlilik ve Sosyal Adalet Diizeyleri ile Yeni Medya
Okuryazarhiklar1 Arasindaki Iliski. Uludag Universitesi Egitim Fakiiltesi
Dergisi, 34(3), 1332-1372.

4. Kefeli, P. (2018, May 2-4). Ortaokul Bilisim Teknolojileri Ogretmenlerinin
Kodlama Ogretimine Y&nelik Goriis ve Deneyimleri [Conference presentation].
12 International Educational Technology Conference, Izmir, Turkiye.

5. Kefeli P., ilkhan M., Giileg M., Tokel S. T. (2016). Design Report of Geography
Island Project: Description of Environment and Instructional Elements [Conference
presentation]. 10" International Computer & Instructional Technologies
Symposium Rize, Turkiye.

6. Kefeli Berber P., Polat E., Hopcan S. (2016, May 16-18). The Perception of
High School Students, Their Parents and Teachers About Essay Tests [Conference
presentation]. 10" International Computer & Instructional Technologies
Symposium, Rize, Turkiye.

7. Keles, E. & Kefeli, P. (2011, May 25-27). ilkdgretimde Akilli Tahta
Kullanimina Yénelik Diizenlenen Bir Hizmet I¢i Egitim Kursunun
Degerlendirilmesi [Conference presentation]. 11" International Educational
Technology Conference, Istanbul, Turkiye.

8. Keles, E., & Kefeli, P. (2010). Determination of student misconceptions in
“photosynthesis and respiration” unit and correcting them with the help of cai
material. Procedia-Social and Behavioral Sciences, 2(2), 3111-3118.

296

