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ABSTRACT 

 

THE INVESTIGATION OF PSYCHO-EDUCATIONAL CONSTRUCTS IN 
RELATION TO MIDDLE SCHOOL STUDENTS’ LEARNING OF BASIC 

COMPUTER PROGRAMMING CONCEPTS 
 
 
 

Kefeli Berber, Pınar 
Doctor of Philosophy, Computer Education and Instructional Technology 

Supervisor: Prof. Dr. Soner Yıldırım 
 
 

July 2024, 296 pages 

 

 

The main purpose of this study was to investigate the cognitive and motivational 

factors contributing to the acquisition of fundamental computer programming 

concepts at the middle school level. Employing a mixed-method embedded design 

approach, the study aimed to explore how personal achievement goal orientations, 

perceived classroom goal structures, academic-related perceptions, beliefs and 

strategies, attitude towards coding education, cognitive load, mathematics and 

reading comprehension achievement, gender, and geographical school location 

predict students’ achievement scores in programming.  Participants of the study 

included 199 fifth-grade students. The implementation was conducted over ten 

weeks in the Information Technologies and Software course across three public 

middle schools. Data were collected through surveys, achievement tests, and 

interviews. Data analysis involved both quantitative and qualitative approaches. For 

the analysis of quantitative data, various methods were employed, including 

independent samples t-test, repeated measures ANOVA, mulrank function, doubly 

repeated MANOVA, and hierarchical regression. The study’s results revealed that 
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mathematics achievement was the strongest predictor of programming achievement, 

followed by reading comprehension achievement, geographic school location, 

extraneous load, attitude towards coding education, and academic self-handicapping 

strategies. Furthermore, changes were observed in students’ cognitive load levels 

throughout the programming learning process, particularly concerning certain 

programming topics. While the results indicated no significant differences based on 

gender regarding the variables investigated, significant differences were found 

concerning geographical school location in terms of academic achievement and 

motivational factors. Students’ experiences with programming and the online coding 

platform used in the research were generally positive. 

 

Keywords: Computer Programming Education for Children, Coding, Cognitive 

Load, Motivation 

 



 
 

vii 
 

ÖZ 

 

ORTAOKUL ÖĞRENCİLERİNİN TEMEL BİLGİSAYAR 
PROGRAMLAMA KAVRAMLARINI ÖĞRENMELERİNE İLİŞKİN 

PSİKO-EĞİTSEL YAPILARIN İNCELENMESİ  
 
 
 

Kefeli Berber, Pınar 
Doktora, Bilgisayar ve Öğretim Teknolojileri Eğitimi 

Tez Yöneticisi: Prof. Dr. Soner Yıldırım 
 

 

Temmuz 2024, 296 sayfa 

 

Bu çalışmanın temel amacı, ortaokul düzeyinde temel bilgisayar programlama 

kavramlarının kazanımına katkıda bulunan bilişsel ve motivasyonel faktörleri 

araştırmaktır. Karma yöntemli gömülü tasarım yaklaşımının kullanıldığı bu 

çalışmada, kişisel başarı hedef yönelimleri, algılanan sınıf hedef yapıları, akademik 

algılar, inançlar ve stratejiler, kodlama eğitimine yönelik tutum, bilişsel yük, 

matematik ve okuduğunu anlama başarısı, cinsiyet ve coğrafi okul konumunun 

öğrencilerin programlama başarı puanlarını nasıl etkilediği incelenmiştir. 

Çalışmanın katılımcılarını 199 beşinci sınıf öğrencisi oluşturmaktadır. Uygulama, üç 

devlet ortaokulunda, on hafta boyunca Bilişim Teknolojileri ve Yazılım dersi 

kapsamında gerçekleştirilmiştir. Veriler anketler, başarı testleri ve mülakatlar 

yoluyla toplanmıştır. Verilerin analizinde hem nicel hem de nitel yaklaşımlardan 

faydalanılmıştır. Nicel verilerin analizi için bağımsız örneklem t-testi, tekrarlı 

ölçümler ANOVA, mulrank fonksiyonu, iki yönlü tekrarlı ölçümler MANOVA ve 

hiyerarşik regresyon gibi çeşitli yöntemler kullanılmıştır. Çalışmanın sonuçları, 

matematik başarısının programlama başarısının en güçlü yordayıcısı olduğunu, bunu 

okuduğunu anlama başarısı, coğrafi okul konumu, konu dışı yük, kodlama eğitimine 
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yönelik tutum ve akademik kendini engelleme stratejilerinin takip ettiğini ortaya 

koymuştur. Ayrıca, programlama öğrenme sürecinde, özellikle belirli programlama 

konularıyla ilgili olarak öğrencilerin bilişsel yük seviyelerinde değişiklikler 

gözlemlenmiştir. Sonuçlar, incelenen değişkenler açısından cinsiyete göre anlamlı 

bir fark olmadığını gösterirken, coğrafi okul konumuna göre akademik başarı ve 

motivasyonel faktörler açısından anlamlı farklılıklar elde edilmiştir. Öğrencilerin 

programlama ve araştırmada kullanılan çevrimiçi kodlama platformuna yönelik 

deneyimlerinin genellikle olumlu olduğu görülmüştür. 

 

Anahtar Kelimeler: Çocuklar için Bilgisayar Programlama Eğitimi, Kodlama, 

Bilişsel Yük, Motivasyon 
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CHAPTER 1  

1 INTRODUCTION 

This study aims to investigate the factors influencing the academic achievement of 

middle school students in learning fundamental computer programming concepts. 

The introduction provides a contextual background, outlines the study's purpose and 

research questions, and concludes with a discussion of the study's significance and 

contribution to the existing body of knowledge. 

1.1 Background of the Study 

As computer technology advances, computers have entwined in almost every part of 

our daily lives. They became an integral part of our workplaces, schools, and homes. 

In response to technological advancements, a growing demand has emerged for 

computer programs that can enhance the quality of human life. Despite rising 

demand for computer programs, programming courses continue to exhibit high 

failure rates (Robins et al., 2003; Watson & Li, 2014). Teaching computer 

programming to beginners in various disciplines has been identified as a challenging 

task (Abdul-Rahman & Du Boulay, 2014). The difficulty of acquiring knowledge 

and skills necessary for programming computers has been frequently mentioned in 

the related literature on teaching computer programming (Blanco et al., 2009; Hawi, 

2010; Kelleher & Pausch, 2005; Pokorny, 2009; Schulte & Bennedsen, 2006; 

Thomas & Greene, 2011; Watson & Li, 2014; White & Ploeger, 2004).  

Teaching and learning programming presents a complex challenge for instructors 

and students. This phenomenon remains a significant challenge in the field of 

computer science education. Consequently, a substantial body of literature has 

investigated ways to improve computer programming education to enhance novice 
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students' learning of programming skills more efficiently (e.g., Abdul-Rahman & Du 

Boulay, 2014; Caspersen & Bennedsen, 2007; Coleman & Nichols, 2011; Haden et 

al., 2016; Harms, 2013; Looker, 2021; Van Merrienboer & Krammer, 1987). Within 

introductory programming courses, novice learners confront multifaceted learning 

challenges. They must concurrently acquire novel programming concepts, navigate 

unfamiliar development tools (e.g., Integrated Development Environments), and 

adapt to a paradigm shift in their problem-solving approaches (Mayer, 1987, as cited 

in Bucks & Oakes, 2011). These fundamental skills, coupled with their lack of 

familiarity with programming structure, design, and programming language syntax, 

present a significant challenge for many students (Baist & Pamungkas, 2017). 

Furthermore, programming concepts often appear abstract and lack a readily 

apparent connection to real-world phenomena. This disconnection hinders students' 

ability to link these concepts with their prior knowledge and experiences, which are 

crucial for meaningful learning (Myers, 1986).  

Despite the established challenges in teaching programming to older age groups, 

such as university students, programming is now being introduced to younger 

children under the name of "coding." Recognizing the importance of early exposure 

to computational thinking and programming skills, many countries have integrated 

computer science and coding-related competencies into education curricula, 

including those for younger age groups (Fluck et al., 2016; Webb et al., 2017). In 

contrast to traditional text-based programming languages, which can be challenging 

for younger learners, a new trend in coding education is emerging with the use of 

graphical programming environments and block-based programming approaches. To 

make programming more accessible and engaging for children, graphical 

programming environments and block-based programming languages, such as 

code.org, Scratch and Tynker, have been used in their instruction (Grover & Pea, 

2013; Resnick et al., 2009). These languages have many advantages over traditional 

text-based programming since they enable users to use graphical representations for 

programming (Koray & Bilgin, 2023; Meerbaum-Salant et al., 2013; Yang & Lin, 

2019). 
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Teaching a subject that is already challenging for older groups to younger children 

will undoubtedly present its own set of difficulties. Research has identified various 

factors affecting programming learning, such as cognitive load (Grover & Basu, 

2017), previous experience (Hinckle et al., 2020), mathematical background 

(Bennedsen & Caspersen, 2005; Bergin & Reilly, 2006; Grover et al., 2015; 

Mathews, 2017; Nasution et al., 2022), reading comprehension skills (Grover et al., 

2016; Ma et al., 2023), misconceptions about programming (Grover & Basu, 2017), 

self-efficacy (Ketenci et al., 2019; Kinnunen & Simon, 2011; Kukul et al., 2017; 

Toma & Vahrenhold, 2018), gender (Beyer et al., 2003; Cheryan et al., 2015), 

socioeconomic status (Akpomudjere, 2020; Marks et al., 2006), learning styles 

(Abdul-Rahman & Du Boulay, 2014), learning goals (Hazley et al., 2015; Shell et 

al., 2013), and attitude (Ching et al., 2019; Sun et al., 2022).  

Examining programming learning from a cognitive perspective is necessary for 

building a more generalizable understanding of effective programming education 

practices. Within this framework, cognitive load theory plays a significant role, as 

existing research studies suggest that a predominant challenge in programming lies 

in decomposing a problem into its constituent elements and articulating these 

components as programming code. Programming heavily relies on working memory, 

which exhibits limited capacity for storing and processing items, thereby potentially 

resulting in significant levels of cognitive load. Therefore, assessing the cognitive 

load encountered by students throughout the educational process is critical, given the 

multifaceted nature and inherent challenges associated with programming skill 

development (Berssanette & De Francisco, 2022).  

Gender is another important variable that must be considered when examining 

factors influencing success in computer science. Despite increased female 

participation in Science, Technology, Engineering, and Mathematics (STEM), the 

IT sector continues to be male-dominated. The literature on Computer Science 

consistently highlights gender as a persistent inequity in computer science (Luxton-

Reilly, 2016). While the roots of this issue are complex, factors such as stereotypes, 

prior experience, and self-efficacy have been identified as contributing to this 
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disparity. Stereotypes portraying computer specialists as male have been linked to 

lower interest in programming among girls compared to boys (Master et al., 2016). 

Consequently, female students often exhibit lower levels of self-efficacy in computer 

science (Beyer, 2014; Doubé & Lang, 2012). Boys typically have more prior 

programming experience (Bruckman et al., 2002) which results in a more positive 

attitude towards programming (Beyer et al., 2003) and higher levels of achievement 

(Guzdial et al., 2014). Nevertheless, research findings on the gender gap in computer 

programming have been inconsistent. While some studies indicate no significant 

gender differences among students (Akinola, 2015; Bennedsen & Caspersen, 2005; 

Bruckman et al., 2002; Gunbatar & Karalar, 2018; Qian & Lehman, 2016), others 

reveal persistent disparities (Guenaga et al., 2021; Tellhed et al., 2022). Efforts to 

introduce coding into early childhood education aim to address these inequities by 

providing equal opportunities for all children to develop digital competencies, 

potentially leading to a more diverse and inclusive IT workforce.  

Socioeconomic status, a complex construct encompassing income, education, 

occupation, and perceived social standing, is another factor contributing to 

disparities in educational outcomes among students. Moreover, the geographical 

location of a school, often closely tied to socioeconomic status, has been shown to 

influence a range of educational outcomes. The concept of geographic location, 

described by Bæck (2016, p. 436) as “well-documented, less researched”, 

encompasses far more than just physical space. The location of the school, whether 

rural, suburban, or urban, impacts factors such as accessibility, resource allocation, 

and overall learning environment, thereby exacerbating educational inequalities 

(Chand & Mohan, 2019). Particularly in the realm of programming education, a 

school's geographical location plays a crucial role in influencing students' access to 

technology. Rural or suburban schools may encounter challenges in providing 

students with equitable access to advanced technological resources compared to their 

urban counterparts. In rural schools, the absence of up-to-date hardware and software 

has posed significant challenges for administrators and educators in effectively 

implementing computer programming curricula (Agnello et al., 2019). Adequate 
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resources are crucial for engaging young learners in programming and facilitating 

their comprehension of the subject matter (Yusof et al., 2021). Previous research has 

recorded teachers' complaints about the insufficiency of teaching resources 

(Greifenstein et al., 2021). Furthermore, research studies have shown that early 

exposure to digital technology (Gerson et al., 2022) and prior coding experience 

(Bowman et al., 2019; Bruckman et al., 2002; Grover et al., 2016) have an impact on 

programming learning. These factors are often mediated by socioeconomic variables 

such as social class, income level, and parental attitudes toward programming 

(Gerson et al., 2022), which could be indirectly linked to the geographical location 

of schools.  

Motivational factors have also been highlighted in the literature as influential in 

programming education. The relationship between children’s programming learning 

and motivational factors such as self-efficacy, attitude, and goal orientation is 

multifaceted and significant. The literature has demonstrated a positive relationship 

between self-efficacy, academic achievement, and performance (Bergey et al., 

2015). Self-efficacy is a critical motivational construct that influences an individual's 

effort, resilience, and perseverance when faced with challenges (Bandura, 1977). In 

the context of programming education, students may encounter difficulties with 

complex programming and algorithmic problems. Individuals with low self-efficacy 

are likely to exhibit less perseverance in overcoming these obstacles, potentially 

hindering their progress and success in learning programming (Kovari & Katona, 

2023; Ramalingam et al., 2004). While self-efficacy plays a significant role in 

influencing performance in computer programming courses, self-efficacy is also 

intricately linked to and influenced by other coding-related factors, including 

attitudes (Kovari & Katona, 2023), enjoyment (Kanaparan et al., 2017), prior 

programming experience (Ramalingam et al., 2004), as well as interest in computer 

science (Beyer, 2014). In addition to self-efficacy, attitude toward programming 

plays a pivotal role in student motivation and learning outcomes. However, the 

relationship between young learners' attitudes toward programming and their 

subsequent programming achievement remains inconclusive. While some studies 
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have suggested a significant correlation, others have found no such link (Baser, 

2013). Given the relatively nascent nature of research on young children's attitudes 

toward programming, many studies have relied on broader measures of STEM 

attitudes (Ober et al., 2024). However, emerging research on the attitudes of middle 

school students toward computer science and programming suggests that these 

attitudes may be crucial in shaping long-term career aspirations, particularly in 

STEM-related fields. 

Another fundamental component of motivation is the goals that are influenced by 

both individual and contextual factors. According to the goal orientation theory, 

students establish a range of goals to guide their performance across various 

academic tasks, including assignments, examinations, laboratory work, and overall 

course engagement (Elliot et al., 2011; Senko et al., 2011; Shell & Soh, 2013). 

Research indicates that adopting a goal-oriented approach to learning computer 

science enhances academic performance and student persistence (Shell et al., 2016). 

Generally, mastery-oriented and task-oriented goals exhibit a positive correlation 

with academic performance, whereas the impact of performance goals on course 

outcomes can be either adaptive or maladaptive (Elliot et al., 2011; Hazley et al., 

2015; Hulleman et al., 2010; Tomić et al., 2020). However, students often have a 

complex interplay of multiple achievement goals, each influencing their motivation 

and behavior differently. Therefore, it is more accurate to adopt a comprehensive 

perspective rather than attributing a singular achievement goal orientation to them 

(Peteranetz, 2021).  

Classroom goal structures are an integral component of goal orientation theory. In 

classroom settings, the types of goal orientations adopted by students are influenced 

by their perceptions of classroom goal structures (Midgley & Urdan, 2001). Studies 

have established that a perceived classroom mastery goal structure predicts personal 

mastery goal orientation and is positively associated with academic performance 

across multiple disciplines, such as mathematics (Guo & Hu, 2022; Urdan & 

Midgley, 2003). Conversely, a competitive classroom environment that emphasizes 

grades and social comparison tends to foster performance-oriented goals among 
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students (Meece et al., 2006). Therefore, the structure of classroom goals 

significantly impacts the behavior of students and their process of learning by 

influencing the types of personal goals students establish. Students' academic 

behaviors and strategies are influenced by both personal achievement goals and 

perceived classroom goal structures. Research findings indicate a positive 

relationship between self-handicapping behaviors and personal performance-

avoidance goals. Moreover, classroom environments emphasizing performance-

oriented goals have been associated with a rise in student engagement in self-

handicapping strategies (Midgley & Urdan, 2001). Conversely, personal mastery 

goals and perceived classroom mastery goal structures have demonstrated weaker or 

negligible relationships with self-handicapping (Urdan et al., 1998).  

Furthermore, with regard to goal orientation, cheating is another important concept 

studied in the literature. Studies have indicated that individuals with performance-

oriented goals are more prone to engaging in behaviors associated with plagiarism 

than those with mastery-oriented goals (Anderman & Midgley, 2004). In computer 

science (CS) education, the majority of research on cheating behaviors has centered 

on higher education institutions and programming environments that are based on 

text. Particularly, studies have extensively examined cheating incidents within online 

programming courses and take-home assignments, where teachers have more 

difficulty monitoring students and students can easily share information and codes 

via the Internet (Abou Naaj & Nachouki, 2023; Hellas et al., 2017; Kim & Lee, 

2022). Studies have found that plagiarism and cheating behaviors are associated with 

lower academic achievement, a desire to surpass peers, and the fear of failing. 

Furthermore, these behaviors have been shown to be less prevalent among female 

students (Abou Naaj & Nachouki, 2023; Newstead et al., 1996). This study 

investigated cheating behaviors among middle school students during in-class 

activities and collaborative learning sessions. However, the relevant literature 

suggests that students may misinterpret collaborative learning as an opportunity for 

dishonest behaviors, such as cheating, copying, or collusion (Barros et al., 2021). 

Furthermore, among the various factors influencing programming learning, 
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academic background emerges as a particularly significant predictor of success. 

Mathematics, in particular, has long been recognized as a strong predictor of 

programming achievement (Bennedsen & Caspersen, 2005). Moreover, research has 

provided evidence of a correlation between reading comprehension and 

programming proficiency (e.g., Lopez et al., 2008). 

In conclusion, in reference to related literature, a large proportion of students have 

failed to reach a sufficient level of proficiency in their first computer programming 

course or even after they have taken more than one programming course. This 

problem is common in computer science education in many countries despite 

numerous research studies attempting to improve programming education. Teaching 

programming to younger children is a relatively new phenomenon, necessitating a 

deeper exploration of the unique challenges and influencing factors in this age group. 

Research studies have identified various factors affecting programming learning. 

Therefore, it is essential to investigate these factors, specifically in the realm of 

younger learners, to comprehend their influence on the learning process and to 

develop effective instructional strategies tailored to their needs. 

1.2 Purpose of the Study 

This study undertakes a comprehensive investigation into the factors that contribute 

to the acquisition of fundamental computer programming concepts among fifth-

grade students within the framework of middle education. The primary objective is 

to gain an understanding of these multifaceted elements and their collective impact 

on students' programming proficiency. Through an in-depth exploration of 

sociodemographic and educational background, affective learner characteristics, 

motivation, learning environment, and cognitive load, this research seeks to unveil 

the dynamics inherent in the interplay of these factors. 

Study variables encompassed a range of variables, including personal achievement 

goal orientations (mastery goal orientation, performance-approach goal orientation, 
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and performance-avoid goal orientation), perceived classroom goal structures 

(classroom mastery goal structure, classroom performance-approach goal structure 

and classroom performance-avoid goal structure), academic-related perceptions, 

beliefs and strategies (academic efficacy, academic self-handicapping strategies and 

cheating behavior), and attitude toward coding education. Additionally, the cognitive 

load was examined through the intrinsic, extraneous, and germane load. Educational 

background variables included mathematics and reading comprehension 

achievement, while sociodemographic background was assessed by examining the 

students’ gender and the geographical location of their schools (urban vs. suburban). 

By addressing these factors, the study seeks to offer an in-depth understanding of the 

determinants in teaching programming to younger students, thereby contributing to 

the advancement of computer science education. 

1.3 Research Questions 

The main research question that guided this investigation was: ‘What factors 

influence the acquisition of fundamental computer programming concepts in fifth-

grade students?’ This overarching research question serves as the focal point for 

investigating the complex relationships and interactions among various factors 

influencing students' acquisition of computer programming skills. The study will 

address this main research question through a detailed examination of the sub-

research questions listed below: 

1. Is there a significant difference in cognitive load experienced by students 

across seven fundamental programming topics? 

2. Is there a significant difference in students' PALS (personal achievement goal 

orientations, perception of classroom goal structures, academic-related 

perceptions, beliefs and strategies), attitudes towards coding education, 

achievement in mathematics, achievement in reading comprehension, 

achievement in coding and cognitive load scores based on their gender? 
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a. Is there a significant difference in students’ PALS scores based on 

their gender? 

b. Is there a significant difference in students’ attitudes toward coding 

education scores based on gender? 

c. Is there a significant difference in students’ mathematics scores based 

on gender? 

d. Is there a significant difference in students’ reading comprehension 

scores based on gender? 

e. Is there a significant difference in students’ coding achievement 

scores based on gender? 

f. Is there a significant difference in students’ cognitive load scores 

across seven fundamental programming topics based on gender? 

3. Is there a significant difference in PALS (personal achievement goal 

orientations, perception of classroom goal structures, academic-related 

perceptions, beliefs and strategies), attitudes towards coding education, 

achievement in mathematics, achievement in reading comprehension, 

achievement in coding, and cognitive load scores between students from 

urban schools and suburban schools? 

a. Is there a significant difference in PALS scores between students 

from urban schools and suburban schools? 

b. Is there a significant difference in attitudes toward coding education 

scores between students from urban schools and suburban schools? 

c. Is there a significant difference in mathematics scores between 

students from urban schools and suburban schools? 

d. Is there a significant difference in reading comprehension scores 

between students from urban schools and suburban schools? 

e. Is there a significant difference in coding achievement scores between 

students from urban schools and suburban schools? 
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f. Is there a significant difference in cognitive load scores across seven 

fundamental programming topics between students from urban 

schools and suburban schools? 

4. How do research variables predict students’ achievement scores in 

programming? 

5. What are the students’ experiences and opinions on the factors that affect 

their learning fundamentals of programming?  

Examining these sub-research questions intended to gain insights into the specific 

aspects of learner characteristics that may impact students' coding performance and, 

ultimately, enhance the overall comprehension of the factors influencing their 

academic achievement in computer programming. 

1.4 Significance of the Study 

The teaching and learning of computer programming present persistent challenges, 

documented by high failure rates across various levels, courses, and teaching 

contexts (Abdul-Rahman & Du Boulay, 2014; Watson & Li, 2014). There have been 

many research studies that aim to explore different course design approaches, tools, 

and instructional strategies that facilitate learning the computer programming 

process by helping students acquire the required knowledge and skills. Some 

attempts result in substantial success while others do not, but still, the leading reasons 

behind students’ success or failure in programming are not fully understood. This 

study aimed to address this gap through a multifaceted lens by examining the factors 

influencing students' achievement in fundamental programming skills. 

This study goes beyond cognitive factors by incorporating motivational variables 

derived from goal orientation theory, which emphasizes the substantial influence of 

student goals on academic achievement (Meece et al., 2006). The intricate 

relationship between affective, motivational, and environmental factors and their 

impact on students’ achievement in the context of programming remains 
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inadequately understood. Traditionally, programming education research has 

focused on undergraduate or graduate-level fields such as engineering, mathematics, 

and computer science, where introductory programming has fundamental 

importance for any student. However, the recent emphasis on introducing 

programming to younger learners necessitates a shift in research focus. While many 

studies implement innovative learning tools and methodologies for younger students, 

they often lack a deep understanding of the complex and interrelated challenges in 

programming instruction and learning. These challenges encompass not only 

instructional approaches but also students' cognitive abilities, motivational factors, 

and the learning environment. Considering the multitude of variables affecting 

learning in a broad sense and the specific domain of learning programming, there is 

a compelling need to comprehensively evaluate factors influencing students’ 

achievement in the fundamentals of computer programming, encompassing both 

cognitive and motivational aspects. 

Building upon the established challenges in teaching computer science and the 

growing trend of introducing programming concepts to younger children, this study 

holds significant practical value for educators, curriculum developers, and 

policymakers. By investigating the multifaceted determinants that influence middle 

school students' acquisition of fundamental programming principles, the results can 

contribute to the development of enhanced instructional strategies tailored to this age 

group. Given the complex nature of computer programming, which demands 

proficiency across multiple domains and is widely recognized as challenging to 

acquire, it is imperative to consider the cognitive load placed on learners and their 

capacity to process information during instruction (Berssanette & De Francisco, 

2022). Understanding the interplay between sociodemographic background, 

educational experiences, learner characteristics, motivational factors, learning 

environment, and cognitive load can equip educators with a comprehensive 

framework to respond to the varied needs of students in their classrooms. This 

knowledge can be translated into the creation of differentiated learning experiences 
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that address various learning styles and abilities, fostering a learning environment 

that is more inclusive and interactive for computer science education.  

The findings of the study can make a valuable contribution to curriculum 

development by providing a profound understanding of the appropriate level of 

complexity and the specific programming concepts most conducive to successful 

learning for middle school students. This information can guide the creation of age-

appropriate and engaging curriculum materials that stimulate a desire to develop 

proficiency in coding and equip young learners with the foundational knowledge and 

abilities required for thriving in the era of digital advancements. Ultimately, by 

identifying the factors that shape programming achievement within this age group, 

this study aims to contribute valuable insights that can inform educational practices 

and pave the way for more effective pedagogical approaches and instructional 

strategies for teaching computer science to younger learners. 
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CHAPTER 2  

2 LITERATURE REVIEW 

This chapter serves as a theoretical foundation for contextualizing and framing the 

research questions through a detailed examination of existing research. The primary 

aim is to reveal a complete comprehension of the theoretical underpinnings of 

cognitive load theory and motivational factors, particularly regarding the context of 

computer programming education for children. 

2.1 Cognitive Load Theory 

Cognitive Load Theory (CLT) posits that the capacity of working memory to process 

information is a critical factor in learning outcomes. This theory emphasizes the 

importance of optimizing cognitive resources to enhance learning efficiency. To 

investigate how CLT can be applied to enhance computer programming instruction, 

the fundamentals of CLT, including the architecture of human cognition, core 

principles of the theory, and the classification of cognitive load were examined. 

Furthermore, the role of CLT in shaping effective programming instruction was 

explored. 

2.1.1 Human Cognitive Architecture 

Human cognitive architecture provides insight into the processes of learning, 

thinking, and problem-solving. This architecture, resembling a natural system for 

information processing, employs various strategies to manage cognitive load. A key 

focus of cognitive load theory is to identify strategies for decreasing this load, 

thereby facilitating the transition of information from working memory to long-term 

memory, where biologically secondary knowledge resides. The following sections 
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provide an in-depth examination of the role of information categories, long-term 

memory, working memory, and schema theory within this framework. 

2.1.1.1 Categories of Information 

A diverse array of classification schemes exists for knowledge, with one notable 

classification distinguishing between biologically primary and biologically 

secondary knowledge. This distinction is substantial because the acquisition, 

organization, and storage of various categories of knowledge may require different 

instructional methodologies.  

From Geary's (2008) evolutionary perspective, biologically primary knowledge 

pertains to information that humans have naturally developed the capacity to acquire. 

In contrast, biologically secondary knowledge encompasses information that has not 

been naturally acquired through human evolution and has become essential due to 

cultural influences (Sweller et al., 2011). Biologically primary knowledge 

encompasses abilities and skills that humans have developed through natural 

selection. They encompass the differentiation of facial features and vocal patterns, 

the utilization of general problem-solving strategies, and fundamental rudimentary 

social interactions. Competencies grounded in biologically primary knowledge are 

typically acquired automatically and, more frequently, subconsciously, devoid of 

formal educational intervention. For example, we are not taught how to talk via any 

curriculum since we have evolved to acquire this skill (Sweller, 2016).  

Biologically, primary knowledge serves as the foundation for the majority of human 

cognition. Although biologically primary knowledge is essential to human cognition, 

it does not directly lead to intelligent behavior. However, for complex problem-

solving and reasoning, biologically primary knowledge must be integrated with and 

built upon biologically secondary knowledge. The cognitive processing required for 

biologically evolved primary abilities differs from the typical information processing 

required to obtain biologically secondary knowledge. For instance, cognitive 
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processing for learning to speak, which requires biologically primary knowledge, is 

not the same as that for learning to write, which requires biologically secondary 

knowledge (Geary, 2008; Sweller et al., 2011).  

Instructional design primarily focuses on biologically secondary knowledge, 

encompassing activities such as reading, writing, and other subjects taught through 

instruction (Cowan, 2014; Sweller, 2016). However, it is important to recognize the 

value of biologically primary knowledge. Since acquiring primary knowledge 

requires minimal conscious cognitive resources, a strategic approach could involve 

utilizing these inherent abilities as a scaffolding for learning secondary knowledge. 

In other words, instructional design can leverage the efficiency of primary 

knowledge to minimize the load on working memory associated with acquiring 

complex skills and concepts (Paas & Sweller, 2012). 

2.1.1.2 Long-Term Memory  

Long-term memory serves as a vast storage for knowledge and skills that we retain 

in a way that allows for more or less permanent access. All the things we "know," 

such as our name, the alphabet, reading, writing, and swimming, are retained within 

our long-term memory, ready to be accessed whenever needed (Cooper, 1998).  

A valid argument may be made that a substantial portion of the data retained in long-

term memory comprises biologically primary knowledge (Sweller, 2020). Many 

tasks that we often perceive as effortless and uncomplicated are facilitated by our 

primary knowledge because all biologically primary skills are perceived as easy and 

simple. Conversely, activities such as chess, which rely on secondary knowledge that 

has not been naturally acquired through evolution, are seen as exceedingly difficult. 

This distinction between primary and secondary knowledge highlights the crucial 

role of long-term memory in facilitating higher-level cognitive processes. While 

primary knowledge allows for seemingly effortless tasks, long-term memory plays a 
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much more substantial role in human cognition, particularly in areas like thinking 

and problem-solving (Sweller et al., 2011).  

Long-term memory is essential for all higher-level cognitive processes, including 

thinking and problem-solving (Bliss & Collingridge, 1993). It is critical not only for 

human cognition but also for those facets of cognition considered the highest levels 

of human intelligence. The role of long-term memory goes beyond facilitating the 

retrieval of past events, whether meaningful or not (Kandel et al., 2014). The impact 

of long-term memory on cognition and the nature of the cognitive changes that 

resulted from practice were revealed by investigations conducted by De Groot (1978) 

and Chase and Simon (1973). In his research with chess players, De Groot (1978) 

identified only one distinction that separated players of different skill levels, and it 

appeared unrelated to their problem-solving proficiency. Instead, De Groot's (1978) 

focus revolved around the concept of memory. In a parallel study, Chase and Simon 

(1973) arranged the chess pieces in a random configuration. No distinctions were 

observed between chess players with different levels of proficiency with regard to 

random configurations. The findings of these two research studies hold the potential 

to provide a comprehensive understanding of chess expertise in a manner that does 

not require consideration of additional variables. Chess proficiency does not 

primarily revolve around thinking skills; instead, it is derived from the capacity to 

recognize numerous configurations for chess boards and identify the optimal 

strategies for each. When chess players have no knowledge stored in their long-term 

memory, they are required to formulate strategies through problem-solving searches. 

While thinking skills are necessary for novices, experts require fewer problem-

solving searches as their expertise increases (Sweller et al., 2011). Explanations 

offered to distinguish the cognitive processes between expert and novice chess 

players can be expected to be extrapolated to encompass all processes demanding 

the utilization of secondary knowledge (Sweller, 1988). From this perspective, 

possessing information about specific problem situations and their accompanying 

moves should be the primary factor in improving problem-solving skills rather than 

acquiring general problem-solving strategies (Gilhooly & Green, 1988). In essence, 
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these findings suggested that for complex domains requiring secondary knowledge, 

a focus on building a rich knowledge base of specific examples and solutions may 

be more effective than generic problem-solving approaches (Sweller et al., 2011). 

2.1.1.3  Working Memory 

Working memory is a construct introduced by psychologists in the mid-20th century. 

It refers to the system responsible for temporarily holding and manipulating 

information. Working memory holds significant theoretical weight in psychology, 

particularly because it highlights the limitations of our cognitive capacity. Early 

discussions hinted at working memory being essential for our everyday lives, 

especially when it comes to planning tasks. The concept later broadened to 

encompass the mental ability to remember plans in general, not just those related to 

daily routines. This cognitive system with limited capacity is crucial for the 

temporary retention and active information management in a readily accessible state. 

This processed information plays a critical role in facilitating higher-order cognitive 

processes such as planning, comprehension, reasoning, and problem-solving 

(Cowan, 2014).  

Over the years, debates have emerged about the specific limitations of working 

memory. Some key questions include its capacity, processing speed, duration of 

retaining information, and interference properties. While working memory capacity 

can hold around seven chunks of information (Miller, 1956), the ability to actively 

process that information is more limited. Working memory capacity is estimated to 

be closer to two to three chunks for tasks requiring manipulation, such as organizing, 

contrasting, or comparing information. Interactions among elements maintained 

within the working memory itself consume additional working memory resources. 

This effectively reduces the number of unique elements that can be actively 

processed concurrently (Sweller et al., 1998). This number falls far short of the 

complex interactions that occur in most intellectual endeavors. Working memory 

alone would only permit rudimentary cognitive activities (Paas et al., 2003). 
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However, by leveraging long-term memory and established knowledge structures 

(schemas), more complex tasks could be handled more effectively. 

2.1.1.4 Schema Theory 

Schema theory posits the existence of cognitive constructs called schemas stored in 

long-term memory (Rumelhart & Norman, 1976). These schemas act as fundamental 

units or chunks of knowledge, categorizing information about the world around us. 

Schemas play a crucial role in information processing by influencing how we 

perceive and interpret new experiences. However, these frameworks are personal, 

and individual experiences can influence how schemas are formed and modified. In 

the process of accretion, a new experience seamlessly integrates into an existing 

schema without causing substantial modifications to the schema. Any incoming 

information perceived as aligning with a particular schema will be processed in a 

consistent manner, facilitating efficient storage and retrieval (Sweller et al., 2011). 

This is because new knowledge is often assimilated into existing schemas during 

learning, leveraging established connections. Conversely, tuning occurs when a 

novel experience challenges the existing schema, leading to the adaptation of the 

structure to integrate new information. Finally, when a new experience deviates 

significantly from existing frameworks, a process of restructuring takes place, 

leading to the creation of a new schema (Rumelhart & Norman, 1976). 

In addition to facilitating the organization and storage of knowledge, schemas also 

have a critical function in reducing the cognitive load on working memory. Through 

continuous learning experiences, schemas may encompass extensive amounts of 

information. Serving as a framework for interpreting new information based on 

existing knowledge structures, schemas effectively reduce the load placed on 

working memory (Van Merriënboer & Sweller, 2010). This allows for the 

distribution of these limited working memory resources to more complex cognitive 

tasks. Over time, schemas develop into complex networks of information through a 

cumulative process of continuous addition, combination, and rearrangement. This 
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evolution enhances knowledge representation and processing efficiency. 

Automation plays a significant role in this development. In contrast to conscious 

processing, automatic processing, arising from extensive practice, significantly 

reduces the reliance on working memory. Constructed schemas can become 

automated through repeated application. From an instructional design standpoint, 

effective instruction should aim to promote both schema construction and schema 

automation for consistent aspects of tasks across various problems (Sweller et al., 

1998). 

2.1.2 Foundations of Cognitive Load Theory  

Cognitive load (CL), proposed by Sweller in the 1980s, refers to the amount of 

cognitive resources allocated to working memory that a learner is expected to 

dedicate to processing new information (Berssanette & De Francisco, 2022). This 

theory is grounded in the well-established model of human cognitive architecture, 

which encompasses both working memory and long-term memory. Cognitive Load 

Theory (CLT) posits that human cognitive processing is heavily influenced by the 

constraints on the capacity and duration of working memory. Since newly acquired 

information necessitates initial conscious processing within limited capacity and 

short-duration working memory, this can hinder learning effectiveness (van 

Merriënboer & Sweller, 2005).  

Expertise emerges gradually as individuals progressively integrate simpler concepts 

into more complex schemata. These schemata organize and store knowledge for 

efficient processing, thereby reducing the load on working memory. This is because 

even highly complex schemata can be treated as single units within working 

memory, reducing the number of independent elements requiring processing (van 

Merriënboer & Sweller, 2005). Conversely, working memory capacity exhibits 

limitations when encountering novel information. This stems from the absence of 

pre-existing schemata, which act as a central executive, facilitating the processing 

and organization of familiar concepts. Furthermore, the challenge is compounded by 
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the exponential growth in complexity as the number of elements within novel 

information increases linearly. Unlike readily organized knowledge integrated into 

schemata, novel information lacks a pre-established framework, imposing a load on 

working memory's limited processing capabilities (Sweller et al., 1998).  

Contrary to prevailing beliefs and several cognitive theories, CLT asserts that 

specific forms of problem-solving activities may impede the learning process. 

Sweller (1988) underscored, in summarizing the findings of his study, that 

conventional problem-solving may not contribute to schema acquisition, given the 

substantial differences in the mechanisms required for problem-solving and schema 

acquisition. As schema acquisition represents a critical element of problem-solving 

expertise, an excessive emphasis on the problem-solving process may place a high 

level of cognitive load and impede the development of expertise. Although schemas 

serve as a template that simplifies complex problem-solving tasks, conversely, they 

might complicate the resolution of simple problems when erroneously assuming the 

schema's relevance to the problem and its provision of an appropriate template. 

Utilizing an inappropriate problem-solving schema resulted in Einstellung, also 

recognized as a mental set that obstructs our perception of apparent details  (Sweller 

et al., 2011). Utilization of complicated problem-solving techniques, such as means-

ends analysis, might result in an increased cognitive load on the learner, potentially 

resulting in a more pronounced hindrance to the learning process. Engaging in 

problem-solving tasks that require storing many items in short-term memory may 

lead to an excessive cognitive load (Sweller, 1988). 

Cognitive load (CL) denotes the extent of resources allocated to working memory, 

anticipated for a learner to allocate in order to process new information. With this 

approach, CLT, which serves as an instructional design theory, attempts to explain 

the impact of the information processing load generated by learning tasks on 

learners’ capacity for information processing and constructing knowledge in long-

term memory (Berssanette & De Francisco, 2022). Chandler and Sweller (1994) 

asserted that learning may be more difficult from materials that include large 

amounts of information than learning from materials that have less information. 
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When students are exposed to excessive amounts of information and inadequate 

regulation of the complexity of instructional materials, this will lead to an excessive 

cognitive load due to the constrained capabilities of short-term memory. 

Different instructional strategies and media are used in instruction. According to 

CLT, their effectiveness cannot be ensured if the cognitive architecture of the brain 

is not considered during instruction. Information is retained within the long-term 

memory in a vast number of schemas. Schemas organize categories and elements of 

data, as well as the relationships among them (Chi et al., 1982). These schemas are 

constructed in working memory. For highly skilled performance, exceedingly 

complicated schemas, which incorporate “elements consisting of lower-level 

schemas into higher-level schemas”, are constructed (Paas et al., 2004, p.2). But, as 

a consequence of the limitations of working memory capacity, dealing with this kind 

of complex schemas may exceed working memory capacity. However, due to 

comprehensive and sufficient practices, schemas can be automated. The automation 

of those schemas allows them to be processed unconsciously, thereby decreasing the 

working memory load.  

The primary focus of cognitive load theory is to manipulate working memory load 

in a way that facilitates the construction of schema within the long-term memory for 

automation of schemas, which results in learning. CLT is concerned with the ease of 

processing information within working memory. The cognitive load imposed on 

working memory can be influenced by two key factors: the inherent complexity of 

the learning tasks themselves (intrinsic cognitive load) and the way these tasks are 

presented (extraneous cognitive load) (van Merriënboer & Sweller, 2005). 

2.1.3 Types of Cognitive Load 

Traditional cognitive load theory delineates three primary types of cognitive load: 

intrinsic, extraneous, and germane. Intrinsic cognitive load, defined as the load that 

stems from the inherent complexity of learning materials and the learner's expertise 
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level, is considered independent of the educational methods implemented (Sweller 

et al., 2011). This independence arises because the number of elements requiring 

simultaneous processing in working memory depends on the degree of element 

interactivity within the learning materials or tasks. Understanding materials with 

highly interactive elements presents a significant challenge. However, the key to 

fostering comprehension lies in developing cognitive schemata that integrate these 

interacting elements. Consequently, what a novice learner perceives as a large 

number of interacting elements may be a single element for a more experienced 

learner with a well-developed schema (van Merriënboer & Sweller, 2005).  

Extraneous cognitive load arises from the tasks learners perform or the way 

information is presented.  Within this type of cognitive load, the instructional design 

employed to deliver the material may additionally impose a load that is extraneous 

and unrelated to the intended learning objectives (Sweller et al., 2011). In contrast to 

intrinsic cognitive load, extraneous cognitive load is not essential for the process of 

knowledge acquisition, such as schema construction and automation. Unlike intrinsic 

load, extraneous cognitive load can be effectively reduced or eliminated through the 

implementation of targeted instructional interventions (van Merriënboer & Sweller, 

2005). 

Intrinsic and extraneous cognitive load have an additive effect on the learner's 

working memory. Thus, the impact of extraneous cognitive load on student learning 

outcomes depends on the intrinsic cognitive load. In situations where the intrinsic 

load is elevated, instructional design should prioritize minimizing extraneous 

cognitive load. This ensures that the overall cognitive load is kept at a level that 

aligns with the limitations of working memory and facilitates successful knowledge 

acquisition. Conversely, for tasks with a lower intrinsic load, a moderate level of 

extraneous cognitive load, even if stemming from instructional design shortcomings, 

may not necessarily impede learning. However, it is important to acknowledge that 

even in low intrinsic load situations, excessive extraneous cognitive load can still 

hinder learning by exceeding working memory limitations (van Merriënboer & 

Sweller, 2005). 
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In earlier versions of CLT, the germane load (GL) was introduced by Sweller et al. 

(1998)  as an additional beneficial load on the learning process. This construct aimed 

to explain the positive impact of certain variations within learning materials on the 

learner's cognitive processes during knowledge acquisition. Research studies have 

demonstrably shown that variability in practice activities while increasing cognitive 

load, facilitates schema construction and enhances the transfer of training. Paas and 

Van Merriënboer (1994) proposed that the observed increase in cognitive load 

stemmed from processes directly contributing to learning, such as automation and 

schema construction, rather than from extraneous cognitive load that does not 

promote learning. The introduction of germane load in CLT emphasizes the 

importance of active learner engagement for successful learning. While CLT focuses 

on managing cognitive load, germane load underlines the necessity for learners to 

invest mental effort in processing information relevant to building knowledge and 

schemas. This processing requires some level of motivation and willingness to 

engage with the learning materials. While instructional strategies can be employed 

to minimize extraneous load and free up cognitive resources, this approach is only 

effective if learners are motivated to invest these freed resources in germane 

cognitive activities that promote schema development and knowledge acquisition. In 

essence, effective learning depends on optimizing instructional design to reduce 

extraneous load and foster learner motivation to engage in germane cognitive 

processing actively (van Merriënboer & Sweller, 2005).  

While traditional conceptualizations of CLT involve the three types of cognitive 

load, as previously outlined, recent years have seen growing debate regarding the 

germane load construct. Research studies within CLT have emphasized that 

cognitive load does not consistently hinder the process of learning. In fact, it is 

essential for facilitating meaningful learning, particularly complex learning, which 

necessitates effortful cognitive processing and the load that is linked with working 

memory. However, when CLT was first introduced, intrinsic and extraneous loads 

were considered loads to be properly managed or minimized to prevent cognitive 

overload. Consequently, the germane load construct was introduced to reflect the 
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purposeful cognitive effort invested in learning and the associated demands placed 

on working memory during knowledge acquisition. Unlike intrinsic and extraneous 

cognitive load, the construct of germane load was introduced within the CLT 

framework based primarily on theoretical considerations. While the additive 

hypothesis, which posits a cumulative effect of the three load types on learners, 

provided initial support for the framework, empirical evidence specifically 

demonstrating the need for germane load remains a topic of ongoing discussion 

(Greenberg & Zheng, 2023; Kalyuga, 2011). However, over time, the limitations of 

this additive framework have begun to be discussed by the researchers as it does not 

fully capture the complex interactions between these loads. Critics argue that 

germane load and intrinsic load are not entirely distinct. They contend that germane 

load inherently relies on intrinsic load. Without the inherent challenge presented by 

the material (intrinsic load), there would be no need for the learner to exert effort in 

processing it (germane load) to build new knowledge (Greenberg & Zheng, 2023). 

Therefore, a debate was started on whether germane load should be regarded as a 

discrete form of cognitive load or a germane resource in working memory (Leppink 

& van den Heuvel, 2015). In their 2019 revisit of the topic titled "Cognitive 

Architecture and Instructional Design”, Sweller et al. emphasized that the growing 

body of empirical research consistently demonstrated a key finding: reducing 

extraneous cognitive load led to a corresponding decrease in overall cognitive load. 

The new formulation of CLT presumes that germane cognitive load doesn't simply 

increase overall cognitive load. Instead, it reallocates working memory resources 

from irrelevant tasks to core learning activities, enabling efficient processing of task-

intrinsic information.  

There have been some research studies that provide evidence supporting a 

framework in cognitive load theory that emphasizes the role of germane resources in 

working memory on shaping learners' cognitive effort during learning. Findings from 

a study by Kalyuga (2011) supported the notion that the traditional CLT framework 

might be redundant. This study suggested that germane load might not be a distinct 

category but could potentially overlap with, or even be indistinguishable from, 
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intrinsic load. Similarly, findings from a recent study by Greenberg and Zheng 

(2023) suggested that germane load might not be a direct predictor of performance 

outcomes, while intrinsic load was the primary variable influencing performance 

outcomes. This finding led them to propose that mental activity directly relevant to 

learning (germane activity) might be more closely linked to the cognitive resources 

available in working memory rather than constituting a separate type of cognitive 

load.  

Additionally, they found that individuals with greater working memory capacity 

could effectively manage complex learning tasks while still allocating cognitive 

resources to learning, proposing that the exertion of cognitive effort during the 

process of acquiring knowledge is influenced by germane resources stored in 

working memory, as opposed to the germane load. On the other hand, a meta-

analysis of cognitive load questionnaires found that the concept of germane load 

continues to provoke debate with regard to its measurement and theoretical 

integration, supporting the need for further investigation (Krieglstein et al., 2022). In 

recent frameworks of cognitive load theory, the term “self-perceived learning” has 

been widely used to refer to germane load. Self-perceived learning emphasizes the 

learner's own perception of how much they are acquiring knowledge (Bergman et 

al., 2015; Fredericks et al., 2021; Quintero-Manes et al., 2022). Due to the ongoing 

research on the cognitive load imposed during learning, this study utilized the term 

"germane load" to address the germane resources, thereby avoiding potential 

conflicts. 

2.1.4 Research on the Role of Cognitive Load Theory in Computer 

Programming Education 

Computer programming represents a cognitively complex domain characterized by 

necessitating mastery across various competencies, which often leads to significant 

challenges for learners due to the high CL it imposes on their working memory 

(Berssanette & De Francisco, 2022). Working memory is critical for solving 
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problems like programming comprehension as it allows us to hold relevant 

information in mind, manipulate it, and make connections to reach solutions. The 

limitations of working memory pose a significant challenge in computer 

programming education. Cognitive Load Theory arises as a beneficial framework in 

computing education by addressing this challenge. One of the fundamental 

challenges, particularly in introductory computer programming education, lies in the 

subject matter's inherent complexity. This complexity generally stems from two 

factors: the number of new concepts students must learn and the requirement to 

integrate these concepts with previously learned ones to solve problems. From a 

perspective rooted in CLT, the process of integration increases the cognitive load 

encountered by students, thereby hindering their learning and problem-solving 

process. CLT sheds light on the impact of human cognitive architecture limitations 

on the process of learning and offers guidance for optimizing learning processes 

(Duran et al., 2022). Research studies have shown that the application of CLT in 

teaching computer programming involves various strategies, including applying 

concepts like the worked example effect, the development and use of instructional 

resources or tools, and pedagogical strategies based on measuring cognitive load.  

Related literature has shown that instructional methods based on CLT impact the 

effectiveness of teaching computer programming. Effective learning in 

programming education can be achieved through methods that reduce extraneous 

load and optimize intrinsic and germane loads. Besides that, by leveraging CLT 

principles, educators could differentiate intrinsic from extraneous cognitive load. 

This distinction empowers them to design instructional strategies that effectively 

manage the learning process and optimize students' cognitive resources (Looker, 

2021). One of the most widely employed strategies in computer science education 

(CSE) for aiding students’ knowledge acquisition is worked examples (Abdul-

Rahman & Du Boulay, 2014; Caspersen & Bennedsen, 2007; Derry, 2000; Garner, 

2002; Gray et al., 2007; Hsu et al., 2012; Lim, 2019; Mason & Cooper, 2013; 

Muldner et al., 2022; Nainan & Balakrishnan, 2019; Sands, 2019; Takir, 2011). 

Worked examples, comprising a problem statement, solution steps, and the final 
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result, have demonstrated the enhancement of learning outcomes by reducing 

cognitive load, shortening learning time, and facilitating the construction of 

cognitive schemas. Consequently, this enables students to solve similar problems 

more with increased efficiency and effectiveness (Sweller & Cooper, 1985). While 

worked examples have been shown to be a valuable tool in programming education, 

particularly for novice learners encountering complex technical concepts for the first 

time, their effectiveness is influenced by their design and implementation. These 

examples may cover different problem types, programming paradigms, and 

visualization techniques to address a variety of learning styles and deepen 

understanding. Programming education utilizes a variety of design types for worked 

examples, including text-based static examples, modeling examples, dynamic code-

tracing, animated examples, and incomplete examples (Muldner et al., 2022). 

Despite the benefits of worked examples, one potential drawback of them lies in their 

passivity; they may not inherently compel learners to engage in a meticulous analysis 

of the presented solution. To address this shortcoming, Van Merrienboer and 

Krammer (1987) introduced the utilization of completion problems in introductory 

computer programming education.  

Empirical studies have demonstrated various innovative educational tools and 

techniques aimed at enhancing the instruction and comprehension of computer 

science. This emphasis on innovative approaches underscores the inherent 

challenges students face in grasping complex concepts within the field. In this 

context, CLT provides valuable insights into how to design these educational tools 

and techniques. One such tool is linked list visualization software designed based on 

Cognitive Load Theory's split-attention effect, which integrates diagrams and code. 

Results showed that this approach could help students with prior programming 

knowledge gaps visualize and understand linked lists more effectively, thereby 

reducing cognitive load and fostering a deeper grasp of data structures (Arevalo-

Mercado et al., 2023). The findings of another study demonstrated that a new 

teaching method using a custom visualization tool helped novice programmers grasp 

function-based problem-solving in a visual setting. Compared to traditional teaching 
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methods, students using the new approach performed significantly better on tests and 

assignments (Winter et al., 2019). Another study, drawing on principles from CLT, 

proposed by Harms, (2013), suggested that developing personalized tutorials tailored 

to a user's programming expertise could enhance the effectiveness of novice 

programmers in learning new programming concepts encountered in unfamiliar 

code. The main purposes of the proposed tutorials were to predict the learners’ 

potential cognitive load by modeling their expertise in programming and to minimize 

the extraneous cognitive load by presenting programming concepts that prevent 

exceeding the working memory capacity of a learner. According to the findings of 

the studies, by effectively managing cognitive load, these innovative approaches 

hold great promise for improving computer programming education. 

2.2 Motivation and Learning 

Numerous theories of motivation in learning have been developed through research 

from diverse perspectives, offering significant insights into the factors driving 

student engagement and achievement. Educators have access to an extensive array 

of resources related to student motivation. These theories provide essential 

understandings of the underlying sources of curiosity and persistence in learners. 

Among these, goal orientation theory examines how students' goals influence their 

motivation and learning behaviors, providing a framework for understanding student 

engagement. 

2.2.1 Goal Orientation Theory 

Goals are the cornerstone of human motivation, propelling us to strive for 

achievement and growth. Achievement Goal Theory offers insights into how 

individuals set goals within various contexts, including education. This theory, 

initially applied to understand young athletes, posits that their perceptions of ability 

(shaped by past achievements and comparisons with others) and their definitions of 
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successful outcomes significantly influence the types of goals they set for themselves 

(Nicholls 1984, 1989). These goals, in turn, shape their overall motivational 

processes and influence their training and performance behaviors.  

Personal Achievement Goals 

Goal orientation theory, building on achievement goal theory, proposes that students' 

motivation and learning behaviors are influenced by the types of goals they set for 

themselves. Numerous models of goal structure have been created to enhance 

understanding of the motivations driving achievement behaviors. Early research 

within achievement goal theory explored goal structure through two dimensions, 

focusing on mastery and performance goals. Individuals who possess mastery goals 

prioritize learning and improvement by focusing on acquiring knowledge and 

developing skills. Their success is measured by personal growth, not just achieving 

a specific grade. For mastery goal-oriented learners, the desire to learn and improve 

is their primary motivator, even when encountering difficult problems. On the other 

hand, performance goal orientation encompasses a range of goals focused on relative 

achievement. The goal of performance-oriented learners is to demonstrate 

competence and outperform others. The emphasis is less on mastery of the concept 

itself and more on their performance and how it compares to others (Ames & Archer, 

1988; Elliott & Dweck, 1988).  

Self-theories, such as Dweck's self-belief theory, further explain how students' 

perceptions of their abilities influence their goal-setting. For instance, students who 

possess a growth mindset tend to be more inclined to accept challenges and establish 

goals aimed at achieving mastery (Dweek, 1986). Subsequently, avoidance goals 

were incorporated into the framework, specifically as performance-avoidance goals 

(Skaalvik, 1997). Contrary to performance-approach goals, students with 

performance-avoidance goals are motivated by a concern about the possibility of not 

succeeding, focusing on avoiding negative outcomes rather than embracing 

challenges and aiming for improvement. These performance-avoidance goals are 
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generally less effective in driving academic achievement  (Liem et al., 2008; Shell 

et al., 2013; Shell & Soh, 2013). 

Elliot and McGregor (2001) sought to refine the understanding of mastery goals by 

proposing a 2x2 model. This model differentiates between mastery-approach goals 

and mastery-avoidance goals. Mastery-approach goals, similar to the original 

conceptualization, emphasize a desire for learning and improvement. However, 

mastery-avoidance goals, a recent addition to the framework, are driven by a fear of 

failing to master the task or knowledge. Critics of this new framework have argued 

that the 2x2 structure might be too complex and difficult to measure in real-world 

settings. Another version of this model was then proposed and tested by Elliot et al. 

(2011) as a 3x2 model, including three approaches and avoidance goals: task, self, 

and other. Furthermore, some researchers raise doubts about the presence of a 

distinct mastery-avoidance goal orientation, suggesting that it might conceptually 

overlap with performance-avoidance goals (Pintrich, 2000). Current research 

suggests a further refinement of performance goals by distinguishing between 

normative and appearance goals (Hulleman et al., 2010). Normative goals emphasize 

social comparison, motivating learners to outperform others or avoid 

underperforming relative to their peers. In contrast, appearance goals center on 

managing self-presentation, driving learners to either showcase their abilities or 

conceal their shortcomings from others. Normative goals appear less likely to lead 

to negative outcomes. However, appearance goals, with their focus on avoiding 

negative self-evaluation and potential public shame, might be more closely linked to 

maladaptive behaviors (Zingaro et al., 2018).  

Classroom Goal Structures 

The goal-oriented messages perceived by students in the classroom form the 

classroom goal structures. Analysis of the Patterns of Adaptive Learning Scales 

(PALS) instrument has revealed that personal achievement goal orientations and 

classroom goal structures are distinct constructs. However, related literature 
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indicates that perceived classroom goals act as predictors of personal achievement 

goals.  

Perceptions of the learning environment focusing on effort and understanding are 

positively associated with the adoption of mastery-oriented goals by students (Meece 

et al., 2006; Turner et al., 2002; Urdan, 2004). Students who perceived a classroom 

environment that emphasized mastery goals reported employing more effective 

learning approaches, demonstrating a preference for more challenging tasks, and 

exhibiting a more positive disposition towards the learning environment (Ames & 

Archer, 1988). Research studies have discussed the influence of teachers on the 

formation of the classroom goal structure. The evaluation strategies or group 

strategies employed by teachers significantly impact how these structures are 

formed. For instance, creating ability groups or employing evaluation strategies that 

foster a competitive climate in the classroom can strengthen perceived performance-

goal structures (Meece et al., 2006). Soltani et al. (2022) further revealed that 

students' perceptions of competition, the perceived significance of the subject matter, 

and their personal orientation towards mastery goals all positively contributed to 

their academic performance. While performance-approach goals can be beneficial 

for students, their effectiveness may vary depending on factors such as gender, age, 

and the learning environment. Research conducted by Midgley et al. (2001) 

suggested that these goals may be more advantageous for boys compared to girls and 

for older students compared to younger ones. Additionally, the presence of mastery 

goals alongside performance-approach goals may further enhance these benefits, 

particularly in competitive learning environments. 

2.2.2 Self-efficacy 

Self-efficacy, a concept central to Bandura's Social Cognitive Theory, refers to a 

learner's belief in their capabilities to master knowledge and skills. This belief acts 

as a cornerstone of motivation, directly influencing how much effort and 

perseverance a learner is willing to invest (Bandura, 1977). Several factors shape this 
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crucial belief, including previous success or failure experiences, social persuasion, 

emotional states, and observational learning. 

Individuals use various information sources to evaluate their capabilities. 

Performance accomplishments, referring to past successes and failures, are 

considered the most reliable source of information for self-efficacy appraisal. They 

provide concrete evidence of one's capabilities, directly demonstrating what one can 

accomplish. Overcoming challenges builds confidence, while repeated failures can 

undermine self-belief. Furthermore, indirect experiences, such as observing others 

succeed in similar tasks, can boost confidence in one's own abilities. Conversely, 

witnessing failures can lower self-efficacy. Social influences and interactions also 

play a significant role in self-efficacy. Social persuasion, which refers to positive 

encouragement, commendation, and expressions of confidence from others, 

strengthens an individual's confidence in their capabilities. Learners who receive 

encouragement and support from peers, teachers, or mentors are more likely to 

develop strong self-efficacy. For example, teacher acknowledgment (environmental) 

reinforces students' perception of progress (personal), fostering intrinsic motivation 

and self-efficacy to support ongoing learning. Finally, physiological and emotional 

states encountered during the learning process, such as anxiety or confidence, also 

play a role in self-efficacy appraisal. Individuals experiencing lower anxiety in a 

situation may interpret this as a sign of greater capability, while higher anxiety levels 

might be perceived as indicating lower competence (Bandura, 1977; Schunk & 

DiBenedetto, 2020; Usher, 2009).  

2.2.3 Academic Self-Handicapping Strategies 

Students who are concerned about failing exams or assignments may perceive their 

self-esteem to be at risk. A common coping mechanism for this concern is the use of 

self-handicapping strategies (Schwinger et al., 2014). Academic self-handicapping 

strategies involve behaviors in which students create impediments either before or 

during the task they need to accomplish, thereby hindering their success. Examples 
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of academic self-handicapping behaviors exhibited by some students include 

procrastinating and spending excessive time on other activities, such as socializing, 

thus leaving them very little time to study. The purpose of these strategies is to 

provide an excuse for failure so that the failure can be attributed to these self-imposed 

impediments rather than to a lack of ability (Urdan, 2004).  

Research in early childhood education has established a connection between self-

handicapping behaviors and achievement goals. For instance, Midgley and Urdan 

(2001) identified a significant positive relationship between personal performance-

avoidance goals and self-handicapping behaviors among 7th graders, while no such 

association was observed for personal performance-approach goals. Leondari and 

Gonida (2007) compared different age groups and concluded that students begin to 

adopt academic self-handicapping strategies earlier in their academic careers. They 

found that while academic achievement remains a significant predictor of self-

handicapping behavior in the upper elementary grades, in the process of shifting to 

high school, performance-avoidance goals become a stronger predictor of self-

handicapping than achievement itself. 

Research studies have also highlighted the relationship between personal 

achievement goals, classroom goal structures, and self-handicapping behaviors 

(Midgley & Urdan, 2001; Urdan et al., 1998). Studies have shown that students who 

focus on personal performance goals and perceive a strong emphasis on performance 

in the classroom structure are more inclined to exhibit self-handicapping behaviors. 

In contrast, students who focus on mastery goals and perceive a classroom 

environment that promotes mastery are less prone to engage in self-handicapping 

behaviors (Leondari & Gonida, 2007; Urdan et al., 1998). However, it is essential to 

mention that changing the classroom goal structure will not have the same impact on 

all students, as indicated by other studies (Urdan, 2004). 
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2.2.4 Attitude 

Student attitudes are a critical factor influencing success and sustained interest in 

programming education. Research indicates that well-designed learning experiences 

and supportive instructional practices can significantly enhance these attitudes. 

Studies have demonstrated that effectively structured courses and activities can 

maintain or even improve positive student dispositions toward programming (Asad 

et al., 2016; de Vink et al., 2023). This underscores the importance of fostering 

engaging learning environments that stimulate both interest and motivation. 

Furthermore, the implementation of supportive instructional approaches has yielded 

positive results. These approaches include the utilization of block-based 

programming environments (Deniz & Korucu, 2023; Lambić et al., 2021; Totan & 

Korucu, 2023) and the integration of foundational theoretical knowledge with 

practical activities (Taşdöndüren & Korucu, 2022). Such methods can empower 

students to overcome challenges, develop a deeper comprehension of programming 

concepts, and ultimately cultivate a more positive perception of the subject matter. 

However, it is essential to consider the developmental stage of the students. Lambić 

et al. (2021) discovered that younger students (7-8 years old) using a challenging 

curriculum experienced a decline in positive attitudes compared to older students. 

This finding underscores the significance of tailoring the difficulty and complexity 

of learning activities to students' capabilities in order to maintain positive 

dispositions. In conclusion, these studies emphasize the significance of employing 

engaging and well-structured instructional approaches that provide students with the 

necessary support to develop a positive attitude toward programming. This positive 

attitude is paramount for promoting student success and fostering continued interest 

in the field (Love, 2023). 
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2.2.5 Cheating Behavior 

Within the academic field, cheating refers to the act of presenting the work or ideas 

of another individual as one's own, typically for the purpose of attaining higher 

grades. The relationship between cheating behavior and goal theory has been 

extensively studied, providing insights into how students' achievement goals can 

influence their propensity to engage in dishonest practices.  

Studies examining the relationship between cheating behavior and goal orientations 

have shown that certain achievement orientations can lead to cheating behavior. 

Performance goals have been found to lead to cheating more frequently than mastery 

goals (Meece et al., 2006; Senko et al., 2011). Additionally, in the context of 

programming education, several studies have investigated the effect of pair 

programming on reducing or inadvertently encouraging cheating behavior among 

students. Collaborative learning, particularly within the context of programming 

education, is a widely employed approach, especially for practical tasks. When pair 

programming first became widespread, there were expectations that it would help 

teachers prevent cheating behaviors. It was believed that, due to peer pressure, 

students would work more systematically on their projects and have someone to 

assist them, thus reducing the need to cheat (Williams & Upchurch, 2001). However, 

subsequent studies have shown that this method can be susceptible to 

misinterpretation by students, who may perceive it as an opportunity for dishonest 

behaviors such as cheating. This misinterpretation could stem from a misconception 

that cheating is synonymous with collaborative learning and information sharing 

(Barros et al., 2021; Williams, 1999). Cheating behavior has been examined in 

various studies, particularly concerning undergraduate and graduate students in 

computer science (Schulz et al., 2023). In their study involving undergraduate 

students, Hawi (2010) identified cheating as one of the causal attributions for 

programming achievement. Another study emphasized the presence of cheating 

behavior among students even during the initial stages of gamification 

implementation (Ibanez et al., 2014).  
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2.2.6 Research on the Impact of Motivational Factors on Students' 

Learning of Computer Programming 

There is an expanding body of research investigating the multifaceted nature of 

achievement in computer science education, especially in the context of learning 

programming. These studies go beyond the cognitive aspects of programming and 

explore how factors like students' motivation, emotional experiences, learning 

behaviors, and the classroom environment all interact to influence achievement. 

Research by Shell et al. (2013) contributed to the expanding body of research that 

explores factors beyond cognitive abilities influencing achievement in computer 

science education. Prior research has primarily focused on the cognitive or technical 

dimensions of learning programming, such as syntax and algorithms. However, this 

study investigated how motivational orientations, emotional experiences in the 

classroom, and self-regulation strategies were associated with course grades, 

knowledge retention, and ultimately, the long-term learning of computational 

thinking in introductory CS-1 courses. Their work established a clear link between 

mastery-oriented goals and positive academic outcomes. Additionally, the study 

supported the connection between positive emotions in the classroom and higher 

achievement. These findings underscored the importance of fostering an 

environment that encourages students to set deep learning goals, a notion further 

emphasized by Peteranetz (2021). To achieve this, a 3x2 goal orientation framework 

was utilized, and the study encompassed two separate investigations. They observed 

a concerning decline in all approach goals (learning, performance, and task) in upper-

level CS courses. While performance-avoid goals showed significant decreases, 

which could be positive, there were no significant changes in task/work avoidance 

goals. Similarly, a study by Shell et al. (2016) provided evidence that while initial 

motivations are important, they do not always translate into long-term success. 

Although the study initially focused on understanding students' reasons for enrolling 

in the course and identifying those at risk from the outset, it ultimately highlighted 

the significance of the course itself in influencing motivation and how motivation 
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evolves throughout the course. On the other hand, Hazley et al., 2015 investigated 

the dynamic nature of goal orientation in post-secondary STEM courses. They 

observed shifts in goal orientation throughout a semester, with some changes 

(increased task-approach goals, decreased learning-avoidance goals) positively 

impacting achievement. However, the results showed that changes in performance-

approach goals were not strongly influenced by classroom climate, although negative 

emotions were linked to a decrease in these goals. The findings of these studies 

emphasize the importance of a positive learning environment. 

Patterns of achievement goal orientations in programming education have been 

assessed not only in face-to-face education but also in distance education. Polso et 

al. (2020) investigated student motivation in an open online introductory 

programming course by identifying five distinct achievement goal orientation 

profiles using a person-oriented approach that incorporates appearance, normative, 

and mastery goals. Results of the study indicated that learners with combined 

mastery and performance goals displayed slightly better outcomes compared to those 

with low goals. The study found no significant link between goal orientation profiles 

and overall course grades. Similar results were obtained in another study where task 

avoidance, self-approach/avoidance, and other-approach goals were not directly 

correlated with final exam scores (Tomić et al., 2020). This finding was in contrast 

to Shell et al.'s (2016) study, which identified goal orientation as a key factor for 

student success. While social comparison aspects of goal orientation, which focus on 

outperforming others, were not strongly linked to achievement in some studies 

(Tomić et al., 2020), others suggested potential beneficial outcomes. Peteranetz 

(2021) observed a decrease in performance-avoidance goals (fearing looking bad), 

which might be a positive development, as it could indicate a shift towards a more 

growth-oriented mindset, where challenges are seen as opportunities for learning. In 

another research, Gaddy and Ortega (2022) explored student enrollment decisions 

using a novel approach: virtual reality (VR). This innovative method revealed that 

scenarios highlighting goal orientation and career opportunities significantly 

influenced participants’ enrollment decisions in CS courses, whereas focusing on 
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demographics had a negative impact. This suggests that potential CS students are 

more engaged by messages that connect to their aspirations and future goals rather 

than those that emphasize demographic characteristics.  

In conclusion, student success in CS education transcends technical skills. A 

supportive learning environment that fosters goals and actively acknowledges the 

dynamic nature of motivation is crucial. By exploring the motivational factors, 

educators can develop targeted interventions to nurture student engagement, address 

challenges specific to gender, and empower students to navigate the evolving field 

of CS education.  

2.3 Programming Education for Young Learners 

There is a growing worldwide interest in the instruction of programming skills at 

elementary, middle, and high schools. In many countries, there has been intensive 

work carried out by governments on incorporating computer programming into 

school curricula. A wide range of studies explore the efficacy of programming 

languages that use blocks as their primary method of coding in teaching computer 

programming fundamentals. These studies highlight both the advantages and 

drawbacks of block-based programming tools. These tools affect students’ 

motivation, interest, and engagement in a positive way compared to traditional 

methods. For example, a study by Ouahbi et al. (2015) explored the impact of block-

based programming on high school students' motivation in programming. 

Researchers divided science majors into groups learning with either Scratch, a game-

creation platform, or the traditional Pascal language. Students using Scratch 

displayed significantly higher interest in continuing programming compared to 

Pascal groups. Engagement with Scratch was also evident, as 85% of those students 

installed it on their home computers, far exceeding the 17.2% in the Pascal groups. 

Students were drawn to block-based programming due to its user-friendly nature. 

Compared to text-based programming, block-based environments offer visual cues, 

visual manipulation of code blocks, and natural language labels, making them easier 
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for novice learners to grasp. These environments also support learning by offloading 

memory tasks through block design (shape and color). Block-based programming, 

therefore, provides a valuable foundation for learning core programming concepts 

(Weintrop & Wilensky, 2015). 

However, block-based programming might be perceived as less powerful than text-

based programming. These tools may not offer the same level of complexity and 

power as traditional text-based programming languages (Weintrop & Wilensky, 

2015). Block-based programming tools enhance the initial learning experience while 

preparing students for more complex programming tasks. Although block-based 

programming environments are highly effective for beginners and provide a smooth 

transition to text-based programming languages (Bau et al., 2017), they might be 

perceived as less powerful than text-based programming. These tools may not offer 

the same level of complexity and power as traditional text-based programming 

languages. Additionally, some research studies highlight the challenges associated 

with moving from block-based to text-based programming environments (Weintrop 

& Wilensky, 2015). To address this challenge, Bau et al. (2017) suggested a dual-

mode approach that proposes bidirectional mode switching between block and text 

representations, leveraging the ease of blocks for learning syntax and the efficiency 

of text-based coding. 

In the literature, there are numerous efforts to develop or adapt the computer 

programming self-efficacy scales designed to measure students' self-efficacy in 

programming across middle, high school, and undergraduate levels (Altun & 

Kasalak, 2018; Askar & Davenport, 2009; Cesur Özkara & Yanpar Yelken, 2020; 

Karalar, 2023; Kittur, 2020; Korkmaz & Altun, 2014; Kukul et al., 2017; 

Ramalingam & Wiedenbeck, 1998; Tsai et al., 2019). The systematic literature 

review conducted by Luxton-Reilly et al. (2018) mentioned that academic success is 

demonstrably influenced by students' self-efficacy and engagement. Research 

suggested that female and minority students tend to exhibit lower levels of self-

efficacy compared to their peers. 
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A variety of pedagogical approaches have been investigated in computer education 

research. For instance, the master's thesis by Erdem (2018) investigated how 5th 

graders learned Scratch programming through two different approaches: traditional 

face-to-face instruction and flipped learning with technology support. The research 

revealed no substantial difference in educational achievements between the two 

teaching methods. Wells LeRoy's (2022) dissertation explored the potential of 

Minecraft for teaching logic gates with the participation of 122 college students. The 

study investigated two instructional design principles, guided discovery and 

pretraining, with a particular focus on their impact on cognitive load. While no 

notable disparities were observed in the learning outcomes between discovery 

approaches, Minecraft groups learned to build logic gates more effectively than the 

PowerPoint group. Besides, students in the direct instruction condition experienced 

significantly higher extraneous cognitive load.  

While the importance of programming education has gained widespread recognition, 

the effective assessment of student learning in this domain has become a prominent 

area of research (Grover, 2020; Newton et al., 2021). Some researchers have 

explored a variety of assessment methods to assess the comprehension of 

programming principles among students. Some researchers attempted to develop 

traditional written exams. To this end, Grover, (2020) developed and evaluated a 

summative paper-hand assessment for measuring student learning in introductory 

programming courses tailored for grades 6-8 in middle school. This assessment 

incorporated a combination of multiple-choice and open-response question formats, 

all focusing on core programming concepts (“variables, expressions, loops, 

conditionals, and abstraction”) using Scratch as a familiar platform for students (p. 

678). The analyses of validity, reliability, and item discrimination, coupled with the 

results of pre-and-post tests, suggest the assessment's effectiveness as a reliable 

measure of learning in introductory programming. Notably, this study also provides 

evidence for the effectiveness of well-designed multiple-choice items in assessing 

the comprehension of programming concepts by students. Another study by Newton 
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et al. (2021) demonstrated the effectiveness of the Evidence-Centered Design (ECD) 

framework in developing assessments for high school computer science courses. 

The limited availability of computers in computer science classrooms has, to some 

extent, necessitated the adoption of pair programming. This circumstance may 

account for the significant amount of research devoted to exploring the impacts of 

pair programming. Albayrak and Polat (2022) carried out a mixed-methods study to 

investigate the experiences of students with pair programming. This study 

underscores the benefits of pair programming at the undergraduate level. Throughout 

a semester-long programming course, students worked in pairs, completed 

assessment forms after each lesson, and participated in in-depth interviews at the 

term's end. The findings revealed that students generally had positive experiences 

with pair programming, reporting enhanced academic performance, faster problem-

solving, increased motivation, reduced anxiety, and improved communication skills. 

However, some challenges were noted, such as disagreements on problem-solving 

approaches and difficulty progressing when stuck together. Despite these challenges, 

the study suggested that pair programming could be a valuable teaching method, 

potentially addressing issues like student motivation and course completion rates. 

2.3.1 Block-based Programming Environments 

Block-based programming environments are commonly employed in early grades to 

instruct students lacking previous exposure to programming. Numerous block-based 

environments have been developed for teaching programming to young learners and 

novice programmers, including Scratch, Code.org, MIT AppInventor, Alice and 

CodeAcademy, among others. These tools enable students to create programs, 

games, applications, and animations without the need to type commands and deal 

with syntax errors, as is typical in traditional text-based programming languages. 

Block languages reduce the cognitive load for new programmers by eliminating 

syntax frustration (Bau et al., 2017; Luxton-Reilly et al., 2018). Moreover, these 

applications can be utilized on computers, laptops, or mobile phones. Through these 
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platforms, students can gain a comprehensive understanding of fundamental 

programming concepts like algorithms, loops, conditional statements, variables, 

functions, and events. These introductory programming environments leverage 

block-based programming languages, where each block encapsulates a specific 

programming concept. Learners construct executable computer programs by 

manipulating and connecting these blocks, similar to assembling a puzzle through a 

drag-and-drop interface. Block-based programming relies heavily on visual design 

to guide users. The shapes of the blocks themselves hint at their function, while 

colors categorize functionally similar blocks. Additionally, each block is clearly 

labeled, explicitly describing its purpose. One of the significant roles of visual cues 

is to facilitate understanding, while instructional scaffolding helps learners grasp 

fundamental programming concepts more effectively (Bau et al., 2017). Most block-

based programming tools offer a dedicated workspace where users can visualize the 

execution of their program constructs. These tools then provide real-time visual or 

auditory feedback to the user, indicating the validity of the constructed program 

(Weintrop & Wilensky, 2015). Some block-based code editors, such as Blockly, 

offer the simultaneous display of the user's constructed code in both a visual block 

format and its corresponding text-based representation in specific programming 

languages.  

Block-based programming environments serve as a novice-friendly introduction to 

programming fundamentals, acting as a stepping stone for a future transition to text-

based programming languages. Despite their drag-and-drop interface, block-based 

tools maintain fidelity to core programming concepts. They incorporate instructional 

scaffolding similar to structured editors, ensuring learners' acquisition of essential 

programming principles while experiencing the core tenets of code writing. 

Essentially, block-based programming environments offer a transparent and 

accessible initial experience with programming, while establishing a foundation for 

further exploration within the realm of more complex programming languages that 

rely on text for coding (Weintrop & Wilensky, 2015). 
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Code.org 

Numerous platforms are utilized at the K-12 level to teach programming, with 

Code.org being one of the most widely implemented in Turkey, particularly in 

middle schools, for introducing children to the fundamentals of computer 

programming. Code.org is an educational visual programming environment 

dedicated to broadening access to computer science education and ensuring its 

availability to all, with a particular emphasis on children and young learners. This 

initiative also conducts the annual Hour of Code campaign, engaging over 15% of 

students globally (Code.org, 2024). According to their 2022 Annual Report, it has 

amassed 80 million student accounts, with 47% identifying as female or gender-

expansive and 48% representing underrepresented racial or ethnic groups (Code.org, 

2022). By using this platform, children can design and develop their own games, 

animations, and applications. For educators and schools, Code.org provides 

resources, including lesson plans to help integrate computer science curricula into 

classrooms. 

2.4 Summary  

Computer programming, characterized by its cognitive complexity, imposes a 

significant cognitive load on learners, challenging their working memory. Cognitive 

Load Theory provides a valuable framework for addressing these challenges in 

programming education. The inherent complexity of programming, due to the 

integration of numerous new concepts, increases cognitive load and can hinder 

learning and problem-solving. Research has applied CLT to develop instructional 

strategies and tools aimed at optimizing cognitive load in programming education. 

Effective learning is achieved by minimizing extraneous load and optimizing 

intrinsic and germane loads. Innovative educational tools and techniques, informed 

by CLT, address the complexities of programming education.  
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Research on student motivation in computer science education reveals a complex 

interplay of factors influencing learning outcomes. While mastery goals are 

consistently associated with favorable academic outcomes, the role of performance 

goals is more differentiated. Performance-approach goals can be beneficial under 

certain conditions, but performance-avoidance goals are generally detrimental. The 

concept of classroom goal structures adds another layer, influencing their 

engagement and academic achievement. The influence of classroom goal structures, 

shaped by teacher practices and feedback, significantly impacts students' motivation 

and achievement. In conjunction, self-efficacy, a key determinant of motivation, is 

influenced by various factors, including past experiences, social support, and 

emotional states. Students' perceptions of their abilities in programming are shaped 

by their interactions with the subject matter and the learning environment.  

Contextual factors such as gender, socioeconomic status, and learning styles also 

contribute to student motivation and achievement in computer science. The use of 

gamification and interactive learning environments can positively impact students' 

attitudes and motivation, but careful consideration must be given to the 

developmental levels of learners. Besides that, academic self-handicapping 

strategies are closely tied to performance-avoidance goals and are supported in 

environments that emphasize performance over mastery. Additionally, the 

occurrence of cheating behavior, which is notably observed in programming 

education, highlights the ethical concerns related to performance goals. 

Collaborative learning methods, while intended to enhance learning, can 

inadvertently facilitate dishonest behaviors if not carefully managed.  

Block-based programming languages have been recognized as a successful tool for 

introducing fundamental programming concepts, offering a user-friendly approach 

that enhances student motivation and engagement compared to traditional text-based 

methods. Studies have shown that block-based platforms significantly increase 

students' interest and engagement and simplify code manipulation, making it 

accessible for novices. Despite their benefits, block-based environments are 

sometimes viewed as less powerful than text-based languages. Various pedagogical 
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strategies, including traditional instruction and innovative approaches like game-

based learning, have been explored, with mixed results regarding their effectiveness 

in improving learning outcomes. Pair programming has been identified as a 

beneficial practice, enhancing academic performance and reducing anxiety, though 

it also presents challenges, such as conflicts over problem-solving approaches.  

In conclusion, effective programming education requires a multifaceted approach 

that considers cognitive, motivational, and contextual factors. Cognitive Load 

Theory offers valuable insights into optimizing learning by minimizing cognitive 

overload and maximizing meaningful engagement with the material. Understanding 

and addressing students' motivation, including the interplay of mastery and 

performance goals, self-efficacy, attitude, and classroom goal structures, is crucial 

for fostering a positive learning environment. The strategic use of block-based 

programming environments can serve as an effective entry point to the field. 

Additionally, research on the impact of pedagogical approaches, such as pair 

programming, is essential for enhancing student learning outcomes. By addressing 

the cognitive, motivational, and contextual challenges of programming education, 

educators can lead to the development of more engaging and efficient learning 

experiences that empower students to succeed in this rapidly evolving field. 
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CHAPTER 3  

3 METHODOLOGY 

This chapter outlines the research methodology employed in this study. Initially, the 

research questions were identified. Following this, the chapter introduces the 

participants, details the research design, describes the study procedure, and 

elaborates on the data collection instruments. Furthermore, it addresses the pilot 

study, the implementation of the main study, the data analysis procedures, issues of 

validity and reliability, and ethical considerations. 

3.1 Research Questions  

To comprehensively explore the factors affecting the learning of basics of computer 

programming among middle school students, this study formulated the following 

questions: 

1. Is there a significant difference in cognitive load experienced by students 

across seven fundamental programming topics? 

2. Is there a significant difference in students' PALS (personal achievement goal 

orientations, perception of classroom goal structures, academic-related 

perceptions, beliefs and strategies), attitudes towards coding education, 

achievement in mathematics, achievement in reading comprehension, 

achievement in coding, and cognitive load scores based on their gender? 

a. Is there a significant difference in students’ PALS scores based on 

their gender? 

b. Is there a significant difference in students’ attitudes toward coding 

education scores based on gender? 

c. Is there a significant difference in students’ mathematics scores based 

on gender? 
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d. Is there a significant difference in students’ reading comprehension 

scores based on gender? 

e. Is there a significant difference in students’ coding achievement 

scores based on gender? 

f. Is there a significant difference in students’ cognitive load scores 

across seven fundamental programming topics based on gender? 

3. Is there a significant difference in PALS (personal achievement goal 

orientations, perception of classroom goal structures, academic-related 

perceptions, beliefs and strategies), attitudes towards coding education, 

achievement in mathematics, achievement in reading comprehension, 

achievement in coding, and cognitive load scores between students from 

urban schools and suburban schools? 

a. Is there a significant difference in PALS scores between students 

from urban schools and suburban schools? 

b. Is there a significant difference in attitudes toward coding education 

scores between students from urban schools and suburban schools? 

c. Is there a significant difference in mathematics scores between 

students from urban schools and suburban schools? 

d. Is there a significant difference in reading comprehension scores 

between students from urban schools and suburban schools? 

e. Is there a significant difference in coding achievement scores between 

students from urban schools and suburban schools? 

f. Is there a significant difference in cognitive load scores across seven 

fundamental programming topics between students from urban 

schools and suburban schools? 

4. How do research variables predict students’ achievement scores in 

programming? 

5. What are the students’ experiences and opinions on the factors that affect 

their learning fundamentals of programming?  
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3.2 Participants 

3.2.1 Participants in the Quantitative Phase 

The present study was conducted in three public middle schools situated within the 

Rize province. Participant selection employed a nonprobability convenience 

sampling method. While acknowledging limitations in generalizability due to the 

potential for self-selection bias, this method was chosen for its pragmatic advantages.  

Considering the research questions at hand, it was reasoned that a convenience 

sample drawn from these schools could provide appropriate information to test and 

investigate the research questions (Creswell, 2012). A total of 281 fifth-grade 

students were enrolled in the three participating schools. Of those students, 199 who 

regularly attended Information Technologies and Software (ITS) classes, 

consistently completed the data collection tools and obtained parental consent were 

selected as participants for the study on a voluntary basis.  

Table 3.1 provides a distribution of participants from different geographical 

locations. School A, classified as an urban school, had the highest number of 

participants with 112 students, which constitutes 56.3% of the total sample. On the 

other hand, the other two schools are classified as a suburban school. Seventy-four 

participants of the study were from School B, accounting for 37.2% of the total 

participants. School C had the fewest participants among the schools, with 13 

students making up 6.5% of the sample. 

Table 3.1 Participants of the Study by Schools 

Characteristics  f % 
Urban School  School A 112 56.3 

Suburban School School B 74 37.2 

 School C 13 6.5 
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Table 3.2 provides an analysis of the characteristics of participants from urban and 

suburban schools. As seen in the table, 92 female and 107 male students participated 

in this study. A disparity was observed in the ownership of computers at home, with 

80.4% of urban school students having a computer, compared to 55.2% of suburban 

school students. Household internet access was almost universal among urban 

students (99.1%) but slightly lower among suburban students (93.1%). The 

frequency of computer usage also varies, with urban students using computers more 

frequently on a weekly basis (38.4%) compared to suburban students (21.8%). Prior 

coding experience is more common among urban students (27.7%) than suburban 

students (11.5%). Overall, these findings emphasize the differences in access to 

technology and prior experience between students from urban and suburban schools. 

Table 3.2 Characteristics of the Participants  

Characteristic Category Urban Suburban Total 

f % f % f % 

Gender Female 53 47.3 39 44.8 92 46.2 
 Male 59 52.7 48 55.2 107 53.8 
Having a computer 
at home 

Yes  90 80.4 48 55.2 138 69.3 
No  22 30.7 39 44.8 61 30.7 

Household internet  Yes 111 99.1 81 93.1 192 96.5 
No 1 0.9 6 6.9 7 3.5 

Frequency of 
computer 
usage 
 
 

Never  14 12.5 23 26.4 37 18.6 
A few days a month 5 4.5 9 10.3 14 7.0 
A few days a week 43 38.4 19 21.8 62 31.2 
Less than 1 hour a day 15 13.4 12 13.8 27 13.6 
1-3 hours a day 25 23.3 15 17.2 40 20.1 
More than 3 hours a day 10 8.9 9 10.3 19 9.5 

Prior coding 
experience  

No prior experience 81 72.3 77 88.5 158 79.4 
With prior coding 
experience 

31 27.7 10 11.5 41 20.6 
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The education levels of the parents of participants were provided in Table 3.3. Most 

participants’ mothers and fathers had graduated from high school (45.2% of mothers 

and 44.2% of fathers). Similarly, a high percentage of urban mothers (47.3%) and 

suburban mothers (42.5%) had high school degrees. A significant portion of urban 

mothers hold bachelor’s degrees (17.9%), whereas 6.9% of suburban mothers 

attained this level of education. Conversely, suburban mothers were more likely to 

have primary school degrees (23.0%) and middle school degrees (21.8%). A small 

percentage of mothers in urban areas had master’s or PhD degrees (1.8%), while this 

level of education was not present among suburban mothers. Additionally, the 

percentage of illiterate mothers is higher in suburban areas (4.6%) compared to urban 

areas (0.9%). 

Table 3.3 Parental Education Level of the Participants  

Characteristic Category Urban Suburban Total 
  f % f % f % 
The education 
level of 
the mother 

Illiterate   1 0.9 4 4.6 5 2.5 
Primary school degree   15 13.4 20 23.0 35 17.6 
Middle school degree   11 9.8 19 21.8 30 15.1 
High school degree   53 47.3 37 42.5 90 45.2 
Associate degree 10 8.9 1 1.1 11 5.5 
Bachelor's degree 20 17.9 6 6.9 26 13.1 
Master’s/PhD degree 2 1.8 - - 2 1.0 

The education 
level of 
the father 
 

Illiterate   1 0.9 2 2.3 3 1.5 
Primary school degree   8 7.1 15 17.2 23 11.6 
Middle school degree   17 15.2 16 18.4 33 16.6 
High school degree   50 44.6 38 43.7 88 44.2 
Associate degree 8 7.1 7 8.0 15 7.5 
Bachelor's degree 25 22.3 9 10.3 34 17.1 
Master’s/PhD degree 3 2.7 - - 3 1.5 

 

 

 



 
 

54 

When the education level of fathers was examined, similar trends were observed. A 

larger proportion of urban fathers (44.6%) and suburban fathers (43.7%) held high 

school degrees. Bachelor’s degrees were more common among urban fathers 

(22.3%) than suburban fathers (10.3%). However, suburban fathers had higher 

percentages of primary school degrees (17.2%) and middle school degrees (18.4%) 

compared to urban fathers. A small number of urban fathers held master’s or PhD 

degrees (2.7%), whereas this level of education was not present among suburban 

fathers. The percentage of illiterate fathers is slightly higher in suburban areas (2.3%) 

compared to urban areas (0.9%). 

3.2.2 Participants in the Qualitative Phase 

At the end of the implementation phase, semi-structured interviews were carried out 

with selected students. Participants were purposively selected based on teacher 

recommendations to represent a range of academic achievements in the ITS course. 

Three students were selected from each of the ten participating classes (six from 

School A, three from School B, and one from School C), one representing low, one 

moderate, and one high academic achievement. As detailed in Table 3.4, the 

interview participants included 14 female and 16 male students. 
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Table 3.4 Demographic and School Information of Interviewed Students 

ID Gender School Geographical School Location Class 
S1 Male School A Urban 5A 
S2 Female School A Urban 5A 
S3 Male School A Urban 5F 
S4 Female School A Urban 5F 
S5 Male School A Urban 5F 
S6 Male School A Urban 5D 
S7 Male School A Urban 5D 
S8 Female School A Urban 5D 
S9 Female School B Suburban 5A 
S10 Male School B Suburban 5A 
S11 Male School B Suburban 5A 
S12 Male School B Suburban 5C 
S13 Female School B Suburban 5C 
S14 Female School B Suburban 5C 
S15 Male School B Suburban 5B 
S16 Female School B Suburban 5B 
S17 Male School B Suburban 5B 
S18 Male School A Urban 5B 
S19 Male School A Urban 5B 
S20 Female School A Urban 5B 
S21 Female School A Urban 5E 
S22 Female School A Urban 5E 
S23 Male School A Urban 5E 
S24 Male School A Urban 5C 
S25 Female School A Urban 5C 
S26 Male School A Urban 5C 
S27 Female School C Suburban 5A 
S28 Female School C Suburban 5A 
S29 Male School C Suburban 5A 
S30 Female School A Urban 5A 

3.3 Research Design of the Study 

The current study aimed to explore and analyze the factors that influence middle 

school students' acquisition of foundational computer programming knowledge and 

skills. To achieve this objective, the study utilized a mixed-methods research design 

that offers a comprehensive approach to exploring complex research questions. 
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A mixed-methods research design outlines a systematic approach for integrating 

quantitative and qualitative data within the same study. This approach strategically 

leverages the advantages of both qualitative and quantitative methods. Quantitative 

methods are useful in educational research for identifying patterns and relationships 

through numerical data analysis (Creswell, 2015). Quantitative methods play a 

crucial role in educational research by facilitating the identification of patterns and 

relationships through numerical data analysis. On the other hand, qualitative 

methods offer distinct advantages over quantitative approaches in several ways: they 

investigate participants’ inner experiences, explore how individuals construct and 

understand meaning in their world, provide in-depth exploration in emerging 

research areas, identify variables for further investigation through quantitative 

methods, and foster a holistic and comprehensive understanding of phenomena 

(Corbin & Strauss, 2012). Combining these methodologies can yield a more 

comprehensive picture of the phenomenon under study than either method could 

achieve alone.  

Although mixed-methods studies have drawbacks, such as the need for substantial 

time, resources, and the researcher's expertise in both qualitative and quantitative 

research methods, they offer a multitude of advantages for research. One strength of 

this method is its capacity to enrich the understanding of underlying relationships 

between variables. Furthermore, mixed-methods research facilitates an in-depth 

exploration of the relationships between variables. Additionally, mixed-methods 

designs can contribute to the confirmation or cross-validation of relationships 

identified between variables (Fraenkel et al., 2012).  

In mixed-methods design, the combination of qualitative and quantitative data goes 

beyond simply aggregating them into a single dataset. Instead, this process involves 

a rigorous approach that aims to achieve a comprehensive and multifaceted 

understanding of the research phenomenon (Creswell, 2015). Within the field of 

mixed-methods research, various frameworks exist for conceptualizing research 

designs. For instance, Creswell (2015) categorized mixed-methods designs into basic 

and advanced groups. While this framework provides a general structure, Fraenkel 
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et al. (2012) offered a complementary perspective by identifying three specific 

designs frequently used in educational research: exploratory, explanatory, and 

triangulation designs. According to the framework defined by Creswell (2012, 

2015), basic designs, encompassing convergent, explanatory sequential, exploratory 

sequential, and embedded designs, involve the collection and analysis of quantitative 

and qualitative data in different ways. In a convergent parallel design, data from both 

methodologies are collected simultaneously and analyzed independently, with 

subsequent comparison to identify convergence or divergence in the findings. 

Sequential designs involve data collection in two distinct phases. The explanatory 

sequential design begins with the collection of quantitative data, which is then 

followed by qualitative data to explain the “why” behind the quantitative findings. 

The exploratory sequential design follows the opposite sequence, starting with 

qualitative data for the initial exploration of the variables associated with the 

phenomenon and then utilizing quantitative data to explore the relationships between 

these variables (Fraenkel et al., 2012). The embedded design is similar to the 

convergent and sequential designs in that quantitative and qualitative data are 

collected concurrently or sequentially. However, in this type of design, one data type 

serves a supplementary role in enhancing the understanding derived from the 

primary data type. While these basic mixed-methods designs are identified as distinct 

approaches, they can be nested within advanced designs. Examples include framing 

a basic design within an experiment, a social justice inquiry, or an evaluation process 

(Creswell, 2015). 

Mixed-methods designs are helpful for a comprehensive understanding of complex 

educational phenomena by integrating qualitative and quantitative approaches. This 

study aims to investigate the multifaced nature of learning programming that 

involves not only cognitive aspects but also social and behavioral aspects. In this 

study, the quantitative data identified predictors of programming achievement. The 

qualitative component then explored deeper into these relationships, providing richer 

insights and different perspectives. By integrating the findings from both 

approaches, the study aimed to achieve a more through comprehension of the ways 
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in which different factors impact students' learning of programming. In particular, in 

this study, a convergent embedded mixed-methods design, in which a qualitative 

component is embedded within a quantitative design, was utilized. Both quantitative 

and qualitative data were collected simultaneously in order to explore different 

research questions, where the focus is on the quantitative data, and the qualitative 

data supports the quantitative data (Fraenkel et al., 2012). The qualitative data served 

to enrich our understanding of the quantitative findings by providing insights into 

the underlying reasons or experiences associated with the quantitative results. 

3.4 Procedure of the Study 

3.4.1 Preliminary Investigation 

The preliminary investigation served as a critical first step in preparing for this study. 

It focused on the phenomenon of "teaching programming to children" within the 

context of Turkey's middle school curriculum. At the time the study commenced, the 

teaching of programming to younger age groups was just beginning to become 

widespread in Turkey, even though the relevant learning outcomes had been included 

in the curriculum previously. This study aims to evaluate factors that affect students' 

programming learning within the existing teaching processes rather than intervening 

in the learning environment.  

When the research concept was initially developed, the "Middle School and Imam 

Hatip Middle School Information Technologies and Software Course (Grades 5, 6, 

7, and 8) Curriculum," published by the National Ministry of Education, Board of 

Education and Training in 2012, was in effect (since access to past curriculum 

documents is only possible through an official application/petition to the Ministry of 

National Education, this curriculum cannot be referenced, Presidency of the Board 

of Education, n.d.). This standard-based curriculum comprises four categories of 

competencies along with standards that express the knowledge and skills pertaining 

to information and communication technologies for each competency. In the 
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curriculum, there are no specific levels or topics designated for teaching a particular 

grade. Instead, the selection of levels and current topics is left to the discretion of the 

teacher. Subsequently, in 2018, a new curriculum for grades five and six was 

published by the Ministry of National Education along with the Teacher's Guide and 

Student Materials.  

Therefore, this investigation was conducted to gain an understanding of the current 

state of programming instruction in Turkey's middle schools, determine the research 

needs, and tailor the research design accordingly. This involved conducting 

exploration with IT teachers who had direct experience teaching programming to 

children. In this regard, data were collected from 319 volunteer IT teachers across 

71 Turkish cities. A total of 303 teachers completed the online survey, while 16 

participated in interviews. Data was gathered through online surveys and semi-

structured interviews. The survey consisted of eight general demographic questions, 

two yes-no questions, eight multiple-choice questions with closed-ended response 

options, and thirty-two open-ended questions. In the survey, close-ended questions 

were followed by open-ended questions, where participants described their 

experiences in detail based on their responses to the closed-ended questions. 

Consequently, the number of open-ended questions varied for each participant. The 

survey questions were reviewed by two subject matter experts and checked by a 

Turkish language expert for any obscure expressions. Additionally, a pilot survey 

was conducted with two IT teachers. The semi-structured interview questions were 

developed using the survey questions as a guide. 

LimeSurvey, an open-source online survey application, was used to develop and 

administer the survey. The survey was published on a personal website. The survey 

invitation, either as a text or image, was disseminated on various social media 

platforms to invite IT teachers to participate in the study. Furthermore, an invitation 

letter was emailed to the corporate mail addresses of schools. Following the survey 

administration, interviews were conducted with volunteer teachers. At the outset of 

each interview, participants were briefed on the study's purpose and permission was 

obtained for audio recording. The interviews were carried out over the telephone, 
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and each session was recorded. These interviews lasted approximately 20 to 55 

minutes. The data obtained from this preliminary investigation and the main study 

were analyzed using the same qualitative data analysis procedure. The detailed 

analysis procedure is presented under the 'Qualitative Data Analysis' section (p. 78). 

The following section presents the main results obtained from the examination of the 

survey and interviews, along with a discussion of how these findings shaped the 

subsequent stages of the research study:  

• Survey results showed that 63.04% (N = 191) of the teachers involved in the 

research incorporated programming instruction in their classes. The primary 

reason cited by teachers who did not incorporate programming instruction 

was technological deficiencies. 

• According to the interview results, students entering the Information 

Technologies and Software course in grades 5 or 6 have little to no prior 

exposure to foundational information technology concepts. 

• While survey participants indicated which learning objectives they included 

in their lessons, interviews with teachers revealed confusion about 

integrating these objectives into their lesson plans. Some teachers were 

unaware of the new curriculum. Additionally, some teachers did not follow 

a specific annual or daily plan and taught the Information Technologies and 

Software courses independently of the curriculum's learning objectives. Even 

when using common plans provided by their departments or shared on online 

platforms, some teachers stated that they focused on solving specific puzzles, 

particularly those using the Code.org coding environment, instead of 

ensuring alignment with specific learning objectives. On these platforms, 

teachers selected examples or courses for their students to complete each 

week but often overlooked aligning them with specific learning objectives.  
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Considering the preliminary research findings, the following adjustments were made 

to the study: 

• The absence of standardized programming instruction practices in middle 

education, such as inconsistencies in curriculum implementation and 

variations in the specific programming outcomes addressed, posed a 

significant challenge for conducting a comprehensive study that 

encompasses data from multiple schools. This lack of standardization could 

lead to inconsistencies in the pace and depth of programming instruction, 

making it difficult to draw meaningful comparisons and identify patterns 

across different learning environments. To address this challenge and ensure 

the collection of consistent data that facilitates meaningful analysis, the 

establishment of weekly learning objectives and lesson plans was deemed 

essential. Weekly learning objectives were intended to serve as a common 

framework for all participating schools, ensuring that students are exposed to 

a consistent sequence of programming concepts and skills throughout the 

study period. Additionally, aligned lesson plans were intended to provide 

teachers with a detailed guide for each week's instruction, including activities 

and resources. 

• Given the prevalence of Code.org as the preferred block-based coding 

platform for introductory programming instruction at the middle level and 

recognizing the teachers' existing familiarity with this tool, the decision was 

made to adapt and utilize lesson plans from Code.org curriculums. For this 

purpose, to ensure appropriate difficulty and alignment with middle-level 

learning objectives, Course F, originally designed for fifth grade, was 

carefully reviewed and adapted. 
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3.4.2 Adaption Process of the Lesson Plans 

In preparation for the study, 27 of the 28 programming-related lesson plans from 

Course F on Code.org were translated from English to Turkish. This translation 

process involved two language experts: one for the initial translation and another for 

a thorough review. A researcher then made the final corrections to ensure accuracy 

and clarity. A pilot study was conducted to evaluate the feasibility of the lesson plans 

in a classroom setting. The lesson plans were distributed to 15 IT teachers based on 

their students' readiness and pre-learning levels, as well as teacher preferences. The 

teachers were informed about the research goals and participated voluntarily. They 

were encouraged to contact the researcher with any questions throughout the pilot. 

The researcher provided support via phone calls, text messages, or in-person visits 

to the schools. After implementing each lesson plan, teachers were asked to complete 

a Lesson Plan Evaluation Form (Appendix A) and send it electronically to the 

researcher. Data from the Lesson Plan Evaluation Form was used to identify 

suggestions and problems reported by the teachers, as listed below: 

• It was reported that some lesson plans, especially those with extensive 

unplugged activities, could not be completed within a two-hour class period. 

• Providing the materials to be used in the course for unplugged activities was 

not easy for some teachers. The preparation process for these courses was 

considered time-consuming by some of them.  

• The pilot study revealed issues with clarity in some lesson plans, especially 

those with extensive unplugged activities. Teachers found the language 

confusing and the instructions insufficient, making it difficult to understand 

the intended activities. To address this, simplifying the language and 

providing more detailed explanations were suggested. 

• Teachers recommended incorporating more in-class practice with digital 

puzzles before transitioning to independent or paired work. This would 

provide scaffolding to ensure student understanding. 
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• It was stressed that sometimes students had difficulty making connections 

between activities and the related concepts covered in the lesson. 

• Concepts requiring specific mathematical knowledge, such as angles, 

presented challenges for student comprehension and application. 

• Feedback from the pilot study highlighted that some lesson plan elements 

(e.g., playing cards) were considered distracting by the participating teachers. 

The pilot study yielded feedback from teachers on the lesson plans, highlighting 

areas for improvement. Based on these findings lesson plans were revised. 

3.4.3  Lesson Plan Evaluation Workshop 

Following the implementation and revision of the lesson plans based on teacher 

feedback, a two-day workshop was conducted with IT teachers. The workshop aimed 

to refine the piloted course content for the research study, focusing on teaching 

programming fundamentals to novice students in fifth grade. The workshop began 

with participants collaboratively identifying suitable learning objectives from the 

official 2018 curriculum. These objectives then guided the selection of lesson plans 

and activities. The teachers structured a ten-week program by selecting appropriate 

elements from both adapted Code.org lesson plans and the official 5th Grade 

Computer Technologies and Software Teacher Guide. The workshop involved four 

IT teachers, with two participants working in public schools and the other two 

employed by private schools. Lesson plans were distributed to the teachers in 

advance of the workshop. They were requested to review the materials beforehand 

to facilitate a productive discussion during the sessions. Additionally, printed copies 

of the lesson plans were provided to each participant at the workshop's start for easy 

reference. To capture the workshop discussions and activities, all sessions were 

video recorded. This resulted in approximately 10 hours of data. Based on the 

researcher's field notes and the video recordings of the workshop sessions, the 
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targeted learning outcomes, corresponding lesson plans, and activities for the 

implementation of the study were identified. 

3.5 Data Collection Instruments  

3.5.1 Coding Achievement Test 

The Information Technologies and Software course Coding Achievement Test was 

developed for 5th-grade students to evaluate their understanding of the basics of 

programming (see Appendix B). 

3.5.1.1 Development of the Coding Achievement Test  

Some items of the test were developed by the researcher through a literature review, 

while others were developed by revising the questions of the coding achievement 

tests developed in the previous research studies and the questions from the coding 

textbooks recommended by the interviewed IT teachers during the lesson plan 

development process. In the development of the questions regarding measuring 

competencies in block-based coding, code.org and Scratch block-based coding 

platforms were used. The candidate achievement test was developed with 46 items, 

which were formed based on the learning outcomes defined in the fifth-grade 

curriculum of the Information Technologies and Software course published by the 

Ministry of National Education in 2018. 

As a first step towards evaluation of the achievement test, it was reviewed by an 

assessment and evaluation expert in terms of construct validation and reviewed by a 

language expert and an IT teacher for language suitability. Subsequently, as the 

second step, the Content Evaluation Panel was established, comprising four subject 

matter experts and nine IT educators. Each IT educator was employed at a public 

school and possessed over five years of experience in teaching programming at the 

middle school level, particularly in fifth and sixth grades. One of the subject matter 
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expert panelists was selected from the Department of Computer Programming, 

having graduated from the Department of Computer Education and Instructional 

Technology (CEIT). Another subject matter expert was chosen from the Department 

of Computer Engineering, also a graduate of CEIT. Besides that, one subject matter 

expert from the Department of Computer Programming with over ten years of 

experience in teaching programming at a vocational school and one subject matter 

expert from the Department of CEIT were included. The expert evaluation form, 

consisting of four questions, was subsequently developed to investigate the content 

validity of the instrument. It aimed to evaluate the appropriateness of the instrument 

for the target audience, as well as the comprehensibility and difficulty levels of the 

items. 

Content validity was investigated with the question (1)"Does the item represent the 

property to be measured?” The response options for this question were: “Essential”, 

“Useful but insufficient” and “Not necessary”. Response options for the other 

questions ((2) Is the item appropriate for the target audience? (this question just 

asked panelists who were working at middle school and/or graduated from CEIT), 

(3) Is the item sufficiently clear?, (4) What is the difficulty level of the item?) were: 

“Appropriate”, “Appropriate but needs revision” and “Not appropriate” for the 

second question, “Clear”, “Clear but needs revision” and “Not clear” for the third 

question; and “Simple”, “Medium” and “Difficult” for the last question (Yeşilyurt & 

Çapraz, 2018). Besides, a column labeled “comments” was added to the far right of 

the table to provide space for respondents to optionally add their comments regarding 

each item. At the end of the evaluation form, subject matter experts were also asked 

if they had any further comments regarding the overall test. 

Forty-six candidate items were submitted to the panel for expert opinion. Panelists 

were asked to grade each item for each question on the evaluation form by selecting 

one of the given options. The content validity of the achievement test was evaluated 

by the determination of content validity rates by using the Lawshe technique 

(Lawshe, 1975). It was ascertained how many panelists selected the 'Essential' option 
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for each item, and then the content validity ratio (CVR) for each item was calculated 

by utilizing the following equation: 

𝐶𝑉𝑅 =
𝑛!"# $%

𝑁
2(

 

(ne= Number of panelists indicating "essential", N= Total number of panelists) 

 

The content validity index of individual items (I-CVI) was calculated by dividing the 

number of panelists considering an item as ‘essential’ by the total number of experts. 

CVR and I-CVR values for each item are presented in Table 3.5. 

 

Table 3.5 Content Validity Values of the Test Items 

Item CVR I-CVI A (%) C (%) DL (%) 
     E M D 
1 1.00 1.00 1.00 1.00 0.77 0.23 - 
2 0.85 0.92 1.00 0.92 0.69 0.31 - 
3 1.00 1.00 0.92 0.92 0.08 0.46 0.46 
4 0.69 0.85 0.75 0.92 0.54 0.31 0.15 
5 0.85 0.92 1.00 1.00 0.77 0.23 - 
6 1.00 1.00 1.00 1.00 0.62 0.38 - 
7 1.00 1.00 0.92 0.85 0.69 0.31 - 
8 1.00 1.00 1.00 1.00 0.23 0.23 0.54 
9 0.69 0.85 0.92 1.00 0.08 0.54 0.38 
10 0.54 0.77 0.67 0.92 0.31 0.38 0.31 
11 1.00 1.00 1.00 1.00 0.08 0.62 0.31 
12 1.00 1.00 0.92 0.85 0.23 0.62 0.15 
13 1.00 1.00 1.00 0.85 0.08 0.77 0.15 
14 0.85 0.92 0.92 1.00 0.31 0.38 0.31 
15 0.85 0.92 0.92 0.02 0.08 0.23 0.69 
16 0.54 0.77 0.67 0.85 - 0.23 0.77 
17 0.85 0.92 0.92 1.00 0.08 0.62 0.31 
18 0.85 0.92 0.75 0.85 0.92 - 0.08 
19 0.85 0.92 0.83 1.00 0.77 0.15 0.08 
20 0.85 0.92 1.00 1.00 0.54 0.46 - 
21 0.54 0.77 0.75 0.77 0.23 0.54 0.23 
22 0.69 0.85 0.83 0.85 - 0.38 0.62 
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Table 3.5 Content Validity Values of the Test Items (cont’d) 

23 0.54 0.77 0.83 0.85 0.15 0.46 0.38 
24 0.54 0.77 0.75 0.77 0.08 0.62 0.31 
25 0.54 0.77 0.83 0.85 0.15 0.62 0.23 
26 0.85 0.92 0.75 0.46 0.69 0.15 0.15 
27 1.00 1.00 0.83 0.92 0.54 0.46 - 
28 0.08 0.54 0.58 0.62 0.31 0.46 0.15 
29 1.00 1.00 1.00 0.85 - 0.85 0.15 
30 1.00 1.00 0.92 1.00 0.08 0.62 0.31 
31 0.85 0.92 0.92 0.92 0.77 0.15 - 
32 0.69 0.85 0.92 1.00 0.92 0.08 - 
33 0.69 0.85 0.92 0.92 0.69 0.15 0.15 
34 0.54 0.77 0.92 0.85 0.46 0.38 0.15 
35 0.54 0.77 0.75 0.77 0.38 0.38 0.15 
36 0.23 0.62 0.75 0.77 0.31 0.54 0.15 
37 0.85 0.92 0.83 0.92 - 0.69 0.31 
38 1.00 1.00 1.00 0.92 0.15 0.69 0.15 
39 0.85 0.92 0.92 0.92 0.08 0.46 0.46 
40 1.00 1.00 1.00 0.92 0.23 0.54 0.23 
41 1.00 1.00 1.00 0.77 0.38 0.62 - 
42 1.00 1.00 1.00 0.77 0.08 0.15 0.77 
43 0.85 0.92 0.83 0.85 0.23 0.69 0.08 
44 0.85 0.92 0.92 0.85 - 0.54 0.46 
45 0.69 0.85 1.00 0.92 0.38 0.38 0.23 
46 1.00 1.00 1.00 1.00 0.08 0.54 0.38 

CVI= 0.89, S-CVI/Ave=.94 
Note. A= Appropriate, C= Clear, DL= Difficulty level of an item, E= Easy, M= Medium, 
H= Hard 
 

Items were eliminated due to the critical CVR and I-CVI values (α = .05), which 

were defined according to the panelist numbers. When the panel was composed of 

13 panelists, a minimum CVR value of .54 (Ayre & Scally, 2014; Lawshe, 1975) 

and a minimum I-CVI value of .78 were required for any item to be valid and 

included in the instrument. Two items with a CVR value below .54 and eight items 

that achieved an I-CVI value below .78 were excluded from the test. Additional 

changes were also made to the items based on the comments and suggestions written 

by the panelists. Consequently, 36 items were identified to be included in the last 
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draft form of the achievement test. Following that, the content validity index (CVI) 

was determined for the entire test by computing the mean of CVR values of the 36 

items that were kept, resulting in a CVI of .89 (Lawshe, 1975); and S-CVI/Ave value 

obtained by computing the mean of I-CVI values of all retained items as .94 which 

indicates the high content validity for the achievement test. The final draft form of 

the coding achievement test was piloted by administering it to the three fifth-grade 

students to ensure that all of the items were clear and understandable.   

3.5.1.2 Item Analysis of the Coding Achievement Test 

The draft coding achievement test was administered to 414 5th-grade students from 

public middle schools in Rize for the item analysis of the test. Each student's correct 

responses were encoded as 1, while the incorrect ones were encoded as 0. To 

calculate the discrimination levels of the items, the students’ total scores were ranked 

from the highest to the lowest using SPSS statistical software, and the upper group 

and the lower group were identified using the critical value of 27 percent. Item 

discrimination index (D) was computed for each item by using the following 

equation D=(UG-LG)/n, where UG is the total number of students in the upper 27% 

(n=112), and LG is the total number of students in the lower 27% (n=112) who 

responded the item correctly. In addition, the DL=(UG+LG)/n+n formula was used 

to find the difficulty levels of the items. The results of the analysis are displayed in 

Table 3.6. The test results showed that one question (Q4) was too difficult, four 

questions (Q3, Q12, Q20, and Q21) were easy, twelve questions (Q5, Q10, Q11, 

Q17, Q23, Q24, Q25, Q28, Q30, Q34, Q35 and Q36) were difficult and the 

remaining nineteen questions were moderately difficult. As seen in Table 3.6, the 

discrimination indices of the 23 items were ideal. Five items with discrimination 

indices within the normal range were deemed to be acceptable. However, eight items 

(Q4, Q5, Q11, Q17, Q24, Q25, Q30, and Q34) that had discrimination indices below 

.30, indicating too low or low discrimination power, were removed from the test.  
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Table 3.6 Item Analysis Results of the Coding Achievement Test 

Item DI DI interpretation DL DI interpretation 
Q1 0.54 Ideal 0.55 Moderately difficult 
Q2 0.54 Ideal 0.58 Moderately difficult 
Q3 0.36 Normal 0.77 Easy 
Q4 -0.16 Unsatisfactory 0.19 Too Difficult 
Q5 0.27 Low 0.35 Difficult 
Q6 0.61 Ideal 0.50 Moderately difficult 
Q7 0.51 Ideal 0.58 Moderately difficult 
Q8 0.56 Ideal 0.56 Moderately difficult 
Q9 0.41 Ideal 0.44 Moderately difficult 
Q10 0.44 Ideal 0.37 Difficult 
Q11 0.21 Low 0.30 Difficult 
Q12 0.52 Ideal 0.72 Easy 
Q13 0.62 Ideal 0.57 Moderately difficult 
Q14 0.55 Ideal 0.58 Moderately difficult 
Q15 0.56 Ideal 0.42 Moderately difficult 
Q16 0.51 Ideal 0.58 Moderately difficult 
Q17 0.19 Too low 0.37 Difficult 
Q18 0.55 Ideal .53 Moderately difficult 
Q19 0.61 Ideal .57 Moderately difficult 
Q20 0.54 Ideal .60 Easy 
Q21 0.64 Ideal .63 Easy 
Q22 0.62 Ideal .42 Moderately difficult 
Q23 0.34 Normal .35 Difficult 
Q24 0.26 Low .30 Difficult 
Q25 0.13 Too low .26 Difficult 
Q26 0.54 Ideal .54 Moderately difficult 
Q27 0.38 Normal .42 Moderately difficult 
Q28 0.46 Ideal .33 Difficult 
Q29 0.35 Normal .47 Moderately difficult 
Q30 0.27 Low .35 Difficult 
Q31 0.71 Ideal .43 Moderately difficult 
Q32 0.47 Ideal .54 Moderately difficult 
Q33 0.51 Ideal .42 Moderately difficult 
Q34 0.24 Low .34 Difficult 
Q35 0.31 Normal .30 Difficult 
Q36 0.43 Ideal .37 Difficult 
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Considering the findings from the analysis of the items, the final form of the fifth-

grade coding achievement test was composed of 28 items. Cronbach’s Alpha value 

was computed for retained 28 items as 0.84 indicating good internal consistency. 

Items and corresponding learning objectives are outlined in Table 3.7. 

  

Table 3.7 The Distribution of the Items According to Learning Objectives 

Learning Outcomes (Students will be able to…) Item 
IT.5.5.1.6. Explain the variables, constants and operations required to solve 
the problem. 

1, 2 

IT.5.5.1.7. Give examples of operators that can be used in problem solving. 3 
IT.5.5.1.10. Use operators to solve a given problem. 10 
IT.5.5.1.12. Explain the concept of algorithm. 6, 7 
IT.5.5.1.13. Develop an algorithm for solving a problem. 13, 15 
IT.5.5.1.14. Explain flowchart components and functions. 16 
IT.5.5.1.15. Draw a flowchart for an algorithm. 20 
IT.5.5.1.16. Debug an algorithm by testing it. 14, 21 
IT.5.5.2.1. Explain the basic concepts of programming. 8, 9 
IT.5.5.2.2. Recognize the interface and features of the block-based 
programming tool. 

12, 18 

IT.5.5.2.3. Create the appropriate algorithm to achieve the goals presented 
in the block-based programming environment. 

22, 26, 
28, 29, 

31, 32, 33 
IT.5.5.2.4. Explain the structure of linear logic. - 
IT.5.5.2.5. Develop algorithms using linear logic structure. 22 
IT.5.5.2.6. Explain the decision structure and its functions. 23 
IT.5.5.2.7. Develop algorithms with decision structures. 26, 31, 32 
IT.5.5.2.8. Explain the loop structure and its functions. 19 
IT.5.5.2.9. Create algorithms with loop structure. 28, 29, 33 
IT.5.5.2.10. Debug the algorithms created for different structures by 
predicting the results of it. 

27, 35, 36 
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3.5.2 Cognitive Load Scale 

3.5.2.1 Translation and Adaption of the Scale 

Cognitive Load Scale (CLS), an 11-point Likert Type scale developed by (Leppink 

et al., 2013) to assess three types of cognitive load (intrinsic, extraneous, and 

germane load) in statistic lectures, was adapted and its applicability for middle 

school students and programming teaching was verified. As seen in Table 3.8, CLS 

consisted of 10 items; three items measuring intrinsic load (items 1, 2, and 3), three 

items measuring extraneous load (items 4, 5, and 6), and four items (items 7, 8, 9, 

and 10) measuring germane load.  

Table 3.8 Items of the Cognitive Load Scale 

Items 
1 The topic/topics covered in the activity was/were very complex. 
2 The activity covered formulas that I perceived as very complex. 
3 The activity covered concepts and definitions that I perceived as very complex. 
4 The instructions and/or explanations during the activity were very unclear. 
5 The instructions and/or explanations were, in terms of learning, very ineffective. 
6 The instructions and/or explanations were full of unclear language. 
7 The activity really enhanced my understanding of the topic(s) covered. 
8 The activity really enhanced my knowledge and understanding of statistics. 
9 The activity really enhanced my understanding of the formulas covered. 
10 The activity really enhanced my understanding of concepts and definitions. 

3.5.2.1.1 Translation process 

For this purpose, firstly, ten items of the scale were translated into Turkish by three 

English language experts, and then these three translations were compared and 

combined into one common version by one Turkish language expert to ensure the 

naturalness of the language (Erten, 2012). Secondly, three different English language 

experts, blind to the original instrument, performed a back translation of these 

Turkish versions of the items into the original language (Geisinger, 1994).  
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CLS was adapted for the domain of Computer Science in different research studies 

(Harms et al., 2016; Morrison et al., 2014) and for the middle school context (Weng 

et al., 2018). In a similar way, items of the scale were adjusted to suit better to the 

terminology used in computer programming at the middle school level in this study. 

For this purpose, the terms used in 3 items were changed. Namely, the term 

“statistics” was replaced by the term “programming” as deemed appropriate by 

Leppink et al. (2013). Besides, the word “formulas” in items 2 and 9 was replaced 

by “algorithms/problems.” In addition to that, the 10-point Likert response was 

changed to a 5-point Likert format ranging from strongly to disagree (1) to strongly 

agree (5) in order to ensure middle school students understanding.  

The items of the original English and the translated Turkish versions were compared 

and rated independently and blindly by three experts to check the linguistic and 

semantic equivalence of the two versions. The rating was realized on a 10-point 

Likert scale format, ranging from “not related at all” (1) to “100% synonymous” 

(10). The mean score of the raters’ responses (M = 9.50) showed that the Turkish 

version had a high level of equivalence with the original English version.  In other 

respects, the items in both their original English and back-translated English versions 

were evaluated by another three English language experts for semantic equivalence 

again on a 10-point Likert scale format, ranging from “not related at all” (1) to “100% 

synonymous” (10). Results indicated a high level of equivalence between the back-

translated and original English versions (M = 9.27). The opinions of the two 

Information Technologies and Software teachers were obtained for the clarity of the 

scale and the appropriateness of the translation to the concepts of programming. 

Scale was piloted with ten sixth-grade students (three students with low academic 

achievement, three students with average academic achievement, and four students 

with high academic achievement). In the selection of students, academic success in 

Information Technology and Software courses was taken into consideration with the 

guidance of the IT teacher. Students were asked to complete one activity (namely, 

Robot Route is Flow Chart) from the Second-term Materials Book published by the 

Ministry of Education in 2018 and then fill in the Cognitive Load scale. Then, they 



 
 

73 

filled in the Cognitive Load scale and three open-ended questions which aimed to 

determine the unclear statements for the students. Informal interviews were 

conducted with the students who had difficulties in understanding or answering the 

items on the scale. In accordance with the feedback received from the students, 

statements were revised by one IT teacher and 3 Turkish teachers working at a 

middle school by focusing on the statements that were not understood by the 

students. Herewith, the process of translation and adaption of 10 scale items was 

completed (see Appendix C).  

3.5.2.1.2 Exploratory and Confirmatory Factor Analysis Results of the 

Cognitive Load Scale 

The scale was applied to 804 sixth-grade students at the end of the two-hour 

Information Technologies and Software class at eight different middle schools in 

Rize. The data were gathered from students in the sixth grade as programming 

concepts were generally introduced to the students in the last one or two weeks of 

the fall semester for fifth-grade students in schools located Rize. As shown in Table 

3.9, a total of 47 cases, including missing data, were excluded from the analysis, so 

757 responses were analyzed.  

Table 3.9 Distribution of Participants to Schools 

School Name N 
School 1 29 
School 2  169 
School 3 55 
School 4 189 
School 5 69 
School 6 70 
School 7 52 
School 8 124 
Total 757 
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Exploratory Factor Analysis (EFA) was conducted to determine if the questions 

adapted from the original scale load onto three types of cognitive load. Additionally, 

Confirmatory Factor Analysis (CFA) was conducted to test the scale for 

measurement of specific cognitive load factors. Before conducting the analyses, the 

data were screened to identify univariate and multivariate outliers, as well as 

multicollinearity and violations of normality. When the original mean score of each 

item and the trimmed mean scores were compared, the results indicated that the 

extreme scores did not have a strong influence on the mean. Skewness and kurtosis 

values of each item were all within the cutoff point value ± 2 for large samples 

(Tabachnick & Fidell, 2012), which indicated that the data were normally 

distributed, as shown in Table 3.10.  

Table 3.10 Normality Distribution of The Cognitive Load Scale Scores 

Items M 5% Trimmed Mean SD Skewness Kurtosis 
1 2.12 2.03 1.16 0.78 -0.26 
2 2.23 2.16 1.18 0.61 -0.64 
3 2.19 2.11 1.18 0.73 -0.41 
4 1.92 1.81 1.09 1.19 0.57 
5 1.84 1.72 1.08 1.34 1.22 
6 2.10 2.01 1.15 0.84 -0.14 
7 3.95 4.04 1.18 -0.90 -0.00 
8 3.90 4.00 1.17 -0.92 -0.02 
9 3.72 3.80 1.22 -0.73 -0.38 
10 3.82 3.91 1.21 -0.83 -0.20 

 

Then, the histograms for these items were checked, and it was found that all items 1, 

2, 3, 4, 5, and 6 appeared especially positively skewed and items 7, 8, 9, and 10 were 

negatively skewed in their unreversed form. The reversed version of these items was 

found to be positively skewed. This was an expected result of the analyses 

considering the underlying theory of the scale. Additionally, in order to get a more 

distinct form of the distribution, normal probability plots were examined. The 

findings indicated that the instruments exhibited a normal distribution, as evidenced 
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by relatively straight lines. Descriptive statistics were calculated for each item and 

each subfactor, with the results detailed in Table 3.11.  

Table 3.11 Descriptive Statistics 

Item N Mean Std. Deviation 
Q5 757 1.84 1.08 
Q4 757 1.92 1.09 
Q6 757 2.10 1.15 
Q1 757 2.12 1.16 
Q3 757 2.19 1.18 
Q2 757 2.23 1.18 
Q9 757 3.72 1.30 
Q10 757 3.82 1.22 
Q8 757 3.90 1.18 
Q7 757 3.95 1.18 
Valid N (listwise) 757   

 

Items 5 (M=1.84) and 4 (M=1.92) received the lowest mean scores. On the other 

hand, items 8 (M=3.90) and 7 (M=3.95) received the highest mean scores. As for the 

sub-factors, the germane load was found to be the most highly endorsed dimension 

(M= 3.85), whereas the extraneous was the least endorsed dimension (M=1,95) 

among the participants (see Table 3.12).  

Table 3.12 Descriptive Statistics for Subfactors 

 N Mean Std. Deviation 

Extraneous load 757 1.95 .86 

Germane load 757 3.85 .95 

Intrinsic load 757 2.18 .97 

Valid N (listwise) 757   
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Exploratory Factor Analysis 

In order to evaluate the construct validity of the ten items from CLS, Exploratory 

Factor Analysis (EFA) was carried out. Kaiser-Meyer-Olkin (KMO) and Bartlett's 

Test of Sphericity were used for the assessment of sampling adequacy. Test results 

showed that the size of the sample was adequate (KMO=.872, Bartlett’s χ2(45) 

=2406, p < .001). Based on the original three-factor structure of the scale and scree 

plot (Figure 3.1), three factors were rotated using Oblique (Oblimin) rotation, which 

allows for correlations between factors. In this way, a three-factor solution was 

found, which explained 64.27% of the total variance in CLS. 

 

 

Figure 3.1. Scree Plot for CLS 

Inter-factor correlation showed that the observed correlations were all less than .80, 

which indicated that each factor measured a unique type of cognitive load. Besides, 

it was observed that there was a negative correlation between IL-GL and EL-GL and 

a positive correlation between IL-EL (see Table 3.13). These findings aligned with 

the results of previous studies. 
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Table 3.13 Factor Correlations 

 IL EL GL 
IL 1.00 .515 -.387 

EL  1.00 -.374 

GL   1.00 

 

Table 3.14 shows the factor loads of the items. All three-factor loadings of the items 

were greater than .60, indicating a reasonably high correlation between items and 

delineated factors. As seen from the table, the factor loading of items ranged between 

.639 and 864.  

Table 3.14 Factor Loadings of the Items 

Factor Item Factor Loading 
IL Item1 .811 

Item2 .828 
Item3 .814 

EL Item4 .864 
Item5 .789 

Item6 .639 

GL Item7 .776 

 Item8 .793 

 Item9 .817 

 Item10 .792 

Confirmatory Factor Analysis 

The goodness of fit of the three-factor model obtained in EFA to the data was 

measured through a Confirmatory Factor analysis. Analyzes were performed by 

using AMOS. Findings indicated that the three-factor model had acceptable 

goodness of fit indices: c	2(32) = 68.184, p <0.01, RMSEA = 0.039, TLI = .979, 
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CFI= .985. As seen in Figure 3.2, the path diagram with standardized estimates of 

the model represents the loadings associated with each item. In addition, it can be 

seen that error variances did not exceed the threshold of .90.  

 

 

 

 

 

 

 

  

 

 
Figure 3.2. Path Analysis Diagram for CLS within CFA 

3.5.2.1.3 Reliability Analysis of the Cognitive Load Scale 

The instrument yielded high reliability for the overall scale (alpha = .84) and two 

factors (intrinsic load: alpha = .77; germane load: alpha = .81). However, the 

extraneous load factor had a slightly lower alpha of .67 (see Table 3.15). Given the 

acceptable overall scale reliability, shortness of the scale and the findings from the 

previous studies (Hadie & Yusoff, 2016; Leppink et al., 2013; Morrison et al., 2014), 

it was decided to retain the extraneous load factor in the scale. 
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Table 3.15 Reliability Analysis Results of the CLS  

 Cronbach’s Alpha  
 Leppink et al., 

2013 
Morrison et 

al., 2014 
Hadie & 

Yusoff, 2016 
Current study 

Intrinsic  .81 .86 .88 .77 
Extraneous  .75 .85 .82 .67 
Germane  .82 .93 .95 .81 
Overall scale - .89  .84 

 

3.5.3 Patterns of Adaptive Learning Scales (PALS) 

Patterns of Adaptive Learning Scales (PALS) were developed by Midgley et al. 

(2000) in order to investigate the relationship between the characteristics of the 

learning environment and the motivation, affect, and behaviors of students. The 

adaptation of the instrument in Turkish language for usage in Science courses was 

conducted by Taş (2008) as part of a PhD thesis and the reliability of the scale was 

calculated as 0.81. The scale consisted of 42 items in a 5-point Likert form. This 

scale was adapted for the purpose of this study by replacing the term “Science” with 

Information Technology and Software (see Appendix D). For the new adapted 

version of the scale, pilot implementation was carried out with a sample of 601 sixth 

grade students. 82 subjects with missing values were excluded from the analysis, so 

reliability analysis was performed for 519 subjects.  The reliability of the scale was 

found to be .922. 

3.5.4 Attitudes Towards Coding Education Scale (ATCES) 

The Attitudes Towards Coding Education scale (ATCES) was developed by 

(Karaman & Büyükalan Filiz, 2019) and comprises 41 items rated on a 5-point Likert 

scale (Appendix E). ATCES consists of two dimensions: "General Positive Attitude 

Towards Coding Education," which includes 28 items, and "General Negative 

Attitude Towards Coding Education," which includes 13 items. The response 
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choices on the Likert scale were established as "(1) strongly disagree, (2) disagree, 

(3) partly agree / partly disagree, (4) agree, (5) strongly agree". In another study using 

this scale, the Cronbach’s alpha coefficient was reported as .956 (Özeren, 2022). The 

scale was administered to 420 fifth-grade students and Cronbach’s alpha coefficient 

was found as .793, indicating a good level of reliability for the instrument. In the 

main study, Cronbach’s alpha coefficient was found to be .941, indicating good 

reliability.  

3.5.5 Reading Comprehension Achievement Test 

The Reading Comprehension Achievement Test, developed by Kuşdemir Kayıran 

(2014) as part of a PhD thesis, consists of 29 items (Appendix F). In the study KR-

20 reliability was determined to be .85, the average difficulty of the test was .68, and 

the standard deviation of the test was 5.58. Similarly, in the current study Cronbach's 

alpha coefficient value was found as .895. 

3.5.6 5th Grade Mathematics Achievement Test 

5th Grade Mathematics Achievement Test prepared by Özcan (2016) within the 

scope of the master's thesis (Appendix G). The four-option multiple-choice questions 

of the test were developed in alignment with the learning outcomes of the sub-

learning areas "Natural Numbers" and "Four Operations Problems in Natural 

Numbers" included in the 5th-grade mathematics curriculum. The test was found to 

have good internal consistency with Cronbach's alpha coefficient of .88. For the 

current study, Cronbach's alpha coefficient value was found as .930.  

3.5.7 Student Interview Protocol 

The semi-structured interview protocol aimed to gather in-depth information from 

students regarding their perspectives on the factors that influence their coding 
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success. This qualitative approach provided a deeper understanding of students' 

experiences, beliefs, and attitudes toward coding education and its impact on their 

achievements. The interview protocol was subjected to a thorough review by a 

middle school Turkish language teacher, a university subject matter expert, and two 

information technologies and software teachers. The experts evaluated the protocol 

for any questions that were confusing, misleading or did not adequately elicit the 

desired information from the students. The experts provided detailed feedback on the 

protocol, identifying areas that needed improvement and suggesting specific 

revisions. According to the feedback provided by the experts, some questions were 

revised to enhance their clarity and grammatical structure. This ensured that the 

questions were easy to understand and unambiguous for students. To assess the 

effectiveness and understandability of the revised interview protocol, a pilot test was 

conducted with three fifth-grade students who were currently learning programming. 

Based on the feedback from the students, the researchers identified specific areas 

where additional questions or sub-questions could provide deeper insights into their 

perspectives. For instance, in response to questions about pair programming, they 

added sub-questions related to task switching and collaboration dynamics. 

The interview protocol consisted of a total of 19 main questions, some of which have 

sub-questions (Appendix H). The main questions covered a broad range of topics 

related to coding success, including attitude, learning experiences, perceived 

challenges, self-efficacy beliefs, and the other factors affecting coding learning. Four 

questions were specifically tailored to students who have primarily engaged in paired 

programming throughout the semester. These questions explored the unique aspects 

of collaborative coding and its impact on their learning and success. Two questions 

were specifically designed for students who had primarily engaged in individual 

programming throughout the semester. These questions addressed the challenges and 

benefits of independent coding and its influence on their learning. Students who 

engaged in both paired and individual programming throughout the semester would 

be asked questions from both sets of questions. This allowed for a comprehensive 

assessment of their experiences and perspectives across different coding modalities. 
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3.6 Pilot Study 

The pilot study was conducted in the fall semester of the 2021-2022 academic year 

at a public school in Rize. Due to the ongoing COVID-19 pandemic and schools 

transitioning to remote learning, the pilot study was also implemented remotely. The 

participating school was selected using purposive sampling. This method allows 

researchers to select participants based on their judgments to ensure the data 

collected is most relevant to the study's goals (Fraenkel et al., 2012). The IT teacher 

at the selected pilot school participated in studies for the adaptation of lesson plans 

and a workshop related to the selection of lesson plans to be implemented, which 

were part of the preparation process for this study. Consequently, he was familiar 

with the content of the study. The teacher's familiarity with the lesson plans became 

the main criterion for selecting this school. Due to the pandemic's restrictions on 

face-to-face meetings, the teacher's existing knowledge of the lesson plans was 

essential in ensuring successful implementation during the remote pilot study. There 

were 167 fifth-grade students enrolled in the participating school. From these, 43 

students who regularly attended ITS classes and completed the required scales 

throughout the seven weeks were selected to participate in the pilot study. Owing to 

the inherent difficulties associated with facilitating unplugged activities in a remote 

learning environment, the originally planned ten-week pilot study was abridged to a 

seven-week implementation period. This modification necessitated the removal of 

some unplugged activities from the curriculum. Additionally, since a class period 

was rescheduled to 30 minutes during the remote education process, some of the 

existing plugged activities were also excluded from the pilot study. Basic concepts 

of computer programming were aimed to be covered as much as possible in the 

selected lesson plans. All these modifications were made after consultation with the 

course instructor and in accordance with his recommendations; however, it is 

important to note that these changes were implemented specifically for the pilot 

study and may not be reflected in the main study. 
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The objective of the pilot study was to conduct a small-scale evaluation of the 

proposed main study to identify any potential issues that might arise during actual 

implementation. Following the pilot study, discussions with the IT teacher 

highlighted the need to incorporate Code.org puzzles from different courses 

addressing various student levels. These puzzles were subsequently added to the 

lesson plans and arranged in a progression from easy to difficult. The final version 

of the programming course content, including learning objectives, corresponding 

lesson plans, and associated activities is presented in Table 3.16. Unplugged 

activities are marked with parentheses in the table. A sample lesson plan is provided 

in Appendix I (Week 3: Debugging with Scrat). 

Table 3.16 Weekly Learning Objectives, Lesson Plans and Activities 

Wee
k 

Learning objectives (Students will be 
able to…) 

Lesson Plans and Activities 

1 5.5.1.12. Explain the concept of 
algorithm. 
5.5.1.13. Develops an algorithm for 
solving a problem. 
5.5.2.1. Explain the basic concepts of 
programming. 

Course F - Lesson 1: My Robotic 
Friends (Unplugged activity) 

2 5.5.1.14. Explain flowchart components 
and functions. 
5.5.1.15. Draw a flowchart for an 
algorithm. 
5.5.1.16. Debug an algorithm by testing it. 

I'm Changing the Flow 
(Unplugged activity) 
Rabit and carrot (Unplugged 
activity) 
If-then life of Tortop (Unplugged 
activity) 
Alas, Flowcharts Are Confused 
(Unplugged activity) 

3 5.5.2.2. Recognize the interface and 
features of the block-based programming 
tool. 
5.5.2.3. Create the appropriate algorithm 
to achieve the goals presented in the 
block-based programming environment. 
5.5.2.4. Explain the structure of linear 
logic. 
5.5.2.5. Develop an algorithm using linear 
logic structure. 

Course 2 - Lesson 3: Maze: 
Sequence  
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Table 3.16 Weekly Learning Objectives, Lesson Plans and Activities (cont’d) 

 5.5.1.16. Debug an algorithm by testing it. Course F - Lesson 4: Debugging 
with Scrat  

4 5.5.2.3. Create the appropriate algorithm 
to achieve the goals presented in the 
block-based programming environment. 
5.5.2.5. Develop an algorithm using linear 
logic structure. 

Course F (2018) - Lesson 5: 
Creating art with code  

5 5.5.2.8. Explain the loop structure and its 
functions. 
5.5.2.9. Create algorithms with loop 
structure. 

Course 2 - Lesson 6: Maze loops 
Course F (2018) - Lesson 7: 
Drawing shapes with loops 
Course 2 - Lesson 7: Artist loops 

6 5.5.2.8. Explain the loop structure and its 
functions. 
5.5.2.9. Create algorithms with loop 
structure. 

Course F (2018) - Lesson 8: 
Nested loops in maze 
Course F (2018) - Lesson 9: 
Nested loops with Frozen 
Coding with Anna and Elsa 

7 5.5.1.7. Give examples of operators that 
can be used in problem solving. 
5.5.1.10. Use operators to solve a given 
problem. 
5.5.2.6. Explain the decision structure and 
its functions. 
5.5.2.7. Develop algorithms with decision 
structures. 

Wheel of conditional statements 
(Unplugged activity) 

8 5.5.2.6. Explain the decision structure and 
its functions. 
5.5.2.7. Develop algorithms with decision 
structures. 

Course 3 - Lesson 7: Bee 
conditionals 
Course D (2017) - Lesson 11: 
Conditionals in bee 
Course 2 - Lesson 13: Bee 
conditionals 

9 5.5.1.6. Explain the variables, constants 
and operations required to solve the 
problem. 

Data, put it there (Unplugged 
activity) 
Course F (2018) - Lesson 14: 
Envelope variables (Unplugged 
activity) 

10 5.5.1.6. Explain the variables, constants 
and operations required to solve the 
problem. 
5.5.2.10. Debug the algorithms created for 
different structures by predicting the 
results of it. 

Course 4 - Lesson 6: Artist 
variables 
Course F (2018) - Lesson 15: 
Variables with artist 
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3.7 Implementation of the Study 

Prior to the main implementation of the study, revised lesson plans and activity 

sheets were shared with teachers on a website developed by the researcher 

(www.bikod.co). All the materials and data collection tools were provided to the 

teachers prior to classes, and teachers were briefly informed about the topic and the 

activities of the week on an instant messaging application on a weekly basis. 

However, the teachers were free to decide whether to teach the lessons in accordance 

with the provided lesson plans, provided that the topics and the learning outcomes 

of the weeks would not be altered. Ultimately, a 10-week implementation was 

conducted in the spring semester of the 2021/22 academic year in three public 

schools in Rize, Turkey. 

At the beginning of the implementation, the Student Information Form, Mathematics 

Achievement Test, and Reading Comprehension Achievement Test were 

administered to all participating students (Table 3.17). During the implementation 

process, the Cognitive Load Scale was administered to all participating students at 

the end of each two-hour class. Throughout the implementation, the researcher took 

part in the lessons to observe the learning environment and gather details on the 

characteristics of the target group by taking notes regarding unfavorable and 

favorable aspects of the class, changes made in the daily lesson plans, student 

participation, pair-programming behaviors of the students and general remarks about 

the class. The researcher attended six classes each week for nine weeks. During these 

classes, the researcher also assisted IT teachers in handing out and collecting activity 

sheets and data collection tools. Additionally, getting to know the students through 

attendance enabled students to feel more comfortable during the one-on-one data 

collection procedures conducted at the end of the implementation. At the end of the 

implementation, interviews were held with students through semi-structured 

interview forms. Three students from each class were selected in line with the 

teachers’ suggestions based on their academic achievement in the ITS course (one 

with low, one with moderate and one with high academic achievement). A total of 
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30 students were individually interviewed, and the interviews varied in length, 

ranging from 10 to 25 minutes.  

Table 3.17 Data Collection Procedures 

Duration Data Collection Instrument 

Prior to the implementation 

Student Information Form  

Mathematics Achievement Test 

Reading Comprehension Achievement Test 

At the end of each two-hour ITS class Cognitive Load Scale 

At the end of the implementation 

Coding Achievement test 

Attitudes Towards Coding Education Scale  

Patterns of Adaptive Learning scales 

Student interview protocol 

 

3.8 Data Analysis 

3.8.1 Quantitative Data Analysis 

Following the completion of the data collection phase, the data was imported into 

IBM's Statistical Package for Social Sciences (SPSS) software for analysis. Prior to 

initiating the analysis, a data screening process was undertaken to identify and 

address any discrepancies or errors within the dataset. To ensure data validity, the 

maximum and minimum values for each variable were analyzed to confirm that no 

values exceeded the permissible range. Descriptive statistics and inferential statistics 

were then used to analyze the data. For the analysis of the quantitative data, SPSS 

software version 26 and R Statistical Package version 4.4.1 were utilized. 

To answer the first research question of the study, which explores differences in 

cognitive load experienced by students across different fundamental programming 

topics, repeated measures ANOVA was employed. To address the second and third 
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research questions, independent samples t-tests were employed to investigate gender 

and geographical school location (urban vs. suburban) differences in attitudes 

towards coding education, mathematics achievement, reading comprehension 

achievement, and coding achievement scores. Additionally, the mulrank function 

was used to analyze gender and geographical school location-based variations in the 

subscales of PALS (personal achievement goal orientations, perception of classroom 

goal structures, academic-related perceptions, beliefs, strategies) scores. 

Furthermore, to explore if there were gender and geographical school location-based 

differences in students' cognitive load scores across different fundamental 

programming topics, a doubly repeated MANOVA test was utilized. Lastly, 

hierarchical regression was employed to analyze how the variables used in the study 

predict students' achievement scores in programming. 

3.8.2 Qualitative Data Analysis 

The recorded interview data was transcribed using the verbatim transcription 

process. Subsequently, each transcript was reviewed while simultaneously listening 

to the corresponding audio record to ensure completeness and accuracy. The length 

of the interview transcripts ranged from 4 to 8 one-and-half-spaced pages. 

Pseudonyms were assigned to each participant, designated by the letter “S” followed 

by a number in the sequence of the interviews (e.g., S1, S2, etc.), and transcripts 

were titled with these pseudonyms. Qualitative data analysis software NVivo was 

employed to analyze the qualitative data. 

Initially, each transcript was read several times and analytic memos were written. 

The process of writing analytic memos continued through the coding process to 

facilitate the researcher's critical reflection on the process and to reflect on “emergent 

patterns, categories and subcategories, themes, and concepts in the data” (Saldaña, 

2009, p. 42). Coding occurred in a cyclical manner, where the researcher coded and 

recoded the data. According to Saldaña (2009), coding is a linking process rather 

than a labeling process. Data analysis was conducted using Saldaña's (2009) first-
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cycle and second-cycle data analysis approaches. The coding cycles selected for the 

coding process, based on Saldana’s Generic List are illustrated in Figure 3.3 below. 

 

Figure 3.3. First Cycle and Second Cycle Coding Methods 

 

In the first cycle of the coding process, a multifaceted approach was employed to 

extract meaning from the interview data. This approach encompassed grammatical 

coding methods, including attribute coding and magnitude coding. Additionally, 

elemental methods were utilized, including structural coding, in vivo coding and 

initial coding. The attributed coding method was utilized to categorize basic 

descriptive information about the participants. This method is particularly 

advantageous for qualitative studies involving multiple participants, as it facilitates 

the organization of participant data based on predefined attributes. At the outset of 

the study, gender, school name, and overall academic achievement status were coded 

for each student to establish a baseline understanding of the participants' 

backgrounds and academic characteristics. The structural coding method generally 

provides a basis for further detailed analysis. Interview data was segmented 

according to their relationship with specific research questions for further and 

detailed analysis. The initial coding, also known as open coding, method was used 

to break data into smaller and discrete sections. The in vivo coding method was 

employed to preserve participants’ voices by utilizing their everyday language, 

specifically their words, terms, or phrases as codes. The magnitude coding was used 
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Initial 
Coding
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to denote the intensity of specific code. These coding methods were used 

concurrently and repeated multiple times. At the end of the first cycle coding process, 

a codebook was developed. In the second cycle coding, focused coding was 

employed to categorize and explain in detail the findings from the first cycle coding. 

Additionally, pattern coding was used to develop categories major and themes 

(Saldaña, 2009). 

3.9 Trustworthiness for Qualitative Part of the Study 

The credibility and transferability of findings are fundamental concerns in qualitative 

research, similar to reliability and validity in quantitative studies. However, due to 

the interpretive nature of qualitative inquiry, alternative approaches are necessary to 

establish these qualities effectively. To enhance the trustworthiness of this study, 

several strategies were employed. 

3.9.1 Internal Validity (Credibility) 

Prolonged Engagement and Persistent Observation in the Field 

This strategy involves spending adequate time in the field to develop relationships 

with participants and understand the cultural context of the phenomenon, thereby 

facilitating the avoidance of inaccuracies caused by the researcher or informants 

(Creswell, 2007). In the current study, throughout the research, the researcher 

actively participated in all classes of six out of ten classrooms for nine weeks where 

the study was conducted. This involved attending two-hour classes each week. 

During this time, the researcher not only took field notes but also assisted the teacher 

in data collection activities. 

Intercoder Reliability 

Intercoder reliability is a statistical metric used to assess the level of agreement 

between multiple coders when applying a coding scheme to the same data set 
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(O’Connor & Joffe, 2020). Although this strategy is criticized by some researchers 

for relying solely on coder agreement, which may not guarantee reliable results, it is 

perceived as an effective method for enhancing the consistency of qualitative 

research findings (Merriam, 2009). Reporting intercoder reliability can help assure 

readers that the analysis was performed conscientiously and consistently (Kurasaki, 

2000). This study employed an experienced colleague in qualitative data analysis as 

the second researcher. Before the coding process, the second coder was thoroughly 

informed about the research purpose, research questions, sample, and research 

process. Subsequently, all transcripts were independently coded by the researcher 

and the second coder. Upon completion of the coding process, the researcher and 

second coder met for the consistency check. Intercoder reliability was evaluated 

using Miles & Huberman's (1994) method [(consensus / (consensus + disagreement)) 

x 100]. For the first phase of the process, the calculation of the intercoder reliability 

resulted in an 85.02% agreement, indicating a high level of consistency among the 

coders. Subsequently, the two coders engaged in meetings to discuss the similarities 

and differences in their coding. These discussions led to the identification of 

discrepancies and the refinement of the coding scheme. For codes that were similar 

and expressed the same concept, a common code was determined. For codes that 

were different and expressed different concepts, discussions were held to decide 

which code would be retained. After reaching a consensus on the codes and recoding 

the transcripts, the result reached %93.1. This percentage surpasses the commonly 

accepted threshold of 90% for reliable coding (Miles & Huberman, 1994), 

suggesting that the coding process was dependable. For the final round, the codes 

were revised and organized under emergent themes. 

Peer review or debriefing 

Peer review or debriefing serves as another procedure for establishing credibility, 

involving an evaluation of the research data and methodology by someone 

knowledgeable about the research or the phenomenon being studied. This strategy 

establishes the research’s credibility by offering assistance, critically examining the 

researchers' assumptions, encouraging them to advance methodologically, and 
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asking challenging questions about their methods and interpretations (Creswell & 

Miller, 2000). In this study, the thesis advisor closely monitored the thesis process. 

Additionally, the dissertation committee members were regularly informed about the 

progress of the study and provided suggestions and critiques related to the process. 

Triangulation 

Triangulation is collecting data from various sources and looking for patterns or 

themes that appear consistently across those sources (Creswell & Miller, 2000). 

Combining various methods, data sources, viewpoints, and researchers in a single 

study strengthens the investigation by adding depth, richness, and a broader 

perspective. Data source triangulation strengthens research by looking for 

consistency. This can involve using the same method with different data sources 

(e.g., interviews at different times) or comparing data from people with contrasting 

perspectives (Denzin, 2012). This study employed triangulation by gathering data 

from multiple locations and utilizing various data collection techniques. It involved 

the participation of fifth-grade students from three different schools. To explore the 

factors influencing student programming learning, the researcher implemented three 

distinct surveys and an interview protocol. 

3.9.2 External Validity (Transferability) 

Thick, rich description  

External validity pertains to the to the extent to which research findings can be 

applied or generalized to a broader population, settings, or range of situations. This 

comprehensive description empowers readers to assess the generalizability of the 

findings to other situations by facilitating a critical evaluation of the extent to which 

the research context and participant characteristics are comparable (Cohen et al., 

2017). Given the purposive sampling method employed in this study, the 

generalizability of the results is constrained. Nonetheless, to ensure the 
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transferability of the research outcomes to comparable contexts, this chapter offers 

an in-depth description of the sample, context, and role of the researcher.  

3.9.3 Researcher Role and Bias 

Researchers bring their unique experiences, beliefs, and characteristics to the study, 

which can be valuable for choosing the research problem, research questions, and 

target audience. However, these same experiences can introduce bias during 

analysis, affecting how data is interpreted and presented (Corbin & Strauss, 2012). 

In this study, the researcher's prior experience as a middle school IT teacher and 

subsequent role teaching computer programming in a vocational school, coupled 

with beliefs about the importance and challenges of programming education, could 

introduce potential biases. To mitigate these potential biases and ensure the 

research's objectivity, the researcher implemented a series of strategies. Firstly, the 

researcher abstained from teaching the participating students, minimizing the impact 

of personal beliefs. Secondly, the researcher maintained a neutral stance during 

interviews to avoid influencing participant responses. Thirdly, the researcher acted 

as a moderator, facilitating the natural teaching process and avoiding interference 

with lesson plans and assessments. Finally, the interview protocol and coding 

achievement test underwent a rigorous process of expert review, teacher review, and 

pilot testing to ensure their validity. Furthermore, the researcher employed additional 

strategies to enhance the objectivity of the findings. A second coder was involved in 

the qualitative data analysis process, providing an external perspective and assisting 

in identifying and addressing potential biases. The second coder also revisited the 

coded data and the results of the analysis to refine interpretations. By implementing 

these proactive measures, the researcher demonstrates a commitment to minimizing 

bias and upholding the trustworthiness of the study. These efforts contribute 

significantly to the overall credibility of the research and strengthen the confidence 

in the findings.  
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3.10 Ethical Issues 

Professional associations, such as the American Psychological Association's 

Committee on Scientific and Professional Ethics, outline crucial ethical 

considerations for researchers conducting human subject studies. Fraenkel et al. 

(2012) categorized these considerations into three key principles: “protecting 

participants from harm, ensuring the confidentiality of research data, and addressing 

potential deception of subjects” (p. 63). The researcher ensured that these ethical 

principles were followed throughout the research process. Prior to commencing the 

study, the researcher obtained the necessary approvals by submitting an application 

to the Middle East Technical University's Committee on Human Ethics (Appendix J 

and K). This application outlined the study's objectives, data collection procedures, 

data collection instruments, and informed consent forms. Subsequently, to collect 

data from middle school students in Rize, an application was submitted to the Rize 

Provincial Directorate of National Education, outlining the study's objectives, 

research process, and data collection instruments to obtain the necessary official 

permission (Appendix L). Additionally, approval to carry out the research was 

granted by the school administrations and IT teachers of the three middle schools 

participating in the study. Informed consent forms were used to inform the parents 

of the students participating in the study about the study's objectives, the 

confidentiality of the participants, and the potential benefits of the study. Written 

informed consent was obtained from the parents prior to their children’s participation 

in the study. At the outset of the study, the purpose, aims, and all aspects of the 

research process, including how the results would be used, were explained to the 

students, and their verbal consent to participate voluntarily in the study was obtained. 

The students were notified that their involvement in the study was voluntary and that 

they had the freedom to discontinue their participation at any point. They were also 

informed that even if they chose to participate, they could request that their collected 

data not be used and be deleted at any time. Great care was taken to ensure the 

anonymity of the participants. During the qualitative data analysis process, 
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identifying information such as school, class, and student names were removed from 

the transcripts before sending them to the second coder. When presenting findings 

related to qualitative data, student codes were used instead of student names for 

citations. Collected data was stored in private application accounts and password-

locked private devices. The data will be retained in the same format for a period of 

five years following the conclusion of the research, after which it will be removed. 

3.11 Limitations of the Study 

This study has certain limitations that should be considered when interpreting the 

result. Firstly, the participant schools were selected using convenience sampling, 

which means that they were not randomly selected from a representative population. 

This method could introduce selection bias, potentially restricting the 

generalizability of the findings to a wider population. While the study included 

schools from both urban and suburban areas, the data was collected from schools 

within the same city. Secondly, the study was limited by the scope of one online 

block-based programming environment (code.org) and the selected tasks in that 

environment, which may not cover all relevant programming skills comprehensively. 

Using the same learning tool throughout the semester may have been restrictive for 

students, especially for students with advanced programming abilities. Thirdly, the 

limited number of computers available forced some students to work in pairs. While 

paired programming has its benefits, it can also introduce challenges and 

disadvantages. This could have hindered some students' learning experiences and 

outcomes. Lastly, only written tests were used to measure student success in 

programming. The limited number of computers prevented the use of process-

oriented or project-based assessments, especially in suburban schools. Additionally, 

in the implemented Code.org examples, students worked on solving problems based 

on the provided examples rather than creating projects from scratch. Teachers were 

not allowed to assign tasks that required students to develop original projects. 
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Written tests may not fully capture students' practical programming skills and 

problem-solving abilities. 
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CHAPTER 4  

4 RESULTS 

This chapter presents the research findings derived from both quantitative and 

qualitative data analyses. The findings are presented in parallel with the 

corresponding research questions and sub-questions. 

4.1 Results of the Quantitative Data Analysis 

This section presents the findings derived from the quantitative data analysis to 

address the corresponding research questions. First, the correlation analysis results 

are provided to explore the relationships between variables, followed by the 

presentation of statistical test results. These include descriptive statistics to present a 

summary of the data's characteristics, assumption tests to ensure that the chosen 

statistical tests met the necessary underlying assumptions, and the results and 

findings of the relevant statistical analysis approach. 

4.1.1 Correlation Between Variables of the Study 

The Pearson product-moment correlation findings for the relationship between study 

variables revealed that intrinsic load and extraneous load were very strongly 

correlated (r = .843, p < .01). Both intrinsic (r = -.623, p < .01) and extraneous load 

(r = -.694, p < .01) were negatively correlated with germane load. The relationship 

between intrinsic load and extraneous load with attitudes toward coding education 

(IL: r = -.456, p < .01; EL: r = -.468, p < .01), coding achievement (IL: r = -.434, p 

< .01; EL: r = -.451, p < .01), mathematics achievement (IL: r = -.368, p < .01; EL: 

r = -.356, p < .01) and reading comprehension achievement (IL: r = -.253, p < .01; 

EL: r = -.297, p < .01) were negative. While germane load positively and moderately 
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correlated with attitudes toward coding education (r = .522, p < .01), coding 

achievement (r = .456, p < .01) and mathematics achievement (r = .434, p < .01), the 

relationship between reading comprehension achievement was weak (r = .363, p < 

.01). 

Upon examining the interrelationships among the subscales of the PALS and their 

relationships with other variables, it has been observed that MGO was positively and 

very strongly correlated with AE (r = .881, p < .01), strongly correlated with CMGS 

(r = .736, p < .01), moderately correlated with PAvGO (r = .577, p < .01), CPApGS 

(r = .486, p < .01) and CPAvGS. Besides that, there was a positive weak correlation 

between MGO and PApGO (r = .369, p < .01), coding achievement (r = .291, p < 

.01) and mathematics achievement (r = .211, p < .01). On the other hand, test results 

showed that MGO was negatively and strongly correlated with cheating behavior (r 

= -.742, p < .01), indicating that higher MGO is associated with lower cheating 

behavior. Similarly, the correlation between MGO and ASHS was negative but 

weak, r = -.264, p < .01. Additionally, test results exhibited positive and strong 

relationship between CMGS and CPApGS (r = .701, p < .01), PApGO and PAvGO 

(r = .607, p < .01), AE and CMGS (r = .696, p < .01), CMGS and CPAvGS (r = .640, 

p < .01), CPApGS and CPAvGS (r = .630, p < .01), and MA and CA (r = .638, p < 

.01). It was observed that, CPAvGS was positively and moderately correlated with 

PApGO (r = .521, p < .01), PApGO (r = .515, p < .01) and AE (r = .487, p < .01). 

Besides that the correlation between PApGO and CMGS (r = .412, p < .01), PApGO 

and CPApGS (r = .400, p < .01), PAvGO and AE (r = .552, p < .01), PAvGO and 

CMGS (r = .497, p < .01), AE and CPApGS (r = .526, p < .01), ASHS and CB (r = 

.414, p < .01), ATCE and CA (r = .465, p < .01), MA and RCA (r = .586, p < .01), 

RCA and CA (r = .518, p < .01) were positive and moderate. Test results also 

indicated significantly negative correlations between variables such as AE and 

ASHS (r = -.249, p < .01), AE and CB (r = -.682, p < .01), CB and CMGS (r = -.560, 

p < .01) and CB and CPApGS (r = -.462, p < .01).   
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Table 4.1 Correlation Coefficients Between the Variables 

Variables IL_av EL_av GL_av MGO PApGO PAvGO AE ASHS CB CMGS CPApGS CPAvGS ATCE MA RCA 

EL_av .843**               
GL_av -.623** -.694**              
MGO -.149* -.131 .047             
PApGO -.104 -.116 .057 .369**            
PAvGO -.167* -.084 .066 .577** .607**           
AE -.200** -.165* .093 .881** .361** .552**          
ASHS .104 .143* -.120 -.264** .092 -.039 -.249**         
CB .124 .119 -.056 -.742** -.121 -.335** -.682** .414**        
CMGS -.070 -.053 .025 .736** .412** .497** .696** -.079 -.560**       
CPApGS -.028 -.036 .001 .586** .400** .374** .526** -.064 -.462** .701**      
CPAvGS .025 -.018 .006 .486** .521** .515** .487** .031 -.312** .640** .630**     
ATCE -.456** -.468** .522** .122 -.012 .072 .123 -.212** -.190** .120 .016 .025    
MA -.368** -.356** .434** .211** .102 .158* .201** -.098 -.159* .133 .191** .161* .341**   
RCA -.253** -.297** .363** .030 -.016 .038 .029 -.028 -.090 .012 -.001 -.034 .356** .586**  
CA -.434** -.451** .456** .291** .106 .183** .256** -.239** -.259** .231** .212** .171* .465** .638** .518** 
**. Correlation is significant at the 0.01 level (2-tailed). 
*. Correlation is significant at the 0.05 level (2-tailed). 
(IL_av = Intrinsic Cognitive Load Average, EL_av = Extraneous Cognitive Load Average, GL_av = Germane Load Average, MGO = Mastery Goal Orientation, PApGO 
= Performance-Approach Goal Orientation, PAvGO = Performance-Avoid Goal Orientation, AE = Academic Efficacy, ASHS = Academic Self Handicapping Strategies, 
CB = Cheating Behavior, CMGS = Classroom Mastery Goal Structure, CPApGS = Classroom Performance-Approach Goal Structure, CPAvGS = Classroom 
Performance-Avoid Goal Structure, ATCE= Attitude Towards Coding Education, MA= Mathematics Achievement, RCA= Reading Comprehension Achievement, CA= 
Coding Achievement) 
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4.1.2 Results of the Research Question 1 

The first research question of this study aimed to examine the differential cognitive 

load experienced by students across various fundamental programming concepts. A 

within-subjects analysis of variance (ANOVA) was conducted to examine the effect 

of programming concepts (basic sequences, flowcharts, testing and debugging, 

loops, nested loops, conditionals, and variables) on cognitive load as measured by 

the Cognitive Load Scale. This analysis employed a repeated-measures design with 

seven measurement points representing the seven topics of the programming 

instruction. The means, standard deviations, skewness, and kurtosis values for the 

observed variables are presented in Table 4.2. The students exhibited the highest 

mean scores for intrinsic load on the concepts of nested loops (M = 2.131, SD = 

1.196), basic sequences (M = 2.114, SD = 0.772), and loops (M = 2.003, SD = 1.083), 

respectively. The highest extraneous load was observed for the concepts of nested 

loops (M = 2.029, SD = 1.035), basic sequences (M = 1.964, SD = 0.687), and 

flowcharts (M = 1.945, SD = 0.849). On the other hand, the mean of the students’ 

germane load scores was lowest for basic sequences (M = 3.706, SD = 0.810), 

flowcharts (M = 3.756, SD = 1.073), and debugging (M = 3.808, SD = 1.095). 

Notably, germane load exhibited an increase across weeks for all concepts except for 

nested loops, where a decrease occurred when transitioning from loops to nested 

loops concept. Descriptive statistics revealed that skewness and kurtosis values for 

intrinsic, extraneous, and germane load scores across the seven programming 

concepts fell within the acceptable range of ±2, suggesting the normality of the data 

(Joseph F. Hair, 2021). 
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Table 4.2 Descriptive Statistics for Repeated Cognitive Load Measures Across 
Seven Programming Concepts 

Dependent Variable M SD Variance Skewness Kurtosis 
IL sequences 2.114 0.772 0.595 0.399 -0.492 
IL flowcharts 1.930 0.888 0.789 0.870 0.357 
IL debugging 1.739 0.947 0.897 1.205 0.386 
IL loops 2.003 1.083 1.173 0.936 0.156 
IL nested loops 2.131 1.196 1.431 0.814 -0.364 
IL conditionals 1.650 0.765 0.584 1.129 0.420 
IL variables 1.658 0.814 0.662 1.185 0.588 
EL sequences 1.964 0.687 0.472 0.537 -0.283 
EL flowcharts 1.945 0.849 0.720 0.818 0.467 
EL debugging 1.776 0.862 0.742 1.150 0.868 
EL loops 1.846 0.974 0.948 1.029 0.239 
EL nested loops 2.029 1.035 1.070 0.825 -0.096 
EL conditionals 1.826 0.923 0.852 1.119 0.486 
EL variables 1.787 0.931 0.867 1.078 0.325 
GL sequences 3.706 0.810 0.656 -0.396 -0.322 
GL flowcharts 3.756 1.073 1.151 -0.690 -0.256 
GL debugging 3.808 1.095 1.199 -0.675 -0.446 
GL loops 3.888 1.099 1.209 -0.771 -0.205 
GL nested loops 3.864 1.104 1.220 -0.713 -0.351 
GL conditionals 3.988 0.977 0.954 -0.854 0.115 
GL variables 4.046 1.045 1.093 -1.009 0.175 
 

To test the assumption of sphericity, the differences between each pair of measures 

were calculated, and their variances were compared separately for IL, EL and GL. It 

was observed that there was a big difference between variations of some differences. 

For instance, the variance of the difference between IL for conditional statements 

and variables was .643 while the variance of the difference between IL for flowcharts 

and loops were 1.385. Besides that, Mauchly’s test results indicated the violation of 

the assumption of sphericity for IL (χ2(20) = 101.24, p < .001), EL (χ2(20) = 79.29, 

p < .001) and GL (χ2(20) = 125.98, p < .001). Therefore, Greenhouse-Geisser 

correction was used for three measures (ε = .85 for IL, ε = .88 for EL and ε = .86 for 

GL) (Field, 2005). 
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Separate one-way repeated-measures ANOVAs were employed for each dependent 

variable (IL, EL, and GL). Test results revealed significant effects of programming 

concepts on intrinsic load (F(5.12, 1013.57) = 15.06, p < .001, multivariate ω2 = .07), 

extraneous load (F(5.30, 1049.56) = 4.38, p = .001, multivariate ω2 = .02), and 

germane load (F(5.02, 994.69) = 5.03, p < .001, multivariate ω2 = .03) (Table 4.3). 

These findings indicated significant variations in all three types of cognitive load 

scores across the seven basic programming concepts. Findings suggested a medium 

effect size for intrinsic load and small effect sizes for extraneous and germane load 

(Pallant, 2016). 

Table 4.3 Results of One-way Repeated Measures ANOVA Comparing Cognitive 
Load Scores Across Seven Different Programming Concepts 

Variable df F p η2 
Intrinsic Load 5.12 15.06 .000 .07 
Extraneous Load 5.30 4.38 .000 .02 
Germane Load 5.02 5.03 .000 .03 

 

The results of follow-up pairwise comparison using Holm’s sequential Bonferroni 

procedure to control for type 1 error revealed that students exhibited higher intrinsic 

load when learning basic sequences (p < .001), flowcharts (p < .005), loops (p = 

.001), and nested loops (p < .001) compared to conditionals and variables. Similarly, 

the intrinsic load was higher for basic sequences (p < .001), loops (p < .05), and 

nested loops (p < .001) compared to testing and debugging. Examination of the 

extraneous load showed that students experienced significantly higher levels of 

extraneous load during the learning process of basic sequences compared to testing 

and debugging (p < .05). Additionally, students exhibited significantly higher 

extraneous load when learning nested loops compared to learning concepts of testing 

and debugging (p < .05), conditionals (p < .005), and variables (p < .05). However, 

regarding germane load, it was observed that during lessons focused on variables, 

students demonstrated significantly higher germane load compared to learning basic 

sequences (p < .001) and flowcharts (p < .05). Similarly, when conditionals were 

taught, students exhibited significantly higher germane load compared to learning 
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basic sequences (p < .001). These findings suggest that certain programming 

concepts, such as basic sequences, loops, and nested loops, impose a higher cognitive 

load on students regarding both intrinsic and extraneous load. Moreover, the 

emphasis on certain concepts, such as variables and conditionals, seems to facilitate 

higher levels of germane cognitive processing among students. 

4.1.3 Results of the Research Question 2 

The second research question of this study aimed to explore whether students' 

adaptive learning patterns, attitudes toward coding education, cognitive load, and 

achievement in programming vary according to gender. To further investigate RQ1, 

three sub-questions were examined 

4.1.3.1 Results of the Sub-Research Question 2a 

Analysis of variance (ANOVA) is a statistical method used to compare groups based 

on a single dependent variable. Multivariate analysis of variance (MANOVA) is an 

extension of the ANOVA. MANOVA is used when there are multiple dependent 

variables to evaluate the statistical differences between dependent variables based 

on the independent grouping variable. The dependent variables should exhibit a 

conceptual association or possess a rationale justifying for being considered together 

(Pallant, 2016). To conduct the MANOVA test, there are some assumptions to be 

met. In the current study to test the multivariate normality, Mardia’s measure of 

multivariate kurtosis was implemented using AMOS software. Mardia’s multivariate 

kurtosis value was found to be 8.03. The critical ratio (c.r.) for kurtosis was 4.48. 

The significant result (c.r. = 4.48, p < 0.05) suggested that the data did not follow a 

multivariate normal distribution. Therefore, a robust MANOVA test was carried out 

on the ranked data using Munzel & Brunner's (2000) method to examine the gender 

differences in PALS (MGO, PApGO, PAvGO, CMGS, CPApGS, CPAvGS, AE, 

CB, and ASHS) scores of the students. The analysis was conducted in the R 
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Statistical Package using the ‘mulrank()’ function from the WRS package. Since the 

newest version of the WRS2 package does not contain this function, the analysis was 

conducted utilizing the original WRS package (Field, et al., 2016). Test results 

indicated that differences between female and male students on the dependent 

measures were statistically nonsignificant, F = 1.28, p = .28. 

4.1.3.2 Results of the Sub-Research Questions 2b, 2c, 2d, and 2e 

Separate independent-samples t-tests were conducted to evaluate whether there was 

a significant difference in attitude toward coding education, mathematics 

achievement, reading comprehension achievement, and coding achievement scores 

between males and females. The results indicated no significant differences in 

attitudes towards coding education (t(197) = 0.57, p > .05), mathematics 

achievement (t(184.08) = -0.02, p > .05), reading comprehension achievement 

(t(197) = -0.89, p > .05), or coding achievement (t(197) = 0.30, p = .76) scores 

between males and females (Table 4.4). 

Table 4.4 Results of t-test and Descriptive Statistics for ATCE, MA, RCA and CA 
by Gender 

 Males Females t p Cohen’s d 
 M SD M SD 
ATCE 153.09 27.47 150.86 27.27 0.57 .57 0.080 
MA 15.49 6.08 15.51 6.82 -0.22 .98 0.003 
RCA 13.16 5.98 13.90 5.71 -0.89 .37 0.130 
CA 50.56 10.20 50.14 9.31 0.30 .76 0.040 

 

4.1.3.3 Results of the Sub-Research Question 2f 

A doubly multivariate repeated-measures MANOVA was conducted on measures of 

three types of cognitive load: intrinsic load, extraneous load, and germane load, 

across seven topics within computer programming. This statistical technique is 

particularly suited for studies involving multiple dependent variables measured 
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repeatedly at different time points. The doubly multivariate repeated-measures 

MANOVA was employed in this study to investigate the multivariate main effects 

of programming topics and gender on cognitive load. 

The descriptive statistics of the observed variables over all combinations of gender 

and programming topics are presented in Table 4.5. The intrinsic load mean score of 

the females (M = 3.77, SD = 1.01) and males (M = 3.75, SD = 1.13) for conditionals 

was the highest among all seven topics covered in the introductory programming 

fundamentals. Both females (M = 3.97, SD = 1.07) and males (M = 3.82, SD = 1.13) 

had the highest mean scores for extraneous load on nested loops than on any other 

subjects. The mean values of germane load scores revealed that female students 

exhibited the highest germane load when dealing with variables (M = 4.07, SD = 

0.97), while male students showed the highest germane load when handling loops 

(M = 4.06, SD = 0.96).  

Despite unequal female and male group sizes, the analysis proceeded because both 

groups were large, had more cases than dependent variables, and exhibited no 

significant size discrepancy (Tabachnick & Fidell, 2012). Skewness and kurtosis 

values for the three cognitive load types across seven programming concepts in both 

female and male participants supported the assumption of normality. All variables 

exhibited skewness and kurtosis values within the range of ±2. Furthermore, the 

highest Cook’s distance value for each measurement was below the commonly 

accepted threshold of 1.0, suggesting the absence of significant outliers (Field, 

2005). Correlation analysis revealed that Pearson's correlation coefficients between 

all pairs of Cognitive Load measures across the seven topics did not exceed 0.80. 

Therefore, the assumption of multicollinearity was established. 

Box’s M Test of Equality was significant (F(231,107831) = 1.53, p < .001), 

suggesting a departure from the assumption of homogeneity of variance-covariance 

matrices. This finding aligns with the increased risk of alpha-level distortion 

associated with a larger number of dependent variables, as noted by Tabachnick & 

Fidell (2012). In this study, with twenty-one dependent variables, such an outcome 
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is not entirely unexpected. However, further examination of individual variable 

variances within each group demonstrated minimal variance disparity across groups. 

No variable exhibited a largest-to-smallest variance ratio approaching 10:1, 

suggesting a limited impact on the analysis. Consequently, the analysis can proceed 

to the next step with relative confidence. Given the potential for assumption 

violation, Pillai's Trace was employed instead of Wilks' Lambda to evaluate 

multivariate significance due to its robustness (Tabachnick & Fidell, 2012). Thus, 

the evaluation of assumptions for the doubly-multivariate analysis of variance 

(dMANOVA) yielded acceptable results. 

Table 4.5 Descriptive Statistics for Cognitive Load Measures for Gender Across 
Seven Programming Concepts  

 Females (N = 92) Males (N = 107) 
 M SD Skewness Kurtosis M SD Skewness Kurtosis 
IL sequences 2.22 0.79 0.27 -0.48 2.02 0.75 0.49 -0.45 
IL flowcharts 1.96 0.64 0.16 -0.68 1.97 0.73 0.75 -0.14 
IL debugging 3.72 0.80 -0.39 -0.24 3.70 0.82 -0.40 -0.35 
IL loops 1.88 0.82 1.00 1.16 1.97 0.95 0.77 -0.09 
IL nested loops 1.89 0.77 0.56 -0.48 1.99 0.92 0.90 0.66 
IL conditionals 3.77 1.01 -0.72 0.17 3.75 1.13 -0.67 -0.51 
IL variables 1.86 1.01 0.95 -0.37 1.63 0.88 1.49 1.51 
EL sequences 1.84 0.86 1.02 0.71 1.72 0.87 1.29 1.19 
EL flowcharts 3.85 0.95 -0.55 -0.42 3.78 1.21 -0.68 -0.66 
EL debugging 2.14 1.12 0.82 0.17 1.89 1.04 1.06 0.21 
EL loops 1.86 0.98 1.19 1.12 1.84 0.98 0.90 -0.46 
EL nested loops 3.97 1.07 -0.96 0.29 3.82 1.13 -0.64 -0.47 
EL conditionals 2.10 1.17 0.89 0.03 2.16 1.23 0.76 -0.61 
EL variables 1.99 0.92 0.68 -0.23 2.07 1.12 0.86 -0.22 
GL sequences 3.99 1.05 -0.90 0.09 3.76 1.15 -0.57 -0.58 
GL flowcharts 1.71 0.76 0.95 -0.01 1.60 0.77 1.32 0.98 
GL debugging 1.83 0.88 1.26 1.32 1.82 0.96 1.04 0.01 
GL loops 3.90 1.00 -0.81 0.24 4.06 0.96 -0.91 0.05 
GL nested loops 1.63 0.75 1.39 1.71 1.68 0.87 1.06 0.001 
GL conditionals 1.79 0.85 1.17 1.32 1.78 1.00 1.03 -0.18 
GLL variables 4.07 0.97 -1.09 0.64 4.02 1.11 -0.95 -0.10 

 

As presented in Table 4.6, the doubly repeated MANOVA revealed a non-significant 

multivariate main effect for the interaction between gender and programming topics, 

Pillai's V = .139, F(18, 180) = 1.62, p > .05, partial η2 = .139. The interaction effect 
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indicates that different programming topics had no different effects on males and 

females in terms of types of cognitive load. Besides that, there was a statistically 

significant multivariate main effect for programming topics, Pillai's V = .424, F(18, 

180) = 7.35, p < .001, partial η2 = .424 with a large effect size. There was not a 

statistically significant multivariate main effect for gender, Pillai's V = .021, F(3, 

195) = 1.39, p = .021, partial η2 = .021. This finding indicates that there were no 

significant differences between male and female students in terms of intrinsic load, 

extraneous load, and germane load across the seven topics within computer 

programming. 

Table 4.6 Results of Doubly Repeated MANOVA for Cognitive Load Types by 
Gender  

Multivariate 
Effect 

 Pillai's V F df Error 
df 

p Partial 
η2 

Between Subjects Gender .021 1.39 3 195 .246 .021 
Within Subjects Programming 

topics 
.424 7.35 18 180 .000 .424 

 Interaction .139 1.62 18 180 .059 .139 
 

Follow-up univariate ANOVAs were then examined, and it was observed that 

Mauchly's test revealed the violation of the assumption of sphericity for IL (χ²(20) = 

101.04, p < .001), EL (χ²(20) = 78.76, p < .001)  and GL (χ²(20) = 131.04, p < .001). 

Consequently, the degrees of freedom were adjusted using Greenhouse-Geisser 

estimates of sphericity (ε = .85 for IL, ε = .88 for EL, and ε = .83 for GL). Univariate 

test results revealed that intrinsic load differed significantly across topics, F(5.11, 

1006.80) = 15.06, p < .001, partial η² = .071. Similarly, extraneous load and germane 

load also showed significant differences across topics, F(5.30, 1044.32) = 4.16, p = 

.001, partial η² = .021, and F(5.00, 984.04) = 4.94, p < .001, partial η² = .024, 

respectively. These results suggested that the levels of intrinsic, extraneous, and 

germane load vary depending on the topic.  
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4.1.4 Results of the Research Question 3 

This research question of this study investigated whether there were differences in 

students’ adaptive learning patterns, attitudes toward coding education, cognitive 

load, and achievement in programming based on geographical school location. To 

address this question, three sub questions were further investigated. 

4.1.4.1 Results of the Sub-Research Question 3a 

Since the multivariate normality assumption was violated for the subscales of the 

PALS, as previously indicated, a robust non-parametric version of MANOVA was 

conducted in R through mulrank function using Munzel & Brunner's (2000) method 

to examine the effect of gender on the scores of the students from the subscales of 

the PALS. The results indicated that there were statistically significant differences 

based on geographical school location, F = 19.38, p < .001. To determine which 

subscales showed significant differences based on geographical school location, 

follow-up analyses were conducted using the Mann-Whitney U test. Test results 

showed that there were significant differences between students from the school in 

the urban area and from the suburban area in all nine subscales of PALS (Table 4.7). 

Urban students exhibited significantly higher average ranks compared to their 

suburban counterparts in the following subscales: MGO (z = -5.68, p <.001 ), 

PApGO (z = -2.66, p <.05), PAvGO (z = -3.38, p = .001), CMGS (z = -4.76, p <.001), 

CPApGS (z = -5.22, p < .001), CPAvGS (z = -3.40, p =.001), and AE (z = -5.82, p < 

.001). On the other hand, suburban students scored significantly higher in ASHS (z 

= -2.98, p < .05) and CB (z = -4.88, p < .001).  
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Table 4.7 Mann-Whitney U Test Results for PALS by Geographical School Location 

 

4.1.4.2 Results of the Sub-Research Questions 3b, 3c, 3d, and 3e 

Separate independent-sample t-tests were conducted to compare the attitude toward 

the coding education scale, mathematics achievement test, reading comprehension 

achievement test, and coding achievement test scores of the students from urban and 

suburban schools. The results indicated significant differences in the MA scores 

(t(197) = 3.37, p = .001) and CA scores  (t(161.93) = 3.68, p < .001) between students 

from urban and suburban schools  (Table 4.8). The effect size, as measured by 

Cohen’s d, indicated a small effect size for mathematics achievement and a medium 

effect size for coding achievement. These results suggest that students from urban 

schools had significantly higher coding scores compared to students from suburban 

schools. Similarly, the mathematics scores of the students from urban schools were 

higher than the scores of the students from suburban schools. However, the results 

showed that there was no significant difference in the ATCE (t(197) = 1.04, p > .05) 

and RCA (t(197) = -2.00, p = .05) between urban and suburban schools. 

 

 

 Urban (n = 112) Suburban (n = 97) U z p 
Variable  Mean Rank Mean Rank    
MGO 120.38 73.76 2589.50 -5.68 .000 
PApGO 109.54 87.71 3803.00 -2.66 .008 
PAvGO 112.13 84.39 3514.00 -3.38 .001 
CMGS 117.08 78.01 2958.50 -4.76 .000 
CPApGS 118.72 75.90 2775.50 -5.22 .000 
CPAvGS 112.53 83.87 3469.00 -3.40 .000 
AE 120.91 73.09 2530.50 -5.82 .000 
ASHS 89.31 113.76 3675.00 -2.98 .003 
CB 82.82 122.12 2947.50 -4.88 .000 
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Table 4.8 Results of t-test and Descriptive Statistics for ATCE, MA, RCA and CA 
by Geographical School Location 

 Urban (n = 112) Suburban (n = 87) t p Cohen’s d 
 M SD M SD 
ATCE 153.84 26.13 149.77 28.80 1.04 .30 0.15 
MA 16.81 6.38 13.80 6.01 3.37 .001 0.49 
RCA 12.78 5.87 14.44 5.74 -2.00 .05 0.29 
CA 52.60 8.48 47.49 10.59 3.78 .000 0.53 

 

4.1.4.3 Results of the Sub-Research Questions 3f 

The doubly multivariate repeated-measures MANOVA was employed to investigate 

the multivariate main effects of programming topics and geographical school 

location on intrinsic load, extraneous load, and germane load. The descriptive 

statistics of the observed variables over all combinations of school location and 

programming topics are presented in Table 4.9. The descriptive statistics of cognitive 

load measures across seven programming concepts revealed distinct patterns 

between urban (N = 108) and suburban (N = 86) students. In urban settings, the 

highest mean values for intrinsic load (IL) were observed in sequences (M = 2.03, 

SD = 0.75) and nested loops (M = 1.87, SD = 1.05), whereas suburban students 

showed higher means in nested loops (M = 2.38, SD = 1.22) and sequences (M = 

2.22, SD = 0.79). For extraneous load (EL), urban students had the highest means in 

sequences (M = 1.80, SD = 0.68) and nested loops (M = 1.83, SD = 0.99), while 

suburban students exhibited higher means in nested loops (M = 2.19, SD = 0.99) and 

flowcharts (M = 2.09, SD = 0.83). Regarding germane load (GL), urban students 

reported the lowest means in sequences (M = 3.84, SD = 0.77) and debugging (M = 

3.084, SD = 1.15), compared to suburban students who showed the lowest means in 

flowcharts (M = 3.56, SD = 1.09) and sequences (M = 3.60, SD = 0.81).  
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Table 4.9 Descriptive Statistics for Cognitive Load Measures for School Location 
Across Seven Programming Concepts  

 Urban (n = 112) Suburban (n = 87) 
 M SD Skewness Kurtosis M SD Skewness Kurtosis 
IL sequences 2.03 0.75 0.434 -0.486 2.22 0.79 0.353 -0.443 
IL flowcharts 1.76 0.83 0.931 0.183 2.10 0.87 0.740 0.486 
IL debugging 1.60 0.90 1.550 1.359 1.88 0.94 0.841 -0.359 
IL loops 1.81 1.07 1.213 0.543 2.17 1.04 0.753 0.260 
IL nested loops 1.87 1.05 1.036 0.134 2.38 1.22 0.507 -0.746 
IL conditionals 1.59 0.73 1.518 2.075 1.69 0.77 0.828 -0.579 
IL variables 1.61 0.87 1.406 1.061 1.74 0.75 0.794 -0.281 
EL sequences 1.87 0.68 0.812 0.291 2.06 0.66 0.248 -0.450 
EL flowcharts 1.80 0.84 1.128 1.145 2.09 0.83 0.621 0.443 
EL debugging 1.71 0.87 1.240 0.742 1.79 0.73 0.640 -0.289 
EL loops 1.71 1.01 1.352 0.834 1.97 0.85 0.504 -0.770 
EL nested loops 1.83 0.99 1.151 0.470 2.19 0.99 0.472 -0.386 
EL conditionals 1.78 0.97 1.275 0.573 1.79 0.74 0.532 -0.900 
EL variables 1.79 1.06 1.156 0.170 1.80 0.78 0.675 -0.475 
GL sequences 3.84 0.77 -0.320 -0.525 3.60 0.81 -0.412 -0.263 
GL flowcharts 3.99 0.98 -0.882 0.287 3.56 1.09 -0.548 -0.437 
GL debugging 3.84 1.15 -0.782 -0.302 3.78 1.01 -0.519 -0.579 
GL loops 4.05 1.06 -1.064 0.634 3.78 1.04 -0.395 -0.956 
GL nested loops 3.94 1.16 -0.953 -0.081 3.80 1.02 -0.365 -0.671 
GL conditionals 4.01 0.98 -0.831 -0.171 4.05 0.88 -0.691 -0.101 
GL variables 4.11 1.06 -1.117 0.326 4.05 0.94 -0.901 0.271 

 

 
Although sample sizes were not equal between urban and suburban groups, there 

were no significant size discrepancy and both groups had more cases than dependent 

variables (Tabachnick & Fidell, 2012). To assess the normality assumption, 

skewness and kurtosis values were examined for the three cognitive load types across 

seven programming concepts in both urban and suburban schools. The analysis 

indicated that all variables exhibited skewness and kurtosis values within the 

acceptable range of ±2, supporting the assumption of normality. Additionally, the 

maximum Cook’s distance value was below the commonly accepted threshold of 1.0 

for each measurement, ), indicating that there were no significant outliers influencing 

the results (Field, 2005). Correlation analysis indicated that Pearson's correlation 

coefficients between all pairs of Cognitive Load measures across the seven topics 

were below 0.80. Consequently, the assumption of multicollinearity was not 
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violated. The Box's M Test of Equality (F(28, 119003) = 1.43, p > .05) revealed a 

nonsignificant result, suggesting that the assumption of homogeneity of variance-

covariance matrices was met. Therefore, it can be concluded that the assumptions 

for the dMANOVA were satisfactorily met. 

As presented in Table 4.10, the doubly repeated MANOVA revealed a nonsignificant 

multivariate main effect for the interaction between school location and 

programming topics, Pillai's V = .126, F(18, 180) = 1.44, p > .05, partial η2 = .126. 

There was a statistically significant multivariate main effect for programming topics, 

Pillai's V = .436, F(18, 180) = 7.75, p < .001, partial η2 = .436, indicating a large 

effect size. Similarly, test results revealed a significant main effect for geographical 

school location, Pillai's V = .048, F(3, 195) = 3.275, p < .05, partial η2 = .048, with 

a small effect size.  

Follow-up univariate ANOVAs were then examined, and it was observed that 

Mauchly's test revealed that the assumption of sphericity was violated for IL (χ²(20) 

= 99.76, p < .001), EL (χ²(20) = 77.89, p < .001)  and GL (χ²(20) = 124.82, p < .001). 

Consequently, the degrees of freedom were adjusted using Greenhouse-Geisser 

estimates of sphericity (ε = .89 for IL, ε = .92 for EL, and ε = .87 for GL). 

Table 4.10 Results of Doubly Repeated MANOVA for Cognitive Load Types by 
Geographical School Location  

Multivariate 
Effect 

 Pillai's  
V 

F df Error  
df 

p Partial  
η2 

Between Subjects School location .048 3.28 3 195 .022 .048 
Within Subjects Programming 

topics 
.436 7.75 18 180 .000 .436 

 Interaction .126 1.44 18 180 .118 .126 
 

Univariate test results revealed that intrinsic load differed significantly across topics, 

F(5.13, 1010.36) = 15.86, p < .001, partial η² = .075. Similarly, extraneous load and 

germane load also showed significant differences across topics, F(5.30, 1043.77) = 

5.07, p = .001, partial η² = .025, and F(5.03, 991.25) = 5.58, p < .001, partial η² = 

.028, respectively. These results suggest that the levels of intrinsic, extraneous, and 
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germane load vary depending on the topic, similar to the results of the doubly 

repeated MANOVA test conducted to examine the effects of gender and 

programming topics on three types of cognitive load.  

When the results for geographical school location were examined, the test of 

between-subjects effects indicated that the only statistically significant difference, 

using a Bonferroni adjusted alpha level of .017, was obtained for the intrinsic load 

(F(1, 197) = 7.77, p = .006, partial η2 = .038). On the other hand, differences between 

students from suburban schools and urban schools on the EL (F(1, 197) = 2.34, p = 

.128 partial η2 = .012) and GL (F(1, 197) = 1.28, p = .260 partial η2 = .006) variables 

were not statistically significant.  

 

Figure 4.1 Plot of Estimated Marginal Means of Intrinsic Load by Gender 

Post-hoc tests using Bonferroni correction revealed that the intrinsic load of the 

students from suburban schools (M = 2.09, SD = 0.09) was significantly higher than 

the students from urban schools (M = 1.81, SD = 0.08) for the topics of flowcharts 

(p = .026). Similarly, during the week when the topic of loops was covered, students 

from suburban schools reported significantly higher intrinsic cognitive load (M = 

2.18, SD = 0.12) compared to students from urban schools (M = 1.87, SD = 0.10, p 

< .04). Another topic that suburban students experienced higher intrinsic load (M = 

2.41, SD = 0.13) than the urban students (M = 1.91, SD = 0.11) was nested loops (p 

= .003), as seen in Figure 4.1. 
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4.1.5 Results of the Research Question 4 

The fourth research question of the study aimed to explore the predictive power of 

research variables in relation to students' coding achievement scores. Hierarchical 

regression was conducted to test the fourth hypothesis to determine the relative 

strength of the dependent variables in predicting the coding achievement scores of 

the students. The regression analysis followed the 4-stage process. In the analysis, 

demographic variables (gender and geographic school location) were initially 

introduced to the model. Subsequently, mathematics achievement, reading 

comprehension achievement, extraneous load, germane load, attitude, and academic 

efficacy variables, which have been discussed and evidenced in the related literature 

to be associated with programming success, were included in the model. As a third 

step, performance-approach goal orientation and performance-avoidance goal 

orientation variables were introduced to the model. Finally, exploratory 

environmental factors (classroom mastery goal structure, classroom performance-

approach goal structure, and classroom performance-avoid goal structure), cheating 

behavior and academic self-handicapping strategies were incorporated into the 

model. The order of variable entry into the regression equation was determined by 

considering studies in the theoretical framework and related literature that examined 

variables associated with the outcome variable. 

Prior to conducting hierarchical regression, the underlying assumptions of the 

analysis were ascertained. Initially, the minimum sample size was determined by 

considering a statistical power of 0.80 and an alpha level of 5%. The effect size 

chosen for the multiple hierarchical regression design with fifteen dependent 

variables was set at 0.20. Employing a G*Power calculator, it was determined that 

the present study required 108 participants. Besides that, the minimum sample size 

required for hierarchical regression analysis was calculated by using the formula [50 

+ 8*15] suggested by Tabachnick & Fidell (2012) and found to be 170. Based on the 

aforementioned considerations, it can be concluded that the sample size for the 

analysis was adequate. 
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To evaluate the multicollinearity, the correlations between the predictor variables 

were examined. The correlation coefficient values between each variable were below 

.80 (Field, 2005), except between MGO and AE (r = 0.881) and between IL and EL 

(r = 0.843), as previously mentioned (p. 87). Concerns regarding multicollinearity 

potentially biasing the regression model led to the removal of one of the highly 

correlated variables. Based on the variance inflation factor (VIF) and tolerance 

indices, MGO was chosen for exclusion from the analysis due to its higher VIF and 

lower tolerance indices compared to the AE variable. Adopting a similar approach, 

it was decided to remove IL from the analysis as well. After the exclusion of these 

two variables, tolerance indices and VIF statistics were checked for multicollinearity 

(Table 4.11). The analysis results showed that for all predictor variables, the 

tolerance indices were above the threshold value of .20 (Menard, 2010, p.76), and 

all VIF values were below the threshold value of 5. Additionally, the average VIF 

was calculated as 2.103, which is not substantially greater than the suggested value 

of 1 (Field, 2005). Therefore, the multicollinearity assumption was met. 

 
Table 4.11 Collinearity Statistics of the Predictor Variables 

Variables TI VIF 
Geographic school location 0.647 1.545 
Gender 0.911 1.098 
MAT 0.493 2.029 
RCT 0.525 1.904 
EL 0.480 2.081 
PSL 0.436 2.295 
AE 0.308 3.244 
ATCE 0.625 1.601 
PApGO 0.524 1.907 
PAvGO 0.481 2.081 
CMGS 0.308 3.243 
CPApGS 0.405 2.470 
CPAvGS 0.440 2.270 
HANDI 0.748 1.337 
CHEAT 0.409 2.444 
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To assess the independence of residuals, the Durbin-Watson statistic was employed. 

The test result of 2.255, falling within the range of 1 and 3, suggested that the 

assumption of independence was met. Standardized residual statistics were assessed 

to identify potential outliers. The analysis revealed eight cases with standardized 

residuals falling within the range of -2 to +2 (Table 4.12). As anticipated in a normal 

distribution, approximately 95% of the cases are expected to exhibit standardized 

residuals within this range. Consequently, the presence of eight cases (less than 10% 

of the sample) with standardized residual values outside these limits is not considered 

a significant concern. Additionally, Mahalanobis distances were checked to evaluate 

multivariate outliers (Pallant, 2016). Based on the critical Chi-Square values table, 

critical χ2 at a significance level (⍺) of .001 for fifteen degrees of freedom is 37.7. 

The test results showed that the maximum Mahalanobis distance value was 37.186. 

Besides that, the maximum Cook’s distance value was 0.059, which is below 1 

(Field, 2005). These findings indicated the absence of multivariate outliers for all 

independent variables.  

Table 4.12 Standardized Residual Statistics 

Case Number Std. Residual CA Predicted Value Residual 

1 -2.912 19.5 39.0288 -19.52876 

3 -2.701 21.75 39.8652 -18.11517 

5 -2.720 40.5 58.7444 -18.24440 

6 -2.796 17.5 36.2546 -18.75457 

12 -2.067 34 47.8630 -13.86300 

15 -2.037 22.5 36.1651 -13.66513 

20 -2.678 33.5 51.4590 -17.95896 

21 2.200 61 46.2414 14.75857 

Note. For the dependent variable coding achievement (CA) 

To test the normality of the residual assumption, the probability plot (P- P) and 

histogram of the regression standardized residual were examined. As seen in Figure 
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4.2, residuals had a straight-line relationship with predicted CA scores, indicating no 

major deviations from normality. Similarly, the histogram of the regression 

standardized residual showed a roughly normal distribution for CA scores (Figure 

4.3). 

 

 

Figure 4.2 Normal Probability Plot (P- P) of the Regression Standardized Residual 
for CA 

 

Figure 4.3 Histogram of Regression Standardized Residual for CA 
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The homoscedasticity assumption was assessed through a scatterplot of standardized 

residuals and standardized predicted values (ZRESID vs. ZPRED). Examination of 

Figure 4.4 revealed a random scatter of residuals, confirming the assumption of 

homoscedasticity. 

 

 

Figure 4.4 Scatterplot of Standardized Residuals and Standardized Predicted Values 

To assess the linearity assumption, scatterplots were examined between each 

predictor variable and the dependent variable. The scatterplots demonstrated a linear 

relationship between the predictors and the dependent variable. Besides that, the 

linearity tests indicated a linear relationship between the variables. Partial plots were 

checked for the homoscedasticity and linearity assumptions. While a strong 

correlation between each predictor variable and the outcome variable was not 

observed, examination of the scatterplots indicated a lack of prominent outliers. 

Moreover, the data points were evenly dispersed around the regression line, implying 

homoscedasticity. Additionally, the graphs did not show any pattern indicating there 

is no violation of both the assumption of linearity and homoscedasticity (Field, 

2005). 
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Hierarchical regression was conducted to predict the overall coding achievement 

score from fifteen predictor variables. Demographic variables (age and geographic 

school location) were introduced to the model in Step 1, explaining 7% of the 

variance in coding achievement scores, R2 = .07, F(2, 196) = 7.20, p = .001. Results 

indicate that geographic school location was a significant predictor of coding 

achievement, B = -5.124, β = -.261, t = -3.781, p < .001. This means that academic 

achievement scores decreased significantly more in suburban schools compared to 

urban schools. Conversely, gender was not a significant predictor of coding 

achievement (R2 = .07, F(2, 196) = 7.20, p = .001), which means that there was no 

statistically significant difference in predicting the coding achievement scores of 

participating students who were girl compared to those students who were boy. 

Six variables (mathematics achievement, reading comprehension achievement, 

extraneous load, germane load, academic efficacy, and attitude towards coding 

achievement) were added to the model in the second step and test results showed that 

these variables account for an additional 48% variance in coding achievement 

controlling for gender and geographic school location, Rsquared change = .48, 

Fchange (2, 190) = 33.19, p < .001. This means that nearly half of the variance in 

coding achievement was accounted for by the added variables. Analysis results for 

Model 2 indicated that mathematics achievement (B = 0.50, β = .33, t = 4.84, p < 

.001), reading comprehension achievement (B = 0.39, β = .24, t = 3.53, p = .001), 

extraneous load (B = -0.70, β = -.14, t = -2.06, p < .05), and attitude toward coding 

education (B = 0.06, β = .17, t = 2.81, p < .01) were statistically significant predictors 

of coding achievement. Among these variables, the majority of the variance in the 

coding scores was uniquely explained by mathematics achievement scores (sr = .24) 

and followed by reading comprehension achievement (sr = .17), attitude toward 

coding education (sr = .14), extraneous load (sr = .10), respectively. These results 

showed that the coding achievement scores of the students were higher when their 

performance in mathematics and reading comprehension, as well as their attitude 

towards coding education and extraneous load were higher. On the other hand, 

analysis results showed that germane load (B = 0.08, β = .02, t = 0.33, p > .05) and 
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academic efficacy (B = 0.10, β = .06, t = 1.07, p > .05) were not significant predictors 

of the output variable. 

In the third step, two variables (performance-approach goal orientation and 

performance-avoidance goal orientation) were added to the model. The test results 

showed that including performance-approach goal orientation (B = -0.02, β = -.01, t 

= -0.18, p > .05) and performance-avoidance goal orientation (B = 0.08, β = -.04, t = 

0.51, p > .05) variables failed to significantly increase in the explained variance of 

coding achievement, Rsquared change = .001, Fchange (2, 188) = .13, p > .05.  

In the final step, the inclusion of the last five variables (classroom mastery goal 

structure, classroom performance-approach goal structure, classroom performance-

avoid goal structure, academic self-handicapping strategies, and cheating behavior) 

resulted in a nonsignificant increase of 2% in the explained variance of coding 

achievement, Rsquared change = .02, Fchange (5, 183) = 1.59, p > .05. Among these 

variables, academic self-handicapping strategies was identified as the sole 

significant predictor of coding achievement, exhibiting a negative relationship (B = 

-0.16, β = -.12, t = 0.51, p < .05). However, CMGS (B = 0.16, β = .11, t = 1.23, p > 

.05), CPApGS (B = 0.04, β = .01, t = 0.19, p > .05), CPAvGS (B = 0.07, β = .14, t = 

0.49, p > .05) and CB (B = 0.01, β = .16, t = 0.08, p > .05) found to be nonsignificant 

predictors of the academic achievement.  

Table 4.13 Four-Step Hierarchical Multiple Regression Analysis Results 

Predicted variables B SE B β t p sr R2 
Change R2 

Model 1       .068* .068 
(Constant) 53.403 2.179  24.507 .000    
School Location -5.124 1.355 -.261 -3.781 .000 -.261   
Gender -0.546 1.348 -.028 -0.405 .686 -.028   
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Table 4.13 Four-Step Hierarchical Multiple Regression Analysis Results (cont’d) 

Model 2       .477** .545 
(Constant) 31.517 6.064  5.198 .000    
School Location -3.208 1.165 -.163 -2.753 .006 -.135   
Gender -0.420 0.998 -.021 -0.421 .675 -.021   
MATS 0.504 0.104 .331 4.840 .000 .237   
RCTS 0.393 0.111 .235 3.533 .001 .173   
EL -0.702 0.341 -.143 -2.057 .041 -.101   
GL 0.079 0.240 .024 0.328 .743 .016   
EFFI 0.095 0.089 .061 1.065 .288 .052   
ASTCE 0.060 0.021 .168 2.809 .005 .137   
Model 3       .001 .546 
(Constant) 31.477 6.286  5.007 .000    
School Location -3.212 1.171 -.163 -2.743 .007 -.135   
Gender -0.416 1.003 -.021 -0.415 .679 -.020   
MATS 0.502 0.105 .330 4.792 .000 .236   
RCTS 0.392 0.112 .235 3.508 .001 .172   
EL -0.714 0.345 -.146 -2.069 .040 -.102   
GL 0.076 0.241 .024 0.317 .752 .016   
EFFI 0.071 0.102 .045 0.694 .489 .034   
ASTCE 0.060 0.022 .167 2.764 .006 .136   
PApGO -0.022 0.122 -.012 -0.184 .855 -.009   
PAvGO 0.078 0.154 .035 0.505 .614 .025   
Model 4       .019 .565 
(Constant) 34.803 6.859  5.074 .000    
School Location -2.802 1.191 -.143 -2.352 .020 -.115   
Gender -0.510 0.999 -.026 -0.511 .610 -.025   
MATS 0.498 0.106 .327 4.703 .000 .229   
RCTS 0.402 0.112 .241 3.584 .000 .175   
EL_av -0.756 0.345 -.154 -2.192 .030 -.107   
GL_av 0.093 0.240 .029 0.386 .700 .019   
EFFI -0.097 0.137 -.062 -0.707 .481 -.034   
ASTCE 0.048 0.022 .135 2.195 .029 .107   
PApGO -0.044 0.130 -.023 -0.336 .738 -.016   
PAvGO 0.059 0.156 .027 0.380 .705 .019   
CMGS 0.160 0.130 .108 1.233 .219 .060   
CPApGS 0.039 0.208 .014 0.185 .854 .009   
CPAvGS 0.070 0.141 .036 0.492 .623 .024   
ASHS -0.159 0.074 -.121 -2.145 .033 -.105   
CHEAT 0.012 0.157 .006 0.077 .939 .004   

Note. sr = semi partial correlation coefficient, *p=.001, **p < .001. 
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Overall, the final model continued to significantly predict coding achievement and 

accounted for 57 percent of the variance in achievement, with an adjusted R2 of .53 

(R2 = .57, F(5, 183) = 15.82, p < .001). Five of fifteen measures, which remained a 

robust predictor both in the second and third models and another variable added to 

the model in the fourth step statistically significantly contributed to the final model 

(Table 4.13). On the other hand, gender, GL, AE, PApGO, PAvGO, CMGS, 

CPApGS, CPAvGS, and CB were insignificant in predicting the coding achievement 

test scores of the fifth-grade student. When the unique relationship that each 

significant predictor has with coding achievement was examined, it was observed 

that mathematics achievement was the strongest predictor (sr = .23) followed by 

reading comprehension achievement (sr = .18), geographic school location (sr = -

.12), extraneous load (sr = -.11), attitude towards coding education (sr = .11) and 

academic self-handicapping strategies (sr = -.11). To evaluate the generalizability of 

the model, the difference between R2 and adjusted R2 was calculated (Diff: .565 - 

.529 = .036) and found as 3.6%. This R2 shrinkage indicated that if the model had 

been estimated using the entire population instead of a sample, about 3.6% less of 

the variance would account for in the outcome. Furthermore, considering the 

critiques on the R2 value regarding its limitations in demonstrating the predictive 

capability of the regression model for a different dataset, to evaluate the cross-

validation of the model, adjusted R2 was calculated using Stein’s formula and found 

as 0.49. As this calculated adjusted R2 value did not differ substantially from the 

obtained R2 value, the cross-validity of the model can be considered good.  

4.2 Results of the Qualitative Data Analysis 

4.2.1 Results of the Research Question 5 

During the qualitative phase of the research, semi-structured interviews were 

conducted with a sample of 30 fifth-grade students from a total of 199 who had 

participated in the quantitative phase. These students were selected from each 
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participating school, with one student each representing low, medium, and high 

academic achievement in the ITS course from each class. A thematic analysis was 

conducted on student responses to gain deeper insights into their programming 

learning experiences. The analysis of the data revealed six main themes: cognitive 

demands, effective instructional approaches, collaborative learning approaches, 

independent learning approaches, goal setting, and affective aspects. Each theme is 

further categorized to capture specific aspects of the student experiences. The 

identified themes and their corresponding categories are presented in Figure 4.5.  

 
 
Figure 4.5 Themes and Their Corresponding Categories  

4.2.1.1 Theme 1: Cognitive Demands 

This theme explored the complexities that participants encountered while learning 

programming. The aim of this theme was to identify the factors contributing to their 

cognitive load by examining the inherent complexity of programming concepts and 
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tasks, the impact of instructional design, and the challenges posed by the learning 

environment. Table 4.14 provides a detailed overview of the categories under this 

theme, their corresponding codes, and the frequency of statements associated with 

each code. 

Table 4.14 Distribution of Code Frequencies by the Theme of Cognitive Demands 
and Instructional Factors 

Categories Codes f 
Inherent Complexity of Concepts 
and Tasks 

Diagramming programming logic 
difficulties 

15 

Spatial reasoning challenges 14 
Managing iterative logic  6 
Limited code blocks challenges 3 
Comprehending code blocks 
functionality 

3 

Integration of multiple concepts 2 
Sequencing and logical flow 
difficulties 

1 

Instructional Factors Abstract concepts and confusing 
explanations 

24 

 Time constraints 8 
 Unstructured learning 5 
 Unclear task instructions 4 
 Unsuitable scaffolding 1 

Learning Environment Challenges 

 

Access and equity issues 21 
Foreign language-related problems 4 
Login problems 3 

 

4.2.1.1.1 Inherent Complexity of Programming Concepts and Tasks  

This category examined the intrinsic aspects of programming concepts and tasks that 

significantly impact students' cognitive load. These intrinsic factors encompassed 

various challenges that learners face, influencing the mental effort required to grasp 

and apply programming concepts. The data revealed that participants frequently 

reported difficulties with programming logic, as evidenced by fifteen mentions of 

flowcharts as a particular challenge. Similarly, spatial reasoning posed a notable 
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obstacle for students learning to program, as highlighted in fourteen distinct 

instances within the data. Furthermore, the data indicated a significant challenge in 

managing iterative logic and loop structures, as evidenced by six mentions. Other 

challenges identified by students included problem-solving within constrained code 

blocks, understanding code block functionality, and difficulties with tasks requiring 

the integration of multiple concepts, algorithmic sequencing, and logical flow. 

Diagramming Programming Logic Difficulties 

Flowcharts are visual tools used to represent program logic. However, student 

feedback revealed difficulties in understanding which command to place inside 

which flowchart shapes, complicating their ability to effectively diagram coding 

logic (f = 15). This complexity was compounded by the need to grasp the abstract 

relationships between various shapes and their underlying concepts, such as 

processes and decisions. S27's confusion regarding "triangles" (referring to decision 

diamonds) exemplified this challenge. If students did not understand the purpose of 

decision diamonds and how to formulate questions or conditions within them, even 

a simple flowchart could become overwhelming. 

[S27]: In it, for example... When I started with a triangle, I didn't have any 

questions; I didn't know what to start with. I was struggling. Which command 

should I write and how should I write it? 

Additionally, four students expressed difficulty in identifying the specific actions or 

decisions represented by different flowchart symbols (e.g., decision diamonds and 

input/output boxes). These students struggled with remembering and distinguishing 

the meanings of different shapes in flowcharts, indicating challenges with concept 

retention and understanding. Understanding the abstract relationships between these 

shapes and their underlying concepts inherently demanded significant cognitive 

effort from the students. Moreover, student statements indicated that the way 

information was presented significantly affected the cognitive load they experienced. 

Poorly explained or inadequate practice in distinguishing different flowchart 

symbols led to memorization difficulties and confusion between shapes, which 
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added to the cognitive load as students struggled to recall the meaning of each 

symbol and how they connected to program logic. 

[S27]: I was confused about the questions. There were triangles, 

parallelograms, etc. I had some difficulty there. It was confusing. ...I didn't 

know what to put and which shape to put. 

Spatial Reasoning Challenges 

Analysis of interviews revealed that many of the students struggled with tasks 

requiring spatial reasoning skills (f = 14). These skills, encompassing concepts like 

geometry (angles, degrees, and rotations) and distance calculations, are crucial for 

translating abstract geometric ideas into algorithms. Based on student feedback, 

integrating knowledge from geometry with programming skills was inherently 

complex and demanding. Participants’ responses indicated challenges with tasks like 

navigating mazes requiring specific turns or manipulating shapes with precise 

rotations (as mentioned by S24). These tasks necessitated not only an understanding 

of programming concepts but also the application of geometric knowledge. 

Additionally, two participants (S15 and S26) expressed difficulty with directional 

commands ("left" and "right"). This issue was related to spatial orientation, which 

involved understanding and manipulating objects in relation to oneself. In 

programming tasks in the class, spatial orientation was essential for comprehending 

and using directional movement commands ("move forward," "turn left/right"). 

Student feedback indicated that those struggling with spatial orientation had 

difficulty visualizing how these commands translated to on-screen movements (as 

mentioned by S26). 

[S19]: I am not good at angles at all because I am not good at angles in math 

either. So, it affects my performance in the IT (Information Technology and 

Software) class as well. 
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[S24]: There are shapes there, for example, go 180. You will make it 120 or 

145. I was undecided there, what should I do, 145, 120, 100? So, it was 

always necessary to try. 

Managing Iterative Logic 

This code explores the challenges students encountered when working with nested 

loops, a fundamental programming concept that introduces multiple levels of 

iteration. Notably, the student tasks in this analysis specifically involved nested loops 

with only two iteration structures. Students struggled to understand the logic and 

structure of these constructs, particularly when determining which code blocks 

should repeat within nested loop structures (f = 6). This was evident in the feedback 

from S30. The analysis of feedback from S22 also revealed difficulties in managing 

nested loop structures. Student reported challenges understanding the behavior of 

nested loops, particularly when the total number of iterations became large. This 

suggested a struggle with conceptualizing the interplay between nested loops and the 

resulting flow of control. 

[S22]: For example, when a character is there, it is a bit difficult for me to 

use that loop twice. For example, after repeating something three times, for 

example, when we put one more thing, a loop on the top layer, for example, 

when it was five times, something strange was happening. I couldn't really 

understand it. 

S6 expressed in the interview the challenges faced when applying nested loops in 

problem-solving tasks that involved navigating obstacles. These tasks required 

students to control a character and navigate through a complex environment filled 

with obstacles like ice patches and hazards (e.g., wildflowers). The inherent 

complexity lay in the need to manage multiple elements simultaneously, such as 

planning a route, executing movements, and adjusting strategies in real-time. This 

multitasking demanded strategic planning, spatial awareness, and a high level of 

problem-solving and decision-making skills. According to student comments, the 
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need to consider the location and behavior of multiple obstacles simultaneously 

increased the intrinsic cognitive load. 

[S6]: I had a hard time getting the zombie to the sunflower, it was difficult to 

get the zombie to the sunflower. Because, teacher, there are other flowers, 

wildflowers, you have to escape from them. Because there are broken ices, 

you are careless, you step on it, you fall anyway. Then the code is wasted. 

 

  
(a) (b) 

Figure 4.6 (a) Sample programming task on code.org (Course F-Lesson 8: Nested 

Loops in Maze/Level 10) about nested loops and (b) possible solution to this task 

While game design elements like unnecessary distractions could add extraneous 

load, in this case, the ice patches and wildflowers appeared to be strategically placed. 

As illustrated in Figure X(a), these obstacles likely served a pedagogical purpose: to 

challenge students' understanding of nested loops and their ability to apply this 

concept in a practical setting. The complexity of navigating around these obstacles 

necessitated the use of nested loops to control the character's movement effectively. 

Limited Code Blocks Challenges 

This code captures feedback where S6 expressed that they struggled with tasks 

requiring the use of a limited number of code blocks, indicating challenges with 

coding efficiency and strategic problem-solving (f = 3). Code.org's puzzles often 
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challenged students with limited code blocks, including limitations on the total 

number of blocks and the number of times a specific block could be used. For 

example, maze navigation with limited moves puzzles that restricted the number of 

"move forward" blocks challenged students to carefully plan their route, considering 

the most efficient path and avoiding unnecessary moves. Similarly, loops and nested 

loops were also introduced as a way to solve problems with limited resources, 

requiring students to strategically plan code repetition. While constraints like limited 

block usage might seem challenging, they also aimed to encourage students to think 

creatively, optimize their solutions, and develop a deeper understanding of 

programming principles. This involved selecting the most efficient blocks and 

combining them in a way that achieves the desired outcome within constraints. Such 

tasks demanded higher-order cognitive skills such as analyzing, evaluating, and 

creating, as the student had to think critically about which blocks to use and how to 

use them effectively. 

[S6]: Code.org is actually great, but sometimes it makes you think that you 

should only be allowed to use it once. It's not difficult to set up normally, it's 

easy, but you really have to think about where to put it. 

Comprehending Code Blocks Functionality  

Code blocks, fundamental building blocks in many programming environments, 

allow students to visually construct programs. Each code block has specific 

functionality and interaction patterns. However, challenges in understanding and 

using code blocks, particularly with variables, were mentioned in three different 

expressions. Students' statements revealed difficulties with grasping how variables 

work within code blocks. While they might understand the concept of variables 

theoretically (storing data), applying them practically in code blocks proved 

challenging. This finding suggested that difficulties with understanding how to 

connect code blocks involving variables, as well as assigning and manipulating 

values stored in variables within the code block structure, could be a contributing 

factor. 
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[S20]: I don't understand how to use it. 

[S12]: I had the most difficulty with the blocks we made in the last lesson 

because there were blocks I did not know. Because I don't know the codes. I 

barely learned how to use them. 

Integration of Multiple Concepts 

Long-answer questions in programming often necessitate a deep understanding of 

complex material. They require students to integrate multiple concepts and 

synthesize information from various sources. The analysis of student feedback 

revealed a struggle with integrating multiple concepts within long-answer questions 

(f = 2). Answering these questions demanded not only recalling information but also 

applying, analyzing, and evaluating it. The emphasis on higher-order thinking skills 

also appeared to contribute to the intrinsic load. 

[S16]: For example, I had a lot of difficulty with the zombie, because I didn't 

know whether it would go to the right or to the left. It turns to the right. When 

there were too many blocks, I had a lot of difficulty. For example, I was doing 

it like this: I was turning to the bird's place, and I was trying to figure out 

which way it would go. Then, I was getting confused, and I was starting to 

slow down. 

Sequencing and Logical Flow Difficulties 

Understanding the correct order of coding blocks requires a grasp of logical 

sequencing and control flow. S18 reflected in the interview that they struggled with 

maintaining the correct order of code blocks, often placing one block in the wrong 

position, indicating challenges with understanding the logical sequence and structure 

of code. This was complex because it involved understanding the cause-and-effect 

relationships between different parts of the code. The students had to understand 

what each block does and how they interact with each other to achieve the desired 

outcome. This foundational knowledge was critical to correctly sequencing the 
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blocks. Students also needed to develop the ability to debug their code by checking 

if the blocks were in the correct order and making adjustments as needed. 

[S18]: … I'd mix up the codes. I'd accidentally substitute one for the other. It 

got mixed up. 

4.2.1.1.2 Instructional Factors  

This category investigated the impact of instructional design on cognitive load. It 

explored how the design and delivery of instructional materials and activities 

contributed to unnecessary cognitive load for learners. The focus was on how poorly 

crafted instructional elements created confusion, hindered understanding, and 

ultimately impeded learning effectiveness. Key factors contributing to this issue 

included abstract concepts, confusing explanations, time pressures, lack of clear 

learning paths, unclear task instructions, and insufficient support for learners. 

Abstract Concepts and Confusing Explanations 

This code addressed the challenges in understanding abstract programming concepts 

due to inconsistent or misleading explanations. Variables, fundamental building 

blocks in programming, represent concepts that can store and manipulate data. 

However, grasping their purpose and functionality could be challenging for students, 

as evidenced by the difficulties being emphasized 24 times by participants in this 

study. Two of the students (S26 and S21) expressed that they struggled with 

understanding and working with variables because the examples or explanations 

provided seemed inconsistent or misleading. For instance, S26's confusion about 

"five fingers changing" highlighted how real-world analogies could be 

misinterpreted, leading to a distorted understanding of variable behavior. 

[S26]: For example, the teacher tells me that five fingers never change, but 

when I do it like this, it becomes ten fingers, I think it changes. There was a 

little bit of a discussion there. After that, I started to have a lot of trouble. I 

was a little surprised there. 
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[S21]: I mean, it always seems to me... It is variable, for example, it seems 

like they can all change. But this depends on the thing, that is, it depends on 

the puzzle there. If the puzzle is like that, it is constant. But it can also be 

variable. ... The basis of the constant actually depends on the thing; this is 

another strange idea of mine; the basis of the constant depends on the 

program there. Whatever it is set up, that's the constant. But if we look at it, 

everything can change. That makes it difficult for me to understand. 

Time Constraints 

Student feedback highlighted the issue of insufficient class time for effective 

learning, particularly for complex topics like nested loops and variables (f = 

8). Students expressed a desire for more frequent or longer class sessions to allow 

for deeper understanding and practice. Restricted class time could hinder students' 

ability to grasp complex concepts thoroughly. In the case of nested loops and 

variables, students mentioned encountering difficulties and having areas where they 

still need improvement. This suggested that the current class duration is inadequate 

for providing sufficient exposure and practice with these challenging topics. 

[S3]: More lessons per week... Two lessons per week is not enough. A topic 

can be emphasized more. For example, when we moved on to nested loops, 

there were points where I encountered problems that I sometimes could not 

solve in my head. Or in variables... For example, there were places in 

variables that I still could not do. The subject could have been emphasized 

more. It would be better if there were more lessons per week.    

Unstructured Learning  

Five of the students’ expressions showed difficulty with the puzzle set, exemplified 

by the screenshot of a sample level in Figure 4.7. This puzzle set, which involved 

tasks requiring an understanding and application of various programming concepts 

such as conditional statements, loops, and variables, could be challenging for 

students new to programming (as explained under the code of ‘integration of multiple 
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concepts’). However, these students were introduced to conditional statements 

before learning about variables. As a result, they might have struggled to understand 

the conditions for moving the bee (e.g., 'if there is nectar') without knowing how to 

store and manipulate data related to nectar availability using variables. 

[S9]: We didn't know how much nectar there was. It was very difficult; if there 

was nectar, we had to take the nectar and move forward. We had difficulty 

with that. I mean, it was like this, there was one square, there was nectar all 

around. I was confused about whether to move the bee forward or take the 

nectar. 

 
 

(a) (b) 

Figure 4.7 (a) Sample programming task on code.org (Course 2 – Lesson 13: Bee 

Conditionals/Level 8) about conditional statements and (b) its solution 

Unclear Task Instructions 

Clear and concise instructions are crucial for minimizing cognitive load and 

maximizing learning in coding education. This is especially important for unplugged 

activities, which involve using physical objects to represent programming concepts. 

Four students’ statements indicated that they experienced significant difficulty when 

interacting with unplugged objects due to the unclear instructions. In these cases, 

unclear instructions for using physical objects like cups to represent direction 

changes led to confusion because students were unsure how to manipulate these 
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physical objects to practice programming logic and required students to exert extra 

mental effort to interpret meaning, fill in gaps, and understand the task requirements. 

This might increase extraneous cognitive load, diverting resources away from the 

core learning objectives of the unplugged activity. 

[S17]: And those non-digital, non-computerized ones confused me. That glass 

confused me so much that my brain burned. 

Unsuitable Scaffolding 

Student feedback underscored the critical importance of appropriate pacing and 

scaffolding in programming education. S3 detailed their initial ease with learning 

basic loops on code.org but expressed significant frustration with the sudden 

introduction of nested loops. This sudden transition from simple to complex 

examples overwhelmed students, thereby hindering their effective learning. When 

students were confronted with challenging concepts such as nested loops without 

adequate preparatory instruction, they might have experienced cognitive overload. 

This overload might have occurred due to the necessity of processing excessive 

information simultaneously, which complicated the comprehension of underlying 

concepts. 

[S3]: In nested loops, it was like this. We were playing very simple when we 

were training on code.org at the beginning: Go 4 steps forward or... At first, 

we learned repeated loops. It was easier to repeat instead of writing too 

much.  It wasn't too hard to learn. But the nested loops suddenly became 

difficult.   

4.2.1.1.3 Learning Environment Challenges 

The learning environment can significantly impact student success. This category 

explored three key challenges identified through student feedback: access and equity 

issues, foreign language-related problems and login problems. 
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Access and Equity 

The study highlighted concerns regarding access and equity in technology resources 

(f = 21). Several students pointed to difficulties caused by outdated or malfunctioning 

computers, which hindered their participation in essential educational learning 

environments like Code.org. This issue particularly disadvantaged students lacking 

reliable equipment, especially in suburban schools. S9 specifically mentioned the 

added struggle of using a malfunctioning computer to access Code.org, a crucial tool 

for their coding education. Furthermore, the lack of technology at home further 

restricted learning opportunities, as evidenced by eight students who expressed 

difficulty engaging in coding activities due to the absence of essential devices, such 

as computers or tablets. These concerns underscored the potential for unequal 

learning experiences and the critical importance of addressing the digital divide.  

[S13]: Also, computers break down a lot, I would like to change them. 

[S9]: I didn't work on coding because... I didn't work on it. I don't have a 

computer. 

Foreign language-related problems 

Participants’ statements pointed to problems with Turkish language support within 

the digital programming learning environment during their interviews (f = 4). 

Students S5 and S26 reported that despite selecting the Turkish language option, 

some parts of the platform remained in English. These students expressed difficulty 

in understanding instructions, introductory videos, and technical terms that were not 

in their native language. This language barrier might have added an extra layer of 

cognitive load, hindering their ability to grasp complex concepts and follow 

instructions effectively. This issue underscored the importance of comprehensive 

language support in educational programming environments to ensure that non-

native English speakers could fully engage with the learning material. 

[S5]: For example, in Course F, around lesson thirteen, even though I set the 

language to Turkish, we still have to speak in English there. 
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[S22]: Well, you know the videos at the bottom, it would be better if they were 

translated into Turkish. 

Login issues 

The coding learning environment offered user-friendly login options for students. 

Students could access the platform using a section code provided by their teacher, 

followed by their name and a text-based password or picture password. The picture 

passwords were printed out and distributed to students as a physical reminder. 

Nevertheless, two students expressed challenges related to logging into the coding 

website. For instance, S19 highlighted the frustration of forgetting passwords and 

the inability to access the learning environment without them. This forgotten 

password obstacle could add to the cognitive load and disrupt the learning flow for 

students. 

[S19]: How can I say? It seemed a bit difficult to have a password. I mean, 

when we forget our paper and password, we may not be able to enter without 

a password. 

4.2.1.2 Theme 2: Effective Instructional Approaches 

This theme addressed the design and implementation of teaching strategies that 

promote participating students’ learning and engagement in programming education. 

It encompassed four categories that reflected diverse methodologies IT teachers 

employed to maximize student engagement and learning outcomes. The categories 

included plugged activities, unplugged activities, blended approaches, and teacher 

effectiveness. The codes under each category and the number of participants stated 

in the relevant code are given in Table 4.15. 
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Table 4.15 Distribution of Code Frequencies by the Theme of Effective Instructional 
Approaches 

Categories Codes f 
Plugged Activities Facilitated learning 64 

Rich content  14 
Permanent learning 13 
Learning by doing  5 
Debugging tasks  4 
Opportunities for revision and mastery 3 

Unplugged Activities Introduction and orientation 19 
 Active engagement 5 
 Real-world relevance  5 

Blended Approaches Blending traditional and digital methods 4 
Teacher Effectiveness Clear and effective explanations 23 

Supportiveness  9 

4.2.1.2.1 Plugged Activities  

Plugged activities in this context referred to the direct use of computers and 

programming software, enabling students to practice and apply coding concepts 

within a digital environment. In the current study, the coding learning environment 

Code.org served as the primary tool for all plugged activities. 

Facilitated Learning  

A substantial number of participants in the study expressed a preference for engaging 

in technology-mediated activities, particularly those offered by Code.org, for the 

acquisition of programming concepts (f = 64). These participants indicated that such 

activities facilitated their comprehension and application of coding skills more 

effectively than traditional, non-technology-based methods. One participant, S12, 

highlighted the positive impact of Code.org's puzzles on their learning 

experience. Furthermore, four participants (S15, S17, S19, and S25) directly 

compared technology-mediated activities with non-technology-based methods 

and found the former more effective in fostering an understanding of programming 

skills. This preference for interacting directly with code blocks on a computer 
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aligned with the participants' perceptions that technology-mediated activities offered 

a more advantageous approach to learning programming, as explained by S17. The 

feedback was particularly positive towards Code.org, with S18 and S21 appreciating 

its clear explanations. Besides that, S9 remarked that the block-based structure of the 

coding learning environment simplified the development of codes, making it easier 

to piece together solutions. In conclusion, the experiences of the participants 

provided strong evidence supporting the efficacy of technology-mediated 

activities, particularly those offered by Code.org, in facilitating a more successful 

learning experience for programming education. 

[S9]: It facilitated my learning and made a significant contribution. By doing 

it this way, I got used to it and started to do it very quickly. I improved myself 

in coding; code.org was helpful to me. Because I solve it by piecing parts 

together, it becomes easier. This way, I was learning coding better. 

Rich Content  

Fourteen instances of feedback commended the diverse array of activities offered by 

Code.org, highlighting its capacity to accommodate various learning styles. The 

structured learning approach provided by the learning environment was particularly 

valued, as it facilitated a clear, progressive path that not only challenged the students 

but also fostered a sense of mastery and bolstered their confidence, as noted by S3. 

The rich content available on Code.org was instrumental in maintaining student 

engagement (S17, S18, and S29), while its well-conceived activities significantly 

deepened their understanding of programming concepts (S3). Furthermore, students 

underscored the benefit of Code.org's detailed explanations, which they found 

superior to those on other platforms they had experienced. Overall, the positive 

feedback on Code.org highlighted its effectiveness in creating a rich and engaging 

learning environment that promoted deeper understanding and skill development in 

programming. 
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[S3]: I think I learned more in detail thanks to Code.org, in some topics. For 

example, I recently learned about variables and really struggled with them. 

It was very instructive for me in this regard. As I said, I already knew most 

of the terms in Scratch, or most of the block terms. However, I think I learned 

better about nested loops and variables. Variables were also covered in 

Scratch, but not in such detail. I definitely think I learned variables in more 

detail. It was really good. 

Permanent Learning  

The study revealed a strong connection between hands-on learning and knowledge 

retention in programming (f = 13). Students noted that the activities provided by 

Code.org played a crucial role in enhancing their long-term understanding of the 

subject (S14, S15, S21, S25, and S30), demonstrating the coding platform's 

effectiveness in promoting deeper and more enduring learning. Additionally, several 

students (S5, S21, S27, and S28) expressed a desire for increased hands-on practice, 

believing it would improve their learning outcomes and reinforce knowledge 

retention. They emphasized that active engagement with the material, rather than 

passive listening in a classroom setting, leads to better comprehension and memory 

retention (S21 and S30). This focus on permanent learning underscored the 

importance of incorporating active learning strategies into programming education 

to facilitate a more profound and lasting understanding of coding principles. 

[S21]: I think it becomes more permanent. Because the explanation only goes 

so far... In the classroom environment, it's already difficult to understand and 

define things well. So, doing it here makes it more permanent. 

Learning by Doing 

Learning by doing emerged as a powerful learning strategy in fifth-grade students’ 

experiences within programming education (f = 5). Students highlighted the 

effectiveness of hands-on engagement and direct interaction with coding tasks in 

their learning. For instance, S16 contrasted the difficulty of understanding concepts 
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explained by a teacher explanation on a board with the ease of using Code.org. This 

emphasized how hands-on activities made complex concepts more accessible. S20 

discussed how the practical application of coding steps facilitated the internalization 

of knowledge. Similarly, S30 emphasized the importance of the ability to "see and 

do" in understanding the application of coding concepts. Moreover, he expressed a 

preference for self-directed learning through hands-on activities, highlighting the 

value of active engagement in promoting a deeper understanding. Collectively, these 

student experiences strongly supported learning by doing as an effective approach 

for facilitating a more meaningful and successful learning experience in 

programming education. 

[S16]: It had a lot of impact because if a teacher had explained it by drawing 

on the board, I wouldn't have understood it at all. But Code.org was easier 

for me. If it weren't for that, and the teacher had explained it by drawing, I 

would have understood a little, but not much.  

[S30]: But I think it is of better quality when we do it ourselves.    

Debugging Tasks  

Results from the study identified debugging tasks, where students correct partially 

completed or erroneous code, as an effective learning tool in programming 

education, based on four statements from two participants. Results from the study 

indicated that debugging tasks, which enabled students to focus on particular parts 

of the code rather than constructing the complete program, reduced the mental effort 

required. For instance, one student (S9) mentioned that working with a partially 

completed solution facilitated a more focused approach to particular code aspects, 

making it easier to complete tasks. Another student (S21) valued the structured and 

guided nature of debugging tasks, which helped them concentrate on understanding 

and applying specific programming concepts more effectively. Overall, debugging 

tasks offered a valuable strategic method to enhance programming education for 

children by reducing cognitive load, promoting focused practice, and fostering a 

deeper understanding of programming fundamentals. 
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[S9]: For example, code.org would create the tasks and ask me for the angles 

and such. That made my job easier. It was an advantage. Sometimes it was 

easier. It would combine the parts, and I would set the angles, like ninety 

degrees...  

Opportunity for Revision and Mastery  

The study revealed that the computer-based learning environment afforded valuable 

opportunities for students to revise their work and achieve mastery (f = 3). One 

student (S19) recognized the immediate feedback provided by the computer, which 

enabled the prompt identification and correction of errors. This real-time feedback 

mechanism facilitated a more effective understanding of concepts and fostered a 

sense of self-correction. Moreover, the opportunity to attempt tasks multiple times, 

as highlighted by S19, was deemed advantageous. This iterative process allowed 

students to refine their code, experiment with different approaches, and enhance their 

understanding. Overall, the environment promoted a growth mindset by encouraging 

students to learn from their mistakes and persevere through challenges. While 

another student (S21) acknowledged the broader value of exploring diverse 

perspectives and new approaches, the primary benefit highlighted by the students 

was the opportunity to revise and perfect their work, leading to a deeper 

understanding of programming fundamentals. This emphasis on revision and 

mastery underscored the critical role of adaptive learning technologies in fostering 

educational advancement in programming disciplines. 

[S19]: Because on the computer, we can see our mistakes immediately. But 

on paper, we can't see our mistakes. As I said, on the computer, we can see 

our mistakes and correct them accordingly. If there are correct ones, we 

review them again, as they might be wrong. 
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4.2.1.2.2 Unplugged Activities  

This category investigated the role of unplugged activities in enhancing 

programming education. Through an in-depth analysis of student perspectives, how 

these computer-free experiences contributed to overall learning outcomes was 

assessed. The findings emphasized the benefits of unplugged activities in creating a 

dynamic and effective learning environment. The analysis focused on several key 

aspects, including introduction and orientation, active engagement, and real-world 

relevance. 

Introduction and Orientation  

Instructor-led introductions were identified as critical for student success in 

programming. Nineteen instances emphasized the value of pre-laboratory lectures 

and demonstrations in establishing a strong foundation for hands-on practice. These 

introductions provided clear explanations of new concepts (S18, S19, S20, S22, and 

S24) and demonstrations that facilitated understanding (S22 and S23). Such initial 

orientation was efficient in helping students approach practical exercises with a 

clearer grasp of expectations and procedures (S24). While some students found 

unplugged activities beneficial (S27), the majority highlighted the effectiveness of 

the instructor's explanations in preparing them for successful computer-based 

learning (S2, S3, S4, S6, and S8). Overall, the importance of well-designed 

introductory sessions in programming education was strongly underscored by the 

experiences shared by students in this study. 

[S19]: First, he showed us on the smart board during the first hour. We 

started doing it on the smart board. He began correcting our mistakes. Then 

we tried to do it on our own on the computers. So, as I said, first, he teaches 

us on the smart board and explains it. Then we do it. It would be nice if it 

continued like this; we would like to keep it this way. 
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Active Engagement 

The qualitative analysis underscored that active engagement in unplugged activities 

enhanced students' learning experiences by reducing distractions and fostering a 

more focused learning environment (f = 5). Participants (S6, S21, and S22) reported 

that unplugged activities allowed them to concentrate intently on the tasks at hand 

without being distracted by extraneous elements, thus maximizing their cognitive 

resources for processing relevant information. For example, one student (S6) noted 

that classroom activities that involved physical movement and hands-on 

manipulation of objects were more instructive compared to computer-based tasks, as 

they enhanced engagement and learning. Another student (S21) highlighted the 

effectiveness of being called to the board to solve problems, describing it as a more 

engaging and interactive learning experience that promoted deeper understanding. 

Furthermore, S18 emphasized that directly applying concepts themselves led to 

better comprehension and skill acquisition. These findings indicated that unplugged 

activities, which involved active participation and physical manipulation, not only 

improved focus but also significantly enhanced students' engagement and 

understanding. This approach provided a valuable contrast to digital methods, 

offering a dynamic and interactive learning atmosphere that could lead to more 

effective education outcomes. 

[S6]: Teacher, I think that what we did in the classroom was more instructive. 

Because on the computer, you only move the mouse and the thing. But in the 

classroom, you move yourself, you adjust things yourself. 

Real-World Relevance 

The importance of real-world connections emerged in the study (S23, S26, S29, and 

S8), particularly when discussing unplugged activities (f = 5). Students indicated that 

these activities were essential for demonstrating the practical utility of programming 

knowledge in everyday contexts beyond the confines of the classroom. Students 

believed that this ability to link programming concepts to real-life scenarios made 

the learning material more relatable and meaningful, thereby fostering a deeper 
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understanding of the reasons behind their learning efforts (S8). Witnessing the 

practical applications further enhanced student motivation as they recognized the 

relevance of programming skills in their personal lives (S23, S26, S29, and S8). By 

connecting the theoretical knowledge with practical real-world applications, 

unplugged activities provided an engaging and pertinent learning experience that 

significantly improved learning outcomes.   

[S8]: I learned that we can use coding, that is, commands, in real life as well. 

4.2.1.2.3 Blended Approaches 

This category illuminated the advantages of blended approaches, demonstrating how 

the integration of traditional and digital methods facilitated improved learning 

outcomes and enhanced knowledge retention. 

Blending Traditional and Digital Methods 

While most students expressed enjoyment of computer-based activities and the use 

of Code.org, a group of participants (S13, S16, and S21) emphasized the importance 

of blending traditional, read-write methods with digital activities (f = 4). They 

advocated that this hybrid approach, within a technology-enhanced learning 

environment, enhanced learning outcomes and knowledge retention. These students 

particularly noted the advantages of transcribing their computer work onto paper, 

stating that this practice reinforced their understanding and augmented their ability 

to review and retain information. One student (S13) detailed that writing things down 

facilitates a deeper engagement with the material, contrasting with the transient 

nature of digital interactions where information can be easily accessed but quickly 

forgotten. The physical act of writing created a durable record that encourages 

students to revisit and consolidate their understanding of the concepts. This student 

proposed a system where learners would document their digital work on paper, 

effectively creating a personalized study guide for continual reference. This 

approach underscored the value of a blended learning environment that leveraged 
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the strengths of both traditional and digital educational practices to foster a more 

comprehensive and enduring learning experience. 

[S13]: Because, teacher, we are both writing and reading. I mean, we write 

with our own hands and we read. ...On the computer, for example, you press 

a key, but you can't do it completely. Writing down what we did on paper... 

Because, teacher, when you show it on paper, you read it, you read it a second 

time, and then you can put it in a folder, and if you forget it, you can look 

there and do it. On the computer, you might not be able to access it; it might 

not be saved, and it could be lost. 

4.2.1.2.4 Teacher Effectiveness 

The impact of teacher effectiveness on student learning experiences was examined 

under this category. Based on the findings, this examination focused on two key 

aspects: the clarity and effectiveness of explanations provided by the teacher and the 

level of support and assistance offered to students. 

Clear and Effective Explanations 

The qualitative analysis underscored the critical role of effective teaching methods 

and teacher performance in enhancing students' learning experiences. The ability of 

the IT to communicate subject matter effectively was frequently emphasized in 

student responses (f = 23). These students expressed high levels of satisfaction with 

their teacher's performance, noting that clear and effective explanations significantly 

enhanced their understanding of programming concepts. For instance, S26 directly 

commended the teacher's lucid explanations, and S15 observed a noticeable increase 

in knowledge acquisition from the lessons. S16 specifically appreciated the teacher’s 

skill in simplifying complex topics, a sentiment echoed by others who valued the 

clarity and efficacy of the instruction (S20 and S21). These positive evaluations of 

the teacher's effectiveness underscored the vital role of clear and comprehensive 

instruction in improving students' educational experiences and outcomes. Students’ 
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statements showed that the teacher's ability to effectively communicate complex 

coding concepts helped students overcome challenges. 

[S26]: My teacher teaches coding very well. His explanation is very effective. 

Supportiveness 

The study also highlighted the importance of teacher supportiveness in facilitating 

student learning (f = 9). Participating students admired the IT teacher's readiness to 

assist students encountering difficulties and to elaborate on concepts as needed. This 

illustrated the teacher's proactive approach and effectiveness in addressing student 

needs in real-time. Students mentioned the teacher's attentiveness to the entire class 

despite its size, their ability to get individual help when needed (S24 and S26), and 

their readiness to explain concepts in greater detail upon request (S26). Overall, the 

teacher's supportive approach, evident in their attentiveness to student needs and 

willingness to provide assistance, contributed positively to the learning environment 

and fostered a more inclusive and responsive educational experience. 

[S24]: The class is crowded, with 28 people. The teacher attends to all 28 of 

us. For example, when I say that I get frustrated when I can't do something, 

at those times, I call the teacher. The teacher explains it to me, and then I can 

easily get past that part. It really helps a lot. 

4.2.1.3 Theme 3: Collaborative Learning Approaches 

This theme investigated the social cognitive factors influencing students' 

programming experiences and the application of collaborative learning strategies 

within the educational context. It examines collaborative learning in programming 

education through the following categories: pair selection criteria, role-sharing 

strategies, benefits of collaborative learning, challenges of collaborative learning, 

and seeking assistance. The categories and sub-categories, along with their 

corresponding codes and the frequency with which each issue was reported, are 

presented in Table 4.16. 
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Table 4.16 Distribution of Code Frequencies by the Theme of Collaborative 
Learning Approaches 

Categories/Sub-categories Codes f 
Pair Selection Criteria Social compatibility 15 

 Skill and expertise 2 
Role-Sharing Strategies Imbalanced turn-taking 27 

 Regular turn-taking 26 
Benefits of Collaborative Learning Mutual learning and knowledge 

sharing 
42 

General positive perceptions 34 
Enhanced problem-solving  22 
Shared responsibility  7 

Challenges of Collaborative Learning Unequal participation  14 
 Conflicts over resource sharing 8 
 Reduced engagement  7 
 Conflicts over problem-solving 

approaches  
7 

Seeking Assistance   
Source of Assistance Teachers as a source of support 32 

 Peers as a source of support 14 
Reasons for seeking assistance 
from peers 

Teacher unavailability 3 
Familiarity 2 

Reasons for seeking assistance 
from the teacher 

Clear explanations and guidance  3 
Teacher expertise  2 
Self-perceived proficiency  1 

Peer Support Strategies Unproductive collaboration strategies 16 
 Constructive collaboration 9 

4.2.1.3.1 Pair Selection Criteria 

Feedback from students engaged in pair programming suggested a primarily student-

driven approach, with some instances of teacher-assigned pairings. The analysis 

revealed that students frequently opted for self-selection, basing their choices on 

specific criteria. This category examined students' preferences for pair programming 

and the factors they considered when selecting partners or forming collaborative 

groups. 
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Social Compatibility 

While the analysis revealed self-selection as the predominant approach for pairing, 

a deeper examination explored the criteria students employed when choosing 

partners. According to the results, when forming pairs for programming tasks, a 

significant number of students prioritized social compatibility (f = 15). They 

gravitated towards familiar faces and friends, valuing the comfort and ease of 

working with someone they knew. This preference for friendly partners, as 

evidenced by student feedback, stemmed from the creation of a more supportive 

learning environment. Students indicated that existing friendships or prior 

acquaintances fostered trust and open communication, which are crucial for effective 

collaboration. 

[S19]: Because I am better with that friend. I mean, our houses are next to 

each other. I have a better relationship with him. We have a better friendship 

with him. Firstly, I used to work with another friend of mine. Then our 

friendship ended, and we had a fight. So, we asked permission from the 

teacher, and I started working with him. 

Skill and Expertise 

Notably, the emphasis on selecting a partner with strong computer science skills and 

knowledge was highlighted only twice in the responses of the interviewed 

participants. S17 emphasized the importance of perceived technical expertise. This 

perspective underscored the potential advantages of complementary skill sets in pair 

programming. The general lack of focus on these complementary skills suggested 

that students might not fully appreciate the benefits such an approach could offer in 

enhancing collaborative work. 

[S17]: He is a computer expert. He can't do the easy stuff. I chose him because 

he is a smart kid. Intelligent.  
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4.2.1.3.2 Role-Sharing Strategies 

This category explored the methods and approaches used to assign and manage roles 

among students during pair programming activities. It specifically examined whether 

the role distribution led to balanced or imbalanced turn-taking among the 

participants. 

Imbalanced Turn-Taking 

Fifteen of the students indicated that they adopted imbalanced turn-taking strategies 

during pair programming activities (f = 27). Imbalanced turn-taking occurs when 

students choose primary roles as either navigator or driver, predominantly 

maintaining them throughout the activities. Statements revealed that when students 

opted for the driver role, controlling the keyboard and mouse, their partner remained 

seated beside them as the navigator, offering verbal assistance in solving 

programming tasks. This arrangement resulted in an imbalance in role distribution. 

Another example involved dividing keyboard and mouse responsibilities (e.g., S14). 

While this approach appeared more balanced, the student controlling the mouse 

ultimately played a more dominant role, assuming the driver position during drag-

and-drop puzzles.  

[S14]: He usually used the keyboard, I used the mouse. It usually continued 

like this. 

Regular Turn-Taking 

Regularly taking turns emerged as a key feature in many students' pair programming 

sessions and was noted with a frequency comparable to that of strategies addressing 

imbalanced turn-taking. This balanced approach ensured that both partners actively 

participated and contributed. Students such as S10 and S11 highlighted the 

importance of equitable participation in programming tasks. Taking turns also 

involved rotating tasks, as seen in S16's explanation of switching between playing 

different levels. Similarly, S19 described alternating between keyboard and mouse 
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duties. This balanced participation facilitated shared ownership of the problem-

solving process and enhanced collaborative learning. 

[S16]: We usually took turns playing with my friend. In the levels from one to 

nine, I would play one, then three. So, I play one, they play two, I play three, 

they play four. 

4.2.1.3.3 Benefits of Collaborative Learning 

Pair programming, a collaborative learning approach, had demonstrably positive 

effects on student learning outcomes, as evidenced by the interview data. This 

category highlighted how collaboration could enhance the programming learning 

experience for students. Key benefits of collaborative learning identified by students 

included mutual learning and knowledge sharing, general positive perceptions, 

enhanced problem-solving and shared responsibility. 

Mutual Learning and Knowledge Sharing  

Qualitative data revealed that a collaborative learning environment fostered a 

powerful dynamic of mutual learning and knowledge sharing (f = 42). Interviewed 

students highlighted the value of exchanging ideas, learning from each other's 

strengths, and correcting mistakes together. This collaborative approach led to a 

deeper understanding of concepts and enhanced problem-solving skills. At the core 

of this benefit lay reciprocal learning, as evidenced by student expressions. Students 

acted as both teachers and learners, sharing their knowledge and perspectives during 

programming tasks (S1, S14, S15, and S17). Students noted that this exchange 

broadened their understanding of the subject matter and exposed them to different 

viewpoints. Additionally, the study's findings demonstrated that students benefited 

from each other's strengths. Stronger partners guided their peers, while those 

struggling received valuable support, as evidenced by the statements of S12, S16, 

and S26. The findings indicated that collaborative problem-solving facilitated error 

correction. According to the statements of S16 and S19, by explaining their thought 
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processes, students were able to identify and rectify mistakes, leading to a more 

refined understanding. Finally, mutual learning fostered a deeper understanding of 

concepts as students discussed and explained ideas to each other, a process 

highlighted by S21 and S24. This approach reinforced comprehension and solidified 

knowledge. Examples such as S1 explaining concepts to a peer or S17 learning 

coding basics from a friend illustrated the power of this interaction. Overall, 

collaborative learning fostered a supportive environment where students were able 

to learn from each other's strengths, overcome challenges collectively, and achieve 

a deeper understanding of the subject matter. 

[S16]: I think he learned, but... I mean, for example, when we first started, he 

couldn't understand right and left very well. I explained that to him. I was 

confusing things, you know, I was confusing things like repeating this thing 

five times. He taught me that too. 

[S26]: In general, I taught him a lot on code.org, but beyond that, he taught 

me a lot about the basics of computing. 

General Positive Perceptions 

The research findings indicated that there were 34 statements reflecting students' 

general positive views on collaborative programming learning. Eight students (S2, 

S4, S10, S11, S14, S19, S22, and S25) reported no drawbacks in pair programming, 

especially when working with compatible partners. Fourteen students indicated a 

preference for pair programming. This suggested that many students recognized the 

benefits of teamwork, communication, and knowledge sharing that pair 

programming facilitates. 

[S14]: Given the choice, I would sit with my friend again. 

Enhanced Problem-Solving  

Feedback from students highlighted the significant benefits of collaborative learning 

in enhancing problem-solving skills (f = 22). Students reported that working together 

with peers facilitated a better understanding and quicker solutions to programming 
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challenges. They emphasized the value of diverse perspectives, immediate 

assistance, and the combined intellectual effort that comes with teamwork. For 

instance, S13 mentioned that working in pairs allowed them to ask a friend for help 

instead of relying solely on hints, which facilitated the learning process. S14 and S15 

highlighted the ease of getting assistance from friends when stuck on a problem, 

while S19 noted the mutual correction of mistakes. S21 also valued the multiple 

perspectives that come from collaborative work, explaining that different viewpoints 

helped in understanding and solving problems more effectively. One student (S30) 

pointed out that collaboration often led to faster problem resolution. Additionally, 

S6 referred to the proverb "unity is strength," illustrating the belief that collaboration 

enhances problem-solving capabilities. S7 noted that solving problems together was 

easier because they could leverage each other's knowledge. Overall, these insights 

illustrated that peer collaboration not only enhanced problem-solving efficiency but 

also fostered a supportive learning environment where students could share ideas and 

overcome challenges together. 

[S7]: Because it is easier. It is easier because we both solve it. Both of us can 

see what we cannot do; for example, one of us knows, and one of us does not. 

[S21]: ... for example, your friend looks at something from one perspective, 

you say, let's look at it from this perspective, that is, a multiple perspective. 

He says it is necessary to proceed from this logic, for example, you are doing 

a different logic. It is a different point of view. In the questions you cannot 

solve, you need to change your perspective on the problem. 

Shared Responsibility  

Shared responsibility emerged as a significant benefit of collaborative learning, 

particularly during pair programming, as highlighted by the students (f = 7). Based 

on student statements, the research findings demonstrated that this shared approach 

allowed students to take breaks and avoid burnout. When one student felt tired, the 

other could take over, keeping both pairs refreshed and engaged. S6 noted that the 

collaborative approach not only helped manage fatigue by distributing the workload 
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but also contributed to maintaining engagement by keeping both partners actively 

involved in the problem-solving process. It also facilitated an efficient division of 

labor, allowing students to leverage their strengths and interests to deal with tasks, 

leading to quicker and more effective task completion. Overall, students found 

shared responsibility to be a valuable asset in collaborative learning, making the 

experience both enjoyable and highly productive. 

[S4]: It is more enjoyable. Instead of working alone, you alternate with your 

partner. While he is doing it, you are watching him, while you are doing it, 

he is watching you, it can also happen. Also, from time to time, your friend 

also rests after writing or using, you also rest, it is nice. 

4.2.1.3.4 Challenges of Collaborative Learning  

Analysis results showed that while collaborative learning provided numerous 

benefits, it also presented several challenges for the participating students. This 

category explored key obstacles identified in student interview data, providing 

insights into potential areas for improvement. These challenges included unequal 

participation, conflicts over resource sharing, reduced engagement, and conflicts 

over problem-solving approaches. 

Unequal Participation  

Several students expressed concerns about not having equal opportunities to 

participate and contribute due to imbalanced turn-taking strategies (f = 14). Student 

experiences highlighted various forms of imbalance participation. In some instances, 

students intentionally adopted imbalanced turn-taking strategies, with each student 

selecting a primary role (navigator or driver) and maintaining that role throughout 

the session (e.g., S13). However, there were also instances where one partner 

dominated the activity, taking control of the computer and leading the task without 

adequate involvement from their partner, leaving the other feeling passive and unable 

to contribute meaningfully. According to the students’ expressions, this not only 
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hindered the learning experience of the less active participant but also created a sense 

of unfairness. Additionally, S3's statement highlighted that inefficient task 

distribution can result in one partner feeling overwhelmed while the other remains 

underutilized, thereby disrupting the collaborative flow. Furthermore, as S29 stated, 

when one student dominated, the other had limited opportunities to practice their 

own skills, potentially hindering their individual growth. These insights highlighted 

the challenges of ensuring equal participation in collaborative learning 

environments. The findings revealed that uneven engagement led to one student 

dominating the task while the other became passive, which negatively impacted the 

learning experience and outcomes for both. 

[S17]: Because he does not give me control of the computer, he no longer 

does. I rest (laughing). I lean back like this again. I take examples from what 

he does. Sometimes, he does things so that I can do them; sometimes, he 

allows me to do them. 

Conflicts Over Resource Sharing 

Eight statements from the data highlighted conflicts over resource sharing, 

particularly regarding the use of the computer and other equipment, as a significant 

challenge in collaborative programming. One student (S12) explicitly mentioned 

disliking the need to share a computer with a partner, expressing frustration with 

collaboration and resource limitations. Similarly, S13 and S17 described frequent 

arguments over who would control the keyboard and mouse, noting that sharing a 

computer often led to frustration, especially when students had to wait for their turns. 

The findings indicated that this frustration could hinder students' engagement and 

motivation in the learning process. S23 pointed out that their partner always wanted 

to use the keyboard, leading to constant conflicts. Additionally, students expressed a 

preference for solo programming to avoid conflicts arising from shared resources, 

indicating that some students prioritize individual work environments for a smoother 

learning experience. These insights highlighted the need for better resource 

management strategies to enhance the effectiveness of collaborative learning. 



 
 

155 

[S12]: My least favorite thing is that I have problems sharing the computer 

with my friend with whom I share the computer. 

Reduced Engagement  

The analysis of student data revealed another challenge: reduced engagement during 

their partner's problem-solving phase (f = 7). The data indicated that while pair 

programming was designed to foster collaboration and teamwork, its effectiveness 

was diminished when passive participation occurred. Four students (S1, S16, S24, 

S8) mentioned not actively participating while their partners were working on 

problems. This included not following along with the partner's thought process or 

code implementation unless they directly asked for help and offering little feedback 

or suggestions during their partner's lead. Limited participation was evident as 

students provided minimal verbal or coding contributions during their partner's lead. 

S24 highlighted that taking turns without explaining their processes to each other did 

not benefit either partner. Similarly, S8 noted that merely alternating the use of the 

mouse and keyboard did not contribute to their learning. Research results 

demonstrated that students who were not actively engaged in problem-solving but 

only observed the process missed the chance to interact deeply with the material and 

fully comprehend the concepts being taught. 

[S16]: Sometimes, you know, I was staying while he was doing it, I wasn't 

looking at him. I helped him when he asked for help, but I usually did not look 

at the questions he did. 

Conflicts Over Problem-Solving Approaches 

Analysis results indicated that while pair programming effectively fostered 

teamwork and problem-solving skills, it was undermined by disagreements on 

problem-solving approaches (f = 7). Although some disagreements could be 

productive, significant conflicts, as reported by four students, could impede 

collaboration and communication, thereby diminishing the effectiveness of the pair 

programming experience. For instance, S21 described situations where neither 
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partner was willing to compromise on their approach, resulting in persistent 

disagreements. Such conflicts could lead to missed learning opportunities, as 

highlighted by S3, who mentioned disagreements even when the tasks did not require 

multiple approaches. S25 noted that their partner sometimes led them to incorrect 

solutions due to a lack of understanding. S6 explained that having a partner could be 

confusing, as conflicting ideas sometimes led to mixed results, whereas working 

alone allowed them to follow their own clear line of thought. These insights 

underscored the difficulties students encountered when collaborating with peers who 

employed divergent problem-solving strategies. Unresolved conflicts could impede 

progress on tasks, thereby hindering both learning and productivity. Persistent 

disagreements might also lead to frustration, creating a negative learning 

environment for both partners.  

[S21]: Sometimes, of course, it happens; there is a question, and we say this 

is the solution. He says something else and insists on it. For example, no one 

says it should be like this, no one says let's do this, and then if it doesn't work, 

we can try mine. I did this too. It happens sometimes.         

4.2.1.3.5 Seeking Assistance 

Seeking assistance was identified as a crucial aspect of the learning process, 

particularly within collaborative instructional environments. Students reported 

frequently seeking help to overcome challenges, enhance their understanding, and 

improve their skills. Assistance could be sought from peers or teachers, with each 

source offering distinct benefits and addressing specific student needs. The category 

of seeking assistance encompassed the various methods by which students obtained 

support, the reasons behind their choices, and the strategies they employed for peer 

support. 
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Source of Assistance 

Teachers or Peers as a Source of Support 

Analysis results showed that in situations where group work proved ineffective or 

when students lacked group partners, they turned to alternative sources of 

assistance. Students indicated that they more frequently sought assistance from their 

teachers when they needed help. Students expressed that they sought assistance from 

their teachers (f = 32) more frequently than from their peers (f = 14) when they 

needed help. Eleven students expressed a preference for seeking guidance from their 

instructor, highlighting their trust in the teacher's expertise and commitment to 

providing support. Additionally, twelve students reported seeking help from 

classmates, reflecting their readiness to engage with the broader learning 

community. It is important to acknowledge that students demonstrated a range of 

approaches when seeking assistance. Some participants initially sought help from 

their peers, reflecting their preference for peer-to-peer learning. Others opted to seek 

guidance from the IT instructor directly.  

[S14]: I was asking for help from my friend, my group friend or my friend 

next to me in the line. 

Reasons for seeking assistance from peer 

Teacher Unavailability  

Teacher unavailability, highlighted by S5 and S27, emerged as a situation where 

students relied heavily on peers for support (f = 3). When immediate teacher 

assistance was limited due to factors like high student-to-teacher ratios or unexpected 

absences, students turned to classmates for help. These instances underscored the 

critical role of peer-to-peer learning as a complement to teacher instruction. Peers 

could provide immediate clarification, offer alternative explanations, and 
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collaborate on problem-solving, mitigating the impact of teacher unavailability and 

ensuring students could continue learning effectively. 

[S5]: When the teacher cannot help, we turn to those who can. 

Familiarity 

The feedback provided by S7 and S19 emphasized the critical role of familiarity in 

facilitating effective peer-to-peer learning environments (f = 2). According to their 

statements, their preference for seeking assistance from friends stemmed from the 

shared routines, established connections, and sense of comfort that familiarity 

afforded. These connections promoted open communication and enhanced the 

learning experience. 

[S19]: The reason why I primarily seek help from my friend is that I feel more 

comfortable with myself because I am in the same place with my friend every 

day. 

Reasons for Seeking Assistance from Teacher 

According to the results, students often sought assistance from teachers for various 

reasons that reflected the unique advantages teachers offered in the learning process. 

These reasons included the desire for clear explanations and guidance, the need for 

teacher expertise, and the support required for students with high self-perceived 

proficiency.  

Clear Explanations and Guidance  

Some students (S24, S28, and S29) indicated that they preferred the teacher's clear 

explanations and well-structured guidance (f = 3). The findings expressed by the 

students indicated that they found these explanations easier to follow and more 

comprehensive compared to those from peers who were at a similar learning stage. 

Student 29 explicitly mentioned that the teacher's ability to 'show it better directly' 
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and provide more explanatory instruction was particularly beneficial. This 

highlighted the teacher's expertise in crafting clear, organized explanations.  

[S29]: My teacher showed it better directly. ... My teacher explained it in a 

more detailed way. 

Teacher Expertise  

S20 and S27 recognized the limitations of peer support for complex topics (f = 2). 

The findings indicated that students sought out teacher expertise when challenges 

required a deeper understanding of the subject matter than their peers could provide. 

This was particularly true for foundational concepts or intricate problems. This 

highlighted the vital role teachers play in student learning, as they possess a broader 

and deeper knowledge base that allows them to provide comprehensive explanations 

and guidance that peers may not be able to offer. 

[S20]: Because he is more knowledgeable about these issues. 

Self-Perceived Proficiency  

The findings revealed that even students who perceived themselves as highly 

proficient, such as one participant who stated he was "ahead" of his peers, might still 

seek assistance from the teacher (f = 1). This situation underscored the crucial role 

teachers play in addressing the needs of all students, ensuring that even those who 

consider themselves advanced are appropriately challenged and supported despite 

their perception of mastering core programming concepts. 

[S30]: Since I usually go ahead of them, they are behind.  

Peer Support and Interaction  

Participants indicated that they benefited from the diverse perspectives and 

knowledge of their peers, which enhanced their understanding and problem-solving 

skills. Nevertheless, findings showed that the effectiveness of peer support depended 

on the quality of interactions and the strategies employed. Constructive collaboration 
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fostered a deeper engagement with the material, while unproductive collaboration 

hindered learning progress. 

Unproductive Collaboration Strategies 

Student responses indicated that certain behaviors in peer support negatively 

impacted their learning, especially during plugged activities (f = 16). These 

behaviors mainly included showing their own solution for the peer to copy or 

complete the task for them (S10, S11, S14, S21, S24, S5, and S7). Student 21 

mentioned the prevalence of simply copying a peer's solution to complete the task. 

While this seemed like a quick fix, it failed to promote genuine learning and skill 

development. Students 21 and 24 specifically mentioned that copying answers from 

their peers without understanding the underlying logic or problem-solving process 

did not significantly contribute to their learning. Student 21 added that they 

attempted to understand the solution afterward by reviewing it, but this highlights 

the limitations of this approach. Additionally, two students (S21, S26) expressed 

concerns about peers taking over problem-solving entirely instead of guiding them 

through the process to understand the concepts and develop their own solutions. This 

hindered the development of problem-solving skills and confidence in the struggling 

student. On the other hand, S21’s comment, “I mean, of course, he postpones me a 

little bit, then he looks at my question.” suggested that their peer's help was delayed, 

potentially hindering their learning progress.  

[S21]: I mean, of course, he postpones me a little bit, then he looks at my 

question. He tries the question he solved to do it himself first. If he cannot do 

it, he opens it from his own computer and gives it to me. ... I mean, when he 

does it there, of course, I can't understand it, I can't reason. But when he does 

it, I can say that I should have done it like this, for example, to find the answer 

to the question. 

[S14]: If they passed that question, they would come back and show me that 

question. I couldn't understand it very well.  
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Constructive Collaboration 

Several students (S12, S13, S15, S19, and S26) mentioned receiving valuable hints 

and explanations from their peers when they encountered difficulties (f = 9). This 

support took various forms, such as clarifying concepts, identifying errors, 

suggesting improvements, and engaging in discussions. For example, S15 explained 

that their friend helped by explaining complex concepts. Some students indicated 

that their classmates assisted them by identifying errors in logic or code structure 

that they might have missed while working independently (e.g., S26 and S19). Others 

mentioned receiving hints on how to improve their code (e.g., S13). These helping 

approaches also demonstrated the peers' understanding of technical details and their 

ability to explain issues in a clear and actionable manner. Discussion was another 

helpful strategy, as highlighted by Student 12, who emphasized the value of learning 

through discussion and debate with peers. This approach encouraged critical thinking 

and challenged students to defend their approaches, leading to a deeper 

understanding of the concepts involved.  

[S26]: I would go to my friend's side with my teacher’s permission and. For 

example, if you do this, you can do this; you did this wrong, you should have 

done it at this angle... Like that. I was helping with codes. 

[S12]: I consult, I mean, by discussing with my friends because if I just listen 

to what they do, it would still be different, and I wouldn't understand. 

4.2.1.4 Theme 4: Independent Learning Approaches 

While collaborative learning and seeking assistance were valuable strategies in 

programming education, the analysis of student responses also highlighted the 

importance of independent learning approaches. This theme focused on how students 

independently enhance their programming skills and understanding. These 

approaches included strategies such as utilizing guidance from coding learning 

environments, reviewing past solutions, engaging in trial and error, and self-
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visualization. Furthermore, the results indicated that solo programming offers 

several benefits, including enhanced learning through active engagement, improved 

focus, and better retention of information. However, according to the students’ 

statements, it also presented challenges, such as the lack of immediate peer 

consultation. Exploring these independent learning strategies provided insights into 

how students navigated their programming education autonomously. Table 4.17 

displays the frequency with which participants identified codes related to the 

categories of the independent learning approach. 

Table 4.17 Distribution of Code Frequencies by the Theme of Independent Learning 
Approaches 

Categories Codes f 
Independent Learning Strategies 
 

Guidance from the coding 
platform  

3 

Reviewing past solutions 1 
Trial and error  1 

 Self-visualization  1 
Benefits of Solo Programming General positive 

perceptions 
27 

Active engagement  8 
Improved focus 3 
Enhanced retention 2 

Challenges of Solo Programming  Lack of pair consultation 18 

4.2.1.4.1 Independent Learning Strategies 

The results obtained from the interviews indicated four strategies employed by 

students while learning independently. These strategies were guidance from the 

coding platform, reviewing past solutions, trial and error, and self-visualization.  

Guidance from the Coding Platform  

The study demonstrated that students often relied on guidance from the coding 

learning environment as part of their independent learning strategies (f = 3). This 

guidance included hints and instructional videos that helped them understand and 
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solve coding problems. For instance, participant S27 expressed a desire for more 

hints, indicating their importance in the learning process. Similarly, S4 noted that 

videos appearing at the beginning and middle of coding tasks provided clearer 

explanations and made it easier to understand programming concepts. It was 

observed that these instructional resources were particularly useful when students 

encountered difficulties, allowing them to independently navigate challenges and 

enhance their problem-solving skills. The incorporation of these tools within the 

coding learning environment supported students' independent learning processes. 

[S4]: Yes, sometimes when we're just about to start coding, a video pops up 

at the beginning and then again in the middle, and we watch them. Watching 

them actually makes the explanations clearer. Without watching them, 

sometimes you can't understand what something is when it appears. 

Reviewing Past Solutions  

The reviewing past solutions strategy identified instances where students employed 

an independent learning strategy centered on referencing past solutions (f = 1). S8 

mentioned that he often revisited previously encountered code examples when faced 

with a programming challenge to find solutions and deepen his understanding of the 

subject matter. He added that he then searched for similarities between his current 

problem and the reference code, which involved either adapting a similar solution or 

skimming past irrelevant parts to explore a new approach. This strategy helped 

students by providing a foundation for developing new solutions to similar problems.  

[S8]: I go back to previous ones, I look at them. If there is something similar, 

I apply those. 

Trial and Error 

Interview data showed that another approach that students engaged in was trial and 

error, as expressed by S24 (f = 1). This method captured instances where students 

mentioned experimenting with different problem-solving strategies and code 

variations until they found a solution. This highlighted a crucial aspect of 
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independent learning, emphasizing the importance of experimentation. By trying 

different approaches, students developed resilience in the face of challenges. They 

learned to troubleshoot, analyze outcomes, and refine their problem-solving 

skills. This highlighted a crucial aspect of independent learning, underscoring the 

importance of experimentation. By trying different approaches, students developed 

resilience in the face of challenges. They learned to troubleshoot, analyze outcomes, 

and refine their problem-solving skills. 

Self-Visualization 

The fourth approach, self-visualization, as described by Student 16, involved using 

mental visualization to understand problem-solving processes or potential solutions 

(f = 1). This strategy enhanced problem-solving skills by encouraging students to 

think through different approaches and plan problem-solving steps before coding. 

These independent learning strategies enabled students to assume responsibility for 

their learning and develop valuable skills.  

[S16]: In situations like these, I would imagine myself. For example, those 

things, squares, you know, I would feel like I was in the squares and 

determine which way to turn. I would imagine myself in the same place and 

decide where to go. And it became very easy. 

4.2.1.4.2 Benefits of Solo Programming 

Students’ statements showed that solo programming, the practice of working 

independently on coding tasks, offered several advantages that could enhance the 

learning experience for students. Based on student responses, the key benefits 

highlighted by student feedback were improved focus, enhanced learning through 

active engagement, and enhanced retention. 
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General Positive Perceptions 

Nearly half of the students expressed a preference for solo programming in their 

statements (f = 27). This indicated that a significant portion of the student 

participants recognized the autonomy and self-reliance that solo programming 

offers. Additionally, six students (S3, S12, S24, S25, S28, and S30) mentioned the 

absence of disadvantages in solo programming and its potential to positively impact 

their learning. 

Active Engagement  

This code captures feedback where students expressed that they learned more 

effectively when working alone because they were more conscious, responsible for 

all aspects of problem-solving, and focused on understanding the material deeply (f 

= 8). Eight of the interviewed students (S7, S8, S13, S16, S17, S22, S23, and S24) 

emphasized the value of solo programming as a tool for fostering deeper learning 

and understanding. Their statements showed that solo programming encouraged 

active engagement by placing the onus of learning squarely on the individual 

(S8). This shift in responsibility led to several positive outcomes. S13 reported 

feeling more conscious of his learning process when working alone and being more 

aware of his own strengths and weaknesses, allowing him to focus on areas that 

required improvement. Analysis results showed that solo programming encouraged 

students to take ownership of the problem-solving process. They were forced to 

analyze concepts, identify solutions, and implement their ideas independently. This 

active engagement led to a more profound understanding of the underlying 

principles, as noted in S16's statement. Working alone also allowed students to 

identify and rectify their mistakes without the immediate intervention of others. This 

process of self-correction reinforces learning and promotes a growth mindset, as 

demonstrated by S24's experience. In conclusion, solo programming emerged as a 

powerful tool for fostering active engagement and enhancing learning outcomes in 

programming education.  
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[S_8]: I couldn’t understand the codes he mentioned because I couldn’t grasp 

what the code was and how it worked without looking at it myself. But when 

I looked at it myself, I understood better. 

[S16]: The positive side of coding alone is that you can see all the questions 

and answer them yourself. You try to solve them, engage your brain a bit, and 

I think it’s better. 

Improved Focus  

Students (S17 and S26) mentioned that they were able to concentrate better and listen 

to the teacher more attentively when they were working alone, without the presence 

of peers causing distractions (f = 3). Besides that, students added that they struggled 

with tasks because they were not paying attention during the lesson due to talking 

with their pairs. This finding highlighted the positive impact of solo programming 

on focus and attentiveness. 

[S17]: I would be more open in the informatics (Information Technologies 

and Software) class. How can I put it? I would sit calmly and listen to the 

lecturer. There would be no one next to me. I get distracted. 

Enhanced Retention  

Solo programming appeared to contribute to improved information retention and 

long-term learning, as highlighted by S13 and S14 (f = 2). According to students’ 

statements solo work led students to attempt to solve more problems independently. 

The findings revealed that this increased practice and exposure to the material could 

further solidify students' understanding and enhance their ability to recall 

information later. 

[S14]: …but it was more memorable. Because you were solving more 

questions. 
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4.2.1.4.3 Challenges of Solo Programming  

Lack of Pair Consultation  

A significant portion of the students highlighted that the lack of peer consultation 

was a major drawback of working alone on programming tasks (f = 18). They 

emphasized the importance of immediate support and collaboration, particularly 

when encountering complex problems. S26 expressed frustration with the inability 

to get assistance when unable to complete tasks on their own. Similarly, S15 

mentioned leaving tasks unfinished due to the inability to find solutions on their own. 

According to participant S19, the absence of peer support could hinder progress, 

particularly when everyone was focused on their individual tasks. This limitation 

was further amplified when instructors were unavailable for assistance. S21 also 

pointed out that the absence of different perspectives limited their problem-solving 

approach. Additionally, students S9, S29, and S30 emphasized the need for a peer to 

provide fresh ideas and guidance when progress stalls while working alone. These 

insights underscored the importance of peer consultation in the learning process. The 

ability to collaborate and seek immediate feedback from peers could significantly 

enhance problem-solving capabilities and overall learning outcomes. Analysis 

results showed that without this support, students struggled to overcome challenges, 

leading to frustration and incomplete tasks. 

[S22]: ...for example, when I ask the teacher about a subject I don't 

understand, sometimes I can't understand it, I can't find out what to do. When 

I had a friend, he helped me, we could find it together, but when he wasn't, I 

had some difficulty. 

4.2.1.5 Theme 5: Goal Setting 

In this study, student responses emphasized goal setting as a crucial element of the 

learning process, significantly influencing their approach to and engagement with 

learning. The findings revealed that more than half of the students expressed a desire 
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to master programming skills. This theme explored the different types of goals 

participants set for themselves and how these goals impacted their motivation and 

learning strategies in programming education. As seen in Table 4.18, the codes 

identified through qualitative data analysis underscored the varied motivational 

orientations of students, encompassing mastery-oriented goals, performance-

oriented goals, and performance-avoidance goals. 

Table 4.18 Distribution of Code Frequencies by the Theme of Goal Setting 

Categories Codes f 
Mastery-Oriented Goals Career-oriented goals  44 

Challenge seeking  18 
Desire to simplify complex tasks  12 
Daily life context relevance 12 
Recreational interest in coding 8 

Performance-Oriented Goals Completion-driven motivation 11 
Competition focus 4 
Academic achievement focus  1 

Performance-Avoidance Goals Avoidance of challenging tasks 20 
Fear of failure 6 
Skipping tasks 5 

4.2.1.5.1 Mastery-Oriented Goals 

This category explored the intrinsic motivation participating students had to learn, 

understand new concepts, and master the skills in programming education. The codes 

under this category reflect the various ways students approach their learning in 

programming education with a mastery-oriented mindset, emphasizing deep 

understanding and long-term skill development. 

Career Oriented Goals 

Half of the participants articulated the significance of programming for their personal 

development and future careers, recognizing its essential role in today's technology-

driven world (f = 44). This career-oriented motivation served as a significant impetus 

for their learning, as students understood programming as an essential tool for 
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achieving their professional goals. They identified the value of programming skills 

in various fields, including software engineering, computer engineering, IT, and 

game development (S12, S13, S18, and S20). Furthermore, ten students highlighted 

the importance of coding skills, acknowledging their potential to unlock various 

career paths. They expressed a strong belief that coding could be a critical skill, 

enhancing their employability and adaptability in the professional world. This 

positive perception could serve as a strong motivator for students to continue 

learning and pursuing their programming goals.  

[S20]: Because the future profession I think about is software engineering. 

That's why I pay attention to it. That's why I'm interested in software... I try 

to choose software because I'm interested in it. 

[S1]: I mean, I think it will be important when I grow up, when I have a 

profession. I already think it will be... I mean, when I grow up now when I 

get into jobs, coding will be in jobs because it happens a lot. I'm not sure 

right now, so it will definitely be coding when I grow up.  

Challenge Seeking 

This code captured student feedback that demonstrates a desire for intellectual 

growth and a preference for learning experiences (f = 12). Students expressed their 

preferences for stimulating and demanding tasks, highlighting their mastery-oriented 

goals. This preference showed that students were intrinsically motivated to 

learn, seek challenges to improve their skills, and strive for mastery over a subject. 

While nine of the students expressed their enjoyment of overcoming difficulties, S12 

and S30 conveyed dissatisfaction with tasks in the digital coding learning 

environment they perceived as too easy, indicating a positive attitude towards 

challenges and a preference for intellectually stimulating material. For instance, S1 

enjoyed the challenge of placing colors together, and S15 found the flowchart 

difficult yet fun. S21 emphasized the satisfaction gained from completing 

challenging tasks, like puzzles and brain teasers. Similarly, S7 stressed the 

excitement that comes with increasing difficulty. This is further reinforced by 
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students like S12, S9, and S30, who expressed a preference for more challenging 

tasks and a dislike for overly simple ones. Overall, the students' comments reflected 

their desire for intellectual challenges and their enjoyment of overcoming 

difficulties, indicating a strong focus on mastery and growth in their coding journey. 

[S7]: When things get progressively harder, you get even more excited. 

Desire to Simplify Complex Tasks  

Twelve statements from the students suggested a strong desire to deeply understand 

the concepts behind the tasks rather than merely completing them. This reflected a 

mastery-oriented approach to learning. Students actively identified challenging parts 

and sought ways to manage their cognitive load. For instance, S10 expressed a 

preference for text explanations in flowcharts over visual flowcharts, citing difficulty 

with understanding flowchart symbols (as discussed under the category of ‘inherent 

complexity of concepts and tasks’). This preference indicated that text descriptions, 

particularly writing out the algorithm as a series of steps, provided the clarity needed 

to comprehend the underlying algorithm, making the concept more manageable. 

Similarly, the other two students (S2 and S18) expressed a desire to simplify difficult 

topics altogether. This inclination towards simplification suggested that students 

were employing specific learning strategies, aiming to break down complex tasks 

into manageable components, ultimately leading to a deeper understanding of core 

coding concepts.  

[S10]: Teacher, I would like to change the things in the flowcharts, the 

visuals. I would prefer them to be written in text, not with shapes. 

[S18]: I would like to change the nested loops, teacher. I am very bad at that. 

I would like to remove that topic. 

Daily Life Context Relevance 

Based on the analysis, even students with less defined career goals acknowledged 

the long-term value of programming in various aspects of daily life (f = 12). Eight 

students (S3, S10, S15, S18, S21, S26, S27, and S30) emphasized the applicability 
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of programming beyond professional settings, recognizing its potential to simplify 

tasks, solve problems, and enhance general understanding in daily life. For example, 

S15 illustrated how coding concepts like decision-making algorithms and 

conditional statements could be applied to real-life scenarios to help structure 

decision-making processes and optimize choices in everyday situations. Student 27 

highlighted the potential for programming to enhance their life by creating 

algorithms or writing down instructions, effectively automating or simplifying tasks 

like cooking or other household chores. Additionally, students recognized the 

potential for programming to contribute to future technological advancements. The 

responses of three students (S10, S18 and S26) suggested that they saw coding as a 

valuable tool for understanding the technological world around them. This included 

comprehending how technology is used in everyday devices, apps, and services and 

developing an informed perspective on the impact of technology on society. 

Overall, the student feedback indicated that programming is not just a technical skill 

but also has the potential to enhance various aspects of daily life. According to 

results of the analysis, this broader understanding of programming's relevance could 

serve as a motivator for students to continue learning and explore its applications in 

their personal and social spheres. 

[S27]: It is important to me. It can help me in difficult situations in my life. 

For example, if my mother is going to cook and says, 'Do it yourself, I'm 

leaving,' I can ask her to create an algorithm for me. She would ask, 'What's 

an algorithm?' Then I would explain it to her, and she would do it for me. 

Then I can do it myself. 

[S10]: Teacher, it can be useful in technological devices. For example, in 

America, we can call Teslas by phone. In that respect, I think it is necessary. 

Recreational Interest in Coding 

Not all students approach coding with a purely career-oriented mindset. This section 

explores the motivations of students who viewed coding as a fun and engaging 

activity, separate from professional aspirations (S2, S3, S11, and S16). These 



 
 

172 

students find enjoyment, entertainment, and creative potential in the learning process 

itself. For some, like S11, the inherent satisfaction and enjoyment derived from 

learning code is the primary motivator. Others, like S2 and S16, highlight the 

entertainment value of coding, suggesting it provides a pleasurable learning 

experience. Furthermore, S3 views coding as a potential hobby, offering a creative 

outlet for their free time. These responses highlight how coding can be perceived as 

a source of personal enjoyment and creative exploration. For these students, the 

intrinsic pleasure of coding, rather than its potential career benefits, is the primary 

driver of their engagement. This recreational interest underscores the importance of 

fostering a learning environment that recognizes and supports diverse motivations 

for learning coding, ensuring that it remains accessible and enjoyable for all students, 

regardless of their professional aspirations. 

[S3]: I only do it as a hobby. I will do it as a hobby in the future. 

4.2.1.5.2 Performance-Oriented Goals 

According to the findings, the performance-oriented goals of the students were 

driven by external factors such as completion-driven motivation, competition, and 

the desire for academic achievement. Students with these goals were often motivated 

by the need to outperform others and gain recognition. This external motivation often 

led to a focus on achieving high grades, excelling in tasks, and receiving praise or 

recognition from teachers and classmates. 

Completion-Driven Motivation 

Responses from students (S4, S5, S7, S14, and S21) indicated a strong motivation to 

achieve specific performance goals, such as completing all levels or tasks within a 

gamified learning environment (f = 11). The digital coding learning environment 

used in their coding education lessons featured puzzle sets and levels that turned 

green upon completion. As students advanced through levels, each completed level 

was marked by a green circle, providing a visual representation of progress. 
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Achieving these targets elicited a sense of accomplishment and satisfaction, 

highlighting the students’ intrinsic motivation to meet challenges and attain a sense 

of completion. This finding underscored the positive influence of gamification and 

goal setting on enhancing student engagement and motivation. 

[S4]: Sometimes we do something. We log into my friend's code.org account 

who sits next to me, and then we log into my account. When we use his 

account, I complete the parts I haven't done at home. 

Competition Focus 

A competitive focus emerged within the learning environment, as evidenced by the 

statements of students S1 and S6 (f = 4). Their primary objective was to complete 

tasks quickly and potentially surpass others, prioritizing speed over balanced 

participation and collaborative learning. This performance-oriented approach 

highlighted a potential pitfall in student motivation, where an emphasis on external 

validation through competition can overshadow the intrinsic value of learning. For 

instance, S1 readily conceded control of the task, seemingly motivated by surpassing 

others. Similarly, S6 focused on personal advancement, framing their actions within 

the context of progressing their individual account. This emphasis on individual 

achievement could hinder the development of a growth mindset and a deeper 

understanding of the material. 

[S1]: ...Then he said, ‘Let me do it so that we can beat the others so that we 

can do it faster. I said okay. 

Academic Achievement Focus  

One of the students' perspectives shed light on the positive influence of aligning 

coding tools with assessment practices (f = 1). S24 highlighted how the teacher's use 

of coding-based tasks and questions in exams directly mirrored the activities 

conducted within the coding learning environment. This close connection served as 

a motivator for performance-oriented students like S24, who prioritize academic 

achievement, as it provided a clear path to attaining high scores. This finding 
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underscored the importance of meaningful assessment practices that were directly 

connected to students' learning activities. When coding exercises and tools were 

demonstrably relevant to exams, they encouraged students to actively engage with 

the material and strive for mastery. This fostered a performance-oriented focus that 

was channeled toward developing strong coding skills. 

[S24]: For example, when the teacher gives an exam, he always asks coding 

questions. He asks questions through coding. He gives such shapes on the 

exam paper. For example, we do the same activities and the instructor asks 

the same questions, like that. Therefore, it provides me with a benefit in that 

respect It also helps me get high scores on exams. 

4.2.1.5.3 Performance-Avoidance Goals 

This category explored student feedback that highlighted a tendency toward 

performance-avoidance in programming education. The theme centered on students' 

focus on avoiding negative performance outcomes, negative judgment, and 

comparison rather than striving for mastery or intrinsic learning. Students driven by 

these performance-avoidance goals often prioritized strategies to minimize the risk 

of failure rather than actively seeking challenges to enhance their learning. 

Avoidance of Challenging Tasks 

Data analysis results showed that participants often expressed a preference for 

avoiding challenging tasks, highlighting their reluctance to engage with difficult 

programming concepts and activities (f = 20). This aversion was explicitly stated by 

six students (S6, S8, S23, S24, S27, and S28) who preferred easier tasks, while 

another six (S2, S9, S14, S18, S20, and S22) expressed a dislike for challenging 

tasks. These challenging tasks included concepts like conditional statements, nested 

loops, and variables. These findings suggested that task avoidance, potentially 

driven by a desire to minimize negative emotions associated with difficulty, was a 

significant issue in programming education. 
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[S24]: I can say that my least favorite thing is difficult coding. 

Fear of Failure 

Several participants (S2, S7, S21, and S28) disclosed a fear of making mistakes or 

failing, which led them to avoid participation in programming tasks (f = 6). This 

reluctance stemmed from anxieties about negative judgment, embarrassment, or 

failure in front of others. For example, S7 described feeling ashamed of not being 

able to perform adequately in a large group setting. Similarly, S21 expressed 

frustration when his code came out wrong, showcasing the discouragement that 

mistakes can bring. These student experiences served to underscore the potential 

obstacles posed by the apprehension of failure. 

[S7]: Because there were many people around. I was ashamed when I 

couldn't do it. 

[S28]: I can't think of the name, but some things were difficult, teacher. I was 

afraid that I couldn't do it. 

Skipping Tasks  

Analysis results showed that two students (S14 and S21) revealed a tendency to skip 

tasks or problems they perceived as too difficult, employing this as a performance-

avoidance strategy (f = 5). This highlighted a potential performance avoidance 

approach to learning, where students prioritized avoiding negative emotions over 

actively engaging with challenging material. By skipping these tasks, they might 

have missed out on crucial learning opportunities and potentially hindered their 

overall progress. 

[S21]: Mostly, if there were three of us or two of us, we would say, let's skip 

it. For example, there were many examples we couldn't do. I think we skipped 

all of them. 
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4.2.1.6 Theme 6: Affective Aspects 

The purpose of this theme was to examine the emotional and attitudinal aspects of 

learning programming. This theme extended beyond the acquisition of technical 

skills and knowledge. It explored the feelings, beliefs, and motivations that influence 

students' engagement and success in programming education. The affective factors 

were examined through two primary aspects: attitude and self-efficacy. Related 

categories, sub-categories, and their codes, along with the frequency of participant 

responses, are detailed in Table 4.19. 

4.2.1.6.1 Attitude 

This category focused on students' dispositions towards programming, 

encompassing both positive and negative attitudes that shape their learning 

experiences. Positive attitudes included an interest in learning programming, 

enjoyment of both plugged and unplugged activities, the appeal of familiar 

characters, the satisfaction derived from social interactions, a favorable view towards 

gamified learning, and a positive classroom atmosphere. Conversely, negative 

attitudes involved a general negative disposition towards programming and 

frustration from prolonged use and. 
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Table 4.19 Distribution of Code Frequencies by the Theme of Affective Aspects 

Categories/Sub-Categories Codes f 
Attitude   

Positive Attitudes 

 

Interest in learning programming 54 
Enjoyment of plugged activities 30 
Appeal of familiar characters 17 
Enjoyment of social interaction 14 
Engagement of gamification 9 
Enjoyment of unplugged activities 8 

 Positive classroom atmosphere 6 
Negative Attitudes Frustration from prolonged use  14 

Negative disposition towards 
programming 

2 

Self-Efficacy   
Confidence in Coding 
Abilities 

Low 11 
Moderate  18 
High  27 

Determinants of Self-
Efficacy Perceptions 

Mastery experiences  12 
Social recognition from peers 4 
Peer comparison  4 
Perceived cognitive abilities 4 
Academic performance 2 

Positive Attitudes 

Interest in Learning Programming 

The findings revealed a predominantly positive sentiment towards programming, 

with a significant majority of students (26 participants) expressing interest and 

enthusiasm for the subject (f = 54). Many students highlighted their fascination with 

coding, emphasizing its intriguing and intellectually stimulating nature. For instance, 

students S10 and S12 demonstrated a high level of intrinsic motivation and curiosity 

about programming. Students consistently described their programming lessons as 

engaging and interesting, and Student 18’s mention of enthusiasm underscored the 

widespread appeal of programming. Overall, the positive feedback from students 

illustrated a pervasive interest in learning programming, driven by its engaging and 
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intellectually stimulating aspects, which highlights the effectiveness of programming 

education in fostering lasting enthusiasm for the subject. 

[S18]: It's really captivating, teacher. I love coding. 

Enjoyment of Plugged Activities 

The student feedback overwhelmingly highlighted a strong positive association with 

plugged activities, suggesting a high level of intrinsic motivation and engagement (f 

= 30). Seventeen out of thirty students explicitly mentioned enjoyment, fun, and high 

levels of engagement with the activities on the digital coding platform (Code.org). 

This underscored the importance of the emotional and affective aspects of the 

learning experience. One student expressed a desire to conduct all classes in the 

computer lab, suggesting a preference for technology-integrated programming 

education. Additionally, S3 and S7 mentioned enjoying being taken to the computer 

lab, further indicating a positive attitude towards tech-enhanced learning 

environments. These student voices emphasized the positive emotional response 

elicited by plugged activities. Analysis results showed that when learning was 

perceived as enjoyable and engaging, students were more likely to be intrinsically 

motivated and maintain their interest throughout the learning process.  

[S3]: Going down to the computer lab was really better for me as well. We 

have fun. We receive education in the computer classroom. 

[S27]: So, when you enter, you feel like doing it. When you look at the 

questions, you feel like doing them. Because there were nice questions. There 

was good coding and all. 

Appeal of Familiar Characters  

The use of sprites within the digital programming learning environment elicited 

mixed responses from students (f = 17). Five students (S6, S8, S9, S14, and S27) 

expressed positive attitudes towards the learning environment that integrated 

characters they recognized and enjoyed from other media. The findings suggested 

that the integration of well-known figures into the digital programming environment 



 
 

179 

contributed to a more positive learning experience by enhancing students’ interest 

and enjoyment. However, the study also revealed a need for continuous improvement 

and diversification of these characters. Three participants (S1, S8, and S22) 

expressed a desire for more engaging and relatable characters, suggesting that the 

existing options may not resonate with all learners. This underscored the importance 

of incorporating a wider range of characters from different sources, along with the 

ability to personalize characters, which could improve student engagement and 

overall satisfaction with the coding program. 

[S8]: I mean, I was more interested in it because it had such well-known game 

characters and so on, so I did it more easily. It made it easier, having 

characters both excited and made it easier. 

[S22]: About coding, you know Angry Birds, there could have been other 

films. For example, Bumblebee or something like that would be better about 

robots. It would be more fun, so there would be a difference. It would be more 

fun. 

Enjoyment of Social Interaction 

This code examined the social interaction aspects of programming education (f = 

14). Unplugged activities, which involved hands-on, non-digital tasks, emerged as a 

contributor to social interaction in programming education. S14 specifically 

mentioned enjoying socializing and working with friends during unplugged activities 

and emphasized a preference for unplugged learning activities that offer more 

opportunities for social interaction and collaboration. Pair programming, on the other 

hand, was typically associated with computer-based programming activities. While 

pair programming also fostered social interaction and collaboration, it differed from 

unplugged activities in that it was specifically focused on programming tasks and 

utilized digital tools. Students (S4, S10, S18, S24, and S26) expressed their 

enjoyment of working together with friends, indicating a preference for cooperative 

learning environments. Students mentioned that collaborative learning provided 

opportunities to foster improved communication and teamwork skills, as noted by 
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S24 and S26. Additionally, seven students (S2, S6, S10, S14, S18, S24, and S26) 

expressed a preference for collaborative programming over solo programming, 

finding solo programming less enjoyable and more tedious due to the lack of social 

interaction and conversation that accompanied working independently. 

[S14]: But the things we did by socializing were also good. For example, in 

some classes, we went out to the schoolyard and... At one point, the IT teacher 

brought something to our classes, a rabbit hole thing, a rabbit hole. The 

rabbit was trying to reach the carrot. For instance, drawing a larger version 

of that on the ground in the schoolyard and playing with it. 

[S26]: I socialized a little more there. He also liked coding like me. I mean, 

if it wasn't for the computer, we wouldn't have met him. 

Engagement of Gamification  

The qualitative analysis revealed a positive student response (S1, S2, S3, S4, S14, 

and S17) toward the integration of gamified elements within the programming 

learning environment (f = 9). This positive reception underscored the potential of 

gamification to enhance both student engagement and motivation. Students like S1 

and S3 specifically highlighted the enjoyable nature of Code.org games, suggesting 

that engaging gameplay mechanics effectively capture student interest. This aligned 

with the concept of "flow" in gamified learning, where students were intrinsically 

motivated and fully absorbed in the learning process. Additionally, the overall game-

like approach, as described by student S17, contributed to a more enjoyable learning 

experience, thereby reducing the perceived difficulty associated with coding. S4 also 

noted the effectiveness of gamified elements in promoting active cognitive 

engagement. These student experiences provided evidence for the efficacy of 

gamified learning in fostering student engagement and motivation within 

programming education. 
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[S3]: Anyway, the games we played on code.org were very fun. I mean if we 

think about it, we actually write coding, but it was really fun. That ‘go 

forward’ or finishing the game. These were really fun in coding. 

Enjoyment of Unplugged Activities 

While not as numerous as for plugged activities, some students (S4, S5, S7, S22, 

S26, and S27) also reported enjoyment and high levels of engagement with 

unplugged activities (f = 8). These activities often involved hands-on, collaborative 

tasks that did not require digital devices. Student statements reflected feelings of 

satisfaction, indicating that the unplugged activities were engaging and enjoyable. 

These positive responses highlighted the affective benefits of unplugged activities 

and their contribution to a positive learning environment. 

[S4]: I really liked that glass game. We also did something like this, we moved 

like a robot. The teacher wrote it on the board. We had turned our backs. 

One of our friends came out. One of them was a robot and the other one was 

saying what was on the board. There were degrees, he said to stay there, he 

said to turn right-left. It was a lot of fun. It was good. 

Positive Classroom Atmosphere  

The study also revealed the importance of positive teacher behavior in fostering a 

positive classroom atmosphere (f = 6). Several students (S1, S5, S6, and S12) 

specifically commended their teacher's politeness, kindness, and calm demeanor. S1 

indicated the teacher's gentle explanations and noted the absence of yelling, even in 

frustrating situations. This positive and respectful approach was highly valued by S1 

and S6 and was seen as crucial to fostering a more engaging learning environment 

by S12. Ultimately, it was seen that the teacher's positive behavior cultivated a sense 

of trust and mutual respect, establishing a classroom culture that promoted both 

academic learning and personal growth. 
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[S1]: Also, the teacher is kind. He explains things kindly. I am happy because 

he doesn't yell. It's the first time I've seen this. He only yells if we make him 

very angry, and even then, it passes quickly. I really like our teacher. When 

we say something, he says okay. 

Negative Attitudes 

Frustration from Prolonged Use  

Several students (S4, S6, S9, S15, S21, and S23) reported experiencing fatigue or 

frustration as a result of prolonged use of specific platforms or instructional methods 

(f = 14). Students such as S9, S15, and S21 expressed a desire for increased variety 

in instructional approaches and activities to maintain their engagement. For instance, 

participant S4 found that moving from one Code.org course to another without 

sufficient variation became monotonous, highlighting a need for more diverse and 

stimulating activities. This highlighted the importance of integrating a diverse range 

of activities and learning environments into the curriculum to prevent student 

burnout and sustain engagement. 

[S4]: For example, when you finish one course and move on to the next, it 

gets a bit overwhelming. It really becomes boring. 

[S9]: I would like to try other new things. 

Negative Disposition Towards Programming 

Two students (S1 and S19) expressed an overall negative outlook toward learning 

programming (f = 2). Their feedback highlighted significant challenges and a general 

lack of enthusiasm for the subject, in contrast to the more positive responses from 

other students. S1 succinctly conveyed his negative disposition towards 

programming. Similarly, S19 articulated difficulties with programming, reflecting 

their struggle and lack of engagement with programming tasks. 
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[S19]: And also, I didn't like coding. I didn't quite understand it. It was a bit 

difficult. 

4.2.1.6.2 Self-Efficacy 

In this study, within the context of programming education, this category 

encompassed two primary aspects. The first aspect was confidence in coding 

abilities, which highlights the level of self-efficacy students perceived in their coding 

skills. The second aspect was the determinants of self-efficacy perceptions, which 

investigated the various influences on students' self-efficacy.  

Confidence in Coding Abilities  

Through in-depth interviews, students revealed a range of self-efficacy in coding, 

with some exhibiting high confidence and others struggling. Categorizing their 

responses, it was found that five students exhibited low self-efficacy (f = 11), twelve 

demonstrated moderate self-efficacy (f = 18), and thirteen displayed high self-

efficacy in their coding abilities (f = 27). Students who expressed high self-efficacy 

often described coding as easy or simple (e.g., S29, S13, and S25). Their comments 

highlighted the confidence and comfort that high-self-efficacy students associated 

with coding. While some students expressed overall ease in coding, others 

acknowledged that some tasks or concepts were challenging. Students with lower 

self-efficacy, like S1, reported difficulty and frustration, highlighting the varying 

levels of self-efficacy and perceived difficulty among students.  

[S29]: Actually, I didn't have any difficulty. It was all very easy.  

[S26]: I also realized that this job is hard. It's not an easy job. 
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Determinants of Self-Efficacy Perceptions 

This sub-category examined students' reflections on their self-efficacy and explored 

the factors that influenced their perceptions of self-efficacy in programming. Several 

key determinants emerged, including mastery experiences, social recognition from 

peers, peer comparison, perceived cognitive abilities, and academic performance. 

Mastery Experiences 

Findings showed that successfully completing coding exercises or challenges, 

regardless of difficulty, fostered a sense of accomplishment in students (S2, S5, 

S8, S9, S12, S20, S25, S27, and S29), (f = 12). This positive reinforcement, 

exemplified by S8 feeling like a "programmer" after completing a task, built 

confidence and contributed to a strong sense of self-efficacy in problem-solving. 

This finding exemplified the connection between successful problem-solving and 

confidence. When students experienced the satisfaction of completing tasks, they 

developed a sense of competence and a belief in their ability to achieve future 

challenges. Additionally, the findings suggested that the duration of task completion 

played a role in students' perception of their programming success (S9 and 

S26). Students who completed tasks quickly tended to feel even more successful in 

coding. However, struggling with tasks could lead to frustration and potentially 

hinder self-efficacy, as observed in students like S21 and S24. 

[S9]: Because once, while the teacher was explaining, I understood the topic. 

I completed it in no time. That's when I realized I was successful, considering 

how quickly I did it. 

Social Recognition from Peers 

One key factor affecting self-efficacy perceptions in programming education was 

identified as social recognition from peers (f = 4). The study found that students who 

received help requests from their classmates regarding coding tasks demonstrated 

greater confidence in their abilities (S8 and S26). This positive reinforcement from 
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peers contributed to a strong sense of self-efficacy. For example, student S26 

described feeling like a professor when helping classmates, which significantly 

boosted his self-confidence. Similarly, student S8 shared that his classmates 

frequently sought his help, which also enhanced his self-efficacy. These findings 

indicated that peer interactions and the opportunity to assist others reinforced a 

student’s belief in their coding skills.  

[S26]: For example, when we log in, I somehow feel like a professor. I feel 

like someone who has become an expert in these things. My friends ask me 

questions, and I tell them, 'You can do it this way.' At those times, I feel really 

good.  

Peer Comparison 

Analysis results showed that peer comparison played a significant role in shaping 

self-efficacy or belief in participants’ ability when learning to program (f = 4). As a 

result of the social nature of learning, students compared their skills and performance 

to their peers, impacting their self-efficacy. The data showed that three students were 

influenced by this phenomenon. For instance, participant S26 felt a sense of 

accomplishment by observing their classmates struggle with a particular section, 

contrasting it with their own progress. On the contrary, S7, despite acknowledging 

his achievements, felt inadequate compared to his stronger peers. This comparison-

based assessment reinforced their belief in their abilities and contributed to their 

overall self-efficacy in programming. 

[S7]: I see myself as successful, but I can't say I'm very good. Because there 

are others who are better than me. I'm not at their level. Just a bit above 

average. 

Perceived Cognitive Abilities 

Statements from students revealed a connection between their self-assessment of 

cognitive skills (thinking and learning abilities) and perceived self-efficacy (f = 4). 

S1, S8, S17, and S29 discussed how their thinking and learning abilities influenced 
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their confidence in coding. Those who believed they had strong thinking and learning 

skills, like S29, tended to feel more confident in their ability to learn and succeed in 

coding. Conversely, those who doubted their cognitive abilities, like S1, were more 

likely to experience lower self-efficacy, potentially leading to struggles with 

motivation and engagement in coding. This highlighted the importance of self-

perception in students' motivation and engagement.  

[S29]: Because my understanding capacity is higher... 

[S1]: Because my brain couldn't take it in much...  

Academic Performance 

Students' comments also illuminated the relationship between course grades and self-

efficacy (f = 2). Students like S25, who mentioned good grades in their IT and 

Software courses, perceived them as validating their coding abilities. This 

highlighted the potential of academic performance to act as positive reinforcement. 

The findings indicated that strong grades could enhance self-efficacy, motivating 

students such as S6 to persist in their learning and embrace new challenges in coding. 

[S6]: I received a score of 100 on three assignments. I know from that I'm 

good at coding 
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CHAPTER 5  

5 DISCUSSION AND CONCLUSION 

The aim of this study was to investigate the factors influencing middle school 

students' learning of programming fundamentals. To address this aim, the primary 

research question, ‘What factors influence the acquisition of fundamental computer 

programming concepts in fifth-grade students?’ was examined. To further 

contextualize the inquiry, five sub-research questions and their corresponding sub-

questions were also examined. In this mixed-methods study, the quantitative and 

qualitative data were analyzed independently. The major findings from both data sets 

were then discussed within the framework of the research questions, considering the 

variables under investigation. Following this discussion, the chapter concluded with 

a synthesis of the key findings. Finally, the implications of the results and directions 

for future research were outlined. 

5.1 Major Findings and Discussion 

5.1.1 Cognitive Load  

The study revealed that extraneous load significantly predicted coding performance. 

Although germane load was not found to be a significant predictor, its substantial 

correlation with extraneous load necessitated its exclusion from the regression 

model. As a result, the independent contribution of intrinsic load to coding 

achievement could not be assessed. 

The study findings indicated that students encountered their most substantial 

cognitive load, both intrinsic and extraneous when engaged in learning the nested-

loop concept. Loops were also identified as the third most challenging concept in 

terms of intrinsic cognitive load and the fourth most challenging in terms of 
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extraneous cognitive load. The research findings indicate that students' intrinsic 

cognitive load was significantly higher during the week when they learned about 

loops and nested loops compared to the weeks focusing on conditionals, variables, 

and testing and debugging. Furthermore, it was found that the cognitive load 

associated with nested loops was significantly higher than that associated with 

conditionals, variables, and testing and debugging. While students experienced a 

relatively high level of germane load during the week dedicated to nested loops, the 

overall increasing trend of germane load across weeks exhibited a decline, 

specifically for the nested loops topic. However, this decline in germane load for 

nested loops was not statistically significant.  

Interview data also revealed that participants perceived nested loops as a more 

significant challenge than simple loops. The concept of nested loops was the third 

most commonly highlighted topic within the thematic category of "inherent 

complexity of concepts and tasks”. These results align with the existing literature, 

which categorizes the learning of simple loops and nested loops as some of the most 

challenging foundational programming concepts for novices, both at higher 

education levels (Gomes et al., 2019; Winslow, 1996) and in elementary education 

(Grover & Basu, 2017). In the present study, participants reported difficulties in 

determining the number of iterations for each code block within nested loops, 

particularly when the total number of loops increased. Consistent with this study’s 

findings, Gomes et al. (2019) reported that students in their CS1 course encountered 

greater difficulties with internal loops compared to external loops, particularly when 

the external loop completed its second iteration. Similarly, participants in this study 

reported difficulties in determining which code blocks would be executed when curly 

braces ({}) were omitted. Although in the current study, code blocks for both inner 

and outer iterations were visually represented, novice programmers may still need 

help comprehending the hierarchical structure of nested loops and the order of 

execution. This suggests that understanding the hierarchical structure of nested loops 

and the order of execution is a common challenge for novice programmers.  
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Sleeman et al. (1984) further clarified the challenges students face in comprehending 

loops by emphasizing the difficulties in understanding the role of the control variable 

within loops. This study emphasizes the cognitive challenges associated with 

comprehending the iterative nature of loops and the management of loop variables. 

While constructs such as loops are often associated with procedural programming, 

their significance in object-oriented languages like Java underscores the hybrid 

nature of modern software development. The challenges encountered by 

programmers in mastering these constructs highlight the need for a comprehensive 

approach that encompasses both procedural and object-oriented concepts (Dale, 

2006). The findings of another study suggested that while sixth-grade students 

encountered some difficulties with loop concepts, the visual nature of the Scratch 

environment may have reduced some of the cognitive challenges typically associated 

with programming. Additionally, the positive impact of prior experience with digital 

tools on students' ability to adapt to the Scratch interface highlights the importance 

of providing students with opportunities to engage with technology from an early 

age (Çakiroğlu et al., 2018). 

Building upon the challenges presented by nested loops, basic sequences emerged as 

the second most demanding concept in terms of cognitive load. The intrinsic 

cognitive load associated with basic sequences was significantly greater than that 

associated with conditionals, variables, and testing and debugging. However, 

significant differences in extraneous cognitive load were only observed for testing 

and debugging when learning basic sequences. Similarly, the germane load 

experienced for this topic was significantly lower than for variables and conditionals. 

These results could be attributed to students’ perceptions of coding during the initial 

week. The singular occurrence of the code pertaining to "sequencing and logical flow 

difficulties" in the qualitative data provides additional evidence to support this 

interpretation. This finding can be explained by the unfavorable attitudes held by the 

students toward coding, stemming from their limited exposure to programming 

before commencing the course (Çakiroğlu et al., 2018). On the other hand, as 

proficiency and familiarity with the learning environment increase, a learner can 
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reduce their cognitive load (Sweller, 2010). The empirical evidence from this study, 

characterized by an upward trend in germane load across most topics, excluding 

nested loops, aligns with the proposed explanation. Inexperienced learners are more 

likely to give up on learning computer programming if the task they are attempting 

to complete is complex. Inexperienced learners are more susceptible to experiencing 

cognitive overload and frustration in the context of learning programming (Bounajim 

et al., 2021). The high extraneous cognitive load observed in the first week suggests 

that the unplugged activity may not have been entirely clear to the students. The 

complexity of the task may result in cognitive overload, which may interfere with 

the performance of the task and/or the learning of the subject matter. This 

interpretation is further supported by the students' statements during interviews, 

which indicated difficulties in understanding and implementing the unplugged 

activity due to unclear task instructions. Besides that, findings of the related literature 

indicate that block-based coding platforms such as Scratch and code.org make 

coding easier, particularly by preventing children from encountering syntax errors 

(Resnick et al., 2009). The findings that such coding environments reduce extraneous 

cognitive load can be associated with the lower cognitive load of students in plugged 

activities in this study (Meerbaum-Salant et al., 2013). This study's observation of 

higher cognitive load during unplugged activities may be partially explained by 

findings from previous research. Studies have shown that block-based coding 

platforms like Scratch and code.org simplify coding, particularly by preventing 

children from encountering syntax errors (Resnick et al., 2009). By eliminating the 

need to focus on syntax, these platforms are thought to reduce extraneous cognitive 

load (Meerbaum-Salant et al., 2013). Considering the additive nature of types of 

cognitive load, excessively high levels of intrinsic and extraneous load can 

detrimentally impact the learning process. Therefore, the observed low germane 

loads in the initial week, characterized by increased intrinsic and extraneous load 

levels, were an anticipated outcome  (Chandler & Sweller, 1996). 

The research findings revealed an unexpected inconsistency, with the intrinsic and 

extraneous cognitive loads associated with the topic of variables being among the 
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lowest, while the germane load was notably the highest. This outcome was 

unexpected, particularly given that qualitative data indicated students frequently 

mentioned challenges in understanding the concept of variables (f = 24). Despite 

these reported difficulties, the corresponding cognitive load measurements did not 

align. In a study conducted with 6th, 7th, and 8th-grade students, Grover and Basu 

(2017) noted that students were unfamiliar with variable usage and held 

misconceptions, consistent with the findings of this research. In the present study, 

students reported finding the examples provided by the teacher during the 

explanation of the topic confusing and inconsistent. Additionally, they expressed 

difficulty in understanding how to use the variable code blocks, which differed 

slightly from what they had used previously in the digital programming environment. 

The concept of variables constitutes a fundamental element of programming, yet it 

has been recognized as a challenging topic to both learn and teach (Dale, 2006; 

Holland et al., 1997). It is often perceived as abstract and challenging for novice 

programmers (Kohn, 2017). Studies have reported that students encounter 

difficulties in various aspects of variable usage, including establishing appropriate 

variable names, selecting suitable data types, distinguishing between mathematical 

symbols and programming operators, and correctly applying assignment and 

comparison operators (Mohamad Gobil et al., 2009). The lower intrinsic cognitive 

load observed in the current study regarding variables might be attributed to the less 

complex implementation of variables within the block-based programming 

environment employed. Since students were working with pre-defined code blocks, 

there was no requirement for them to explicitly define variables, specify data types, 

or assign values according to the data types. Similarly, the use of dropdown menus 

for selecting relational operators likely minimized the possibility of errors associated 

with these operators. Furthermore, it is also possible that students' prior exposure to 

variables within the context of loops, nested loops, and conditionals, without explicit 

instruction on variables, contributed to their apparent ease with this concept. 

However, qualitative data revealed a substantial knowledge gap regarding the 

fundamental nature and operation of variables despite their ability to complete tasks 
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by following procedural steps. While block-based environments alleviate the 

syntactic challenges associated with programming, they do not necessarily mitigate 

the conceptual difficulties inherent in understanding core programming constructs 

such as variables and loops. As Grover and Basu (2017) noted, students often 

struggle with grasping the essence of variables. In fact, the ability to successfully 

manipulate code blocks without a deep understanding of the underlying variable 

concepts might create an illusion of proficiency. There are studies in the literature 

that report contrary findings. For instance, in alignment with the quantitative results 

of this study, Grandell et al. (2006) found that variables were among the least 

challenging topics in their study conducted with high school students utilizing a text-

based programming language. They also suggested that the deviation from the 

general understanding in the literature could be attributed, in part, to the type of 

programming language used in their study. 

5.1.2 Gender  

This study explored the potential gender disparities in middle programming 

education. The findings of this study revealed no statistically significant gender 

differences in programming education. Boys and girls displayed similar attitudes 

towards coding, had similar goal orientations and levels of self-efficacy, perceived 

similar classroom goal structures, used similar academic self-handicapping 

strategies, exhibited similar cheating behaviors, experienced similar cognitive load 

while learning to program, and ultimately achieved similar results on the 

programming achievement tests.  

In contrast to the present study's findings, prior research has frequently documented 

a gender gap in programming education, with boys generally showing higher levels 

of interest, confidence, and performance in coding activities and technology-related 

careers compared to girls (e.g., Bergin & Reilly, 2006; Beyer et al., 2003; Cheryan 

et al., 2015; Doubé & Lang, 2012; Guzdial et al., 2014). These studies also explored 

the interaction of self-efficacy, intrinsic and extrinsic goal orientations, 



 
 

193 

programming success, and metacognitive strategies, finding that these factors impact 

student performance differently for males and females (Lishinski et al., 2016). 

Besides that, gender differences in programming beliefs were identified, where boys 

were more inclined towards computational thinking and saw programming as 

practical, while girls perceived programming as a creative and communicative 

activity (Tellhed et al., 2022), indicating that different aspects of programming 

appeal to boys and girls. The data from related studies suggested that these disparities 

were influenced by a combination of sociocultural factors, gender stereotypes, 

beliefs, the availability of role models, interest, computing self-efficacy, and prior 

experiences (Beyer, 2014; Cheryan et al., 2015; Doubé & Lang, 2012).  

Although the gender gap in programming learning is a common narrative in 

literature, studies on gender differences have also shown mixed results. In the 

literature, there is a considerable number of studies that align with the findings of 

this research. For example, in the study by Kong et al. (2018), no significant 

difference was observed in the programming self-efficacy of the young learners 

despite the lower interest of the girls. Doubé & Lang (2012) also found similar results 

to those in this study, indicating no gender differences in terms of how much students 

valued computer programming, and both boys and girls seemed equally driven by a 

combination of wanting to achieve good grades or recognition and an interest in the 

subject matter. Additionally, there are studies in which no gender differences have 

been found in programming achievement scores, as in this study (Akinola, 2015; 

Bennedsen & Caspersen, 2005). Similarly, Qian & Lehman (2016) emphasized that 

differences in programming performance among middle school students are better 

explained by non-programming subjects rather than by gender. This consistency 

suggests that the lack of observed gender differences in programming education may 

be a more general phenomenon, not restricted to the specific context of this study.  

Considering these previous research studies, several factors related to the absence of 

statistically significant differences in the investigated programming education 

variables in this study can be discussed. Studies suggest that when a field aligns with 

traditionally masculine traits in a specific culture (e.g., social isolation, intense focus 
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on technology, and innate brilliance), females tend to exhibit lower interest 

compared to males (Cheryan et al., 2015). These stereotypes and the gender 

construction of the discipline might explain the lack of adequate representation of 

females in disciplines such as computer science and engineering (Doubé & Lang, 

2012). However, in research studies, it was emphasized that altering cultural 

perceptions and stereotypes surrounding computer science and engineering can 

positively influence girls' engagement and participation in these fields. Additionally, 

the role of media in shaping such stereotypes was highlighted, suggesting that media 

representations contribute to how girls perceive computer science courses and 

environments, ultimately impacting their interest in these fields (Cheryan et al., 

2015). In the current study, given the unique characteristics of the study region, 

including its small-town setting and the fact that nearly half of the students reside in 

rural areas, the absence of observed gender differences compared to previous 

research suggests that media exposure may play a significant role in shaping 

students' perceptions and behaviors. This has arguably led to a shift in female 

students' perspectives on technology, potentially diminishing the previously 

observed gender gap reported in previous studies. Furthermore, there has been 

increased emphasis on coding education globally, including in Turkiye, and efforts 

have been made at the middle school level to promote this education. In this context, 

programming-related topics within the ITS curriculum were revised, and initiatives 

like the KodlaRize project championed programming education across all schools in 

the study's province. Additionally, there was an increased emphasis on integrating 

coding skills into classroom learning through various projects and technological 

equipment support for schools, as well as the establishment of coding centers. These 

initiatives likely contributed to a more standardized approach to programming 

education nationwide and within the study's province, potentially explaining the 

absence of significant variations in the investigated factors. Moreover, the increased 

emphasis on programming education has fostered a broader societal awareness of its 

importance. This is evident in the greater encouragement observed for girls to pursue 

computer-related fields compared to previous generations (Wang et al., 2015). 
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This study employed a block-based programming environment to introduce 

fundamental programming concepts to middle school students. Given the impact of 

block-based programming environments on students' attitudes towards 

programming, it can be inferred that the use of these environments might have 

contributed to the absence of a gender difference (Gunbatar & Karalar, 2018). 

However, the relatively low complexity of the programming tasks due to the 

circumscribed nature of block-based environments may have limited the potential 

for observing significant gender differences, which are more apparent in more 

complex programming contexts. Furthermore, the focus on introductory concepts 

might not fully capture the challenges associated with more advanced programming 

topics (Sullivan & Bers, 2016). 

5.1.3 Geographical School Location 

This study investigated the effects of geographical school location on programming 

success, math success, reading comprehension success, and various motivational 

constructs, including goal orientations, classroom goal structures, academic efficacy, 

cheating behavior, self-handicapping strategies, and attitudes toward programming 

education. The research involved students from three schools: one located in a 

central urban area with higher-income parents and two located in suburban areas 

with lower-income families and smaller student populations. The findings revealed 

significant differences between these groups, highlighting the importance of school 

location as a predictor of programming success and its impact on related motivational 

factors. 

According to the results of this study, geographical school location was a strong 

predictor of the programming success of fifth-grade students. This finding aligns 

with previous research indicating that students from urban schools tend to achieve 

higher academic success compared to their suburban or rural counterparts (Bonilla-

Mejía & Londoño-Ortega, 2021; Chand & Mohan, 2019; Panizzon, 2015). The 

reasons for this discrepancy include differences in both school and student 
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characteristics (Cresswell & Underwood, 2004). Urban schools generally provide 

better access to resources, better student exposure to technology, more experienced 

teachers, and a more stimulating educational environment, and are typically attended 

by students from higher socioeconomic backgrounds (Akpomudjere, 2020; Bouck, 

2005; Chand & Mohan, 2019). Conversely, suburban and rural schools often face 

challenges in providing the same level of resources and support.  

Socioeconomic factors are seen as a significant cause of the gap between schools 

from different geographical locations (Panizzon, 2015). Program for International 

Student Assessment (PISA) test results consistently demonstrate a strong correlation 

between socioeconomic status and student performance. PISA 2022 data aligns with 

the finding of this study, showing a gap of 82 points in mathematics scores between 

socio-economically advantaged and disadvantaged students from Turkiye (OECD, 

n.d.). Hanushek & Woessmann's (2012) research provided additional evidence that 

student and family background significantly impact educational outcomes. This 

aligns with the discussed point about the strong association between socioeconomic 

status and PISA results. Although this study did not directly investigate the impact 

of family factors as subfactors of geographical school location, considering the 

characteristics of the participants, it is evident that the family backgrounds of 

students in urban and suburban areas likely differed in terms of both education level 

and income status (see p. 51). Based on relevant literature, for instance, research by 

Marks et al. (2006), it could be suggested that these family background differences 

might have influenced the study's outcomes. 

When examining the phenomenon within the specific context of programming 

learning, the importance of prior computing experience in programming success is 

particularly noteworthy (Grover et al., 2016; Zingaro, 2014). In this study, it was 

noted that students do not receive any formal computing-related instruction as part 

of the curriculum until the fifth grade. This means prior computing experience relies 

heavily on parental awareness and support. Parents with higher education levels and 

greater financial resources can provide more advantages for their children. This may 

include guiding them toward computing opportunities or providing more exposure 
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to technology, both of which can facilitate the development of computing skills at an 

early age (Metin et al., 2023). Additionally, related literature showed that the 

availability and quality of technological resources in schools also significantly 

impact programming success (Salleh Hudin, 2023). All the schools involved in the 

study had computer laboratories; however, the suburban schools faced challenges 

with older and fewer computers, as students mentioned in the interviews. During the 

study, a new computer lab was installed in one of the suburban schools as part of a 

project, but this improvement only occurred towards the end of the study period and 

did not significantly affect the outcomes.  

In addition to programming success, geographical school location significantly 

influenced various motivational constructs. The study found significant differences 

in goal orientations and classroom goal structures between the two geographical 

locations. Urban school students exhibited higher performance-approach goal 

orientations and more favorable perceptions of classroom goal structures. This is 

consistent with previous research indicating that urban schools, with their higher 

resources and better-trained teachers, can create a more achievement-oriented 

environment that encourages students to set and pursue higher academic goals (Sun 

et al., 2022). 

5.1.4 Mathematics Skills  

One of the conclusions drawn from this research is that, among the various factors 

examined for success in computer programming, the most significant predictor was 

proficiency in mathematics. Given that the roots of computer programming lie in 

mathematics, a strong relationship between coding and mathematics is an expected 

outcome.  

The emphasis on the strong positive correlation between students' mathematical 

abilities and their performance in introductory computer programming courses 

suggests that mathematical skills are crucial for understanding programming 
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concepts and logic. The relationship between mathematical and coding success is 

explored across various dimensions in the literature and is evidenced by multiple 

studies. Investigations into the relationship between mathematics achievement and 

programming performance have been conducted across various educational levels, 

spanning from primary and middle school (Bozal & Şendurur, 2024; Brannon & 

Novak, 2019; Calder, 2010; Grover et al., 2015, 2016; Hu et al., 2018; Qian & 

Lehman, 2016; Salac et al., 2021) to high school (Bennedsen & Caspersen, 2005; 

Erdogan et al., 2008; Nasution et al., 2022) and undergraduate or graduate (Baist & 

Pamungkas, 2017; Bergin & Reilly, 2006; Bubnic et al., 2024). For instance, 

Mathews (2017) emphasized the predictive power of prior mathematics performance 

on success in learning programming. Their study highlights that average 

mathematics grades from the previous year could strongly indicate of a student's 

ability to grasp programming concepts. Erdogan et al. (2008) conducted a study with 

high school students and found a significant relationship between mathematics 

achievement and programming achievement, although they did not find mathematics 

achievement to be a predictor of programming achievement. Grover et al. (2015) 

employed a design-based research approach to investigate students aged eleven to 

fourteen. Notably, their study yielded significant results, demonstrating that 

mathematical ability, alongside prior computing experience, serves as a highly 

strong predictor of successful learning outcomes in programming.  The authors of 

the aforementioned study attributed this finding to the inherent nature of the 

assessments used to evaluate programming performance. These assessments 

frequently necessitate the application of mathematical knowledge. These findings 

directly align with the current study's emphasis on the critical role that a strong 

foundation in mathematical concepts plays in effectively completing coding tasks.  

Similarly, Bennedsen & Caspersen (2005) investigated potential factors influencing 

success in an introductory programming course. Their analysis revealed that only 

two of the eight indicators were statistically significant. Mathematics grades from 

high school stood out as one of these critical predictors, explaining over 15% of the 

variation observed in exam grades. Bergin & Reilly (2006) corroborated the finding 



 
 

199 

that mathematics achievement strongly predicts performance in introductory 

programming courses. Bubnic et al. (2024) found that students with strong, complex 

problem-solving skills tended to perform better in introductory programming 

courses. The structural equation modeling results revealed that 64% of the variance 

in programming performance can be attributed to complex problem-solving skills. 

Similarly, Nasution et al. (2022) conducted a study in high school and found a 

positive correlation between the problem-solving abilities of students and their 

achievements in programming assignments.  

Upon reviewing the literature, it becomes evident that several studies have identified 

mathematics as a significantly stronger predictor compared to the findings presented 

in this research. These results may stem from the investigation's focus on a lower 

grade level. Additionally, the study's measurement of programming knowledge and 

understanding among fifth graders who were newly introduced to computer science 

could contribute to this observation. This aligns with prior research that has 

established a moderate predictive role of mathematics in programming performance 

for younger students (e.g., Bennedsen & Caspersen, 2005).  

The qualitative part of this research shed light on the specific difficulties students 

faced and the underlying factors that influenced their success in programming. 

According to the research findings, not only skills but also prior knowledge in 

mathematics emerged as a significant factor influencing programming success. 

Interviews with students revealed that mathematical concepts frequently posed 

difficulties when solving problems in the programming environment they used in 

their lessons. For instance, students often mentioned struggling with puzzles that 

required rotating characters at specific angles, indicating a lack of understanding of 

which angles to use. The qualitative analysis of this study goes beyond the initial 

finding of student difficulty with angles. Student interviews revealed challenges with 

other foundational mathematical concepts as well. These include directionality, the 

ability to understand and represent movement along a designated path, which is 

crucial for tasks involving directional commands within code. Spatial reasoning, the 

cognitive skills necessary to manipulate and understand objects in a spatial context, 
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also proved challenging. This is particularly relevant for tasks requiring the 

manipulation of on-screen objects or characters within a programmed environment. 

Finally, the framework for describing and locating points within a two-dimensional 

space, or coordinate systems, presented difficulties for students.  

These findings highlight the importance of a strong foundation in these mathematical 

concepts for successful programming, as students struggled with specific coding 

examples that required applying these specific concepts. Calder (2010) employed a 

block-based programming environment that demonstrably fostered deeper 

engagement with geometric and measurement concepts. His study found that 

students readily grasped concepts of positionality, measurement (including 

coordinates, angles, and length), and spatial awareness within this environment. This 

aligns with the current study's findings, suggesting a potential link between a robust 

foundation in these mathematical concepts and success in programming tasks. 

Furthermore, Brannon & Novak (2019) directly corroborates this connection. Their 

investigation revealed that students encountering difficulties with mathematical 

content on the coding platform used in this study also exhibited struggles with 

geometric shapes, measurement, angles, and the coordinate system.  

In a newly study, Bozal & Şendurur (2024) found no significant difference in 

computational thinking test scores between elementary school students who learned 

programming with math-supported activities and those who learned traditionally. 

The researchers explained the study's unexpected results in two ways. Firstly, the 

basic sorting tasks involved very beginner-level coding commands like moving and 

turning. These tasks likely didn't require advanced mathematical thinking, leading to 

similar scores across both groups. Secondly, the authors pointed out that current 

teaching methods might not be effective in truly merging mathematics and 

introductory computer science education. As the students' programming success in 

the current study was also assessed based on fundamental programming concepts, it 

is believed that the second factor (limitations in teaching methods) mentioned in the 

aforementioned study likely explains the absence of significant differences. These 

findings indicated that it is essential to ensure that computer science curricula 
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acknowledge the close relationship with mathematics. This underscores the need for 

improved pedagogical approaches to leverage the connection between mathematics 

and introductory computer science education for better learning outcomes in lower 

grades.  

Teachers also play a vital role in this process. Preliminary research within this study 

showed that teachers, especially at the introductory level (such as fifth grade), 

frequently utilize learning platforms focused on coding, with code.org being a 

prominent example. Students typically engage in individual learning on these 

platforms in a computer lab setting, where teachers provide support by moving 

around the classroom. While teachers strive to assist students during individual 

computer-based learning, the number of students and time constraints can hinder 

their ability to provide adequate support and feedback, as emphasized by the 

interviewed students. Therefore, the appropriateness of tasks to students' readiness 

levels is paramount in such learning approaches. Teachers should carefully consider 

the mathematical connections of selected topics and examples when structuring 

lesson content, considering students' mathematical preparedness. Therefore, within 

the trend of teaching coding to all children, it is essential that students first build a 

strong foundation in mathematics to succeed in learning programming. 

5.1.5 Reading Comprehension Skills  

According to the findings of this study, reading comprehension achievement 

emerged as the second strongest predictor of academic success among middle school 

students. Given the nature of programming languages as high-level languages, which 

demand the skill to interpret meaning beyond literal statements and recognize 

patterns, reading proficiency is considered a fundamental prerequisite for effectively 

learning and utilizing a programming language. Additionally, these languages 

require the ability to synthesize information from code segments that might not be 

presented in a sequence and build mental models of abstract concepts (Salac et al., 

2021; Schoeman, 2019). The relationship between reading comprehension ability 
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and programming success is multifaceted and significant in the related literature. 

While this study utilized pre-built code blocks, the findings aligned with existing 

research emphasizing the crucial role of code comprehension in successful 

programming. 

There is a growing body of study that established reading comprehension as a 

significant predictor of programming success, underscoring the crucial role of 

effective code comprehension in programming proficiency. Lopez et al. (2008) 

investigated the relationship between code reading and code writing skills in novice 

programmers. They analyzed student performance on exam questions that involved 

code reading, tracing, and writing. Their findings showed a strong positive 

correlation between these skills, with code reading skills explaining 31% of the 

variation in student performance on code writing tasks. Similarly, Qian & Lehman 

(2016) conducted a study on Chinese students who were not native English speakers 

and found that proficiency in English was the strongest predictor of achievement in 

introductory programming. In this study, while mathematic ability also showed a 

correlation with performance, English proficiency emerged as the most significant 

factor. Grover et al. (2016) further supported this notion by demonstrating that, 

alongside math achievement, English ability served as a predictor of programming 

outcomes. These findings are consistent with the current study’s emphasis on 

identifying key predictors of programming performance. 

Reading comprehension is critically important for students to make sense of the code 

examples presented to them. This skill forms the foundation of programming 

learning by enabling them to decode the concepts, relationships, and logic within the 

code. As Lister et al. (2004) pointed out, students must be able to understand and 

analyze code examples to learn programming concepts effectively. In the current 

study, students did not have access to textbooks or printed materials. The absence of 

these materials in this block-based programming environment presented a unique 

challenge. While traditional classrooms might rely on students independently 

understanding code examples from textbooks, this was not an option in this study 

setting. Therefore, teachers became even more crucial in providing and explaining 
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code examples before transitioning students to practical exercises. This teacher-led 

approach ensures that students grasp the concepts and are prepared to apply their 

knowledge in real-world programming scenarios. Students' feedback during 

interviews aligns with this notion. When discussing unplugged activities (activities 

without computers), students mentioned the importance of understanding the 

concepts before moving on to practical exercises when answering related questions. 

This situation underscores the critical role of reading comprehension in block-based 

programming. Students could independently analyze and understand code examples 

by fostering reading comprehension skills, ultimately laying the foundation for 

successful application in practical exercises. 

The literature also emphasizes the importance of reading comprehension, 

particularly in debugging. Reading code goes beyond just skimming it; it involves 

genuinely understanding what the code does. This allows programmers to identify 

and fix errors more easily (Perkins & Martin, 1986). While pre-built code blocks 

were used instead of traditional text-based programming in this study, the findings 

emphasized a similar relationship to text-based code reading. This suggests that code 

reading and comprehension skills are essential for debugging and overall code 

writing in programming, regardless of whether text-based or block-based. 

Beyond traditional research methods, recent studies explore the link between reading 

comprehension and programming proficiency through eye-tracking and brainwave 

data. These studies reveal a fascinating connection: successful programmers exhibit 

distinct eye movement patterns and brain activity patterns. For instance, research by 

Ishida et al. (2020) and Ishida and Uwano (2019) suggested skilled programmers can 

rapidly shift their focus between problem specifications and the actual code. 

Additionally, their brainwaves showed an increase in specific frequencies over time, 

indicating heightened mental engagement. Further evidence comes from longitudinal 

eye-tracking studies by Andrzejewska and Kotoniak (2020). Their findings show that 

as students' programming skills improve, their eye movements become more 

efficient. This translates to increased distance traveled between fixations (saccade 

amplitude) and shorter fixation durations. These findings go beyond traditional text-
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based assessments, suggesting that eye-tracking and brainwave data can offer 

valuable information about the cognitive processes underlying successful 

programming. This research not only supports the link between reading 

comprehension and programming but also highlights the value of alternative 

measurement methods. 

While the majority of research underscores the positive influence of reading 

comprehension on programming proficiency, the bidirectional nature of this 

relationship has also been explored. Studies have demonstrated that computer 

instruction can enhance mathematical skills but may have less consistent effects on 

reading comprehension (Salac et al., 2021). Additionally, the impact of 

programming instruction on reading skills, as evidenced by Papatga and Ersoy 

(2016), suggests a potential complementary relationship between these two domains. 

5.1.6 Attitude Toward Programming 

This study identified attitude as a significant predictor of programming success. The 

research employed in-depth student interviews to gain a richer understanding of the 

factors influencing these attitudes. These interviews explored both positive and 

negative student perceptions of programming. In a qualitative analysis, the attitude 

was understood in a broader sense, reflecting an individual's expressed preferences 

and feelings toward engaging in a particular behavior (Fishman et al., 2021). This 

approach complements the investigation of other psychosocial constructs, such as 

goal orientation and self-efficacy, explored in this study.  

Researchers have consistently identified attitude as a critical factor influencing 

student achievement. This holds true across various educational settings, including 

the field of computer science education. While a significant body of research has 

explored the attitudes of older students toward programming, investigations into the 

attitudes of younger learners are gaining increasing attention, and studies directly 

examining the impact of attitude on computer programming achievement are limited 
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(e.g., Deniz & Korucu, 2023; Love, 2023; Sun et al., 2022). Early studies primarily 

focused on the direct link between attitude and programming learning. More recent 

investigations have expanded the scope to examine the association between attitude 

and computational thinking, as well as its role in STEM education. It is noteworthy 

that a significant portion of the existing research aligns with the findings of this 

study, further reinforcing the notion that attitude plays a pivotal role in shaping 

student outcomes in computer science education (Sun et al., 2022). 

In the literature, mathematics attitude has been identified as a factor positively 

influencing the computer programming learning of K-12 students (Ching et al., 2019; 

Ober et al., 2024). While a direct relationship between mathematics attitude and 

programming achievement was not explicitly tested in this study, the significant 

predictive power of mathematics achievement test scores for coding performance 

suggests that mathematics attitude may also play a positive role. This interpretation 

is supported by the established positive correlation between mathematics attitude and 

mathematics achievement in this study. 

This study employed a combination of plugged and unplugged programming 

activities, with unplugged activities serving as an introduction to the concepts and 

plugged activities involving programming tasks on the code.org digital coding 

platform within a computer lab. Qualitative analysis revealed that students generally 

expressed more positive attitudes towards the plugged activities. In contrast to this 

study's finding, Love's (2023) study revealed a significant impact of physical 

computing activities on five attitude constructs among students: “definition, comfort, 

interest, classroom applications, and career/future use”. Additionally, in this study, 

it was reported that 77% of the students expressed a preference for these physical 

activities over screen-based programming instruction. It is crucial to distinguish the 

physical activities employed in Love's study from the unplugged activities discussed 

in the present research. The former involved the interactive physical systems or 

devices that students program using software to create user-driven responses and 

behaviors, while the latter encompassed paper-based activities, games, and other 

unplugged experiences devoid of any integrated systems. In addition to the distinct 
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nature of the physical activities employed, several other factors could have 

contributed to the contrasting findings between Love's study and the present 

research. One potential explanation lies in the methodological approach. Love's 

study utilized a purely physical computing approach, while the present research 

utilized a mixed-methods approach that incorporated both unplugged and plugged 

(computer-based) programming activities. This difference in instructional strategies 

could have influenced student engagement and attitude formation. Moreover, the 

relative weight of unplugged and computer-based activities could have played a role 

in shaping the results. A greater emphasis on plugged activities might have resonated 

more strongly with students' desire for hands-on learning and potentially led to more 

positive attitudes. Additionally, considering the growing interest in technology 

among students, the present study’s findings are not entirely surprising.  

The results revealed a generally positive attitude towards programming. Students 

expressed a stronger preference for computer-based activities compared to 

unplugged activities that do not involve computers. Students were frequently 

observed to characterize this learning platform as enjoyable. This aligns with existing 

research suggesting a positive correlation between students' positive attitudes toward 

computers and their willingness to engage with programming. These results 

underscore the significance of considering student preferences when designing and 

developing programming education.  

A notable finding from this study is the positive perception of enjoyment expressed 

by participants towards the unplugged activities. This aligns with previous research, 

such as Taub et al. (2012), where students consistently reported positive attitudes 

towards unplugged activities, often characterizing them as "fun" and engaging. In 

this study, while most of the students expressed a preference for computer-based 

(plugged) activities, they also highlighted positive aspects of unplugged activities, 

particularly emphasizing the value of social interaction in these settings, which was 

coded as "enjoyment of social interaction". 
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A separate study investigating the impact of pair programming on programming 

learning outcomes and attitudes revealed that attitudinal factors did not exert a 

significant influence on student learning within the pair programming setting 

(Vandenberg et al., 2021). This could be attributed to the collaborative nature of pair 

programming, where the shared learning environment and active engagement with a 

partner may mitigate the influence of individual attitudinal factors.  

5.1.7 Patterns of Adaptive Learning 

Among the subscales of the PALS, only the academic self-handicapping strategies 

variable emerged as a predictor of programming success in this study. The 

relationship between achievement and handicapping strategies was found to be 

negative. Although there has been limited research on self-handicapping strategies 

in programming, particularly in middle school contexts, studies in other domains 

have produced varying results regarding its relationship with achievement 

(Schwinger et al., 2014). However, the general trend, parallel to the findings of this 

study, suggests a negative correlation between self-handicapping and academic 

achievement (Urdan, 2004; Urdan et al., 1998). Schwinger et al. (2014) emphasized 

the influence of school type on this relationship. The finding that handicapping 

strategies emerged as a significant predictor in this study could be attributed, in part, 

to the school level, aligning with previous research suggesting a stronger association 

between self-handicapping and achievement in elementary schools compared to high 

schools (Leondari & Gonida, 2007).  

Given the assumption that contextual and motivational factors can shape students' 

attitudes and behaviors, it is reasonable to expect disparities in academic self-

handicapping strategies between urban and suburban school environments (Urdan & 

Midgley, 2001). While personal goal orientations and perceived classroom goal 

structures did not directly and significantly influence programming achievement in 

this study, the observed differences between urban and suburban schools in these 

variables suggest a more complex interplay between individual and contextual 
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factors that could potentially moderate the relationship with self-handicapping. 

Although the specific relationships between goal orientations and perceived goal 

structures with other variables were beyond the scope of this study, the literature 

points to a positive association between self-handicapping strategies and 

performance-avoid goals and classroom performance goal structure (Leondari & 

Gonida, 2007; Urdan, 2004) and a negative association with mastery goals (Midgley 

& Urdan, 2001).  

The qualitative data from this study indicated a higher frequency of expressions 

related to mastery goal orientations among the students, such as career-oriented 

goals, challenge seeking, and relevance to daily life. However, there were also a 

notable number of expressions related to performance approach and performance-

avoidance goals. Specifically, codes such as competition focus (f = 4), completion-

driven motivation (f = 11), and fear of failure (f = 6) were identified as significant in 

the context of academic self-handicapping. The instructional environment used for 

the plugged activities in this study was game-based, where students progressed to 

the next level by completing puzzles designed to teach programming concepts. This 

type of performance-focused instructional practice has been reported to increase 

perceived classroom performance goals, which in turn can predict the use of self-

handicapping strategies (Urdan et al., 1998). The emphasis on completing tasks to 

advance in levels may inadvertently encourage students to adopt self-handicapping 

behaviors to protect their self-esteem and mitigate fear of failure. 

5.2 Conclusion 

Programming education has increasingly become an essential skill and field to be 

introduced at various educational levels, including early childhood. However, as 

extensively discussed in the literature, students often face difficulties when learning 

programming. This study, utilizing a mixed-method design, investigated the 

computer programming learning processes of fifth-grade students who are new to 

coding and even computer science over a ten-week period. The study evaluated the 
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effects of sociodemographic attributes, educational background, affective and 

motivational learner characteristics, attitudes toward programming, and cognitive 

load levels of students on their programming learning.  

A total of 199 students from three different schools participated in the study, with 

one school located in an urban area and the other two in suburban areas. Five research 

questions were addressed within the scope of this study. The first research question 

examined the changes in different types of cognitive load experienced by students 

while learning seven different coding topics (basic sequences, flowcharts, testing and 

debugging, loops, nested loops, flowcharts, variables). The second and third research 

questions investigated whether there were differences in the research variables based 

on students' gender and the geographical location of their schools. The fourth 

research question explored the extent to which the research variables explained 

changes in students' coding achievement. The final research question aimed to 

examine students' perspectives and experiences regarding the programming 

instruction process. 

The study results indicated that students experienced high cognitive load, 

particularly with the concept of nested loops, due to its intrinsic complexity. On the 

other hand, it was unexpectedly found that students had difficulty with basic 

sequences in the first week. The interview findings revealed that the unplugged 

activity during the first week increased the students' intrinsic and extraneous 

cognitive load. Another example is the concept of variables. Although the intrinsic 

and extraneous loads for this topic were quite low, interviews indicated that students 

found the topic abstract and confusing. The examples provided during unplugged 

activities did not help in fully understanding this abstract concept. Furthermore, 

students reported that they did not fully understand how to use the relevant code 

block in a block-based programming environment that they applied to the same topic 

on the computer. This also highlights the importance of providing adequate pre-

instructional guidance for self-regulated learning, especially since the sample 

consisted of students with no prior knowledge of computer science.  
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Unplugged activities were observed to be less preferred than computer-based 

activities, and students expressed less positive attitudes towards them. One of the 

reasons for this may be that some of these activities caused an increase in the 

cognitive load of the students.  

Another factor that contributed to increased cognitive load and negatively affected 

the programming learning process was the students' lack of mathematical 

knowledge. Students particularly struggled with topics such as angles and the 

coordinate plane due to insufficient prior knowledge. Analysis results, consistent 

with the literature, also demonstrated that mathematical achievement is a significant 

predictor of coding success. 

When examining whether gender characteristics developed a difference in the 

research variables, it was found that gender did not result in a significant difference 

for any of the variables. However, the geographical school location caused 

differences in both the affective and motivational variables, academic achievements, 

and the cognitive loads experienced by the students, all favoring urban schools. 

Students in suburban areas were typically of lower socioeconomic status and had 

less exposure to computers, significantly impacting their programming achievements 

and other programming-related variables. One unexpected finding was the lack of 

difference in attitudes between urban and suburban students. This can be attributed 

to several factors: the general fondness for computers among students, the teacher's 

efforts to create a positive classroom atmosphere, and the absence of programming 

questions in high-stakes exams like the high school entrance exams, students being 

exposed to ITS (Information Technology and Software) classes for only two years, 

which may contribute to more positive attitudes. 

The study identified several variables that predict differences in students' 

programming achievement, including mathematics and reading comprehension 

performance, extraneous load, attitude, and academic self-handicapping strategies. 

The relationship between reading comprehension and programming learning has 
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been increasingly discussed in recent years, with a growing body of evidence 

supporting this connection.  

In this study, the relationship was not influenced by the fact that programming 

languages are typically in English, as students created algorithms using a block-

based application and selected the Turkish language option (their native language) 

on the website. This finding underscores the importance of language skills in 

understanding problem scenarios effectively, as programming requires an effective 

problem-solving approach. 

Another significant variable closely related to coding success was extraneous load. 

In particular, poorly structured examples can increase extraneous load, especially for 

students with no prior experience or lower skills in mathematics and programming, 

thereby affecting their performance. Additionally, academic self-handicapping 

strategies emerged as an important predictor of coding success. The necessity of pair 

programming due to the lack of sufficient computers for each student led to some 

students not participating actively in the problem-solving process, as they relied on 

their partners. Interviews revealed that students who did not consider themselves 

successful often left the entire process to their partners and did not even look at the 

computer while their partners were solving the problems. 

Given that a significant portion of the lessons involved computer-based activities, 

students who did not engage actively in these activities missed out on essential 

programming practice. Consequently, it is not surprising that academic self-

handicapping strategies predict programming success. In pair programming, a 

student's passivity can also result from the dominance of the other student. This 

highlights the importance of carefully selecting pairs for pair programming and 

providing adequate guidance on how to engage effectively in this collaborative 

approach.   

The large class size often limited the assistance teachers could provide during hands-

on programming sessions, necessitating peer learning. While peer learning has 

benefits, such as promoting information sharing and supporting collaborative and 
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social learning, it also has drawbacks. For instance, dominant peers can overshadow 

others, some students might withdraw without challenging themselves, and peers 

might not always have the necessary knowledge or skills to explain concepts 

effectively to their peers. These issues sometimes led to students copying solutions 

from their peers. Furthermore, game-based learning activities, which were intended 

to engage students, also contributed to cheating behaviors. However, these behaviors 

were not found to be significant predictors of programming success. Although the 

relationship between game-based learning environments and students' performance-

approach goal orientations was noted in interviews, these orientations, like other goal 

orientations and perceived classroom goal structures, were not significant predictors 

of coding success. 

In summary, this study investigated the learning of fundamental programming 

concepts by fifth-grade students using a multifaceted approach. The findings 

revealed that students' academic backgrounds, specifically in mathematics and 

reading comprehension, were the most significant predictors of programming 

achievement. The study highlighted the difficulty in teaching concepts such as nested 

loops and variables in programming lessons. The importance of extraneous load in 

programming learning underscored the significance of instructional design. Among 

the affective and motivational factors, attitude and academic self-handicapping 

strategies were found to have a significant impact. 

5.3 Implications of the Findings 

Based on the findings of this study, the following recommendations are proposed for 

instructors and policymakers to effectively teach programming to middle school 

students who are novices in the subject: 

• Introducing foundational skills before teaching coding can create a more 

positive and productive learning environment for students with no prior 

computer science experience. Initial lessons or activities aimed at 
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strengthening these foundational skills in computer science can help reduce 

feelings of frustration and overwhelm common among beginners. This 

approach can lead to a more sustained interest in programming, higher 

motivation, and a willingness to persevere through difficulties. 

• Developing and maintaining an inclusive curriculum that highlights the 

relevance and application of programming skills to diverse fields is crucial. 

The relationship between programming and other fields can enhance 

students' learning experiences and outcomes. 

• Mathematics is a critical foundation for programming success, making it 

essential to integrate mathematical considerations into computer science 

curricula. Incorporating mathematical principles such as algorithms, logic, 

data structures, and problem-solving techniques into programming education 

can strengthen students' mathematical skills and reinforce the connection 

between programming and mathematics. This approach can lead to improved 

learning outcomes and a deeper understanding of both subjects. 

• Task design should align with students' mathematical readiness levels. It's 

important to be aware of students' mathematical backgrounds and provide 

additional support for those struggling with concepts like angles and 

coordinates, which can impact programming success. This approach ensures 

that all students, regardless of their initial proficiency, can engage with and 

succeed in programming tasks. 

• Considering the role of reading comprehension in computer programming 

education is essential. Developing these skills helps students to understand 

the problem scenario, identify key information, and break down complex 

problems into manageable steps. This forms the foundation for writing 

efficient and accurate code. 

• The findings suggest that interventions aiming to improve coding 

achievement should focus on reducing extraneous cognitive load. Paying 

close attention to activity design and examples can help minimize this load, 

especially for beginners. This might involve simplifying initial activities and 
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explanations or providing more scaffolding. Additionally, bridging the gap 

between unplugged activities and computer-based coding is crucial. 

Revisiting unplugged activities after the related coding concepts are learned 

may ensure a clear connection between unplugged activities and the 

programming concepts they introduce. 

• The absence of textbooks limits the resources and materials available to 

students for their courses. If students also lack technological resources, they 

have no means to practice programming outside of school. Therefore, it is 

crucial to provide students with the necessary resources. Sharing these 

essential materials ensures that students can continue their learning and 

practice programming even outside the classroom, thereby supporting their 

educational development and success. 

• Encouraging collaboration between teachers from different subjects might 

help create engaging and effective learning experiences that blend various 

concepts. By working together, teachers might develop lessons that integrate 

programming with other disciplines, making the learning process more 

dynamic and relevant. This interdisciplinary approach might also allow 

students to see the practical applications of programming in various fields 

and help them understand how knowledge from different areas interconnects, 

leading to a deeper and more comprehensive understanding of the material. 

• Addressing the specific challenges faced by rural and suburban students 

highlights the need for a comprehensive approach. This includes improving 

educational resources in rural areas, supporting foundational academic skills, 

and creating an engaging learning environment that minimizes unnecessary 

cognitive load. Such efforts might help ensure that all students, regardless of 

their location, have access to high-quality education and opportunities for 

success in programming and other subjects. 

• To optimize pair programming, educators should adopt a structured 

approach. This includes strategically pairing students based on skill, learning 

style, and personality to create a balanced learning environment. It is 
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important to provide clear guidelines for effective collaboration to prevent 

students from becoming passive learners. Monitoring and intervention 

strategies like targeted support and potential re-pairing might address 

imbalances and ensure all students benefit. Leveraging social learning 

dynamics through positive reinforcement, peer evaluation, and group 

discussions strengthens collaboration skills, might promote knowledge 

sharing, and fosters a deeper learning experience for all students. 

• To foster positive attitudes towards coding, which might contribute to better 

learning outcomes, it is recommended to create an engaging and supportive 

learning environment. Integrating real-world applications of coding and 

highlighting its relevance across various fields might motivate students and 

enhance their interest in learning coding. 

• While block-based programming environments are valuable for introducing 

younger students to coding, they can inadvertently create a competitive 

learning atmosphere through game-based elements. Structuring game-based 

learning activities around shared goals can help encourage students to work 

together towards a common objective. This fosters collaboration, 

communication, and problem-solving as a team rather than promoting 

individual competition. Such an approach helps to avoid outcomes that 

negatively impact students' learning and discourage self-handicapping 

behaviors. 

• This study’s findings showed that resource availability significantly affects 

programming education, suggesting that schools need to invest in up-to-date 

hardware and software to facilitate effective learning. Ensuring that students 

have access to the necessary technological tools is essential for providing a 

high-quality computer education and improving overall educational 

outcomes. 
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5.4 Recommendations for Further Research 

This study investigated the variables associated with middle school students' success 

in learning fundamental computer programming concepts. To assess the model's 

generalizability, future research should explore its effectiveness in diverse 

educational settings, encompassing different schools, districts, or even countries. 

Additionally, researchers should employ a variety of programming languages and 

platforms to determine if the model applies equally well across diverse coding 

environments. The qualitative portion of this research identified other factors 

potentially influencing programming success that warrant further investigation. 

These include prior experiences with coding or technology, the effectiveness of 

paired programming compared to solo programming approaches, and the impact of 

technology exposure on learning outcomes. Notably, this study did not examine the 

changes in students' motivational factors throughout the educational process. 

Experimental studies could be designed to explore these changes and their potential 

relationship to programming success. It is also important to incorporate a wider range 

of assessment techniques to capture a more comprehensive picture of student 

learning. While this study did not directly link motivational variables to 

programming success, examining their relationships within the context of 

programming instruction for middle school students remains valuable. Furthermore, 

research should explore the effectiveness of different interventions in programming 

education to specifically address and potentially reduce the achievement gaps 

between students from diverse sociodemographic backgrounds. By pursuing these 

research avenues, future studies could contribute significantly to a deeper 

understanding of the factors that contribute to successful programming learning in 

middle school. This knowledge can then be used to develop more effective strategies 

for engaging and empowering all students in this critical field. 
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APPENDICES 

A. Lesson Plan Evaluation Form 

Bölüm 1: Demografik Bilgiler 

Adınız-Soyadınız  

Cinsiyetiniz ☐ Kadın  ☐ Erkek 

Yaşınız  

Mesleki deneyiminiz 
(yıl olarak)   

Eğitim düzeyiniz ☐ Lisans ☐ Yüksek Lisans ☐ Doktora  
☐ Diğer: …………………………..  

Mezun olduğunuz 
lisans programı  

☐ Bilgisayar ve Öğretim Teknolojileri Öğretmenliği 
☐ Bilgisayar Öğretmenliği 
☐ Bilgisayar Sistemleri Öğretmenliği 
☐ Bilgisayar ve Kontrol Öğretmenliği 
☐ Elektronik ve Bilgisayar Öğretmenliği 
☐ Bilgisayar Teknolojisi Bölümü 
☐ Bilgisayar Teknolojisi ve Bilişim Sistemleri Bölümü 

Görev yapmakta 
olduğunuz okul türü ☐ Devlet ☐ Özel 

Görev yapmakta 
olduğunuz okulda 
bilgisayar laboratuvarı 
mevcut mu? 

☐ Evet ☐ Hayır 

Ortaokul öğrencilerine 
programlama öğretimi 
deneyiminiz (yıl olarak) 

………………………………………………………………………………
………….. 

Bölüm 2- Ders Planı Değerlendirme  

Ders Planı: Evet/Hayır Açıklama 
Bölüm1 
code.org sitesinde yer alan bu ders planını daha 
önce derslerinde kullanmış mıydınız? 

☐ Evet ☐ Hayır  

Kazanımlar açık ve anlaşılır bir şekilde belirtilmiş 
mi? 

☐ Evet ☐ Hayır  

Kazanımlar öğrenci düzeyine uygun mu? ☐ Evet ☐ Hayır  
 

Kazanımlar belirlenen sürede ulaşılabilir mi? ☐ Evet ☐ Hayır  
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Kazanımlar Ortaokul Bilişim Teknolojileri ve 
Yazılım Dersi Öğretim Programının amaçları ile 
uyuşuyor mu? 

☐ Evet ☐ Hayır  

Planda yer alan anahtar kelimeler doğru ve 
anlaşılır bir şekilde tanımlanmış mı? 

☐ Evet ☐ Hayır  

Ders planı, planda belirtilen sürede tamamlandı 
mı? 

☐ Evet ☐ Hayır  

İçerik, kazanımlar ile uyumlu bir şekilde 
planlanmış mı? 

☐ Evet ☐ Hayır  

Derse hazırlık sürecinde zorlandınız mı? ☐ Evet ☐ Hayır  
Ders planı, öğrenci seviyesine ve konuya uygun 
araç – gereçleri içeriyor mu? 

  

Etkinlikler öğrenci düzeylerine uygun mu? ☐ Evet ☐ Hayır  
Etkinlikler konuya uygun mu? ☐ Evet ☐ Hayır  
Etkinliklerin ne zaman ve nasıl gerçekleştirileceği 
açık ve anlaşılır mı? 

☐ Evet ☐ Hayır  

Etkinlikler öğrencilerin dikkatini çekme 
konusunda etkili mi? 

☐ Evet ☐ Hayır  

Etkinlikler öğrencilerin dikkatinin devamını 
sağlama konusunda etkili mi? 

☐ Evet ☐ Hayır  

Bölüm 2 
Ders planından çıkartmak istediğiniz herhangi bir 
şey var mı? Varsa nedenleriyle birlikte belirtiniz. 

 
 
 

Ders planında yeniden düzenlemek istediğiniz bir 
bölüm var mı? Varsa neden ve ne şekilde bir 
düzenleme yapmak istersiniz? 

 
 
 
 

Ders planına eklemek istediğiniz herhangi bir şey 
var mı? 

 
 

Ders planında uygulamasını zor bulduğunuz bir 
bölüm oldu mu? Açıklayınız. 

 
 
 

Öğrencilerin anlamakta/uygulamakta zorluk 
çektiklerini düşündüğünüz bir bölüm oldu mu? 
Açıklayınız. 

 
 
 
 

Ders planı ile ilgili genel bir değerlendirmede 
bulunur musunuz? 

 

Eklemek istediğiniz başka bir şey var mı?  
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B. Coding Achievement Test     
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C. Cognitive Load Scale 
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D. Patterns of Adaptive Learning Scale 
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E. Attitudes Toward Coding Education Scale 
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F. Reading Comprehension Achievement Test 

 



 
 

264 

 



 
 

265 

 



 
 

266 

 



 
 

267 

 



 
 

268 

 



 
 

269 

G. 5th Grade Mathematics Achievement Test 
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H. Interview Protocol  
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I. Sample Lesson Plan 
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J. Approval of Human Subjects Ethics Committee at METU - I 
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K. Approval of Human Subjects Ethics Committee at METU - II 
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L. Approval of Provincial Directorate of National Education 
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M. The Original Turkish Versions of the Quotes 

Theme 1: Cognitive Demands 

Inherent Complexity of Programming Concepts and Tasks  

Managing Iterative Logic 

[S22 in Turkish]: Mesela bir karakter oradayken mesela iki kere o döngüyü 

kullanmak biraz zor geliyor bana. Mesela üç kez bir şeyi tekrar ettikten sonra mesela 

üst katmanda bir tane daha şey, döngü koyduğumuz zaman, mesela beş kere olduğu 

zaman biraz böyle garip bir şeyler oluyordu. Anlayamıyordum pek. 

[S6 in Turkish]: Hocam ben bunların zombiyi şeye ulaştırmada çok zorlandım, 

zombiyi ayçiçeğine ulaştırmak zorluydu. Çünkü hocam diğer çiçekler de var ya vahşi 

çiçekler, onlardan bir de kaçman gerekiyor. Çünkü hocam kırık buzlar oluyor ya, 

dikkatsizliğine geliyor ona basıyorsun, düşüyorsun zaten. Ondan kod boşa gidiyor. 

Limited Code Blocks Challenges 

[S6 in Turkish]: Code.org güzeldi aslında ama bazen bir tane kullanma hakkımız 

olmasını düşündürmek gerekiyor insanı. Onu ayarlamak zor değil normalde kolay 

da nerede koyacağını düşünmek gerek aslında. 

Sequencing and Logical Flow Difficulties 

[S18 in Turkish]: …Kodları karıştırıyordum. Diğerini yanlışlıkla diğerinin yerine 

koyuyordum. Karışıyordu. 

Diagramming Programming Logic Difficulties 

[S27 in Turkish]: İçine mesela… Başla ile başlayınca aklıma soru gelmiyordu ne ile 

başlayayım falan gelmiyordu. Zorlanıyordum. Hangi komutu nasıl yazmalıyım? 

[S27 in Turkish]: Sorularda aklım karışmıştı. Böyle soru sorma değil de üçgen vardı, 

paralelkenar falan vardı. Orada biraz zorlanıyordum. Karışıklık yapıyordu. …Neyi, 

hangi şekli koyacağım bilemiyordum. 
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Spatial Reasoning Challenges 

[S19 in Turkish]: Ben açılar konusunda hiç iyi değilim çünkü matematikte de açılar 

konusunda hiç iyi değilim. O yüzden bilişime (Bilişim Teknolojileri ve Yazılım dersi) 

de yansıyor. 

[S24 in Turkish]: Orada şekillerde var mesela 180 ilerle. Onu sen 120 edeceksin ya 

da 145 edeceksin. Orada kararsız kalıyordum ne etsem ya 145 mi, 120 mi, 100 mü 

yapsam? O yüzden hep denemek gerekiyordu. 

Comprehending Code Blocks Functionality 

[S20 in Turkish]: Nasıl kullanacağımı anlamadım. 

[S12 in Turkish]: En çok son yaptığımız derste yaptığımız bloklarda zorlandım çünkü 

bilmediğim bloklar vardı. Bilmediğim için yani kodları. Onları kullanmayı zar zor 

öğrendim yani. 

Integration of Multiple Concepts 

[S16 in Turkish]: Mesela bir şeyi, zombiyi şeye götür diyordu ya, işte onlarda fazla 

zorlandım çünkü sağa mı gidecek, sola mı gidecek. Sağa dönüyor. İşte çok fazla blok 

olduğu zaman ben çok zorlanıyordum. Mesele şöyle yapıyordum dönüyordum kuşun 

yerine, ne tarafa gidecek o tarafa şey yapıyordum. Sonra da kafam karışıyordu ve 

yavaşlamaya başlıyordum. 

Instructional Factors 

Unclear Task Instructions 

[S17 in Turkish]: Ve o canlı olmayanları, bilgisayardan olmayanları kafamı 

karıştırdı. O bardak çok kafamı karıştırdı, beynim yandı. 

Abstract Concepts and Confusing Explanations 

[S26 in Turkish]: Değişkenlerde mesela şey öğretmen bana şey beş parmak hiç 

değişmez diyor ama ben böyle yapınca on parmak oluyor, bence değişir diyorum. 
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Orada birazcık tartışma oldu. Ondan sonra ben çok sıkıntı yaşamaya başladım. 

Orada birazcık şaşırdım. 

[S21 in Turkish]: Yani bana hep şey geliyor… Değişken mesela hepsi değişebilir gibi 

geliyor. Ama bu şeye bağlı yani oradaki bulmacaya bağlı. Bulmaca öyleyse sabit 

oluyor. Ama yani değişken de olabilir. … Sabitin temeli aslında şeye bağlı, bu da 

benim bir garip düşüncem yani, sabitin temeli oradaki programa bağlı yani. Ne 

kurduysa sabit o oluyor. Ama ona bakarsak her şey değişebilir. O da benim. 

anlamamı zorlaştırıyor. 

Unstructured Learning 

[S9 in Turkish]: Bilmiyorduk ne kadar nektar olduğunu. O çok zordu böyle, eğer 

nektar varsa nektarı al, ilerle, onu yaptırıyorduk. Onda zorlanmıştık. Yani, şey 

oluyordu böyle bir tane kare vardı, her tarafta nektar vardı böyle. Arıyı ilerleteceğiz 

mi, nektarı mı aldıracağız diye şaşırıyordum. 

Unsuitable Scaffolding 

[S3 in Turkish]: İç-içe döngülerde de şöyleydi genelde. Code.org üzerinden en başta 

eğitim görürken çok düz oynuyorduk: 4 adım ileri git veyahut da… İlk başta 

tekrarlanan döngüleri öğrendik. Çok fazla yazmak yerine daha kolay bir şekilde 

tekrarlanıyordu.  Öğrenmek çok fazla zor değildi. Ama iç-içe döngüler bir anda 

zorlaştı yani. 

Time Constraints 

[S3 in Turkish]: Daha fazla haftada ders… Haftada iki ders olmuyor. Bir konu 

üzerinde daha fazla durulabilir. Mesela iç-içe döngülere geçildiğinde sorunla 

karşılaştığım bazen kafamda çözemediğim noktalar olmuştu. Ya da değişkenlerde… 

İşte mesela değişkenlerde hala yapamadığım yerler vardı. Konunun üzerinde daha 

fazla durulabilirdi. Daha iyi olurdu, haftada daha fazla ders olsaydı. 

Learning Environment Challenges 

Access and Equity 
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[S13 in Turkish]: Bir de bilgisayarlar çok bozuluyor, onu değiştirmek isterdim. 

[S9 in Turkish]: Kodlama ile ilgili çalışmadım. Çünkü… Çalışmadım yani. 

Bilgisayarım yok. 

Login issues 

[S19 in Turkish]: Nasıl desem? Şifreli olması biraz zor gibi geldi. Yani kağıdımızı, 

şifreyi unuttuğumuz zaman şifresiz giremeyebiliyoruz. 

Foreign language-related problems 

[S5 in Turkish]: Mesela Kurs F’de on üçüncü derste falan ben Türkçe yapmama 

rağmen dili orada İngilizce konuşturmamız gerekiyor. 

[S22 in Turkish]: Şey hani alttaki videolar vardı ya, onları Türkçeye çevirseydi daha 

iyi olurdu ama. 

Theme 2: Effective Instructional Approaches 

Plugged Activities 

Facilitated Learning 

[S9 in Turkish]: Öğrenmemi kolaylaştırdı, büyük bir katkı sağladı. Onu yaparak 

böyle alıştım, çok hızlı yapmaya başladım. Kendimi geliştirdim kodlamada yani 

yardımcı oldu bana code.org. Çünkü çözüyorum böyle parçaları birleştirerek 

yaptığım için daha kolay oluyor. Kodlamayı daha iyi öğreniyordum böyle. 

Learning by Doing 

[S16 in Turkish]: Etkileri çok fazla oldu çünkü bir öğretmen tahtada çizerek 

anlatsaydı hiçbir şekilde anlamazdım. Ama Code.org daha kolay geldi bana. O 

olmasaydı, hoca çizerek anlatsaydı mesela yine anlardım ama az anlardım. 

[S30 in Turkish]: Ama kendimiz yaptığımızda daha kaliteli oluyor bence. 

Debugging Tasks 
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[S9 in Turkish]: Mesela kendisi, code.org, şeylerini oluşturuyordu, bana 

derecelerini falan soruyordu. O da işimi kolaylaştırıyordu. Avantajı o oluyordu. 

Bazen daha kolay oluyordu. O birleştiriyordu parçaları, ben de derecelerini 

yapıyordum, doksan derece falan… 

Rich Content 

[S3 in Turkish]: Code.org sayesinde daha detaylı öğrendiğimi düşünüyorum, bazı 

konularda. Mesela yeni geçenlerde değişkenleri öğrendim ve gerçekten 

değişkenlerde zorlandım. Bu konuda çok öğretici oldu benim için. Dediğim gibi 

Scratch’de önceden çoğu terimi biliyordum veyahut da çoğu blok terimlerini. Ama 

şu iç-içe döngülerde ve değişkenlerde daha iyi öğrendiğimi düşünüyorum. 

Scratch’de de değişkenler üzerinde duruluyordu ama bu kadar detaylı 

durulmuyordu. Değişkenleri kesinlikle daha detaylı öğrendiğimi düşünüyorum. 

Gerçekten de iyi. 

Opportunity for Revision and Mastery 

[S19 in Turkish]: Çünkü bilgisayarda görüyoruz, yanlışlarımızı görebiliyoruz 

hemen. Ama kağıt üzerinde yanlışlarımızı göremiyoruz. Yani dediğim gibi 

bilgisayarda yanlışlarımızı görüyoruz ve ona göre yanlışlarımızı düzeltebiliyoruz. 

Doğrularımız varsa bir daha gözden geçiriyoruz, yanlış olabilir falan. 

Permanent Learning 

[S21 in Turkish]: Daha kalıcı olur diye düşünüyorum. Çünkü o anlatım yani bir yere 

kadar… Zaten sınıf ortamında da öyle iyi anlamak yani öyle tanımlamak o iş zor 

sınıf ortamında. O yüzden yani burada yapmak daha kalıcı oluyor. 

Unplugged Activities  

Introduction and Orientation 

[S19 in Turkish]: İlk önceden, birinci saat akıllı tahtadan gösterdi. Akıllı tahtadan 

biz yapmaya başladık. Yanlışlarımızı düzeltmeye başladı. Sonra bilgisayarlardan tek 

başımıza yapmaya çalıştık. Yani dediğim gibi ilk önce akıllı tahtadan bize öğretiyor, 
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anlatıyor. Sonra biz yapıyoruz. Yani böyle yapsa güzel olur yani böyle devam etmek 

isteriz. 

Active Engagement 

[S6 in Turkish]: Hocam bence en çok sınıfta ettiğimiz daha öğreticiydi. Çünkü 

bilgisayarda sadece mouse (fare) ve şeyi oynatıyorsun. Ama sınıfta ettiğimiz, kendin 

hareket ediyorsun, kendin ayarlıyorsun eşyaları. 

Real-World Relevance 

[S8 in Turkish]: Yani bunu gerçek hayatta da kullanabildiğimizi öğrendim 

kodlamayı yani komutları. 

Blended Approaches 

Blending Traditional and Digital Methods 

[S13 in Turkish]: Çünkü hocam hem yazıyoruz hem okuyoruz. Yani kendi elimizle 

yazıyoruz, okuyoruz. …Bilgisayarda mesela bir tuşa basıyorsun hani şey 

yapamıyorsun tam. Yaptığımız şeyleri bir kağıda yazmak... Çünkü hocam kağıtta 

gösterince hem okumuş oluyorsun, ikinci kez okumuş oluyorsun hem de onu mesela 

dosyasına koysun, unuttuğu zaman oraya bakıp yapsın. Bilgisayarda hani 

bakamayacak, gidecek, kaydetme diyecek, gidecek. 

Teacher Effectiveness 

Clear and Effective Explanations 

[S26 in Turkish]: Öğretmenim çok güzel kodlama öğretiyor. Anlatması çok etkili. 

Supportiveness 

[S24 in Turkish]: Sınıf kalabalık, 28 kişi. 28 kişiyle de ilgileniyor. Mesela hani ben 

dedim ya yapamadığımda sinir oluyorum, o zamanlar hocayı çağırıyorum. Hoca 

bana anlatıyor öylece kolayca geçiyorum o bölümü. Yani iyi katkı oluyor. 

Theme 3: Collaborative Learning Approaches 
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Pair Selection Criteria 

Skill and Expertise 

[S17 in Turkish]: Bilgisayar ustasıdır. Öyle kolayları yapamaz. Zeki bir çocuk 

olduğu için onu seçtim. Akıllı. 

Social Compatibility 

[S19 in Turkish]: Çünkü o arkadaşımla daha iyiyim. Yani evlerimiz yan yana. Daha 

iyi ilişkim var onunla. Hem daha iyi arkadaşlığımız var onunla. İlk önceden ben 

başka bir arkadaşımla oturuyordum. Ondan sonra onunla arkadaşlığımız bitti yani 

küstük birbirimize. O yüzden hocadan izin aldık ve onunla oturmaya başladım. 

Role-Sharing Strategies 

Imbalanced Turn-Taking 

[S14 in Turkish]: Genelde klavyeyi o kullandı, mouseu ben kullandım. Genelde böyle 

devam etti. 

Regular Turn-Taking 

[S16 in Turkish]: Genellikle arkadaşımla sıra sıra oynuyorduk. Birden dokuza kadar 

olan seviyelerde ben birini oynuyordum, üçünü oynuyordum. Şey, ben biri 

oynuyorum, o ikiyi oynuyor, ben üçü oynuyorum, o dördü oynuyor. 

Benefits of Collaborative Learning 

General Positive Perceptions 

[S14 in Turkish]: Arkadaşımla oturmak isterdim 

Shared Responsibility 

[S4 in Turkish]: Daha güzel oluyor. Yani böyle tek başına yapmak yerine 

arkadaşınla değişimli kullanıyorsun. O yaparken sen onu izliyorsun, sen yaparken 

de o da seni izliyor, o da olabiliyor. Hem de arada sırada arkadaşın da dinlenmiş 



 
 

285 

oluyor yazdıktan sonra veya kullandıktan sonra, sen de dinlenmiş oluyorsun, güzel 

oluyor. 

Enhanced Problem-Solving 

[S7 in Turkish]: Çünkü daha kolay oluyor. İkimiz birden çözdüğümüz için daha kolay 

oluyor. Hem ikimiz de yapamadığımız şeyi, mesela birimiz biliyor birimiz bilmiyoruz, 

öyle görebiliyoruz. 

[S21 in Turkish]: … bir şeye mesela arkadaşın buna bir yönden bakıyor, sen buna 

diyorum ki bir de bu yönden bakalım, yani çoklu bakış. Bu mantıktan ilerlemek 

gerekiyor diyor, mesela sen farklı bir mantık şey yapıyorsun. Farklı bir bakış açısı 

oluyor. Çözemediğiniz sorularda bakış açını değiştirmen gerekiyor probleme. 

Mutual Learning and Knowledge Sharing 

[S16 in Turkish]: Bence öğrendi ama… Yani mesela, ilk önce başladığımızda sağı-

solu pek anlayamıyordu. Ben ona anlatmıştım. Ben şeyleri karıştırıyordum, hani bu 

şeyi beş kez tekrarla gibi şeyleri karıştırıyordum. Onu da bana o öğretmişti. 

[S26 in Turkish]: Genelde code.org olarak ben ona çok fazla şey öğrettim ama onun 

dışında bilgisayarın temel şeyleri olarak o bana çok şey öğretti. 

Challenges of Collaborative Learning 

Unequal Participation 

[S17 in Turkish]: Bilgisayarın bana hâkimiyetini vermediği için, artık vermiyor. 

Dinleniyorum (gülme). Yine böyle yaslanıyorum arkama. Yaptığı şeylerden örnek 

alıyorum. Bazen de ben yapabileyim diye şey yapıyor, bazen izin veriyor. 

Reduced Engagement 

[S16 in Turkish]: Bazen hani şey oluyordu ıı.. o yaparken ben kalıyordum öyle, 

bakmıyordum ona da. Yardım istediğinde yardım ediyordum ama genellikle onun 

yaptığı sorulara bakmıyordum. 

Conflicts Over Problem-Solving Approaches 
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[S21 in Turkish]: Bazen tabi ki şey oluyor, bir soru var, çözümü şu diyoruz. O başka 

bir şey diyor ve bunda inat ediyor inat. Mesela böyle olmalı tamam demiyor kimse, 

bunu yapalım demiyor, sonra olmazsa benimkisi deneriz demiyor. Ben de yaptım 

bunu. Oluyor bazen. 

Conflicts Over Resource Sharing 

[S12 in Turkish]: En az sevdiğim şey bilgisayarı paylaştığım arkadaşımla bilgisayarı 

paylaşma sorunu yaşadığım için. 

Seeking Assistance 

Source of Assistance 

Peers or Teachers as a Source of Support 

Reasons for seeking assistance from peer 

Familiarity 

[S19 in Turkish]: Arkadaşımdan öncelikle yardım almamın nedeni, arkadaşımla her 

gün aynı yerde olduğumuz için kendime daha çok sıcak hissediyorum. 

Teacher Unavailability 

[S5 in Turkish]: Hoca yardım edemeyince yapanlara baş vuruyoruz. 

Reasons for Seeking Assistance from Teacher 

Teacher Expertise 

[S20 in Turkish]: Çünkü bu konularda daha bilgili. 

Clear Explanations and Guidance 

[S29 in Turkish]: Öğretmenim direkt daha güzel gösteriyordu. … 

Öğretmenim anlatarak daha açıklayıcı gösteriyordu. 

Self-Perceived Proficiency 
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[S30 in Turkish]: Ben genelde onlardan önde gittiğim için onlar geride 

oluyor.. 

Peer Support and Interaction 

Constructive Collaboration 

[S26 in Turkish]: Ya geliyorum, öğretmenimden izin alarak, yanına. Mesela 

şunu şöyle yaparsan yapabilirsin, şunu yanlış yapmışsın şu kadar açıyla 

yapacaktın… Öyle. Kodlarla yardım ediyordum. 

[S12 in Turkish]: İstişare ederim yani arkadaşlarımla tartışarak çünkü 

direkt onların yaptıklarını dinlersem yine de farklı olur, anlayamam. 

Unproductive Collaboration Strategies 

[S21 in Turkish]: Yani beni biraz tabi ki erteliyor, sonra bakıyor benim 

soruma. Deniyor ilkten kendi yapmayı çözdüğü soruyu. Yapamadıysa 

gidiyor kendi bilgisayarından açıp bana veriyor. … Yani kendisi orada 

yaptığında ben tabi çok anlayamıyorum, mantık yürütemiyorum. Ama o 

yaptığında demek ki böyle yapmalıymışım diyebiliyorum mesela sorunun 

cevabını. 

[S14 in Turkish]: Eğer o soruyu geçtilerse geri gelip o soruyu bana 

gösteriyorlardı. Pek anlayamıyordum. 

Theme 4: Independent Learning Approaches 

Independent Learning Strategies 

Reviewing Past Solutions 

[S8 in Turkish]: Eskilerine dönerim, onlara bakarım. Onlara benzeyen bir 

şey varsa onları geçiririm. 

Trial and Error 

Self-Visualization 
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[S16 in Turkish]: Bu gibi durumlarda kendimi hayal ediyordum. Mesela bu 

şeyler, kare, şunlar var ya, kareler, karelerde kendim gibi hissediyordum ve 

ne tarafa döneceğimi kendim belirliyordum. Atıyorum bir boydan şeklimi 

aynı yerde olduğumu düşünüyordum ve nereye gideceğimi yapıyordum. Ve 

çok kolay oluyordu. 

Guidance from the Coding Platform 

[S4 in Turkish]: Evet bazen böyle tam böyle kodlamaya girdiğimizde en 

başta video çıkıyor bir de ortalarda çıkıyor onları izliyoruz. İzleyince daha 

açıklayıcı oluyor aslında çıkanlar. İzlemeyince hani bunun ne olduğunu 

anlayamıyorsun bazen hani bir şey çıktığında. 

Benefits of Solo Programming 

General Positive Perceptions 

Improved Focus 

[S17 in Turkish]: Bilişim (Bilişim Teknolojileri ve Yazılım) dersinden daha 

açık olurdum. Nasıl desem? Böyle sakince otururdum hocayı dinlerdim. 

Yanımda biri olmazdı. Dikkatim dağılıyor. 

Active Engagement 

[S_8 in Turkish]: Onun söylediği kodları kendim anlayamıyordum çünkü 

kendim bakmadan yani kodun ne olduğunu, nasıl çalıştığını 

anlayamıyordum. Ama kendim baktığımda daha iyi anlıyorum. 

[S16 in Turkish]: Tek başına kodlama yapmanın olumlu yanı bence bütün 

soruları görebiliyorsun ve bütün sorulara kendin cevap veriyorsun. 

Yapmaya çalışıyorsun, biraz beynini çalıştırıyorsun falan bence daha iyi 

oluyor. 

Enhanced Retention  
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[S14 in Turkish]: …ama daha çok aklında kalıyordu. Daha çok soru 

çözüyordun çünkü. 

Challenges of Solo Programming 

Lack of Pair Consultation 

[S22 in Turkish]: …mesela anlamadığım bir konuyu hocaya sorduğum 

zaman bazenleri anlayamıyorum, ne yapacağımı bulamıyorum. Arkadaşım 

olduğu zaman yardım ediyordu, bulabiliyorduk beraber ama olmadığı 

zaman biraz zorlanıyordum. 

Theme 5: Goal Setting 

Mastery-Oriented Goals 

Desire to Simplify Complex Tasks 

[S10 in Turkish]: Akış şemalarındaki hocam şeyleri değiştirmek isterdim, 

görselleri. Hocam yazıyla yazmalarını isterdim. Şekillerle olmasın, 

yazılarla… 

[S18 in Turkish]: İç-içe döngüleri değiştirmek isterdim hocam. O konuda 

çok kötüyüm. O konuyu çıkartmak isterdim. 

Challenge Seeking 

[S7 in Turkish]: Gittikçe daha zor şeyler geldi mi daha da 

heyecanlanıyorsun. 

Career Oriented Goals 

[S20 in Turkish]: Çünkü düşündüğüm ilerideki meslek yazılım 

mühendisliği. O yüzden önem gösteriyorum. İlgim var yazılıma o yüzden… 

İlgim olduğu yönden yazılımı seçmeye çalışıyorum. 

[S1 in Turkish]: Yani büyüdüğüm zaman, meslek sahibi olduğum zaman 

önemli olacak diye düşünüyorum. Yani şimdi büyüdüğüm zaman işlere 
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girdiğim zaman kodlama olur işlerde çünkü çok oluyor. Şu an pek emin 

değilim yani büyüdüğüm zaman olacak kesinlikle kodlama. 

Daily Life Context Relevance 

[S27 in Turkish]: Benim için önemli. Hayatımda zor durumlarda yardım 

edebilir bana. Mesela annem yemeği yapacak. Ama ‘Kendin yap, ben 

gidiyorum’ diyecek. ‘Anne bana algoritma yapar mısın?’ diyebilirim. 

‘Algoritma ne?’ der. Ben de derim, ona anlatırım. O da yapar bana. Ben de 

kendim yaparım yani. 

[S10 in Turkish]: Hocam, teknolojik aletlerde falan işimize yarayabilir. 

Mesela Amerika’da Tesla’ları telefonla çağırabiliyoruz. O yönden bence 

gerekli. 

Recreational Interest in Coding 

[S3 in Turkish]: Ben bunu sadece hobi olarak yapıyorum. İleride de hobi 

olarak yaparım sadece. 

Performance-Oriented Goals 

Competition Focus 

[S1 in Turkish]: ...Sonra dedi ki ya biraz daha diğerlerini geçelim diye, hızlı 

yapalım diye ben yapayım dedi. Ben tamam dedim. 

Completion-Driven Motivation 

[S4 in Turkish]: Bazen biz şey yapıyoruz. Bir yanımda oturan arkadaşımın 

Code.org’una giriyoruz bir benim hesabıma giriyoruz. Onun hesabına 

girdiğimizde bende yapılmayan yerleri evde tamamlıyorum. 

Academic Achievement Focus 

[S24 in Turkish]: Mesela hoca sınav yaptığında hep kodlamalardan 

soruyor. Kodlama üzerinden soruyor. Öyle şekiller veriyor sınav kağıdında. 

Mesela aynı etkinlikleri yapıyoruz, hoca da aynısını soruyor, öyle. O 
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yüzden, o açıdan bir fayda sağlıyor bana. Bir de sınavlardan yüksek almamı 

sağlıyor. 

Performance Avoidance Goals 

Fear of Failure 

[S7 in Turkish]: Çünkü etrafta çok kişi vardı. Yapamadığımda utanıyordum. 

[S28 in Turkish]: Adı aklıma gelmiyor ama bazı şeyler zordu hocam. 

Yapamam diye korkuyordum. 

Avoidance of Challenging Tasks 

[S24 in Turkish]: En az sevdiğim şey zorlu kodlamalar diyebilirim yani. 

Skipping Tasks 

[S21 in Turkish]: Yani çoğunlukla orada üç kişiysek, iki kişiysek atlayalım 

diyoruz. Mesela yapamadığımız çok fazla örnek oldu bence. Hepsini de 

atladık. 

Theme 6: Affective Aspects 

Attitude 

Positive Attitudes 

Interest in Learning Programming 

[S18 in Turkish]: Çok sarıyor hocam. Kodlamayı seviyorum. 

Enjoyment of Plugged Activities 

[S3 in Turkish]: Bilgisayar sınıfına inmek gerçekten daha iyi oldu benim 

için de. Eğleniyoruz. Eğitim görüyoruz bilgisayar sınıfında. 

[S27 in Turkish]: Böyle yani girince yapasın geliyor. Bakınca sorulara 

yapasın geliyor. Çünkü hoş sorular vardı. Güzel kodlama falan vardı. 

Enjoyment of Unplugged Activities 
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[S4 in Turkish]: Gerçekten o bardak oyununu çok sevmiştim. Bir de şey 

yapmıştık böyle robot şeklinde hareket etmiştik. Tahtaya yazmıştı hoca. 

Arkamızı dönmüştük. Bir tane arkadaşımız çıkmıştı. Birisi robot oluyordu 

diğeri de tahtadakileri söylüyordu. İşte dereceler oluyordu, orada kal 

diyordu, sağa-sola dön diyordu. O çok eğlenceli olmuştu. Güzel olmuştu. 

Enjoyment of Social Interaction 

[S14 in Turkish]: Ama sosyalleşerek yaptıklarımız da (bilgisayarsız 

etkinlikler), onlar da güzeldi. Mesela bazı derslerde okul bahçesine çıkıp 

orada… Bir ara bilişim hocası bizim sınıflara şey getirmişti, bir tane tavşan 

deliği şeyi, tavşan deliği. Tavşan havuca ulaşmaya çalışıyordu. Mesela 

onun gibi, onun biraz daha büyüğünü okulun bahçesinde yere resim olarak 

çizip oynamak. 

[S26 in Turkish]: Birazcık daha sosyalleştim orada. O da benim gibi 

kodlamayı seviyordu. Yani bilgisayar olmasa onunla tanışamazdık çünkü. 

Appeal of Familiar Characters 

[S8 in Turkish]: Yani böyle bilinen oyun karakterleri falan olduğu için daha 

çok ilgimi çekti ve böylece yani daha kolay yaptım. Kolaylaştırdı, 

karakterlerin olması hem heyecan verdi hem de kolaylaştırdı. 

[S22 in Turkish]: Kodlamayla ilgili, hani Angry Birds var ya, başka bir 

filimler de olabilirdi. Mesela Bumblebee falan, böyle robotlarla ilgili daha 

güzel olurdu. Daha eğlenceli olurdu, yani bir farklılık olurdu. Eğlenceli 

olurdu daha fazla. 

Engagement of Gamification 

[S3 in Turkish]: Zaten o code.org üzerinden oynadığımız oyunlar falan çok 

eğlenceliydi. Yani düşünürsek aslında kodlama yazıyoruz ama gerçekten 

çok eğlenceliydi. O ‘ileri git’ veyahut da oyunu bitirmek falan. Bunlar 

gerçekten eğlenceliydi kodlamada. 
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Positive Classroom Atmosphere 

[S1 in Turkish]: Bir de nazik bir hoca. Nazik anlatıyor. Yani ben de mutlu 

oluyorum yani bağırmıyor. İlk defa görüyorum. Yani çok çok kızdırdığımız 

zaman bağırıyor o kadar yani. O da direk geçiyor zaten. Hocamızı çok 

seviyorum. Bir şey söylediğimiz zaman o tamam diyor. 

Negative Attitudes 

Negative Disposition Towards Programming 

[S19 in Turkish]: Sevmedim kodlamayı. Biraz anlamadım. Biraz zordu. 

Frustration from Prolonged Use 

[S4 in Turkish]: Mesela bir kursu bitirdiğinde diğerine geçtiğinde sıkıcı 

oluyor sadece. Biraz daralıyor insan. Sıkıcı oluyor gerçekten de. 

[S9 in Turkish]: Başka yeni şeyler denemek isterdim. 

Self-Efficacy 

Confidence in Coding Abilities 

[S29 in Turkish]: Ya aslında zorlanmadım ben yani. Çok kolaydı hepsi. 

[S26 in Turkish]: Bir de bu işin zor olduğunu fark ettim yani. Öyle kolay bir 

iş değil. 

Determinants of Self-Efficacy Perceptions 

Social Recognition from Peers 

[S26 in Turkish]: Mesela böyle giriyoruz ya kendimi profesör gibi 

hissediyorum nedense. Bu işlerde uzman olmuş birisi gibi hissediyorum. 

Arkadaşlarım bana soru soruyor, ben de ‘Şöyle şöyle yaparsan 

yapabilirsin’ diyorum. O zaman yani kendimi çok iyi hissediyorum. 

Peer Comparison 
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[S7 in Turkish]: Başarılı görüyorum ama … çok da iyi diyemiyorum. Çünkü 

benden iyi olanlar da var. Onların seviyesinde değilim. Ortalamanın biraz 

üstü. 

Mastery Experiences 

[S9 in Turkish]: Çünkü bir keresinde hoca anlatırken ben konuyu 

anlamıştım. Biranda böyle bitirmiştim onu. Başarılı olduğumu oradan 

anlamıştım, ne kadar hızlı yaptım diye. 

Academic Performance 

[S6 in Turkish]: Üç yazılım 100 geldi. Ondan biliyorum kodlamada başarılı 

olduğumu. 

Perceived Cognitive Abilities 

[S29 in Turkish]: Anlama kapasitem daha yüksek olduğu için... 

[S1 in Turkish]: Beynim de çok almadığı için… 
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