

THE INVESTIGATION OF PSYCHO-EDUCATIONAL CONSTRUCTS IN
RELATION TO MIDDLE SCHOOL STUDENTS’ LEARNING OF BASIC

COMPUTER PROGRAMMING CONCEPTS

A THESIS SUBMITTED TO
THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES

OF
MIDDLE EAST TECHNICAL UNIVERSITY

BY

PINAR KEFELİ BERBER

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR

THE DEGREE OF DOCTOR OF PHILOSOPHY
IN

COMPUTER EDUCATION AND INSTRUCTIONAL TECHNOLOGY

JULY 2024

Approval of the thesis:

THE INVESTIGATION OF PSYCHO-EDUCATIONAL CONSTRUCTS IN
RELATION TO MIDDLE SCHOOL STUDENTS’ LEARNING OF BASIC

COMPUTER PROGRAMMING CONCEPTS

submitted by PINAR KEFELİ BERBER in partial fulfillment of the requirements
for the degree of Doctor of Philosophy in Computer Education and Instructional
Technology, Middle East Technical University by,

Prof. Dr. Naci Emre Altun
Dean, Graduate School of Natural and Applied Sciences

Prof. Dr. Soner Yıldırım
Head of the Department, Comp. Edu. and Inst. Tech.

Prof. Dr. Soner Yıldırım
Supervisor, Comp. Edu. and Inst. Tech., METU

Examining Committee Members:

Prof. Dr. Halil Yurdugül
Comp. Edu. and Inst. Tech., Hacettepe University

Prof. Dr. Soner Yıldırım
Comp. Edu. and Inst. Tech., METU

Prof. Dr. Ömer Delialioğlu
Comp. Edu. and Inst. Tech., METU

Assoc. Prof. Dr. Evren Şumuer
Comp. Edu. and Inst. Tech., Kocaeli University

Assoc. Prof. Dr. Erkan Er
Comp. Edu. and Inst. Tech., METU

Date: 05.07.2024

iv

I hereby declare that all information in this document has been obtained and
presented in accordance with academic rules and ethical conduct. I also declare
that, as required by these rules and conduct, I have fully cited and referenced
all material and results that are not original to this work.

Name Last name : Pınar Kefeli Berber

Signature :

v

ABSTRACT

THE INVESTIGATION OF PSYCHO-EDUCATIONAL CONSTRUCTS IN
RELATION TO MIDDLE SCHOOL STUDENTS’ LEARNING OF BASIC

COMPUTER PROGRAMMING CONCEPTS

Kefeli Berber, Pınar
Doctor of Philosophy, Computer Education and Instructional Technology

Supervisor: Prof. Dr. Soner Yıldırım

July 2024, 296 pages

The main purpose of this study was to investigate the cognitive and motivational

factors contributing to the acquisition of fundamental computer programming

concepts at the middle school level. Employing a mixed-method embedded design

approach, the study aimed to explore how personal achievement goal orientations,

perceived classroom goal structures, academic-related perceptions, beliefs and

strategies, attitude towards coding education, cognitive load, mathematics and

reading comprehension achievement, gender, and geographical school location

predict students’ achievement scores in programming. Participants of the study

included 199 fifth-grade students. The implementation was conducted over ten

weeks in the Information Technologies and Software course across three public

middle schools. Data were collected through surveys, achievement tests, and

interviews. Data analysis involved both quantitative and qualitative approaches. For

the analysis of quantitative data, various methods were employed, including

independent samples t-test, repeated measures ANOVA, mulrank function, doubly

repeated MANOVA, and hierarchical regression. The study’s results revealed that

vi

mathematics achievement was the strongest predictor of programming achievement,

followed by reading comprehension achievement, geographic school location,

extraneous load, attitude towards coding education, and academic self-handicapping

strategies. Furthermore, changes were observed in students’ cognitive load levels

throughout the programming learning process, particularly concerning certain

programming topics. While the results indicated no significant differences based on

gender regarding the variables investigated, significant differences were found

concerning geographical school location in terms of academic achievement and

motivational factors. Students’ experiences with programming and the online coding

platform used in the research were generally positive.

Keywords: Computer Programming Education for Children, Coding, Cognitive

Load, Motivation

vii

ÖZ

ORTAOKUL ÖĞRENCİLERİNİN TEMEL BİLGİSAYAR
PROGRAMLAMA KAVRAMLARINI ÖĞRENMELERİNE İLİŞKİN

PSİKO-EĞİTSEL YAPILARIN İNCELENMESİ

Kefeli Berber, Pınar
Doktora, Bilgisayar ve Öğretim Teknolojileri Eğitimi

Tez Yöneticisi: Prof. Dr. Soner Yıldırım

Temmuz 2024, 296 sayfa

Bu çalışmanın temel amacı, ortaokul düzeyinde temel bilgisayar programlama

kavramlarının kazanımına katkıda bulunan bilişsel ve motivasyonel faktörleri

araştırmaktır. Karma yöntemli gömülü tasarım yaklaşımının kullanıldığı bu

çalışmada, kişisel başarı hedef yönelimleri, algılanan sınıf hedef yapıları, akademik

algılar, inançlar ve stratejiler, kodlama eğitimine yönelik tutum, bilişsel yük,

matematik ve okuduğunu anlama başarısı, cinsiyet ve coğrafi okul konumunun

öğrencilerin programlama başarı puanlarını nasıl etkilediği incelenmiştir.

Çalışmanın katılımcılarını 199 beşinci sınıf öğrencisi oluşturmaktadır. Uygulama, üç

devlet ortaokulunda, on hafta boyunca Bilişim Teknolojileri ve Yazılım dersi

kapsamında gerçekleştirilmiştir. Veriler anketler, başarı testleri ve mülakatlar

yoluyla toplanmıştır. Verilerin analizinde hem nicel hem de nitel yaklaşımlardan

faydalanılmıştır. Nicel verilerin analizi için bağımsız örneklem t-testi, tekrarlı

ölçümler ANOVA, mulrank fonksiyonu, iki yönlü tekrarlı ölçümler MANOVA ve

hiyerarşik regresyon gibi çeşitli yöntemler kullanılmıştır. Çalışmanın sonuçları,

matematik başarısının programlama başarısının en güçlü yordayıcısı olduğunu, bunu

okuduğunu anlama başarısı, coğrafi okul konumu, konu dışı yük, kodlama eğitimine

viii

yönelik tutum ve akademik kendini engelleme stratejilerinin takip ettiğini ortaya

koymuştur. Ayrıca, programlama öğrenme sürecinde, özellikle belirli programlama

konularıyla ilgili olarak öğrencilerin bilişsel yük seviyelerinde değişiklikler

gözlemlenmiştir. Sonuçlar, incelenen değişkenler açısından cinsiyete göre anlamlı

bir fark olmadığını gösterirken, coğrafi okul konumuna göre akademik başarı ve

motivasyonel faktörler açısından anlamlı farklılıklar elde edilmiştir. Öğrencilerin

programlama ve araştırmada kullanılan çevrimiçi kodlama platformuna yönelik

deneyimlerinin genellikle olumlu olduğu görülmüştür.

Anahtar Kelimeler: Çocuklar için Bilgisayar Programlama Eğitimi, Kodlama,

Bilişsel Yük, Motivasyon

ix

To all street animals, for the colors you bring to our lives…

x

ACKNOWLEDGMENTS

First and foremost, I would like to express my deepest gratitude to my supervisor,

Prof. Dr. Soner Yıldırım, for his invaluable patience, guidance, and feedback

throughout this research. This endeavor would not have been possible without his

support.

I also could not have undertaken this journey without the knowledge and expertise

of my dissertation committee members, Prof. Dr. Ömer Delialioğlu and Assoc. Prof.

Dr. Evren Şumuer. Additionally, I extend my heartfelt thanks to my jury members,

Prof. Dr. Halil Yurdugül and Assoc. Prof. Dr. Erkan Er, for their insightful

contributions.

Words cannot express my gratitude to Assoc. Prof. Dr. Sacip Toker who generously

provided knowledge and expertise during data analysis process.

I would like to express my appreciation to the school administrators, teachers, and

students who participated in this study. Their collaboration and support were

essential to the research process. I am particularly grateful to Vesile Çelik for her

assistance during data collection. I am deeply indebted to Kemal Gündüz for his

unwavering support throughout the pilot and main studies. I had the pleasure of

working with each of them.

I would like to express my sincere gratitude to my colleague, Nuray Toplu, for her

exceptional work as a second coder in the qualitative analysis. Her dedication and

support were invaluable. I would also like to thank Aslı Boyraz for her timely

assistance. I am grateful for the support and encouragement of my friends and

colleagues, who were always there to offer guidance and support.

I would like to express my heartfelt gratitude to my family for their unconditional

love and support. My mother, Belgin Kefeli, has always believed in me; my father,

İlkay Kefeli, has been a constant source of support; my grandparents, Abbas Kefeli

xi

and Perihan Kefeli, have shaped me with their love; and my sister, Bahar Kefeli Çol,

has always been by my side. My husband, Kasım Berber, has been an incredible

source of strength and encouragement throughout this journey, and I am deeply

thankful for his unwavering support and understanding.

Lastly, I would like to thank my beloved children, Lokum and Piços, who brought

joy and inspiration to my life during this challenging journey.

xii

TABLE OF CONTENTS

ABSTRACT .. v

ÖZ .. vii

ACKNOWLEDGMENTS ... x

TABLE OF CONTENTS .. xii

LIST OF TABLES .. xvii

LIST OF FIGURES .. xix

LIST OF ABBREVIATIONS ... xx

CHAPTERS

1 INTRODUCTION ... 1

1.1 Background of the Study ... 1

1.2 Purpose of the Study .. 8

1.3 Research Questions ... 9

1.4 Significance of the Study ... 11

2 LITERATURE REVIEW .. 15

2.1 Cognitive Load Theory .. 15

2.1.1 Human Cognitive Architecture .. 15

2.1.2 Foundations of Cognitive Load Theory .. 21

2.1.3 Types of Cognitive Load ... 23

2.1.4 Research on the Role of Cognitive Load Theory in Computer

Programming Education .. 27

2.2 Motivation and Learning ... 30

2.2.1 Goal Orientation Theory .. 30

xiii

2.2.2 Self-efficacy .. 33

2.2.3 Academic Self-Handicapping Strategies .. 34

2.2.4 Attitude ... 36

2.2.5 Cheating Behavior .. 37

2.2.6 Research on the Impact of Motivational Factors on Students'

Learning of Computer Programming .. 38

2.3 Programming Education for Young Learners ... 40

2.3.1 Block-based Programming Environments 43

2.4 Summary ... 45

3 METHODOLOGY .. 49

3.1 Research Questions ... 49

3.2 Participants .. 51

3.2.1 Participants in the Quantitative Phase ... 51

3.2.2 Participants in the Qualitative Phase ... 54

3.3 Research Design of the Study ... 55

3.4 Procedure of the Study .. 58

3.4.1 Preliminary Investigation .. 58

3.4.2 Adaption Process of the Lesson Plans .. 62

3.4.3 Lesson Plan Evaluation Workshop ... 63

3.5 Data Collection Instruments ... 64

3.5.1 Coding Achievement Test ... 64

3.5.2 Cognitive Load Scale .. 71

3.5.3 Patterns of Adaptive Learning Scales (PALS) 79

3.5.4 Attitudes Towards Coding Education Scale (ATCES) 79

xiv

3.5.5 Reading Comprehension Achievement Test 80

3.5.6 5th Grade Mathematics Achievement Test 80

3.5.7 Student Interview Protocol .. 80

3.6 Pilot Study ... 82

3.7 Implementation of the Study ... 85

3.8 Data Analysis ... 86

3.8.1 Quantitative Data Analysis .. 86

3.8.2 Qualitative Data Analysis .. 87

3.9 Trustworthiness for Qualitative Part of the Study 89

3.9.1 Internal Validity (Credibility) .. 89

3.9.2 External Validity (Transferability) .. 91

3.9.3 Researcher Role and Bias .. 92

3.10 Ethical Issues ... 93

3.11 Limitations of the Study .. 94

4 RESULTS .. 97

4.1 Results of the Quantitative Data Analysis ... 97

4.1.1 Correlation Between Variables of the Study 97

4.1.2 Results of the Research Question 1 ... 100

4.1.3 Results of the Research Question 2 ... 103

4.1.4 Results of the Research Question 3 ... 108

4.1.5 Results of the Research Question 4 ... 114

4.2 Results of the Qualitative Data Analysis ... 122

4.2.1 Results of the Research Question 5 ... 122

5 DISCUSSION AND CONCLUSION ... 187

xv

5.1 Major Findings and Discussion .. 187

5.1.1 Cognitive Load .. 187

5.1.2 Gender ... 192

5.1.3 Geographical School Location .. 195

5.1.4 Mathematics Skills .. 197

5.1.5 Reading Comprehension Skills ... 201

5.1.6 Attitude Toward Programming ... 204

5.1.7 Patterns of Adaptive Learning .. 207

5.2 Conclusion .. 208

5.3 Implications of the Findings ... 212

5.4 Recommendations for Further Research ... 216

REFERENCES .. 217

APPENDICES ... 249

A. Lesson Plan Evaluation Form ... 249

B. Coding Achievement Test ... 251

C. Cognitive Load Scale .. 257

D. Patterns of Adaptive Learning Scale ... 258

E. Attitudes Toward Coding Education Scale ... 261

F. Reading Comprehension Achievement Test ... 263

G. 5th Grade Mathematics Achievement Test ... 269

H. Interview Protocol ... 271

I. Sample Lesson Plan .. 273

J. Approval of Human Subjects Ethics Committee at METU - I 275

K. Approval of Human Subjects Ethics Committee at METU - II 276

xvi

L. Approval of Provincial Directorate of National Education 277

M. The Original Turkish Versions of the Quotes 278

CURRICULUM VITAE ... 295

xvii

LIST OF TABLES

TABLES

Table 3.1 Participants of the Study by Schools .. 51

Table 3.2 Characteristics of the Participants ... 52

Table 3.3 Parental Education Level of the Participants .. 53

Table 3.4 Demographic and School Information of Interviewed Students 55

Table 3.5 Content Validity Values of the Test Items .. 66

Table 3.6 Item Analysis Results of the Coding Achievement Test 69

Table 3.7 The Distribution of the Items According to Learning Objectives 70

Table 3.8 Items of the Cognitive Load Scale .. 71

Table 3.9 Distribution of Participants to Schools ... 73

Table 3.10 Normality Distribution of The Cognitive Load Scale Scores 74

Table 3.11 Descriptive Statistics ... 75

Table 3.12 Descriptive Statistics for Subfactors ... 75

Table 3.13 Factor Correlations ... 77

Table 3.14 Factor Loadings of the Items .. 77

Table 3.15 Reliability Analysis Results of the CLS ... 79

Table 3.16 Weekly Learning Objectives, Lesson Plans and Activities 83

Table 3.17 Data Collection Procedures .. 86

Table 4.1 Correlation Coefficients Between the Variables 99

Table 4.2 Descriptive Statistics for Repeated Cognitive Load Measures Across

Seven Programming Concepts .. 101

Table 4.3 Results of One-way Repeated Measures ANOVA Comparing Cognitive

Load Scores Across Seven Different Programming Concepts 102

Table 4.4 Results of t-test and Descriptive Statistics for ATCE, MA, RCA and CA

by Gender .. 104

Table 4.5 Descriptive Statistics for Cognitive Load Measures for Gender Across

Seven Programming Concepts .. 106

xviii

Table 4.6 Results of Doubly Repeated MANOVA for Cognitive Load Types by

Gender ... 107

Table 4.7 Mann-Whitney U Test Results for PALS by Geographical School

Location ... 109

Table 4.8 Results of t-test and Descriptive Statistics for ATCE, MA, RCA and CA

by Geographical School Location ... 110

Table 4.9 Descriptive Statistics for Cognitive Load Measures for School Location

Across Seven Programming Concepts .. 111

Table 4.10 Results of Doubly Repeated MANOVA for Cognitive Load Types by

Geographical School Location .. 112

Table 4.11 Collinearity Statistics of the Predictor Variables 115

Table 4.12 Standardized Residual Statistics .. 116

Table 4.13 Four-Step Hierarchical Multiple Regression Analysis Results 120

Table 4.14 Distribution of Code Frequencies by the Theme of Cognitive Demands

and Instructional Factors ... 124

Table 4.15 Distribution of Code Frequencies by the Theme of Effective

Instructional Approaches ... 137

Table 4.16 Distribution of Code Frequencies by the Theme of Collaborative

Learning Approaches ... 147

Table 4.17 Distribution of Code Frequencies by the Theme of Independent

Learning Approaches ... 162

Table 4.18 Distribution of Code Frequencies by the Theme of Goal Setting 168

Table 4.19 Distribution of Code Frequencies by the Theme of Affective Aspects

 ... 177

xix

LIST OF FIGURES

FIGURES

Figure 3.1. Scree Plot for CLS .. 76

Figure 3.2. Path Analysis Diagram for CLS within CFA 78

Figure 3.3. First Cycle and Second Cycle Coding Methods 88

Figure 4.1 Plot of Estimated Marginal Means of Intrinsic Load by Gender 113

Figure 4.2 Normal Probability Plot (P- P) of the Regression Standardized Residual

for CA ... 117

Figure 4.3 Histogram of Regression Standardized Residual for CA 117

Figure 4.4 Scatterplot of Standardized Residuals and Standardized Predicted

Values ... 118

Figure 4.5 Themes and Their Corresponding Categories 123

Figure 4.6 (a) Sample programming task on code.org (Course F-Lesson 8: Nested

Loops in Maze/Level 10) about nested loops and (b) possible solution to this task

 ... 128

Figure 4.7 (a) Sample programming task on code.org (Course 2 – Lesson 13: Bee

Conditionals/Level 8) about conditional statements and (b) its solution 133

xx

LIST OF ABBREVIATIONS

ABBREVIATIONS

CLS: Cognitive Load Scale

IL: Intrinsic Load

EL: Extraneous Load

GL: Germane Load

ATCES: Attitudes Toward Coding Education Scale

PALS: Patterns of Adaptive Learning Scale

MA: Math Achievement

RCA: Reading Comprehension Achievement

CA: Coding Achievement

MGO: Mastery Goal Orientation

PApGO: Performance-Approach Goal Orientation

PAvGO: Performance-Avoid Goal Orientation

AE: Academic Efficacy

ASHS: Academic Self Handicapping Strategies

CB: Cheating Behavior

CMGS: Classroom Mastery Goal Structure

CPApGS: Classroom Performance-Approach Goal Structure

CPAvGS: Classroom Performance-Avoid Goal Structure

CA: Coding Achievement

1

CHAPTER 1

1 INTRODUCTION

This study aims to investigate the factors influencing the academic achievement of

middle school students in learning fundamental computer programming concepts.

The introduction provides a contextual background, outlines the study's purpose and

research questions, and concludes with a discussion of the study's significance and

contribution to the existing body of knowledge.

1.1 Background of the Study

As computer technology advances, computers have entwined in almost every part of

our daily lives. They became an integral part of our workplaces, schools, and homes.

In response to technological advancements, a growing demand has emerged for

computer programs that can enhance the quality of human life. Despite rising

demand for computer programs, programming courses continue to exhibit high

failure rates (Robins et al., 2003; Watson & Li, 2014). Teaching computer

programming to beginners in various disciplines has been identified as a challenging

task (Abdul-Rahman & Du Boulay, 2014). The difficulty of acquiring knowledge

and skills necessary for programming computers has been frequently mentioned in

the related literature on teaching computer programming (Blanco et al., 2009; Hawi,

2010; Kelleher & Pausch, 2005; Pokorny, 2009; Schulte & Bennedsen, 2006;

Thomas & Greene, 2011; Watson & Li, 2014; White & Ploeger, 2004).

Teaching and learning programming presents a complex challenge for instructors

and students. This phenomenon remains a significant challenge in the field of

computer science education. Consequently, a substantial body of literature has

investigated ways to improve computer programming education to enhance novice

2

students' learning of programming skills more efficiently (e.g., Abdul-Rahman & Du

Boulay, 2014; Caspersen & Bennedsen, 2007; Coleman & Nichols, 2011; Haden et

al., 2016; Harms, 2013; Looker, 2021; Van Merrienboer & Krammer, 1987). Within

introductory programming courses, novice learners confront multifaceted learning

challenges. They must concurrently acquire novel programming concepts, navigate

unfamiliar development tools (e.g., Integrated Development Environments), and

adapt to a paradigm shift in their problem-solving approaches (Mayer, 1987, as cited

in Bucks & Oakes, 2011). These fundamental skills, coupled with their lack of

familiarity with programming structure, design, and programming language syntax,

present a significant challenge for many students (Baist & Pamungkas, 2017).

Furthermore, programming concepts often appear abstract and lack a readily

apparent connection to real-world phenomena. This disconnection hinders students'

ability to link these concepts with their prior knowledge and experiences, which are

crucial for meaningful learning (Myers, 1986).

Despite the established challenges in teaching programming to older age groups,

such as university students, programming is now being introduced to younger

children under the name of "coding." Recognizing the importance of early exposure

to computational thinking and programming skills, many countries have integrated

computer science and coding-related competencies into education curricula,

including those for younger age groups (Fluck et al., 2016; Webb et al., 2017). In

contrast to traditional text-based programming languages, which can be challenging

for younger learners, a new trend in coding education is emerging with the use of

graphical programming environments and block-based programming approaches. To

make programming more accessible and engaging for children, graphical

programming environments and block-based programming languages, such as

code.org, Scratch and Tynker, have been used in their instruction (Grover & Pea,

2013; Resnick et al., 2009). These languages have many advantages over traditional

text-based programming since they enable users to use graphical representations for

programming (Koray & Bilgin, 2023; Meerbaum-Salant et al., 2013; Yang & Lin,

2019).

3

Teaching a subject that is already challenging for older groups to younger children

will undoubtedly present its own set of difficulties. Research has identified various

factors affecting programming learning, such as cognitive load (Grover & Basu,

2017), previous experience (Hinckle et al., 2020), mathematical background

(Bennedsen & Caspersen, 2005; Bergin & Reilly, 2006; Grover et al., 2015;

Mathews, 2017; Nasution et al., 2022), reading comprehension skills (Grover et al.,

2016; Ma et al., 2023), misconceptions about programming (Grover & Basu, 2017),

self-efficacy (Ketenci et al., 2019; Kinnunen & Simon, 2011; Kukul et al., 2017;

Toma & Vahrenhold, 2018), gender (Beyer et al., 2003; Cheryan et al., 2015),

socioeconomic status (Akpomudjere, 2020; Marks et al., 2006), learning styles

(Abdul-Rahman & Du Boulay, 2014), learning goals (Hazley et al., 2015; Shell et

al., 2013), and attitude (Ching et al., 2019; Sun et al., 2022).

Examining programming learning from a cognitive perspective is necessary for

building a more generalizable understanding of effective programming education

practices. Within this framework, cognitive load theory plays a significant role, as

existing research studies suggest that a predominant challenge in programming lies

in decomposing a problem into its constituent elements and articulating these

components as programming code. Programming heavily relies on working memory,

which exhibits limited capacity for storing and processing items, thereby potentially

resulting in significant levels of cognitive load. Therefore, assessing the cognitive

load encountered by students throughout the educational process is critical, given the

multifaceted nature and inherent challenges associated with programming skill

development (Berssanette & De Francisco, 2022).

Gender is another important variable that must be considered when examining

factors influencing success in computer science. Despite increased female

participation in Science, Technology, Engineering, and Mathematics (STEM), the

IT sector continues to be male-dominated. The literature on Computer Science

consistently highlights gender as a persistent inequity in computer science (Luxton-

Reilly, 2016). While the roots of this issue are complex, factors such as stereotypes,

prior experience, and self-efficacy have been identified as contributing to this

4

disparity. Stereotypes portraying computer specialists as male have been linked to

lower interest in programming among girls compared to boys (Master et al., 2016).

Consequently, female students often exhibit lower levels of self-efficacy in computer

science (Beyer, 2014; Doubé & Lang, 2012). Boys typically have more prior

programming experience (Bruckman et al., 2002) which results in a more positive

attitude towards programming (Beyer et al., 2003) and higher levels of achievement

(Guzdial et al., 2014). Nevertheless, research findings on the gender gap in computer

programming have been inconsistent. While some studies indicate no significant

gender differences among students (Akinola, 2015; Bennedsen & Caspersen, 2005;

Bruckman et al., 2002; Gunbatar & Karalar, 2018; Qian & Lehman, 2016), others

reveal persistent disparities (Guenaga et al., 2021; Tellhed et al., 2022). Efforts to

introduce coding into early childhood education aim to address these inequities by

providing equal opportunities for all children to develop digital competencies,

potentially leading to a more diverse and inclusive IT workforce.

Socioeconomic status, a complex construct encompassing income, education,

occupation, and perceived social standing, is another factor contributing to

disparities in educational outcomes among students. Moreover, the geographical

location of a school, often closely tied to socioeconomic status, has been shown to

influence a range of educational outcomes. The concept of geographic location,

described by Bæck (2016, p. 436) as “well-documented, less researched”,

encompasses far more than just physical space. The location of the school, whether

rural, suburban, or urban, impacts factors such as accessibility, resource allocation,

and overall learning environment, thereby exacerbating educational inequalities

(Chand & Mohan, 2019). Particularly in the realm of programming education, a

school's geographical location plays a crucial role in influencing students' access to

technology. Rural or suburban schools may encounter challenges in providing

students with equitable access to advanced technological resources compared to their

urban counterparts. In rural schools, the absence of up-to-date hardware and software

has posed significant challenges for administrators and educators in effectively

implementing computer programming curricula (Agnello et al., 2019). Adequate

5

resources are crucial for engaging young learners in programming and facilitating

their comprehension of the subject matter (Yusof et al., 2021). Previous research has

recorded teachers' complaints about the insufficiency of teaching resources

(Greifenstein et al., 2021). Furthermore, research studies have shown that early

exposure to digital technology (Gerson et al., 2022) and prior coding experience

(Bowman et al., 2019; Bruckman et al., 2002; Grover et al., 2016) have an impact on

programming learning. These factors are often mediated by socioeconomic variables

such as social class, income level, and parental attitudes toward programming

(Gerson et al., 2022), which could be indirectly linked to the geographical location

of schools.

Motivational factors have also been highlighted in the literature as influential in

programming education. The relationship between children’s programming learning

and motivational factors such as self-efficacy, attitude, and goal orientation is

multifaceted and significant. The literature has demonstrated a positive relationship

between self-efficacy, academic achievement, and performance (Bergey et al.,

2015). Self-efficacy is a critical motivational construct that influences an individual's

effort, resilience, and perseverance when faced with challenges (Bandura, 1977). In

the context of programming education, students may encounter difficulties with

complex programming and algorithmic problems. Individuals with low self-efficacy

are likely to exhibit less perseverance in overcoming these obstacles, potentially

hindering their progress and success in learning programming (Kovari & Katona,

2023; Ramalingam et al., 2004). While self-efficacy plays a significant role in

influencing performance in computer programming courses, self-efficacy is also

intricately linked to and influenced by other coding-related factors, including

attitudes (Kovari & Katona, 2023), enjoyment (Kanaparan et al., 2017), prior

programming experience (Ramalingam et al., 2004), as well as interest in computer

science (Beyer, 2014). In addition to self-efficacy, attitude toward programming

plays a pivotal role in student motivation and learning outcomes. However, the

relationship between young learners' attitudes toward programming and their

subsequent programming achievement remains inconclusive. While some studies

6

have suggested a significant correlation, others have found no such link (Baser,

2013). Given the relatively nascent nature of research on young children's attitudes

toward programming, many studies have relied on broader measures of STEM

attitudes (Ober et al., 2024). However, emerging research on the attitudes of middle

school students toward computer science and programming suggests that these

attitudes may be crucial in shaping long-term career aspirations, particularly in

STEM-related fields.

Another fundamental component of motivation is the goals that are influenced by

both individual and contextual factors. According to the goal orientation theory,

students establish a range of goals to guide their performance across various

academic tasks, including assignments, examinations, laboratory work, and overall

course engagement (Elliot et al., 2011; Senko et al., 2011; Shell & Soh, 2013).

Research indicates that adopting a goal-oriented approach to learning computer

science enhances academic performance and student persistence (Shell et al., 2016).

Generally, mastery-oriented and task-oriented goals exhibit a positive correlation

with academic performance, whereas the impact of performance goals on course

outcomes can be either adaptive or maladaptive (Elliot et al., 2011; Hazley et al.,

2015; Hulleman et al., 2010; Tomić et al., 2020). However, students often have a

complex interplay of multiple achievement goals, each influencing their motivation

and behavior differently. Therefore, it is more accurate to adopt a comprehensive

perspective rather than attributing a singular achievement goal orientation to them

(Peteranetz, 2021).

Classroom goal structures are an integral component of goal orientation theory. In

classroom settings, the types of goal orientations adopted by students are influenced

by their perceptions of classroom goal structures (Midgley & Urdan, 2001). Studies

have established that a perceived classroom mastery goal structure predicts personal

mastery goal orientation and is positively associated with academic performance

across multiple disciplines, such as mathematics (Guo & Hu, 2022; Urdan &

Midgley, 2003). Conversely, a competitive classroom environment that emphasizes

grades and social comparison tends to foster performance-oriented goals among

7

students (Meece et al., 2006). Therefore, the structure of classroom goals

significantly impacts the behavior of students and their process of learning by

influencing the types of personal goals students establish. Students' academic

behaviors and strategies are influenced by both personal achievement goals and

perceived classroom goal structures. Research findings indicate a positive

relationship between self-handicapping behaviors and personal performance-

avoidance goals. Moreover, classroom environments emphasizing performance-

oriented goals have been associated with a rise in student engagement in self-

handicapping strategies (Midgley & Urdan, 2001). Conversely, personal mastery

goals and perceived classroom mastery goal structures have demonstrated weaker or

negligible relationships with self-handicapping (Urdan et al., 1998).

Furthermore, with regard to goal orientation, cheating is another important concept

studied in the literature. Studies have indicated that individuals with performance-

oriented goals are more prone to engaging in behaviors associated with plagiarism

than those with mastery-oriented goals (Anderman & Midgley, 2004). In computer

science (CS) education, the majority of research on cheating behaviors has centered

on higher education institutions and programming environments that are based on

text. Particularly, studies have extensively examined cheating incidents within online

programming courses and take-home assignments, where teachers have more

difficulty monitoring students and students can easily share information and codes

via the Internet (Abou Naaj & Nachouki, 2023; Hellas et al., 2017; Kim & Lee,

2022). Studies have found that plagiarism and cheating behaviors are associated with

lower academic achievement, a desire to surpass peers, and the fear of failing.

Furthermore, these behaviors have been shown to be less prevalent among female

students (Abou Naaj & Nachouki, 2023; Newstead et al., 1996). This study

investigated cheating behaviors among middle school students during in-class

activities and collaborative learning sessions. However, the relevant literature

suggests that students may misinterpret collaborative learning as an opportunity for

dishonest behaviors, such as cheating, copying, or collusion (Barros et al., 2021).

Furthermore, among the various factors influencing programming learning,

8

academic background emerges as a particularly significant predictor of success.

Mathematics, in particular, has long been recognized as a strong predictor of

programming achievement (Bennedsen & Caspersen, 2005). Moreover, research has

provided evidence of a correlation between reading comprehension and

programming proficiency (e.g., Lopez et al., 2008).

In conclusion, in reference to related literature, a large proportion of students have

failed to reach a sufficient level of proficiency in their first computer programming

course or even after they have taken more than one programming course. This

problem is common in computer science education in many countries despite

numerous research studies attempting to improve programming education. Teaching

programming to younger children is a relatively new phenomenon, necessitating a

deeper exploration of the unique challenges and influencing factors in this age group.

Research studies have identified various factors affecting programming learning.

Therefore, it is essential to investigate these factors, specifically in the realm of

younger learners, to comprehend their influence on the learning process and to

develop effective instructional strategies tailored to their needs.

1.2 Purpose of the Study

This study undertakes a comprehensive investigation into the factors that contribute

to the acquisition of fundamental computer programming concepts among fifth-

grade students within the framework of middle education. The primary objective is

to gain an understanding of these multifaceted elements and their collective impact

on students' programming proficiency. Through an in-depth exploration of

sociodemographic and educational background, affective learner characteristics,

motivation, learning environment, and cognitive load, this research seeks to unveil

the dynamics inherent in the interplay of these factors.

Study variables encompassed a range of variables, including personal achievement

goal orientations (mastery goal orientation, performance-approach goal orientation,

9

and performance-avoid goal orientation), perceived classroom goal structures

(classroom mastery goal structure, classroom performance-approach goal structure

and classroom performance-avoid goal structure), academic-related perceptions,

beliefs and strategies (academic efficacy, academic self-handicapping strategies and

cheating behavior), and attitude toward coding education. Additionally, the cognitive

load was examined through the intrinsic, extraneous, and germane load. Educational

background variables included mathematics and reading comprehension

achievement, while sociodemographic background was assessed by examining the

students’ gender and the geographical location of their schools (urban vs. suburban).

By addressing these factors, the study seeks to offer an in-depth understanding of the

determinants in teaching programming to younger students, thereby contributing to

the advancement of computer science education.

1.3 Research Questions

The main research question that guided this investigation was: ‘What factors

influence the acquisition of fundamental computer programming concepts in fifth-

grade students?’ This overarching research question serves as the focal point for

investigating the complex relationships and interactions among various factors

influencing students' acquisition of computer programming skills. The study will

address this main research question through a detailed examination of the sub-

research questions listed below:

1. Is there a significant difference in cognitive load experienced by students

across seven fundamental programming topics?

2. Is there a significant difference in students' PALS (personal achievement goal

orientations, perception of classroom goal structures, academic-related

perceptions, beliefs and strategies), attitudes towards coding education,

achievement in mathematics, achievement in reading comprehension,

achievement in coding and cognitive load scores based on their gender?

10

a. Is there a significant difference in students’ PALS scores based on

their gender?

b. Is there a significant difference in students’ attitudes toward coding

education scores based on gender?

c. Is there a significant difference in students’ mathematics scores based

on gender?

d. Is there a significant difference in students’ reading comprehension

scores based on gender?

e. Is there a significant difference in students’ coding achievement

scores based on gender?

f. Is there a significant difference in students’ cognitive load scores

across seven fundamental programming topics based on gender?

3. Is there a significant difference in PALS (personal achievement goal

orientations, perception of classroom goal structures, academic-related

perceptions, beliefs and strategies), attitudes towards coding education,

achievement in mathematics, achievement in reading comprehension,

achievement in coding, and cognitive load scores between students from

urban schools and suburban schools?

a. Is there a significant difference in PALS scores between students

from urban schools and suburban schools?

b. Is there a significant difference in attitudes toward coding education

scores between students from urban schools and suburban schools?

c. Is there a significant difference in mathematics scores between

students from urban schools and suburban schools?

d. Is there a significant difference in reading comprehension scores

between students from urban schools and suburban schools?

e. Is there a significant difference in coding achievement scores between

students from urban schools and suburban schools?

11

f. Is there a significant difference in cognitive load scores across seven

fundamental programming topics between students from urban

schools and suburban schools?

4. How do research variables predict students’ achievement scores in

programming?

5. What are the students’ experiences and opinions on the factors that affect

their learning fundamentals of programming?

Examining these sub-research questions intended to gain insights into the specific

aspects of learner characteristics that may impact students' coding performance and,

ultimately, enhance the overall comprehension of the factors influencing their

academic achievement in computer programming.

1.4 Significance of the Study

The teaching and learning of computer programming present persistent challenges,

documented by high failure rates across various levels, courses, and teaching

contexts (Abdul-Rahman & Du Boulay, 2014; Watson & Li, 2014). There have been

many research studies that aim to explore different course design approaches, tools,

and instructional strategies that facilitate learning the computer programming

process by helping students acquire the required knowledge and skills. Some

attempts result in substantial success while others do not, but still, the leading reasons

behind students’ success or failure in programming are not fully understood. This

study aimed to address this gap through a multifaceted lens by examining the factors

influencing students' achievement in fundamental programming skills.

This study goes beyond cognitive factors by incorporating motivational variables

derived from goal orientation theory, which emphasizes the substantial influence of

student goals on academic achievement (Meece et al., 2006). The intricate

relationship between affective, motivational, and environmental factors and their

impact on students’ achievement in the context of programming remains

12

inadequately understood. Traditionally, programming education research has

focused on undergraduate or graduate-level fields such as engineering, mathematics,

and computer science, where introductory programming has fundamental

importance for any student. However, the recent emphasis on introducing

programming to younger learners necessitates a shift in research focus. While many

studies implement innovative learning tools and methodologies for younger students,

they often lack a deep understanding of the complex and interrelated challenges in

programming instruction and learning. These challenges encompass not only

instructional approaches but also students' cognitive abilities, motivational factors,

and the learning environment. Considering the multitude of variables affecting

learning in a broad sense and the specific domain of learning programming, there is

a compelling need to comprehensively evaluate factors influencing students’

achievement in the fundamentals of computer programming, encompassing both

cognitive and motivational aspects.

Building upon the established challenges in teaching computer science and the

growing trend of introducing programming concepts to younger children, this study

holds significant practical value for educators, curriculum developers, and

policymakers. By investigating the multifaceted determinants that influence middle

school students' acquisition of fundamental programming principles, the results can

contribute to the development of enhanced instructional strategies tailored to this age

group. Given the complex nature of computer programming, which demands

proficiency across multiple domains and is widely recognized as challenging to

acquire, it is imperative to consider the cognitive load placed on learners and their

capacity to process information during instruction (Berssanette & De Francisco,

2022). Understanding the interplay between sociodemographic background,

educational experiences, learner characteristics, motivational factors, learning

environment, and cognitive load can equip educators with a comprehensive

framework to respond to the varied needs of students in their classrooms. This

knowledge can be translated into the creation of differentiated learning experiences

13

that address various learning styles and abilities, fostering a learning environment

that is more inclusive and interactive for computer science education.

The findings of the study can make a valuable contribution to curriculum

development by providing a profound understanding of the appropriate level of

complexity and the specific programming concepts most conducive to successful

learning for middle school students. This information can guide the creation of age-

appropriate and engaging curriculum materials that stimulate a desire to develop

proficiency in coding and equip young learners with the foundational knowledge and

abilities required for thriving in the era of digital advancements. Ultimately, by

identifying the factors that shape programming achievement within this age group,

this study aims to contribute valuable insights that can inform educational practices

and pave the way for more effective pedagogical approaches and instructional

strategies for teaching computer science to younger learners.

15

CHAPTER 2

2 LITERATURE REVIEW

This chapter serves as a theoretical foundation for contextualizing and framing the

research questions through a detailed examination of existing research. The primary

aim is to reveal a complete comprehension of the theoretical underpinnings of

cognitive load theory and motivational factors, particularly regarding the context of

computer programming education for children.

2.1 Cognitive Load Theory

Cognitive Load Theory (CLT) posits that the capacity of working memory to process

information is a critical factor in learning outcomes. This theory emphasizes the

importance of optimizing cognitive resources to enhance learning efficiency. To

investigate how CLT can be applied to enhance computer programming instruction,

the fundamentals of CLT, including the architecture of human cognition, core

principles of the theory, and the classification of cognitive load were examined.

Furthermore, the role of CLT in shaping effective programming instruction was

explored.

2.1.1 Human Cognitive Architecture

Human cognitive architecture provides insight into the processes of learning,

thinking, and problem-solving. This architecture, resembling a natural system for

information processing, employs various strategies to manage cognitive load. A key

focus of cognitive load theory is to identify strategies for decreasing this load,

thereby facilitating the transition of information from working memory to long-term

memory, where biologically secondary knowledge resides. The following sections

16

provide an in-depth examination of the role of information categories, long-term

memory, working memory, and schema theory within this framework.

2.1.1.1 Categories of Information

A diverse array of classification schemes exists for knowledge, with one notable

classification distinguishing between biologically primary and biologically

secondary knowledge. This distinction is substantial because the acquisition,

organization, and storage of various categories of knowledge may require different

instructional methodologies.

From Geary's (2008) evolutionary perspective, biologically primary knowledge

pertains to information that humans have naturally developed the capacity to acquire.

In contrast, biologically secondary knowledge encompasses information that has not

been naturally acquired through human evolution and has become essential due to

cultural influences (Sweller et al., 2011). Biologically primary knowledge

encompasses abilities and skills that humans have developed through natural

selection. They encompass the differentiation of facial features and vocal patterns,

the utilization of general problem-solving strategies, and fundamental rudimentary

social interactions. Competencies grounded in biologically primary knowledge are

typically acquired automatically and, more frequently, subconsciously, devoid of

formal educational intervention. For example, we are not taught how to talk via any

curriculum since we have evolved to acquire this skill (Sweller, 2016).

Biologically, primary knowledge serves as the foundation for the majority of human

cognition. Although biologically primary knowledge is essential to human cognition,

it does not directly lead to intelligent behavior. However, for complex problem-

solving and reasoning, biologically primary knowledge must be integrated with and

built upon biologically secondary knowledge. The cognitive processing required for

biologically evolved primary abilities differs from the typical information processing

required to obtain biologically secondary knowledge. For instance, cognitive

17

processing for learning to speak, which requires biologically primary knowledge, is

not the same as that for learning to write, which requires biologically secondary

knowledge (Geary, 2008; Sweller et al., 2011).

Instructional design primarily focuses on biologically secondary knowledge,

encompassing activities such as reading, writing, and other subjects taught through

instruction (Cowan, 2014; Sweller, 2016). However, it is important to recognize the

value of biologically primary knowledge. Since acquiring primary knowledge

requires minimal conscious cognitive resources, a strategic approach could involve

utilizing these inherent abilities as a scaffolding for learning secondary knowledge.

In other words, instructional design can leverage the efficiency of primary

knowledge to minimize the load on working memory associated with acquiring

complex skills and concepts (Paas & Sweller, 2012).

2.1.1.2 Long-Term Memory

Long-term memory serves as a vast storage for knowledge and skills that we retain

in a way that allows for more or less permanent access. All the things we "know,"

such as our name, the alphabet, reading, writing, and swimming, are retained within

our long-term memory, ready to be accessed whenever needed (Cooper, 1998).

A valid argument may be made that a substantial portion of the data retained in long-

term memory comprises biologically primary knowledge (Sweller, 2020). Many

tasks that we often perceive as effortless and uncomplicated are facilitated by our

primary knowledge because all biologically primary skills are perceived as easy and

simple. Conversely, activities such as chess, which rely on secondary knowledge that

has not been naturally acquired through evolution, are seen as exceedingly difficult.

This distinction between primary and secondary knowledge highlights the crucial

role of long-term memory in facilitating higher-level cognitive processes. While

primary knowledge allows for seemingly effortless tasks, long-term memory plays a

18

much more substantial role in human cognition, particularly in areas like thinking

and problem-solving (Sweller et al., 2011).

Long-term memory is essential for all higher-level cognitive processes, including

thinking and problem-solving (Bliss & Collingridge, 1993). It is critical not only for

human cognition but also for those facets of cognition considered the highest levels

of human intelligence. The role of long-term memory goes beyond facilitating the

retrieval of past events, whether meaningful or not (Kandel et al., 2014). The impact

of long-term memory on cognition and the nature of the cognitive changes that

resulted from practice were revealed by investigations conducted by De Groot (1978)

and Chase and Simon (1973). In his research with chess players, De Groot (1978)

identified only one distinction that separated players of different skill levels, and it

appeared unrelated to their problem-solving proficiency. Instead, De Groot's (1978)

focus revolved around the concept of memory. In a parallel study, Chase and Simon

(1973) arranged the chess pieces in a random configuration. No distinctions were

observed between chess players with different levels of proficiency with regard to

random configurations. The findings of these two research studies hold the potential

to provide a comprehensive understanding of chess expertise in a manner that does

not require consideration of additional variables. Chess proficiency does not

primarily revolve around thinking skills; instead, it is derived from the capacity to

recognize numerous configurations for chess boards and identify the optimal

strategies for each. When chess players have no knowledge stored in their long-term

memory, they are required to formulate strategies through problem-solving searches.

While thinking skills are necessary for novices, experts require fewer problem-

solving searches as their expertise increases (Sweller et al., 2011). Explanations

offered to distinguish the cognitive processes between expert and novice chess

players can be expected to be extrapolated to encompass all processes demanding

the utilization of secondary knowledge (Sweller, 1988). From this perspective,

possessing information about specific problem situations and their accompanying

moves should be the primary factor in improving problem-solving skills rather than

acquiring general problem-solving strategies (Gilhooly & Green, 1988). In essence,

19

these findings suggested that for complex domains requiring secondary knowledge,

a focus on building a rich knowledge base of specific examples and solutions may

be more effective than generic problem-solving approaches (Sweller et al., 2011).

2.1.1.3 Working Memory

Working memory is a construct introduced by psychologists in the mid-20th century.

It refers to the system responsible for temporarily holding and manipulating

information. Working memory holds significant theoretical weight in psychology,

particularly because it highlights the limitations of our cognitive capacity. Early

discussions hinted at working memory being essential for our everyday lives,

especially when it comes to planning tasks. The concept later broadened to

encompass the mental ability to remember plans in general, not just those related to

daily routines. This cognitive system with limited capacity is crucial for the

temporary retention and active information management in a readily accessible state.

This processed information plays a critical role in facilitating higher-order cognitive

processes such as planning, comprehension, reasoning, and problem-solving

(Cowan, 2014).

Over the years, debates have emerged about the specific limitations of working

memory. Some key questions include its capacity, processing speed, duration of

retaining information, and interference properties. While working memory capacity

can hold around seven chunks of information (Miller, 1956), the ability to actively

process that information is more limited. Working memory capacity is estimated to

be closer to two to three chunks for tasks requiring manipulation, such as organizing,

contrasting, or comparing information. Interactions among elements maintained

within the working memory itself consume additional working memory resources.

This effectively reduces the number of unique elements that can be actively

processed concurrently (Sweller et al., 1998). This number falls far short of the

complex interactions that occur in most intellectual endeavors. Working memory

alone would only permit rudimentary cognitive activities (Paas et al., 2003).

20

However, by leveraging long-term memory and established knowledge structures

(schemas), more complex tasks could be handled more effectively.

2.1.1.4 Schema Theory

Schema theory posits the existence of cognitive constructs called schemas stored in

long-term memory (Rumelhart & Norman, 1976). These schemas act as fundamental

units or chunks of knowledge, categorizing information about the world around us.

Schemas play a crucial role in information processing by influencing how we

perceive and interpret new experiences. However, these frameworks are personal,

and individual experiences can influence how schemas are formed and modified. In

the process of accretion, a new experience seamlessly integrates into an existing

schema without causing substantial modifications to the schema. Any incoming

information perceived as aligning with a particular schema will be processed in a

consistent manner, facilitating efficient storage and retrieval (Sweller et al., 2011).

This is because new knowledge is often assimilated into existing schemas during

learning, leveraging established connections. Conversely, tuning occurs when a

novel experience challenges the existing schema, leading to the adaptation of the

structure to integrate new information. Finally, when a new experience deviates

significantly from existing frameworks, a process of restructuring takes place,

leading to the creation of a new schema (Rumelhart & Norman, 1976).

In addition to facilitating the organization and storage of knowledge, schemas also

have a critical function in reducing the cognitive load on working memory. Through

continuous learning experiences, schemas may encompass extensive amounts of

information. Serving as a framework for interpreting new information based on

existing knowledge structures, schemas effectively reduce the load placed on

working memory (Van Merriënboer & Sweller, 2010). This allows for the

distribution of these limited working memory resources to more complex cognitive

tasks. Over time, schemas develop into complex networks of information through a

cumulative process of continuous addition, combination, and rearrangement. This

21

evolution enhances knowledge representation and processing efficiency.

Automation plays a significant role in this development. In contrast to conscious

processing, automatic processing, arising from extensive practice, significantly

reduces the reliance on working memory. Constructed schemas can become

automated through repeated application. From an instructional design standpoint,

effective instruction should aim to promote both schema construction and schema

automation for consistent aspects of tasks across various problems (Sweller et al.,

1998).

2.1.2 Foundations of Cognitive Load Theory

Cognitive load (CL), proposed by Sweller in the 1980s, refers to the amount of

cognitive resources allocated to working memory that a learner is expected to

dedicate to processing new information (Berssanette & De Francisco, 2022). This

theory is grounded in the well-established model of human cognitive architecture,

which encompasses both working memory and long-term memory. Cognitive Load

Theory (CLT) posits that human cognitive processing is heavily influenced by the

constraints on the capacity and duration of working memory. Since newly acquired

information necessitates initial conscious processing within limited capacity and

short-duration working memory, this can hinder learning effectiveness (van

Merriënboer & Sweller, 2005).

Expertise emerges gradually as individuals progressively integrate simpler concepts

into more complex schemata. These schemata organize and store knowledge for

efficient processing, thereby reducing the load on working memory. This is because

even highly complex schemata can be treated as single units within working

memory, reducing the number of independent elements requiring processing (van

Merriënboer & Sweller, 2005). Conversely, working memory capacity exhibits

limitations when encountering novel information. This stems from the absence of

pre-existing schemata, which act as a central executive, facilitating the processing

and organization of familiar concepts. Furthermore, the challenge is compounded by

22

the exponential growth in complexity as the number of elements within novel

information increases linearly. Unlike readily organized knowledge integrated into

schemata, novel information lacks a pre-established framework, imposing a load on

working memory's limited processing capabilities (Sweller et al., 1998).

Contrary to prevailing beliefs and several cognitive theories, CLT asserts that

specific forms of problem-solving activities may impede the learning process.

Sweller (1988) underscored, in summarizing the findings of his study, that

conventional problem-solving may not contribute to schema acquisition, given the

substantial differences in the mechanisms required for problem-solving and schema

acquisition. As schema acquisition represents a critical element of problem-solving

expertise, an excessive emphasis on the problem-solving process may place a high

level of cognitive load and impede the development of expertise. Although schemas

serve as a template that simplifies complex problem-solving tasks, conversely, they

might complicate the resolution of simple problems when erroneously assuming the

schema's relevance to the problem and its provision of an appropriate template.

Utilizing an inappropriate problem-solving schema resulted in Einstellung, also

recognized as a mental set that obstructs our perception of apparent details (Sweller

et al., 2011). Utilization of complicated problem-solving techniques, such as means-

ends analysis, might result in an increased cognitive load on the learner, potentially

resulting in a more pronounced hindrance to the learning process. Engaging in

problem-solving tasks that require storing many items in short-term memory may

lead to an excessive cognitive load (Sweller, 1988).

Cognitive load (CL) denotes the extent of resources allocated to working memory,

anticipated for a learner to allocate in order to process new information. With this

approach, CLT, which serves as an instructional design theory, attempts to explain

the impact of the information processing load generated by learning tasks on

learners’ capacity for information processing and constructing knowledge in long-

term memory (Berssanette & De Francisco, 2022). Chandler and Sweller (1994)

asserted that learning may be more difficult from materials that include large

amounts of information than learning from materials that have less information.

23

When students are exposed to excessive amounts of information and inadequate

regulation of the complexity of instructional materials, this will lead to an excessive

cognitive load due to the constrained capabilities of short-term memory.

Different instructional strategies and media are used in instruction. According to

CLT, their effectiveness cannot be ensured if the cognitive architecture of the brain

is not considered during instruction. Information is retained within the long-term

memory in a vast number of schemas. Schemas organize categories and elements of

data, as well as the relationships among them (Chi et al., 1982). These schemas are

constructed in working memory. For highly skilled performance, exceedingly

complicated schemas, which incorporate “elements consisting of lower-level

schemas into higher-level schemas”, are constructed (Paas et al., 2004, p.2). But, as

a consequence of the limitations of working memory capacity, dealing with this kind

of complex schemas may exceed working memory capacity. However, due to

comprehensive and sufficient practices, schemas can be automated. The automation

of those schemas allows them to be processed unconsciously, thereby decreasing the

working memory load.

The primary focus of cognitive load theory is to manipulate working memory load

in a way that facilitates the construction of schema within the long-term memory for

automation of schemas, which results in learning. CLT is concerned with the ease of

processing information within working memory. The cognitive load imposed on

working memory can be influenced by two key factors: the inherent complexity of

the learning tasks themselves (intrinsic cognitive load) and the way these tasks are

presented (extraneous cognitive load) (van Merriënboer & Sweller, 2005).

2.1.3 Types of Cognitive Load

Traditional cognitive load theory delineates three primary types of cognitive load:

intrinsic, extraneous, and germane. Intrinsic cognitive load, defined as the load that

stems from the inherent complexity of learning materials and the learner's expertise

24

level, is considered independent of the educational methods implemented (Sweller

et al., 2011). This independence arises because the number of elements requiring

simultaneous processing in working memory depends on the degree of element

interactivity within the learning materials or tasks. Understanding materials with

highly interactive elements presents a significant challenge. However, the key to

fostering comprehension lies in developing cognitive schemata that integrate these

interacting elements. Consequently, what a novice learner perceives as a large

number of interacting elements may be a single element for a more experienced

learner with a well-developed schema (van Merriënboer & Sweller, 2005).

Extraneous cognitive load arises from the tasks learners perform or the way

information is presented. Within this type of cognitive load, the instructional design

employed to deliver the material may additionally impose a load that is extraneous

and unrelated to the intended learning objectives (Sweller et al., 2011). In contrast to

intrinsic cognitive load, extraneous cognitive load is not essential for the process of

knowledge acquisition, such as schema construction and automation. Unlike intrinsic

load, extraneous cognitive load can be effectively reduced or eliminated through the

implementation of targeted instructional interventions (van Merriënboer & Sweller,

2005).

Intrinsic and extraneous cognitive load have an additive effect on the learner's

working memory. Thus, the impact of extraneous cognitive load on student learning

outcomes depends on the intrinsic cognitive load. In situations where the intrinsic

load is elevated, instructional design should prioritize minimizing extraneous

cognitive load. This ensures that the overall cognitive load is kept at a level that

aligns with the limitations of working memory and facilitates successful knowledge

acquisition. Conversely, for tasks with a lower intrinsic load, a moderate level of

extraneous cognitive load, even if stemming from instructional design shortcomings,

may not necessarily impede learning. However, it is important to acknowledge that

even in low intrinsic load situations, excessive extraneous cognitive load can still

hinder learning by exceeding working memory limitations (van Merriënboer &

Sweller, 2005).

25

In earlier versions of CLT, the germane load (GL) was introduced by Sweller et al.

(1998) as an additional beneficial load on the learning process. This construct aimed

to explain the positive impact of certain variations within learning materials on the

learner's cognitive processes during knowledge acquisition. Research studies have

demonstrably shown that variability in practice activities while increasing cognitive

load, facilitates schema construction and enhances the transfer of training. Paas and

Van Merriënboer (1994) proposed that the observed increase in cognitive load

stemmed from processes directly contributing to learning, such as automation and

schema construction, rather than from extraneous cognitive load that does not

promote learning. The introduction of germane load in CLT emphasizes the

importance of active learner engagement for successful learning. While CLT focuses

on managing cognitive load, germane load underlines the necessity for learners to

invest mental effort in processing information relevant to building knowledge and

schemas. This processing requires some level of motivation and willingness to

engage with the learning materials. While instructional strategies can be employed

to minimize extraneous load and free up cognitive resources, this approach is only

effective if learners are motivated to invest these freed resources in germane

cognitive activities that promote schema development and knowledge acquisition. In

essence, effective learning depends on optimizing instructional design to reduce

extraneous load and foster learner motivation to engage in germane cognitive

processing actively (van Merriënboer & Sweller, 2005).

While traditional conceptualizations of CLT involve the three types of cognitive

load, as previously outlined, recent years have seen growing debate regarding the

germane load construct. Research studies within CLT have emphasized that

cognitive load does not consistently hinder the process of learning. In fact, it is

essential for facilitating meaningful learning, particularly complex learning, which

necessitates effortful cognitive processing and the load that is linked with working

memory. However, when CLT was first introduced, intrinsic and extraneous loads

were considered loads to be properly managed or minimized to prevent cognitive

overload. Consequently, the germane load construct was introduced to reflect the

26

purposeful cognitive effort invested in learning and the associated demands placed

on working memory during knowledge acquisition. Unlike intrinsic and extraneous

cognitive load, the construct of germane load was introduced within the CLT

framework based primarily on theoretical considerations. While the additive

hypothesis, which posits a cumulative effect of the three load types on learners,

provided initial support for the framework, empirical evidence specifically

demonstrating the need for germane load remains a topic of ongoing discussion

(Greenberg & Zheng, 2023; Kalyuga, 2011). However, over time, the limitations of

this additive framework have begun to be discussed by the researchers as it does not

fully capture the complex interactions between these loads. Critics argue that

germane load and intrinsic load are not entirely distinct. They contend that germane

load inherently relies on intrinsic load. Without the inherent challenge presented by

the material (intrinsic load), there would be no need for the learner to exert effort in

processing it (germane load) to build new knowledge (Greenberg & Zheng, 2023).

Therefore, a debate was started on whether germane load should be regarded as a

discrete form of cognitive load or a germane resource in working memory (Leppink

& van den Heuvel, 2015). In their 2019 revisit of the topic titled "Cognitive

Architecture and Instructional Design”, Sweller et al. emphasized that the growing

body of empirical research consistently demonstrated a key finding: reducing

extraneous cognitive load led to a corresponding decrease in overall cognitive load.

The new formulation of CLT presumes that germane cognitive load doesn't simply

increase overall cognitive load. Instead, it reallocates working memory resources

from irrelevant tasks to core learning activities, enabling efficient processing of task-

intrinsic information.

There have been some research studies that provide evidence supporting a

framework in cognitive load theory that emphasizes the role of germane resources in

working memory on shaping learners' cognitive effort during learning. Findings from

a study by Kalyuga (2011) supported the notion that the traditional CLT framework

might be redundant. This study suggested that germane load might not be a distinct

category but could potentially overlap with, or even be indistinguishable from,

27

intrinsic load. Similarly, findings from a recent study by Greenberg and Zheng

(2023) suggested that germane load might not be a direct predictor of performance

outcomes, while intrinsic load was the primary variable influencing performance

outcomes. This finding led them to propose that mental activity directly relevant to

learning (germane activity) might be more closely linked to the cognitive resources

available in working memory rather than constituting a separate type of cognitive

load.

Additionally, they found that individuals with greater working memory capacity

could effectively manage complex learning tasks while still allocating cognitive

resources to learning, proposing that the exertion of cognitive effort during the

process of acquiring knowledge is influenced by germane resources stored in

working memory, as opposed to the germane load. On the other hand, a meta-

analysis of cognitive load questionnaires found that the concept of germane load

continues to provoke debate with regard to its measurement and theoretical

integration, supporting the need for further investigation (Krieglstein et al., 2022). In

recent frameworks of cognitive load theory, the term “self-perceived learning” has

been widely used to refer to germane load. Self-perceived learning emphasizes the

learner's own perception of how much they are acquiring knowledge (Bergman et

al., 2015; Fredericks et al., 2021; Quintero-Manes et al., 2022). Due to the ongoing

research on the cognitive load imposed during learning, this study utilized the term

"germane load" to address the germane resources, thereby avoiding potential

conflicts.

2.1.4 Research on the Role of Cognitive Load Theory in Computer

Programming Education

Computer programming represents a cognitively complex domain characterized by

necessitating mastery across various competencies, which often leads to significant

challenges for learners due to the high CL it imposes on their working memory

(Berssanette & De Francisco, 2022). Working memory is critical for solving

28

problems like programming comprehension as it allows us to hold relevant

information in mind, manipulate it, and make connections to reach solutions. The

limitations of working memory pose a significant challenge in computer

programming education. Cognitive Load Theory arises as a beneficial framework in

computing education by addressing this challenge. One of the fundamental

challenges, particularly in introductory computer programming education, lies in the

subject matter's inherent complexity. This complexity generally stems from two

factors: the number of new concepts students must learn and the requirement to

integrate these concepts with previously learned ones to solve problems. From a

perspective rooted in CLT, the process of integration increases the cognitive load

encountered by students, thereby hindering their learning and problem-solving

process. CLT sheds light on the impact of human cognitive architecture limitations

on the process of learning and offers guidance for optimizing learning processes

(Duran et al., 2022). Research studies have shown that the application of CLT in

teaching computer programming involves various strategies, including applying

concepts like the worked example effect, the development and use of instructional

resources or tools, and pedagogical strategies based on measuring cognitive load.

Related literature has shown that instructional methods based on CLT impact the

effectiveness of teaching computer programming. Effective learning in

programming education can be achieved through methods that reduce extraneous

load and optimize intrinsic and germane loads. Besides that, by leveraging CLT

principles, educators could differentiate intrinsic from extraneous cognitive load.

This distinction empowers them to design instructional strategies that effectively

manage the learning process and optimize students' cognitive resources (Looker,

2021). One of the most widely employed strategies in computer science education

(CSE) for aiding students’ knowledge acquisition is worked examples (Abdul-

Rahman & Du Boulay, 2014; Caspersen & Bennedsen, 2007; Derry, 2000; Garner,

2002; Gray et al., 2007; Hsu et al., 2012; Lim, 2019; Mason & Cooper, 2013;

Muldner et al., 2022; Nainan & Balakrishnan, 2019; Sands, 2019; Takir, 2011).

Worked examples, comprising a problem statement, solution steps, and the final

29

result, have demonstrated the enhancement of learning outcomes by reducing

cognitive load, shortening learning time, and facilitating the construction of

cognitive schemas. Consequently, this enables students to solve similar problems

more with increased efficiency and effectiveness (Sweller & Cooper, 1985). While

worked examples have been shown to be a valuable tool in programming education,

particularly for novice learners encountering complex technical concepts for the first

time, their effectiveness is influenced by their design and implementation. These

examples may cover different problem types, programming paradigms, and

visualization techniques to address a variety of learning styles and deepen

understanding. Programming education utilizes a variety of design types for worked

examples, including text-based static examples, modeling examples, dynamic code-

tracing, animated examples, and incomplete examples (Muldner et al., 2022).

Despite the benefits of worked examples, one potential drawback of them lies in their

passivity; they may not inherently compel learners to engage in a meticulous analysis

of the presented solution. To address this shortcoming, Van Merrienboer and

Krammer (1987) introduced the utilization of completion problems in introductory

computer programming education.

Empirical studies have demonstrated various innovative educational tools and

techniques aimed at enhancing the instruction and comprehension of computer

science. This emphasis on innovative approaches underscores the inherent

challenges students face in grasping complex concepts within the field. In this

context, CLT provides valuable insights into how to design these educational tools

and techniques. One such tool is linked list visualization software designed based on

Cognitive Load Theory's split-attention effect, which integrates diagrams and code.

Results showed that this approach could help students with prior programming

knowledge gaps visualize and understand linked lists more effectively, thereby

reducing cognitive load and fostering a deeper grasp of data structures (Arevalo-

Mercado et al., 2023). The findings of another study demonstrated that a new

teaching method using a custom visualization tool helped novice programmers grasp

function-based problem-solving in a visual setting. Compared to traditional teaching

30

methods, students using the new approach performed significantly better on tests and

assignments (Winter et al., 2019). Another study, drawing on principles from CLT,

proposed by Harms, (2013), suggested that developing personalized tutorials tailored

to a user's programming expertise could enhance the effectiveness of novice

programmers in learning new programming concepts encountered in unfamiliar

code. The main purposes of the proposed tutorials were to predict the learners’

potential cognitive load by modeling their expertise in programming and to minimize

the extraneous cognitive load by presenting programming concepts that prevent

exceeding the working memory capacity of a learner. According to the findings of

the studies, by effectively managing cognitive load, these innovative approaches

hold great promise for improving computer programming education.

2.2 Motivation and Learning

Numerous theories of motivation in learning have been developed through research

from diverse perspectives, offering significant insights into the factors driving

student engagement and achievement. Educators have access to an extensive array

of resources related to student motivation. These theories provide essential

understandings of the underlying sources of curiosity and persistence in learners.

Among these, goal orientation theory examines how students' goals influence their

motivation and learning behaviors, providing a framework for understanding student

engagement.

2.2.1 Goal Orientation Theory

Goals are the cornerstone of human motivation, propelling us to strive for

achievement and growth. Achievement Goal Theory offers insights into how

individuals set goals within various contexts, including education. This theory,

initially applied to understand young athletes, posits that their perceptions of ability

(shaped by past achievements and comparisons with others) and their definitions of

31

successful outcomes significantly influence the types of goals they set for themselves

(Nicholls 1984, 1989). These goals, in turn, shape their overall motivational

processes and influence their training and performance behaviors.

Personal Achievement Goals

Goal orientation theory, building on achievement goal theory, proposes that students'

motivation and learning behaviors are influenced by the types of goals they set for

themselves. Numerous models of goal structure have been created to enhance

understanding of the motivations driving achievement behaviors. Early research

within achievement goal theory explored goal structure through two dimensions,

focusing on mastery and performance goals. Individuals who possess mastery goals

prioritize learning and improvement by focusing on acquiring knowledge and

developing skills. Their success is measured by personal growth, not just achieving

a specific grade. For mastery goal-oriented learners, the desire to learn and improve

is their primary motivator, even when encountering difficult problems. On the other

hand, performance goal orientation encompasses a range of goals focused on relative

achievement. The goal of performance-oriented learners is to demonstrate

competence and outperform others. The emphasis is less on mastery of the concept

itself and more on their performance and how it compares to others (Ames & Archer,

1988; Elliott & Dweck, 1988).

Self-theories, such as Dweck's self-belief theory, further explain how students'

perceptions of their abilities influence their goal-setting. For instance, students who

possess a growth mindset tend to be more inclined to accept challenges and establish

goals aimed at achieving mastery (Dweek, 1986). Subsequently, avoidance goals

were incorporated into the framework, specifically as performance-avoidance goals

(Skaalvik, 1997). Contrary to performance-approach goals, students with

performance-avoidance goals are motivated by a concern about the possibility of not

succeeding, focusing on avoiding negative outcomes rather than embracing

challenges and aiming for improvement. These performance-avoidance goals are

32

generally less effective in driving academic achievement (Liem et al., 2008; Shell

et al., 2013; Shell & Soh, 2013).

Elliot and McGregor (2001) sought to refine the understanding of mastery goals by

proposing a 2x2 model. This model differentiates between mastery-approach goals

and mastery-avoidance goals. Mastery-approach goals, similar to the original

conceptualization, emphasize a desire for learning and improvement. However,

mastery-avoidance goals, a recent addition to the framework, are driven by a fear of

failing to master the task or knowledge. Critics of this new framework have argued

that the 2x2 structure might be too complex and difficult to measure in real-world

settings. Another version of this model was then proposed and tested by Elliot et al.

(2011) as a 3x2 model, including three approaches and avoidance goals: task, self,

and other. Furthermore, some researchers raise doubts about the presence of a

distinct mastery-avoidance goal orientation, suggesting that it might conceptually

overlap with performance-avoidance goals (Pintrich, 2000). Current research

suggests a further refinement of performance goals by distinguishing between

normative and appearance goals (Hulleman et al., 2010). Normative goals emphasize

social comparison, motivating learners to outperform others or avoid

underperforming relative to their peers. In contrast, appearance goals center on

managing self-presentation, driving learners to either showcase their abilities or

conceal their shortcomings from others. Normative goals appear less likely to lead

to negative outcomes. However, appearance goals, with their focus on avoiding

negative self-evaluation and potential public shame, might be more closely linked to

maladaptive behaviors (Zingaro et al., 2018).

Classroom Goal Structures

The goal-oriented messages perceived by students in the classroom form the

classroom goal structures. Analysis of the Patterns of Adaptive Learning Scales

(PALS) instrument has revealed that personal achievement goal orientations and

classroom goal structures are distinct constructs. However, related literature

33

indicates that perceived classroom goals act as predictors of personal achievement

goals.

Perceptions of the learning environment focusing on effort and understanding are

positively associated with the adoption of mastery-oriented goals by students (Meece

et al., 2006; Turner et al., 2002; Urdan, 2004). Students who perceived a classroom

environment that emphasized mastery goals reported employing more effective

learning approaches, demonstrating a preference for more challenging tasks, and

exhibiting a more positive disposition towards the learning environment (Ames &

Archer, 1988). Research studies have discussed the influence of teachers on the

formation of the classroom goal structure. The evaluation strategies or group

strategies employed by teachers significantly impact how these structures are

formed. For instance, creating ability groups or employing evaluation strategies that

foster a competitive climate in the classroom can strengthen perceived performance-

goal structures (Meece et al., 2006). Soltani et al. (2022) further revealed that

students' perceptions of competition, the perceived significance of the subject matter,

and their personal orientation towards mastery goals all positively contributed to

their academic performance. While performance-approach goals can be beneficial

for students, their effectiveness may vary depending on factors such as gender, age,

and the learning environment. Research conducted by Midgley et al. (2001)

suggested that these goals may be more advantageous for boys compared to girls and

for older students compared to younger ones. Additionally, the presence of mastery

goals alongside performance-approach goals may further enhance these benefits,

particularly in competitive learning environments.

2.2.2 Self-efficacy

Self-efficacy, a concept central to Bandura's Social Cognitive Theory, refers to a

learner's belief in their capabilities to master knowledge and skills. This belief acts

as a cornerstone of motivation, directly influencing how much effort and

perseverance a learner is willing to invest (Bandura, 1977). Several factors shape this

34

crucial belief, including previous success or failure experiences, social persuasion,

emotional states, and observational learning.

Individuals use various information sources to evaluate their capabilities.

Performance accomplishments, referring to past successes and failures, are

considered the most reliable source of information for self-efficacy appraisal. They

provide concrete evidence of one's capabilities, directly demonstrating what one can

accomplish. Overcoming challenges builds confidence, while repeated failures can

undermine self-belief. Furthermore, indirect experiences, such as observing others

succeed in similar tasks, can boost confidence in one's own abilities. Conversely,

witnessing failures can lower self-efficacy. Social influences and interactions also

play a significant role in self-efficacy. Social persuasion, which refers to positive

encouragement, commendation, and expressions of confidence from others,

strengthens an individual's confidence in their capabilities. Learners who receive

encouragement and support from peers, teachers, or mentors are more likely to

develop strong self-efficacy. For example, teacher acknowledgment (environmental)

reinforces students' perception of progress (personal), fostering intrinsic motivation

and self-efficacy to support ongoing learning. Finally, physiological and emotional

states encountered during the learning process, such as anxiety or confidence, also

play a role in self-efficacy appraisal. Individuals experiencing lower anxiety in a

situation may interpret this as a sign of greater capability, while higher anxiety levels

might be perceived as indicating lower competence (Bandura, 1977; Schunk &

DiBenedetto, 2020; Usher, 2009).

2.2.3 Academic Self-Handicapping Strategies

Students who are concerned about failing exams or assignments may perceive their

self-esteem to be at risk. A common coping mechanism for this concern is the use of

self-handicapping strategies (Schwinger et al., 2014). Academic self-handicapping

strategies involve behaviors in which students create impediments either before or

during the task they need to accomplish, thereby hindering their success. Examples

35

of academic self-handicapping behaviors exhibited by some students include

procrastinating and spending excessive time on other activities, such as socializing,

thus leaving them very little time to study. The purpose of these strategies is to

provide an excuse for failure so that the failure can be attributed to these self-imposed

impediments rather than to a lack of ability (Urdan, 2004).

Research in early childhood education has established a connection between self-

handicapping behaviors and achievement goals. For instance, Midgley and Urdan

(2001) identified a significant positive relationship between personal performance-

avoidance goals and self-handicapping behaviors among 7th graders, while no such

association was observed for personal performance-approach goals. Leondari and

Gonida (2007) compared different age groups and concluded that students begin to

adopt academic self-handicapping strategies earlier in their academic careers. They

found that while academic achievement remains a significant predictor of self-

handicapping behavior in the upper elementary grades, in the process of shifting to

high school, performance-avoidance goals become a stronger predictor of self-

handicapping than achievement itself.

Research studies have also highlighted the relationship between personal

achievement goals, classroom goal structures, and self-handicapping behaviors

(Midgley & Urdan, 2001; Urdan et al., 1998). Studies have shown that students who

focus on personal performance goals and perceive a strong emphasis on performance

in the classroom structure are more inclined to exhibit self-handicapping behaviors.

In contrast, students who focus on mastery goals and perceive a classroom

environment that promotes mastery are less prone to engage in self-handicapping

behaviors (Leondari & Gonida, 2007; Urdan et al., 1998). However, it is essential to

mention that changing the classroom goal structure will not have the same impact on

all students, as indicated by other studies (Urdan, 2004).

36

2.2.4 Attitude

Student attitudes are a critical factor influencing success and sustained interest in

programming education. Research indicates that well-designed learning experiences

and supportive instructional practices can significantly enhance these attitudes.

Studies have demonstrated that effectively structured courses and activities can

maintain or even improve positive student dispositions toward programming (Asad

et al., 2016; de Vink et al., 2023). This underscores the importance of fostering

engaging learning environments that stimulate both interest and motivation.

Furthermore, the implementation of supportive instructional approaches has yielded

positive results. These approaches include the utilization of block-based

programming environments (Deniz & Korucu, 2023; Lambić et al., 2021; Totan &

Korucu, 2023) and the integration of foundational theoretical knowledge with

practical activities (Taşdöndüren & Korucu, 2022). Such methods can empower

students to overcome challenges, develop a deeper comprehension of programming

concepts, and ultimately cultivate a more positive perception of the subject matter.

However, it is essential to consider the developmental stage of the students. Lambić

et al. (2021) discovered that younger students (7-8 years old) using a challenging

curriculum experienced a decline in positive attitudes compared to older students.

This finding underscores the significance of tailoring the difficulty and complexity

of learning activities to students' capabilities in order to maintain positive

dispositions. In conclusion, these studies emphasize the significance of employing

engaging and well-structured instructional approaches that provide students with the

necessary support to develop a positive attitude toward programming. This positive

attitude is paramount for promoting student success and fostering continued interest

in the field (Love, 2023).

37

2.2.5 Cheating Behavior

Within the academic field, cheating refers to the act of presenting the work or ideas

of another individual as one's own, typically for the purpose of attaining higher

grades. The relationship between cheating behavior and goal theory has been

extensively studied, providing insights into how students' achievement goals can

influence their propensity to engage in dishonest practices.

Studies examining the relationship between cheating behavior and goal orientations

have shown that certain achievement orientations can lead to cheating behavior.

Performance goals have been found to lead to cheating more frequently than mastery

goals (Meece et al., 2006; Senko et al., 2011). Additionally, in the context of

programming education, several studies have investigated the effect of pair

programming on reducing or inadvertently encouraging cheating behavior among

students. Collaborative learning, particularly within the context of programming

education, is a widely employed approach, especially for practical tasks. When pair

programming first became widespread, there were expectations that it would help

teachers prevent cheating behaviors. It was believed that, due to peer pressure,

students would work more systematically on their projects and have someone to

assist them, thus reducing the need to cheat (Williams & Upchurch, 2001). However,

subsequent studies have shown that this method can be susceptible to

misinterpretation by students, who may perceive it as an opportunity for dishonest

behaviors such as cheating. This misinterpretation could stem from a misconception

that cheating is synonymous with collaborative learning and information sharing

(Barros et al., 2021; Williams, 1999). Cheating behavior has been examined in

various studies, particularly concerning undergraduate and graduate students in

computer science (Schulz et al., 2023). In their study involving undergraduate

students, Hawi (2010) identified cheating as one of the causal attributions for

programming achievement. Another study emphasized the presence of cheating

behavior among students even during the initial stages of gamification

implementation (Ibanez et al., 2014).

38

2.2.6 Research on the Impact of Motivational Factors on Students'

Learning of Computer Programming

There is an expanding body of research investigating the multifaceted nature of

achievement in computer science education, especially in the context of learning

programming. These studies go beyond the cognitive aspects of programming and

explore how factors like students' motivation, emotional experiences, learning

behaviors, and the classroom environment all interact to influence achievement.

Research by Shell et al. (2013) contributed to the expanding body of research that

explores factors beyond cognitive abilities influencing achievement in computer

science education. Prior research has primarily focused on the cognitive or technical

dimensions of learning programming, such as syntax and algorithms. However, this

study investigated how motivational orientations, emotional experiences in the

classroom, and self-regulation strategies were associated with course grades,

knowledge retention, and ultimately, the long-term learning of computational

thinking in introductory CS-1 courses. Their work established a clear link between

mastery-oriented goals and positive academic outcomes. Additionally, the study

supported the connection between positive emotions in the classroom and higher

achievement. These findings underscored the importance of fostering an

environment that encourages students to set deep learning goals, a notion further

emphasized by Peteranetz (2021). To achieve this, a 3x2 goal orientation framework

was utilized, and the study encompassed two separate investigations. They observed

a concerning decline in all approach goals (learning, performance, and task) in upper-

level CS courses. While performance-avoid goals showed significant decreases,

which could be positive, there were no significant changes in task/work avoidance

goals. Similarly, a study by Shell et al. (2016) provided evidence that while initial

motivations are important, they do not always translate into long-term success.

Although the study initially focused on understanding students' reasons for enrolling

in the course and identifying those at risk from the outset, it ultimately highlighted

the significance of the course itself in influencing motivation and how motivation

39

evolves throughout the course. On the other hand, Hazley et al., 2015 investigated

the dynamic nature of goal orientation in post-secondary STEM courses. They

observed shifts in goal orientation throughout a semester, with some changes

(increased task-approach goals, decreased learning-avoidance goals) positively

impacting achievement. However, the results showed that changes in performance-

approach goals were not strongly influenced by classroom climate, although negative

emotions were linked to a decrease in these goals. The findings of these studies

emphasize the importance of a positive learning environment.

Patterns of achievement goal orientations in programming education have been

assessed not only in face-to-face education but also in distance education. Polso et

al. (2020) investigated student motivation in an open online introductory

programming course by identifying five distinct achievement goal orientation

profiles using a person-oriented approach that incorporates appearance, normative,

and mastery goals. Results of the study indicated that learners with combined

mastery and performance goals displayed slightly better outcomes compared to those

with low goals. The study found no significant link between goal orientation profiles

and overall course grades. Similar results were obtained in another study where task

avoidance, self-approach/avoidance, and other-approach goals were not directly

correlated with final exam scores (Tomić et al., 2020). This finding was in contrast

to Shell et al.'s (2016) study, which identified goal orientation as a key factor for

student success. While social comparison aspects of goal orientation, which focus on

outperforming others, were not strongly linked to achievement in some studies

(Tomić et al., 2020), others suggested potential beneficial outcomes. Peteranetz

(2021) observed a decrease in performance-avoidance goals (fearing looking bad),

which might be a positive development, as it could indicate a shift towards a more

growth-oriented mindset, where challenges are seen as opportunities for learning. In

another research, Gaddy and Ortega (2022) explored student enrollment decisions

using a novel approach: virtual reality (VR). This innovative method revealed that

scenarios highlighting goal orientation and career opportunities significantly

influenced participants’ enrollment decisions in CS courses, whereas focusing on

40

demographics had a negative impact. This suggests that potential CS students are

more engaged by messages that connect to their aspirations and future goals rather

than those that emphasize demographic characteristics.

In conclusion, student success in CS education transcends technical skills. A

supportive learning environment that fosters goals and actively acknowledges the

dynamic nature of motivation is crucial. By exploring the motivational factors,

educators can develop targeted interventions to nurture student engagement, address

challenges specific to gender, and empower students to navigate the evolving field

of CS education.

2.3 Programming Education for Young Learners

There is a growing worldwide interest in the instruction of programming skills at

elementary, middle, and high schools. In many countries, there has been intensive

work carried out by governments on incorporating computer programming into

school curricula. A wide range of studies explore the efficacy of programming

languages that use blocks as their primary method of coding in teaching computer

programming fundamentals. These studies highlight both the advantages and

drawbacks of block-based programming tools. These tools affect students’

motivation, interest, and engagement in a positive way compared to traditional

methods. For example, a study by Ouahbi et al. (2015) explored the impact of block-

based programming on high school students' motivation in programming.

Researchers divided science majors into groups learning with either Scratch, a game-

creation platform, or the traditional Pascal language. Students using Scratch

displayed significantly higher interest in continuing programming compared to

Pascal groups. Engagement with Scratch was also evident, as 85% of those students

installed it on their home computers, far exceeding the 17.2% in the Pascal groups.

Students were drawn to block-based programming due to its user-friendly nature.

Compared to text-based programming, block-based environments offer visual cues,

visual manipulation of code blocks, and natural language labels, making them easier

41

for novice learners to grasp. These environments also support learning by offloading

memory tasks through block design (shape and color). Block-based programming,

therefore, provides a valuable foundation for learning core programming concepts

(Weintrop & Wilensky, 2015).

However, block-based programming might be perceived as less powerful than text-

based programming. These tools may not offer the same level of complexity and

power as traditional text-based programming languages (Weintrop & Wilensky,

2015). Block-based programming tools enhance the initial learning experience while

preparing students for more complex programming tasks. Although block-based

programming environments are highly effective for beginners and provide a smooth

transition to text-based programming languages (Bau et al., 2017), they might be

perceived as less powerful than text-based programming. These tools may not offer

the same level of complexity and power as traditional text-based programming

languages. Additionally, some research studies highlight the challenges associated

with moving from block-based to text-based programming environments (Weintrop

& Wilensky, 2015). To address this challenge, Bau et al. (2017) suggested a dual-

mode approach that proposes bidirectional mode switching between block and text

representations, leveraging the ease of blocks for learning syntax and the efficiency

of text-based coding.

In the literature, there are numerous efforts to develop or adapt the computer

programming self-efficacy scales designed to measure students' self-efficacy in

programming across middle, high school, and undergraduate levels (Altun &

Kasalak, 2018; Askar & Davenport, 2009; Cesur Özkara & Yanpar Yelken, 2020;

Karalar, 2023; Kittur, 2020; Korkmaz & Altun, 2014; Kukul et al., 2017;

Ramalingam & Wiedenbeck, 1998; Tsai et al., 2019). The systematic literature

review conducted by Luxton-Reilly et al. (2018) mentioned that academic success is

demonstrably influenced by students' self-efficacy and engagement. Research

suggested that female and minority students tend to exhibit lower levels of self-

efficacy compared to their peers.

42

A variety of pedagogical approaches have been investigated in computer education

research. For instance, the master's thesis by Erdem (2018) investigated how 5th

graders learned Scratch programming through two different approaches: traditional

face-to-face instruction and flipped learning with technology support. The research

revealed no substantial difference in educational achievements between the two

teaching methods. Wells LeRoy's (2022) dissertation explored the potential of

Minecraft for teaching logic gates with the participation of 122 college students. The

study investigated two instructional design principles, guided discovery and

pretraining, with a particular focus on their impact on cognitive load. While no

notable disparities were observed in the learning outcomes between discovery

approaches, Minecraft groups learned to build logic gates more effectively than the

PowerPoint group. Besides, students in the direct instruction condition experienced

significantly higher extraneous cognitive load.

While the importance of programming education has gained widespread recognition,

the effective assessment of student learning in this domain has become a prominent

area of research (Grover, 2020; Newton et al., 2021). Some researchers have

explored a variety of assessment methods to assess the comprehension of

programming principles among students. Some researchers attempted to develop

traditional written exams. To this end, Grover, (2020) developed and evaluated a

summative paper-hand assessment for measuring student learning in introductory

programming courses tailored for grades 6-8 in middle school. This assessment

incorporated a combination of multiple-choice and open-response question formats,

all focusing on core programming concepts (“variables, expressions, loops,

conditionals, and abstraction”) using Scratch as a familiar platform for students (p.

678). The analyses of validity, reliability, and item discrimination, coupled with the

results of pre-and-post tests, suggest the assessment's effectiveness as a reliable

measure of learning in introductory programming. Notably, this study also provides

evidence for the effectiveness of well-designed multiple-choice items in assessing

the comprehension of programming concepts by students. Another study by Newton

43

et al. (2021) demonstrated the effectiveness of the Evidence-Centered Design (ECD)

framework in developing assessments for high school computer science courses.

The limited availability of computers in computer science classrooms has, to some

extent, necessitated the adoption of pair programming. This circumstance may

account for the significant amount of research devoted to exploring the impacts of

pair programming. Albayrak and Polat (2022) carried out a mixed-methods study to

investigate the experiences of students with pair programming. This study

underscores the benefits of pair programming at the undergraduate level. Throughout

a semester-long programming course, students worked in pairs, completed

assessment forms after each lesson, and participated in in-depth interviews at the

term's end. The findings revealed that students generally had positive experiences

with pair programming, reporting enhanced academic performance, faster problem-

solving, increased motivation, reduced anxiety, and improved communication skills.

However, some challenges were noted, such as disagreements on problem-solving

approaches and difficulty progressing when stuck together. Despite these challenges,

the study suggested that pair programming could be a valuable teaching method,

potentially addressing issues like student motivation and course completion rates.

2.3.1 Block-based Programming Environments

Block-based programming environments are commonly employed in early grades to

instruct students lacking previous exposure to programming. Numerous block-based

environments have been developed for teaching programming to young learners and

novice programmers, including Scratch, Code.org, MIT AppInventor, Alice and

CodeAcademy, among others. These tools enable students to create programs,

games, applications, and animations without the need to type commands and deal

with syntax errors, as is typical in traditional text-based programming languages.

Block languages reduce the cognitive load for new programmers by eliminating

syntax frustration (Bau et al., 2017; Luxton-Reilly et al., 2018). Moreover, these

applications can be utilized on computers, laptops, or mobile phones. Through these

44

platforms, students can gain a comprehensive understanding of fundamental

programming concepts like algorithms, loops, conditional statements, variables,

functions, and events. These introductory programming environments leverage

block-based programming languages, where each block encapsulates a specific

programming concept. Learners construct executable computer programs by

manipulating and connecting these blocks, similar to assembling a puzzle through a

drag-and-drop interface. Block-based programming relies heavily on visual design

to guide users. The shapes of the blocks themselves hint at their function, while

colors categorize functionally similar blocks. Additionally, each block is clearly

labeled, explicitly describing its purpose. One of the significant roles of visual cues

is to facilitate understanding, while instructional scaffolding helps learners grasp

fundamental programming concepts more effectively (Bau et al., 2017). Most block-

based programming tools offer a dedicated workspace where users can visualize the

execution of their program constructs. These tools then provide real-time visual or

auditory feedback to the user, indicating the validity of the constructed program

(Weintrop & Wilensky, 2015). Some block-based code editors, such as Blockly,

offer the simultaneous display of the user's constructed code in both a visual block

format and its corresponding text-based representation in specific programming

languages.

Block-based programming environments serve as a novice-friendly introduction to

programming fundamentals, acting as a stepping stone for a future transition to text-

based programming languages. Despite their drag-and-drop interface, block-based

tools maintain fidelity to core programming concepts. They incorporate instructional

scaffolding similar to structured editors, ensuring learners' acquisition of essential

programming principles while experiencing the core tenets of code writing.

Essentially, block-based programming environments offer a transparent and

accessible initial experience with programming, while establishing a foundation for

further exploration within the realm of more complex programming languages that

rely on text for coding (Weintrop & Wilensky, 2015).

45

Code.org

Numerous platforms are utilized at the K-12 level to teach programming, with

Code.org being one of the most widely implemented in Turkey, particularly in

middle schools, for introducing children to the fundamentals of computer

programming. Code.org is an educational visual programming environment

dedicated to broadening access to computer science education and ensuring its

availability to all, with a particular emphasis on children and young learners. This

initiative also conducts the annual Hour of Code campaign, engaging over 15% of

students globally (Code.org, 2024). According to their 2022 Annual Report, it has

amassed 80 million student accounts, with 47% identifying as female or gender-

expansive and 48% representing underrepresented racial or ethnic groups (Code.org,

2022). By using this platform, children can design and develop their own games,

animations, and applications. For educators and schools, Code.org provides

resources, including lesson plans to help integrate computer science curricula into

classrooms.

2.4 Summary

Computer programming, characterized by its cognitive complexity, imposes a

significant cognitive load on learners, challenging their working memory. Cognitive

Load Theory provides a valuable framework for addressing these challenges in

programming education. The inherent complexity of programming, due to the

integration of numerous new concepts, increases cognitive load and can hinder

learning and problem-solving. Research has applied CLT to develop instructional

strategies and tools aimed at optimizing cognitive load in programming education.

Effective learning is achieved by minimizing extraneous load and optimizing

intrinsic and germane loads. Innovative educational tools and techniques, informed

by CLT, address the complexities of programming education.

46

Research on student motivation in computer science education reveals a complex

interplay of factors influencing learning outcomes. While mastery goals are

consistently associated with favorable academic outcomes, the role of performance

goals is more differentiated. Performance-approach goals can be beneficial under

certain conditions, but performance-avoidance goals are generally detrimental. The

concept of classroom goal structures adds another layer, influencing their

engagement and academic achievement. The influence of classroom goal structures,

shaped by teacher practices and feedback, significantly impacts students' motivation

and achievement. In conjunction, self-efficacy, a key determinant of motivation, is

influenced by various factors, including past experiences, social support, and

emotional states. Students' perceptions of their abilities in programming are shaped

by their interactions with the subject matter and the learning environment.

Contextual factors such as gender, socioeconomic status, and learning styles also

contribute to student motivation and achievement in computer science. The use of

gamification and interactive learning environments can positively impact students'

attitudes and motivation, but careful consideration must be given to the

developmental levels of learners. Besides that, academic self-handicapping

strategies are closely tied to performance-avoidance goals and are supported in

environments that emphasize performance over mastery. Additionally, the

occurrence of cheating behavior, which is notably observed in programming

education, highlights the ethical concerns related to performance goals.

Collaborative learning methods, while intended to enhance learning, can

inadvertently facilitate dishonest behaviors if not carefully managed.

Block-based programming languages have been recognized as a successful tool for

introducing fundamental programming concepts, offering a user-friendly approach

that enhances student motivation and engagement compared to traditional text-based

methods. Studies have shown that block-based platforms significantly increase

students' interest and engagement and simplify code manipulation, making it

accessible for novices. Despite their benefits, block-based environments are

sometimes viewed as less powerful than text-based languages. Various pedagogical

47

strategies, including traditional instruction and innovative approaches like game-

based learning, have been explored, with mixed results regarding their effectiveness

in improving learning outcomes. Pair programming has been identified as a

beneficial practice, enhancing academic performance and reducing anxiety, though

it also presents challenges, such as conflicts over problem-solving approaches.

In conclusion, effective programming education requires a multifaceted approach

that considers cognitive, motivational, and contextual factors. Cognitive Load

Theory offers valuable insights into optimizing learning by minimizing cognitive

overload and maximizing meaningful engagement with the material. Understanding

and addressing students' motivation, including the interplay of mastery and

performance goals, self-efficacy, attitude, and classroom goal structures, is crucial

for fostering a positive learning environment. The strategic use of block-based

programming environments can serve as an effective entry point to the field.

Additionally, research on the impact of pedagogical approaches, such as pair

programming, is essential for enhancing student learning outcomes. By addressing

the cognitive, motivational, and contextual challenges of programming education,

educators can lead to the development of more engaging and efficient learning

experiences that empower students to succeed in this rapidly evolving field.

49

CHAPTER 3

3 METHODOLOGY

This chapter outlines the research methodology employed in this study. Initially, the

research questions were identified. Following this, the chapter introduces the

participants, details the research design, describes the study procedure, and

elaborates on the data collection instruments. Furthermore, it addresses the pilot

study, the implementation of the main study, the data analysis procedures, issues of

validity and reliability, and ethical considerations.

3.1 Research Questions

To comprehensively explore the factors affecting the learning of basics of computer

programming among middle school students, this study formulated the following

questions:

1. Is there a significant difference in cognitive load experienced by students

across seven fundamental programming topics?

2. Is there a significant difference in students' PALS (personal achievement goal

orientations, perception of classroom goal structures, academic-related

perceptions, beliefs and strategies), attitudes towards coding education,

achievement in mathematics, achievement in reading comprehension,

achievement in coding, and cognitive load scores based on their gender?

a. Is there a significant difference in students’ PALS scores based on

their gender?

b. Is there a significant difference in students’ attitudes toward coding

education scores based on gender?

c. Is there a significant difference in students’ mathematics scores based

on gender?

50

d. Is there a significant difference in students’ reading comprehension

scores based on gender?

e. Is there a significant difference in students’ coding achievement

scores based on gender?

f. Is there a significant difference in students’ cognitive load scores

across seven fundamental programming topics based on gender?

3. Is there a significant difference in PALS (personal achievement goal

orientations, perception of classroom goal structures, academic-related

perceptions, beliefs and strategies), attitudes towards coding education,

achievement in mathematics, achievement in reading comprehension,

achievement in coding, and cognitive load scores between students from

urban schools and suburban schools?

a. Is there a significant difference in PALS scores between students

from urban schools and suburban schools?

b. Is there a significant difference in attitudes toward coding education

scores between students from urban schools and suburban schools?

c. Is there a significant difference in mathematics scores between

students from urban schools and suburban schools?

d. Is there a significant difference in reading comprehension scores

between students from urban schools and suburban schools?

e. Is there a significant difference in coding achievement scores between

students from urban schools and suburban schools?

f. Is there a significant difference in cognitive load scores across seven

fundamental programming topics between students from urban

schools and suburban schools?

4. How do research variables predict students’ achievement scores in

programming?

5. What are the students’ experiences and opinions on the factors that affect

their learning fundamentals of programming?

51

3.2 Participants

3.2.1 Participants in the Quantitative Phase

The present study was conducted in three public middle schools situated within the

Rize province. Participant selection employed a nonprobability convenience

sampling method. While acknowledging limitations in generalizability due to the

potential for self-selection bias, this method was chosen for its pragmatic advantages.

Considering the research questions at hand, it was reasoned that a convenience

sample drawn from these schools could provide appropriate information to test and

investigate the research questions (Creswell, 2012). A total of 281 fifth-grade

students were enrolled in the three participating schools. Of those students, 199 who

regularly attended Information Technologies and Software (ITS) classes,

consistently completed the data collection tools and obtained parental consent were

selected as participants for the study on a voluntary basis.

Table 3.1 provides a distribution of participants from different geographical

locations. School A, classified as an urban school, had the highest number of

participants with 112 students, which constitutes 56.3% of the total sample. On the

other hand, the other two schools are classified as a suburban school. Seventy-four

participants of the study were from School B, accounting for 37.2% of the total

participants. School C had the fewest participants among the schools, with 13

students making up 6.5% of the sample.

Table 3.1 Participants of the Study by Schools

Characteristics f %
Urban School School A 112 56.3

Suburban School School B 74 37.2

 School C 13 6.5

52

Table 3.2 provides an analysis of the characteristics of participants from urban and

suburban schools. As seen in the table, 92 female and 107 male students participated

in this study. A disparity was observed in the ownership of computers at home, with

80.4% of urban school students having a computer, compared to 55.2% of suburban

school students. Household internet access was almost universal among urban

students (99.1%) but slightly lower among suburban students (93.1%). The

frequency of computer usage also varies, with urban students using computers more

frequently on a weekly basis (38.4%) compared to suburban students (21.8%). Prior

coding experience is more common among urban students (27.7%) than suburban

students (11.5%). Overall, these findings emphasize the differences in access to

technology and prior experience between students from urban and suburban schools.

Table 3.2 Characteristics of the Participants

Characteristic Category Urban Suburban Total

f % f % f %

Gender Female 53 47.3 39 44.8 92 46.2
 Male 59 52.7 48 55.2 107 53.8
Having a computer
at home

Yes 90 80.4 48 55.2 138 69.3
No 22 30.7 39 44.8 61 30.7

Household internet Yes 111 99.1 81 93.1 192 96.5
No 1 0.9 6 6.9 7 3.5

Frequency of
computer
usage

Never 14 12.5 23 26.4 37 18.6
A few days a month 5 4.5 9 10.3 14 7.0
A few days a week 43 38.4 19 21.8 62 31.2
Less than 1 hour a day 15 13.4 12 13.8 27 13.6
1-3 hours a day 25 23.3 15 17.2 40 20.1
More than 3 hours a day 10 8.9 9 10.3 19 9.5

Prior coding
experience

No prior experience 81 72.3 77 88.5 158 79.4
With prior coding
experience

31 27.7 10 11.5 41 20.6

53

The education levels of the parents of participants were provided in Table 3.3. Most

participants’ mothers and fathers had graduated from high school (45.2% of mothers

and 44.2% of fathers). Similarly, a high percentage of urban mothers (47.3%) and

suburban mothers (42.5%) had high school degrees. A significant portion of urban

mothers hold bachelor’s degrees (17.9%), whereas 6.9% of suburban mothers

attained this level of education. Conversely, suburban mothers were more likely to

have primary school degrees (23.0%) and middle school degrees (21.8%). A small

percentage of mothers in urban areas had master’s or PhD degrees (1.8%), while this

level of education was not present among suburban mothers. Additionally, the

percentage of illiterate mothers is higher in suburban areas (4.6%) compared to urban

areas (0.9%).

Table 3.3 Parental Education Level of the Participants

Characteristic Category Urban Suburban Total
 f % f % f %
The education
level of
the mother

Illiterate 1 0.9 4 4.6 5 2.5
Primary school degree 15 13.4 20 23.0 35 17.6
Middle school degree 11 9.8 19 21.8 30 15.1
High school degree 53 47.3 37 42.5 90 45.2
Associate degree 10 8.9 1 1.1 11 5.5
Bachelor's degree 20 17.9 6 6.9 26 13.1
Master’s/PhD degree 2 1.8 - - 2 1.0

The education
level of
the father

Illiterate 1 0.9 2 2.3 3 1.5
Primary school degree 8 7.1 15 17.2 23 11.6
Middle school degree 17 15.2 16 18.4 33 16.6
High school degree 50 44.6 38 43.7 88 44.2
Associate degree 8 7.1 7 8.0 15 7.5
Bachelor's degree 25 22.3 9 10.3 34 17.1
Master’s/PhD degree 3 2.7 - - 3 1.5

54

When the education level of fathers was examined, similar trends were observed. A

larger proportion of urban fathers (44.6%) and suburban fathers (43.7%) held high

school degrees. Bachelor’s degrees were more common among urban fathers

(22.3%) than suburban fathers (10.3%). However, suburban fathers had higher

percentages of primary school degrees (17.2%) and middle school degrees (18.4%)

compared to urban fathers. A small number of urban fathers held master’s or PhD

degrees (2.7%), whereas this level of education was not present among suburban

fathers. The percentage of illiterate fathers is slightly higher in suburban areas (2.3%)

compared to urban areas (0.9%).

3.2.2 Participants in the Qualitative Phase

At the end of the implementation phase, semi-structured interviews were carried out

with selected students. Participants were purposively selected based on teacher

recommendations to represent a range of academic achievements in the ITS course.

Three students were selected from each of the ten participating classes (six from

School A, three from School B, and one from School C), one representing low, one

moderate, and one high academic achievement. As detailed in Table 3.4, the

interview participants included 14 female and 16 male students.

55

Table 3.4 Demographic and School Information of Interviewed Students

ID Gender School Geographical School Location Class
S1 Male School A Urban 5A
S2 Female School A Urban 5A
S3 Male School A Urban 5F
S4 Female School A Urban 5F
S5 Male School A Urban 5F
S6 Male School A Urban 5D
S7 Male School A Urban 5D
S8 Female School A Urban 5D
S9 Female School B Suburban 5A
S10 Male School B Suburban 5A
S11 Male School B Suburban 5A
S12 Male School B Suburban 5C
S13 Female School B Suburban 5C
S14 Female School B Suburban 5C
S15 Male School B Suburban 5B
S16 Female School B Suburban 5B
S17 Male School B Suburban 5B
S18 Male School A Urban 5B
S19 Male School A Urban 5B
S20 Female School A Urban 5B
S21 Female School A Urban 5E
S22 Female School A Urban 5E
S23 Male School A Urban 5E
S24 Male School A Urban 5C
S25 Female School A Urban 5C
S26 Male School A Urban 5C
S27 Female School C Suburban 5A
S28 Female School C Suburban 5A
S29 Male School C Suburban 5A
S30 Female School A Urban 5A

3.3 Research Design of the Study

The current study aimed to explore and analyze the factors that influence middle

school students' acquisition of foundational computer programming knowledge and

skills. To achieve this objective, the study utilized a mixed-methods research design

that offers a comprehensive approach to exploring complex research questions.

56

A mixed-methods research design outlines a systematic approach for integrating

quantitative and qualitative data within the same study. This approach strategically

leverages the advantages of both qualitative and quantitative methods. Quantitative

methods are useful in educational research for identifying patterns and relationships

through numerical data analysis (Creswell, 2015). Quantitative methods play a

crucial role in educational research by facilitating the identification of patterns and

relationships through numerical data analysis. On the other hand, qualitative

methods offer distinct advantages over quantitative approaches in several ways: they

investigate participants’ inner experiences, explore how individuals construct and

understand meaning in their world, provide in-depth exploration in emerging

research areas, identify variables for further investigation through quantitative

methods, and foster a holistic and comprehensive understanding of phenomena

(Corbin & Strauss, 2012). Combining these methodologies can yield a more

comprehensive picture of the phenomenon under study than either method could

achieve alone.

Although mixed-methods studies have drawbacks, such as the need for substantial

time, resources, and the researcher's expertise in both qualitative and quantitative

research methods, they offer a multitude of advantages for research. One strength of

this method is its capacity to enrich the understanding of underlying relationships

between variables. Furthermore, mixed-methods research facilitates an in-depth

exploration of the relationships between variables. Additionally, mixed-methods

designs can contribute to the confirmation or cross-validation of relationships

identified between variables (Fraenkel et al., 2012).

In mixed-methods design, the combination of qualitative and quantitative data goes

beyond simply aggregating them into a single dataset. Instead, this process involves

a rigorous approach that aims to achieve a comprehensive and multifaceted

understanding of the research phenomenon (Creswell, 2015). Within the field of

mixed-methods research, various frameworks exist for conceptualizing research

designs. For instance, Creswell (2015) categorized mixed-methods designs into basic

and advanced groups. While this framework provides a general structure, Fraenkel

57

et al. (2012) offered a complementary perspective by identifying three specific

designs frequently used in educational research: exploratory, explanatory, and

triangulation designs. According to the framework defined by Creswell (2012,

2015), basic designs, encompassing convergent, explanatory sequential, exploratory

sequential, and embedded designs, involve the collection and analysis of quantitative

and qualitative data in different ways. In a convergent parallel design, data from both

methodologies are collected simultaneously and analyzed independently, with

subsequent comparison to identify convergence or divergence in the findings.

Sequential designs involve data collection in two distinct phases. The explanatory

sequential design begins with the collection of quantitative data, which is then

followed by qualitative data to explain the “why” behind the quantitative findings.

The exploratory sequential design follows the opposite sequence, starting with

qualitative data for the initial exploration of the variables associated with the

phenomenon and then utilizing quantitative data to explore the relationships between

these variables (Fraenkel et al., 2012). The embedded design is similar to the

convergent and sequential designs in that quantitative and qualitative data are

collected concurrently or sequentially. However, in this type of design, one data type

serves a supplementary role in enhancing the understanding derived from the

primary data type. While these basic mixed-methods designs are identified as distinct

approaches, they can be nested within advanced designs. Examples include framing

a basic design within an experiment, a social justice inquiry, or an evaluation process

(Creswell, 2015).

Mixed-methods designs are helpful for a comprehensive understanding of complex

educational phenomena by integrating qualitative and quantitative approaches. This

study aims to investigate the multifaced nature of learning programming that

involves not only cognitive aspects but also social and behavioral aspects. In this

study, the quantitative data identified predictors of programming achievement. The

qualitative component then explored deeper into these relationships, providing richer

insights and different perspectives. By integrating the findings from both

approaches, the study aimed to achieve a more through comprehension of the ways

58

in which different factors impact students' learning of programming. In particular, in

this study, a convergent embedded mixed-methods design, in which a qualitative

component is embedded within a quantitative design, was utilized. Both quantitative

and qualitative data were collected simultaneously in order to explore different

research questions, where the focus is on the quantitative data, and the qualitative

data supports the quantitative data (Fraenkel et al., 2012). The qualitative data served

to enrich our understanding of the quantitative findings by providing insights into

the underlying reasons or experiences associated with the quantitative results.

3.4 Procedure of the Study

3.4.1 Preliminary Investigation

The preliminary investigation served as a critical first step in preparing for this study.

It focused on the phenomenon of "teaching programming to children" within the

context of Turkey's middle school curriculum. At the time the study commenced, the

teaching of programming to younger age groups was just beginning to become

widespread in Turkey, even though the relevant learning outcomes had been included

in the curriculum previously. This study aims to evaluate factors that affect students'

programming learning within the existing teaching processes rather than intervening

in the learning environment.

When the research concept was initially developed, the "Middle School and Imam

Hatip Middle School Information Technologies and Software Course (Grades 5, 6,

7, and 8) Curriculum," published by the National Ministry of Education, Board of

Education and Training in 2012, was in effect (since access to past curriculum

documents is only possible through an official application/petition to the Ministry of

National Education, this curriculum cannot be referenced, Presidency of the Board

of Education, n.d.). This standard-based curriculum comprises four categories of

competencies along with standards that express the knowledge and skills pertaining

to information and communication technologies for each competency. In the

59

curriculum, there are no specific levels or topics designated for teaching a particular

grade. Instead, the selection of levels and current topics is left to the discretion of the

teacher. Subsequently, in 2018, a new curriculum for grades five and six was

published by the Ministry of National Education along with the Teacher's Guide and

Student Materials.

Therefore, this investigation was conducted to gain an understanding of the current

state of programming instruction in Turkey's middle schools, determine the research

needs, and tailor the research design accordingly. This involved conducting

exploration with IT teachers who had direct experience teaching programming to

children. In this regard, data were collected from 319 volunteer IT teachers across

71 Turkish cities. A total of 303 teachers completed the online survey, while 16

participated in interviews. Data was gathered through online surveys and semi-

structured interviews. The survey consisted of eight general demographic questions,

two yes-no questions, eight multiple-choice questions with closed-ended response

options, and thirty-two open-ended questions. In the survey, close-ended questions

were followed by open-ended questions, where participants described their

experiences in detail based on their responses to the closed-ended questions.

Consequently, the number of open-ended questions varied for each participant. The

survey questions were reviewed by two subject matter experts and checked by a

Turkish language expert for any obscure expressions. Additionally, a pilot survey

was conducted with two IT teachers. The semi-structured interview questions were

developed using the survey questions as a guide.

LimeSurvey, an open-source online survey application, was used to develop and

administer the survey. The survey was published on a personal website. The survey

invitation, either as a text or image, was disseminated on various social media

platforms to invite IT teachers to participate in the study. Furthermore, an invitation

letter was emailed to the corporate mail addresses of schools. Following the survey

administration, interviews were conducted with volunteer teachers. At the outset of

each interview, participants were briefed on the study's purpose and permission was

obtained for audio recording. The interviews were carried out over the telephone,

60

and each session was recorded. These interviews lasted approximately 20 to 55

minutes. The data obtained from this preliminary investigation and the main study

were analyzed using the same qualitative data analysis procedure. The detailed

analysis procedure is presented under the 'Qualitative Data Analysis' section (p. 78).

The following section presents the main results obtained from the examination of the

survey and interviews, along with a discussion of how these findings shaped the

subsequent stages of the research study:

• Survey results showed that 63.04% (N = 191) of the teachers involved in the

research incorporated programming instruction in their classes. The primary

reason cited by teachers who did not incorporate programming instruction

was technological deficiencies.

• According to the interview results, students entering the Information

Technologies and Software course in grades 5 or 6 have little to no prior

exposure to foundational information technology concepts.

• While survey participants indicated which learning objectives they included

in their lessons, interviews with teachers revealed confusion about

integrating these objectives into their lesson plans. Some teachers were

unaware of the new curriculum. Additionally, some teachers did not follow

a specific annual or daily plan and taught the Information Technologies and

Software courses independently of the curriculum's learning objectives. Even

when using common plans provided by their departments or shared on online

platforms, some teachers stated that they focused on solving specific puzzles,

particularly those using the Code.org coding environment, instead of

ensuring alignment with specific learning objectives. On these platforms,

teachers selected examples or courses for their students to complete each

week but often overlooked aligning them with specific learning objectives.

61

Considering the preliminary research findings, the following adjustments were made

to the study:

• The absence of standardized programming instruction practices in middle

education, such as inconsistencies in curriculum implementation and

variations in the specific programming outcomes addressed, posed a

significant challenge for conducting a comprehensive study that

encompasses data from multiple schools. This lack of standardization could

lead to inconsistencies in the pace and depth of programming instruction,

making it difficult to draw meaningful comparisons and identify patterns

across different learning environments. To address this challenge and ensure

the collection of consistent data that facilitates meaningful analysis, the

establishment of weekly learning objectives and lesson plans was deemed

essential. Weekly learning objectives were intended to serve as a common

framework for all participating schools, ensuring that students are exposed to

a consistent sequence of programming concepts and skills throughout the

study period. Additionally, aligned lesson plans were intended to provide

teachers with a detailed guide for each week's instruction, including activities

and resources.

• Given the prevalence of Code.org as the preferred block-based coding

platform for introductory programming instruction at the middle level and

recognizing the teachers' existing familiarity with this tool, the decision was

made to adapt and utilize lesson plans from Code.org curriculums. For this

purpose, to ensure appropriate difficulty and alignment with middle-level

learning objectives, Course F, originally designed for fifth grade, was

carefully reviewed and adapted.

62

3.4.2 Adaption Process of the Lesson Plans

In preparation for the study, 27 of the 28 programming-related lesson plans from

Course F on Code.org were translated from English to Turkish. This translation

process involved two language experts: one for the initial translation and another for

a thorough review. A researcher then made the final corrections to ensure accuracy

and clarity. A pilot study was conducted to evaluate the feasibility of the lesson plans

in a classroom setting. The lesson plans were distributed to 15 IT teachers based on

their students' readiness and pre-learning levels, as well as teacher preferences. The

teachers were informed about the research goals and participated voluntarily. They

were encouraged to contact the researcher with any questions throughout the pilot.

The researcher provided support via phone calls, text messages, or in-person visits

to the schools. After implementing each lesson plan, teachers were asked to complete

a Lesson Plan Evaluation Form (Appendix A) and send it electronically to the

researcher. Data from the Lesson Plan Evaluation Form was used to identify

suggestions and problems reported by the teachers, as listed below:

• It was reported that some lesson plans, especially those with extensive

unplugged activities, could not be completed within a two-hour class period.

• Providing the materials to be used in the course for unplugged activities was

not easy for some teachers. The preparation process for these courses was

considered time-consuming by some of them.

• The pilot study revealed issues with clarity in some lesson plans, especially

those with extensive unplugged activities. Teachers found the language

confusing and the instructions insufficient, making it difficult to understand

the intended activities. To address this, simplifying the language and

providing more detailed explanations were suggested.

• Teachers recommended incorporating more in-class practice with digital

puzzles before transitioning to independent or paired work. This would

provide scaffolding to ensure student understanding.

63

• It was stressed that sometimes students had difficulty making connections

between activities and the related concepts covered in the lesson.

• Concepts requiring specific mathematical knowledge, such as angles,

presented challenges for student comprehension and application.

• Feedback from the pilot study highlighted that some lesson plan elements

(e.g., playing cards) were considered distracting by the participating teachers.

The pilot study yielded feedback from teachers on the lesson plans, highlighting

areas for improvement. Based on these findings lesson plans were revised.

3.4.3 Lesson Plan Evaluation Workshop

Following the implementation and revision of the lesson plans based on teacher

feedback, a two-day workshop was conducted with IT teachers. The workshop aimed

to refine the piloted course content for the research study, focusing on teaching

programming fundamentals to novice students in fifth grade. The workshop began

with participants collaboratively identifying suitable learning objectives from the

official 2018 curriculum. These objectives then guided the selection of lesson plans

and activities. The teachers structured a ten-week program by selecting appropriate

elements from both adapted Code.org lesson plans and the official 5th Grade

Computer Technologies and Software Teacher Guide. The workshop involved four

IT teachers, with two participants working in public schools and the other two

employed by private schools. Lesson plans were distributed to the teachers in

advance of the workshop. They were requested to review the materials beforehand

to facilitate a productive discussion during the sessions. Additionally, printed copies

of the lesson plans were provided to each participant at the workshop's start for easy

reference. To capture the workshop discussions and activities, all sessions were

video recorded. This resulted in approximately 10 hours of data. Based on the

researcher's field notes and the video recordings of the workshop sessions, the

64

targeted learning outcomes, corresponding lesson plans, and activities for the

implementation of the study were identified.

3.5 Data Collection Instruments

3.5.1 Coding Achievement Test

The Information Technologies and Software course Coding Achievement Test was

developed for 5th-grade students to evaluate their understanding of the basics of

programming (see Appendix B).

3.5.1.1 Development of the Coding Achievement Test

Some items of the test were developed by the researcher through a literature review,

while others were developed by revising the questions of the coding achievement

tests developed in the previous research studies and the questions from the coding

textbooks recommended by the interviewed IT teachers during the lesson plan

development process. In the development of the questions regarding measuring

competencies in block-based coding, code.org and Scratch block-based coding

platforms were used. The candidate achievement test was developed with 46 items,

which were formed based on the learning outcomes defined in the fifth-grade

curriculum of the Information Technologies and Software course published by the

Ministry of National Education in 2018.

As a first step towards evaluation of the achievement test, it was reviewed by an

assessment and evaluation expert in terms of construct validation and reviewed by a

language expert and an IT teacher for language suitability. Subsequently, as the

second step, the Content Evaluation Panel was established, comprising four subject

matter experts and nine IT educators. Each IT educator was employed at a public

school and possessed over five years of experience in teaching programming at the

middle school level, particularly in fifth and sixth grades. One of the subject matter

65

expert panelists was selected from the Department of Computer Programming,

having graduated from the Department of Computer Education and Instructional

Technology (CEIT). Another subject matter expert was chosen from the Department

of Computer Engineering, also a graduate of CEIT. Besides that, one subject matter

expert from the Department of Computer Programming with over ten years of

experience in teaching programming at a vocational school and one subject matter

expert from the Department of CEIT were included. The expert evaluation form,

consisting of four questions, was subsequently developed to investigate the content

validity of the instrument. It aimed to evaluate the appropriateness of the instrument

for the target audience, as well as the comprehensibility and difficulty levels of the

items.

Content validity was investigated with the question (1)"Does the item represent the

property to be measured?” The response options for this question were: “Essential”,

“Useful but insufficient” and “Not necessary”. Response options for the other

questions ((2) Is the item appropriate for the target audience? (this question just

asked panelists who were working at middle school and/or graduated from CEIT),

(3) Is the item sufficiently clear?, (4) What is the difficulty level of the item?) were:

“Appropriate”, “Appropriate but needs revision” and “Not appropriate” for the

second question, “Clear”, “Clear but needs revision” and “Not clear” for the third

question; and “Simple”, “Medium” and “Difficult” for the last question (Yeşilyurt &

Çapraz, 2018). Besides, a column labeled “comments” was added to the far right of

the table to provide space for respondents to optionally add their comments regarding

each item. At the end of the evaluation form, subject matter experts were also asked

if they had any further comments regarding the overall test.

Forty-six candidate items were submitted to the panel for expert opinion. Panelists

were asked to grade each item for each question on the evaluation form by selecting

one of the given options. The content validity of the achievement test was evaluated

by the determination of content validity rates by using the Lawshe technique

(Lawshe, 1975). It was ascertained how many panelists selected the 'Essential' option

66

for each item, and then the content validity ratio (CVR) for each item was calculated

by utilizing the following equation:

𝐶𝑉𝑅 =
𝑛!"# $%

𝑁
2(

(ne= Number of panelists indicating "essential", N= Total number of panelists)

The content validity index of individual items (I-CVI) was calculated by dividing the

number of panelists considering an item as ‘essential’ by the total number of experts.

CVR and I-CVR values for each item are presented in Table 3.5.

Table 3.5 Content Validity Values of the Test Items

Item CVR I-CVI A (%) C (%) DL (%)
 E M D
1 1.00 1.00 1.00 1.00 0.77 0.23 -
2 0.85 0.92 1.00 0.92 0.69 0.31 -
3 1.00 1.00 0.92 0.92 0.08 0.46 0.46
4 0.69 0.85 0.75 0.92 0.54 0.31 0.15
5 0.85 0.92 1.00 1.00 0.77 0.23 -
6 1.00 1.00 1.00 1.00 0.62 0.38 -
7 1.00 1.00 0.92 0.85 0.69 0.31 -
8 1.00 1.00 1.00 1.00 0.23 0.23 0.54
9 0.69 0.85 0.92 1.00 0.08 0.54 0.38
10 0.54 0.77 0.67 0.92 0.31 0.38 0.31
11 1.00 1.00 1.00 1.00 0.08 0.62 0.31
12 1.00 1.00 0.92 0.85 0.23 0.62 0.15
13 1.00 1.00 1.00 0.85 0.08 0.77 0.15
14 0.85 0.92 0.92 1.00 0.31 0.38 0.31
15 0.85 0.92 0.92 0.02 0.08 0.23 0.69
16 0.54 0.77 0.67 0.85 - 0.23 0.77
17 0.85 0.92 0.92 1.00 0.08 0.62 0.31
18 0.85 0.92 0.75 0.85 0.92 - 0.08
19 0.85 0.92 0.83 1.00 0.77 0.15 0.08
20 0.85 0.92 1.00 1.00 0.54 0.46 -
21 0.54 0.77 0.75 0.77 0.23 0.54 0.23
22 0.69 0.85 0.83 0.85 - 0.38 0.62

67

Table 3.5 Content Validity Values of the Test Items (cont’d)

23 0.54 0.77 0.83 0.85 0.15 0.46 0.38
24 0.54 0.77 0.75 0.77 0.08 0.62 0.31
25 0.54 0.77 0.83 0.85 0.15 0.62 0.23
26 0.85 0.92 0.75 0.46 0.69 0.15 0.15
27 1.00 1.00 0.83 0.92 0.54 0.46 -
28 0.08 0.54 0.58 0.62 0.31 0.46 0.15
29 1.00 1.00 1.00 0.85 - 0.85 0.15
30 1.00 1.00 0.92 1.00 0.08 0.62 0.31
31 0.85 0.92 0.92 0.92 0.77 0.15 -
32 0.69 0.85 0.92 1.00 0.92 0.08 -
33 0.69 0.85 0.92 0.92 0.69 0.15 0.15
34 0.54 0.77 0.92 0.85 0.46 0.38 0.15
35 0.54 0.77 0.75 0.77 0.38 0.38 0.15
36 0.23 0.62 0.75 0.77 0.31 0.54 0.15
37 0.85 0.92 0.83 0.92 - 0.69 0.31
38 1.00 1.00 1.00 0.92 0.15 0.69 0.15
39 0.85 0.92 0.92 0.92 0.08 0.46 0.46
40 1.00 1.00 1.00 0.92 0.23 0.54 0.23
41 1.00 1.00 1.00 0.77 0.38 0.62 -
42 1.00 1.00 1.00 0.77 0.08 0.15 0.77
43 0.85 0.92 0.83 0.85 0.23 0.69 0.08
44 0.85 0.92 0.92 0.85 - 0.54 0.46
45 0.69 0.85 1.00 0.92 0.38 0.38 0.23
46 1.00 1.00 1.00 1.00 0.08 0.54 0.38

CVI= 0.89, S-CVI/Ave=.94
Note. A= Appropriate, C= Clear, DL= Difficulty level of an item, E= Easy, M= Medium,
H= Hard

Items were eliminated due to the critical CVR and I-CVI values (α = .05), which

were defined according to the panelist numbers. When the panel was composed of

13 panelists, a minimum CVR value of .54 (Ayre & Scally, 2014; Lawshe, 1975)

and a minimum I-CVI value of .78 were required for any item to be valid and

included in the instrument. Two items with a CVR value below .54 and eight items

that achieved an I-CVI value below .78 were excluded from the test. Additional

changes were also made to the items based on the comments and suggestions written

by the panelists. Consequently, 36 items were identified to be included in the last

68

draft form of the achievement test. Following that, the content validity index (CVI)

was determined for the entire test by computing the mean of CVR values of the 36

items that were kept, resulting in a CVI of .89 (Lawshe, 1975); and S-CVI/Ave value

obtained by computing the mean of I-CVI values of all retained items as .94 which

indicates the high content validity for the achievement test. The final draft form of

the coding achievement test was piloted by administering it to the three fifth-grade

students to ensure that all of the items were clear and understandable.

3.5.1.2 Item Analysis of the Coding Achievement Test

The draft coding achievement test was administered to 414 5th-grade students from

public middle schools in Rize for the item analysis of the test. Each student's correct

responses were encoded as 1, while the incorrect ones were encoded as 0. To

calculate the discrimination levels of the items, the students’ total scores were ranked

from the highest to the lowest using SPSS statistical software, and the upper group

and the lower group were identified using the critical value of 27 percent. Item

discrimination index (D) was computed for each item by using the following

equation D=(UG-LG)/n, where UG is the total number of students in the upper 27%

(n=112), and LG is the total number of students in the lower 27% (n=112) who

responded the item correctly. In addition, the DL=(UG+LG)/n+n formula was used

to find the difficulty levels of the items. The results of the analysis are displayed in

Table 3.6. The test results showed that one question (Q4) was too difficult, four

questions (Q3, Q12, Q20, and Q21) were easy, twelve questions (Q5, Q10, Q11,

Q17, Q23, Q24, Q25, Q28, Q30, Q34, Q35 and Q36) were difficult and the

remaining nineteen questions were moderately difficult. As seen in Table 3.6, the

discrimination indices of the 23 items were ideal. Five items with discrimination

indices within the normal range were deemed to be acceptable. However, eight items

(Q4, Q5, Q11, Q17, Q24, Q25, Q30, and Q34) that had discrimination indices below

.30, indicating too low or low discrimination power, were removed from the test.

69

Table 3.6 Item Analysis Results of the Coding Achievement Test

Item DI DI interpretation DL DI interpretation
Q1 0.54 Ideal 0.55 Moderately difficult
Q2 0.54 Ideal 0.58 Moderately difficult
Q3 0.36 Normal 0.77 Easy
Q4 -0.16 Unsatisfactory 0.19 Too Difficult
Q5 0.27 Low 0.35 Difficult
Q6 0.61 Ideal 0.50 Moderately difficult
Q7 0.51 Ideal 0.58 Moderately difficult
Q8 0.56 Ideal 0.56 Moderately difficult
Q9 0.41 Ideal 0.44 Moderately difficult
Q10 0.44 Ideal 0.37 Difficult
Q11 0.21 Low 0.30 Difficult
Q12 0.52 Ideal 0.72 Easy
Q13 0.62 Ideal 0.57 Moderately difficult
Q14 0.55 Ideal 0.58 Moderately difficult
Q15 0.56 Ideal 0.42 Moderately difficult
Q16 0.51 Ideal 0.58 Moderately difficult
Q17 0.19 Too low 0.37 Difficult
Q18 0.55 Ideal .53 Moderately difficult
Q19 0.61 Ideal .57 Moderately difficult
Q20 0.54 Ideal .60 Easy
Q21 0.64 Ideal .63 Easy
Q22 0.62 Ideal .42 Moderately difficult
Q23 0.34 Normal .35 Difficult
Q24 0.26 Low .30 Difficult
Q25 0.13 Too low .26 Difficult
Q26 0.54 Ideal .54 Moderately difficult
Q27 0.38 Normal .42 Moderately difficult
Q28 0.46 Ideal .33 Difficult
Q29 0.35 Normal .47 Moderately difficult
Q30 0.27 Low .35 Difficult
Q31 0.71 Ideal .43 Moderately difficult
Q32 0.47 Ideal .54 Moderately difficult
Q33 0.51 Ideal .42 Moderately difficult
Q34 0.24 Low .34 Difficult
Q35 0.31 Normal .30 Difficult
Q36 0.43 Ideal .37 Difficult

70

Considering the findings from the analysis of the items, the final form of the fifth-

grade coding achievement test was composed of 28 items. Cronbach’s Alpha value

was computed for retained 28 items as 0.84 indicating good internal consistency.

Items and corresponding learning objectives are outlined in Table 3.7.

Table 3.7 The Distribution of the Items According to Learning Objectives

Learning Outcomes (Students will be able to…) Item
IT.5.5.1.6. Explain the variables, constants and operations required to solve
the problem.

1, 2

IT.5.5.1.7. Give examples of operators that can be used in problem solving. 3
IT.5.5.1.10. Use operators to solve a given problem. 10
IT.5.5.1.12. Explain the concept of algorithm. 6, 7
IT.5.5.1.13. Develop an algorithm for solving a problem. 13, 15
IT.5.5.1.14. Explain flowchart components and functions. 16
IT.5.5.1.15. Draw a flowchart for an algorithm. 20
IT.5.5.1.16. Debug an algorithm by testing it. 14, 21
IT.5.5.2.1. Explain the basic concepts of programming. 8, 9
IT.5.5.2.2. Recognize the interface and features of the block-based
programming tool.

12, 18

IT.5.5.2.3. Create the appropriate algorithm to achieve the goals presented
in the block-based programming environment.

22, 26,
28, 29,

31, 32, 33
IT.5.5.2.4. Explain the structure of linear logic. -
IT.5.5.2.5. Develop algorithms using linear logic structure. 22
IT.5.5.2.6. Explain the decision structure and its functions. 23
IT.5.5.2.7. Develop algorithms with decision structures. 26, 31, 32
IT.5.5.2.8. Explain the loop structure and its functions. 19
IT.5.5.2.9. Create algorithms with loop structure. 28, 29, 33
IT.5.5.2.10. Debug the algorithms created for different structures by
predicting the results of it.

27, 35, 36

71

3.5.2 Cognitive Load Scale

3.5.2.1 Translation and Adaption of the Scale

Cognitive Load Scale (CLS), an 11-point Likert Type scale developed by (Leppink

et al., 2013) to assess three types of cognitive load (intrinsic, extraneous, and

germane load) in statistic lectures, was adapted and its applicability for middle

school students and programming teaching was verified. As seen in Table 3.8, CLS

consisted of 10 items; three items measuring intrinsic load (items 1, 2, and 3), three

items measuring extraneous load (items 4, 5, and 6), and four items (items 7, 8, 9,

and 10) measuring germane load.

Table 3.8 Items of the Cognitive Load Scale

Items
1 The topic/topics covered in the activity was/were very complex.
2 The activity covered formulas that I perceived as very complex.
3 The activity covered concepts and definitions that I perceived as very complex.
4 The instructions and/or explanations during the activity were very unclear.
5 The instructions and/or explanations were, in terms of learning, very ineffective.
6 The instructions and/or explanations were full of unclear language.
7 The activity really enhanced my understanding of the topic(s) covered.
8 The activity really enhanced my knowledge and understanding of statistics.
9 The activity really enhanced my understanding of the formulas covered.
10 The activity really enhanced my understanding of concepts and definitions.

3.5.2.1.1 Translation process

For this purpose, firstly, ten items of the scale were translated into Turkish by three

English language experts, and then these three translations were compared and

combined into one common version by one Turkish language expert to ensure the

naturalness of the language (Erten, 2012). Secondly, three different English language

experts, blind to the original instrument, performed a back translation of these

Turkish versions of the items into the original language (Geisinger, 1994).

72

CLS was adapted for the domain of Computer Science in different research studies

(Harms et al., 2016; Morrison et al., 2014) and for the middle school context (Weng

et al., 2018). In a similar way, items of the scale were adjusted to suit better to the

terminology used in computer programming at the middle school level in this study.

For this purpose, the terms used in 3 items were changed. Namely, the term

“statistics” was replaced by the term “programming” as deemed appropriate by

Leppink et al. (2013). Besides, the word “formulas” in items 2 and 9 was replaced

by “algorithms/problems.” In addition to that, the 10-point Likert response was

changed to a 5-point Likert format ranging from strongly to disagree (1) to strongly

agree (5) in order to ensure middle school students understanding.

The items of the original English and the translated Turkish versions were compared

and rated independently and blindly by three experts to check the linguistic and

semantic equivalence of the two versions. The rating was realized on a 10-point

Likert scale format, ranging from “not related at all” (1) to “100% synonymous”

(10). The mean score of the raters’ responses (M = 9.50) showed that the Turkish

version had a high level of equivalence with the original English version. In other

respects, the items in both their original English and back-translated English versions

were evaluated by another three English language experts for semantic equivalence

again on a 10-point Likert scale format, ranging from “not related at all” (1) to “100%

synonymous” (10). Results indicated a high level of equivalence between the back-

translated and original English versions (M = 9.27). The opinions of the two

Information Technologies and Software teachers were obtained for the clarity of the

scale and the appropriateness of the translation to the concepts of programming.

Scale was piloted with ten sixth-grade students (three students with low academic

achievement, three students with average academic achievement, and four students

with high academic achievement). In the selection of students, academic success in

Information Technology and Software courses was taken into consideration with the

guidance of the IT teacher. Students were asked to complete one activity (namely,

Robot Route is Flow Chart) from the Second-term Materials Book published by the

Ministry of Education in 2018 and then fill in the Cognitive Load scale. Then, they

73

filled in the Cognitive Load scale and three open-ended questions which aimed to

determine the unclear statements for the students. Informal interviews were

conducted with the students who had difficulties in understanding or answering the

items on the scale. In accordance with the feedback received from the students,

statements were revised by one IT teacher and 3 Turkish teachers working at a

middle school by focusing on the statements that were not understood by the

students. Herewith, the process of translation and adaption of 10 scale items was

completed (see Appendix C).

3.5.2.1.2 Exploratory and Confirmatory Factor Analysis Results of the

Cognitive Load Scale

The scale was applied to 804 sixth-grade students at the end of the two-hour

Information Technologies and Software class at eight different middle schools in

Rize. The data were gathered from students in the sixth grade as programming

concepts were generally introduced to the students in the last one or two weeks of

the fall semester for fifth-grade students in schools located Rize. As shown in Table

3.9, a total of 47 cases, including missing data, were excluded from the analysis, so

757 responses were analyzed.

Table 3.9 Distribution of Participants to Schools

School Name N
School 1 29
School 2 169
School 3 55
School 4 189
School 5 69
School 6 70
School 7 52
School 8 124
Total 757

74

Exploratory Factor Analysis (EFA) was conducted to determine if the questions

adapted from the original scale load onto three types of cognitive load. Additionally,

Confirmatory Factor Analysis (CFA) was conducted to test the scale for

measurement of specific cognitive load factors. Before conducting the analyses, the

data were screened to identify univariate and multivariate outliers, as well as

multicollinearity and violations of normality. When the original mean score of each

item and the trimmed mean scores were compared, the results indicated that the

extreme scores did not have a strong influence on the mean. Skewness and kurtosis

values of each item were all within the cutoff point value ± 2 for large samples

(Tabachnick & Fidell, 2012), which indicated that the data were normally

distributed, as shown in Table 3.10.

Table 3.10 Normality Distribution of The Cognitive Load Scale Scores

Items M 5% Trimmed Mean SD Skewness Kurtosis
1 2.12 2.03 1.16 0.78 -0.26
2 2.23 2.16 1.18 0.61 -0.64
3 2.19 2.11 1.18 0.73 -0.41
4 1.92 1.81 1.09 1.19 0.57
5 1.84 1.72 1.08 1.34 1.22
6 2.10 2.01 1.15 0.84 -0.14
7 3.95 4.04 1.18 -0.90 -0.00
8 3.90 4.00 1.17 -0.92 -0.02
9 3.72 3.80 1.22 -0.73 -0.38
10 3.82 3.91 1.21 -0.83 -0.20

Then, the histograms for these items were checked, and it was found that all items 1,

2, 3, 4, 5, and 6 appeared especially positively skewed and items 7, 8, 9, and 10 were

negatively skewed in their unreversed form. The reversed version of these items was

found to be positively skewed. This was an expected result of the analyses

considering the underlying theory of the scale. Additionally, in order to get a more

distinct form of the distribution, normal probability plots were examined. The

findings indicated that the instruments exhibited a normal distribution, as evidenced

75

by relatively straight lines. Descriptive statistics were calculated for each item and

each subfactor, with the results detailed in Table 3.11.

Table 3.11 Descriptive Statistics

Item N Mean Std. Deviation
Q5 757 1.84 1.08
Q4 757 1.92 1.09
Q6 757 2.10 1.15
Q1 757 2.12 1.16
Q3 757 2.19 1.18
Q2 757 2.23 1.18
Q9 757 3.72 1.30
Q10 757 3.82 1.22
Q8 757 3.90 1.18
Q7 757 3.95 1.18
Valid N (listwise) 757

Items 5 (M=1.84) and 4 (M=1.92) received the lowest mean scores. On the other

hand, items 8 (M=3.90) and 7 (M=3.95) received the highest mean scores. As for the

sub-factors, the germane load was found to be the most highly endorsed dimension

(M= 3.85), whereas the extraneous was the least endorsed dimension (M=1,95)

among the participants (see Table 3.12).

Table 3.12 Descriptive Statistics for Subfactors

 N Mean Std. Deviation

Extraneous load 757 1.95 .86

Germane load 757 3.85 .95

Intrinsic load 757 2.18 .97

Valid N (listwise) 757

76

Exploratory Factor Analysis

In order to evaluate the construct validity of the ten items from CLS, Exploratory

Factor Analysis (EFA) was carried out. Kaiser-Meyer-Olkin (KMO) and Bartlett's

Test of Sphericity were used for the assessment of sampling adequacy. Test results

showed that the size of the sample was adequate (KMO=.872, Bartlett’s χ2(45)

=2406, p < .001). Based on the original three-factor structure of the scale and scree

plot (Figure 3.1), three factors were rotated using Oblique (Oblimin) rotation, which

allows for correlations between factors. In this way, a three-factor solution was

found, which explained 64.27% of the total variance in CLS.

Figure 3.1. Scree Plot for CLS

Inter-factor correlation showed that the observed correlations were all less than .80,

which indicated that each factor measured a unique type of cognitive load. Besides,

it was observed that there was a negative correlation between IL-GL and EL-GL and

a positive correlation between IL-EL (see Table 3.13). These findings aligned with

the results of previous studies.

77

Table 3.13 Factor Correlations

 IL EL GL
IL 1.00 .515 -.387

EL 1.00 -.374

GL 1.00

Table 3.14 shows the factor loads of the items. All three-factor loadings of the items

were greater than .60, indicating a reasonably high correlation between items and

delineated factors. As seen from the table, the factor loading of items ranged between

.639 and 864.

Table 3.14 Factor Loadings of the Items

Factor Item Factor Loading
IL Item1 .811

Item2 .828
Item3 .814

EL Item4 .864
Item5 .789

Item6 .639

GL Item7 .776

 Item8 .793

 Item9 .817

 Item10 .792

Confirmatory Factor Analysis

The goodness of fit of the three-factor model obtained in EFA to the data was

measured through a Confirmatory Factor analysis. Analyzes were performed by

using AMOS. Findings indicated that the three-factor model had acceptable

goodness of fit indices: c	2(32) = 68.184, p <0.01, RMSEA = 0.039, TLI = .979,

78

CFI= .985. As seen in Figure 3.2, the path diagram with standardized estimates of

the model represents the loadings associated with each item. In addition, it can be

seen that error variances did not exceed the threshold of .90.

Figure 3.2. Path Analysis Diagram for CLS within CFA

3.5.2.1.3 Reliability Analysis of the Cognitive Load Scale

The instrument yielded high reliability for the overall scale (alpha = .84) and two

factors (intrinsic load: alpha = .77; germane load: alpha = .81). However, the

extraneous load factor had a slightly lower alpha of .67 (see Table 3.15). Given the

acceptable overall scale reliability, shortness of the scale and the findings from the

previous studies (Hadie & Yusoff, 2016; Leppink et al., 2013; Morrison et al., 2014),

it was decided to retain the extraneous load factor in the scale.

79

Table 3.15 Reliability Analysis Results of the CLS

 Cronbach’s Alpha
 Leppink et al.,

2013
Morrison et

al., 2014
Hadie &

Yusoff, 2016
Current study

Intrinsic .81 .86 .88 .77
Extraneous .75 .85 .82 .67
Germane .82 .93 .95 .81
Overall scale - .89 .84

3.5.3 Patterns of Adaptive Learning Scales (PALS)

Patterns of Adaptive Learning Scales (PALS) were developed by Midgley et al.

(2000) in order to investigate the relationship between the characteristics of the

learning environment and the motivation, affect, and behaviors of students. The

adaptation of the instrument in Turkish language for usage in Science courses was

conducted by Taş (2008) as part of a PhD thesis and the reliability of the scale was

calculated as 0.81. The scale consisted of 42 items in a 5-point Likert form. This

scale was adapted for the purpose of this study by replacing the term “Science” with

Information Technology and Software (see Appendix D). For the new adapted

version of the scale, pilot implementation was carried out with a sample of 601 sixth

grade students. 82 subjects with missing values were excluded from the analysis, so

reliability analysis was performed for 519 subjects. The reliability of the scale was

found to be .922.

3.5.4 Attitudes Towards Coding Education Scale (ATCES)

The Attitudes Towards Coding Education scale (ATCES) was developed by

(Karaman & Büyükalan Filiz, 2019) and comprises 41 items rated on a 5-point Likert

scale (Appendix E). ATCES consists of two dimensions: "General Positive Attitude

Towards Coding Education," which includes 28 items, and "General Negative

Attitude Towards Coding Education," which includes 13 items. The response

80

choices on the Likert scale were established as "(1) strongly disagree, (2) disagree,

(3) partly agree / partly disagree, (4) agree, (5) strongly agree". In another study using

this scale, the Cronbach’s alpha coefficient was reported as .956 (Özeren, 2022). The

scale was administered to 420 fifth-grade students and Cronbach’s alpha coefficient

was found as .793, indicating a good level of reliability for the instrument. In the

main study, Cronbach’s alpha coefficient was found to be .941, indicating good

reliability.

3.5.5 Reading Comprehension Achievement Test

The Reading Comprehension Achievement Test, developed by Kuşdemir Kayıran

(2014) as part of a PhD thesis, consists of 29 items (Appendix F). In the study KR-

20 reliability was determined to be .85, the average difficulty of the test was .68, and

the standard deviation of the test was 5.58. Similarly, in the current study Cronbach's

alpha coefficient value was found as .895.

3.5.6 5th Grade Mathematics Achievement Test

5th Grade Mathematics Achievement Test prepared by Özcan (2016) within the

scope of the master's thesis (Appendix G). The four-option multiple-choice questions

of the test were developed in alignment with the learning outcomes of the sub-

learning areas "Natural Numbers" and "Four Operations Problems in Natural

Numbers" included in the 5th-grade mathematics curriculum. The test was found to

have good internal consistency with Cronbach's alpha coefficient of .88. For the

current study, Cronbach's alpha coefficient value was found as .930.

3.5.7 Student Interview Protocol

The semi-structured interview protocol aimed to gather in-depth information from

students regarding their perspectives on the factors that influence their coding

81

success. This qualitative approach provided a deeper understanding of students'

experiences, beliefs, and attitudes toward coding education and its impact on their

achievements. The interview protocol was subjected to a thorough review by a

middle school Turkish language teacher, a university subject matter expert, and two

information technologies and software teachers. The experts evaluated the protocol

for any questions that were confusing, misleading or did not adequately elicit the

desired information from the students. The experts provided detailed feedback on the

protocol, identifying areas that needed improvement and suggesting specific

revisions. According to the feedback provided by the experts, some questions were

revised to enhance their clarity and grammatical structure. This ensured that the

questions were easy to understand and unambiguous for students. To assess the

effectiveness and understandability of the revised interview protocol, a pilot test was

conducted with three fifth-grade students who were currently learning programming.

Based on the feedback from the students, the researchers identified specific areas

where additional questions or sub-questions could provide deeper insights into their

perspectives. For instance, in response to questions about pair programming, they

added sub-questions related to task switching and collaboration dynamics.

The interview protocol consisted of a total of 19 main questions, some of which have

sub-questions (Appendix H). The main questions covered a broad range of topics

related to coding success, including attitude, learning experiences, perceived

challenges, self-efficacy beliefs, and the other factors affecting coding learning. Four

questions were specifically tailored to students who have primarily engaged in paired

programming throughout the semester. These questions explored the unique aspects

of collaborative coding and its impact on their learning and success. Two questions

were specifically designed for students who had primarily engaged in individual

programming throughout the semester. These questions addressed the challenges and

benefits of independent coding and its influence on their learning. Students who

engaged in both paired and individual programming throughout the semester would

be asked questions from both sets of questions. This allowed for a comprehensive

assessment of their experiences and perspectives across different coding modalities.

82

3.6 Pilot Study

The pilot study was conducted in the fall semester of the 2021-2022 academic year

at a public school in Rize. Due to the ongoing COVID-19 pandemic and schools

transitioning to remote learning, the pilot study was also implemented remotely. The

participating school was selected using purposive sampling. This method allows

researchers to select participants based on their judgments to ensure the data

collected is most relevant to the study's goals (Fraenkel et al., 2012). The IT teacher

at the selected pilot school participated in studies for the adaptation of lesson plans

and a workshop related to the selection of lesson plans to be implemented, which

were part of the preparation process for this study. Consequently, he was familiar

with the content of the study. The teacher's familiarity with the lesson plans became

the main criterion for selecting this school. Due to the pandemic's restrictions on

face-to-face meetings, the teacher's existing knowledge of the lesson plans was

essential in ensuring successful implementation during the remote pilot study. There

were 167 fifth-grade students enrolled in the participating school. From these, 43

students who regularly attended ITS classes and completed the required scales

throughout the seven weeks were selected to participate in the pilot study. Owing to

the inherent difficulties associated with facilitating unplugged activities in a remote

learning environment, the originally planned ten-week pilot study was abridged to a

seven-week implementation period. This modification necessitated the removal of

some unplugged activities from the curriculum. Additionally, since a class period

was rescheduled to 30 minutes during the remote education process, some of the

existing plugged activities were also excluded from the pilot study. Basic concepts

of computer programming were aimed to be covered as much as possible in the

selected lesson plans. All these modifications were made after consultation with the

course instructor and in accordance with his recommendations; however, it is

important to note that these changes were implemented specifically for the pilot

study and may not be reflected in the main study.

83

The objective of the pilot study was to conduct a small-scale evaluation of the

proposed main study to identify any potential issues that might arise during actual

implementation. Following the pilot study, discussions with the IT teacher

highlighted the need to incorporate Code.org puzzles from different courses

addressing various student levels. These puzzles were subsequently added to the

lesson plans and arranged in a progression from easy to difficult. The final version

of the programming course content, including learning objectives, corresponding

lesson plans, and associated activities is presented in Table 3.16. Unplugged

activities are marked with parentheses in the table. A sample lesson plan is provided

in Appendix I (Week 3: Debugging with Scrat).

Table 3.16 Weekly Learning Objectives, Lesson Plans and Activities

Wee
k

Learning objectives (Students will be
able to…)

Lesson Plans and Activities

1 5.5.1.12. Explain the concept of
algorithm.
5.5.1.13. Develops an algorithm for
solving a problem.
5.5.2.1. Explain the basic concepts of
programming.

Course F - Lesson 1: My Robotic
Friends (Unplugged activity)

2 5.5.1.14. Explain flowchart components
and functions.
5.5.1.15. Draw a flowchart for an
algorithm.
5.5.1.16. Debug an algorithm by testing it.

I'm Changing the Flow
(Unplugged activity)
Rabit and carrot (Unplugged
activity)
If-then life of Tortop (Unplugged
activity)
Alas, Flowcharts Are Confused
(Unplugged activity)

3 5.5.2.2. Recognize the interface and
features of the block-based programming
tool.
5.5.2.3. Create the appropriate algorithm
to achieve the goals presented in the
block-based programming environment.
5.5.2.4. Explain the structure of linear
logic.
5.5.2.5. Develop an algorithm using linear
logic structure.

Course 2 - Lesson 3: Maze:
Sequence

84

Table 3.16 Weekly Learning Objectives, Lesson Plans and Activities (cont’d)

 5.5.1.16. Debug an algorithm by testing it. Course F - Lesson 4: Debugging
with Scrat

4 5.5.2.3. Create the appropriate algorithm
to achieve the goals presented in the
block-based programming environment.
5.5.2.5. Develop an algorithm using linear
logic structure.

Course F (2018) - Lesson 5:
Creating art with code

5 5.5.2.8. Explain the loop structure and its
functions.
5.5.2.9. Create algorithms with loop
structure.

Course 2 - Lesson 6: Maze loops
Course F (2018) - Lesson 7:
Drawing shapes with loops
Course 2 - Lesson 7: Artist loops

6 5.5.2.8. Explain the loop structure and its
functions.
5.5.2.9. Create algorithms with loop
structure.

Course F (2018) - Lesson 8:
Nested loops in maze
Course F (2018) - Lesson 9:
Nested loops with Frozen
Coding with Anna and Elsa

7 5.5.1.7. Give examples of operators that
can be used in problem solving.
5.5.1.10. Use operators to solve a given
problem.
5.5.2.6. Explain the decision structure and
its functions.
5.5.2.7. Develop algorithms with decision
structures.

Wheel of conditional statements
(Unplugged activity)

8 5.5.2.6. Explain the decision structure and
its functions.
5.5.2.7. Develop algorithms with decision
structures.

Course 3 - Lesson 7: Bee
conditionals
Course D (2017) - Lesson 11:
Conditionals in bee
Course 2 - Lesson 13: Bee
conditionals

9 5.5.1.6. Explain the variables, constants
and operations required to solve the
problem.

Data, put it there (Unplugged
activity)
Course F (2018) - Lesson 14:
Envelope variables (Unplugged
activity)

10 5.5.1.6. Explain the variables, constants
and operations required to solve the
problem.
5.5.2.10. Debug the algorithms created for
different structures by predicting the
results of it.

Course 4 - Lesson 6: Artist
variables
Course F (2018) - Lesson 15:
Variables with artist

85

3.7 Implementation of the Study

Prior to the main implementation of the study, revised lesson plans and activity

sheets were shared with teachers on a website developed by the researcher

(www.bikod.co). All the materials and data collection tools were provided to the

teachers prior to classes, and teachers were briefly informed about the topic and the

activities of the week on an instant messaging application on a weekly basis.

However, the teachers were free to decide whether to teach the lessons in accordance

with the provided lesson plans, provided that the topics and the learning outcomes

of the weeks would not be altered. Ultimately, a 10-week implementation was

conducted in the spring semester of the 2021/22 academic year in three public

schools in Rize, Turkey.

At the beginning of the implementation, the Student Information Form, Mathematics

Achievement Test, and Reading Comprehension Achievement Test were

administered to all participating students (Table 3.17). During the implementation

process, the Cognitive Load Scale was administered to all participating students at

the end of each two-hour class. Throughout the implementation, the researcher took

part in the lessons to observe the learning environment and gather details on the

characteristics of the target group by taking notes regarding unfavorable and

favorable aspects of the class, changes made in the daily lesson plans, student

participation, pair-programming behaviors of the students and general remarks about

the class. The researcher attended six classes each week for nine weeks. During these

classes, the researcher also assisted IT teachers in handing out and collecting activity

sheets and data collection tools. Additionally, getting to know the students through

attendance enabled students to feel more comfortable during the one-on-one data

collection procedures conducted at the end of the implementation. At the end of the

implementation, interviews were held with students through semi-structured

interview forms. Three students from each class were selected in line with the

teachers’ suggestions based on their academic achievement in the ITS course (one

with low, one with moderate and one with high academic achievement). A total of

86

30 students were individually interviewed, and the interviews varied in length,

ranging from 10 to 25 minutes.

Table 3.17 Data Collection Procedures

Duration Data Collection Instrument

Prior to the implementation

Student Information Form

Mathematics Achievement Test

Reading Comprehension Achievement Test

At the end of each two-hour ITS class Cognitive Load Scale

At the end of the implementation

Coding Achievement test

Attitudes Towards Coding Education Scale

Patterns of Adaptive Learning scales

Student interview protocol

3.8 Data Analysis

3.8.1 Quantitative Data Analysis

Following the completion of the data collection phase, the data was imported into

IBM's Statistical Package for Social Sciences (SPSS) software for analysis. Prior to

initiating the analysis, a data screening process was undertaken to identify and

address any discrepancies or errors within the dataset. To ensure data validity, the

maximum and minimum values for each variable were analyzed to confirm that no

values exceeded the permissible range. Descriptive statistics and inferential statistics

were then used to analyze the data. For the analysis of the quantitative data, SPSS

software version 26 and R Statistical Package version 4.4.1 were utilized.

To answer the first research question of the study, which explores differences in

cognitive load experienced by students across different fundamental programming

topics, repeated measures ANOVA was employed. To address the second and third

87

research questions, independent samples t-tests were employed to investigate gender

and geographical school location (urban vs. suburban) differences in attitudes

towards coding education, mathematics achievement, reading comprehension

achievement, and coding achievement scores. Additionally, the mulrank function

was used to analyze gender and geographical school location-based variations in the

subscales of PALS (personal achievement goal orientations, perception of classroom

goal structures, academic-related perceptions, beliefs, strategies) scores.

Furthermore, to explore if there were gender and geographical school location-based

differences in students' cognitive load scores across different fundamental

programming topics, a doubly repeated MANOVA test was utilized. Lastly,

hierarchical regression was employed to analyze how the variables used in the study

predict students' achievement scores in programming.

3.8.2 Qualitative Data Analysis

The recorded interview data was transcribed using the verbatim transcription

process. Subsequently, each transcript was reviewed while simultaneously listening

to the corresponding audio record to ensure completeness and accuracy. The length

of the interview transcripts ranged from 4 to 8 one-and-half-spaced pages.

Pseudonyms were assigned to each participant, designated by the letter “S” followed

by a number in the sequence of the interviews (e.g., S1, S2, etc.), and transcripts

were titled with these pseudonyms. Qualitative data analysis software NVivo was

employed to analyze the qualitative data.

Initially, each transcript was read several times and analytic memos were written.

The process of writing analytic memos continued through the coding process to

facilitate the researcher's critical reflection on the process and to reflect on “emergent

patterns, categories and subcategories, themes, and concepts in the data” (Saldaña,

2009, p. 42). Coding occurred in a cyclical manner, where the researcher coded and

recoded the data. According to Saldaña (2009), coding is a linking process rather

than a labeling process. Data analysis was conducted using Saldaña's (2009) first-

88

cycle and second-cycle data analysis approaches. The coding cycles selected for the

coding process, based on Saldana’s Generic List are illustrated in Figure 3.3 below.

Figure 3.3. First Cycle and Second Cycle Coding Methods

In the first cycle of the coding process, a multifaceted approach was employed to

extract meaning from the interview data. This approach encompassed grammatical

coding methods, including attribute coding and magnitude coding. Additionally,

elemental methods were utilized, including structural coding, in vivo coding and

initial coding. The attributed coding method was utilized to categorize basic

descriptive information about the participants. This method is particularly

advantageous for qualitative studies involving multiple participants, as it facilitates

the organization of participant data based on predefined attributes. At the outset of

the study, gender, school name, and overall academic achievement status were coded

for each student to establish a baseline understanding of the participants'

backgrounds and academic characteristics. The structural coding method generally

provides a basis for further detailed analysis. Interview data was segmented

according to their relationship with specific research questions for further and

detailed analysis. The initial coding, also known as open coding, method was used

to break data into smaller and discrete sections. The in vivo coding method was

employed to preserve participants’ voices by utilizing their everyday language,

specifically their words, terms, or phrases as codes. The magnitude coding was used

First Cycle Coding
Methods

Second Cycle Coding
Methods

Initial
Coding

In Vivo
Coding

Magnitude
coding

Attribute
Coding

Structural
Coding

Pattern
Coding
Focus

Coding

First Cycle Coding
Methods

89

to denote the intensity of specific code. These coding methods were used

concurrently and repeated multiple times. At the end of the first cycle coding process,

a codebook was developed. In the second cycle coding, focused coding was

employed to categorize and explain in detail the findings from the first cycle coding.

Additionally, pattern coding was used to develop categories major and themes

(Saldaña, 2009).

3.9 Trustworthiness for Qualitative Part of the Study

The credibility and transferability of findings are fundamental concerns in qualitative

research, similar to reliability and validity in quantitative studies. However, due to

the interpretive nature of qualitative inquiry, alternative approaches are necessary to

establish these qualities effectively. To enhance the trustworthiness of this study,

several strategies were employed.

3.9.1 Internal Validity (Credibility)

Prolonged Engagement and Persistent Observation in the Field

This strategy involves spending adequate time in the field to develop relationships

with participants and understand the cultural context of the phenomenon, thereby

facilitating the avoidance of inaccuracies caused by the researcher or informants

(Creswell, 2007). In the current study, throughout the research, the researcher

actively participated in all classes of six out of ten classrooms for nine weeks where

the study was conducted. This involved attending two-hour classes each week.

During this time, the researcher not only took field notes but also assisted the teacher

in data collection activities.

Intercoder Reliability

Intercoder reliability is a statistical metric used to assess the level of agreement

between multiple coders when applying a coding scheme to the same data set

90

(O’Connor & Joffe, 2020). Although this strategy is criticized by some researchers

for relying solely on coder agreement, which may not guarantee reliable results, it is

perceived as an effective method for enhancing the consistency of qualitative

research findings (Merriam, 2009). Reporting intercoder reliability can help assure

readers that the analysis was performed conscientiously and consistently (Kurasaki,

2000). This study employed an experienced colleague in qualitative data analysis as

the second researcher. Before the coding process, the second coder was thoroughly

informed about the research purpose, research questions, sample, and research

process. Subsequently, all transcripts were independently coded by the researcher

and the second coder. Upon completion of the coding process, the researcher and

second coder met for the consistency check. Intercoder reliability was evaluated

using Miles & Huberman's (1994) method [(consensus / (consensus + disagreement))

x 100]. For the first phase of the process, the calculation of the intercoder reliability

resulted in an 85.02% agreement, indicating a high level of consistency among the

coders. Subsequently, the two coders engaged in meetings to discuss the similarities

and differences in their coding. These discussions led to the identification of

discrepancies and the refinement of the coding scheme. For codes that were similar

and expressed the same concept, a common code was determined. For codes that

were different and expressed different concepts, discussions were held to decide

which code would be retained. After reaching a consensus on the codes and recoding

the transcripts, the result reached %93.1. This percentage surpasses the commonly

accepted threshold of 90% for reliable coding (Miles & Huberman, 1994),

suggesting that the coding process was dependable. For the final round, the codes

were revised and organized under emergent themes.

Peer review or debriefing

Peer review or debriefing serves as another procedure for establishing credibility,

involving an evaluation of the research data and methodology by someone

knowledgeable about the research or the phenomenon being studied. This strategy

establishes the research’s credibility by offering assistance, critically examining the

researchers' assumptions, encouraging them to advance methodologically, and

91

asking challenging questions about their methods and interpretations (Creswell &

Miller, 2000). In this study, the thesis advisor closely monitored the thesis process.

Additionally, the dissertation committee members were regularly informed about the

progress of the study and provided suggestions and critiques related to the process.

Triangulation

Triangulation is collecting data from various sources and looking for patterns or

themes that appear consistently across those sources (Creswell & Miller, 2000).

Combining various methods, data sources, viewpoints, and researchers in a single

study strengthens the investigation by adding depth, richness, and a broader

perspective. Data source triangulation strengthens research by looking for

consistency. This can involve using the same method with different data sources

(e.g., interviews at different times) or comparing data from people with contrasting

perspectives (Denzin, 2012). This study employed triangulation by gathering data

from multiple locations and utilizing various data collection techniques. It involved

the participation of fifth-grade students from three different schools. To explore the

factors influencing student programming learning, the researcher implemented three

distinct surveys and an interview protocol.

3.9.2 External Validity (Transferability)

Thick, rich description

External validity pertains to the to the extent to which research findings can be

applied or generalized to a broader population, settings, or range of situations. This

comprehensive description empowers readers to assess the generalizability of the

findings to other situations by facilitating a critical evaluation of the extent to which

the research context and participant characteristics are comparable (Cohen et al.,

2017). Given the purposive sampling method employed in this study, the

generalizability of the results is constrained. Nonetheless, to ensure the

92

transferability of the research outcomes to comparable contexts, this chapter offers

an in-depth description of the sample, context, and role of the researcher.

3.9.3 Researcher Role and Bias

Researchers bring their unique experiences, beliefs, and characteristics to the study,

which can be valuable for choosing the research problem, research questions, and

target audience. However, these same experiences can introduce bias during

analysis, affecting how data is interpreted and presented (Corbin & Strauss, 2012).

In this study, the researcher's prior experience as a middle school IT teacher and

subsequent role teaching computer programming in a vocational school, coupled

with beliefs about the importance and challenges of programming education, could

introduce potential biases. To mitigate these potential biases and ensure the

research's objectivity, the researcher implemented a series of strategies. Firstly, the

researcher abstained from teaching the participating students, minimizing the impact

of personal beliefs. Secondly, the researcher maintained a neutral stance during

interviews to avoid influencing participant responses. Thirdly, the researcher acted

as a moderator, facilitating the natural teaching process and avoiding interference

with lesson plans and assessments. Finally, the interview protocol and coding

achievement test underwent a rigorous process of expert review, teacher review, and

pilot testing to ensure their validity. Furthermore, the researcher employed additional

strategies to enhance the objectivity of the findings. A second coder was involved in

the qualitative data analysis process, providing an external perspective and assisting

in identifying and addressing potential biases. The second coder also revisited the

coded data and the results of the analysis to refine interpretations. By implementing

these proactive measures, the researcher demonstrates a commitment to minimizing

bias and upholding the trustworthiness of the study. These efforts contribute

significantly to the overall credibility of the research and strengthen the confidence

in the findings.

93

3.10 Ethical Issues

Professional associations, such as the American Psychological Association's

Committee on Scientific and Professional Ethics, outline crucial ethical

considerations for researchers conducting human subject studies. Fraenkel et al.

(2012) categorized these considerations into three key principles: “protecting

participants from harm, ensuring the confidentiality of research data, and addressing

potential deception of subjects” (p. 63). The researcher ensured that these ethical

principles were followed throughout the research process. Prior to commencing the

study, the researcher obtained the necessary approvals by submitting an application

to the Middle East Technical University's Committee on Human Ethics (Appendix J

and K). This application outlined the study's objectives, data collection procedures,

data collection instruments, and informed consent forms. Subsequently, to collect

data from middle school students in Rize, an application was submitted to the Rize

Provincial Directorate of National Education, outlining the study's objectives,

research process, and data collection instruments to obtain the necessary official

permission (Appendix L). Additionally, approval to carry out the research was

granted by the school administrations and IT teachers of the three middle schools

participating in the study. Informed consent forms were used to inform the parents

of the students participating in the study about the study's objectives, the

confidentiality of the participants, and the potential benefits of the study. Written

informed consent was obtained from the parents prior to their children’s participation

in the study. At the outset of the study, the purpose, aims, and all aspects of the

research process, including how the results would be used, were explained to the

students, and their verbal consent to participate voluntarily in the study was obtained.

The students were notified that their involvement in the study was voluntary and that

they had the freedom to discontinue their participation at any point. They were also

informed that even if they chose to participate, they could request that their collected

data not be used and be deleted at any time. Great care was taken to ensure the

anonymity of the participants. During the qualitative data analysis process,

94

identifying information such as school, class, and student names were removed from

the transcripts before sending them to the second coder. When presenting findings

related to qualitative data, student codes were used instead of student names for

citations. Collected data was stored in private application accounts and password-

locked private devices. The data will be retained in the same format for a period of

five years following the conclusion of the research, after which it will be removed.

3.11 Limitations of the Study

This study has certain limitations that should be considered when interpreting the

result. Firstly, the participant schools were selected using convenience sampling,

which means that they were not randomly selected from a representative population.

This method could introduce selection bias, potentially restricting the

generalizability of the findings to a wider population. While the study included

schools from both urban and suburban areas, the data was collected from schools

within the same city. Secondly, the study was limited by the scope of one online

block-based programming environment (code.org) and the selected tasks in that

environment, which may not cover all relevant programming skills comprehensively.

Using the same learning tool throughout the semester may have been restrictive for

students, especially for students with advanced programming abilities. Thirdly, the

limited number of computers available forced some students to work in pairs. While

paired programming has its benefits, it can also introduce challenges and

disadvantages. This could have hindered some students' learning experiences and

outcomes. Lastly, only written tests were used to measure student success in

programming. The limited number of computers prevented the use of process-

oriented or project-based assessments, especially in suburban schools. Additionally,

in the implemented Code.org examples, students worked on solving problems based

on the provided examples rather than creating projects from scratch. Teachers were

not allowed to assign tasks that required students to develop original projects.

95

Written tests may not fully capture students' practical programming skills and

problem-solving abilities.

96

97

CHAPTER 4

4 RESULTS

This chapter presents the research findings derived from both quantitative and

qualitative data analyses. The findings are presented in parallel with the

corresponding research questions and sub-questions.

4.1 Results of the Quantitative Data Analysis

This section presents the findings derived from the quantitative data analysis to

address the corresponding research questions. First, the correlation analysis results

are provided to explore the relationships between variables, followed by the

presentation of statistical test results. These include descriptive statistics to present a

summary of the data's characteristics, assumption tests to ensure that the chosen

statistical tests met the necessary underlying assumptions, and the results and

findings of the relevant statistical analysis approach.

4.1.1 Correlation Between Variables of the Study

The Pearson product-moment correlation findings for the relationship between study

variables revealed that intrinsic load and extraneous load were very strongly

correlated (r = .843, p < .01). Both intrinsic (r = -.623, p < .01) and extraneous load

(r = -.694, p < .01) were negatively correlated with germane load. The relationship

between intrinsic load and extraneous load with attitudes toward coding education

(IL: r = -.456, p < .01; EL: r = -.468, p < .01), coding achievement (IL: r = -.434, p

< .01; EL: r = -.451, p < .01), mathematics achievement (IL: r = -.368, p < .01; EL:

r = -.356, p < .01) and reading comprehension achievement (IL: r = -.253, p < .01;

EL: r = -.297, p < .01) were negative. While germane load positively and moderately

98

correlated with attitudes toward coding education (r = .522, p < .01), coding

achievement (r = .456, p < .01) and mathematics achievement (r = .434, p < .01), the

relationship between reading comprehension achievement was weak (r = .363, p <

.01).

Upon examining the interrelationships among the subscales of the PALS and their

relationships with other variables, it has been observed that MGO was positively and

very strongly correlated with AE (r = .881, p < .01), strongly correlated with CMGS

(r = .736, p < .01), moderately correlated with PAvGO (r = .577, p < .01), CPApGS

(r = .486, p < .01) and CPAvGS. Besides that, there was a positive weak correlation

between MGO and PApGO (r = .369, p < .01), coding achievement (r = .291, p <

.01) and mathematics achievement (r = .211, p < .01). On the other hand, test results

showed that MGO was negatively and strongly correlated with cheating behavior (r

= -.742, p < .01), indicating that higher MGO is associated with lower cheating

behavior. Similarly, the correlation between MGO and ASHS was negative but

weak, r = -.264, p < .01. Additionally, test results exhibited positive and strong

relationship between CMGS and CPApGS (r = .701, p < .01), PApGO and PAvGO

(r = .607, p < .01), AE and CMGS (r = .696, p < .01), CMGS and CPAvGS (r = .640,

p < .01), CPApGS and CPAvGS (r = .630, p < .01), and MA and CA (r = .638, p <

.01). It was observed that, CPAvGS was positively and moderately correlated with

PApGO (r = .521, p < .01), PApGO (r = .515, p < .01) and AE (r = .487, p < .01).

Besides that the correlation between PApGO and CMGS (r = .412, p < .01), PApGO

and CPApGS (r = .400, p < .01), PAvGO and AE (r = .552, p < .01), PAvGO and

CMGS (r = .497, p < .01), AE and CPApGS (r = .526, p < .01), ASHS and CB (r =

.414, p < .01), ATCE and CA (r = .465, p < .01), MA and RCA (r = .586, p < .01),

RCA and CA (r = .518, p < .01) were positive and moderate. Test results also

indicated significantly negative correlations between variables such as AE and

ASHS (r = -.249, p < .01), AE and CB (r = -.682, p < .01), CB and CMGS (r = -.560,

p < .01) and CB and CPApGS (r = -.462, p < .01).

99

Table 4.1 Correlation Coefficients Between the Variables

Variables IL_av EL_av GL_av MGO PApGO PAvGO AE ASHS CB CMGS CPApGS CPAvGS ATCE MA RCA

EL_av .843**
GL_av -.623** -.694**
MGO -.149* -.131 .047
PApGO -.104 -.116 .057 .369**
PAvGO -.167* -.084 .066 .577** .607**
AE -.200** -.165* .093 .881** .361** .552**
ASHS .104 .143* -.120 -.264** .092 -.039 -.249**
CB .124 .119 -.056 -.742** -.121 -.335** -.682** .414**
CMGS -.070 -.053 .025 .736** .412** .497** .696** -.079 -.560**
CPApGS -.028 -.036 .001 .586** .400** .374** .526** -.064 -.462** .701**
CPAvGS .025 -.018 .006 .486** .521** .515** .487** .031 -.312** .640** .630**
ATCE -.456** -.468** .522** .122 -.012 .072 .123 -.212** -.190** .120 .016 .025
MA -.368** -.356** .434** .211** .102 .158* .201** -.098 -.159* .133 .191** .161* .341**
RCA -.253** -.297** .363** .030 -.016 .038 .029 -.028 -.090 .012 -.001 -.034 .356** .586**
CA -.434** -.451** .456** .291** .106 .183** .256** -.239** -.259** .231** .212** .171* .465** .638** .518**
**. Correlation is significant at the 0.01 level (2-tailed).
*. Correlation is significant at the 0.05 level (2-tailed).
(IL_av = Intrinsic Cognitive Load Average, EL_av = Extraneous Cognitive Load Average, GL_av = Germane Load Average, MGO = Mastery Goal Orientation, PApGO
= Performance-Approach Goal Orientation, PAvGO = Performance-Avoid Goal Orientation, AE = Academic Efficacy, ASHS = Academic Self Handicapping Strategies,
CB = Cheating Behavior, CMGS = Classroom Mastery Goal Structure, CPApGS = Classroom Performance-Approach Goal Structure, CPAvGS = Classroom
Performance-Avoid Goal Structure, ATCE= Attitude Towards Coding Education, MA= Mathematics Achievement, RCA= Reading Comprehension Achievement, CA=
Coding Achievement)

99

100

4.1.2 Results of the Research Question 1

The first research question of this study aimed to examine the differential cognitive

load experienced by students across various fundamental programming concepts. A

within-subjects analysis of variance (ANOVA) was conducted to examine the effect

of programming concepts (basic sequences, flowcharts, testing and debugging,

loops, nested loops, conditionals, and variables) on cognitive load as measured by

the Cognitive Load Scale. This analysis employed a repeated-measures design with

seven measurement points representing the seven topics of the programming

instruction. The means, standard deviations, skewness, and kurtosis values for the

observed variables are presented in Table 4.2. The students exhibited the highest

mean scores for intrinsic load on the concepts of nested loops (M = 2.131, SD =

1.196), basic sequences (M = 2.114, SD = 0.772), and loops (M = 2.003, SD = 1.083),

respectively. The highest extraneous load was observed for the concepts of nested

loops (M = 2.029, SD = 1.035), basic sequences (M = 1.964, SD = 0.687), and

flowcharts (M = 1.945, SD = 0.849). On the other hand, the mean of the students’

germane load scores was lowest for basic sequences (M = 3.706, SD = 0.810),

flowcharts (M = 3.756, SD = 1.073), and debugging (M = 3.808, SD = 1.095).

Notably, germane load exhibited an increase across weeks for all concepts except for

nested loops, where a decrease occurred when transitioning from loops to nested

loops concept. Descriptive statistics revealed that skewness and kurtosis values for

intrinsic, extraneous, and germane load scores across the seven programming

concepts fell within the acceptable range of ±2, suggesting the normality of the data

(Joseph F. Hair, 2021).

101

Table 4.2 Descriptive Statistics for Repeated Cognitive Load Measures Across
Seven Programming Concepts

Dependent Variable M SD Variance Skewness Kurtosis
IL sequences 2.114 0.772 0.595 0.399 -0.492
IL flowcharts 1.930 0.888 0.789 0.870 0.357
IL debugging 1.739 0.947 0.897 1.205 0.386
IL loops 2.003 1.083 1.173 0.936 0.156
IL nested loops 2.131 1.196 1.431 0.814 -0.364
IL conditionals 1.650 0.765 0.584 1.129 0.420
IL variables 1.658 0.814 0.662 1.185 0.588
EL sequences 1.964 0.687 0.472 0.537 -0.283
EL flowcharts 1.945 0.849 0.720 0.818 0.467
EL debugging 1.776 0.862 0.742 1.150 0.868
EL loops 1.846 0.974 0.948 1.029 0.239
EL nested loops 2.029 1.035 1.070 0.825 -0.096
EL conditionals 1.826 0.923 0.852 1.119 0.486
EL variables 1.787 0.931 0.867 1.078 0.325
GL sequences 3.706 0.810 0.656 -0.396 -0.322
GL flowcharts 3.756 1.073 1.151 -0.690 -0.256
GL debugging 3.808 1.095 1.199 -0.675 -0.446
GL loops 3.888 1.099 1.209 -0.771 -0.205
GL nested loops 3.864 1.104 1.220 -0.713 -0.351
GL conditionals 3.988 0.977 0.954 -0.854 0.115
GL variables 4.046 1.045 1.093 -1.009 0.175

To test the assumption of sphericity, the differences between each pair of measures

were calculated, and their variances were compared separately for IL, EL and GL. It

was observed that there was a big difference between variations of some differences.

For instance, the variance of the difference between IL for conditional statements

and variables was .643 while the variance of the difference between IL for flowcharts

and loops were 1.385. Besides that, Mauchly’s test results indicated the violation of

the assumption of sphericity for IL (χ2(20) = 101.24, p < .001), EL (χ2(20) = 79.29,

p < .001) and GL (χ2(20) = 125.98, p < .001). Therefore, Greenhouse-Geisser

correction was used for three measures (ε = .85 for IL, ε = .88 for EL and ε = .86 for

GL) (Field, 2005).

102

Separate one-way repeated-measures ANOVAs were employed for each dependent

variable (IL, EL, and GL). Test results revealed significant effects of programming

concepts on intrinsic load (F(5.12, 1013.57) = 15.06, p < .001, multivariate ω2 = .07),

extraneous load (F(5.30, 1049.56) = 4.38, p = .001, multivariate ω2 = .02), and

germane load (F(5.02, 994.69) = 5.03, p < .001, multivariate ω2 = .03) (Table 4.3).

These findings indicated significant variations in all three types of cognitive load

scores across the seven basic programming concepts. Findings suggested a medium

effect size for intrinsic load and small effect sizes for extraneous and germane load

(Pallant, 2016).

Table 4.3 Results of One-way Repeated Measures ANOVA Comparing Cognitive
Load Scores Across Seven Different Programming Concepts

Variable df F p η2
Intrinsic Load 5.12 15.06 .000 .07
Extraneous Load 5.30 4.38 .000 .02
Germane Load 5.02 5.03 .000 .03

The results of follow-up pairwise comparison using Holm’s sequential Bonferroni

procedure to control for type 1 error revealed that students exhibited higher intrinsic

load when learning basic sequences (p < .001), flowcharts (p < .005), loops (p =

.001), and nested loops (p < .001) compared to conditionals and variables. Similarly,

the intrinsic load was higher for basic sequences (p < .001), loops (p < .05), and

nested loops (p < .001) compared to testing and debugging. Examination of the

extraneous load showed that students experienced significantly higher levels of

extraneous load during the learning process of basic sequences compared to testing

and debugging (p < .05). Additionally, students exhibited significantly higher

extraneous load when learning nested loops compared to learning concepts of testing

and debugging (p < .05), conditionals (p < .005), and variables (p < .05). However,

regarding germane load, it was observed that during lessons focused on variables,

students demonstrated significantly higher germane load compared to learning basic

sequences (p < .001) and flowcharts (p < .05). Similarly, when conditionals were

taught, students exhibited significantly higher germane load compared to learning

103

basic sequences (p < .001). These findings suggest that certain programming

concepts, such as basic sequences, loops, and nested loops, impose a higher cognitive

load on students regarding both intrinsic and extraneous load. Moreover, the

emphasis on certain concepts, such as variables and conditionals, seems to facilitate

higher levels of germane cognitive processing among students.

4.1.3 Results of the Research Question 2

The second research question of this study aimed to explore whether students'

adaptive learning patterns, attitudes toward coding education, cognitive load, and

achievement in programming vary according to gender. To further investigate RQ1,

three sub-questions were examined

4.1.3.1 Results of the Sub-Research Question 2a

Analysis of variance (ANOVA) is a statistical method used to compare groups based

on a single dependent variable. Multivariate analysis of variance (MANOVA) is an

extension of the ANOVA. MANOVA is used when there are multiple dependent

variables to evaluate the statistical differences between dependent variables based

on the independent grouping variable. The dependent variables should exhibit a

conceptual association or possess a rationale justifying for being considered together

(Pallant, 2016). To conduct the MANOVA test, there are some assumptions to be

met. In the current study to test the multivariate normality, Mardia’s measure of

multivariate kurtosis was implemented using AMOS software. Mardia’s multivariate

kurtosis value was found to be 8.03. The critical ratio (c.r.) for kurtosis was 4.48.

The significant result (c.r. = 4.48, p < 0.05) suggested that the data did not follow a

multivariate normal distribution. Therefore, a robust MANOVA test was carried out

on the ranked data using Munzel & Brunner's (2000) method to examine the gender

differences in PALS (MGO, PApGO, PAvGO, CMGS, CPApGS, CPAvGS, AE,

CB, and ASHS) scores of the students. The analysis was conducted in the R

104

Statistical Package using the ‘mulrank()’ function from the WRS package. Since the

newest version of the WRS2 package does not contain this function, the analysis was

conducted utilizing the original WRS package (Field, et al., 2016). Test results

indicated that differences between female and male students on the dependent

measures were statistically nonsignificant, F = 1.28, p = .28.

4.1.3.2 Results of the Sub-Research Questions 2b, 2c, 2d, and 2e

Separate independent-samples t-tests were conducted to evaluate whether there was

a significant difference in attitude toward coding education, mathematics

achievement, reading comprehension achievement, and coding achievement scores

between males and females. The results indicated no significant differences in

attitudes towards coding education (t(197) = 0.57, p > .05), mathematics

achievement (t(184.08) = -0.02, p > .05), reading comprehension achievement

(t(197) = -0.89, p > .05), or coding achievement (t(197) = 0.30, p = .76) scores

between males and females (Table 4.4).

Table 4.4 Results of t-test and Descriptive Statistics for ATCE, MA, RCA and CA
by Gender

 Males Females t p Cohen’s d
 M SD M SD
ATCE 153.09 27.47 150.86 27.27 0.57 .57 0.080
MA 15.49 6.08 15.51 6.82 -0.22 .98 0.003
RCA 13.16 5.98 13.90 5.71 -0.89 .37 0.130
CA 50.56 10.20 50.14 9.31 0.30 .76 0.040

4.1.3.3 Results of the Sub-Research Question 2f

A doubly multivariate repeated-measures MANOVA was conducted on measures of

three types of cognitive load: intrinsic load, extraneous load, and germane load,

across seven topics within computer programming. This statistical technique is

particularly suited for studies involving multiple dependent variables measured

105

repeatedly at different time points. The doubly multivariate repeated-measures

MANOVA was employed in this study to investigate the multivariate main effects

of programming topics and gender on cognitive load.

The descriptive statistics of the observed variables over all combinations of gender

and programming topics are presented in Table 4.5. The intrinsic load mean score of

the females (M = 3.77, SD = 1.01) and males (M = 3.75, SD = 1.13) for conditionals

was the highest among all seven topics covered in the introductory programming

fundamentals. Both females (M = 3.97, SD = 1.07) and males (M = 3.82, SD = 1.13)

had the highest mean scores for extraneous load on nested loops than on any other

subjects. The mean values of germane load scores revealed that female students

exhibited the highest germane load when dealing with variables (M = 4.07, SD =

0.97), while male students showed the highest germane load when handling loops

(M = 4.06, SD = 0.96).

Despite unequal female and male group sizes, the analysis proceeded because both

groups were large, had more cases than dependent variables, and exhibited no

significant size discrepancy (Tabachnick & Fidell, 2012). Skewness and kurtosis

values for the three cognitive load types across seven programming concepts in both

female and male participants supported the assumption of normality. All variables

exhibited skewness and kurtosis values within the range of ±2. Furthermore, the

highest Cook’s distance value for each measurement was below the commonly

accepted threshold of 1.0, suggesting the absence of significant outliers (Field,

2005). Correlation analysis revealed that Pearson's correlation coefficients between

all pairs of Cognitive Load measures across the seven topics did not exceed 0.80.

Therefore, the assumption of multicollinearity was established.

Box’s M Test of Equality was significant (F(231,107831) = 1.53, p < .001),

suggesting a departure from the assumption of homogeneity of variance-covariance

matrices. This finding aligns with the increased risk of alpha-level distortion

associated with a larger number of dependent variables, as noted by Tabachnick &

Fidell (2012). In this study, with twenty-one dependent variables, such an outcome

106

is not entirely unexpected. However, further examination of individual variable

variances within each group demonstrated minimal variance disparity across groups.

No variable exhibited a largest-to-smallest variance ratio approaching 10:1,

suggesting a limited impact on the analysis. Consequently, the analysis can proceed

to the next step with relative confidence. Given the potential for assumption

violation, Pillai's Trace was employed instead of Wilks' Lambda to evaluate

multivariate significance due to its robustness (Tabachnick & Fidell, 2012). Thus,

the evaluation of assumptions for the doubly-multivariate analysis of variance

(dMANOVA) yielded acceptable results.

Table 4.5 Descriptive Statistics for Cognitive Load Measures for Gender Across
Seven Programming Concepts

 Females (N = 92) Males (N = 107)
 M SD Skewness Kurtosis M SD Skewness Kurtosis
IL sequences 2.22 0.79 0.27 -0.48 2.02 0.75 0.49 -0.45
IL flowcharts 1.96 0.64 0.16 -0.68 1.97 0.73 0.75 -0.14
IL debugging 3.72 0.80 -0.39 -0.24 3.70 0.82 -0.40 -0.35
IL loops 1.88 0.82 1.00 1.16 1.97 0.95 0.77 -0.09
IL nested loops 1.89 0.77 0.56 -0.48 1.99 0.92 0.90 0.66
IL conditionals 3.77 1.01 -0.72 0.17 3.75 1.13 -0.67 -0.51
IL variables 1.86 1.01 0.95 -0.37 1.63 0.88 1.49 1.51
EL sequences 1.84 0.86 1.02 0.71 1.72 0.87 1.29 1.19
EL flowcharts 3.85 0.95 -0.55 -0.42 3.78 1.21 -0.68 -0.66
EL debugging 2.14 1.12 0.82 0.17 1.89 1.04 1.06 0.21
EL loops 1.86 0.98 1.19 1.12 1.84 0.98 0.90 -0.46
EL nested loops 3.97 1.07 -0.96 0.29 3.82 1.13 -0.64 -0.47
EL conditionals 2.10 1.17 0.89 0.03 2.16 1.23 0.76 -0.61
EL variables 1.99 0.92 0.68 -0.23 2.07 1.12 0.86 -0.22
GL sequences 3.99 1.05 -0.90 0.09 3.76 1.15 -0.57 -0.58
GL flowcharts 1.71 0.76 0.95 -0.01 1.60 0.77 1.32 0.98
GL debugging 1.83 0.88 1.26 1.32 1.82 0.96 1.04 0.01
GL loops 3.90 1.00 -0.81 0.24 4.06 0.96 -0.91 0.05
GL nested loops 1.63 0.75 1.39 1.71 1.68 0.87 1.06 0.001
GL conditionals 1.79 0.85 1.17 1.32 1.78 1.00 1.03 -0.18
GLL variables 4.07 0.97 -1.09 0.64 4.02 1.11 -0.95 -0.10

As presented in Table 4.6, the doubly repeated MANOVA revealed a non-significant

multivariate main effect for the interaction between gender and programming topics,

Pillai's V = .139, F(18, 180) = 1.62, p > .05, partial η2 = .139. The interaction effect

107

indicates that different programming topics had no different effects on males and

females in terms of types of cognitive load. Besides that, there was a statistically

significant multivariate main effect for programming topics, Pillai's V = .424, F(18,

180) = 7.35, p < .001, partial η2 = .424 with a large effect size. There was not a

statistically significant multivariate main effect for gender, Pillai's V = .021, F(3,

195) = 1.39, p = .021, partial η2 = .021. This finding indicates that there were no

significant differences between male and female students in terms of intrinsic load,

extraneous load, and germane load across the seven topics within computer

programming.

Table 4.6 Results of Doubly Repeated MANOVA for Cognitive Load Types by
Gender

Multivariate
Effect

 Pillai's V F df Error
df

p Partial
η2

Between Subjects Gender .021 1.39 3 195 .246 .021
Within Subjects Programming

topics
.424 7.35 18 180 .000 .424

 Interaction .139 1.62 18 180 .059 .139

Follow-up univariate ANOVAs were then examined, and it was observed that

Mauchly's test revealed the violation of the assumption of sphericity for IL (χ²(20) =

101.04, p < .001), EL (χ²(20) = 78.76, p < .001) and GL (χ²(20) = 131.04, p < .001).

Consequently, the degrees of freedom were adjusted using Greenhouse-Geisser

estimates of sphericity (ε = .85 for IL, ε = .88 for EL, and ε = .83 for GL). Univariate

test results revealed that intrinsic load differed significantly across topics, F(5.11,

1006.80) = 15.06, p < .001, partial η² = .071. Similarly, extraneous load and germane

load also showed significant differences across topics, F(5.30, 1044.32) = 4.16, p =

.001, partial η² = .021, and F(5.00, 984.04) = 4.94, p < .001, partial η² = .024,

respectively. These results suggested that the levels of intrinsic, extraneous, and

germane load vary depending on the topic.

108

4.1.4 Results of the Research Question 3

This research question of this study investigated whether there were differences in

students’ adaptive learning patterns, attitudes toward coding education, cognitive

load, and achievement in programming based on geographical school location. To

address this question, three sub questions were further investigated.

4.1.4.1 Results of the Sub-Research Question 3a

Since the multivariate normality assumption was violated for the subscales of the

PALS, as previously indicated, a robust non-parametric version of MANOVA was

conducted in R through mulrank function using Munzel & Brunner's (2000) method

to examine the effect of gender on the scores of the students from the subscales of

the PALS. The results indicated that there were statistically significant differences

based on geographical school location, F = 19.38, p < .001. To determine which

subscales showed significant differences based on geographical school location,

follow-up analyses were conducted using the Mann-Whitney U test. Test results

showed that there were significant differences between students from the school in

the urban area and from the suburban area in all nine subscales of PALS (Table 4.7).

Urban students exhibited significantly higher average ranks compared to their

suburban counterparts in the following subscales: MGO (z = -5.68, p <.001),

PApGO (z = -2.66, p <.05), PAvGO (z = -3.38, p = .001), CMGS (z = -4.76, p <.001),

CPApGS (z = -5.22, p < .001), CPAvGS (z = -3.40, p =.001), and AE (z = -5.82, p <

.001). On the other hand, suburban students scored significantly higher in ASHS (z

= -2.98, p < .05) and CB (z = -4.88, p < .001).

109

Table 4.7 Mann-Whitney U Test Results for PALS by Geographical School Location

4.1.4.2 Results of the Sub-Research Questions 3b, 3c, 3d, and 3e

Separate independent-sample t-tests were conducted to compare the attitude toward

the coding education scale, mathematics achievement test, reading comprehension

achievement test, and coding achievement test scores of the students from urban and

suburban schools. The results indicated significant differences in the MA scores

(t(197) = 3.37, p = .001) and CA scores (t(161.93) = 3.68, p < .001) between students

from urban and suburban schools (Table 4.8). The effect size, as measured by

Cohen’s d, indicated a small effect size for mathematics achievement and a medium

effect size for coding achievement. These results suggest that students from urban

schools had significantly higher coding scores compared to students from suburban

schools. Similarly, the mathematics scores of the students from urban schools were

higher than the scores of the students from suburban schools. However, the results

showed that there was no significant difference in the ATCE (t(197) = 1.04, p > .05)

and RCA (t(197) = -2.00, p = .05) between urban and suburban schools.

 Urban (n = 112) Suburban (n = 97) U z p
Variable Mean Rank Mean Rank
MGO 120.38 73.76 2589.50 -5.68 .000
PApGO 109.54 87.71 3803.00 -2.66 .008
PAvGO 112.13 84.39 3514.00 -3.38 .001
CMGS 117.08 78.01 2958.50 -4.76 .000
CPApGS 118.72 75.90 2775.50 -5.22 .000
CPAvGS 112.53 83.87 3469.00 -3.40 .000
AE 120.91 73.09 2530.50 -5.82 .000
ASHS 89.31 113.76 3675.00 -2.98 .003
CB 82.82 122.12 2947.50 -4.88 .000

110

Table 4.8 Results of t-test and Descriptive Statistics for ATCE, MA, RCA and CA
by Geographical School Location

 Urban (n = 112) Suburban (n = 87) t p Cohen’s d
 M SD M SD
ATCE 153.84 26.13 149.77 28.80 1.04 .30 0.15
MA 16.81 6.38 13.80 6.01 3.37 .001 0.49
RCA 12.78 5.87 14.44 5.74 -2.00 .05 0.29
CA 52.60 8.48 47.49 10.59 3.78 .000 0.53

4.1.4.3 Results of the Sub-Research Questions 3f

The doubly multivariate repeated-measures MANOVA was employed to investigate

the multivariate main effects of programming topics and geographical school

location on intrinsic load, extraneous load, and germane load. The descriptive

statistics of the observed variables over all combinations of school location and

programming topics are presented in Table 4.9. The descriptive statistics of cognitive

load measures across seven programming concepts revealed distinct patterns

between urban (N = 108) and suburban (N = 86) students. In urban settings, the

highest mean values for intrinsic load (IL) were observed in sequences (M = 2.03,

SD = 0.75) and nested loops (M = 1.87, SD = 1.05), whereas suburban students

showed higher means in nested loops (M = 2.38, SD = 1.22) and sequences (M =

2.22, SD = 0.79). For extraneous load (EL), urban students had the highest means in

sequences (M = 1.80, SD = 0.68) and nested loops (M = 1.83, SD = 0.99), while

suburban students exhibited higher means in nested loops (M = 2.19, SD = 0.99) and

flowcharts (M = 2.09, SD = 0.83). Regarding germane load (GL), urban students

reported the lowest means in sequences (M = 3.84, SD = 0.77) and debugging (M =

3.084, SD = 1.15), compared to suburban students who showed the lowest means in

flowcharts (M = 3.56, SD = 1.09) and sequences (M = 3.60, SD = 0.81).

111

Table 4.9 Descriptive Statistics for Cognitive Load Measures for School Location
Across Seven Programming Concepts

 Urban (n = 112) Suburban (n = 87)
 M SD Skewness Kurtosis M SD Skewness Kurtosis
IL sequences 2.03 0.75 0.434 -0.486 2.22 0.79 0.353 -0.443
IL flowcharts 1.76 0.83 0.931 0.183 2.10 0.87 0.740 0.486
IL debugging 1.60 0.90 1.550 1.359 1.88 0.94 0.841 -0.359
IL loops 1.81 1.07 1.213 0.543 2.17 1.04 0.753 0.260
IL nested loops 1.87 1.05 1.036 0.134 2.38 1.22 0.507 -0.746
IL conditionals 1.59 0.73 1.518 2.075 1.69 0.77 0.828 -0.579
IL variables 1.61 0.87 1.406 1.061 1.74 0.75 0.794 -0.281
EL sequences 1.87 0.68 0.812 0.291 2.06 0.66 0.248 -0.450
EL flowcharts 1.80 0.84 1.128 1.145 2.09 0.83 0.621 0.443
EL debugging 1.71 0.87 1.240 0.742 1.79 0.73 0.640 -0.289
EL loops 1.71 1.01 1.352 0.834 1.97 0.85 0.504 -0.770
EL nested loops 1.83 0.99 1.151 0.470 2.19 0.99 0.472 -0.386
EL conditionals 1.78 0.97 1.275 0.573 1.79 0.74 0.532 -0.900
EL variables 1.79 1.06 1.156 0.170 1.80 0.78 0.675 -0.475
GL sequences 3.84 0.77 -0.320 -0.525 3.60 0.81 -0.412 -0.263
GL flowcharts 3.99 0.98 -0.882 0.287 3.56 1.09 -0.548 -0.437
GL debugging 3.84 1.15 -0.782 -0.302 3.78 1.01 -0.519 -0.579
GL loops 4.05 1.06 -1.064 0.634 3.78 1.04 -0.395 -0.956
GL nested loops 3.94 1.16 -0.953 -0.081 3.80 1.02 -0.365 -0.671
GL conditionals 4.01 0.98 -0.831 -0.171 4.05 0.88 -0.691 -0.101
GL variables 4.11 1.06 -1.117 0.326 4.05 0.94 -0.901 0.271

Although sample sizes were not equal between urban and suburban groups, there

were no significant size discrepancy and both groups had more cases than dependent

variables (Tabachnick & Fidell, 2012). To assess the normality assumption,

skewness and kurtosis values were examined for the three cognitive load types across

seven programming concepts in both urban and suburban schools. The analysis

indicated that all variables exhibited skewness and kurtosis values within the

acceptable range of ±2, supporting the assumption of normality. Additionally, the

maximum Cook’s distance value was below the commonly accepted threshold of 1.0

for each measurement,), indicating that there were no significant outliers influencing

the results (Field, 2005). Correlation analysis indicated that Pearson's correlation

coefficients between all pairs of Cognitive Load measures across the seven topics

were below 0.80. Consequently, the assumption of multicollinearity was not

112

violated. The Box's M Test of Equality (F(28, 119003) = 1.43, p > .05) revealed a

nonsignificant result, suggesting that the assumption of homogeneity of variance-

covariance matrices was met. Therefore, it can be concluded that the assumptions

for the dMANOVA were satisfactorily met.

As presented in Table 4.10, the doubly repeated MANOVA revealed a nonsignificant

multivariate main effect for the interaction between school location and

programming topics, Pillai's V = .126, F(18, 180) = 1.44, p > .05, partial η2 = .126.

There was a statistically significant multivariate main effect for programming topics,

Pillai's V = .436, F(18, 180) = 7.75, p < .001, partial η2 = .436, indicating a large

effect size. Similarly, test results revealed a significant main effect for geographical

school location, Pillai's V = .048, F(3, 195) = 3.275, p < .05, partial η2 = .048, with

a small effect size.

Follow-up univariate ANOVAs were then examined, and it was observed that

Mauchly's test revealed that the assumption of sphericity was violated for IL (χ²(20)

= 99.76, p < .001), EL (χ²(20) = 77.89, p < .001) and GL (χ²(20) = 124.82, p < .001).

Consequently, the degrees of freedom were adjusted using Greenhouse-Geisser

estimates of sphericity (ε = .89 for IL, ε = .92 for EL, and ε = .87 for GL).

Table 4.10 Results of Doubly Repeated MANOVA for Cognitive Load Types by
Geographical School Location

Multivariate
Effect

 Pillai's
V

F df Error
df

p Partial
η2

Between Subjects School location .048 3.28 3 195 .022 .048
Within Subjects Programming

topics
.436 7.75 18 180 .000 .436

 Interaction .126 1.44 18 180 .118 .126

Univariate test results revealed that intrinsic load differed significantly across topics,

F(5.13, 1010.36) = 15.86, p < .001, partial η² = .075. Similarly, extraneous load and

germane load also showed significant differences across topics, F(5.30, 1043.77) =

5.07, p = .001, partial η² = .025, and F(5.03, 991.25) = 5.58, p < .001, partial η² =

.028, respectively. These results suggest that the levels of intrinsic, extraneous, and

113

germane load vary depending on the topic, similar to the results of the doubly

repeated MANOVA test conducted to examine the effects of gender and

programming topics on three types of cognitive load.

When the results for geographical school location were examined, the test of

between-subjects effects indicated that the only statistically significant difference,

using a Bonferroni adjusted alpha level of .017, was obtained for the intrinsic load

(F(1, 197) = 7.77, p = .006, partial η2 = .038). On the other hand, differences between

students from suburban schools and urban schools on the EL (F(1, 197) = 2.34, p =

.128 partial η2 = .012) and GL (F(1, 197) = 1.28, p = .260 partial η2 = .006) variables

were not statistically significant.

Figure 4.1 Plot of Estimated Marginal Means of Intrinsic Load by Gender

Post-hoc tests using Bonferroni correction revealed that the intrinsic load of the

students from suburban schools (M = 2.09, SD = 0.09) was significantly higher than

the students from urban schools (M = 1.81, SD = 0.08) for the topics of flowcharts

(p = .026). Similarly, during the week when the topic of loops was covered, students

from suburban schools reported significantly higher intrinsic cognitive load (M =

2.18, SD = 0.12) compared to students from urban schools (M = 1.87, SD = 0.10, p

< .04). Another topic that suburban students experienced higher intrinsic load (M =

2.41, SD = 0.13) than the urban students (M = 1.91, SD = 0.11) was nested loops (p

= .003), as seen in Figure 4.1.

114

4.1.5 Results of the Research Question 4

The fourth research question of the study aimed to explore the predictive power of

research variables in relation to students' coding achievement scores. Hierarchical

regression was conducted to test the fourth hypothesis to determine the relative

strength of the dependent variables in predicting the coding achievement scores of

the students. The regression analysis followed the 4-stage process. In the analysis,

demographic variables (gender and geographic school location) were initially

introduced to the model. Subsequently, mathematics achievement, reading

comprehension achievement, extraneous load, germane load, attitude, and academic

efficacy variables, which have been discussed and evidenced in the related literature

to be associated with programming success, were included in the model. As a third

step, performance-approach goal orientation and performance-avoidance goal

orientation variables were introduced to the model. Finally, exploratory

environmental factors (classroom mastery goal structure, classroom performance-

approach goal structure, and classroom performance-avoid goal structure), cheating

behavior and academic self-handicapping strategies were incorporated into the

model. The order of variable entry into the regression equation was determined by

considering studies in the theoretical framework and related literature that examined

variables associated with the outcome variable.

Prior to conducting hierarchical regression, the underlying assumptions of the

analysis were ascertained. Initially, the minimum sample size was determined by

considering a statistical power of 0.80 and an alpha level of 5%. The effect size

chosen for the multiple hierarchical regression design with fifteen dependent

variables was set at 0.20. Employing a G*Power calculator, it was determined that

the present study required 108 participants. Besides that, the minimum sample size

required for hierarchical regression analysis was calculated by using the formula [50

+ 8*15] suggested by Tabachnick & Fidell (2012) and found to be 170. Based on the

aforementioned considerations, it can be concluded that the sample size for the

analysis was adequate.

115

To evaluate the multicollinearity, the correlations between the predictor variables

were examined. The correlation coefficient values between each variable were below

.80 (Field, 2005), except between MGO and AE (r = 0.881) and between IL and EL

(r = 0.843), as previously mentioned (p. 87). Concerns regarding multicollinearity

potentially biasing the regression model led to the removal of one of the highly

correlated variables. Based on the variance inflation factor (VIF) and tolerance

indices, MGO was chosen for exclusion from the analysis due to its higher VIF and

lower tolerance indices compared to the AE variable. Adopting a similar approach,

it was decided to remove IL from the analysis as well. After the exclusion of these

two variables, tolerance indices and VIF statistics were checked for multicollinearity

(Table 4.11). The analysis results showed that for all predictor variables, the

tolerance indices were above the threshold value of .20 (Menard, 2010, p.76), and

all VIF values were below the threshold value of 5. Additionally, the average VIF

was calculated as 2.103, which is not substantially greater than the suggested value

of 1 (Field, 2005). Therefore, the multicollinearity assumption was met.

Table 4.11 Collinearity Statistics of the Predictor Variables

Variables TI VIF
Geographic school location 0.647 1.545
Gender 0.911 1.098
MAT 0.493 2.029
RCT 0.525 1.904
EL 0.480 2.081
PSL 0.436 2.295
AE 0.308 3.244
ATCE 0.625 1.601
PApGO 0.524 1.907
PAvGO 0.481 2.081
CMGS 0.308 3.243
CPApGS 0.405 2.470
CPAvGS 0.440 2.270
HANDI 0.748 1.337
CHEAT 0.409 2.444

116

To assess the independence of residuals, the Durbin-Watson statistic was employed.

The test result of 2.255, falling within the range of 1 and 3, suggested that the

assumption of independence was met. Standardized residual statistics were assessed

to identify potential outliers. The analysis revealed eight cases with standardized

residuals falling within the range of -2 to +2 (Table 4.12). As anticipated in a normal

distribution, approximately 95% of the cases are expected to exhibit standardized

residuals within this range. Consequently, the presence of eight cases (less than 10%

of the sample) with standardized residual values outside these limits is not considered

a significant concern. Additionally, Mahalanobis distances were checked to evaluate

multivariate outliers (Pallant, 2016). Based on the critical Chi-Square values table,

critical χ2 at a significance level (⍺) of .001 for fifteen degrees of freedom is 37.7.

The test results showed that the maximum Mahalanobis distance value was 37.186.

Besides that, the maximum Cook’s distance value was 0.059, which is below 1

(Field, 2005). These findings indicated the absence of multivariate outliers for all

independent variables.

Table 4.12 Standardized Residual Statistics

Case Number Std. Residual CA Predicted Value Residual

1 -2.912 19.5 39.0288 -19.52876

3 -2.701 21.75 39.8652 -18.11517

5 -2.720 40.5 58.7444 -18.24440

6 -2.796 17.5 36.2546 -18.75457

12 -2.067 34 47.8630 -13.86300

15 -2.037 22.5 36.1651 -13.66513

20 -2.678 33.5 51.4590 -17.95896

21 2.200 61 46.2414 14.75857

Note. For the dependent variable coding achievement (CA)

To test the normality of the residual assumption, the probability plot (P- P) and

histogram of the regression standardized residual were examined. As seen in Figure

117

4.2, residuals had a straight-line relationship with predicted CA scores, indicating no

major deviations from normality. Similarly, the histogram of the regression

standardized residual showed a roughly normal distribution for CA scores (Figure

4.3).

Figure 4.2 Normal Probability Plot (P- P) of the Regression Standardized Residual
for CA

Figure 4.3 Histogram of Regression Standardized Residual for CA

118

The homoscedasticity assumption was assessed through a scatterplot of standardized

residuals and standardized predicted values (ZRESID vs. ZPRED). Examination of

Figure 4.4 revealed a random scatter of residuals, confirming the assumption of

homoscedasticity.

Figure 4.4 Scatterplot of Standardized Residuals and Standardized Predicted Values

To assess the linearity assumption, scatterplots were examined between each

predictor variable and the dependent variable. The scatterplots demonstrated a linear

relationship between the predictors and the dependent variable. Besides that, the

linearity tests indicated a linear relationship between the variables. Partial plots were

checked for the homoscedasticity and linearity assumptions. While a strong

correlation between each predictor variable and the outcome variable was not

observed, examination of the scatterplots indicated a lack of prominent outliers.

Moreover, the data points were evenly dispersed around the regression line, implying

homoscedasticity. Additionally, the graphs did not show any pattern indicating there

is no violation of both the assumption of linearity and homoscedasticity (Field,

2005).

119

Hierarchical regression was conducted to predict the overall coding achievement

score from fifteen predictor variables. Demographic variables (age and geographic

school location) were introduced to the model in Step 1, explaining 7% of the

variance in coding achievement scores, R2 = .07, F(2, 196) = 7.20, p = .001. Results

indicate that geographic school location was a significant predictor of coding

achievement, B = -5.124, β = -.261, t = -3.781, p < .001. This means that academic

achievement scores decreased significantly more in suburban schools compared to

urban schools. Conversely, gender was not a significant predictor of coding

achievement (R2 = .07, F(2, 196) = 7.20, p = .001), which means that there was no

statistically significant difference in predicting the coding achievement scores of

participating students who were girl compared to those students who were boy.

Six variables (mathematics achievement, reading comprehension achievement,

extraneous load, germane load, academic efficacy, and attitude towards coding

achievement) were added to the model in the second step and test results showed that

these variables account for an additional 48% variance in coding achievement

controlling for gender and geographic school location, Rsquared change = .48,

Fchange (2, 190) = 33.19, p < .001. This means that nearly half of the variance in

coding achievement was accounted for by the added variables. Analysis results for

Model 2 indicated that mathematics achievement (B = 0.50, β = .33, t = 4.84, p <

.001), reading comprehension achievement (B = 0.39, β = .24, t = 3.53, p = .001),

extraneous load (B = -0.70, β = -.14, t = -2.06, p < .05), and attitude toward coding

education (B = 0.06, β = .17, t = 2.81, p < .01) were statistically significant predictors

of coding achievement. Among these variables, the majority of the variance in the

coding scores was uniquely explained by mathematics achievement scores (sr = .24)

and followed by reading comprehension achievement (sr = .17), attitude toward

coding education (sr = .14), extraneous load (sr = .10), respectively. These results

showed that the coding achievement scores of the students were higher when their

performance in mathematics and reading comprehension, as well as their attitude

towards coding education and extraneous load were higher. On the other hand,

analysis results showed that germane load (B = 0.08, β = .02, t = 0.33, p > .05) and

120

academic efficacy (B = 0.10, β = .06, t = 1.07, p > .05) were not significant predictors

of the output variable.

In the third step, two variables (performance-approach goal orientation and

performance-avoidance goal orientation) were added to the model. The test results

showed that including performance-approach goal orientation (B = -0.02, β = -.01, t

= -0.18, p > .05) and performance-avoidance goal orientation (B = 0.08, β = -.04, t =

0.51, p > .05) variables failed to significantly increase in the explained variance of

coding achievement, Rsquared change = .001, Fchange (2, 188) = .13, p > .05.

In the final step, the inclusion of the last five variables (classroom mastery goal

structure, classroom performance-approach goal structure, classroom performance-

avoid goal structure, academic self-handicapping strategies, and cheating behavior)

resulted in a nonsignificant increase of 2% in the explained variance of coding

achievement, Rsquared change = .02, Fchange (5, 183) = 1.59, p > .05. Among these

variables, academic self-handicapping strategies was identified as the sole

significant predictor of coding achievement, exhibiting a negative relationship (B =

-0.16, β = -.12, t = 0.51, p < .05). However, CMGS (B = 0.16, β = .11, t = 1.23, p >

.05), CPApGS (B = 0.04, β = .01, t = 0.19, p > .05), CPAvGS (B = 0.07, β = .14, t =

0.49, p > .05) and CB (B = 0.01, β = .16, t = 0.08, p > .05) found to be nonsignificant

predictors of the academic achievement.

Table 4.13 Four-Step Hierarchical Multiple Regression Analysis Results

Predicted variables B SE B β t p sr R2
Change R2

Model 1 .068* .068
(Constant) 53.403 2.179 24.507 .000
School Location -5.124 1.355 -.261 -3.781 .000 -.261
Gender -0.546 1.348 -.028 -0.405 .686 -.028

121

Table 4.13 Four-Step Hierarchical Multiple Regression Analysis Results (cont’d)

Model 2 .477** .545
(Constant) 31.517 6.064 5.198 .000
School Location -3.208 1.165 -.163 -2.753 .006 -.135
Gender -0.420 0.998 -.021 -0.421 .675 -.021
MATS 0.504 0.104 .331 4.840 .000 .237
RCTS 0.393 0.111 .235 3.533 .001 .173
EL -0.702 0.341 -.143 -2.057 .041 -.101
GL 0.079 0.240 .024 0.328 .743 .016
EFFI 0.095 0.089 .061 1.065 .288 .052
ASTCE 0.060 0.021 .168 2.809 .005 .137
Model 3 .001 .546
(Constant) 31.477 6.286 5.007 .000
School Location -3.212 1.171 -.163 -2.743 .007 -.135
Gender -0.416 1.003 -.021 -0.415 .679 -.020
MATS 0.502 0.105 .330 4.792 .000 .236
RCTS 0.392 0.112 .235 3.508 .001 .172
EL -0.714 0.345 -.146 -2.069 .040 -.102
GL 0.076 0.241 .024 0.317 .752 .016
EFFI 0.071 0.102 .045 0.694 .489 .034
ASTCE 0.060 0.022 .167 2.764 .006 .136
PApGO -0.022 0.122 -.012 -0.184 .855 -.009
PAvGO 0.078 0.154 .035 0.505 .614 .025
Model 4 .019 .565
(Constant) 34.803 6.859 5.074 .000
School Location -2.802 1.191 -.143 -2.352 .020 -.115
Gender -0.510 0.999 -.026 -0.511 .610 -.025
MATS 0.498 0.106 .327 4.703 .000 .229
RCTS 0.402 0.112 .241 3.584 .000 .175
EL_av -0.756 0.345 -.154 -2.192 .030 -.107
GL_av 0.093 0.240 .029 0.386 .700 .019
EFFI -0.097 0.137 -.062 -0.707 .481 -.034
ASTCE 0.048 0.022 .135 2.195 .029 .107
PApGO -0.044 0.130 -.023 -0.336 .738 -.016
PAvGO 0.059 0.156 .027 0.380 .705 .019
CMGS 0.160 0.130 .108 1.233 .219 .060
CPApGS 0.039 0.208 .014 0.185 .854 .009
CPAvGS 0.070 0.141 .036 0.492 .623 .024
ASHS -0.159 0.074 -.121 -2.145 .033 -.105
CHEAT 0.012 0.157 .006 0.077 .939 .004

Note. sr = semi partial correlation coefficient, *p=.001, **p < .001.

122

Overall, the final model continued to significantly predict coding achievement and

accounted for 57 percent of the variance in achievement, with an adjusted R2 of .53

(R2 = .57, F(5, 183) = 15.82, p < .001). Five of fifteen measures, which remained a

robust predictor both in the second and third models and another variable added to

the model in the fourth step statistically significantly contributed to the final model

(Table 4.13). On the other hand, gender, GL, AE, PApGO, PAvGO, CMGS,

CPApGS, CPAvGS, and CB were insignificant in predicting the coding achievement

test scores of the fifth-grade student. When the unique relationship that each

significant predictor has with coding achievement was examined, it was observed

that mathematics achievement was the strongest predictor (sr = .23) followed by

reading comprehension achievement (sr = .18), geographic school location (sr = -

.12), extraneous load (sr = -.11), attitude towards coding education (sr = .11) and

academic self-handicapping strategies (sr = -.11). To evaluate the generalizability of

the model, the difference between R2 and adjusted R2 was calculated (Diff: .565 -

.529 = .036) and found as 3.6%. This R2 shrinkage indicated that if the model had

been estimated using the entire population instead of a sample, about 3.6% less of

the variance would account for in the outcome. Furthermore, considering the

critiques on the R2 value regarding its limitations in demonstrating the predictive

capability of the regression model for a different dataset, to evaluate the cross-

validation of the model, adjusted R2 was calculated using Stein’s formula and found

as 0.49. As this calculated adjusted R2 value did not differ substantially from the

obtained R2 value, the cross-validity of the model can be considered good.

4.2 Results of the Qualitative Data Analysis

4.2.1 Results of the Research Question 5

During the qualitative phase of the research, semi-structured interviews were

conducted with a sample of 30 fifth-grade students from a total of 199 who had

participated in the quantitative phase. These students were selected from each

123

participating school, with one student each representing low, medium, and high

academic achievement in the ITS course from each class. A thematic analysis was

conducted on student responses to gain deeper insights into their programming

learning experiences. The analysis of the data revealed six main themes: cognitive

demands, effective instructional approaches, collaborative learning approaches,

independent learning approaches, goal setting, and affective aspects. Each theme is

further categorized to capture specific aspects of the student experiences. The

identified themes and their corresponding categories are presented in Figure 4.5.

Figure 4.5 Themes and Their Corresponding Categories

4.2.1.1 Theme 1: Cognitive Demands

This theme explored the complexities that participants encountered while learning

programming. The aim of this theme was to identify the factors contributing to their

cognitive load by examining the inherent complexity of programming concepts and

Cognitive
Demands

Inherent
Complexity
of Concepts
and Tasks

Instructional
Factors

General
Barriers

Effective
Instructional
Approaches

Plugged
Activities

Unplugged
Activities

Blended
Approaches

Teacher
Effectiveness

Collaborative
Learning

Approaches

Pair Selection
Criteria

Role-Sharing
Strategies

Benefits of
Collaborative

Learning

Challenges of
Collaborative

Learning

Seeking
Assistance

Independent
Learning

Approaches

Independent
Learning

Strategies

Benefits of
Solo

Programming

Challenges of
Solo

Programming

Goal Setting

Mastery-
Oriented

Goals

Performance
-Oriented

Goals

Performance
-Avoidance

Goals

Affective
Aspects

Attitude

Self-efficacy

124

tasks, the impact of instructional design, and the challenges posed by the learning

environment. Table 4.14 provides a detailed overview of the categories under this

theme, their corresponding codes, and the frequency of statements associated with

each code.

Table 4.14 Distribution of Code Frequencies by the Theme of Cognitive Demands
and Instructional Factors

Categories Codes f
Inherent Complexity of Concepts
and Tasks

Diagramming programming logic
difficulties

15

Spatial reasoning challenges 14
Managing iterative logic 6
Limited code blocks challenges 3
Comprehending code blocks
functionality

3

Integration of multiple concepts 2
Sequencing and logical flow
difficulties

1

Instructional Factors Abstract concepts and confusing
explanations

24

 Time constraints 8
 Unstructured learning 5
 Unclear task instructions 4
 Unsuitable scaffolding 1

Learning Environment Challenges

Access and equity issues 21
Foreign language-related problems 4
Login problems 3

4.2.1.1.1 Inherent Complexity of Programming Concepts and Tasks

This category examined the intrinsic aspects of programming concepts and tasks that

significantly impact students' cognitive load. These intrinsic factors encompassed

various challenges that learners face, influencing the mental effort required to grasp

and apply programming concepts. The data revealed that participants frequently

reported difficulties with programming logic, as evidenced by fifteen mentions of

flowcharts as a particular challenge. Similarly, spatial reasoning posed a notable

125

obstacle for students learning to program, as highlighted in fourteen distinct

instances within the data. Furthermore, the data indicated a significant challenge in

managing iterative logic and loop structures, as evidenced by six mentions. Other

challenges identified by students included problem-solving within constrained code

blocks, understanding code block functionality, and difficulties with tasks requiring

the integration of multiple concepts, algorithmic sequencing, and logical flow.

Diagramming Programming Logic Difficulties

Flowcharts are visual tools used to represent program logic. However, student

feedback revealed difficulties in understanding which command to place inside

which flowchart shapes, complicating their ability to effectively diagram coding

logic (f = 15). This complexity was compounded by the need to grasp the abstract

relationships between various shapes and their underlying concepts, such as

processes and decisions. S27's confusion regarding "triangles" (referring to decision

diamonds) exemplified this challenge. If students did not understand the purpose of

decision diamonds and how to formulate questions or conditions within them, even

a simple flowchart could become overwhelming.

[S27]: In it, for example... When I started with a triangle, I didn't have any

questions; I didn't know what to start with. I was struggling. Which command

should I write and how should I write it?

Additionally, four students expressed difficulty in identifying the specific actions or

decisions represented by different flowchart symbols (e.g., decision diamonds and

input/output boxes). These students struggled with remembering and distinguishing

the meanings of different shapes in flowcharts, indicating challenges with concept

retention and understanding. Understanding the abstract relationships between these

shapes and their underlying concepts inherently demanded significant cognitive

effort from the students. Moreover, student statements indicated that the way

information was presented significantly affected the cognitive load they experienced.

Poorly explained or inadequate practice in distinguishing different flowchart

symbols led to memorization difficulties and confusion between shapes, which

126

added to the cognitive load as students struggled to recall the meaning of each

symbol and how they connected to program logic.

[S27]: I was confused about the questions. There were triangles,

parallelograms, etc. I had some difficulty there. It was confusing. ...I didn't

know what to put and which shape to put.

Spatial Reasoning Challenges

Analysis of interviews revealed that many of the students struggled with tasks

requiring spatial reasoning skills (f = 14). These skills, encompassing concepts like

geometry (angles, degrees, and rotations) and distance calculations, are crucial for

translating abstract geometric ideas into algorithms. Based on student feedback,

integrating knowledge from geometry with programming skills was inherently

complex and demanding. Participants’ responses indicated challenges with tasks like

navigating mazes requiring specific turns or manipulating shapes with precise

rotations (as mentioned by S24). These tasks necessitated not only an understanding

of programming concepts but also the application of geometric knowledge.

Additionally, two participants (S15 and S26) expressed difficulty with directional

commands ("left" and "right"). This issue was related to spatial orientation, which

involved understanding and manipulating objects in relation to oneself. In

programming tasks in the class, spatial orientation was essential for comprehending

and using directional movement commands ("move forward," "turn left/right").

Student feedback indicated that those struggling with spatial orientation had

difficulty visualizing how these commands translated to on-screen movements (as

mentioned by S26).

[S19]: I am not good at angles at all because I am not good at angles in math

either. So, it affects my performance in the IT (Information Technology and

Software) class as well.

127

[S24]: There are shapes there, for example, go 180. You will make it 120 or

145. I was undecided there, what should I do, 145, 120, 100? So, it was

always necessary to try.

Managing Iterative Logic

This code explores the challenges students encountered when working with nested

loops, a fundamental programming concept that introduces multiple levels of

iteration. Notably, the student tasks in this analysis specifically involved nested loops

with only two iteration structures. Students struggled to understand the logic and

structure of these constructs, particularly when determining which code blocks

should repeat within nested loop structures (f = 6). This was evident in the feedback

from S30. The analysis of feedback from S22 also revealed difficulties in managing

nested loop structures. Student reported challenges understanding the behavior of

nested loops, particularly when the total number of iterations became large. This

suggested a struggle with conceptualizing the interplay between nested loops and the

resulting flow of control.

[S22]: For example, when a character is there, it is a bit difficult for me to

use that loop twice. For example, after repeating something three times, for

example, when we put one more thing, a loop on the top layer, for example,

when it was five times, something strange was happening. I couldn't really

understand it.

S6 expressed in the interview the challenges faced when applying nested loops in

problem-solving tasks that involved navigating obstacles. These tasks required

students to control a character and navigate through a complex environment filled

with obstacles like ice patches and hazards (e.g., wildflowers). The inherent

complexity lay in the need to manage multiple elements simultaneously, such as

planning a route, executing movements, and adjusting strategies in real-time. This

multitasking demanded strategic planning, spatial awareness, and a high level of

problem-solving and decision-making skills. According to student comments, the

128

need to consider the location and behavior of multiple obstacles simultaneously

increased the intrinsic cognitive load.

[S6]: I had a hard time getting the zombie to the sunflower, it was difficult to

get the zombie to the sunflower. Because, teacher, there are other flowers,

wildflowers, you have to escape from them. Because there are broken ices,

you are careless, you step on it, you fall anyway. Then the code is wasted.

(a) (b)

Figure 4.6 (a) Sample programming task on code.org (Course F-Lesson 8: Nested

Loops in Maze/Level 10) about nested loops and (b) possible solution to this task

While game design elements like unnecessary distractions could add extraneous

load, in this case, the ice patches and wildflowers appeared to be strategically placed.

As illustrated in Figure X(a), these obstacles likely served a pedagogical purpose: to

challenge students' understanding of nested loops and their ability to apply this

concept in a practical setting. The complexity of navigating around these obstacles

necessitated the use of nested loops to control the character's movement effectively.

Limited Code Blocks Challenges

This code captures feedback where S6 expressed that they struggled with tasks

requiring the use of a limited number of code blocks, indicating challenges with

coding efficiency and strategic problem-solving (f = 3). Code.org's puzzles often

129

challenged students with limited code blocks, including limitations on the total

number of blocks and the number of times a specific block could be used. For

example, maze navigation with limited moves puzzles that restricted the number of

"move forward" blocks challenged students to carefully plan their route, considering

the most efficient path and avoiding unnecessary moves. Similarly, loops and nested

loops were also introduced as a way to solve problems with limited resources,

requiring students to strategically plan code repetition. While constraints like limited

block usage might seem challenging, they also aimed to encourage students to think

creatively, optimize their solutions, and develop a deeper understanding of

programming principles. This involved selecting the most efficient blocks and

combining them in a way that achieves the desired outcome within constraints. Such

tasks demanded higher-order cognitive skills such as analyzing, evaluating, and

creating, as the student had to think critically about which blocks to use and how to

use them effectively.

[S6]: Code.org is actually great, but sometimes it makes you think that you

should only be allowed to use it once. It's not difficult to set up normally, it's

easy, but you really have to think about where to put it.

Comprehending Code Blocks Functionality

Code blocks, fundamental building blocks in many programming environments,

allow students to visually construct programs. Each code block has specific

functionality and interaction patterns. However, challenges in understanding and

using code blocks, particularly with variables, were mentioned in three different

expressions. Students' statements revealed difficulties with grasping how variables

work within code blocks. While they might understand the concept of variables

theoretically (storing data), applying them practically in code blocks proved

challenging. This finding suggested that difficulties with understanding how to

connect code blocks involving variables, as well as assigning and manipulating

values stored in variables within the code block structure, could be a contributing

factor.

130

[S20]: I don't understand how to use it.

[S12]: I had the most difficulty with the blocks we made in the last lesson

because there were blocks I did not know. Because I don't know the codes. I

barely learned how to use them.

Integration of Multiple Concepts

Long-answer questions in programming often necessitate a deep understanding of

complex material. They require students to integrate multiple concepts and

synthesize information from various sources. The analysis of student feedback

revealed a struggle with integrating multiple concepts within long-answer questions

(f = 2). Answering these questions demanded not only recalling information but also

applying, analyzing, and evaluating it. The emphasis on higher-order thinking skills

also appeared to contribute to the intrinsic load.

[S16]: For example, I had a lot of difficulty with the zombie, because I didn't

know whether it would go to the right or to the left. It turns to the right. When

there were too many blocks, I had a lot of difficulty. For example, I was doing

it like this: I was turning to the bird's place, and I was trying to figure out

which way it would go. Then, I was getting confused, and I was starting to

slow down.

Sequencing and Logical Flow Difficulties

Understanding the correct order of coding blocks requires a grasp of logical

sequencing and control flow. S18 reflected in the interview that they struggled with

maintaining the correct order of code blocks, often placing one block in the wrong

position, indicating challenges with understanding the logical sequence and structure

of code. This was complex because it involved understanding the cause-and-effect

relationships between different parts of the code. The students had to understand

what each block does and how they interact with each other to achieve the desired

outcome. This foundational knowledge was critical to correctly sequencing the

131

blocks. Students also needed to develop the ability to debug their code by checking

if the blocks were in the correct order and making adjustments as needed.

[S18]: … I'd mix up the codes. I'd accidentally substitute one for the other. It

got mixed up.

4.2.1.1.2 Instructional Factors

This category investigated the impact of instructional design on cognitive load. It

explored how the design and delivery of instructional materials and activities

contributed to unnecessary cognitive load for learners. The focus was on how poorly

crafted instructional elements created confusion, hindered understanding, and

ultimately impeded learning effectiveness. Key factors contributing to this issue

included abstract concepts, confusing explanations, time pressures, lack of clear

learning paths, unclear task instructions, and insufficient support for learners.

Abstract Concepts and Confusing Explanations

This code addressed the challenges in understanding abstract programming concepts

due to inconsistent or misleading explanations. Variables, fundamental building

blocks in programming, represent concepts that can store and manipulate data.

However, grasping their purpose and functionality could be challenging for students,

as evidenced by the difficulties being emphasized 24 times by participants in this

study. Two of the students (S26 and S21) expressed that they struggled with

understanding and working with variables because the examples or explanations

provided seemed inconsistent or misleading. For instance, S26's confusion about

"five fingers changing" highlighted how real-world analogies could be

misinterpreted, leading to a distorted understanding of variable behavior.

[S26]: For example, the teacher tells me that five fingers never change, but

when I do it like this, it becomes ten fingers, I think it changes. There was a

little bit of a discussion there. After that, I started to have a lot of trouble. I

was a little surprised there.

132

[S21]: I mean, it always seems to me... It is variable, for example, it seems

like they can all change. But this depends on the thing, that is, it depends on

the puzzle there. If the puzzle is like that, it is constant. But it can also be

variable. ... The basis of the constant actually depends on the thing; this is

another strange idea of mine; the basis of the constant depends on the

program there. Whatever it is set up, that's the constant. But if we look at it,

everything can change. That makes it difficult for me to understand.

Time Constraints

Student feedback highlighted the issue of insufficient class time for effective

learning, particularly for complex topics like nested loops and variables (f =

8). Students expressed a desire for more frequent or longer class sessions to allow

for deeper understanding and practice. Restricted class time could hinder students'

ability to grasp complex concepts thoroughly. In the case of nested loops and

variables, students mentioned encountering difficulties and having areas where they

still need improvement. This suggested that the current class duration is inadequate

for providing sufficient exposure and practice with these challenging topics.

[S3]: More lessons per week... Two lessons per week is not enough. A topic

can be emphasized more. For example, when we moved on to nested loops,

there were points where I encountered problems that I sometimes could not

solve in my head. Or in variables... For example, there were places in

variables that I still could not do. The subject could have been emphasized

more. It would be better if there were more lessons per week.

Unstructured Learning

Five of the students’ expressions showed difficulty with the puzzle set, exemplified

by the screenshot of a sample level in Figure 4.7. This puzzle set, which involved

tasks requiring an understanding and application of various programming concepts

such as conditional statements, loops, and variables, could be challenging for

students new to programming (as explained under the code of ‘integration of multiple

133

concepts’). However, these students were introduced to conditional statements

before learning about variables. As a result, they might have struggled to understand

the conditions for moving the bee (e.g., 'if there is nectar') without knowing how to

store and manipulate data related to nectar availability using variables.

[S9]: We didn't know how much nectar there was. It was very difficult; if there

was nectar, we had to take the nectar and move forward. We had difficulty

with that. I mean, it was like this, there was one square, there was nectar all

around. I was confused about whether to move the bee forward or take the

nectar.

(a) (b)

Figure 4.7 (a) Sample programming task on code.org (Course 2 – Lesson 13: Bee

Conditionals/Level 8) about conditional statements and (b) its solution

Unclear Task Instructions

Clear and concise instructions are crucial for minimizing cognitive load and

maximizing learning in coding education. This is especially important for unplugged

activities, which involve using physical objects to represent programming concepts.

Four students’ statements indicated that they experienced significant difficulty when

interacting with unplugged objects due to the unclear instructions. In these cases,

unclear instructions for using physical objects like cups to represent direction

changes led to confusion because students were unsure how to manipulate these

134

physical objects to practice programming logic and required students to exert extra

mental effort to interpret meaning, fill in gaps, and understand the task requirements.

This might increase extraneous cognitive load, diverting resources away from the

core learning objectives of the unplugged activity.

[S17]: And those non-digital, non-computerized ones confused me. That glass

confused me so much that my brain burned.

Unsuitable Scaffolding

Student feedback underscored the critical importance of appropriate pacing and

scaffolding in programming education. S3 detailed their initial ease with learning

basic loops on code.org but expressed significant frustration with the sudden

introduction of nested loops. This sudden transition from simple to complex

examples overwhelmed students, thereby hindering their effective learning. When

students were confronted with challenging concepts such as nested loops without

adequate preparatory instruction, they might have experienced cognitive overload.

This overload might have occurred due to the necessity of processing excessive

information simultaneously, which complicated the comprehension of underlying

concepts.

[S3]: In nested loops, it was like this. We were playing very simple when we

were training on code.org at the beginning: Go 4 steps forward or... At first,

we learned repeated loops. It was easier to repeat instead of writing too

much. It wasn't too hard to learn. But the nested loops suddenly became

difficult.

4.2.1.1.3 Learning Environment Challenges

The learning environment can significantly impact student success. This category

explored three key challenges identified through student feedback: access and equity

issues, foreign language-related problems and login problems.

135

Access and Equity

The study highlighted concerns regarding access and equity in technology resources

(f = 21). Several students pointed to difficulties caused by outdated or malfunctioning

computers, which hindered their participation in essential educational learning

environments like Code.org. This issue particularly disadvantaged students lacking

reliable equipment, especially in suburban schools. S9 specifically mentioned the

added struggle of using a malfunctioning computer to access Code.org, a crucial tool

for their coding education. Furthermore, the lack of technology at home further

restricted learning opportunities, as evidenced by eight students who expressed

difficulty engaging in coding activities due to the absence of essential devices, such

as computers or tablets. These concerns underscored the potential for unequal

learning experiences and the critical importance of addressing the digital divide.

[S13]: Also, computers break down a lot, I would like to change them.

[S9]: I didn't work on coding because... I didn't work on it. I don't have a

computer.

Foreign language-related problems

Participants’ statements pointed to problems with Turkish language support within

the digital programming learning environment during their interviews (f = 4).

Students S5 and S26 reported that despite selecting the Turkish language option,

some parts of the platform remained in English. These students expressed difficulty

in understanding instructions, introductory videos, and technical terms that were not

in their native language. This language barrier might have added an extra layer of

cognitive load, hindering their ability to grasp complex concepts and follow

instructions effectively. This issue underscored the importance of comprehensive

language support in educational programming environments to ensure that non-

native English speakers could fully engage with the learning material.

[S5]: For example, in Course F, around lesson thirteen, even though I set the

language to Turkish, we still have to speak in English there.

136

[S22]: Well, you know the videos at the bottom, it would be better if they were

translated into Turkish.

Login issues

The coding learning environment offered user-friendly login options for students.

Students could access the platform using a section code provided by their teacher,

followed by their name and a text-based password or picture password. The picture

passwords were printed out and distributed to students as a physical reminder.

Nevertheless, two students expressed challenges related to logging into the coding

website. For instance, S19 highlighted the frustration of forgetting passwords and

the inability to access the learning environment without them. This forgotten

password obstacle could add to the cognitive load and disrupt the learning flow for

students.

[S19]: How can I say? It seemed a bit difficult to have a password. I mean,

when we forget our paper and password, we may not be able to enter without

a password.

4.2.1.2 Theme 2: Effective Instructional Approaches

This theme addressed the design and implementation of teaching strategies that

promote participating students’ learning and engagement in programming education.

It encompassed four categories that reflected diverse methodologies IT teachers

employed to maximize student engagement and learning outcomes. The categories

included plugged activities, unplugged activities, blended approaches, and teacher

effectiveness. The codes under each category and the number of participants stated

in the relevant code are given in Table 4.15.

137

Table 4.15 Distribution of Code Frequencies by the Theme of Effective Instructional
Approaches

Categories Codes f
Plugged Activities Facilitated learning 64

Rich content 14
Permanent learning 13
Learning by doing 5
Debugging tasks 4
Opportunities for revision and mastery 3

Unplugged Activities Introduction and orientation 19
 Active engagement 5
 Real-world relevance 5

Blended Approaches Blending traditional and digital methods 4
Teacher Effectiveness Clear and effective explanations 23

Supportiveness 9

4.2.1.2.1 Plugged Activities

Plugged activities in this context referred to the direct use of computers and

programming software, enabling students to practice and apply coding concepts

within a digital environment. In the current study, the coding learning environment

Code.org served as the primary tool for all plugged activities.

Facilitated Learning

A substantial number of participants in the study expressed a preference for engaging

in technology-mediated activities, particularly those offered by Code.org, for the

acquisition of programming concepts (f = 64). These participants indicated that such

activities facilitated their comprehension and application of coding skills more

effectively than traditional, non-technology-based methods. One participant, S12,

highlighted the positive impact of Code.org's puzzles on their learning

experience. Furthermore, four participants (S15, S17, S19, and S25) directly

compared technology-mediated activities with non-technology-based methods

and found the former more effective in fostering an understanding of programming

skills. This preference for interacting directly with code blocks on a computer

138

aligned with the participants' perceptions that technology-mediated activities offered

a more advantageous approach to learning programming, as explained by S17. The

feedback was particularly positive towards Code.org, with S18 and S21 appreciating

its clear explanations. Besides that, S9 remarked that the block-based structure of the

coding learning environment simplified the development of codes, making it easier

to piece together solutions. In conclusion, the experiences of the participants

provided strong evidence supporting the efficacy of technology-mediated

activities, particularly those offered by Code.org, in facilitating a more successful

learning experience for programming education.

[S9]: It facilitated my learning and made a significant contribution. By doing

it this way, I got used to it and started to do it very quickly. I improved myself

in coding; code.org was helpful to me. Because I solve it by piecing parts

together, it becomes easier. This way, I was learning coding better.

Rich Content

Fourteen instances of feedback commended the diverse array of activities offered by

Code.org, highlighting its capacity to accommodate various learning styles. The

structured learning approach provided by the learning environment was particularly

valued, as it facilitated a clear, progressive path that not only challenged the students

but also fostered a sense of mastery and bolstered their confidence, as noted by S3.

The rich content available on Code.org was instrumental in maintaining student

engagement (S17, S18, and S29), while its well-conceived activities significantly

deepened their understanding of programming concepts (S3). Furthermore, students

underscored the benefit of Code.org's detailed explanations, which they found

superior to those on other platforms they had experienced. Overall, the positive

feedback on Code.org highlighted its effectiveness in creating a rich and engaging

learning environment that promoted deeper understanding and skill development in

programming.

139

[S3]: I think I learned more in detail thanks to Code.org, in some topics. For

example, I recently learned about variables and really struggled with them.

It was very instructive for me in this regard. As I said, I already knew most

of the terms in Scratch, or most of the block terms. However, I think I learned

better about nested loops and variables. Variables were also covered in

Scratch, but not in such detail. I definitely think I learned variables in more

detail. It was really good.

Permanent Learning

The study revealed a strong connection between hands-on learning and knowledge

retention in programming (f = 13). Students noted that the activities provided by

Code.org played a crucial role in enhancing their long-term understanding of the

subject (S14, S15, S21, S25, and S30), demonstrating the coding platform's

effectiveness in promoting deeper and more enduring learning. Additionally, several

students (S5, S21, S27, and S28) expressed a desire for increased hands-on practice,

believing it would improve their learning outcomes and reinforce knowledge

retention. They emphasized that active engagement with the material, rather than

passive listening in a classroom setting, leads to better comprehension and memory

retention (S21 and S30). This focus on permanent learning underscored the

importance of incorporating active learning strategies into programming education

to facilitate a more profound and lasting understanding of coding principles.

[S21]: I think it becomes more permanent. Because the explanation only goes

so far... In the classroom environment, it's already difficult to understand and

define things well. So, doing it here makes it more permanent.

Learning by Doing

Learning by doing emerged as a powerful learning strategy in fifth-grade students’

experiences within programming education (f = 5). Students highlighted the

effectiveness of hands-on engagement and direct interaction with coding tasks in

their learning. For instance, S16 contrasted the difficulty of understanding concepts

140

explained by a teacher explanation on a board with the ease of using Code.org. This

emphasized how hands-on activities made complex concepts more accessible. S20

discussed how the practical application of coding steps facilitated the internalization

of knowledge. Similarly, S30 emphasized the importance of the ability to "see and

do" in understanding the application of coding concepts. Moreover, he expressed a

preference for self-directed learning through hands-on activities, highlighting the

value of active engagement in promoting a deeper understanding. Collectively, these

student experiences strongly supported learning by doing as an effective approach

for facilitating a more meaningful and successful learning experience in

programming education.

[S16]: It had a lot of impact because if a teacher had explained it by drawing

on the board, I wouldn't have understood it at all. But Code.org was easier

for me. If it weren't for that, and the teacher had explained it by drawing, I

would have understood a little, but not much.

[S30]: But I think it is of better quality when we do it ourselves.

Debugging Tasks

Results from the study identified debugging tasks, where students correct partially

completed or erroneous code, as an effective learning tool in programming

education, based on four statements from two participants. Results from the study

indicated that debugging tasks, which enabled students to focus on particular parts

of the code rather than constructing the complete program, reduced the mental effort

required. For instance, one student (S9) mentioned that working with a partially

completed solution facilitated a more focused approach to particular code aspects,

making it easier to complete tasks. Another student (S21) valued the structured and

guided nature of debugging tasks, which helped them concentrate on understanding

and applying specific programming concepts more effectively. Overall, debugging

tasks offered a valuable strategic method to enhance programming education for

children by reducing cognitive load, promoting focused practice, and fostering a

deeper understanding of programming fundamentals.

141

[S9]: For example, code.org would create the tasks and ask me for the angles

and such. That made my job easier. It was an advantage. Sometimes it was

easier. It would combine the parts, and I would set the angles, like ninety

degrees...

Opportunity for Revision and Mastery

The study revealed that the computer-based learning environment afforded valuable

opportunities for students to revise their work and achieve mastery (f = 3). One

student (S19) recognized the immediate feedback provided by the computer, which

enabled the prompt identification and correction of errors. This real-time feedback

mechanism facilitated a more effective understanding of concepts and fostered a

sense of self-correction. Moreover, the opportunity to attempt tasks multiple times,

as highlighted by S19, was deemed advantageous. This iterative process allowed

students to refine their code, experiment with different approaches, and enhance their

understanding. Overall, the environment promoted a growth mindset by encouraging

students to learn from their mistakes and persevere through challenges. While

another student (S21) acknowledged the broader value of exploring diverse

perspectives and new approaches, the primary benefit highlighted by the students

was the opportunity to revise and perfect their work, leading to a deeper

understanding of programming fundamentals. This emphasis on revision and

mastery underscored the critical role of adaptive learning technologies in fostering

educational advancement in programming disciplines.

[S19]: Because on the computer, we can see our mistakes immediately. But

on paper, we can't see our mistakes. As I said, on the computer, we can see

our mistakes and correct them accordingly. If there are correct ones, we

review them again, as they might be wrong.

142

4.2.1.2.2 Unplugged Activities

This category investigated the role of unplugged activities in enhancing

programming education. Through an in-depth analysis of student perspectives, how

these computer-free experiences contributed to overall learning outcomes was

assessed. The findings emphasized the benefits of unplugged activities in creating a

dynamic and effective learning environment. The analysis focused on several key

aspects, including introduction and orientation, active engagement, and real-world

relevance.

Introduction and Orientation

Instructor-led introductions were identified as critical for student success in

programming. Nineteen instances emphasized the value of pre-laboratory lectures

and demonstrations in establishing a strong foundation for hands-on practice. These

introductions provided clear explanations of new concepts (S18, S19, S20, S22, and

S24) and demonstrations that facilitated understanding (S22 and S23). Such initial

orientation was efficient in helping students approach practical exercises with a

clearer grasp of expectations and procedures (S24). While some students found

unplugged activities beneficial (S27), the majority highlighted the effectiveness of

the instructor's explanations in preparing them for successful computer-based

learning (S2, S3, S4, S6, and S8). Overall, the importance of well-designed

introductory sessions in programming education was strongly underscored by the

experiences shared by students in this study.

[S19]: First, he showed us on the smart board during the first hour. We

started doing it on the smart board. He began correcting our mistakes. Then

we tried to do it on our own on the computers. So, as I said, first, he teaches

us on the smart board and explains it. Then we do it. It would be nice if it

continued like this; we would like to keep it this way.

143

Active Engagement

The qualitative analysis underscored that active engagement in unplugged activities

enhanced students' learning experiences by reducing distractions and fostering a

more focused learning environment (f = 5). Participants (S6, S21, and S22) reported

that unplugged activities allowed them to concentrate intently on the tasks at hand

without being distracted by extraneous elements, thus maximizing their cognitive

resources for processing relevant information. For example, one student (S6) noted

that classroom activities that involved physical movement and hands-on

manipulation of objects were more instructive compared to computer-based tasks, as

they enhanced engagement and learning. Another student (S21) highlighted the

effectiveness of being called to the board to solve problems, describing it as a more

engaging and interactive learning experience that promoted deeper understanding.

Furthermore, S18 emphasized that directly applying concepts themselves led to

better comprehension and skill acquisition. These findings indicated that unplugged

activities, which involved active participation and physical manipulation, not only

improved focus but also significantly enhanced students' engagement and

understanding. This approach provided a valuable contrast to digital methods,

offering a dynamic and interactive learning atmosphere that could lead to more

effective education outcomes.

[S6]: Teacher, I think that what we did in the classroom was more instructive.

Because on the computer, you only move the mouse and the thing. But in the

classroom, you move yourself, you adjust things yourself.

Real-World Relevance

The importance of real-world connections emerged in the study (S23, S26, S29, and

S8), particularly when discussing unplugged activities (f = 5). Students indicated that

these activities were essential for demonstrating the practical utility of programming

knowledge in everyday contexts beyond the confines of the classroom. Students

believed that this ability to link programming concepts to real-life scenarios made

the learning material more relatable and meaningful, thereby fostering a deeper

144

understanding of the reasons behind their learning efforts (S8). Witnessing the

practical applications further enhanced student motivation as they recognized the

relevance of programming skills in their personal lives (S23, S26, S29, and S8). By

connecting the theoretical knowledge with practical real-world applications,

unplugged activities provided an engaging and pertinent learning experience that

significantly improved learning outcomes.

[S8]: I learned that we can use coding, that is, commands, in real life as well.

4.2.1.2.3 Blended Approaches

This category illuminated the advantages of blended approaches, demonstrating how

the integration of traditional and digital methods facilitated improved learning

outcomes and enhanced knowledge retention.

Blending Traditional and Digital Methods

While most students expressed enjoyment of computer-based activities and the use

of Code.org, a group of participants (S13, S16, and S21) emphasized the importance

of blending traditional, read-write methods with digital activities (f = 4). They

advocated that this hybrid approach, within a technology-enhanced learning

environment, enhanced learning outcomes and knowledge retention. These students

particularly noted the advantages of transcribing their computer work onto paper,

stating that this practice reinforced their understanding and augmented their ability

to review and retain information. One student (S13) detailed that writing things down

facilitates a deeper engagement with the material, contrasting with the transient

nature of digital interactions where information can be easily accessed but quickly

forgotten. The physical act of writing created a durable record that encourages

students to revisit and consolidate their understanding of the concepts. This student

proposed a system where learners would document their digital work on paper,

effectively creating a personalized study guide for continual reference. This

approach underscored the value of a blended learning environment that leveraged

145

the strengths of both traditional and digital educational practices to foster a more

comprehensive and enduring learning experience.

[S13]: Because, teacher, we are both writing and reading. I mean, we write

with our own hands and we read. ...On the computer, for example, you press

a key, but you can't do it completely. Writing down what we did on paper...

Because, teacher, when you show it on paper, you read it, you read it a second

time, and then you can put it in a folder, and if you forget it, you can look

there and do it. On the computer, you might not be able to access it; it might

not be saved, and it could be lost.

4.2.1.2.4 Teacher Effectiveness

The impact of teacher effectiveness on student learning experiences was examined

under this category. Based on the findings, this examination focused on two key

aspects: the clarity and effectiveness of explanations provided by the teacher and the

level of support and assistance offered to students.

Clear and Effective Explanations

The qualitative analysis underscored the critical role of effective teaching methods

and teacher performance in enhancing students' learning experiences. The ability of

the IT to communicate subject matter effectively was frequently emphasized in

student responses (f = 23). These students expressed high levels of satisfaction with

their teacher's performance, noting that clear and effective explanations significantly

enhanced their understanding of programming concepts. For instance, S26 directly

commended the teacher's lucid explanations, and S15 observed a noticeable increase

in knowledge acquisition from the lessons. S16 specifically appreciated the teacher’s

skill in simplifying complex topics, a sentiment echoed by others who valued the

clarity and efficacy of the instruction (S20 and S21). These positive evaluations of

the teacher's effectiveness underscored the vital role of clear and comprehensive

instruction in improving students' educational experiences and outcomes. Students’

146

statements showed that the teacher's ability to effectively communicate complex

coding concepts helped students overcome challenges.

[S26]: My teacher teaches coding very well. His explanation is very effective.

Supportiveness

The study also highlighted the importance of teacher supportiveness in facilitating

student learning (f = 9). Participating students admired the IT teacher's readiness to

assist students encountering difficulties and to elaborate on concepts as needed. This

illustrated the teacher's proactive approach and effectiveness in addressing student

needs in real-time. Students mentioned the teacher's attentiveness to the entire class

despite its size, their ability to get individual help when needed (S24 and S26), and

their readiness to explain concepts in greater detail upon request (S26). Overall, the

teacher's supportive approach, evident in their attentiveness to student needs and

willingness to provide assistance, contributed positively to the learning environment

and fostered a more inclusive and responsive educational experience.

[S24]: The class is crowded, with 28 people. The teacher attends to all 28 of

us. For example, when I say that I get frustrated when I can't do something,

at those times, I call the teacher. The teacher explains it to me, and then I can

easily get past that part. It really helps a lot.

4.2.1.3 Theme 3: Collaborative Learning Approaches

This theme investigated the social cognitive factors influencing students'

programming experiences and the application of collaborative learning strategies

within the educational context. It examines collaborative learning in programming

education through the following categories: pair selection criteria, role-sharing

strategies, benefits of collaborative learning, challenges of collaborative learning,

and seeking assistance. The categories and sub-categories, along with their

corresponding codes and the frequency with which each issue was reported, are

presented in Table 4.16.

147

Table 4.16 Distribution of Code Frequencies by the Theme of Collaborative
Learning Approaches

Categories/Sub-categories Codes f
Pair Selection Criteria Social compatibility 15

 Skill and expertise 2
Role-Sharing Strategies Imbalanced turn-taking 27

 Regular turn-taking 26
Benefits of Collaborative Learning Mutual learning and knowledge

sharing
42

General positive perceptions 34
Enhanced problem-solving 22
Shared responsibility 7

Challenges of Collaborative Learning Unequal participation 14
 Conflicts over resource sharing 8
 Reduced engagement 7
 Conflicts over problem-solving

approaches
7

Seeking Assistance
Source of Assistance Teachers as a source of support 32

 Peers as a source of support 14
Reasons for seeking assistance
from peers

Teacher unavailability 3
Familiarity 2

Reasons for seeking assistance
from the teacher

Clear explanations and guidance 3
Teacher expertise 2
Self-perceived proficiency 1

Peer Support Strategies Unproductive collaboration strategies 16
 Constructive collaboration 9

4.2.1.3.1 Pair Selection Criteria

Feedback from students engaged in pair programming suggested a primarily student-

driven approach, with some instances of teacher-assigned pairings. The analysis

revealed that students frequently opted for self-selection, basing their choices on

specific criteria. This category examined students' preferences for pair programming

and the factors they considered when selecting partners or forming collaborative

groups.

148

Social Compatibility

While the analysis revealed self-selection as the predominant approach for pairing,

a deeper examination explored the criteria students employed when choosing

partners. According to the results, when forming pairs for programming tasks, a

significant number of students prioritized social compatibility (f = 15). They

gravitated towards familiar faces and friends, valuing the comfort and ease of

working with someone they knew. This preference for friendly partners, as

evidenced by student feedback, stemmed from the creation of a more supportive

learning environment. Students indicated that existing friendships or prior

acquaintances fostered trust and open communication, which are crucial for effective

collaboration.

[S19]: Because I am better with that friend. I mean, our houses are next to

each other. I have a better relationship with him. We have a better friendship

with him. Firstly, I used to work with another friend of mine. Then our

friendship ended, and we had a fight. So, we asked permission from the

teacher, and I started working with him.

Skill and Expertise

Notably, the emphasis on selecting a partner with strong computer science skills and

knowledge was highlighted only twice in the responses of the interviewed

participants. S17 emphasized the importance of perceived technical expertise. This

perspective underscored the potential advantages of complementary skill sets in pair

programming. The general lack of focus on these complementary skills suggested

that students might not fully appreciate the benefits such an approach could offer in

enhancing collaborative work.

[S17]: He is a computer expert. He can't do the easy stuff. I chose him because

he is a smart kid. Intelligent.

149

4.2.1.3.2 Role-Sharing Strategies

This category explored the methods and approaches used to assign and manage roles

among students during pair programming activities. It specifically examined whether

the role distribution led to balanced or imbalanced turn-taking among the

participants.

Imbalanced Turn-Taking

Fifteen of the students indicated that they adopted imbalanced turn-taking strategies

during pair programming activities (f = 27). Imbalanced turn-taking occurs when

students choose primary roles as either navigator or driver, predominantly

maintaining them throughout the activities. Statements revealed that when students

opted for the driver role, controlling the keyboard and mouse, their partner remained

seated beside them as the navigator, offering verbal assistance in solving

programming tasks. This arrangement resulted in an imbalance in role distribution.

Another example involved dividing keyboard and mouse responsibilities (e.g., S14).

While this approach appeared more balanced, the student controlling the mouse

ultimately played a more dominant role, assuming the driver position during drag-

and-drop puzzles.

[S14]: He usually used the keyboard, I used the mouse. It usually continued

like this.

Regular Turn-Taking

Regularly taking turns emerged as a key feature in many students' pair programming

sessions and was noted with a frequency comparable to that of strategies addressing

imbalanced turn-taking. This balanced approach ensured that both partners actively

participated and contributed. Students such as S10 and S11 highlighted the

importance of equitable participation in programming tasks. Taking turns also

involved rotating tasks, as seen in S16's explanation of switching between playing

different levels. Similarly, S19 described alternating between keyboard and mouse

150

duties. This balanced participation facilitated shared ownership of the problem-

solving process and enhanced collaborative learning.

[S16]: We usually took turns playing with my friend. In the levels from one to

nine, I would play one, then three. So, I play one, they play two, I play three,

they play four.

4.2.1.3.3 Benefits of Collaborative Learning

Pair programming, a collaborative learning approach, had demonstrably positive

effects on student learning outcomes, as evidenced by the interview data. This

category highlighted how collaboration could enhance the programming learning

experience for students. Key benefits of collaborative learning identified by students

included mutual learning and knowledge sharing, general positive perceptions,

enhanced problem-solving and shared responsibility.

Mutual Learning and Knowledge Sharing

Qualitative data revealed that a collaborative learning environment fostered a

powerful dynamic of mutual learning and knowledge sharing (f = 42). Interviewed

students highlighted the value of exchanging ideas, learning from each other's

strengths, and correcting mistakes together. This collaborative approach led to a

deeper understanding of concepts and enhanced problem-solving skills. At the core

of this benefit lay reciprocal learning, as evidenced by student expressions. Students

acted as both teachers and learners, sharing their knowledge and perspectives during

programming tasks (S1, S14, S15, and S17). Students noted that this exchange

broadened their understanding of the subject matter and exposed them to different

viewpoints. Additionally, the study's findings demonstrated that students benefited

from each other's strengths. Stronger partners guided their peers, while those

struggling received valuable support, as evidenced by the statements of S12, S16,

and S26. The findings indicated that collaborative problem-solving facilitated error

correction. According to the statements of S16 and S19, by explaining their thought

151

processes, students were able to identify and rectify mistakes, leading to a more

refined understanding. Finally, mutual learning fostered a deeper understanding of

concepts as students discussed and explained ideas to each other, a process

highlighted by S21 and S24. This approach reinforced comprehension and solidified

knowledge. Examples such as S1 explaining concepts to a peer or S17 learning

coding basics from a friend illustrated the power of this interaction. Overall,

collaborative learning fostered a supportive environment where students were able

to learn from each other's strengths, overcome challenges collectively, and achieve

a deeper understanding of the subject matter.

[S16]: I think he learned, but... I mean, for example, when we first started, he

couldn't understand right and left very well. I explained that to him. I was

confusing things, you know, I was confusing things like repeating this thing

five times. He taught me that too.

[S26]: In general, I taught him a lot on code.org, but beyond that, he taught

me a lot about the basics of computing.

General Positive Perceptions

The research findings indicated that there were 34 statements reflecting students'

general positive views on collaborative programming learning. Eight students (S2,

S4, S10, S11, S14, S19, S22, and S25) reported no drawbacks in pair programming,

especially when working with compatible partners. Fourteen students indicated a

preference for pair programming. This suggested that many students recognized the

benefits of teamwork, communication, and knowledge sharing that pair

programming facilitates.

[S14]: Given the choice, I would sit with my friend again.

Enhanced Problem-Solving

Feedback from students highlighted the significant benefits of collaborative learning

in enhancing problem-solving skills (f = 22). Students reported that working together

with peers facilitated a better understanding and quicker solutions to programming

152

challenges. They emphasized the value of diverse perspectives, immediate

assistance, and the combined intellectual effort that comes with teamwork. For

instance, S13 mentioned that working in pairs allowed them to ask a friend for help

instead of relying solely on hints, which facilitated the learning process. S14 and S15

highlighted the ease of getting assistance from friends when stuck on a problem,

while S19 noted the mutual correction of mistakes. S21 also valued the multiple

perspectives that come from collaborative work, explaining that different viewpoints

helped in understanding and solving problems more effectively. One student (S30)

pointed out that collaboration often led to faster problem resolution. Additionally,

S6 referred to the proverb "unity is strength," illustrating the belief that collaboration

enhances problem-solving capabilities. S7 noted that solving problems together was

easier because they could leverage each other's knowledge. Overall, these insights

illustrated that peer collaboration not only enhanced problem-solving efficiency but

also fostered a supportive learning environment where students could share ideas and

overcome challenges together.

[S7]: Because it is easier. It is easier because we both solve it. Both of us can

see what we cannot do; for example, one of us knows, and one of us does not.

[S21]: ... for example, your friend looks at something from one perspective,

you say, let's look at it from this perspective, that is, a multiple perspective.

He says it is necessary to proceed from this logic, for example, you are doing

a different logic. It is a different point of view. In the questions you cannot

solve, you need to change your perspective on the problem.

Shared Responsibility

Shared responsibility emerged as a significant benefit of collaborative learning,

particularly during pair programming, as highlighted by the students (f = 7). Based

on student statements, the research findings demonstrated that this shared approach

allowed students to take breaks and avoid burnout. When one student felt tired, the

other could take over, keeping both pairs refreshed and engaged. S6 noted that the

collaborative approach not only helped manage fatigue by distributing the workload

153

but also contributed to maintaining engagement by keeping both partners actively

involved in the problem-solving process. It also facilitated an efficient division of

labor, allowing students to leverage their strengths and interests to deal with tasks,

leading to quicker and more effective task completion. Overall, students found

shared responsibility to be a valuable asset in collaborative learning, making the

experience both enjoyable and highly productive.

[S4]: It is more enjoyable. Instead of working alone, you alternate with your

partner. While he is doing it, you are watching him, while you are doing it,

he is watching you, it can also happen. Also, from time to time, your friend

also rests after writing or using, you also rest, it is nice.

4.2.1.3.4 Challenges of Collaborative Learning

Analysis results showed that while collaborative learning provided numerous

benefits, it also presented several challenges for the participating students. This

category explored key obstacles identified in student interview data, providing

insights into potential areas for improvement. These challenges included unequal

participation, conflicts over resource sharing, reduced engagement, and conflicts

over problem-solving approaches.

Unequal Participation

Several students expressed concerns about not having equal opportunities to

participate and contribute due to imbalanced turn-taking strategies (f = 14). Student

experiences highlighted various forms of imbalance participation. In some instances,

students intentionally adopted imbalanced turn-taking strategies, with each student

selecting a primary role (navigator or driver) and maintaining that role throughout

the session (e.g., S13). However, there were also instances where one partner

dominated the activity, taking control of the computer and leading the task without

adequate involvement from their partner, leaving the other feeling passive and unable

to contribute meaningfully. According to the students’ expressions, this not only

154

hindered the learning experience of the less active participant but also created a sense

of unfairness. Additionally, S3's statement highlighted that inefficient task

distribution can result in one partner feeling overwhelmed while the other remains

underutilized, thereby disrupting the collaborative flow. Furthermore, as S29 stated,

when one student dominated, the other had limited opportunities to practice their

own skills, potentially hindering their individual growth. These insights highlighted

the challenges of ensuring equal participation in collaborative learning

environments. The findings revealed that uneven engagement led to one student

dominating the task while the other became passive, which negatively impacted the

learning experience and outcomes for both.

[S17]: Because he does not give me control of the computer, he no longer

does. I rest (laughing). I lean back like this again. I take examples from what

he does. Sometimes, he does things so that I can do them; sometimes, he

allows me to do them.

Conflicts Over Resource Sharing

Eight statements from the data highlighted conflicts over resource sharing,

particularly regarding the use of the computer and other equipment, as a significant

challenge in collaborative programming. One student (S12) explicitly mentioned

disliking the need to share a computer with a partner, expressing frustration with

collaboration and resource limitations. Similarly, S13 and S17 described frequent

arguments over who would control the keyboard and mouse, noting that sharing a

computer often led to frustration, especially when students had to wait for their turns.

The findings indicated that this frustration could hinder students' engagement and

motivation in the learning process. S23 pointed out that their partner always wanted

to use the keyboard, leading to constant conflicts. Additionally, students expressed a

preference for solo programming to avoid conflicts arising from shared resources,

indicating that some students prioritize individual work environments for a smoother

learning experience. These insights highlighted the need for better resource

management strategies to enhance the effectiveness of collaborative learning.

155

[S12]: My least favorite thing is that I have problems sharing the computer

with my friend with whom I share the computer.

Reduced Engagement

The analysis of student data revealed another challenge: reduced engagement during

their partner's problem-solving phase (f = 7). The data indicated that while pair

programming was designed to foster collaboration and teamwork, its effectiveness

was diminished when passive participation occurred. Four students (S1, S16, S24,

S8) mentioned not actively participating while their partners were working on

problems. This included not following along with the partner's thought process or

code implementation unless they directly asked for help and offering little feedback

or suggestions during their partner's lead. Limited participation was evident as

students provided minimal verbal or coding contributions during their partner's lead.

S24 highlighted that taking turns without explaining their processes to each other did

not benefit either partner. Similarly, S8 noted that merely alternating the use of the

mouse and keyboard did not contribute to their learning. Research results

demonstrated that students who were not actively engaged in problem-solving but

only observed the process missed the chance to interact deeply with the material and

fully comprehend the concepts being taught.

[S16]: Sometimes, you know, I was staying while he was doing it, I wasn't

looking at him. I helped him when he asked for help, but I usually did not look

at the questions he did.

Conflicts Over Problem-Solving Approaches

Analysis results indicated that while pair programming effectively fostered

teamwork and problem-solving skills, it was undermined by disagreements on

problem-solving approaches (f = 7). Although some disagreements could be

productive, significant conflicts, as reported by four students, could impede

collaboration and communication, thereby diminishing the effectiveness of the pair

programming experience. For instance, S21 described situations where neither

156

partner was willing to compromise on their approach, resulting in persistent

disagreements. Such conflicts could lead to missed learning opportunities, as

highlighted by S3, who mentioned disagreements even when the tasks did not require

multiple approaches. S25 noted that their partner sometimes led them to incorrect

solutions due to a lack of understanding. S6 explained that having a partner could be

confusing, as conflicting ideas sometimes led to mixed results, whereas working

alone allowed them to follow their own clear line of thought. These insights

underscored the difficulties students encountered when collaborating with peers who

employed divergent problem-solving strategies. Unresolved conflicts could impede

progress on tasks, thereby hindering both learning and productivity. Persistent

disagreements might also lead to frustration, creating a negative learning

environment for both partners.

[S21]: Sometimes, of course, it happens; there is a question, and we say this

is the solution. He says something else and insists on it. For example, no one

says it should be like this, no one says let's do this, and then if it doesn't work,

we can try mine. I did this too. It happens sometimes.

4.2.1.3.5 Seeking Assistance

Seeking assistance was identified as a crucial aspect of the learning process,

particularly within collaborative instructional environments. Students reported

frequently seeking help to overcome challenges, enhance their understanding, and

improve their skills. Assistance could be sought from peers or teachers, with each

source offering distinct benefits and addressing specific student needs. The category

of seeking assistance encompassed the various methods by which students obtained

support, the reasons behind their choices, and the strategies they employed for peer

support.

157

Source of Assistance

Teachers or Peers as a Source of Support

Analysis results showed that in situations where group work proved ineffective or

when students lacked group partners, they turned to alternative sources of

assistance. Students indicated that they more frequently sought assistance from their

teachers when they needed help. Students expressed that they sought assistance from

their teachers (f = 32) more frequently than from their peers (f = 14) when they

needed help. Eleven students expressed a preference for seeking guidance from their

instructor, highlighting their trust in the teacher's expertise and commitment to

providing support. Additionally, twelve students reported seeking help from

classmates, reflecting their readiness to engage with the broader learning

community. It is important to acknowledge that students demonstrated a range of

approaches when seeking assistance. Some participants initially sought help from

their peers, reflecting their preference for peer-to-peer learning. Others opted to seek

guidance from the IT instructor directly.

[S14]: I was asking for help from my friend, my group friend or my friend

next to me in the line.

Reasons for seeking assistance from peer

Teacher Unavailability

Teacher unavailability, highlighted by S5 and S27, emerged as a situation where

students relied heavily on peers for support (f = 3). When immediate teacher

assistance was limited due to factors like high student-to-teacher ratios or unexpected

absences, students turned to classmates for help. These instances underscored the

critical role of peer-to-peer learning as a complement to teacher instruction. Peers

could provide immediate clarification, offer alternative explanations, and

158

collaborate on problem-solving, mitigating the impact of teacher unavailability and

ensuring students could continue learning effectively.

[S5]: When the teacher cannot help, we turn to those who can.

Familiarity

The feedback provided by S7 and S19 emphasized the critical role of familiarity in

facilitating effective peer-to-peer learning environments (f = 2). According to their

statements, their preference for seeking assistance from friends stemmed from the

shared routines, established connections, and sense of comfort that familiarity

afforded. These connections promoted open communication and enhanced the

learning experience.

[S19]: The reason why I primarily seek help from my friend is that I feel more

comfortable with myself because I am in the same place with my friend every

day.

Reasons for Seeking Assistance from Teacher

According to the results, students often sought assistance from teachers for various

reasons that reflected the unique advantages teachers offered in the learning process.

These reasons included the desire for clear explanations and guidance, the need for

teacher expertise, and the support required for students with high self-perceived

proficiency.

Clear Explanations and Guidance

Some students (S24, S28, and S29) indicated that they preferred the teacher's clear

explanations and well-structured guidance (f = 3). The findings expressed by the

students indicated that they found these explanations easier to follow and more

comprehensive compared to those from peers who were at a similar learning stage.

Student 29 explicitly mentioned that the teacher's ability to 'show it better directly'

159

and provide more explanatory instruction was particularly beneficial. This

highlighted the teacher's expertise in crafting clear, organized explanations.

[S29]: My teacher showed it better directly. ... My teacher explained it in a

more detailed way.

Teacher Expertise

S20 and S27 recognized the limitations of peer support for complex topics (f = 2).

The findings indicated that students sought out teacher expertise when challenges

required a deeper understanding of the subject matter than their peers could provide.

This was particularly true for foundational concepts or intricate problems. This

highlighted the vital role teachers play in student learning, as they possess a broader

and deeper knowledge base that allows them to provide comprehensive explanations

and guidance that peers may not be able to offer.

[S20]: Because he is more knowledgeable about these issues.

Self-Perceived Proficiency

The findings revealed that even students who perceived themselves as highly

proficient, such as one participant who stated he was "ahead" of his peers, might still

seek assistance from the teacher (f = 1). This situation underscored the crucial role

teachers play in addressing the needs of all students, ensuring that even those who

consider themselves advanced are appropriately challenged and supported despite

their perception of mastering core programming concepts.

[S30]: Since I usually go ahead of them, they are behind.

Peer Support and Interaction

Participants indicated that they benefited from the diverse perspectives and

knowledge of their peers, which enhanced their understanding and problem-solving

skills. Nevertheless, findings showed that the effectiveness of peer support depended

on the quality of interactions and the strategies employed. Constructive collaboration

160

fostered a deeper engagement with the material, while unproductive collaboration

hindered learning progress.

Unproductive Collaboration Strategies

Student responses indicated that certain behaviors in peer support negatively

impacted their learning, especially during plugged activities (f = 16). These

behaviors mainly included showing their own solution for the peer to copy or

complete the task for them (S10, S11, S14, S21, S24, S5, and S7). Student 21

mentioned the prevalence of simply copying a peer's solution to complete the task.

While this seemed like a quick fix, it failed to promote genuine learning and skill

development. Students 21 and 24 specifically mentioned that copying answers from

their peers without understanding the underlying logic or problem-solving process

did not significantly contribute to their learning. Student 21 added that they

attempted to understand the solution afterward by reviewing it, but this highlights

the limitations of this approach. Additionally, two students (S21, S26) expressed

concerns about peers taking over problem-solving entirely instead of guiding them

through the process to understand the concepts and develop their own solutions. This

hindered the development of problem-solving skills and confidence in the struggling

student. On the other hand, S21’s comment, “I mean, of course, he postpones me a

little bit, then he looks at my question.” suggested that their peer's help was delayed,

potentially hindering their learning progress.

[S21]: I mean, of course, he postpones me a little bit, then he looks at my

question. He tries the question he solved to do it himself first. If he cannot do

it, he opens it from his own computer and gives it to me. ... I mean, when he

does it there, of course, I can't understand it, I can't reason. But when he does

it, I can say that I should have done it like this, for example, to find the answer

to the question.

[S14]: If they passed that question, they would come back and show me that

question. I couldn't understand it very well.

161

Constructive Collaboration

Several students (S12, S13, S15, S19, and S26) mentioned receiving valuable hints

and explanations from their peers when they encountered difficulties (f = 9). This

support took various forms, such as clarifying concepts, identifying errors,

suggesting improvements, and engaging in discussions. For example, S15 explained

that their friend helped by explaining complex concepts. Some students indicated

that their classmates assisted them by identifying errors in logic or code structure

that they might have missed while working independently (e.g., S26 and S19). Others

mentioned receiving hints on how to improve their code (e.g., S13). These helping

approaches also demonstrated the peers' understanding of technical details and their

ability to explain issues in a clear and actionable manner. Discussion was another

helpful strategy, as highlighted by Student 12, who emphasized the value of learning

through discussion and debate with peers. This approach encouraged critical thinking

and challenged students to defend their approaches, leading to a deeper

understanding of the concepts involved.

[S26]: I would go to my friend's side with my teacher’s permission and. For

example, if you do this, you can do this; you did this wrong, you should have

done it at this angle... Like that. I was helping with codes.

[S12]: I consult, I mean, by discussing with my friends because if I just listen

to what they do, it would still be different, and I wouldn't understand.

4.2.1.4 Theme 4: Independent Learning Approaches

While collaborative learning and seeking assistance were valuable strategies in

programming education, the analysis of student responses also highlighted the

importance of independent learning approaches. This theme focused on how students

independently enhance their programming skills and understanding. These

approaches included strategies such as utilizing guidance from coding learning

environments, reviewing past solutions, engaging in trial and error, and self-

162

visualization. Furthermore, the results indicated that solo programming offers

several benefits, including enhanced learning through active engagement, improved

focus, and better retention of information. However, according to the students’

statements, it also presented challenges, such as the lack of immediate peer

consultation. Exploring these independent learning strategies provided insights into

how students navigated their programming education autonomously. Table 4.17

displays the frequency with which participants identified codes related to the

categories of the independent learning approach.

Table 4.17 Distribution of Code Frequencies by the Theme of Independent Learning
Approaches

Categories Codes f
Independent Learning Strategies

Guidance from the coding
platform

3

Reviewing past solutions 1
Trial and error 1

 Self-visualization 1
Benefits of Solo Programming General positive

perceptions
27

Active engagement 8
Improved focus 3
Enhanced retention 2

Challenges of Solo Programming Lack of pair consultation 18

4.2.1.4.1 Independent Learning Strategies

The results obtained from the interviews indicated four strategies employed by

students while learning independently. These strategies were guidance from the

coding platform, reviewing past solutions, trial and error, and self-visualization.

Guidance from the Coding Platform

The study demonstrated that students often relied on guidance from the coding

learning environment as part of their independent learning strategies (f = 3). This

guidance included hints and instructional videos that helped them understand and

163

solve coding problems. For instance, participant S27 expressed a desire for more

hints, indicating their importance in the learning process. Similarly, S4 noted that

videos appearing at the beginning and middle of coding tasks provided clearer

explanations and made it easier to understand programming concepts. It was

observed that these instructional resources were particularly useful when students

encountered difficulties, allowing them to independently navigate challenges and

enhance their problem-solving skills. The incorporation of these tools within the

coding learning environment supported students' independent learning processes.

[S4]: Yes, sometimes when we're just about to start coding, a video pops up

at the beginning and then again in the middle, and we watch them. Watching

them actually makes the explanations clearer. Without watching them,

sometimes you can't understand what something is when it appears.

Reviewing Past Solutions

The reviewing past solutions strategy identified instances where students employed

an independent learning strategy centered on referencing past solutions (f = 1). S8

mentioned that he often revisited previously encountered code examples when faced

with a programming challenge to find solutions and deepen his understanding of the

subject matter. He added that he then searched for similarities between his current

problem and the reference code, which involved either adapting a similar solution or

skimming past irrelevant parts to explore a new approach. This strategy helped

students by providing a foundation for developing new solutions to similar problems.

[S8]: I go back to previous ones, I look at them. If there is something similar,

I apply those.

Trial and Error

Interview data showed that another approach that students engaged in was trial and

error, as expressed by S24 (f = 1). This method captured instances where students

mentioned experimenting with different problem-solving strategies and code

variations until they found a solution. This highlighted a crucial aspect of

164

independent learning, emphasizing the importance of experimentation. By trying

different approaches, students developed resilience in the face of challenges. They

learned to troubleshoot, analyze outcomes, and refine their problem-solving

skills. This highlighted a crucial aspect of independent learning, underscoring the

importance of experimentation. By trying different approaches, students developed

resilience in the face of challenges. They learned to troubleshoot, analyze outcomes,

and refine their problem-solving skills.

Self-Visualization

The fourth approach, self-visualization, as described by Student 16, involved using

mental visualization to understand problem-solving processes or potential solutions

(f = 1). This strategy enhanced problem-solving skills by encouraging students to

think through different approaches and plan problem-solving steps before coding.

These independent learning strategies enabled students to assume responsibility for

their learning and develop valuable skills.

[S16]: In situations like these, I would imagine myself. For example, those

things, squares, you know, I would feel like I was in the squares and

determine which way to turn. I would imagine myself in the same place and

decide where to go. And it became very easy.

4.2.1.4.2 Benefits of Solo Programming

Students’ statements showed that solo programming, the practice of working

independently on coding tasks, offered several advantages that could enhance the

learning experience for students. Based on student responses, the key benefits

highlighted by student feedback were improved focus, enhanced learning through

active engagement, and enhanced retention.

165

General Positive Perceptions

Nearly half of the students expressed a preference for solo programming in their

statements (f = 27). This indicated that a significant portion of the student

participants recognized the autonomy and self-reliance that solo programming

offers. Additionally, six students (S3, S12, S24, S25, S28, and S30) mentioned the

absence of disadvantages in solo programming and its potential to positively impact

their learning.

Active Engagement

This code captures feedback where students expressed that they learned more

effectively when working alone because they were more conscious, responsible for

all aspects of problem-solving, and focused on understanding the material deeply (f

= 8). Eight of the interviewed students (S7, S8, S13, S16, S17, S22, S23, and S24)

emphasized the value of solo programming as a tool for fostering deeper learning

and understanding. Their statements showed that solo programming encouraged

active engagement by placing the onus of learning squarely on the individual

(S8). This shift in responsibility led to several positive outcomes. S13 reported

feeling more conscious of his learning process when working alone and being more

aware of his own strengths and weaknesses, allowing him to focus on areas that

required improvement. Analysis results showed that solo programming encouraged

students to take ownership of the problem-solving process. They were forced to

analyze concepts, identify solutions, and implement their ideas independently. This

active engagement led to a more profound understanding of the underlying

principles, as noted in S16's statement. Working alone also allowed students to

identify and rectify their mistakes without the immediate intervention of others. This

process of self-correction reinforces learning and promotes a growth mindset, as

demonstrated by S24's experience. In conclusion, solo programming emerged as a

powerful tool for fostering active engagement and enhancing learning outcomes in

programming education.

166

[S_8]: I couldn’t understand the codes he mentioned because I couldn’t grasp

what the code was and how it worked without looking at it myself. But when

I looked at it myself, I understood better.

[S16]: The positive side of coding alone is that you can see all the questions

and answer them yourself. You try to solve them, engage your brain a bit, and

I think it’s better.

Improved Focus

Students (S17 and S26) mentioned that they were able to concentrate better and listen

to the teacher more attentively when they were working alone, without the presence

of peers causing distractions (f = 3). Besides that, students added that they struggled

with tasks because they were not paying attention during the lesson due to talking

with their pairs. This finding highlighted the positive impact of solo programming

on focus and attentiveness.

[S17]: I would be more open in the informatics (Information Technologies

and Software) class. How can I put it? I would sit calmly and listen to the

lecturer. There would be no one next to me. I get distracted.

Enhanced Retention

Solo programming appeared to contribute to improved information retention and

long-term learning, as highlighted by S13 and S14 (f = 2). According to students’

statements solo work led students to attempt to solve more problems independently.

The findings revealed that this increased practice and exposure to the material could

further solidify students' understanding and enhance their ability to recall

information later.

[S14]: …but it was more memorable. Because you were solving more

questions.

167

4.2.1.4.3 Challenges of Solo Programming

Lack of Pair Consultation

A significant portion of the students highlighted that the lack of peer consultation

was a major drawback of working alone on programming tasks (f = 18). They

emphasized the importance of immediate support and collaboration, particularly

when encountering complex problems. S26 expressed frustration with the inability

to get assistance when unable to complete tasks on their own. Similarly, S15

mentioned leaving tasks unfinished due to the inability to find solutions on their own.

According to participant S19, the absence of peer support could hinder progress,

particularly when everyone was focused on their individual tasks. This limitation

was further amplified when instructors were unavailable for assistance. S21 also

pointed out that the absence of different perspectives limited their problem-solving

approach. Additionally, students S9, S29, and S30 emphasized the need for a peer to

provide fresh ideas and guidance when progress stalls while working alone. These

insights underscored the importance of peer consultation in the learning process. The

ability to collaborate and seek immediate feedback from peers could significantly

enhance problem-solving capabilities and overall learning outcomes. Analysis

results showed that without this support, students struggled to overcome challenges,

leading to frustration and incomplete tasks.

[S22]: ...for example, when I ask the teacher about a subject I don't

understand, sometimes I can't understand it, I can't find out what to do. When

I had a friend, he helped me, we could find it together, but when he wasn't, I

had some difficulty.

4.2.1.5 Theme 5: Goal Setting

In this study, student responses emphasized goal setting as a crucial element of the

learning process, significantly influencing their approach to and engagement with

learning. The findings revealed that more than half of the students expressed a desire

168

to master programming skills. This theme explored the different types of goals

participants set for themselves and how these goals impacted their motivation and

learning strategies in programming education. As seen in Table 4.18, the codes

identified through qualitative data analysis underscored the varied motivational

orientations of students, encompassing mastery-oriented goals, performance-

oriented goals, and performance-avoidance goals.

Table 4.18 Distribution of Code Frequencies by the Theme of Goal Setting

Categories Codes f
Mastery-Oriented Goals Career-oriented goals 44

Challenge seeking 18
Desire to simplify complex tasks 12
Daily life context relevance 12
Recreational interest in coding 8

Performance-Oriented Goals Completion-driven motivation 11
Competition focus 4
Academic achievement focus 1

Performance-Avoidance Goals Avoidance of challenging tasks 20
Fear of failure 6
Skipping tasks 5

4.2.1.5.1 Mastery-Oriented Goals

This category explored the intrinsic motivation participating students had to learn,

understand new concepts, and master the skills in programming education. The codes

under this category reflect the various ways students approach their learning in

programming education with a mastery-oriented mindset, emphasizing deep

understanding and long-term skill development.

Career Oriented Goals

Half of the participants articulated the significance of programming for their personal

development and future careers, recognizing its essential role in today's technology-

driven world (f = 44). This career-oriented motivation served as a significant impetus

for their learning, as students understood programming as an essential tool for

169

achieving their professional goals. They identified the value of programming skills

in various fields, including software engineering, computer engineering, IT, and

game development (S12, S13, S18, and S20). Furthermore, ten students highlighted

the importance of coding skills, acknowledging their potential to unlock various

career paths. They expressed a strong belief that coding could be a critical skill,

enhancing their employability and adaptability in the professional world. This

positive perception could serve as a strong motivator for students to continue

learning and pursuing their programming goals.

[S20]: Because the future profession I think about is software engineering.

That's why I pay attention to it. That's why I'm interested in software... I try

to choose software because I'm interested in it.

[S1]: I mean, I think it will be important when I grow up, when I have a

profession. I already think it will be... I mean, when I grow up now when I

get into jobs, coding will be in jobs because it happens a lot. I'm not sure

right now, so it will definitely be coding when I grow up.

Challenge Seeking

This code captured student feedback that demonstrates a desire for intellectual

growth and a preference for learning experiences (f = 12). Students expressed their

preferences for stimulating and demanding tasks, highlighting their mastery-oriented

goals. This preference showed that students were intrinsically motivated to

learn, seek challenges to improve their skills, and strive for mastery over a subject.

While nine of the students expressed their enjoyment of overcoming difficulties, S12

and S30 conveyed dissatisfaction with tasks in the digital coding learning

environment they perceived as too easy, indicating a positive attitude towards

challenges and a preference for intellectually stimulating material. For instance, S1

enjoyed the challenge of placing colors together, and S15 found the flowchart

difficult yet fun. S21 emphasized the satisfaction gained from completing

challenging tasks, like puzzles and brain teasers. Similarly, S7 stressed the

excitement that comes with increasing difficulty. This is further reinforced by

170

students like S12, S9, and S30, who expressed a preference for more challenging

tasks and a dislike for overly simple ones. Overall, the students' comments reflected

their desire for intellectual challenges and their enjoyment of overcoming

difficulties, indicating a strong focus on mastery and growth in their coding journey.

[S7]: When things get progressively harder, you get even more excited.

Desire to Simplify Complex Tasks

Twelve statements from the students suggested a strong desire to deeply understand

the concepts behind the tasks rather than merely completing them. This reflected a

mastery-oriented approach to learning. Students actively identified challenging parts

and sought ways to manage their cognitive load. For instance, S10 expressed a

preference for text explanations in flowcharts over visual flowcharts, citing difficulty

with understanding flowchart symbols (as discussed under the category of ‘inherent

complexity of concepts and tasks’). This preference indicated that text descriptions,

particularly writing out the algorithm as a series of steps, provided the clarity needed

to comprehend the underlying algorithm, making the concept more manageable.

Similarly, the other two students (S2 and S18) expressed a desire to simplify difficult

topics altogether. This inclination towards simplification suggested that students

were employing specific learning strategies, aiming to break down complex tasks

into manageable components, ultimately leading to a deeper understanding of core

coding concepts.

[S10]: Teacher, I would like to change the things in the flowcharts, the

visuals. I would prefer them to be written in text, not with shapes.

[S18]: I would like to change the nested loops, teacher. I am very bad at that.

I would like to remove that topic.

Daily Life Context Relevance

Based on the analysis, even students with less defined career goals acknowledged

the long-term value of programming in various aspects of daily life (f = 12). Eight

students (S3, S10, S15, S18, S21, S26, S27, and S30) emphasized the applicability

171

of programming beyond professional settings, recognizing its potential to simplify

tasks, solve problems, and enhance general understanding in daily life. For example,

S15 illustrated how coding concepts like decision-making algorithms and

conditional statements could be applied to real-life scenarios to help structure

decision-making processes and optimize choices in everyday situations. Student 27

highlighted the potential for programming to enhance their life by creating

algorithms or writing down instructions, effectively automating or simplifying tasks

like cooking or other household chores. Additionally, students recognized the

potential for programming to contribute to future technological advancements. The

responses of three students (S10, S18 and S26) suggested that they saw coding as a

valuable tool for understanding the technological world around them. This included

comprehending how technology is used in everyday devices, apps, and services and

developing an informed perspective on the impact of technology on society.

Overall, the student feedback indicated that programming is not just a technical skill

but also has the potential to enhance various aspects of daily life. According to

results of the analysis, this broader understanding of programming's relevance could

serve as a motivator for students to continue learning and explore its applications in

their personal and social spheres.

[S27]: It is important to me. It can help me in difficult situations in my life.

For example, if my mother is going to cook and says, 'Do it yourself, I'm

leaving,' I can ask her to create an algorithm for me. She would ask, 'What's

an algorithm?' Then I would explain it to her, and she would do it for me.

Then I can do it myself.

[S10]: Teacher, it can be useful in technological devices. For example, in

America, we can call Teslas by phone. In that respect, I think it is necessary.

Recreational Interest in Coding

Not all students approach coding with a purely career-oriented mindset. This section

explores the motivations of students who viewed coding as a fun and engaging

activity, separate from professional aspirations (S2, S3, S11, and S16). These

172

students find enjoyment, entertainment, and creative potential in the learning process

itself. For some, like S11, the inherent satisfaction and enjoyment derived from

learning code is the primary motivator. Others, like S2 and S16, highlight the

entertainment value of coding, suggesting it provides a pleasurable learning

experience. Furthermore, S3 views coding as a potential hobby, offering a creative

outlet for their free time. These responses highlight how coding can be perceived as

a source of personal enjoyment and creative exploration. For these students, the

intrinsic pleasure of coding, rather than its potential career benefits, is the primary

driver of their engagement. This recreational interest underscores the importance of

fostering a learning environment that recognizes and supports diverse motivations

for learning coding, ensuring that it remains accessible and enjoyable for all students,

regardless of their professional aspirations.

[S3]: I only do it as a hobby. I will do it as a hobby in the future.

4.2.1.5.2 Performance-Oriented Goals

According to the findings, the performance-oriented goals of the students were

driven by external factors such as completion-driven motivation, competition, and

the desire for academic achievement. Students with these goals were often motivated

by the need to outperform others and gain recognition. This external motivation often

led to a focus on achieving high grades, excelling in tasks, and receiving praise or

recognition from teachers and classmates.

Completion-Driven Motivation

Responses from students (S4, S5, S7, S14, and S21) indicated a strong motivation to

achieve specific performance goals, such as completing all levels or tasks within a

gamified learning environment (f = 11). The digital coding learning environment

used in their coding education lessons featured puzzle sets and levels that turned

green upon completion. As students advanced through levels, each completed level

was marked by a green circle, providing a visual representation of progress.

173

Achieving these targets elicited a sense of accomplishment and satisfaction,

highlighting the students’ intrinsic motivation to meet challenges and attain a sense

of completion. This finding underscored the positive influence of gamification and

goal setting on enhancing student engagement and motivation.

[S4]: Sometimes we do something. We log into my friend's code.org account

who sits next to me, and then we log into my account. When we use his

account, I complete the parts I haven't done at home.

Competition Focus

A competitive focus emerged within the learning environment, as evidenced by the

statements of students S1 and S6 (f = 4). Their primary objective was to complete

tasks quickly and potentially surpass others, prioritizing speed over balanced

participation and collaborative learning. This performance-oriented approach

highlighted a potential pitfall in student motivation, where an emphasis on external

validation through competition can overshadow the intrinsic value of learning. For

instance, S1 readily conceded control of the task, seemingly motivated by surpassing

others. Similarly, S6 focused on personal advancement, framing their actions within

the context of progressing their individual account. This emphasis on individual

achievement could hinder the development of a growth mindset and a deeper

understanding of the material.

[S1]: ...Then he said, ‘Let me do it so that we can beat the others so that we

can do it faster. I said okay.

Academic Achievement Focus

One of the students' perspectives shed light on the positive influence of aligning

coding tools with assessment practices (f = 1). S24 highlighted how the teacher's use

of coding-based tasks and questions in exams directly mirrored the activities

conducted within the coding learning environment. This close connection served as

a motivator for performance-oriented students like S24, who prioritize academic

achievement, as it provided a clear path to attaining high scores. This finding

174

underscored the importance of meaningful assessment practices that were directly

connected to students' learning activities. When coding exercises and tools were

demonstrably relevant to exams, they encouraged students to actively engage with

the material and strive for mastery. This fostered a performance-oriented focus that

was channeled toward developing strong coding skills.

[S24]: For example, when the teacher gives an exam, he always asks coding

questions. He asks questions through coding. He gives such shapes on the

exam paper. For example, we do the same activities and the instructor asks

the same questions, like that. Therefore, it provides me with a benefit in that

respect It also helps me get high scores on exams.

4.2.1.5.3 Performance-Avoidance Goals

This category explored student feedback that highlighted a tendency toward

performance-avoidance in programming education. The theme centered on students'

focus on avoiding negative performance outcomes, negative judgment, and

comparison rather than striving for mastery or intrinsic learning. Students driven by

these performance-avoidance goals often prioritized strategies to minimize the risk

of failure rather than actively seeking challenges to enhance their learning.

Avoidance of Challenging Tasks

Data analysis results showed that participants often expressed a preference for

avoiding challenging tasks, highlighting their reluctance to engage with difficult

programming concepts and activities (f = 20). This aversion was explicitly stated by

six students (S6, S8, S23, S24, S27, and S28) who preferred easier tasks, while

another six (S2, S9, S14, S18, S20, and S22) expressed a dislike for challenging

tasks. These challenging tasks included concepts like conditional statements, nested

loops, and variables. These findings suggested that task avoidance, potentially

driven by a desire to minimize negative emotions associated with difficulty, was a

significant issue in programming education.

175

[S24]: I can say that my least favorite thing is difficult coding.

Fear of Failure

Several participants (S2, S7, S21, and S28) disclosed a fear of making mistakes or

failing, which led them to avoid participation in programming tasks (f = 6). This

reluctance stemmed from anxieties about negative judgment, embarrassment, or

failure in front of others. For example, S7 described feeling ashamed of not being

able to perform adequately in a large group setting. Similarly, S21 expressed

frustration when his code came out wrong, showcasing the discouragement that

mistakes can bring. These student experiences served to underscore the potential

obstacles posed by the apprehension of failure.

[S7]: Because there were many people around. I was ashamed when I

couldn't do it.

[S28]: I can't think of the name, but some things were difficult, teacher. I was

afraid that I couldn't do it.

Skipping Tasks

Analysis results showed that two students (S14 and S21) revealed a tendency to skip

tasks or problems they perceived as too difficult, employing this as a performance-

avoidance strategy (f = 5). This highlighted a potential performance avoidance

approach to learning, where students prioritized avoiding negative emotions over

actively engaging with challenging material. By skipping these tasks, they might

have missed out on crucial learning opportunities and potentially hindered their

overall progress.

[S21]: Mostly, if there were three of us or two of us, we would say, let's skip

it. For example, there were many examples we couldn't do. I think we skipped

all of them.

176

4.2.1.6 Theme 6: Affective Aspects

The purpose of this theme was to examine the emotional and attitudinal aspects of

learning programming. This theme extended beyond the acquisition of technical

skills and knowledge. It explored the feelings, beliefs, and motivations that influence

students' engagement and success in programming education. The affective factors

were examined through two primary aspects: attitude and self-efficacy. Related

categories, sub-categories, and their codes, along with the frequency of participant

responses, are detailed in Table 4.19.

4.2.1.6.1 Attitude

This category focused on students' dispositions towards programming,

encompassing both positive and negative attitudes that shape their learning

experiences. Positive attitudes included an interest in learning programming,

enjoyment of both plugged and unplugged activities, the appeal of familiar

characters, the satisfaction derived from social interactions, a favorable view towards

gamified learning, and a positive classroom atmosphere. Conversely, negative

attitudes involved a general negative disposition towards programming and

frustration from prolonged use and.

177

Table 4.19 Distribution of Code Frequencies by the Theme of Affective Aspects

Categories/Sub-Categories Codes f
Attitude

Positive Attitudes

Interest in learning programming 54
Enjoyment of plugged activities 30
Appeal of familiar characters 17
Enjoyment of social interaction 14
Engagement of gamification 9
Enjoyment of unplugged activities 8

 Positive classroom atmosphere 6
Negative Attitudes Frustration from prolonged use 14

Negative disposition towards
programming

2

Self-Efficacy
Confidence in Coding
Abilities

Low 11
Moderate 18
High 27

Determinants of Self-
Efficacy Perceptions

Mastery experiences 12
Social recognition from peers 4
Peer comparison 4
Perceived cognitive abilities 4
Academic performance 2

Positive Attitudes

Interest in Learning Programming

The findings revealed a predominantly positive sentiment towards programming,

with a significant majority of students (26 participants) expressing interest and

enthusiasm for the subject (f = 54). Many students highlighted their fascination with

coding, emphasizing its intriguing and intellectually stimulating nature. For instance,

students S10 and S12 demonstrated a high level of intrinsic motivation and curiosity

about programming. Students consistently described their programming lessons as

engaging and interesting, and Student 18’s mention of enthusiasm underscored the

widespread appeal of programming. Overall, the positive feedback from students

illustrated a pervasive interest in learning programming, driven by its engaging and

178

intellectually stimulating aspects, which highlights the effectiveness of programming

education in fostering lasting enthusiasm for the subject.

[S18]: It's really captivating, teacher. I love coding.

Enjoyment of Plugged Activities

The student feedback overwhelmingly highlighted a strong positive association with

plugged activities, suggesting a high level of intrinsic motivation and engagement (f

= 30). Seventeen out of thirty students explicitly mentioned enjoyment, fun, and high

levels of engagement with the activities on the digital coding platform (Code.org).

This underscored the importance of the emotional and affective aspects of the

learning experience. One student expressed a desire to conduct all classes in the

computer lab, suggesting a preference for technology-integrated programming

education. Additionally, S3 and S7 mentioned enjoying being taken to the computer

lab, further indicating a positive attitude towards tech-enhanced learning

environments. These student voices emphasized the positive emotional response

elicited by plugged activities. Analysis results showed that when learning was

perceived as enjoyable and engaging, students were more likely to be intrinsically

motivated and maintain their interest throughout the learning process.

[S3]: Going down to the computer lab was really better for me as well. We

have fun. We receive education in the computer classroom.

[S27]: So, when you enter, you feel like doing it. When you look at the

questions, you feel like doing them. Because there were nice questions. There

was good coding and all.

Appeal of Familiar Characters

The use of sprites within the digital programming learning environment elicited

mixed responses from students (f = 17). Five students (S6, S8, S9, S14, and S27)

expressed positive attitudes towards the learning environment that integrated

characters they recognized and enjoyed from other media. The findings suggested

that the integration of well-known figures into the digital programming environment

179

contributed to a more positive learning experience by enhancing students’ interest

and enjoyment. However, the study also revealed a need for continuous improvement

and diversification of these characters. Three participants (S1, S8, and S22)

expressed a desire for more engaging and relatable characters, suggesting that the

existing options may not resonate with all learners. This underscored the importance

of incorporating a wider range of characters from different sources, along with the

ability to personalize characters, which could improve student engagement and

overall satisfaction with the coding program.

[S8]: I mean, I was more interested in it because it had such well-known game

characters and so on, so I did it more easily. It made it easier, having

characters both excited and made it easier.

[S22]: About coding, you know Angry Birds, there could have been other

films. For example, Bumblebee or something like that would be better about

robots. It would be more fun, so there would be a difference. It would be more

fun.

Enjoyment of Social Interaction

This code examined the social interaction aspects of programming education (f =

14). Unplugged activities, which involved hands-on, non-digital tasks, emerged as a

contributor to social interaction in programming education. S14 specifically

mentioned enjoying socializing and working with friends during unplugged activities

and emphasized a preference for unplugged learning activities that offer more

opportunities for social interaction and collaboration. Pair programming, on the other

hand, was typically associated with computer-based programming activities. While

pair programming also fostered social interaction and collaboration, it differed from

unplugged activities in that it was specifically focused on programming tasks and

utilized digital tools. Students (S4, S10, S18, S24, and S26) expressed their

enjoyment of working together with friends, indicating a preference for cooperative

learning environments. Students mentioned that collaborative learning provided

opportunities to foster improved communication and teamwork skills, as noted by

180

S24 and S26. Additionally, seven students (S2, S6, S10, S14, S18, S24, and S26)

expressed a preference for collaborative programming over solo programming,

finding solo programming less enjoyable and more tedious due to the lack of social

interaction and conversation that accompanied working independently.

[S14]: But the things we did by socializing were also good. For example, in

some classes, we went out to the schoolyard and... At one point, the IT teacher

brought something to our classes, a rabbit hole thing, a rabbit hole. The

rabbit was trying to reach the carrot. For instance, drawing a larger version

of that on the ground in the schoolyard and playing with it.

[S26]: I socialized a little more there. He also liked coding like me. I mean,

if it wasn't for the computer, we wouldn't have met him.

Engagement of Gamification

The qualitative analysis revealed a positive student response (S1, S2, S3, S4, S14,

and S17) toward the integration of gamified elements within the programming

learning environment (f = 9). This positive reception underscored the potential of

gamification to enhance both student engagement and motivation. Students like S1

and S3 specifically highlighted the enjoyable nature of Code.org games, suggesting

that engaging gameplay mechanics effectively capture student interest. This aligned

with the concept of "flow" in gamified learning, where students were intrinsically

motivated and fully absorbed in the learning process. Additionally, the overall game-

like approach, as described by student S17, contributed to a more enjoyable learning

experience, thereby reducing the perceived difficulty associated with coding. S4 also

noted the effectiveness of gamified elements in promoting active cognitive

engagement. These student experiences provided evidence for the efficacy of

gamified learning in fostering student engagement and motivation within

programming education.

181

[S3]: Anyway, the games we played on code.org were very fun. I mean if we

think about it, we actually write coding, but it was really fun. That ‘go

forward’ or finishing the game. These were really fun in coding.

Enjoyment of Unplugged Activities

While not as numerous as for plugged activities, some students (S4, S5, S7, S22,

S26, and S27) also reported enjoyment and high levels of engagement with

unplugged activities (f = 8). These activities often involved hands-on, collaborative

tasks that did not require digital devices. Student statements reflected feelings of

satisfaction, indicating that the unplugged activities were engaging and enjoyable.

These positive responses highlighted the affective benefits of unplugged activities

and their contribution to a positive learning environment.

[S4]: I really liked that glass game. We also did something like this, we moved

like a robot. The teacher wrote it on the board. We had turned our backs.

One of our friends came out. One of them was a robot and the other one was

saying what was on the board. There were degrees, he said to stay there, he

said to turn right-left. It was a lot of fun. It was good.

Positive Classroom Atmosphere

The study also revealed the importance of positive teacher behavior in fostering a

positive classroom atmosphere (f = 6). Several students (S1, S5, S6, and S12)

specifically commended their teacher's politeness, kindness, and calm demeanor. S1

indicated the teacher's gentle explanations and noted the absence of yelling, even in

frustrating situations. This positive and respectful approach was highly valued by S1

and S6 and was seen as crucial to fostering a more engaging learning environment

by S12. Ultimately, it was seen that the teacher's positive behavior cultivated a sense

of trust and mutual respect, establishing a classroom culture that promoted both

academic learning and personal growth.

182

[S1]: Also, the teacher is kind. He explains things kindly. I am happy because

he doesn't yell. It's the first time I've seen this. He only yells if we make him

very angry, and even then, it passes quickly. I really like our teacher. When

we say something, he says okay.

Negative Attitudes

Frustration from Prolonged Use

Several students (S4, S6, S9, S15, S21, and S23) reported experiencing fatigue or

frustration as a result of prolonged use of specific platforms or instructional methods

(f = 14). Students such as S9, S15, and S21 expressed a desire for increased variety

in instructional approaches and activities to maintain their engagement. For instance,

participant S4 found that moving from one Code.org course to another without

sufficient variation became monotonous, highlighting a need for more diverse and

stimulating activities. This highlighted the importance of integrating a diverse range

of activities and learning environments into the curriculum to prevent student

burnout and sustain engagement.

[S4]: For example, when you finish one course and move on to the next, it

gets a bit overwhelming. It really becomes boring.

[S9]: I would like to try other new things.

Negative Disposition Towards Programming

Two students (S1 and S19) expressed an overall negative outlook toward learning

programming (f = 2). Their feedback highlighted significant challenges and a general

lack of enthusiasm for the subject, in contrast to the more positive responses from

other students. S1 succinctly conveyed his negative disposition towards

programming. Similarly, S19 articulated difficulties with programming, reflecting

their struggle and lack of engagement with programming tasks.

183

[S19]: And also, I didn't like coding. I didn't quite understand it. It was a bit

difficult.

4.2.1.6.2 Self-Efficacy

In this study, within the context of programming education, this category

encompassed two primary aspects. The first aspect was confidence in coding

abilities, which highlights the level of self-efficacy students perceived in their coding

skills. The second aspect was the determinants of self-efficacy perceptions, which

investigated the various influences on students' self-efficacy.

Confidence in Coding Abilities

Through in-depth interviews, students revealed a range of self-efficacy in coding,

with some exhibiting high confidence and others struggling. Categorizing their

responses, it was found that five students exhibited low self-efficacy (f = 11), twelve

demonstrated moderate self-efficacy (f = 18), and thirteen displayed high self-

efficacy in their coding abilities (f = 27). Students who expressed high self-efficacy

often described coding as easy or simple (e.g., S29, S13, and S25). Their comments

highlighted the confidence and comfort that high-self-efficacy students associated

with coding. While some students expressed overall ease in coding, others

acknowledged that some tasks or concepts were challenging. Students with lower

self-efficacy, like S1, reported difficulty and frustration, highlighting the varying

levels of self-efficacy and perceived difficulty among students.

[S29]: Actually, I didn't have any difficulty. It was all very easy.

[S26]: I also realized that this job is hard. It's not an easy job.

184

Determinants of Self-Efficacy Perceptions

This sub-category examined students' reflections on their self-efficacy and explored

the factors that influenced their perceptions of self-efficacy in programming. Several

key determinants emerged, including mastery experiences, social recognition from

peers, peer comparison, perceived cognitive abilities, and academic performance.

Mastery Experiences

Findings showed that successfully completing coding exercises or challenges,

regardless of difficulty, fostered a sense of accomplishment in students (S2, S5,

S8, S9, S12, S20, S25, S27, and S29), (f = 12). This positive reinforcement,

exemplified by S8 feeling like a "programmer" after completing a task, built

confidence and contributed to a strong sense of self-efficacy in problem-solving.

This finding exemplified the connection between successful problem-solving and

confidence. When students experienced the satisfaction of completing tasks, they

developed a sense of competence and a belief in their ability to achieve future

challenges. Additionally, the findings suggested that the duration of task completion

played a role in students' perception of their programming success (S9 and

S26). Students who completed tasks quickly tended to feel even more successful in

coding. However, struggling with tasks could lead to frustration and potentially

hinder self-efficacy, as observed in students like S21 and S24.

[S9]: Because once, while the teacher was explaining, I understood the topic.

I completed it in no time. That's when I realized I was successful, considering

how quickly I did it.

Social Recognition from Peers

One key factor affecting self-efficacy perceptions in programming education was

identified as social recognition from peers (f = 4). The study found that students who

received help requests from their classmates regarding coding tasks demonstrated

greater confidence in their abilities (S8 and S26). This positive reinforcement from

185

peers contributed to a strong sense of self-efficacy. For example, student S26

described feeling like a professor when helping classmates, which significantly

boosted his self-confidence. Similarly, student S8 shared that his classmates

frequently sought his help, which also enhanced his self-efficacy. These findings

indicated that peer interactions and the opportunity to assist others reinforced a

student’s belief in their coding skills.

[S26]: For example, when we log in, I somehow feel like a professor. I feel

like someone who has become an expert in these things. My friends ask me

questions, and I tell them, 'You can do it this way.' At those times, I feel really

good.

Peer Comparison

Analysis results showed that peer comparison played a significant role in shaping

self-efficacy or belief in participants’ ability when learning to program (f = 4). As a

result of the social nature of learning, students compared their skills and performance

to their peers, impacting their self-efficacy. The data showed that three students were

influenced by this phenomenon. For instance, participant S26 felt a sense of

accomplishment by observing their classmates struggle with a particular section,

contrasting it with their own progress. On the contrary, S7, despite acknowledging

his achievements, felt inadequate compared to his stronger peers. This comparison-

based assessment reinforced their belief in their abilities and contributed to their

overall self-efficacy in programming.

[S7]: I see myself as successful, but I can't say I'm very good. Because there

are others who are better than me. I'm not at their level. Just a bit above

average.

Perceived Cognitive Abilities

Statements from students revealed a connection between their self-assessment of

cognitive skills (thinking and learning abilities) and perceived self-efficacy (f = 4).

S1, S8, S17, and S29 discussed how their thinking and learning abilities influenced

186

their confidence in coding. Those who believed they had strong thinking and learning

skills, like S29, tended to feel more confident in their ability to learn and succeed in

coding. Conversely, those who doubted their cognitive abilities, like S1, were more

likely to experience lower self-efficacy, potentially leading to struggles with

motivation and engagement in coding. This highlighted the importance of self-

perception in students' motivation and engagement.

[S29]: Because my understanding capacity is higher...

[S1]: Because my brain couldn't take it in much...

Academic Performance

Students' comments also illuminated the relationship between course grades and self-

efficacy (f = 2). Students like S25, who mentioned good grades in their IT and

Software courses, perceived them as validating their coding abilities. This

highlighted the potential of academic performance to act as positive reinforcement.

The findings indicated that strong grades could enhance self-efficacy, motivating

students such as S6 to persist in their learning and embrace new challenges in coding.

[S6]: I received a score of 100 on three assignments. I know from that I'm

good at coding

187

CHAPTER 5

5 DISCUSSION AND CONCLUSION

The aim of this study was to investigate the factors influencing middle school

students' learning of programming fundamentals. To address this aim, the primary

research question, ‘What factors influence the acquisition of fundamental computer

programming concepts in fifth-grade students?’ was examined. To further

contextualize the inquiry, five sub-research questions and their corresponding sub-

questions were also examined. In this mixed-methods study, the quantitative and

qualitative data were analyzed independently. The major findings from both data sets

were then discussed within the framework of the research questions, considering the

variables under investigation. Following this discussion, the chapter concluded with

a synthesis of the key findings. Finally, the implications of the results and directions

for future research were outlined.

5.1 Major Findings and Discussion

5.1.1 Cognitive Load

The study revealed that extraneous load significantly predicted coding performance.

Although germane load was not found to be a significant predictor, its substantial

correlation with extraneous load necessitated its exclusion from the regression

model. As a result, the independent contribution of intrinsic load to coding

achievement could not be assessed.

The study findings indicated that students encountered their most substantial

cognitive load, both intrinsic and extraneous when engaged in learning the nested-

loop concept. Loops were also identified as the third most challenging concept in

terms of intrinsic cognitive load and the fourth most challenging in terms of

188

extraneous cognitive load. The research findings indicate that students' intrinsic

cognitive load was significantly higher during the week when they learned about

loops and nested loops compared to the weeks focusing on conditionals, variables,

and testing and debugging. Furthermore, it was found that the cognitive load

associated with nested loops was significantly higher than that associated with

conditionals, variables, and testing and debugging. While students experienced a

relatively high level of germane load during the week dedicated to nested loops, the

overall increasing trend of germane load across weeks exhibited a decline,

specifically for the nested loops topic. However, this decline in germane load for

nested loops was not statistically significant.

Interview data also revealed that participants perceived nested loops as a more

significant challenge than simple loops. The concept of nested loops was the third

most commonly highlighted topic within the thematic category of "inherent

complexity of concepts and tasks”. These results align with the existing literature,

which categorizes the learning of simple loops and nested loops as some of the most

challenging foundational programming concepts for novices, both at higher

education levels (Gomes et al., 2019; Winslow, 1996) and in elementary education

(Grover & Basu, 2017). In the present study, participants reported difficulties in

determining the number of iterations for each code block within nested loops,

particularly when the total number of loops increased. Consistent with this study’s

findings, Gomes et al. (2019) reported that students in their CS1 course encountered

greater difficulties with internal loops compared to external loops, particularly when

the external loop completed its second iteration. Similarly, participants in this study

reported difficulties in determining which code blocks would be executed when curly

braces ({}) were omitted. Although in the current study, code blocks for both inner

and outer iterations were visually represented, novice programmers may still need

help comprehending the hierarchical structure of nested loops and the order of

execution. This suggests that understanding the hierarchical structure of nested loops

and the order of execution is a common challenge for novice programmers.

189

Sleeman et al. (1984) further clarified the challenges students face in comprehending

loops by emphasizing the difficulties in understanding the role of the control variable

within loops. This study emphasizes the cognitive challenges associated with

comprehending the iterative nature of loops and the management of loop variables.

While constructs such as loops are often associated with procedural programming,

their significance in object-oriented languages like Java underscores the hybrid

nature of modern software development. The challenges encountered by

programmers in mastering these constructs highlight the need for a comprehensive

approach that encompasses both procedural and object-oriented concepts (Dale,

2006). The findings of another study suggested that while sixth-grade students

encountered some difficulties with loop concepts, the visual nature of the Scratch

environment may have reduced some of the cognitive challenges typically associated

with programming. Additionally, the positive impact of prior experience with digital

tools on students' ability to adapt to the Scratch interface highlights the importance

of providing students with opportunities to engage with technology from an early

age (Çakiroğlu et al., 2018).

Building upon the challenges presented by nested loops, basic sequences emerged as

the second most demanding concept in terms of cognitive load. The intrinsic

cognitive load associated with basic sequences was significantly greater than that

associated with conditionals, variables, and testing and debugging. However,

significant differences in extraneous cognitive load were only observed for testing

and debugging when learning basic sequences. Similarly, the germane load

experienced for this topic was significantly lower than for variables and conditionals.

These results could be attributed to students’ perceptions of coding during the initial

week. The singular occurrence of the code pertaining to "sequencing and logical flow

difficulties" in the qualitative data provides additional evidence to support this

interpretation. This finding can be explained by the unfavorable attitudes held by the

students toward coding, stemming from their limited exposure to programming

before commencing the course (Çakiroğlu et al., 2018). On the other hand, as

proficiency and familiarity with the learning environment increase, a learner can

190

reduce their cognitive load (Sweller, 2010). The empirical evidence from this study,

characterized by an upward trend in germane load across most topics, excluding

nested loops, aligns with the proposed explanation. Inexperienced learners are more

likely to give up on learning computer programming if the task they are attempting

to complete is complex. Inexperienced learners are more susceptible to experiencing

cognitive overload and frustration in the context of learning programming (Bounajim

et al., 2021). The high extraneous cognitive load observed in the first week suggests

that the unplugged activity may not have been entirely clear to the students. The

complexity of the task may result in cognitive overload, which may interfere with

the performance of the task and/or the learning of the subject matter. This

interpretation is further supported by the students' statements during interviews,

which indicated difficulties in understanding and implementing the unplugged

activity due to unclear task instructions. Besides that, findings of the related literature

indicate that block-based coding platforms such as Scratch and code.org make

coding easier, particularly by preventing children from encountering syntax errors

(Resnick et al., 2009). The findings that such coding environments reduce extraneous

cognitive load can be associated with the lower cognitive load of students in plugged

activities in this study (Meerbaum-Salant et al., 2013). This study's observation of

higher cognitive load during unplugged activities may be partially explained by

findings from previous research. Studies have shown that block-based coding

platforms like Scratch and code.org simplify coding, particularly by preventing

children from encountering syntax errors (Resnick et al., 2009). By eliminating the

need to focus on syntax, these platforms are thought to reduce extraneous cognitive

load (Meerbaum-Salant et al., 2013). Considering the additive nature of types of

cognitive load, excessively high levels of intrinsic and extraneous load can

detrimentally impact the learning process. Therefore, the observed low germane

loads in the initial week, characterized by increased intrinsic and extraneous load

levels, were an anticipated outcome (Chandler & Sweller, 1996).

The research findings revealed an unexpected inconsistency, with the intrinsic and

extraneous cognitive loads associated with the topic of variables being among the

191

lowest, while the germane load was notably the highest. This outcome was

unexpected, particularly given that qualitative data indicated students frequently

mentioned challenges in understanding the concept of variables (f = 24). Despite

these reported difficulties, the corresponding cognitive load measurements did not

align. In a study conducted with 6th, 7th, and 8th-grade students, Grover and Basu

(2017) noted that students were unfamiliar with variable usage and held

misconceptions, consistent with the findings of this research. In the present study,

students reported finding the examples provided by the teacher during the

explanation of the topic confusing and inconsistent. Additionally, they expressed

difficulty in understanding how to use the variable code blocks, which differed

slightly from what they had used previously in the digital programming environment.

The concept of variables constitutes a fundamental element of programming, yet it

has been recognized as a challenging topic to both learn and teach (Dale, 2006;

Holland et al., 1997). It is often perceived as abstract and challenging for novice

programmers (Kohn, 2017). Studies have reported that students encounter

difficulties in various aspects of variable usage, including establishing appropriate

variable names, selecting suitable data types, distinguishing between mathematical

symbols and programming operators, and correctly applying assignment and

comparison operators (Mohamad Gobil et al., 2009). The lower intrinsic cognitive

load observed in the current study regarding variables might be attributed to the less

complex implementation of variables within the block-based programming

environment employed. Since students were working with pre-defined code blocks,

there was no requirement for them to explicitly define variables, specify data types,

or assign values according to the data types. Similarly, the use of dropdown menus

for selecting relational operators likely minimized the possibility of errors associated

with these operators. Furthermore, it is also possible that students' prior exposure to

variables within the context of loops, nested loops, and conditionals, without explicit

instruction on variables, contributed to their apparent ease with this concept.

However, qualitative data revealed a substantial knowledge gap regarding the

fundamental nature and operation of variables despite their ability to complete tasks

192

by following procedural steps. While block-based environments alleviate the

syntactic challenges associated with programming, they do not necessarily mitigate

the conceptual difficulties inherent in understanding core programming constructs

such as variables and loops. As Grover and Basu (2017) noted, students often

struggle with grasping the essence of variables. In fact, the ability to successfully

manipulate code blocks without a deep understanding of the underlying variable

concepts might create an illusion of proficiency. There are studies in the literature

that report contrary findings. For instance, in alignment with the quantitative results

of this study, Grandell et al. (2006) found that variables were among the least

challenging topics in their study conducted with high school students utilizing a text-

based programming language. They also suggested that the deviation from the

general understanding in the literature could be attributed, in part, to the type of

programming language used in their study.

5.1.2 Gender

This study explored the potential gender disparities in middle programming

education. The findings of this study revealed no statistically significant gender

differences in programming education. Boys and girls displayed similar attitudes

towards coding, had similar goal orientations and levels of self-efficacy, perceived

similar classroom goal structures, used similar academic self-handicapping

strategies, exhibited similar cheating behaviors, experienced similar cognitive load

while learning to program, and ultimately achieved similar results on the

programming achievement tests.

In contrast to the present study's findings, prior research has frequently documented

a gender gap in programming education, with boys generally showing higher levels

of interest, confidence, and performance in coding activities and technology-related

careers compared to girls (e.g., Bergin & Reilly, 2006; Beyer et al., 2003; Cheryan

et al., 2015; Doubé & Lang, 2012; Guzdial et al., 2014). These studies also explored

the interaction of self-efficacy, intrinsic and extrinsic goal orientations,

193

programming success, and metacognitive strategies, finding that these factors impact

student performance differently for males and females (Lishinski et al., 2016).

Besides that, gender differences in programming beliefs were identified, where boys

were more inclined towards computational thinking and saw programming as

practical, while girls perceived programming as a creative and communicative

activity (Tellhed et al., 2022), indicating that different aspects of programming

appeal to boys and girls. The data from related studies suggested that these disparities

were influenced by a combination of sociocultural factors, gender stereotypes,

beliefs, the availability of role models, interest, computing self-efficacy, and prior

experiences (Beyer, 2014; Cheryan et al., 2015; Doubé & Lang, 2012).

Although the gender gap in programming learning is a common narrative in

literature, studies on gender differences have also shown mixed results. In the

literature, there is a considerable number of studies that align with the findings of

this research. For example, in the study by Kong et al. (2018), no significant

difference was observed in the programming self-efficacy of the young learners

despite the lower interest of the girls. Doubé & Lang (2012) also found similar results

to those in this study, indicating no gender differences in terms of how much students

valued computer programming, and both boys and girls seemed equally driven by a

combination of wanting to achieve good grades or recognition and an interest in the

subject matter. Additionally, there are studies in which no gender differences have

been found in programming achievement scores, as in this study (Akinola, 2015;

Bennedsen & Caspersen, 2005). Similarly, Qian & Lehman (2016) emphasized that

differences in programming performance among middle school students are better

explained by non-programming subjects rather than by gender. This consistency

suggests that the lack of observed gender differences in programming education may

be a more general phenomenon, not restricted to the specific context of this study.

Considering these previous research studies, several factors related to the absence of

statistically significant differences in the investigated programming education

variables in this study can be discussed. Studies suggest that when a field aligns with

traditionally masculine traits in a specific culture (e.g., social isolation, intense focus

194

on technology, and innate brilliance), females tend to exhibit lower interest

compared to males (Cheryan et al., 2015). These stereotypes and the gender

construction of the discipline might explain the lack of adequate representation of

females in disciplines such as computer science and engineering (Doubé & Lang,

2012). However, in research studies, it was emphasized that altering cultural

perceptions and stereotypes surrounding computer science and engineering can

positively influence girls' engagement and participation in these fields. Additionally,

the role of media in shaping such stereotypes was highlighted, suggesting that media

representations contribute to how girls perceive computer science courses and

environments, ultimately impacting their interest in these fields (Cheryan et al.,

2015). In the current study, given the unique characteristics of the study region,

including its small-town setting and the fact that nearly half of the students reside in

rural areas, the absence of observed gender differences compared to previous

research suggests that media exposure may play a significant role in shaping

students' perceptions and behaviors. This has arguably led to a shift in female

students' perspectives on technology, potentially diminishing the previously

observed gender gap reported in previous studies. Furthermore, there has been

increased emphasis on coding education globally, including in Turkiye, and efforts

have been made at the middle school level to promote this education. In this context,

programming-related topics within the ITS curriculum were revised, and initiatives

like the KodlaRize project championed programming education across all schools in

the study's province. Additionally, there was an increased emphasis on integrating

coding skills into classroom learning through various projects and technological

equipment support for schools, as well as the establishment of coding centers. These

initiatives likely contributed to a more standardized approach to programming

education nationwide and within the study's province, potentially explaining the

absence of significant variations in the investigated factors. Moreover, the increased

emphasis on programming education has fostered a broader societal awareness of its

importance. This is evident in the greater encouragement observed for girls to pursue

computer-related fields compared to previous generations (Wang et al., 2015).

195

This study employed a block-based programming environment to introduce

fundamental programming concepts to middle school students. Given the impact of

block-based programming environments on students' attitudes towards

programming, it can be inferred that the use of these environments might have

contributed to the absence of a gender difference (Gunbatar & Karalar, 2018).

However, the relatively low complexity of the programming tasks due to the

circumscribed nature of block-based environments may have limited the potential

for observing significant gender differences, which are more apparent in more

complex programming contexts. Furthermore, the focus on introductory concepts

might not fully capture the challenges associated with more advanced programming

topics (Sullivan & Bers, 2016).

5.1.3 Geographical School Location

This study investigated the effects of geographical school location on programming

success, math success, reading comprehension success, and various motivational

constructs, including goal orientations, classroom goal structures, academic efficacy,

cheating behavior, self-handicapping strategies, and attitudes toward programming

education. The research involved students from three schools: one located in a

central urban area with higher-income parents and two located in suburban areas

with lower-income families and smaller student populations. The findings revealed

significant differences between these groups, highlighting the importance of school

location as a predictor of programming success and its impact on related motivational

factors.

According to the results of this study, geographical school location was a strong

predictor of the programming success of fifth-grade students. This finding aligns

with previous research indicating that students from urban schools tend to achieve

higher academic success compared to their suburban or rural counterparts (Bonilla-

Mejía & Londoño-Ortega, 2021; Chand & Mohan, 2019; Panizzon, 2015). The

reasons for this discrepancy include differences in both school and student

196

characteristics (Cresswell & Underwood, 2004). Urban schools generally provide

better access to resources, better student exposure to technology, more experienced

teachers, and a more stimulating educational environment, and are typically attended

by students from higher socioeconomic backgrounds (Akpomudjere, 2020; Bouck,

2005; Chand & Mohan, 2019). Conversely, suburban and rural schools often face

challenges in providing the same level of resources and support.

Socioeconomic factors are seen as a significant cause of the gap between schools

from different geographical locations (Panizzon, 2015). Program for International

Student Assessment (PISA) test results consistently demonstrate a strong correlation

between socioeconomic status and student performance. PISA 2022 data aligns with

the finding of this study, showing a gap of 82 points in mathematics scores between

socio-economically advantaged and disadvantaged students from Turkiye (OECD,

n.d.). Hanushek & Woessmann's (2012) research provided additional evidence that

student and family background significantly impact educational outcomes. This

aligns with the discussed point about the strong association between socioeconomic

status and PISA results. Although this study did not directly investigate the impact

of family factors as subfactors of geographical school location, considering the

characteristics of the participants, it is evident that the family backgrounds of

students in urban and suburban areas likely differed in terms of both education level

and income status (see p. 51). Based on relevant literature, for instance, research by

Marks et al. (2006), it could be suggested that these family background differences

might have influenced the study's outcomes.

When examining the phenomenon within the specific context of programming

learning, the importance of prior computing experience in programming success is

particularly noteworthy (Grover et al., 2016; Zingaro, 2014). In this study, it was

noted that students do not receive any formal computing-related instruction as part

of the curriculum until the fifth grade. This means prior computing experience relies

heavily on parental awareness and support. Parents with higher education levels and

greater financial resources can provide more advantages for their children. This may

include guiding them toward computing opportunities or providing more exposure

197

to technology, both of which can facilitate the development of computing skills at an

early age (Metin et al., 2023). Additionally, related literature showed that the

availability and quality of technological resources in schools also significantly

impact programming success (Salleh Hudin, 2023). All the schools involved in the

study had computer laboratories; however, the suburban schools faced challenges

with older and fewer computers, as students mentioned in the interviews. During the

study, a new computer lab was installed in one of the suburban schools as part of a

project, but this improvement only occurred towards the end of the study period and

did not significantly affect the outcomes.

In addition to programming success, geographical school location significantly

influenced various motivational constructs. The study found significant differences

in goal orientations and classroom goal structures between the two geographical

locations. Urban school students exhibited higher performance-approach goal

orientations and more favorable perceptions of classroom goal structures. This is

consistent with previous research indicating that urban schools, with their higher

resources and better-trained teachers, can create a more achievement-oriented

environment that encourages students to set and pursue higher academic goals (Sun

et al., 2022).

5.1.4 Mathematics Skills

One of the conclusions drawn from this research is that, among the various factors

examined for success in computer programming, the most significant predictor was

proficiency in mathematics. Given that the roots of computer programming lie in

mathematics, a strong relationship between coding and mathematics is an expected

outcome.

The emphasis on the strong positive correlation between students' mathematical

abilities and their performance in introductory computer programming courses

suggests that mathematical skills are crucial for understanding programming

198

concepts and logic. The relationship between mathematical and coding success is

explored across various dimensions in the literature and is evidenced by multiple

studies. Investigations into the relationship between mathematics achievement and

programming performance have been conducted across various educational levels,

spanning from primary and middle school (Bozal & Şendurur, 2024; Brannon &

Novak, 2019; Calder, 2010; Grover et al., 2015, 2016; Hu et al., 2018; Qian &

Lehman, 2016; Salac et al., 2021) to high school (Bennedsen & Caspersen, 2005;

Erdogan et al., 2008; Nasution et al., 2022) and undergraduate or graduate (Baist &

Pamungkas, 2017; Bergin & Reilly, 2006; Bubnic et al., 2024). For instance,

Mathews (2017) emphasized the predictive power of prior mathematics performance

on success in learning programming. Their study highlights that average

mathematics grades from the previous year could strongly indicate of a student's

ability to grasp programming concepts. Erdogan et al. (2008) conducted a study with

high school students and found a significant relationship between mathematics

achievement and programming achievement, although they did not find mathematics

achievement to be a predictor of programming achievement. Grover et al. (2015)

employed a design-based research approach to investigate students aged eleven to

fourteen. Notably, their study yielded significant results, demonstrating that

mathematical ability, alongside prior computing experience, serves as a highly

strong predictor of successful learning outcomes in programming. The authors of

the aforementioned study attributed this finding to the inherent nature of the

assessments used to evaluate programming performance. These assessments

frequently necessitate the application of mathematical knowledge. These findings

directly align with the current study's emphasis on the critical role that a strong

foundation in mathematical concepts plays in effectively completing coding tasks.

Similarly, Bennedsen & Caspersen (2005) investigated potential factors influencing

success in an introductory programming course. Their analysis revealed that only

two of the eight indicators were statistically significant. Mathematics grades from

high school stood out as one of these critical predictors, explaining over 15% of the

variation observed in exam grades. Bergin & Reilly (2006) corroborated the finding

199

that mathematics achievement strongly predicts performance in introductory

programming courses. Bubnic et al. (2024) found that students with strong, complex

problem-solving skills tended to perform better in introductory programming

courses. The structural equation modeling results revealed that 64% of the variance

in programming performance can be attributed to complex problem-solving skills.

Similarly, Nasution et al. (2022) conducted a study in high school and found a

positive correlation between the problem-solving abilities of students and their

achievements in programming assignments.

Upon reviewing the literature, it becomes evident that several studies have identified

mathematics as a significantly stronger predictor compared to the findings presented

in this research. These results may stem from the investigation's focus on a lower

grade level. Additionally, the study's measurement of programming knowledge and

understanding among fifth graders who were newly introduced to computer science

could contribute to this observation. This aligns with prior research that has

established a moderate predictive role of mathematics in programming performance

for younger students (e.g., Bennedsen & Caspersen, 2005).

The qualitative part of this research shed light on the specific difficulties students

faced and the underlying factors that influenced their success in programming.

According to the research findings, not only skills but also prior knowledge in

mathematics emerged as a significant factor influencing programming success.

Interviews with students revealed that mathematical concepts frequently posed

difficulties when solving problems in the programming environment they used in

their lessons. For instance, students often mentioned struggling with puzzles that

required rotating characters at specific angles, indicating a lack of understanding of

which angles to use. The qualitative analysis of this study goes beyond the initial

finding of student difficulty with angles. Student interviews revealed challenges with

other foundational mathematical concepts as well. These include directionality, the

ability to understand and represent movement along a designated path, which is

crucial for tasks involving directional commands within code. Spatial reasoning, the

cognitive skills necessary to manipulate and understand objects in a spatial context,

200

also proved challenging. This is particularly relevant for tasks requiring the

manipulation of on-screen objects or characters within a programmed environment.

Finally, the framework for describing and locating points within a two-dimensional

space, or coordinate systems, presented difficulties for students.

These findings highlight the importance of a strong foundation in these mathematical

concepts for successful programming, as students struggled with specific coding

examples that required applying these specific concepts. Calder (2010) employed a

block-based programming environment that demonstrably fostered deeper

engagement with geometric and measurement concepts. His study found that

students readily grasped concepts of positionality, measurement (including

coordinates, angles, and length), and spatial awareness within this environment. This

aligns with the current study's findings, suggesting a potential link between a robust

foundation in these mathematical concepts and success in programming tasks.

Furthermore, Brannon & Novak (2019) directly corroborates this connection. Their

investigation revealed that students encountering difficulties with mathematical

content on the coding platform used in this study also exhibited struggles with

geometric shapes, measurement, angles, and the coordinate system.

In a newly study, Bozal & Şendurur (2024) found no significant difference in

computational thinking test scores between elementary school students who learned

programming with math-supported activities and those who learned traditionally.

The researchers explained the study's unexpected results in two ways. Firstly, the

basic sorting tasks involved very beginner-level coding commands like moving and

turning. These tasks likely didn't require advanced mathematical thinking, leading to

similar scores across both groups. Secondly, the authors pointed out that current

teaching methods might not be effective in truly merging mathematics and

introductory computer science education. As the students' programming success in

the current study was also assessed based on fundamental programming concepts, it

is believed that the second factor (limitations in teaching methods) mentioned in the

aforementioned study likely explains the absence of significant differences. These

findings indicated that it is essential to ensure that computer science curricula

201

acknowledge the close relationship with mathematics. This underscores the need for

improved pedagogical approaches to leverage the connection between mathematics

and introductory computer science education for better learning outcomes in lower

grades.

Teachers also play a vital role in this process. Preliminary research within this study

showed that teachers, especially at the introductory level (such as fifth grade),

frequently utilize learning platforms focused on coding, with code.org being a

prominent example. Students typically engage in individual learning on these

platforms in a computer lab setting, where teachers provide support by moving

around the classroom. While teachers strive to assist students during individual

computer-based learning, the number of students and time constraints can hinder

their ability to provide adequate support and feedback, as emphasized by the

interviewed students. Therefore, the appropriateness of tasks to students' readiness

levels is paramount in such learning approaches. Teachers should carefully consider

the mathematical connections of selected topics and examples when structuring

lesson content, considering students' mathematical preparedness. Therefore, within

the trend of teaching coding to all children, it is essential that students first build a

strong foundation in mathematics to succeed in learning programming.

5.1.5 Reading Comprehension Skills

According to the findings of this study, reading comprehension achievement

emerged as the second strongest predictor of academic success among middle school

students. Given the nature of programming languages as high-level languages, which

demand the skill to interpret meaning beyond literal statements and recognize

patterns, reading proficiency is considered a fundamental prerequisite for effectively

learning and utilizing a programming language. Additionally, these languages

require the ability to synthesize information from code segments that might not be

presented in a sequence and build mental models of abstract concepts (Salac et al.,

2021; Schoeman, 2019). The relationship between reading comprehension ability

202

and programming success is multifaceted and significant in the related literature.

While this study utilized pre-built code blocks, the findings aligned with existing

research emphasizing the crucial role of code comprehension in successful

programming.

There is a growing body of study that established reading comprehension as a

significant predictor of programming success, underscoring the crucial role of

effective code comprehension in programming proficiency. Lopez et al. (2008)

investigated the relationship between code reading and code writing skills in novice

programmers. They analyzed student performance on exam questions that involved

code reading, tracing, and writing. Their findings showed a strong positive

correlation between these skills, with code reading skills explaining 31% of the

variation in student performance on code writing tasks. Similarly, Qian & Lehman

(2016) conducted a study on Chinese students who were not native English speakers

and found that proficiency in English was the strongest predictor of achievement in

introductory programming. In this study, while mathematic ability also showed a

correlation with performance, English proficiency emerged as the most significant

factor. Grover et al. (2016) further supported this notion by demonstrating that,

alongside math achievement, English ability served as a predictor of programming

outcomes. These findings are consistent with the current study’s emphasis on

identifying key predictors of programming performance.

Reading comprehension is critically important for students to make sense of the code

examples presented to them. This skill forms the foundation of programming

learning by enabling them to decode the concepts, relationships, and logic within the

code. As Lister et al. (2004) pointed out, students must be able to understand and

analyze code examples to learn programming concepts effectively. In the current

study, students did not have access to textbooks or printed materials. The absence of

these materials in this block-based programming environment presented a unique

challenge. While traditional classrooms might rely on students independently

understanding code examples from textbooks, this was not an option in this study

setting. Therefore, teachers became even more crucial in providing and explaining

203

code examples before transitioning students to practical exercises. This teacher-led

approach ensures that students grasp the concepts and are prepared to apply their

knowledge in real-world programming scenarios. Students' feedback during

interviews aligns with this notion. When discussing unplugged activities (activities

without computers), students mentioned the importance of understanding the

concepts before moving on to practical exercises when answering related questions.

This situation underscores the critical role of reading comprehension in block-based

programming. Students could independently analyze and understand code examples

by fostering reading comprehension skills, ultimately laying the foundation for

successful application in practical exercises.

The literature also emphasizes the importance of reading comprehension,

particularly in debugging. Reading code goes beyond just skimming it; it involves

genuinely understanding what the code does. This allows programmers to identify

and fix errors more easily (Perkins & Martin, 1986). While pre-built code blocks

were used instead of traditional text-based programming in this study, the findings

emphasized a similar relationship to text-based code reading. This suggests that code

reading and comprehension skills are essential for debugging and overall code

writing in programming, regardless of whether text-based or block-based.

Beyond traditional research methods, recent studies explore the link between reading

comprehension and programming proficiency through eye-tracking and brainwave

data. These studies reveal a fascinating connection: successful programmers exhibit

distinct eye movement patterns and brain activity patterns. For instance, research by

Ishida et al. (2020) and Ishida and Uwano (2019) suggested skilled programmers can

rapidly shift their focus between problem specifications and the actual code.

Additionally, their brainwaves showed an increase in specific frequencies over time,

indicating heightened mental engagement. Further evidence comes from longitudinal

eye-tracking studies by Andrzejewska and Kotoniak (2020). Their findings show that

as students' programming skills improve, their eye movements become more

efficient. This translates to increased distance traveled between fixations (saccade

amplitude) and shorter fixation durations. These findings go beyond traditional text-

204

based assessments, suggesting that eye-tracking and brainwave data can offer

valuable information about the cognitive processes underlying successful

programming. This research not only supports the link between reading

comprehension and programming but also highlights the value of alternative

measurement methods.

While the majority of research underscores the positive influence of reading

comprehension on programming proficiency, the bidirectional nature of this

relationship has also been explored. Studies have demonstrated that computer

instruction can enhance mathematical skills but may have less consistent effects on

reading comprehension (Salac et al., 2021). Additionally, the impact of

programming instruction on reading skills, as evidenced by Papatga and Ersoy

(2016), suggests a potential complementary relationship between these two domains.

5.1.6 Attitude Toward Programming

This study identified attitude as a significant predictor of programming success. The

research employed in-depth student interviews to gain a richer understanding of the

factors influencing these attitudes. These interviews explored both positive and

negative student perceptions of programming. In a qualitative analysis, the attitude

was understood in a broader sense, reflecting an individual's expressed preferences

and feelings toward engaging in a particular behavior (Fishman et al., 2021). This

approach complements the investigation of other psychosocial constructs, such as

goal orientation and self-efficacy, explored in this study.

Researchers have consistently identified attitude as a critical factor influencing

student achievement. This holds true across various educational settings, including

the field of computer science education. While a significant body of research has

explored the attitudes of older students toward programming, investigations into the

attitudes of younger learners are gaining increasing attention, and studies directly

examining the impact of attitude on computer programming achievement are limited

205

(e.g., Deniz & Korucu, 2023; Love, 2023; Sun et al., 2022). Early studies primarily

focused on the direct link between attitude and programming learning. More recent

investigations have expanded the scope to examine the association between attitude

and computational thinking, as well as its role in STEM education. It is noteworthy

that a significant portion of the existing research aligns with the findings of this

study, further reinforcing the notion that attitude plays a pivotal role in shaping

student outcomes in computer science education (Sun et al., 2022).

In the literature, mathematics attitude has been identified as a factor positively

influencing the computer programming learning of K-12 students (Ching et al., 2019;

Ober et al., 2024). While a direct relationship between mathematics attitude and

programming achievement was not explicitly tested in this study, the significant

predictive power of mathematics achievement test scores for coding performance

suggests that mathematics attitude may also play a positive role. This interpretation

is supported by the established positive correlation between mathematics attitude and

mathematics achievement in this study.

This study employed a combination of plugged and unplugged programming

activities, with unplugged activities serving as an introduction to the concepts and

plugged activities involving programming tasks on the code.org digital coding

platform within a computer lab. Qualitative analysis revealed that students generally

expressed more positive attitudes towards the plugged activities. In contrast to this

study's finding, Love's (2023) study revealed a significant impact of physical

computing activities on five attitude constructs among students: “definition, comfort,

interest, classroom applications, and career/future use”. Additionally, in this study,

it was reported that 77% of the students expressed a preference for these physical

activities over screen-based programming instruction. It is crucial to distinguish the

physical activities employed in Love's study from the unplugged activities discussed

in the present research. The former involved the interactive physical systems or

devices that students program using software to create user-driven responses and

behaviors, while the latter encompassed paper-based activities, games, and other

unplugged experiences devoid of any integrated systems. In addition to the distinct

206

nature of the physical activities employed, several other factors could have

contributed to the contrasting findings between Love's study and the present

research. One potential explanation lies in the methodological approach. Love's

study utilized a purely physical computing approach, while the present research

utilized a mixed-methods approach that incorporated both unplugged and plugged

(computer-based) programming activities. This difference in instructional strategies

could have influenced student engagement and attitude formation. Moreover, the

relative weight of unplugged and computer-based activities could have played a role

in shaping the results. A greater emphasis on plugged activities might have resonated

more strongly with students' desire for hands-on learning and potentially led to more

positive attitudes. Additionally, considering the growing interest in technology

among students, the present study’s findings are not entirely surprising.

The results revealed a generally positive attitude towards programming. Students

expressed a stronger preference for computer-based activities compared to

unplugged activities that do not involve computers. Students were frequently

observed to characterize this learning platform as enjoyable. This aligns with existing

research suggesting a positive correlation between students' positive attitudes toward

computers and their willingness to engage with programming. These results

underscore the significance of considering student preferences when designing and

developing programming education.

A notable finding from this study is the positive perception of enjoyment expressed

by participants towards the unplugged activities. This aligns with previous research,

such as Taub et al. (2012), where students consistently reported positive attitudes

towards unplugged activities, often characterizing them as "fun" and engaging. In

this study, while most of the students expressed a preference for computer-based

(plugged) activities, they also highlighted positive aspects of unplugged activities,

particularly emphasizing the value of social interaction in these settings, which was

coded as "enjoyment of social interaction".

207

A separate study investigating the impact of pair programming on programming

learning outcomes and attitudes revealed that attitudinal factors did not exert a

significant influence on student learning within the pair programming setting

(Vandenberg et al., 2021). This could be attributed to the collaborative nature of pair

programming, where the shared learning environment and active engagement with a

partner may mitigate the influence of individual attitudinal factors.

5.1.7 Patterns of Adaptive Learning

Among the subscales of the PALS, only the academic self-handicapping strategies

variable emerged as a predictor of programming success in this study. The

relationship between achievement and handicapping strategies was found to be

negative. Although there has been limited research on self-handicapping strategies

in programming, particularly in middle school contexts, studies in other domains

have produced varying results regarding its relationship with achievement

(Schwinger et al., 2014). However, the general trend, parallel to the findings of this

study, suggests a negative correlation between self-handicapping and academic

achievement (Urdan, 2004; Urdan et al., 1998). Schwinger et al. (2014) emphasized

the influence of school type on this relationship. The finding that handicapping

strategies emerged as a significant predictor in this study could be attributed, in part,

to the school level, aligning with previous research suggesting a stronger association

between self-handicapping and achievement in elementary schools compared to high

schools (Leondari & Gonida, 2007).

Given the assumption that contextual and motivational factors can shape students'

attitudes and behaviors, it is reasonable to expect disparities in academic self-

handicapping strategies between urban and suburban school environments (Urdan &

Midgley, 2001). While personal goal orientations and perceived classroom goal

structures did not directly and significantly influence programming achievement in

this study, the observed differences between urban and suburban schools in these

variables suggest a more complex interplay between individual and contextual

208

factors that could potentially moderate the relationship with self-handicapping.

Although the specific relationships between goal orientations and perceived goal

structures with other variables were beyond the scope of this study, the literature

points to a positive association between self-handicapping strategies and

performance-avoid goals and classroom performance goal structure (Leondari &

Gonida, 2007; Urdan, 2004) and a negative association with mastery goals (Midgley

& Urdan, 2001).

The qualitative data from this study indicated a higher frequency of expressions

related to mastery goal orientations among the students, such as career-oriented

goals, challenge seeking, and relevance to daily life. However, there were also a

notable number of expressions related to performance approach and performance-

avoidance goals. Specifically, codes such as competition focus (f = 4), completion-

driven motivation (f = 11), and fear of failure (f = 6) were identified as significant in

the context of academic self-handicapping. The instructional environment used for

the plugged activities in this study was game-based, where students progressed to

the next level by completing puzzles designed to teach programming concepts. This

type of performance-focused instructional practice has been reported to increase

perceived classroom performance goals, which in turn can predict the use of self-

handicapping strategies (Urdan et al., 1998). The emphasis on completing tasks to

advance in levels may inadvertently encourage students to adopt self-handicapping

behaviors to protect their self-esteem and mitigate fear of failure.

5.2 Conclusion

Programming education has increasingly become an essential skill and field to be

introduced at various educational levels, including early childhood. However, as

extensively discussed in the literature, students often face difficulties when learning

programming. This study, utilizing a mixed-method design, investigated the

computer programming learning processes of fifth-grade students who are new to

coding and even computer science over a ten-week period. The study evaluated the

209

effects of sociodemographic attributes, educational background, affective and

motivational learner characteristics, attitudes toward programming, and cognitive

load levels of students on their programming learning.

A total of 199 students from three different schools participated in the study, with

one school located in an urban area and the other two in suburban areas. Five research

questions were addressed within the scope of this study. The first research question

examined the changes in different types of cognitive load experienced by students

while learning seven different coding topics (basic sequences, flowcharts, testing and

debugging, loops, nested loops, flowcharts, variables). The second and third research

questions investigated whether there were differences in the research variables based

on students' gender and the geographical location of their schools. The fourth

research question explored the extent to which the research variables explained

changes in students' coding achievement. The final research question aimed to

examine students' perspectives and experiences regarding the programming

instruction process.

The study results indicated that students experienced high cognitive load,

particularly with the concept of nested loops, due to its intrinsic complexity. On the

other hand, it was unexpectedly found that students had difficulty with basic

sequences in the first week. The interview findings revealed that the unplugged

activity during the first week increased the students' intrinsic and extraneous

cognitive load. Another example is the concept of variables. Although the intrinsic

and extraneous loads for this topic were quite low, interviews indicated that students

found the topic abstract and confusing. The examples provided during unplugged

activities did not help in fully understanding this abstract concept. Furthermore,

students reported that they did not fully understand how to use the relevant code

block in a block-based programming environment that they applied to the same topic

on the computer. This also highlights the importance of providing adequate pre-

instructional guidance for self-regulated learning, especially since the sample

consisted of students with no prior knowledge of computer science.

210

Unplugged activities were observed to be less preferred than computer-based

activities, and students expressed less positive attitudes towards them. One of the

reasons for this may be that some of these activities caused an increase in the

cognitive load of the students.

Another factor that contributed to increased cognitive load and negatively affected

the programming learning process was the students' lack of mathematical

knowledge. Students particularly struggled with topics such as angles and the

coordinate plane due to insufficient prior knowledge. Analysis results, consistent

with the literature, also demonstrated that mathematical achievement is a significant

predictor of coding success.

When examining whether gender characteristics developed a difference in the

research variables, it was found that gender did not result in a significant difference

for any of the variables. However, the geographical school location caused

differences in both the affective and motivational variables, academic achievements,

and the cognitive loads experienced by the students, all favoring urban schools.

Students in suburban areas were typically of lower socioeconomic status and had

less exposure to computers, significantly impacting their programming achievements

and other programming-related variables. One unexpected finding was the lack of

difference in attitudes between urban and suburban students. This can be attributed

to several factors: the general fondness for computers among students, the teacher's

efforts to create a positive classroom atmosphere, and the absence of programming

questions in high-stakes exams like the high school entrance exams, students being

exposed to ITS (Information Technology and Software) classes for only two years,

which may contribute to more positive attitudes.

The study identified several variables that predict differences in students'

programming achievement, including mathematics and reading comprehension

performance, extraneous load, attitude, and academic self-handicapping strategies.

The relationship between reading comprehension and programming learning has

211

been increasingly discussed in recent years, with a growing body of evidence

supporting this connection.

In this study, the relationship was not influenced by the fact that programming

languages are typically in English, as students created algorithms using a block-

based application and selected the Turkish language option (their native language)

on the website. This finding underscores the importance of language skills in

understanding problem scenarios effectively, as programming requires an effective

problem-solving approach.

Another significant variable closely related to coding success was extraneous load.

In particular, poorly structured examples can increase extraneous load, especially for

students with no prior experience or lower skills in mathematics and programming,

thereby affecting their performance. Additionally, academic self-handicapping

strategies emerged as an important predictor of coding success. The necessity of pair

programming due to the lack of sufficient computers for each student led to some

students not participating actively in the problem-solving process, as they relied on

their partners. Interviews revealed that students who did not consider themselves

successful often left the entire process to their partners and did not even look at the

computer while their partners were solving the problems.

Given that a significant portion of the lessons involved computer-based activities,

students who did not engage actively in these activities missed out on essential

programming practice. Consequently, it is not surprising that academic self-

handicapping strategies predict programming success. In pair programming, a

student's passivity can also result from the dominance of the other student. This

highlights the importance of carefully selecting pairs for pair programming and

providing adequate guidance on how to engage effectively in this collaborative

approach.

The large class size often limited the assistance teachers could provide during hands-

on programming sessions, necessitating peer learning. While peer learning has

benefits, such as promoting information sharing and supporting collaborative and

212

social learning, it also has drawbacks. For instance, dominant peers can overshadow

others, some students might withdraw without challenging themselves, and peers

might not always have the necessary knowledge or skills to explain concepts

effectively to their peers. These issues sometimes led to students copying solutions

from their peers. Furthermore, game-based learning activities, which were intended

to engage students, also contributed to cheating behaviors. However, these behaviors

were not found to be significant predictors of programming success. Although the

relationship between game-based learning environments and students' performance-

approach goal orientations was noted in interviews, these orientations, like other goal

orientations and perceived classroom goal structures, were not significant predictors

of coding success.

In summary, this study investigated the learning of fundamental programming

concepts by fifth-grade students using a multifaceted approach. The findings

revealed that students' academic backgrounds, specifically in mathematics and

reading comprehension, were the most significant predictors of programming

achievement. The study highlighted the difficulty in teaching concepts such as nested

loops and variables in programming lessons. The importance of extraneous load in

programming learning underscored the significance of instructional design. Among

the affective and motivational factors, attitude and academic self-handicapping

strategies were found to have a significant impact.

5.3 Implications of the Findings

Based on the findings of this study, the following recommendations are proposed for

instructors and policymakers to effectively teach programming to middle school

students who are novices in the subject:

• Introducing foundational skills before teaching coding can create a more

positive and productive learning environment for students with no prior

computer science experience. Initial lessons or activities aimed at

213

strengthening these foundational skills in computer science can help reduce

feelings of frustration and overwhelm common among beginners. This

approach can lead to a more sustained interest in programming, higher

motivation, and a willingness to persevere through difficulties.

• Developing and maintaining an inclusive curriculum that highlights the

relevance and application of programming skills to diverse fields is crucial.

The relationship between programming and other fields can enhance

students' learning experiences and outcomes.

• Mathematics is a critical foundation for programming success, making it

essential to integrate mathematical considerations into computer science

curricula. Incorporating mathematical principles such as algorithms, logic,

data structures, and problem-solving techniques into programming education

can strengthen students' mathematical skills and reinforce the connection

between programming and mathematics. This approach can lead to improved

learning outcomes and a deeper understanding of both subjects.

• Task design should align with students' mathematical readiness levels. It's

important to be aware of students' mathematical backgrounds and provide

additional support for those struggling with concepts like angles and

coordinates, which can impact programming success. This approach ensures

that all students, regardless of their initial proficiency, can engage with and

succeed in programming tasks.

• Considering the role of reading comprehension in computer programming

education is essential. Developing these skills helps students to understand

the problem scenario, identify key information, and break down complex

problems into manageable steps. This forms the foundation for writing

efficient and accurate code.

• The findings suggest that interventions aiming to improve coding

achievement should focus on reducing extraneous cognitive load. Paying

close attention to activity design and examples can help minimize this load,

especially for beginners. This might involve simplifying initial activities and

214

explanations or providing more scaffolding. Additionally, bridging the gap

between unplugged activities and computer-based coding is crucial.

Revisiting unplugged activities after the related coding concepts are learned

may ensure a clear connection between unplugged activities and the

programming concepts they introduce.

• The absence of textbooks limits the resources and materials available to

students for their courses. If students also lack technological resources, they

have no means to practice programming outside of school. Therefore, it is

crucial to provide students with the necessary resources. Sharing these

essential materials ensures that students can continue their learning and

practice programming even outside the classroom, thereby supporting their

educational development and success.

• Encouraging collaboration between teachers from different subjects might

help create engaging and effective learning experiences that blend various

concepts. By working together, teachers might develop lessons that integrate

programming with other disciplines, making the learning process more

dynamic and relevant. This interdisciplinary approach might also allow

students to see the practical applications of programming in various fields

and help them understand how knowledge from different areas interconnects,

leading to a deeper and more comprehensive understanding of the material.

• Addressing the specific challenges faced by rural and suburban students

highlights the need for a comprehensive approach. This includes improving

educational resources in rural areas, supporting foundational academic skills,

and creating an engaging learning environment that minimizes unnecessary

cognitive load. Such efforts might help ensure that all students, regardless of

their location, have access to high-quality education and opportunities for

success in programming and other subjects.

• To optimize pair programming, educators should adopt a structured

approach. This includes strategically pairing students based on skill, learning

style, and personality to create a balanced learning environment. It is

215

important to provide clear guidelines for effective collaboration to prevent

students from becoming passive learners. Monitoring and intervention

strategies like targeted support and potential re-pairing might address

imbalances and ensure all students benefit. Leveraging social learning

dynamics through positive reinforcement, peer evaluation, and group

discussions strengthens collaboration skills, might promote knowledge

sharing, and fosters a deeper learning experience for all students.

• To foster positive attitudes towards coding, which might contribute to better

learning outcomes, it is recommended to create an engaging and supportive

learning environment. Integrating real-world applications of coding and

highlighting its relevance across various fields might motivate students and

enhance their interest in learning coding.

• While block-based programming environments are valuable for introducing

younger students to coding, they can inadvertently create a competitive

learning atmosphere through game-based elements. Structuring game-based

learning activities around shared goals can help encourage students to work

together towards a common objective. This fosters collaboration,

communication, and problem-solving as a team rather than promoting

individual competition. Such an approach helps to avoid outcomes that

negatively impact students' learning and discourage self-handicapping

behaviors.

• This study’s findings showed that resource availability significantly affects

programming education, suggesting that schools need to invest in up-to-date

hardware and software to facilitate effective learning. Ensuring that students

have access to the necessary technological tools is essential for providing a

high-quality computer education and improving overall educational

outcomes.

216

5.4 Recommendations for Further Research

This study investigated the variables associated with middle school students' success

in learning fundamental computer programming concepts. To assess the model's

generalizability, future research should explore its effectiveness in diverse

educational settings, encompassing different schools, districts, or even countries.

Additionally, researchers should employ a variety of programming languages and

platforms to determine if the model applies equally well across diverse coding

environments. The qualitative portion of this research identified other factors

potentially influencing programming success that warrant further investigation.

These include prior experiences with coding or technology, the effectiveness of

paired programming compared to solo programming approaches, and the impact of

technology exposure on learning outcomes. Notably, this study did not examine the

changes in students' motivational factors throughout the educational process.

Experimental studies could be designed to explore these changes and their potential

relationship to programming success. It is also important to incorporate a wider range

of assessment techniques to capture a more comprehensive picture of student

learning. While this study did not directly link motivational variables to

programming success, examining their relationships within the context of

programming instruction for middle school students remains valuable. Furthermore,

research should explore the effectiveness of different interventions in programming

education to specifically address and potentially reduce the achievement gaps

between students from diverse sociodemographic backgrounds. By pursuing these

research avenues, future studies could contribute significantly to a deeper

understanding of the factors that contribute to successful programming learning in

middle school. This knowledge can then be used to develop more effective strategies

for engaging and empowering all students in this critical field.

217

REFERENCES

Abdul-Rahman, S. S., & Du Boulay, B. (2014). Learning programming via worked-
examples: Relation of learning styles to cognitive load. Computers in Human
Behavior, 30(1), 286–298. https://doi.org/10.1016/j.chb.2013.09.007

Abdul Rahman, S. S. (2012). Learning programming via worked-examples: The
effects of cognitive load and learning styles (Publication No. 1442498903.)
[Doctoral dissertation, University of Sussex]. ProQuest Dissertations & Theses
Global.

Abou Naaj, M., & Nachouki, M. (2023). Students’ perception of academic
dishonesty in programming courses. Journal of Further and Higher Education,
47(1), 72–88. https://doi.org/10.1080/0309877X.2022.2093630

Agnello, M. F., Araki, N., & Domenach, F. (2019). Building human infrastructure
through programming and English Education in rural Japan. International
Journal for Talent Development and Creativity, 7(1–2), 91–97.
https://files.eric.ed.gov/fulltext/EJ1297223.pdf

Akinola, S. O. (2015). Computer programming skill and gender difference: An
empirical study. American Journal of Scientific and Industrial Research, 7(1),
1–6. https://doi.org/10.5251/ajsir.2016.7.1.1.9

Akpomudjere, O. (2020). Effects of School location and teachers’ quality on students
performance in business studies examination in public secondary schools in
Sapele local government area of Delta State. Higher Education Studies, 10(2),
114-121. https://doi.org/10.5539/hes.v10n2p114

Albayrak, E., & Polat, E. (2022). Pair programming experiences of prospective
information technologies teachers. Bartın University Journal of Faculty of
Education, 11(2), 342–354. https://doi.org/10.14686 / 991448

Altun, A., & Kasalak, İ. (2018). Blok temelli programlamaya (kodlama) ilişkin öz-
yeterlik algısı ölçeği geliştirme çalışması. Eğitim Teknolojisi Kuram ve
Uygulama, 8(1), 209–225. https://doi.org/10.17943/etku.335916

218

Ames, C., & Archer, J. (1988). Achievement goals in the classroom: Students’
learning strategies and motivation processes. Journal of Educational
Psychology, 80(3), 260–267. https://doi.org/10.1037//0022-0663.80.3.260

Anderman, E. M., & Midgley, C. (2004). Changes in self-reported academic cheating
across the transition from middle school to high school. Contemporary
Educational Psychology, 29(4), 499–517.
https://doi.org/10.1016/j.cedpsych.2004.02.002

Andrzejewska, M., & Kotoniak, P. (2020). Development of program comprehension
skills by novice programmers – longitudinal eye tracking studies. Informatics
in Education, 19(4), 521–541. https://doi.org/10.15388/infedu.2020.23

Arevalo-Mercado, C. A., Munoz-Andrade, E. L., Cardona-Reyes, H., & Romero-
Juarez, M. G. (2023). Applying cognitive load theory and the split attention
effect to learning data structures. Revista Iberoamericana de Tecnologias Del
Aprendizaje, 18(1), 107–113. https://doi.org/10.1109/RITA.2023.3250580

Asad, K., Tibi, M., & Raiyn, J. (2016). Primary school pupils’ attitudes toward
learning programming through visual interactive environments. World Journal
of Education, 6(5), 20–26. https://doi.org/10.5430/wje.v6n5p20

Askar, P., & Davenport, D. (2009). An investigation of factors related to self-efficacy
for java programming among engineering students. Turkish Online Journal of
Educational Technology, 8(1), 26–32. http://hdl.handle.net/11693/22504

Atkinson, R. K., Derry, S. J., Renkl, A., & Wortham, D. (2000). Learning from
examples: Instructional principles from the worked examples research. Review
of educational research, 70(2), 181-214. hptts://
doi:10.3102/00346543070002181

Ayre, C., & Scally, A. J. (2014). Critical values for Lawshe’s content validity ratio:
Revisiting the original methods of calculation. Measurement and Evaluation in
Counseling and Development, 47(1), 79–86.
https://doi.org/10.1177/0748175613513808

Bæck, U. D. K. (2016). Rural location and academic success—remarks on research,
contextualisation and methodology. Scandinavian Journal of Educational
Research, 60(4), 435–448. https://doi.org/10.1080/00313831.2015.1024163

http://hdl.handle.net/11693/22504

219

Baist, A., & Pamungkas, A. S. (2017). Analysis of student difficulties in computer
programming. VOLT : Jurnal Ilmiah Pendidikan Teknik Elektro, 2(2), 81.
https://doi.org/10.30870/volt.v2i2.2211

Bandura, A. (1977). Self-efficacy: Toward a unifying theory of behavioral change.
Psychological Review, 84(2), 191–215. https://doi.org/10.1037/0033-
295X.84.2.191

Barros, B., Conejo, R., Ruiz-Sepulveda, A., & Triguero-Ruiz, F. (2021). I explain,
you collaborate, he cheats: An empirical study with social network analysis of
study groups in a computer programming subject. Applied Sciences , 11(19), 1-
32. https://doi.org/10.3390/app11199328

Baser, M. (2013). Attitude, gender and achievement in computer programming.
Middle East Journal of Scientific Research, 14(2), 248–255.
https://doi.org/10.5829/idosi.mejsr.2013.14.2.2007

Bau, D., Gray, J., Kelleher, C., Sheldon, J., & Turbak, F. (2017). Learnable
programming: Blocks and beyond. Communications of the ACM, 60(6), 72–80.
https://doi.org/10.1145/3015455

Bennedsen, J., & Caspersen, M. E. (2005). An investigation of potential success
factors for an introductory model-driven programming course. Proceedings of
the 1st International Computing Education Research Workshop, ICER 2005,
155–163. https://doi.org/10.1145/1089786.1089801

Bergey, B. W., Ketelhut, D. J., Liang, S., Natarajan, U., & Karakus, M. (2015).
Scientific inquiry self-efficacy and computer game self-efficacy as predictors
and outcomes of middle school boys’ and girls’ performance in a science
assessment in a virtual environment. Journal of Science Education and
Technology, 24(5), 696–708. https://doi.org/10.1007/s10956-015-9558-4

Bergin, S., & Reilly, R. (2006). Predicting introductory programming performance:
A multi-institutional multivariate study. Computer Science Education, 16(4),
303–323. https://doi.org/10.1080/08993400600997096

Bergman, E. M., De Bruin, A. B. H., Vorstenbosch, M. A. T. M., Kooloos, J. G. M.,
Puts, G. C. W. M., Leppink, J., Scherpbier, A. J. J. A., & Van Der Vleuten, C.
P. M. (2015). Effects of learning content in context on knowledge acquisition

220

and recall: A pretest-posttest control group design. BMC Medical Education,
15(1), 1–12. https://doi.org/10.1186/s12909-015-0416-0

Berssanette, J. H., & De Francisco, A. C. (2022). Cognitive load theory in the context
of teaching and learning computer programming: A systematic literature
review. IEEE Transactions on Education, 65(3), 440–449.
https://doi.org/10.1109/TE.2021.3127215

Beyer, S. (2014). Why are women underrepresented in Computer Science? Gender
differences in stereotypes, self-efficacy, values, and interests and predictors of
future CS course-taking and grades. Computer Science Education, 24(2–3),
153–192. https://doi.org/10.1080/08993408.2014.963363

Beyer, S., Rynes, K., Perrault, J., Hay, K., & Haller, S. (2003). Gender differences
in computer science students. Proceedings of the 34th SIGCSE Technical
Symposium on Computer Science Education, USA, 34(1), 49–53.
https://doi.org/10.1145/611892.611930

Blanco, J., Losano, L., Aguirre, N., Novaira, M. M., Permigiani, S., & Scilingo, G.
(2009). An introductory course on programming based on formal specification
and program calculation. SIGCSE Bulletin Inroads, 41(2), 31–37.
https://doi.org/10.1145/1595453.1595459

Bliss, T. V. P., & Collingridge, G. L. (1993). A synaptic model of memory: Long-
term potentiation in the hippocampus. Nature, 361(6407), 31–39.
https://doi.org/10.1038/361031a0

Bonilla-Mejía, L., & Londoño-Ortega, E. (2021). Geographic isolation and learning
in rural schools (BDE Publication No. 1169). Borradores de Economía.
https://repositorio.banrep.gov.co/server/api/core/bitstreams/0a9e6cc6-89b0-
4d3b-a255-03db6556b42f/content

Bouck, E. C. (2005). Service delivery and instructional programming in rural,
suburban, and urban secondary special education: An exploratory study. Rural
Special Education Quarterly, 24(4), 18–25.
https://doi.org/10.1177/875687050502400404

Bounajim, D., Rachmatullah, A., Hinckle, M., Mott, B., Lester, J., Smith, A.,
Emerson, A., Fahid, F. M., Tian, X., Wiggins, J. B., Boyer, K. E., & Wiebe, E.

221

(2021). Applying cognitive load theory to examine STEM undergraduate
students’ experiences in an adaptive learning environment: A mixed-methods
study. Proceedings of the Human Factors and Ergonomics Society, 65(1), 556–
560. https://doi.org/10.1177/1071181321651249

Bowman, N. A., Jarratt, L., Culver, K. C., & Segre, A. M. (2019). How prior
programming experience affects students’ pair programming experiences and
outcomes. Proceedings of the ACM Conference on Innovation and Technology
in Computer Science Education, ITiCSE, UK, 24(1), 170–175.
https://doi.org/10.1145/3304221.3319781

Bozal, M., & Şendurur, P. (2024). The effect of introductory programming education
on computational thinking. Instructional Technnology and Lifelong Learning,
5(1), 21–46. https://doi.org/10.52911/itall.1394556

Brannon, M., & Novak, E. (2019). Coding success through math intervention in an
elementary school in rural Amish Country. Journal of Computer Science
Integration, 2(2). https://doi.org/10.26716/jcsi.2019.02.2.1

Bruckman, A., Jensen, C., & Debonte, A. (2002). Gender and programming
achievement in a CSCL environment. Proceedings of the Conference on
Computer Support for Collaborative Learning: Foundations for a CSCL
Community, USA, 4(1), 119-127.
https://dl.acm.org/doi/10.5555/1658616.1658634

Bubnic, B., Mernik, M., & Kosar, T. (2024). Exploring the predictive potential of
complex problem-solving in computing education: A case study in the
introductory programming course. Mathematics, 12(11), 1-27.
https://doi.org/10.3390/math12111655

Bucks, G., & Oakes, W. C. (2011). Phenomenography as a tool for investigating
understanding of computing concepts. Proceedings of ASEE Annual
Conference and Exposition, Texas, 3(1), 1-22. https://doi.org/10.18260/1-2--
18485

Çakiroğlu, Ü., Suiçmez, S. S., Kurtoğlu, Y. B., Sari, A., Yildiz, S., & Öztürk, M.
(2018). Exploring perceived cognitive load in learning programming via
scratch. Research in Learning Technology, 26(1), 1–20.
https://doi.org/10.25304/rlt.v26.1888

https://doi.org/10.52911/itall.1394556

222

Calder, N. (2010). Using Scratch: An integrated problem-solving approach to
mathematical thinking. Australian Primary Mathematics Classroom, 15(4), 9–
14. https://files.eric.ed.gov/fulltext/EJ906680.pdf

Caspersen, M. E., & Bennedsen, J. (2007). Instructional design of a programming
course ⎯ A learning theoretic approach. Proceedings of the 3rd International
Workshop on Computing Education Research, USA, 3(1), 111–122.
https://doi.org/10.1145/1288580.1288595

Cesur Özkara, E., & Yanpar Yelken, T. (2020). Ortaöğretim öğrencilerine yönelik
programlama öz yeterlik ölçeğinin geliştirilmesi: Geçerlik ve güvenirlik
çalışması. Eğitim Teknolojisi Kuram ve Uygulama, 10(2), 345–365.
https://doi.org/10.17943/etku.632606

Chand, D., & Mohan, P. (2019). Impact of school locality on teaching and learning:
A qualitative inquiry. Waikato Journal of Education, 24(2), 65–72.
https://doi.org/10.15663/wje.v24i2.672

Chandler, P., & Sweller, J. (1994). Why some material is difficult to learn. Cognition
and Instruction,12,(3)185–233. https://doi.org/10.1207/s1532690xci1203_1

Chandler, P., & Sweller, J. (1996). Cognitive load while learning to use a computer
program. Applied Cognitive Psychology, 10(2), 151–170.
https://doi.org/10.1002/(SICI)1099-0720(199604)10:2<151::AID-
ACP380>3.0.CO;2-U

Chase, W. G., & Simon, H. A. (1973). Perception in chess. Cognitive Psychology,
4(1), 55–81. https://doi.org/10.1016/0010-0285(73)90004-2

Cheryan, S., Master, A., & Meltzoff, A. N. (2015). Cultural stereotypes as
gatekeepers: Increasing girls’ interest in computer science and engineering by
diversifying stereotypes. Frontiers in Psychology, 6(1), 1–8.
https://doi.org/10.3389/fpsyg.2015.00049

Chi, M. T. H., Glaser, R., & Rees, E. (1982). Expertise in problem solving. In R.J.
Sternberg (Ed.), Advances in the Psychology of Human Intelligence (Vol. 1, pp.
7-75). Erlbaum

Ching, Y. H., Yang, D., Wang, S., Baek, Y., Swanson, S., & Chittoori, B. (2019).

https://doi.org/10.1145/1288580.1288595
https://doi.org/10.17943/etku.632606

223

Elementary school student development of STEM attitudes and perceived
learning in a STEM integrated robotics curriculum. TechTrends, 63(5), 590–
601. https://doi.org/10.1007/s11528-019-00388-0

Code.org. (2022). Code.org 2022 Annual Report. https://code.org/about/2022

Code.org. (2024). About us. https://code.org/about

Cohen, L., Manion, L., & Morrison, K. (2017). Research Methods in Education.
Routledge. https://doi.org/10.4324/9781315456539

Coleman, S. A., & Nichols, E. (2011). Embedding inquiry based learning into
programming via paired assessment. ITALICS Innovations in Teaching and
Learning in Information and Computer Sciences, 10(1), 72–77.
https://doi.org/10.11120/ital.2011.10010072

Cooper, G. (1998). Research into cognitive load theory and instructional design at
UNSW. Cognitive Load Theory and Instructional Design at UNSW.
http://penta2.ufrgs.br/edu/edu3375/CLT_NET_Aug_97.HTML

Corbin, J., & Strauss, A. (2012). Basics of qualitative research: Techniques and
procedures for developing grounded theory (4th ed.). SAGE.

Cowan, N. (2014). Working memory underpins cognitive development, learning,
and education. Educational Psychology Review, 26(2), 197–223.
https://doi.org/10.1007/s10648-013-9246-y

Cresswell, J., & Underwood, C. (2004). Location, location, location: Implications of
geographic situation on Australian student performance in PISA 2000 (ACER
Research Monograph Publication No.58).
https://research.acer.edu.au/acer_monographs/2

Creswell, J. W. (2007). Qualitative Inquiry and Research Design. SAGE

Creswell, J. W. (2012). Educational research; planning, conducting, and evaluating
quantitative and qualitative research (4th ed.). Pearson Education.

224

Creswell, J. W. (2015). Educational research: Planning, conducting, and evaluating
quantitative and qualitative research (5th ed.). Pearson Education.

Creswell, J. W., & Miller, D. L. (2000). Determining validity in qualitative inquiry.
Theory Into Practice, 39(3), 124–130.
https://doi.org/10.1207/s15430421tip3903_2

Dale, N. B. (2006). Most difficult topics in CS1. ACM SIGCSE Bulletin, 38(2), 49–
53. https://doi.org/10.1145/1138403.1138432

De Groot, A. D. (1978). Thought and Choice in Chess (2nd ed.).Walter De Gruyter

de Vink, I. C., Tolboom, J. L. J., & van Beekum, O. (2023). Exploring the effects of
near-peer teaching in ro-botics education: The role of STEM attitudes.
Informatics in Education, 22(2), 329–350.
https://doi.org/10.15388/infedu.2023.10

Deniz, T., & Korucu, A. T. (2023). The effect of coding education designed with
different visual programs on academic success and attitudes and self-
efficiencies of secondary school students. Journal of Teacher Education and
Lifelong Learning, 5(1), 307–323. https://doi.org/10.51535/tell.1279547

Denzin, N. K. (2012). Triangulation 2.0*. Journal of Mixed Methods Research, 6(2),
80–88. https://doi.org/10.1177/1558689812437186

Doubé, W., & Lang, C. (2012). Gender and stereotypes in motivation to study
computer programming for careers in multimedia. Computer Science
Education, 22(1), 63–78. https://doi.org/10.1080/08993408.2012.666038

Duran, R., Zavgorodniaia, A., & Sorva, J. (2022). Cognitive Load theory in
computing education research: A review. ACM Transactions on Computing
Education, 22(4), 1–27. https://doi.org/10.1145/3483843

Dweek, C. S. (1986). Dweck (1986). Motivational processes affecting
learning. American Psychologist, 41(10), 1040–
1048. https://doi.org/10.1037/0003-066X.41.10.1040

Elliot, A. J., & McGregor, H. A. (2001). A 2 × 2 achievement goal framework.

https://psycnet.apa.org/doi/10.1037/0003-066X.41.10.1040

225

Journal of Personality and Social Psychology, 80(3), 501–519.
https://doi.org/10.1037/0022-3514.80.3.501

Elliot, A. J., Murayama, K., & Pekrun, R. (2011). A 3 × 2 achievement goal model.
Journal of Educational Psychology, 103(3), 632–648.
https://doi.org/10.1037/a0023952

Elliott, E. S., & Dweck, C. S. (1988). Goals: An approach to motivation and
achievement. Journal of Personality and Social Psychology, 54(1).
https://doi.org/10.1037/0022-3514.54.1.5

Erdem, E. (2018). Blok tabanlı ortamlarda programlama öğretimi sürecinde farklı
öğretim stratejilerinin çeşitli değişkenler açısından incelenmesi. [Master
Thesis, Başkent Üniversitesi]. BU Repository.
http://acikerisim.baskent.edu.tr:8080/handle/11727/2903

Erdogan, Y., Aydin, E., & Kabaca, T. (2008). Exploring the psychological predictors
of programming achievement. Journal of Instructional Psychology, 35, 264–
271. http://imo.pau.edu.tr/tolga/predictor_programming.pdf

Erten, I. H. (2015). Validating Myself-As-A-Learner Scale (MALS) in the Turkish
Context. Novitas-ROYAL (Research on Youth and Language), 9(1), 46-59.
https://files.eric.ed.gov/fulltext/EJ1167210.pdf

Field, A., Miles, J., & Field, Z. (2016). Discovering statistics using R. SAGE

Field, A. (2005). Discovering Statistics Using SPSS (3rd ed.). SAGE.

Fluck, A., Webb, M., Cox, M., Angeli, C., Malyn-Smith, J., Voogt, J., & Zagami, J.
(2016). Arguing for computer science in the school curriculum. Educational
Technology & Society, 19(3), 38–46.
https://www.jstor.org/stable/jeductechsoci.19.3.38

Fraenkel, J. R., Wallen, N. E., & Hyun, H. H. (2012). How to design and evaluate
research in education (8th ed.). McGraw-Hill.

Fredericks, S., ElSayed, M., Hammad, M., Abumiddain, O., Istwani, L., Rabeea, A.,
Rashid-Doubell, F., & Bella, A. M. E. (2021). Anxiety is associated with

226

extraneous cognitive load during teaching using high-fidelity clinical
simulation. Medical Education Online, 26(1), 1-8.
https://doi.org/10.1080/10872981.2021.1994691

Gaddy, V., & Ortega, F. R. (2022). Exploring factors associated with retention in
computer science using virtual reality. Proceedings of the Conference on
Virtual Reality and 3D User Interfaces Abstracts and Workshops, VRW, New
Zealand, 27(1), 271–276. https://doi.org/10.1109/VRW55335.2022.00062

Garner, S. (2002). Reducing the cognitive load on novice programmers. In P. Barker
& S. Rebelsky (Eds.), Proceedings of World Conference on Educational
Multimedia, Hypermedia & Telecommunications (pp. 578-583). Denver,
Colorado, USA: Association for the Advancement of Computing in Education
(AACE). https://www.learntechlib.org/p/10329.

Geary, D. C. (2008). An evolutionarily informed education science. Educational
Psychologist, 43(4), 179–195. https://doi.org/10.1080/00461520802392133

Geisinger, K. F. (1994). Cross-cultural normative assessment: Translation and
adaptation issues influencing the normative interpretation of assessment
instruments. Psychological Assessment, 6(4), 304–312.
https://doi.org/10.1037/1040-3590.6.4.304

Gerson, S. A., Morey, R. D., & van Schaik, J. E. (2022). Coding in the cot? Factors
influencing 0–17s’ experiences with technology and coding in the United
Kingdom. Computers and Education, 178(1), 1-16.
https://doi.org/10.1016/j.compedu.2021.104400

Gilhooly, K. J., & Green, A. J. K. (1988). The use of memory by experts and novices.
Advances in Psychology, 55(1), 379-395. https://doi.org/10.1016/S0166-
4115(08)60635-4

Gomes, A., Ke, W., Lam, C. T., Teixeira, A. R., Correia, F. B., Marcelino, M. J., &
Mendes, A. J. (2019). Understanding loops : a visual methodology.
International Conference on Engineering, Technology and Education, China,
3(1), 1–7. https:// doi.org/10.1109/TALE48000.2019.9225951

Grandell, L., Peltomäki, M., Back, R. J., & Salakoski, T. (2006). Why complicate
things? Introducing programming in high school using Python. Proceedings of

https://www.learntechlib.org/p/10329
https://doi.org/10.1109/TALE48000.2019.9225951

227

the 8th Australasian Conference on Computing Education, Australia, 52(1), 71–
80. https://dl.acm.org/doi/pdf/10.5555/1151869.1151880

Gray, S., Clair, C. S., James, R., Park, W., & Mead, J. (2007). Suggestions for
graduated exposure to programming concepts using fading worked examples.
Proceedings of the 3rd International Workshop on Computing Education
Research, USA, 3(1), 99–110. https://doi.org/10.1145/1288580.1288594

Greenberg, K., & Zheng, R. (2023). Revisiting the debate on germane cognitive load
versus germane resources. Journal of Cognitive Psychology, 35(3), 295–314.
https://doi.org/10.1080/20445911.2022.2159416

Greifenstein, L., Graßl, I., & Fraser, G. (2021). Challenging but full of opportunities:
Teachers’ perspectives on programming in primary schools. ACM International
Conference Proceeding Series, Finland, 21(1), 1-10.
https://doi.org/10.1145/3488042.3488048

Grover, S. (2020). Designing an assessment for introductory programming concepts
in middle school computer science. Annual Conference on Innovation and
Technology in Computer Science Education, ITiCSE, 20(1) 678–684.
https://doi.org/10.1145/3328778.3366896

Grover, S., & Basu, S. (2017). Measuring student learning in introductory block-
based programming: Examining misconceptions of loops, variables, and
Boolean logic. Proceedings of the Conference on Integrating Technology into
Computer Science Education, ITiCSE, 267–272.
https://doi.org/10.1145/3017680.3017723

Grover, S., & Pea, R. (2013). Computational thinking in K-12: A review of the state
of the field. Educational Researcher, 42(1), 38–43.
https://doi.org/10.3102/0013189X12463051

Grover, S., Pea, R., & Cooper, S. (2015). Designing for deeper learning in a blended
computer science course for middle school students. Computer Science
Education, 25(2), 199–237. https://doi.org/10.1080/08993408.2015.1033142

Grover, S., Pea, R., & Cooper, S. (2016). Factors influencing computer science
learning in middle school. Proceedings of the 47th ACM Technical Symposium
on Computing Science Education, USA, 47(1), 552–557.

https://doi.org/10.1145/1288580.1288594

228

https://doi.org/10.1145/2839509.2844564

Guenaga, M., Eguíluz, A., Garaizar, P., & Gibaja, J. (2021). How do students
develop computational thinking? Assessing early programmers in a maze-based
online game. Computer Science Education, 31(2), 259–289.
https://doi.org/10.1080/08993408.2021.1903248

Gunbatar, M. S., & Karalar, H. (2018). Gender differences in middle school students’
attitudes and self-efficacy perceptions towards MBlock programming.
European Journal of Educational Research, 7(4), 925–933.
https://doi.org/10.12973/eu-jer.7.4.923

Guo, M., & Hu, X. (2022). Relationship of classroom goal structures to Chinese
Miao and Han students’ goal orientations and mathematics achievement. Asia-
Pacific Education Researcher, 31(4), 345–355. https://doi.org/10.1007/s40299-
021-00576-8

Guzdial, M., Ericson, B., McKlin, T., & Engelman, S. (2014). Georgia computes!
An intervention in a US state, with formal and informal education in a policy
context. ACM Transactions on Computing Education, 14(2), 1-29.
https://doi.org/10.1145/2602488

Haden, P., Gasson, J., Wood, K., & Parsons, D. (2016). Can you learn to teach
programming in two days? ACM International Conference Proceeding Series,
1(1), 1-7. https://doi.org/10.1145/2843043.2843063

Hadie, S. N. H., & Yusoff, M. S. B. (2016). Assessing the validity of the cognitive
load scale in a problem-based learning setting. Journal of Taibah University
Medical Sciences, 11(3), 194–202.
https://doi.org/10.1016/j.jtumed.2016.04.001

Hanushek, E. A., & Woessmann, L. (2012). Do better schools lead to more growth?
Cognitive skills, economic outcomes, and causation. Journal of Economic
Growth, 17(4), 267–321. https://doi.org/10.1007/s10887-012-9081-x

Harms, K. J. (2013). Applying cognitive load theory to generate effective
programming tutorials. Proceedings of IEEE Symposium on Visual Languages
and Human-Centric Computing, VL/HCC, USA, 1(1), 179–180.
https://doi.org/10.1109/VLHCC.2013.6645274

229

Harms, K. J., Chen, J., & Kelleher, C. (2016). Distractors in parsons problems
decrease learning efficiency for young novice programmers. ICER 2016 -
Proceedings of the 2016 ACM Conference on International Computing
Education Research, 241–250. https://doi.org/10.1145/2960310.2960314

Hawi, N. (2010). Causal attributions of success and failure made by undergraduate
students in an introductory-level computer programming course. Computers
and Education, 54(4), 1127–1136.
https://doi.org/10.1016/j.compedu.2009.10.020

Hazley, M. P., Shell, D. F., Soh, L. K., Miller, L. D., Chiriacescu, V., & Ingraham,
E. (2015). Changes in student goal orientation across the semester in
undergraduate computer science courses. Proceedings - Frontiers in Education
Conference, FIE, USA, 1(1), 1-7. https://doi.org/10.1109/FIE.2014.7044366

Hellas, A., Leinonen, J., & Ihantola, P. (2017). Plagiarism in take-home exams:
Help-seeking, collaboration, and systematic cheating. Annual Conference on
Innovation and Technology in Computer Science Education, ITiCSE, Italy,
22(1), 238–243. https://doi.org/10.1145/3059009.3059065

Hinckle, M., Rachmatullah, A., Mott, B., Boyer, K. E., Lester, J., & Wiebe, E.
(2020). The relationship of gender, experiential, and psychological factors to
achievement in computer science. Annual Conference on Innovation and
Technology in Computer Science Education, ITiCSE, Norway, 25(1), 225–231.
https://doi.org/10.1145/3341525.3387403

Holland, S., Griffiths, R., & Woodman, M. (1997). Avoiding object misconceptions.
Proceedings of the 28th SIGCSE Technical Symposium on Computer Science
Education, USA, 29(1). 131–134. https://doi.org/10.1145/268084.268132

Hsu, J. M., Chang, T. W., & Yu, P. T. (2012). Learning effectiveness and cognitive
loads in instructional materials of programming language on single and dual
screens. Turkish Online Journal of Educational Technology, 11(2), 156–166.
https://files.eric.ed.gov/fulltext/EJ989024.pdf

Hu, X., Gong, Y., Lai, C., & Leung, F. K. S. (2018). The relationship between ICT
and student literacy in mathematics, reading, and science across 44 countries:
A multilevel analysis. Computers and Education, 125(1), 1–13.
https://doi.org/10.1016/j.compedu.2018.05.021

230

Hulleman, C. S., Schrager, S. M., Bodmann, S. M., & Harackiewicz, J. M. (2010).
A Meta-analytic review of achievement goal measures: Different labels for the
same constructs or different constructs with similar labels? Psychological
Bulletin, 136(3), 422–449. https://doi.org/10.1037/a0018947

Ibanez, M. B., Di-Serio, A., & Delgado-Kloos, C. (2014). Gamification for engaging
computer science students in learning activities: A case study. IEEE
Transactions on Learning Technologies, 7(3), 291–301.
https://doi.org/10.1109/TLT.2014.2329293

Ishida, T., & Uwano, H. (2019). Synchronized analysis of eye movement and EEG
during program comprehension. Proceedings of International Workshop on Eye
Movements in Programming, USA, 6(1), 26–32.
https://doi.org/10.1109/EMIP.2019.00012

Ishida, T., Uwano, H., & Ikutani, Y. (2020). Combining biometric data with focused
document types classifies a success of program comprehension. IEEE
International Conference on Program Comprehension, South Korea, 28(1),
366–370. https://doi.org/10.1145/3387904.3389291

Hair, J.F., Hult, G.T.M., Ringle, C.M., Sarstedt, M.(2021). A primer on partial least
squares structural equation modeling (PLS-SEM) (3rd ed.).SAGE

Kalyuga, S. (2011). Cognitive load theory: How many types of load does it really
need? Educational Psychology Review, 23(1), 1–19.
https://doi.org/10.1007/s10648-010-9150-7

Kanaparan, G., Cullen, R., & Mason, D. (2017). Effect of self-efficacy and emotional
engagement on introductory programming students. Australasian Journal of
Information Systems, 23(1), 1–21. https://doi.org/10.3127/ajis.v23i0.1825

Kandel, E. R., Dudai, Y., & Mayford, M. R. (2014). The molecular and systems
biology of memory. Cell, 157(1), 163–186.
https://doi.org/10.1016/j.cell.2014.03.001

Karalar, H. (2023). Adaptation of computer programming self-efficacy scale for
computer literacy education into Turkish for middle school students.
International Technology and Education Journal, 7(2), 51–59.
http://itejournal.com/

231

Karaman, U., & Büyükalan Filiz, S. (2019). Kodlama eğitimine yönelik tutum
ölçeği’nin (KEYTÖ) geliştirilmesi. Gelecek Vizyonlar Dergisi, 3(2), 36–47.
https://doi.org/10.29345/futvis.80

Kelleher, C., & Pausch, R. (2005). Lowering the barriers to programming : A
taxonomy of programming environments and languages for novice
programmers. ACM Computing Surveys, 37(2), 83–137.
https://doi.org/10.1145/1089733.1089734

Ketenci, T., Calandra, B., Margulieux, L., & Cohen, J. (2019). The relationship
between learner characteristics and student outcomes in a middle school
computing course: An exploratory analysis using structural equation modeling.
Journal of Research on Technology in Education, 51(1), 63–76.
https://doi.org/10.1080/15391523.2018.1553024

Kim, Y., Lee, K. & Park, H. (2022). Watcher : Cloud-based coding activity tracker
for fair evaluation of programming assignments. Sensors, 22(19)1–18.
https://doi.org/10.3390/s22197284

Kinnunen, P., & Simon, B. (2011). CS majors’ self-efficacy perceptions in CS1:
Results in light of social cognitive theory. Proceedings of the International
Computing Education Research, USA, 7(1), 19–26.
https://doi.org/10.1145/2016911.2016917

Kittur, J. (2020). Measuring the programming self-efficacy of electrical and
electronics engineering students. IEEE Transactions on Education, 63(3), 216–
223. https://doi.org/10.1109/TE.2020.2975342

Kohn, T. (2017). Variable evaluation: An exploration of novice programmers’
understanding and common misconceptions. Proceedings of the Conference on
Integrating Technology into Computer Science Education, ITiCSE, Italy, 22(1),
345–350. https://doi.org/10.1145/3017680.3017724

Kong, S. C., Chiu, M. M., & Lai, M. (2018). A study of primary school students’
interest, collaboration attitude, and programming empowerment in
computational thinking education. Computers and Education, 127(3), 178–189.
https://doi.org/10.1016/j.compedu.2018.08.026

Koray, A., & Bilgin, E. (2023). The effect of block coding (Scratch) activities

https://doi.org/10.1145/1089733.1089734
https://doi.org/10.3390/s22197284

232

integrated into the 5E Learning Model in science teaching on students’
computational thinking skills and programming self-efficacy. Science Insights
Education Frontiers, 18(1), 2825–2845. https://doi.org/10.15354/sief.23.or410

Korkmaz, Ö., & Altun, H. (2014). Adapting computer programming self-efficacy
scale and engineering students’ self-efficacy perceptions. Participatory
Educational Research, 1(1), 20–31. https://doi.org/10.17275/per.14.02.1.1

Kovari, A., & Katona, J. (2023). Effect of software development course on
programming self-efficacy. Education and Information Technologies, 28(9),
10937–10963. https://doi.org/10.1007/s10639-023-11617-8

Krieglstein, F., Beege, M., Rey, G. D., Ginns, P., Krell, M., & Schneider, S. (2022).
A systematic meta-analysis of the reliability and validity of subjective cognitive
load questionnaires in experimental multimedia learning research. Educational
Psychology Review, 34(4), 2485–2541. https://doi.org/10.1007/s10648-022-
09683-4

Kukul, V., Gökçearslan, Ş., & Günbatar, M. S. (2017). Computer Programming Self-
Efficacy Scale (CPSES) for secondary school students: Development,
validation and reability. Eğitim Teknolojisi Kuram Ve Uygulama, 7(1), 158–
179. https://doi.org/10.17943/etku.288493

Kurasaki, K. S. (2000). Intercoder reliability for validating conclusions drawn from
open-ended interview data. Field Methods, 12(3), 179–194.
https://doi.org/10.1177/1525822X0001200301

Lambić, D., Đorić, B., & Ivakić, S. (2021). Investigating the effect of the use of
code.org on younger elementary school students’ attitudes towards
programming. Behaviour and Information Technology, 40(16), 1784–1795.
https://doi.org/10.1080/0144929X.2020.1781931

Lawshe, C. H. (1975). A quantitative approach to content validity. Personnel
Psychology, 28(4), 563–575. https://doi.org/10.1111/j.1744-
6570.1975.tb01393.x

Leondari, A., & Gonida, E. (2007). Predicting academic self-handicapping in
different age groups: The role of personal achievement goals and social goals.
British Journal of Educational Psychology, 77(3), 595–611.

https://doi.org/10.17943/etku.288493

233

https://doi.org/10.1348/000709906X128396

Leppink, J., Paas, F., Van der Vleuten, C. P. M., Van Gog, T., & Van Merriënboer,
J. J. G. (2013). Development of an instrument for measuring different types of
cognitive load. Behavior Research Methods, 45(4), 1058–1072.
https://doi.org/10.3758/s13428-013-0334-1

Leppink, J., & van den Heuvel, A. (2015). The evolution of cognitive load theory
and its application to medical education. Perspectives on Medical Education,
4(3), 119–127. https://doi.org/10.1007/s40037-015-0192-x

Liem, A. D., Lau, S., & Nie, Y. (2008). The role of self-efficacy, task value, and
achievement goals in predicting learning strategies, task disengagement, peer
relationship, and achievement outcome. Contemporary Educational
Psychology, 33(4), 486–512. https://doi.org/10.1016/j.cedpsych.2007.08.001

Lim, S. (2019). Implementing Social Learning for More Equitable Collaboration in
Introductory Computer Science Education (Publication No.
0058F11657) [Doctoral dissertation, Cornell University]. Cornell Theses and
Dissertations. https://doi.org/10.7298/hjfz-t152

Lishinski, A., Yadav, A., Good, J., & Enbody, R. (2016). Learning to program:
Gender differences and interactive effects of students’ motivation, goals, and
self-efficacy on performance. ICER 2016 - Proceedings of the 2016 ACM
Conference on International Computing Education Research, Australia, 12(1),
211–220. https://doi.org/10.1145/2960310.2960329

Lister, R., Fone, W., McCartney, R., Seppälä, O., Adams, E. S., Hamer, J., Moström,
J. E., Simon, B., Fitzgerald, S., Lindholm, M., Sanders, K., & Thomas, L.
(2004). A multi-national study of reading and tracing skills in novice
programmers. SIGCSE Bulletin, 4(1), 119-150.
https://doi.org/10.1145/1041624.1041673

Looker, N. (2021). A pedagogical framework for teaching computer programming:
A social constructivist and cognitive load theory approach. ICER 2021 -
Proceedings of the 17th ACM Conference on International Computing
Education Research, USA, 17(1), 415–416.
https://doi.org/10.1145/3446871.3469778

https://doi.org/10.7298/hjfz-t152

234

Lopez, M., Whalley, J., Robbins, P., & Lister, R. (2008). Relationships between
reading, tracing and writing skills in introductory programming. ICER’08 -
Proceedings of the ACM Workshop on International Computing Education
Research, Australia, 1(1), 101–111. https://doi.org/10.1145/1404520.1404531

Love, T. S. (2023). Examining middle school students’ attitudes toward computing
after participating in a physical computing unit. Interactive Learning
Environments, 31(1), 1–20. https://doi.org/10.1080/10494820.2023.2194326

Luxton-Reilly, A. (2016). Learning to program is easy. Annual Conference on
Innovation and Technology in Computer Science Education, Peru, 21(1), 284–
289. https://doi.org/10.1145/2899415.2899432

Luxton-Reilly, A., Simon, Albluwi, I., Becker, B. A., Giannakos, M., Kumar, A. N.,
Ott, L., Paterson, J., Scott, M. J., Sheard, J., & Szabo, C. (2018). Introductory
programming: A systematic literature review. Annual Conference on
Innovation and Technology in Computer Science Education,Cyprus, 23(1), 55-
106. https://doi.org/10.1145/3293881.3295779

Ma, N., Qian, J., Gong, K., & Lu, Y. (2023). Promoting programming education of
novice programmers in elementary schools: A contrasting cases approach for
learning programming. Education and Information Technologies, 28(7), 9211–
9234. https://doi.org/10.1007/s10639-022-11565-9

Marks, G. N., Cresswell, J., & Ainley, J. (2006). Explaining socioeconomic
inequalities in student achievement: The role of home and school factors.
Educational Research and Evaluation, 12(2), 105–128.
https://doi.org/10.1080/13803610600587040

Mason, R., & Cooper, G. (2013). Mindstorms robots and the application of cognitive
load theory in introductory programming. Computer Science Education, 23(4),
296–314. https://doi.org/10.1080/08993408.2013.847152

Master, A., Cheryan, S., & Meltzoff, A. N. (2016). Computing whether she belongs:
Stereotypes undermine girls’ interest and sense of belonging in computer
science. Journal of Educational Psychology, 108(3), 424–437.
https://doi.org/10.1037/edu0000061

Mathews, D. K. (2017). Predictors of success in learning computer programming

235

(Publication No. 10266241) [Doctoral dissertation, University of Rhode
Island]. ProQuest Dissertations & Theses Global.
https://www.proquest.com/openview/4939e3c51db03598b9d99a0dc3e3e36f/1
?pq-origsite=gscholar&cbl=18750

Meece, J. L., Anderman, E. M., & Anderman, L. H. (2006). Classroom goal
structure, student motivation, and academic achievement. Annual Review of
Psychology, 57(1), 487–503.
https://doi.org/10.1146/annurev.psych.56.091103.070258

Meerbaum-Salant, O., Armoni, M., & Ben-Ari, M. (Moti). (2013). Learning
computer science concepts with Scratch. Computer Science Education, 23(3),
239–264. https://doi.org/10.1080/08993408.2013.832022

Menard, S. (2010). Applied logistic regression analysis (2nd ed.) Sage

Merriam, S. B. (2009). Qualitative research: A guide to design and implementation.
John Wiley & Sons. https://doi.org/10.1097/NCI.0b013e3181edd9b1

Metin, S., Basaran, M., & Kalyenci, D. (2023). Examining coding skills of five-year-
old children. Pedagogical Research, 8(2), 1-13.
https://doi.org/10.29333/pr/12802

Midgley, C., Kaplan, A., & Middleton, M. (2001). Performance-approach goals:
Good for what, for whom, under what circumstances, and at what cost? Journal
of Educational Psychology, 93(1), 77–86. https://doi.org/10.1037/0022-
0663.93.1.77

Midgley, C., & Urdan, T. (2001). Academic self-handicapping and achievement
goals: A further examination. Contemporary Educational Psychology, 26(1),
61–75. https://doi.org/10.1006/ceps.2000.1041

Miles, M. B., & Huberman, A. M. (1994). Qualitative Data Analysis Second Edition:
Expanded Sourcebook. Sage.

Miller, G. A. (1956). The magical number seven, plus or minus two: some limits on
our capacity for processing information. Psychological Review, 63(2), 81-97.
https://doi.org/10.1037/h0043158

236

Mohamad Gobil, A. R., Shukor, Z., & Mohtar, I. A. (2009). Novice difficulties in
selection structure. Proceedings of the 2009 International Conference on
Electrical Engineering and Informatics, Malaysia, 2(1), 351–356.
https://doi.org/10.1109/ICEEI.2009.5254715

Morrison, B. B., Dorn, B., & Guzdial, M. (2014). Measuring cognitive load in
introductory CS: Adaptation of an instrument. ICER 2014 - Proceedings of the
10th Annual International Conference on International Computing Education
Research, UK, 10(1), 131–138. https://doi.org/10.1145/2632320.2632348

Muldner, K., Jennings, J., & Chiarelli, V. (2022). A Review of Worked Examples in
Programming Activities. ACM Transactions on Computing Education, 23(1),
1–35. https://doi.org/10.1145/3560266

Munzel, U., & Brunner, E. (2000). Nonparametric tests in the unbalanced
multivariate one-way design. Biometrical Journal, 42(7), 837–854.
https://doi.org/10.1002/1521-4036(200011)42:7<837::AID-
BIMJ837>3.0.CO;2-S

Myers, B. A. (1986). Visual programming, programming by example, and program
visualization: a taxonomy. ACM SIGCHI Bulletin, 17(4), 59–66.
https://doi.org/10.1145/22339.22349

Nainan, M., & Balakrishnan, B. (2019). Design and Evaluation of Worked Examples
for Teaching and Learning Introductory Programming at Tertiary Level.
Malaysian Online Journal of Educational Technology, 7(4), 30–44.
https://doi.org/10.17220/mojet.2019.04.003

Nasution, S., Asmin, A., & Lubis, A. (2022). Analysis of mathematical problem
solving ability through application of think aloud pair problem solving learning
model in State Junior High School Al Manar. Proceedings of the 7th Annual
International Seminar on Transformative Education and Educational
Leadership, Indonesia, 7(1), 408-418. https://doi.org/10.4108/eai.20-9-
2022.2324713

Newstead, S. E., Franklyn-Stokes, A., & Armstead, P. (1996). Individual differences
in student cheating. Journal of Educational Psychology, 88(2), 229–241.
https://doi.org/10.1037/0022-0663.88.2.229

237

Newton, S., Alemdar, M., Rutstein, D., Edwards, D., Helms, M., Hernandez, D., &
Usselman, M. (2021). Utilizing evidence-centered design to develop
assessments: A high school introductory computer science course. Frontiers in
Education, 6(1), 1–19. https://doi.org/10.3389/feduc.2021.695376

Nicholls, J. G. (1984). Achievement motivation: Conceptions of ability, subjective
experience, task choice, and performance. Psychological Review, 91(3), 328–
346. https://doi.org/10.1037/0033-295X.91.3.328

Nicholls, J. G. (1989). The competitive ethos and democratic education. Harvard
University Press

O’Connor, C., & Joffe, H. (2020). Intercoder Reliability in Qualitative Research:
Debates and Practical Guidelines. International Journal of Qualitative
Methods, 19(1), 1–13. https://doi.org/10.1177/1609406919899220

Ober, T. M., Cheng, Y., Coggins, M. R., Brenner, P., Zdankus, J., Gonsalves, P.,
Johnson, E., & Urdan, T. (2024). Charting a path for growth in middle school
students’ attitudes toward computer programming. Computer Science
Education, 34(1), 4–36. https://doi.org/10.1080/08993408.2022.2134677

OECD. (2022). PISA 2022 results (Vol. I-II) Country Notes: Turkiye (OECD
Publication No. d67e6c05).
The Organisation for Economic Co-operation and Development (OECD).
https://www.oecd.org/en/publications/pisa-2022-results-volume-i-and-ii-
country-notes_ed6fbcc5-en/turkiye_d67e6c05-en.htmlhttps://

Ouahbi, I., Kaddari, F., Darhmaoui, H., Elachqar, A., & Lahmine, S. (2015).
Learning basic programming concepts by creating games with Scratch
programming environment. Procedia - Social and Behavioral Sciences, 191(1),
1479–1482. https://doi.org/10.1016/j.sbspro.2015.04.224

Özeren, E. (2022). Proje tabanlı öğrenmede sabit ve paylaşılan liderlik
uygulamaları ile desteklenmiş blok tabanlı kodlama öğretiminin bilgi işlemsel
düşünmeye, güdülenmeye ve kodlama eğitimine yönelik tutuma etkisi
(Publication No. 718958) [Master Thesis, Bartin University]. BU Repository.
http://hdl.handle.net/11772/16033

Paas, F. G. W. C., & Van Merriënboer, J. J. G. (1994). Variability of worked

http://hdl.handle.net/11772/16033

238

examples and transfer of geometrical problem-solving skills: A cognitive-load
approach. Journal of Educational Psychology, 86(1), 122–133.
https://doi.org/0022-0663/94/$3.00

Paas, F., Renkl, A., & Sweller, J. (2003). Cognitive load theory and instructional
design: Recent developments. Educational Psychologist, 38(1), 1–4.
https://doi.org/10.1207/S15326985EP3801_1

Paas, F., Renkl, A., & Sweller, J. (2004). Cognitive load theory: Instructional
implications of the interaction between information structures and cognitive
architecture. Instructional Science, 32(1–2), 1–8.
https://doi.org/10.1023/b:truc.0000021806.17516.d0

Paas, F., & Sweller, J. (2012). An Evolutionary Upgrade of Cognitive Load Theory:
Using the Human Motor System and Collaboration to Support the Learning of
Complex Cognitive Tasks. Educational Psychology Review, 24(1), 27–45.
https://doi.org/10.1007/s10648-011-9179-2

Pallant, J. (2016). SPSS Survival Manual Survival Manual (6th ed). McGraw-Hill
Education. https://doi.org/10.4324/9781003117452

Panizzon, D. (2015). Impact of Geographical Location on Student Achievement:
Unpacking the Complexity of Diversity. In A. Bishop, H. Tan & T.N. Barkatsas
(Eds.), Diversity in Mathematics Education (pp. 41–61). Springer International
Publishing. https://doi.org/10.1007/978-3-319-05978-5_3

Papatga, E., & Ersoy, A. (2016). Improving reading comprehension skills through
the SCRATCH program. International Electronic Journal of Elementary
Education, 9(1), 124–150. https://files.eric.ed.gov/fulltext/EJ1126664.pdf

Perkins, D., & Martin, F. (1986). Fragile knowledge and neglected strategies in
novice programmers. Papers Presented at the First Empirical Studies of
Programmers: First Workshop, USA, 1(1), 213-229.
https://dl.acm.org/doi/abs/10.5555/21842.28896

Peteranetz, M. S. (2021). Shifting goals in introductory and advanced computer
science courses: The effects of gender and major. Proceedings - Frontiers in
Education Conference, USA, 51(1),1–8.
https://doi.org/10.1109/FIE49875.2021.9637156

https://doi.org/10.4324/9781003117452

239

Pintrich, P. R. (2000). The Role of Goal Orientation in Self-Regulated Learning. In
M. Boekaerts, P.R. Pintrich & M. Zeidner (Eds.), Handbook of Self-Regulation,
(pp. 451–502). Academic Press. https://doi.org/10.1016/B978-0-12-109890-
2.X5027-6

Pokorny, K. (2009). Introduction to computing: a fresh breadth of disciplines.
Journal of Computing Sciences in Colleges, 24(5), 166–172.
https://dl.acm.org/doi/abs/10.5555/1516595.1516630

Polso, K. M., Tuominen, H., Hellas, A., & Ihantola, P. (2020). Achievement Goal
Orientation Profiles and Performance in a Programming MOOC. Proceedings
of the Annual Conference on Innovation and Technology in Computer Science
Education, ITiCSE, Norway, 25(1), 411–417.
https://doi.org/10.1145/3341525.3387398

Presidency of the Board of Education. (n.d.). Sıkça Sorulan Sorular.
https://ttkb.meb.gov.tr/www/sss.php

Qian, Y., & Lehman, J. D. (2016). Correlates of success in introductory
programming: A study with middle school students. Journal of Education and
Learning, 5(2), 73. https://doi.org/10.5539/jel.v5n2p73

Quintero-Manes, R., Vieira, C., & Hernandez-Vargas, N. (2022). Measuring
cognitive loads while learning computational statistics. Proceedings - Frontiers
in Education Conference, FIE, Sweden, 52(1), 1–4.
https://doi.org/10.1109/FIE56618.2022.9962606

Ramalingam, V., LaBelle, D., & Wiedenbeck, S. (2004). Self-efficacy and mental
models in learning to program. Proceedings of the 9th Annual SIGCSE
Conference on Innovation and Technology in Computer Science Education,
USA, 9(1), 171–175. https://doi.org/10.1145/1007996.1008042

Ramalingam, V., & Wiedenbeck, S. (1998). Development and validation of scores
on a computer programming self-efficacy scale and group analyses of novice
programmer self-efficacy. Journal of Educational Computing Research, 19(4).
https://doi.org/10.2190/C670-Y3C8-LTJ1-CT3P

Resnick, M., Maloney, J., Monroy-Hernández, A., Rusk, N., Eastmond, E., Brennan,
K., Millner, A., Rosenbaum, E., Silver, J., Silverman, B., & Kafai, Y. (2009).

https://doi.org/10.1016/B978-0-12-109890-2.X5027-6
https://doi.org/10.1016/B978-0-12-109890-2.X5027-6

240

Scratch: Programming for all. Communications of the ACM, 52(11), 60–67.
https://doi.org/10.1145/1592761.1592779

Robins, A., Rountree, J., & Rountree, N. (2003). Learning and teaching
programming: A review and discussion. International Journal of
Phytoremediation, 21(1), 137–172.
https://doi.org/10.1076/csed.13.2.137.14200

Rumelhart, D. E., & Norman, D. A. (1976). Accretion, Tuning and Restructuring:
three modes of learning. (No 7602). Personnel and Training Research
Programs Office of Naval Research, 7602(1), 37–53.
https://files.eric.ed.gov/fulltext/ED134902.pdf

Salac, J., Thomas, C., Butler, C., & Franklin, D. (2021). Understanding the Link
between Computer Science Instruction and Reading and Math Performance.
Annual Conference on Innovation and Technology in Computer Science
Education, ITiCSE, Germany, 26(1), 408–414.
https://doi.org/10.1145/3430665.3456313

Saldaña, J. (2009). Qualitative Researchers.
http://stevescollection.weebly.com/uploads/1/3/8/6/13866629/saldana_2009_t
he-coding-manual-for-qualitative-researchers.pdf

Salleh Hudin, S. (2023). A Systematic Review of the Challenges in Teaching
Programming for Primary Schools’ Students. Online Journal for TVET
Practitioners, 8(1), 75–88. https://doi.org/10.30880/ojtp.2023.08.01.008

Sands, P. (2019). Addressing cognitive load in the computer science classroom.
ACM Inroads, 10(1), 44–51. https://doi.org/10.1145/3210577

Schoeman, M. (2019). Reading skills can predict the-programming performance of
novices: An eye-Tracking study. Perspectives in Education, 37(2), 35–52.
https://doi.org/10.18820/2519593X/pie.v37i2.3

Schulte, C., & Bennedsen, J. (2006). What do teachers teach in introductory
programming? ICER 2006 - Proceedings of the 2nd International Computing
Education Research Workshop, USA2(1), 17–28.
https://doi.org/10.1145/1151588.1151593

241

Schulz, S., Berndt, S., & Hawlitschek, A. (2023). Exploring students’ and lecturers’
views on collaboration and cooperation in computer science courses - a
qualitative analysis. Computer Science Education, 33(3), 318–341.
https://doi.org/10.1080/08993408.2021.2022361

Schunk, D. H., & DiBenedetto, M. K. (2020). Motivation and social cognitive
theory. Contemporary Educational Psychology, 60(1), 1-10.
https://doi.org/10.1016/j.cedpsych.2019.101832

Schwinger, M., Wirthwein, L., Lemmer, G., & Steinmayr, R. (2014). Academic self-
handicapping and achievement: A meta-analysis. Journal of Educational
Psychology, 106(3), 744–761. https://doi.org/10.1037/a0035832

Senko, C., Hulleman, C. S., & Harackiewicz, J. M. (2011). Achievement goal theory
at the crossroads: Old controversies, current challenges, and new directions.
Educational Psychologist, 46(1), 26–47.
https://doi.org/10.1080/00461520.2011.538646

Shell, D. F., Hazley, M. P., Soh, L.-K., Ingraham, E., & Ramsay, S. (2013).
Associations of students’ creativity, motivation, and self-regulation with
learning and achievement in college computer science courses. 2013 IEEE
Frontiers in Education Conference (FIE), USA, 43(1), 1637–1643.
https://doi.org/10.1109/FIE.2013.6685116

Shell, D. F., & Soh, L. K. (2013). Profiles of Motivated Self-Regulation in College
Computer Science Courses: Differences in Major versus Required Non-Major
Courses. Journal of Science Education and Technology, 22(6), 899–913.
https://doi.org/10.1007/s10956-013-9437-9

Shell, D. F., Soh, L. K., Flanigan, A. E., & Peteranetz, M. S. (2016). Students’ initial
course motivation and their achievement and retention in college cs1 courses.
SIGCSE 2016 - Proceedings of the 47th ACM Technical Symposium on
Computing Science Education, USA, 47(1), 639–644.
https://doi.org/10.1145/2839509.2844606

Skaalvik, E. M. (1997). Self-enhancing and self-defeating ego orientation: Relations
with task and avoidance orientation, achievement, self-perceptions, and
anxiety. Journal of Educational Psychology, 89(1), 71–81.
https://doi.org/10.1037//0022-0663.89.1.71

242

Sleeman, D., Putnam, R. T., Baxter, J., & Kuspa, L. (1984). Pascal and high-school
students: A study of misconceptions. Journal of Educational Computing
Research, 2(1), 5–23. http://server4.isearch-it-
solutions.net:80/pubpsych/Search.action?q=ID%3DACCNO_ED258552&isF
ullView=true&stats=BMD&search=

Soltani, A., Boka, R. S., & Jafarzadeh, A. (2022). Students’ perceptions of learning
environment: associations with personal mastery goal orientations, regulations,
and academic performance in biology. International Journal of Science
Education, 44(9), 1462–1480.
https://doi.org/10.1080/09500693.2022.2082578

Sullivan, A., & Bers, M. U. (2016). Girls, boys, and bots: Gender differences in
young children’s performance on robotics and programming tasks. Journal of
Information Technology Education: Innovations in Practice, 15(1), 145–165.
https://doi.org/10.28945/3547

Sun, L., Hu, L., & Zhou, D. (2022). Programming attitudes predict computational
thinking: Analysis of differences in gender and programming experience.
Computers and Education, 181(27), 104457.
https://doi.org/10.1016/j.compedu.2022.104457

Sweller, J. (1988). Cognitive load during problem solving: Effects on learning.
Cognitive Science, 12(2), 257–285. https://doi.org/10.1016/0364-
0213(88)90023-7

Sweller, J. (2010). Element interactivity and intrinsic, extraneous, and germane
cognitive load. Educational Psychology Review, 22(2), 123–138.
https://doi.org/10.1007/s10648-010-9128-5

Sweller, J. (2016). Working memory, long-term memory, and instructional design.
Journal of Applied Research in Memory and Cognition, 5(4), 360–367.
https://doi.org/10.1016/j.jarmac.2015.12.002

Sweller, J. (2020). Cognitive load theory and educational technology. Educational
Technology Research and Development, 68(1), 1–16.
https://doi.org/10.1007/s11423-019-09701-3

Sweller, J., Ayres, P., & Kalyuga, S. (2011). Cognitive load theory. Springer.

243

https://doi.org/10.1007/978-1-4419-8126-4

Sweller, J., & Cooper, G. A. (1985). The use of worked examples as a substitute for
problem solving in learning algebra. Cognition and Instruction, 2(1), 59–89.
https://doi.org/10.1207/s1532690xci0201_3

Sweller, J., Merrienboer, J. J. G. van, & Paas, F. G. W. C. (1998). Cognitive
architecture and instructional design. Educational Psychology Review, 10(3),
251–296. https://noic.com.br/wp-
content/uploads/2022/02/Worked_Examples.pdf

Sweller, J., van Merriënboer, J. J. G., & Paas, F. (2019). Cognitive architecture and
instructional design: 20 years later. Educational Psychology Review, 31(2),
261–292. https://doi.org/10.1007/s10648-019-09465-5

Tabachnick, B. G., & Fidell, L. S. (2012). Using multivariate statistics (6th ed.).
Harper and Row.

Takir, A. (2011). The effect of an instruction designed by cognitive load theory
principles on 7th grade students’ achievement in algebra topics and cognitive
load (Publication No. 300705) [Doctoral Dissertation, Middle East Technical
University]. ODTU Repository. https://go.exlibris.link/KszTQDfd

Taşdöndüren, T., & Korucu, A. T. (2022). The effect of secondary school students
’perceptions of computing technologies and self-efficiency on attitudes towards
coding. Journal of Learning and Teaching in Digital Age, 7(2), 200–209.
https://doi.org/10.53850/joltida.1035448

Taub, R., Armoni, M., & Ben-Ari, M. (2012). CS unplugged and middle-school
students’ views, attitudes, and intentions regarding CS. ACM Transactions on
Computing Education, 12(2), 1-29. https://doi.org/10.1145/2160547.2160551

Tellhed, U., Björklund, F., & Kallio Strand, K. (2022). Sure I can code (but do I want
to?). Why boys’ and girls’ programming beliefs differ and the effects of
mandatory programming education. Computers in Human Behavior, 135(1), 1-
11. https://doi.org/10.1016/j.chb.2022.107370

Thomas, M. K., & Greene, B. A. (2011). Fostering 21st century skill development
by engaging students in authentic game design projects in a high school

244

computer programming class. Journal of Educational Computing Research,
44(4), 383–400. https://doi.org/10.2190/EC.44.4.b

Toma, L., & Vahrenhold, J. (2018). Self-efficacy, cognitive load, and emotional
reactions in collaborative algorithms labs - A case study. ICER 2018 -
Proceedings of the 2018 ACM Conference on International Computing
Education Research, USA, 14(1), 1–10.
https://doi.org/10.1145/3230977.3230980

Tomić, B., Milikić, N., Jovanović, J., & Devedžić, V. (2020). Examining attendance
, performance and interest in a CS course in relation to students’ achievement
goal orientation and self- evaluation. International Conference on Information
Technology and Development of Education, Serbia, 11(1), 1.7.
http://www.tfzr.rs/itro/arhiva/itro/FILES/21.PDF

Totan, H. N., & Korucu, A. T. (2023). The effect of block based coding education
on the students’ attitudes about the secondary school students’ computational
learning skills and coding learning: Blocky sample. Participatory Educational
Research, 10(1), 443–461. https://doi.org/10.17275/per.23.24.10.1

Tsai, M.-J., Wang, C.-Y., & Hsu, P.-F. (2019). Developing the computer
programming self-efficacy scale for computer literacy education. Journal of
Educational Computing Research, 56(8), 1345–1360.
https://doi.org/10.1177/0735633117746747

Turner, J. C., Midgley, C., Meyer, D. K., Gheen, M., Anderman, E. M., Kang, Y., &
Patrick, H. (2002). The classroom environment and students’ reports of
avoidance strategies in mathematics: A multimethod study. Journal of
Educational Psychology, 94(1), 88–106. https://doi.org/10.1037/0022-
0663.94.1.88

Urdan, T. (2004). Predictors of academic self-handicapping and achievement:
Examining achievement goals, classroom goal structures, and culture. Journal
of Educational Psychology, 96(2), 251–264. https://doi.org/10.1037/0022-
0663.96.2.251

Urdan, T., & Midgley, C. (2001). Academic self-handicapping: What we know, what
more there is to learn. Educational Psychology Review, 13(2), 115–138.
https://doi.org/10.1023/A:1009061303214

245

Urdan, T., & Midgley, C. (2003). Changes in the perceived classroom goal structure
and pattern of adaptive learning during early adolescence. Contemporary
Educational Psychology, 28(4), 524–551. https://doi.org/10.1016/S0361-
476X(02)00060-7

Urdan, T., Midgley, C., & Anderman, E. M. (1998). The role of classroom goal
structure in students’ use of self-handicapping strategies. American Educational
Research Journal, 35(1), 101–122.
https://doi.org/10.3102/00028312035001101

Usher, E. L. (2009). Sources of middle school students? self-efficacy in
mathematics: A qualitative investigation. American Educational Research
Journal, 46(1), 275–314. https://doi.org/10.3102/0002831208324517

Van Merrienboer, J. J. G., & Krammer, H. P. M. (1987). Instructional strategies and
tactics for the design of introductory computer programming courses in high
school. Instructional Science, 16(3), 251–285.
https://doi.org/10.1007/BF00120253

van Merriënboer, J. J. G., & Sweller, J. (2005). Cognitive Load theory and complex
learning: Recent developments and future directions. Educational Psychology
Review, 17(2), 147–177. https://doi.org/10.1007/s10648-005-3951-0

Van Merriënboer, J. J. G., & Sweller, J. (2010). Cognitive load theory in health
professional education: Design principles and strategies. Medical Education,
44(1), 85–93. https://doi.org/10.1111/j.1365-2923.2009.03498.x

Vandenberg, J., Rachmatullah, A., Lynch, C., Boyer, K. E., & Wiebe, E. (2021). The
relationship of cs attitudes, perceptions of collaboration, and pair programming
strategies on upper elementary students’ CS learning. Proceedings of the
Annual Conference on Innovation and Technology in Computer Science
Education, ITiCSE, USA, 26(1), 46–52.
https://doi.org/10.1145/3430665.3456347

Wang, J., Hong, H., Ravitz, J., & Ivory, M. (2015). Gender differences in factors
influencing pursuit of computer science and related fields. Proceedings of the
Annual Conference on Innovation and Technology in Computer Science
Education, ITiCSE, USA, 20(1), 117–122.
https://doi.org/10.1145/2729094.2742611

246

Watson, C., & Li, F. W. B. (2014). Failure rates in introductory programming
revisited. ITICSE 2014 - Proceedings of the 2014 Innovation and Technology
in Computer Science Education Conference, USA, 19(1), 39–44.
https://doi.org/10.1145/2591708.2591749

Webb, M., Davis, N., Bell, T., Katz, Y., Reynolds, N., Chambers, D. P., & Sysło, M.
M. (2017). Computer science in K-12 school curricula of the 2lst century: Why,
what and when? Education and Information Technologies, 22(2), 445–468.
https://doi.org/10.1007/s10639-016-9493-x

Weintrop, D., & Wilensky, U. (2015). To block or not to block , that is the question :
Students’ perceptions of blocks-based programming. Proceedings of the 14th
International Conference on Interaction Design and Children, Denmark, 14(1),
199–208.

Wells LeRoy, A. K. (2022). A mixed methods approach to understanding the effect
of applying multimedia principles to a Minecraft STEM lesson (Publication No.
 29395202) [Doctoral Dissertation, University of California]. ProQuest
Dissertations & Theses Global.

Weng, C., Otanga, S., Weng, A., & Cox, J. (2018). Effects of interactivity in E-
textbooks on 7th graders science learning and cognitive load. Computers and
Education, 120(1), 172–184. https://doi.org/10.1016/j.compedu.2018.02.008

White, G., & Ploeger, F. (2004). Cognitive characteristics for learning visual basic.
Journal of Computer Information Systems, 44(3), 58–66.
https://doi.org/10.1080/08874417.2004.11647582

Williams, L. (1999). But, Isn’t That Cheating ? Proceedings of the 29th Annual
Frontiers in Education Conference, USA, 29(1), 26–27.
https://www.computer.org/csdl/proceedings/fie/1999/12OmNC8dg8Z

Williams, L., & Upchurch, R. L. (2001). In support of student pair-programming.
SIGCSE Bulletin (Association for Computing Machinery, Special Interest
Group on Computer Science Education), USA, 52(1), 327–331.
https://doi.org/10.1145/366413.364614

Winslow, L. E. (1996). Programming pedagogy - A psychological overview.
SIGCSE Bulletin (Association for Computing Machinery, Special Interest

247

Group on Computer Science Education), 28(3), 17–23.
https://doi.org/10.1145/234867.234872

Winter, V., Friend, M., Matthews, M., Love, B., & Vasireddy, S. (2019). Using
visualization to reduce the cognitive load of threshold concepts in computer
programming. Proceedings - Frontiers in Education Conference, FIE, USA,
49(1), 1–9. https://doi.org/10.1109/FIE43999.2019.9028612

Yang, K. H., & Lin, H. Y. (2019). Exploring the effectiveness of learning Scratch
programming with Code.org. Proceedings of the 8th International Congress on
Advanced Applied Informatics, Japan, 8(1), 1057–1058.
https://doi.org/10.1109/IIAI-AAI.2019.00225

Yeşilyurt, S., & Çapraz, C. (2018). A road map for the content validity used in scale
development studies. Erzincan Universitesi Egitim Fakultesi Dergisi, 20(1),
251–264. https://doi.org/10.17556/erziefd.297741

Yusof, M. M., Jalil, H. A., & Perumal, T. (2021). Exploring teachers’ practices in
teaching robotics programming in primary school. Asian Social Science,
17(11), 122. https://doi.org/10.5539/ass.v17n11p122

Zingaro, D. (2014). Peer instruction contributes to self-efficacy in CS1. Proceedings
of the 45th ACM Technical Symposium on Computer Science Education, USA,
45(1), 373–378. https://doi.org/10.1145/2538862.2538878

Zingaro, D., Craig, M., Porter, L., Becker, B. A., Cao, Y., Conrad, P., Cukierman,
D., Hellas, A., Loksa, D., & Thota, N. (2018). Achievement goals in CS1:
Replication and extension.Proceedings of the 49th ACM Technical
Symposium on Computer Science Education, USA, 49(1), 687–692.
https://doi.org/10.1145/3159450.3159452

https://doi.org/10.17556/erziefd.297741

248

249

APPENDICES

A. Lesson Plan Evaluation Form

Bölüm 1: Demografik Bilgiler

Adınız-Soyadınız

Cinsiyetiniz ☐ Kadın ☐ Erkek

Yaşınız

Mesleki deneyiminiz
(yıl olarak)

Eğitim düzeyiniz ☐ Lisans ☐ Yüksek Lisans ☐ Doktora
☐ Diğer: …………………………..

Mezun olduğunuz
lisans programı

☐ Bilgisayar ve Öğretim Teknolojileri Öğretmenliği
☐ Bilgisayar Öğretmenliği
☐ Bilgisayar Sistemleri Öğretmenliği
☐ Bilgisayar ve Kontrol Öğretmenliği
☐ Elektronik ve Bilgisayar Öğretmenliği
☐ Bilgisayar Teknolojisi Bölümü
☐ Bilgisayar Teknolojisi ve Bilişim Sistemleri Bölümü

Görev yapmakta
olduğunuz okul türü ☐ Devlet ☐ Özel

Görev yapmakta
olduğunuz okulda
bilgisayar laboratuvarı
mevcut mu?

☐ Evet ☐ Hayır

Ortaokul öğrencilerine
programlama öğretimi
deneyiminiz (yıl olarak)

………………………………………………………………………………
…………..

Bölüm 2- Ders Planı Değerlendirme

Ders Planı: Evet/Hayır Açıklama
Bölüm1
code.org sitesinde yer alan bu ders planını daha
önce derslerinde kullanmış mıydınız?

☐ Evet ☐ Hayır

Kazanımlar açık ve anlaşılır bir şekilde belirtilmiş
mi?

☐ Evet ☐ Hayır

Kazanımlar öğrenci düzeyine uygun mu? ☐ Evet ☐ Hayır

Kazanımlar belirlenen sürede ulaşılabilir mi? ☐ Evet ☐ Hayır

250

Kazanımlar Ortaokul Bilişim Teknolojileri ve
Yazılım Dersi Öğretim Programının amaçları ile
uyuşuyor mu?

☐ Evet ☐ Hayır

Planda yer alan anahtar kelimeler doğru ve
anlaşılır bir şekilde tanımlanmış mı?

☐ Evet ☐ Hayır

Ders planı, planda belirtilen sürede tamamlandı
mı?

☐ Evet ☐ Hayır

İçerik, kazanımlar ile uyumlu bir şekilde
planlanmış mı?

☐ Evet ☐ Hayır

Derse hazırlık sürecinde zorlandınız mı? ☐ Evet ☐ Hayır
Ders planı, öğrenci seviyesine ve konuya uygun
araç – gereçleri içeriyor mu?

Etkinlikler öğrenci düzeylerine uygun mu? ☐ Evet ☐ Hayır
Etkinlikler konuya uygun mu? ☐ Evet ☐ Hayır
Etkinliklerin ne zaman ve nasıl gerçekleştirileceği
açık ve anlaşılır mı?

☐ Evet ☐ Hayır

Etkinlikler öğrencilerin dikkatini çekme
konusunda etkili mi?

☐ Evet ☐ Hayır

Etkinlikler öğrencilerin dikkatinin devamını
sağlama konusunda etkili mi?

☐ Evet ☐ Hayır

Bölüm 2
Ders planından çıkartmak istediğiniz herhangi bir
şey var mı? Varsa nedenleriyle birlikte belirtiniz.

Ders planında yeniden düzenlemek istediğiniz bir
bölüm var mı? Varsa neden ve ne şekilde bir
düzenleme yapmak istersiniz?

Ders planına eklemek istediğiniz herhangi bir şey
var mı?

Ders planında uygulamasını zor bulduğunuz bir
bölüm oldu mu? Açıklayınız.

Öğrencilerin anlamakta/uygulamakta zorluk
çektiklerini düşündüğünüz bir bölüm oldu mu?
Açıklayınız.

Ders planı ile ilgili genel bir değerlendirmede
bulunur musunuz?

Eklemek istediğiniz başka bir şey var mı?

251

B. Coding Achievement Test

252

253

254

255

256

257

C. Cognitive Load Scale

258

D. Patterns of Adaptive Learning Scale

259

260

261

E. Attitudes Toward Coding Education Scale

262

263

F. Reading Comprehension Achievement Test

264

265

266

267

268

269

G. 5th Grade Mathematics Achievement Test

270

271

H. Interview Protocol

272

273

I. Sample Lesson Plan

274

275

J. Approval of Human Subjects Ethics Committee at METU - I

276

K. Approval of Human Subjects Ethics Committee at METU - II

277

L. Approval of Provincial Directorate of National Education

278

M. The Original Turkish Versions of the Quotes

Theme 1: Cognitive Demands

Inherent Complexity of Programming Concepts and Tasks

Managing Iterative Logic

[S22 in Turkish]: Mesela bir karakter oradayken mesela iki kere o döngüyü

kullanmak biraz zor geliyor bana. Mesela üç kez bir şeyi tekrar ettikten sonra mesela

üst katmanda bir tane daha şey, döngü koyduğumuz zaman, mesela beş kere olduğu

zaman biraz böyle garip bir şeyler oluyordu. Anlayamıyordum pek.

[S6 in Turkish]: Hocam ben bunların zombiyi şeye ulaştırmada çok zorlandım,

zombiyi ayçiçeğine ulaştırmak zorluydu. Çünkü hocam diğer çiçekler de var ya vahşi

çiçekler, onlardan bir de kaçman gerekiyor. Çünkü hocam kırık buzlar oluyor ya,

dikkatsizliğine geliyor ona basıyorsun, düşüyorsun zaten. Ondan kod boşa gidiyor.

Limited Code Blocks Challenges

[S6 in Turkish]: Code.org güzeldi aslında ama bazen bir tane kullanma hakkımız

olmasını düşündürmek gerekiyor insanı. Onu ayarlamak zor değil normalde kolay

da nerede koyacağını düşünmek gerek aslında.

Sequencing and Logical Flow Difficulties

[S18 in Turkish]: …Kodları karıştırıyordum. Diğerini yanlışlıkla diğerinin yerine

koyuyordum. Karışıyordu.

Diagramming Programming Logic Difficulties

[S27 in Turkish]: İçine mesela… Başla ile başlayınca aklıma soru gelmiyordu ne ile

başlayayım falan gelmiyordu. Zorlanıyordum. Hangi komutu nasıl yazmalıyım?

[S27 in Turkish]: Sorularda aklım karışmıştı. Böyle soru sorma değil de üçgen vardı,

paralelkenar falan vardı. Orada biraz zorlanıyordum. Karışıklık yapıyordu. …Neyi,

hangi şekli koyacağım bilemiyordum.

279

Spatial Reasoning Challenges

[S19 in Turkish]: Ben açılar konusunda hiç iyi değilim çünkü matematikte de açılar

konusunda hiç iyi değilim. O yüzden bilişime (Bilişim Teknolojileri ve Yazılım dersi)

de yansıyor.

[S24 in Turkish]: Orada şekillerde var mesela 180 ilerle. Onu sen 120 edeceksin ya

da 145 edeceksin. Orada kararsız kalıyordum ne etsem ya 145 mi, 120 mi, 100 mü

yapsam? O yüzden hep denemek gerekiyordu.

Comprehending Code Blocks Functionality

[S20 in Turkish]: Nasıl kullanacağımı anlamadım.

[S12 in Turkish]: En çok son yaptığımız derste yaptığımız bloklarda zorlandım çünkü

bilmediğim bloklar vardı. Bilmediğim için yani kodları. Onları kullanmayı zar zor

öğrendim yani.

Integration of Multiple Concepts

[S16 in Turkish]: Mesela bir şeyi, zombiyi şeye götür diyordu ya, işte onlarda fazla

zorlandım çünkü sağa mı gidecek, sola mı gidecek. Sağa dönüyor. İşte çok fazla blok

olduğu zaman ben çok zorlanıyordum. Mesele şöyle yapıyordum dönüyordum kuşun

yerine, ne tarafa gidecek o tarafa şey yapıyordum. Sonra da kafam karışıyordu ve

yavaşlamaya başlıyordum.

Instructional Factors

Unclear Task Instructions

[S17 in Turkish]: Ve o canlı olmayanları, bilgisayardan olmayanları kafamı

karıştırdı. O bardak çok kafamı karıştırdı, beynim yandı.

Abstract Concepts and Confusing Explanations

[S26 in Turkish]: Değişkenlerde mesela şey öğretmen bana şey beş parmak hiç

değişmez diyor ama ben böyle yapınca on parmak oluyor, bence değişir diyorum.

280

Orada birazcık tartışma oldu. Ondan sonra ben çok sıkıntı yaşamaya başladım.

Orada birazcık şaşırdım.

[S21 in Turkish]: Yani bana hep şey geliyor… Değişken mesela hepsi değişebilir gibi

geliyor. Ama bu şeye bağlı yani oradaki bulmacaya bağlı. Bulmaca öyleyse sabit

oluyor. Ama yani değişken de olabilir. … Sabitin temeli aslında şeye bağlı, bu da

benim bir garip düşüncem yani, sabitin temeli oradaki programa bağlı yani. Ne

kurduysa sabit o oluyor. Ama ona bakarsak her şey değişebilir. O da benim.

anlamamı zorlaştırıyor.

Unstructured Learning

[S9 in Turkish]: Bilmiyorduk ne kadar nektar olduğunu. O çok zordu böyle, eğer

nektar varsa nektarı al, ilerle, onu yaptırıyorduk. Onda zorlanmıştık. Yani, şey

oluyordu böyle bir tane kare vardı, her tarafta nektar vardı böyle. Arıyı ilerleteceğiz

mi, nektarı mı aldıracağız diye şaşırıyordum.

Unsuitable Scaffolding

[S3 in Turkish]: İç-içe döngülerde de şöyleydi genelde. Code.org üzerinden en başta

eğitim görürken çok düz oynuyorduk: 4 adım ileri git veyahut da… İlk başta

tekrarlanan döngüleri öğrendik. Çok fazla yazmak yerine daha kolay bir şekilde

tekrarlanıyordu. Öğrenmek çok fazla zor değildi. Ama iç-içe döngüler bir anda

zorlaştı yani.

Time Constraints

[S3 in Turkish]: Daha fazla haftada ders… Haftada iki ders olmuyor. Bir konu

üzerinde daha fazla durulabilir. Mesela iç-içe döngülere geçildiğinde sorunla

karşılaştığım bazen kafamda çözemediğim noktalar olmuştu. Ya da değişkenlerde…

İşte mesela değişkenlerde hala yapamadığım yerler vardı. Konunun üzerinde daha

fazla durulabilirdi. Daha iyi olurdu, haftada daha fazla ders olsaydı.

Learning Environment Challenges

Access and Equity

281

[S13 in Turkish]: Bir de bilgisayarlar çok bozuluyor, onu değiştirmek isterdim.

[S9 in Turkish]: Kodlama ile ilgili çalışmadım. Çünkü… Çalışmadım yani.

Bilgisayarım yok.

Login issues

[S19 in Turkish]: Nasıl desem? Şifreli olması biraz zor gibi geldi. Yani kağıdımızı,

şifreyi unuttuğumuz zaman şifresiz giremeyebiliyoruz.

Foreign language-related problems

[S5 in Turkish]: Mesela Kurs F’de on üçüncü derste falan ben Türkçe yapmama

rağmen dili orada İngilizce konuşturmamız gerekiyor.

[S22 in Turkish]: Şey hani alttaki videolar vardı ya, onları Türkçeye çevirseydi daha

iyi olurdu ama.

Theme 2: Effective Instructional Approaches

Plugged Activities

Facilitated Learning

[S9 in Turkish]: Öğrenmemi kolaylaştırdı, büyük bir katkı sağladı. Onu yaparak

böyle alıştım, çok hızlı yapmaya başladım. Kendimi geliştirdim kodlamada yani

yardımcı oldu bana code.org. Çünkü çözüyorum böyle parçaları birleştirerek

yaptığım için daha kolay oluyor. Kodlamayı daha iyi öğreniyordum böyle.

Learning by Doing

[S16 in Turkish]: Etkileri çok fazla oldu çünkü bir öğretmen tahtada çizerek

anlatsaydı hiçbir şekilde anlamazdım. Ama Code.org daha kolay geldi bana. O

olmasaydı, hoca çizerek anlatsaydı mesela yine anlardım ama az anlardım.

[S30 in Turkish]: Ama kendimiz yaptığımızda daha kaliteli oluyor bence.

Debugging Tasks

282

[S9 in Turkish]: Mesela kendisi, code.org, şeylerini oluşturuyordu, bana

derecelerini falan soruyordu. O da işimi kolaylaştırıyordu. Avantajı o oluyordu.

Bazen daha kolay oluyordu. O birleştiriyordu parçaları, ben de derecelerini

yapıyordum, doksan derece falan…

Rich Content

[S3 in Turkish]: Code.org sayesinde daha detaylı öğrendiğimi düşünüyorum, bazı

konularda. Mesela yeni geçenlerde değişkenleri öğrendim ve gerçekten

değişkenlerde zorlandım. Bu konuda çok öğretici oldu benim için. Dediğim gibi

Scratch’de önceden çoğu terimi biliyordum veyahut da çoğu blok terimlerini. Ama

şu iç-içe döngülerde ve değişkenlerde daha iyi öğrendiğimi düşünüyorum.

Scratch’de de değişkenler üzerinde duruluyordu ama bu kadar detaylı

durulmuyordu. Değişkenleri kesinlikle daha detaylı öğrendiğimi düşünüyorum.

Gerçekten de iyi.

Opportunity for Revision and Mastery

[S19 in Turkish]: Çünkü bilgisayarda görüyoruz, yanlışlarımızı görebiliyoruz

hemen. Ama kağıt üzerinde yanlışlarımızı göremiyoruz. Yani dediğim gibi

bilgisayarda yanlışlarımızı görüyoruz ve ona göre yanlışlarımızı düzeltebiliyoruz.

Doğrularımız varsa bir daha gözden geçiriyoruz, yanlış olabilir falan.

Permanent Learning

[S21 in Turkish]: Daha kalıcı olur diye düşünüyorum. Çünkü o anlatım yani bir yere

kadar… Zaten sınıf ortamında da öyle iyi anlamak yani öyle tanımlamak o iş zor

sınıf ortamında. O yüzden yani burada yapmak daha kalıcı oluyor.

Unplugged Activities

Introduction and Orientation

[S19 in Turkish]: İlk önceden, birinci saat akıllı tahtadan gösterdi. Akıllı tahtadan

biz yapmaya başladık. Yanlışlarımızı düzeltmeye başladı. Sonra bilgisayarlardan tek

başımıza yapmaya çalıştık. Yani dediğim gibi ilk önce akıllı tahtadan bize öğretiyor,

283

anlatıyor. Sonra biz yapıyoruz. Yani böyle yapsa güzel olur yani böyle devam etmek

isteriz.

Active Engagement

[S6 in Turkish]: Hocam bence en çok sınıfta ettiğimiz daha öğreticiydi. Çünkü

bilgisayarda sadece mouse (fare) ve şeyi oynatıyorsun. Ama sınıfta ettiğimiz, kendin

hareket ediyorsun, kendin ayarlıyorsun eşyaları.

Real-World Relevance

[S8 in Turkish]: Yani bunu gerçek hayatta da kullanabildiğimizi öğrendim

kodlamayı yani komutları.

Blended Approaches

Blending Traditional and Digital Methods

[S13 in Turkish]: Çünkü hocam hem yazıyoruz hem okuyoruz. Yani kendi elimizle

yazıyoruz, okuyoruz. …Bilgisayarda mesela bir tuşa basıyorsun hani şey

yapamıyorsun tam. Yaptığımız şeyleri bir kağıda yazmak... Çünkü hocam kağıtta

gösterince hem okumuş oluyorsun, ikinci kez okumuş oluyorsun hem de onu mesela

dosyasına koysun, unuttuğu zaman oraya bakıp yapsın. Bilgisayarda hani

bakamayacak, gidecek, kaydetme diyecek, gidecek.

Teacher Effectiveness

Clear and Effective Explanations

[S26 in Turkish]: Öğretmenim çok güzel kodlama öğretiyor. Anlatması çok etkili.

Supportiveness

[S24 in Turkish]: Sınıf kalabalık, 28 kişi. 28 kişiyle de ilgileniyor. Mesela hani ben

dedim ya yapamadığımda sinir oluyorum, o zamanlar hocayı çağırıyorum. Hoca

bana anlatıyor öylece kolayca geçiyorum o bölümü. Yani iyi katkı oluyor.

Theme 3: Collaborative Learning Approaches

284

Pair Selection Criteria

Skill and Expertise

[S17 in Turkish]: Bilgisayar ustasıdır. Öyle kolayları yapamaz. Zeki bir çocuk

olduğu için onu seçtim. Akıllı.

Social Compatibility

[S19 in Turkish]: Çünkü o arkadaşımla daha iyiyim. Yani evlerimiz yan yana. Daha

iyi ilişkim var onunla. Hem daha iyi arkadaşlığımız var onunla. İlk önceden ben

başka bir arkadaşımla oturuyordum. Ondan sonra onunla arkadaşlığımız bitti yani

küstük birbirimize. O yüzden hocadan izin aldık ve onunla oturmaya başladım.

Role-Sharing Strategies

Imbalanced Turn-Taking

[S14 in Turkish]: Genelde klavyeyi o kullandı, mouseu ben kullandım. Genelde böyle

devam etti.

Regular Turn-Taking

[S16 in Turkish]: Genellikle arkadaşımla sıra sıra oynuyorduk. Birden dokuza kadar

olan seviyelerde ben birini oynuyordum, üçünü oynuyordum. Şey, ben biri

oynuyorum, o ikiyi oynuyor, ben üçü oynuyorum, o dördü oynuyor.

Benefits of Collaborative Learning

General Positive Perceptions

[S14 in Turkish]: Arkadaşımla oturmak isterdim

Shared Responsibility

[S4 in Turkish]: Daha güzel oluyor. Yani böyle tek başına yapmak yerine

arkadaşınla değişimli kullanıyorsun. O yaparken sen onu izliyorsun, sen yaparken

de o da seni izliyor, o da olabiliyor. Hem de arada sırada arkadaşın da dinlenmiş

285

oluyor yazdıktan sonra veya kullandıktan sonra, sen de dinlenmiş oluyorsun, güzel

oluyor.

Enhanced Problem-Solving

[S7 in Turkish]: Çünkü daha kolay oluyor. İkimiz birden çözdüğümüz için daha kolay

oluyor. Hem ikimiz de yapamadığımız şeyi, mesela birimiz biliyor birimiz bilmiyoruz,

öyle görebiliyoruz.

[S21 in Turkish]: … bir şeye mesela arkadaşın buna bir yönden bakıyor, sen buna

diyorum ki bir de bu yönden bakalım, yani çoklu bakış. Bu mantıktan ilerlemek

gerekiyor diyor, mesela sen farklı bir mantık şey yapıyorsun. Farklı bir bakış açısı

oluyor. Çözemediğiniz sorularda bakış açını değiştirmen gerekiyor probleme.

Mutual Learning and Knowledge Sharing

[S16 in Turkish]: Bence öğrendi ama… Yani mesela, ilk önce başladığımızda sağı-

solu pek anlayamıyordu. Ben ona anlatmıştım. Ben şeyleri karıştırıyordum, hani bu

şeyi beş kez tekrarla gibi şeyleri karıştırıyordum. Onu da bana o öğretmişti.

[S26 in Turkish]: Genelde code.org olarak ben ona çok fazla şey öğrettim ama onun

dışında bilgisayarın temel şeyleri olarak o bana çok şey öğretti.

Challenges of Collaborative Learning

Unequal Participation

[S17 in Turkish]: Bilgisayarın bana hâkimiyetini vermediği için, artık vermiyor.

Dinleniyorum (gülme). Yine böyle yaslanıyorum arkama. Yaptığı şeylerden örnek

alıyorum. Bazen de ben yapabileyim diye şey yapıyor, bazen izin veriyor.

Reduced Engagement

[S16 in Turkish]: Bazen hani şey oluyordu ıı.. o yaparken ben kalıyordum öyle,

bakmıyordum ona da. Yardım istediğinde yardım ediyordum ama genellikle onun

yaptığı sorulara bakmıyordum.

Conflicts Over Problem-Solving Approaches

286

[S21 in Turkish]: Bazen tabi ki şey oluyor, bir soru var, çözümü şu diyoruz. O başka

bir şey diyor ve bunda inat ediyor inat. Mesela böyle olmalı tamam demiyor kimse,

bunu yapalım demiyor, sonra olmazsa benimkisi deneriz demiyor. Ben de yaptım

bunu. Oluyor bazen.

Conflicts Over Resource Sharing

[S12 in Turkish]: En az sevdiğim şey bilgisayarı paylaştığım arkadaşımla bilgisayarı

paylaşma sorunu yaşadığım için.

Seeking Assistance

Source of Assistance

Peers or Teachers as a Source of Support

Reasons for seeking assistance from peer

Familiarity

[S19 in Turkish]: Arkadaşımdan öncelikle yardım almamın nedeni, arkadaşımla her

gün aynı yerde olduğumuz için kendime daha çok sıcak hissediyorum.

Teacher Unavailability

[S5 in Turkish]: Hoca yardım edemeyince yapanlara baş vuruyoruz.

Reasons for Seeking Assistance from Teacher

Teacher Expertise

[S20 in Turkish]: Çünkü bu konularda daha bilgili.

Clear Explanations and Guidance

[S29 in Turkish]: Öğretmenim direkt daha güzel gösteriyordu. …

Öğretmenim anlatarak daha açıklayıcı gösteriyordu.

Self-Perceived Proficiency

287

[S30 in Turkish]: Ben genelde onlardan önde gittiğim için onlar geride

oluyor..

Peer Support and Interaction

Constructive Collaboration

[S26 in Turkish]: Ya geliyorum, öğretmenimden izin alarak, yanına. Mesela

şunu şöyle yaparsan yapabilirsin, şunu yanlış yapmışsın şu kadar açıyla

yapacaktın… Öyle. Kodlarla yardım ediyordum.

[S12 in Turkish]: İstişare ederim yani arkadaşlarımla tartışarak çünkü

direkt onların yaptıklarını dinlersem yine de farklı olur, anlayamam.

Unproductive Collaboration Strategies

[S21 in Turkish]: Yani beni biraz tabi ki erteliyor, sonra bakıyor benim

soruma. Deniyor ilkten kendi yapmayı çözdüğü soruyu. Yapamadıysa

gidiyor kendi bilgisayarından açıp bana veriyor. … Yani kendisi orada

yaptığında ben tabi çok anlayamıyorum, mantık yürütemiyorum. Ama o

yaptığında demek ki böyle yapmalıymışım diyebiliyorum mesela sorunun

cevabını.

[S14 in Turkish]: Eğer o soruyu geçtilerse geri gelip o soruyu bana

gösteriyorlardı. Pek anlayamıyordum.

Theme 4: Independent Learning Approaches

Independent Learning Strategies

Reviewing Past Solutions

[S8 in Turkish]: Eskilerine dönerim, onlara bakarım. Onlara benzeyen bir

şey varsa onları geçiririm.

Trial and Error

Self-Visualization

288

[S16 in Turkish]: Bu gibi durumlarda kendimi hayal ediyordum. Mesela bu

şeyler, kare, şunlar var ya, kareler, karelerde kendim gibi hissediyordum ve

ne tarafa döneceğimi kendim belirliyordum. Atıyorum bir boydan şeklimi

aynı yerde olduğumu düşünüyordum ve nereye gideceğimi yapıyordum. Ve

çok kolay oluyordu.

Guidance from the Coding Platform

[S4 in Turkish]: Evet bazen böyle tam böyle kodlamaya girdiğimizde en

başta video çıkıyor bir de ortalarda çıkıyor onları izliyoruz. İzleyince daha

açıklayıcı oluyor aslında çıkanlar. İzlemeyince hani bunun ne olduğunu

anlayamıyorsun bazen hani bir şey çıktığında.

Benefits of Solo Programming

General Positive Perceptions

Improved Focus

[S17 in Turkish]: Bilişim (Bilişim Teknolojileri ve Yazılım) dersinden daha

açık olurdum. Nasıl desem? Böyle sakince otururdum hocayı dinlerdim.

Yanımda biri olmazdı. Dikkatim dağılıyor.

Active Engagement

[S_8 in Turkish]: Onun söylediği kodları kendim anlayamıyordum çünkü

kendim bakmadan yani kodun ne olduğunu, nasıl çalıştığını

anlayamıyordum. Ama kendim baktığımda daha iyi anlıyorum.

[S16 in Turkish]: Tek başına kodlama yapmanın olumlu yanı bence bütün

soruları görebiliyorsun ve bütün sorulara kendin cevap veriyorsun.

Yapmaya çalışıyorsun, biraz beynini çalıştırıyorsun falan bence daha iyi

oluyor.

Enhanced Retention

289

[S14 in Turkish]: …ama daha çok aklında kalıyordu. Daha çok soru

çözüyordun çünkü.

Challenges of Solo Programming

Lack of Pair Consultation

[S22 in Turkish]: …mesela anlamadığım bir konuyu hocaya sorduğum

zaman bazenleri anlayamıyorum, ne yapacağımı bulamıyorum. Arkadaşım

olduğu zaman yardım ediyordu, bulabiliyorduk beraber ama olmadığı

zaman biraz zorlanıyordum.

Theme 5: Goal Setting

Mastery-Oriented Goals

Desire to Simplify Complex Tasks

[S10 in Turkish]: Akış şemalarındaki hocam şeyleri değiştirmek isterdim,

görselleri. Hocam yazıyla yazmalarını isterdim. Şekillerle olmasın,

yazılarla…

[S18 in Turkish]: İç-içe döngüleri değiştirmek isterdim hocam. O konuda

çok kötüyüm. O konuyu çıkartmak isterdim.

Challenge Seeking

[S7 in Turkish]: Gittikçe daha zor şeyler geldi mi daha da

heyecanlanıyorsun.

Career Oriented Goals

[S20 in Turkish]: Çünkü düşündüğüm ilerideki meslek yazılım

mühendisliği. O yüzden önem gösteriyorum. İlgim var yazılıma o yüzden…

İlgim olduğu yönden yazılımı seçmeye çalışıyorum.

[S1 in Turkish]: Yani büyüdüğüm zaman, meslek sahibi olduğum zaman

önemli olacak diye düşünüyorum. Yani şimdi büyüdüğüm zaman işlere

290

girdiğim zaman kodlama olur işlerde çünkü çok oluyor. Şu an pek emin

değilim yani büyüdüğüm zaman olacak kesinlikle kodlama.

Daily Life Context Relevance

[S27 in Turkish]: Benim için önemli. Hayatımda zor durumlarda yardım

edebilir bana. Mesela annem yemeği yapacak. Ama ‘Kendin yap, ben

gidiyorum’ diyecek. ‘Anne bana algoritma yapar mısın?’ diyebilirim.

‘Algoritma ne?’ der. Ben de derim, ona anlatırım. O da yapar bana. Ben de

kendim yaparım yani.

[S10 in Turkish]: Hocam, teknolojik aletlerde falan işimize yarayabilir.

Mesela Amerika’da Tesla’ları telefonla çağırabiliyoruz. O yönden bence

gerekli.

Recreational Interest in Coding

[S3 in Turkish]: Ben bunu sadece hobi olarak yapıyorum. İleride de hobi

olarak yaparım sadece.

Performance-Oriented Goals

Competition Focus

[S1 in Turkish]: ...Sonra dedi ki ya biraz daha diğerlerini geçelim diye, hızlı

yapalım diye ben yapayım dedi. Ben tamam dedim.

Completion-Driven Motivation

[S4 in Turkish]: Bazen biz şey yapıyoruz. Bir yanımda oturan arkadaşımın

Code.org’una giriyoruz bir benim hesabıma giriyoruz. Onun hesabına

girdiğimizde bende yapılmayan yerleri evde tamamlıyorum.

Academic Achievement Focus

[S24 in Turkish]: Mesela hoca sınav yaptığında hep kodlamalardan

soruyor. Kodlama üzerinden soruyor. Öyle şekiller veriyor sınav kağıdında.

Mesela aynı etkinlikleri yapıyoruz, hoca da aynısını soruyor, öyle. O

291

yüzden, o açıdan bir fayda sağlıyor bana. Bir de sınavlardan yüksek almamı

sağlıyor.

Performance Avoidance Goals

Fear of Failure

[S7 in Turkish]: Çünkü etrafta çok kişi vardı. Yapamadığımda utanıyordum.

[S28 in Turkish]: Adı aklıma gelmiyor ama bazı şeyler zordu hocam.

Yapamam diye korkuyordum.

Avoidance of Challenging Tasks

[S24 in Turkish]: En az sevdiğim şey zorlu kodlamalar diyebilirim yani.

Skipping Tasks

[S21 in Turkish]: Yani çoğunlukla orada üç kişiysek, iki kişiysek atlayalım

diyoruz. Mesela yapamadığımız çok fazla örnek oldu bence. Hepsini de

atladık.

Theme 6: Affective Aspects

Attitude

Positive Attitudes

Interest in Learning Programming

[S18 in Turkish]: Çok sarıyor hocam. Kodlamayı seviyorum.

Enjoyment of Plugged Activities

[S3 in Turkish]: Bilgisayar sınıfına inmek gerçekten daha iyi oldu benim

için de. Eğleniyoruz. Eğitim görüyoruz bilgisayar sınıfında.

[S27 in Turkish]: Böyle yani girince yapasın geliyor. Bakınca sorulara

yapasın geliyor. Çünkü hoş sorular vardı. Güzel kodlama falan vardı.

Enjoyment of Unplugged Activities

292

[S4 in Turkish]: Gerçekten o bardak oyununu çok sevmiştim. Bir de şey

yapmıştık böyle robot şeklinde hareket etmiştik. Tahtaya yazmıştı hoca.

Arkamızı dönmüştük. Bir tane arkadaşımız çıkmıştı. Birisi robot oluyordu

diğeri de tahtadakileri söylüyordu. İşte dereceler oluyordu, orada kal

diyordu, sağa-sola dön diyordu. O çok eğlenceli olmuştu. Güzel olmuştu.

Enjoyment of Social Interaction

[S14 in Turkish]: Ama sosyalleşerek yaptıklarımız da (bilgisayarsız

etkinlikler), onlar da güzeldi. Mesela bazı derslerde okul bahçesine çıkıp

orada… Bir ara bilişim hocası bizim sınıflara şey getirmişti, bir tane tavşan

deliği şeyi, tavşan deliği. Tavşan havuca ulaşmaya çalışıyordu. Mesela

onun gibi, onun biraz daha büyüğünü okulun bahçesinde yere resim olarak

çizip oynamak.

[S26 in Turkish]: Birazcık daha sosyalleştim orada. O da benim gibi

kodlamayı seviyordu. Yani bilgisayar olmasa onunla tanışamazdık çünkü.

Appeal of Familiar Characters

[S8 in Turkish]: Yani böyle bilinen oyun karakterleri falan olduğu için daha

çok ilgimi çekti ve böylece yani daha kolay yaptım. Kolaylaştırdı,

karakterlerin olması hem heyecan verdi hem de kolaylaştırdı.

[S22 in Turkish]: Kodlamayla ilgili, hani Angry Birds var ya, başka bir

filimler de olabilirdi. Mesela Bumblebee falan, böyle robotlarla ilgili daha

güzel olurdu. Daha eğlenceli olurdu, yani bir farklılık olurdu. Eğlenceli

olurdu daha fazla.

Engagement of Gamification

[S3 in Turkish]: Zaten o code.org üzerinden oynadığımız oyunlar falan çok

eğlenceliydi. Yani düşünürsek aslında kodlama yazıyoruz ama gerçekten

çok eğlenceliydi. O ‘ileri git’ veyahut da oyunu bitirmek falan. Bunlar

gerçekten eğlenceliydi kodlamada.

293

Positive Classroom Atmosphere

[S1 in Turkish]: Bir de nazik bir hoca. Nazik anlatıyor. Yani ben de mutlu

oluyorum yani bağırmıyor. İlk defa görüyorum. Yani çok çok kızdırdığımız

zaman bağırıyor o kadar yani. O da direk geçiyor zaten. Hocamızı çok

seviyorum. Bir şey söylediğimiz zaman o tamam diyor.

Negative Attitudes

Negative Disposition Towards Programming

[S19 in Turkish]: Sevmedim kodlamayı. Biraz anlamadım. Biraz zordu.

Frustration from Prolonged Use

[S4 in Turkish]: Mesela bir kursu bitirdiğinde diğerine geçtiğinde sıkıcı

oluyor sadece. Biraz daralıyor insan. Sıkıcı oluyor gerçekten de.

[S9 in Turkish]: Başka yeni şeyler denemek isterdim.

Self-Efficacy

Confidence in Coding Abilities

[S29 in Turkish]: Ya aslında zorlanmadım ben yani. Çok kolaydı hepsi.

[S26 in Turkish]: Bir de bu işin zor olduğunu fark ettim yani. Öyle kolay bir

iş değil.

Determinants of Self-Efficacy Perceptions

Social Recognition from Peers

[S26 in Turkish]: Mesela böyle giriyoruz ya kendimi profesör gibi

hissediyorum nedense. Bu işlerde uzman olmuş birisi gibi hissediyorum.

Arkadaşlarım bana soru soruyor, ben de ‘Şöyle şöyle yaparsan

yapabilirsin’ diyorum. O zaman yani kendimi çok iyi hissediyorum.

Peer Comparison

294

[S7 in Turkish]: Başarılı görüyorum ama … çok da iyi diyemiyorum. Çünkü

benden iyi olanlar da var. Onların seviyesinde değilim. Ortalamanın biraz

üstü.

Mastery Experiences

[S9 in Turkish]: Çünkü bir keresinde hoca anlatırken ben konuyu

anlamıştım. Biranda böyle bitirmiştim onu. Başarılı olduğumu oradan

anlamıştım, ne kadar hızlı yaptım diye.

Academic Performance

[S6 in Turkish]: Üç yazılım 100 geldi. Ondan biliyorum kodlamada başarılı

olduğumu.

Perceived Cognitive Abilities

[S29 in Turkish]: Anlama kapasitem daha yüksek olduğu için...

[S1 in Turkish]: Beynim de çok almadığı için…

295

CURRICULUM VITAE

Surname, Name: Kefeli Berber, Pınar

EDUCATION

Degree Institution Year of
Graduation

MS KTÜ Computer Education and
Instructional Technology

2013

BS OMÜ Computer Education and
Instructional Technology

2008

High School Samsun Anatolian High School, Samsun 2004

WORK EXPERIENCE

Year Place Enrollment
2014-Present RTEÜ Computer Technologies Lecturer
2010-2014 Doğanköy Middle School, Trabzon ICT Teacher
2008-2010 Karaağaçlı Middle School, Trabzon ICT Teacher

FOREIGN LANGUAGES

English

PUBLICATIONS

1. Kefeli Berber P., Keleş E. (2022). Tele Çalışma: Kapsam ve Doğası. In Y. Karal
(Ed.), Bilgi ve İletişim Teknolojileri Aracılığıyla Uzaktan Çalışma (pp. 1-34).
Pegem A Yayınları.

2. Kefeli Berber P., Toplu N. (2022). Topics in Technology Enhanced Language
Learning. In A. Çekiç (Ed.), Topics in Technology Enhanced Language Learning
(pp. 107-130). Cumhuriyet Üniversitesi Yayınları.

296

3. Çelik, S., Saylan, E., Çaylak, N., & Berber, P. K. (2021). İngilizce Öğretmen
Adaylarının Toplumsal Duyarlılık ve Sosyal Adalet Düzeyleri ile Yeni Medya
Okuryazarlıkları Arasındaki İlişki. Uludağ Üniversitesi Eğitim Fakültesi
Dergisi, 34(3), 1332-1372.

4. Kefeli, P. (2018, May 2-4). Ortaokul Bilişim Teknolojileri Öğretmenlerinin
Kodlama Öğretimine Yönelik Görüş ve Deneyimleri [Conference presentation].
12th International Educational Technology Conference, İzmir, Turkiye.

5. Kefeli P., İlkhan M., Güleç M., Tokel S. T. (2016). Design Report of Geography
Island Project: Description of Environment and Instructional Elements [Conference
presentation]. 10th International Computer & Instructional Technologies
Symposium Rize, Turkiye.

6. Kefeli Berber P., Polat E., Hopcan S. (2016, May 16-18). The Perception of
High School Students, Their Parents and Teachers About Essay Tests [Conference
presentation]. 10th International Computer & Instructional Technologies
Symposium, Rize, Turkiye.

7. Keleş, E. & Kefeli, P. (2011, May 25-27). İlköğretimde Akıllı Tahta
Kullanımına Yönelik Düzenlenen Bir Hizmet İçi Eğitim Kursunun
Değerlendirilmesi [Conference presentation]. 11th International Educational
Technology Conference, İstanbul, Turkiye.

8. Keleş, E., & Kefeli, P. (2010). Determination of student misconceptions in
“photosynthesis and respiration” unit and correcting them with the help of cai
material. Procedia-Social and Behavioral Sciences, 2(2), 3111-3118.

