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ABSTRACT

AN N-SCAN BACK ALGORITHM FOR DATA ASSOCIATION IN
MULTITARGET TRACKING

Tekbas, Onder Haluk
M.S., Department of Electrical and Electronics Engineering
Supervisor: Prof. Dr. Kerim Demirbas

September 1996, 113 Pages

In this thesis, basics of multitarget tracking systems and existing
multitarget tracking methods are surveyed. A new N-scan back algorithm for
data association in multitarget tracking systems is presented: Possible paths of
each target are presented by trees. Expected measurements corresponding to the
nodes of these trees are estimated. The distances of real measurements to these
estimated measurements are calculated.The sums of these distances for nodes,
each taken from different level, are found. The measurements are assigned to
the target which yields the minimum sum of distances.

Simulation results are included and the performance of the new algorithm
is compared with “Track Splitting Approach”. Simulation results show that the

new algorithm’s performance is better than that of “Track Splitting Approach”

Keywords: Multitarget Tracking, Multiple-Target Tracking, Tracking, Data
Association, Correlation
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COKLU HEDEF TAKIBINDE KARSILASILAN VERI ESLEME
PROBLEMLERI ICIN N-TARAMA PERiYODU GERI GiDEBILEN
BiR ALGORITMA

Tekbas, Onder Haluk
Yiiksek Lisans., Elektrik-Elektronik Miihendisligi Boliimii
Damgman: Prof. Dr. Kerim Demirbag

Eylill 1996, 113 Sayfa

Bu tezde, goklu hedef takip sistemlerinin temelleri ve mevcut hedef takip
metodlan incelenmigtir. Coklu hedef takip sistemlerindeki veri egleme
problemleri i¢in yeni bir N-Tarama periyodu geri gidebilen bir algoritma
gelistirilmistir: Her hedefin olas1 yollan bir ajag yapisiyla ele ahnmug; bu aacin
dugimlerine karsilik gelen, beklenen gozlem olgiim degerleri bulunmusg, gercek
olgtim degerleri ile beklenen olgiim degerleri arasindaki uzakliklar hesaplanmug;
herbiri farkh tarama perioduna ait olan diigimler i¢in bu uzakhkiar toplanmig ve
Olgtim degerleri, en kiigik toplam uzakhk deferini sajlayan hedefe tahsis
edilmigtir. Aynica, bu algoritmamin bilgisayar uygulamas:i ilgili simiilasyon
sonuglan ve performansimn “Track Splitting Approach” algoritmas: ile
kargilagtinimas: da sunulmugtur. Simiilasyon sonuglan yeni algoritmamn
performansinin “Track Splitting Approach” algoritmasindan daha iyi oldugunu
gostermigtir,

Anahtar kelimeler: Coklu hedef takibi, Hedef izleme, Veri esleme
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CHAPTER 1

INTRODUCTION

In a surveillance system using multitarget tracking (MTT) algorithms, the
aim is to track several targets using one or more sensors. For that purpose, after
deleting background noise sources (such as radar ground clutter) and internal
noise sources (such as thermal noise), sensor measurements are partitioned into
sets of observations, called tracks, each of which is produced by a target.

In multitarget tracking (MTT) systems, first, all measurements taken from
sensors are analysed and extraneous measurements (background noise sources
and internal noise sources) are eliminated. Then, remaining data are classified
into subgroups, each belonging to one track (one target). This classification is
named as “data association” or “correlation”. One can find various methods, in
the literature, (e.g., in [1], [2], [3], [4], [5), [6], [7] and [8]) for data
association.

In this thesis, basics of multitarget tracking systems, existing tracking
methods in the literature (e.g., in [1], [2], [3] and [9]) and their data association
algorithms are surveyed. A new data association algorithm is developed and
simulation results of the implementation of this algorithm are presented.

The organisation of this thesis is as below:



Chapter 1 is an introduction. Chapter 2 presents basics of multitarget
tracking systems. In chapter 3, multitarget tracking methods, documented in the
literature (e.g., in [1], [2], [3] and [9]), are reviewed and their differences are
stated. In chapter 4, data association in multitarget tracking systems is
specifically analysed, an algorithm is developed for data association and

simulation results are presented. Chapter 5 concludes this thesis.



CHAPTER 2

THE BASICS OF MULTITARGET TRACKING

2.1. INTRODUCTION

In a surveillance system employing one or more sensors” together with
computer subsystems, sensor measurements (reports) could have come from
following sources:

.targets of interest,

.background noise sources such as radar ground clutter,

.internal sources such as thermal noise.

We should be able to track interested targets under this condition using
some multitarget tracking algorithms (e.g., algorithms in [1], [2], [3] and [9])

The multitarget tracking objective is to reduce measurements related to
background and internal noise sources and then to partition remaining sensor
data into sets of observations, called tracks, produced by the same target. Once
tracks are formed, relevant quantities (such as target velocity or future predicted

position) can be computed for each track.

® Typical sensors are;
.radar
.sonar
.some optical sensors



Although we are able to use several sensors in a tracking system, in this

thesis, we will concentrate on "Single-Sensor Multitarget Tracking".

2.2. ELEMENTS OF A BASIC MULTITARGET TRACKING
(MTT) SYSTEM [1]

We will introduce basic elements of an MTT system by considering a
simple recursive processing system (Figure 2.1)

Figure 2.1 gives a representation of the elements of a simple MTT system.
There is considerable overlap of the functions of these elements, but this
representation provides a convenient partitioning which will be used to
introduce the typical functions required for an MTT system. Our purpose is to
show how the elements interrelate.

In a surveillance system, sensors generate reports (including observations
or set of data) at regular or irregular intervals of time, called scans. As a
notational convenience, in this thesis, the lower case “” will be used as a
running index for these consecutive scans and lower case “k” will be used for
the last scan. Assume that data for scan time k, are received from the sensor,
and the processing loop described in Figure 2.1 is to be performed. Incoming
data (observations) are first considered for the update of existing tracks. Gating
which will be explained in Section 2.2.3., determines a rough association of data
to existing tracks and then, a more refined data association is realized by a
correlation (or data association) algorithm. (Data association algorithms will be
explained conceptually in Section 2.2.4. And Chapter 2 will give much more

detailed information about existing data association (or correlation) algorithms.)
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Figure 2.1: A Simple MTT System (A Simple Processing Loop)

Observations not assigned to existing tracks can initiate new tentative
tracks. A tentative track becomes confirmed when the number of the

observations included in the track satisfy confirmation criteria® . Similarly, low

© Concepts related to confirmation criteria will be give in Section 2.2.5
5



quality tracks (i.e. tracks that we can not assign any observations within a
predetermined finite number of consecutive scans or within a finite total elapsed
time since the last track update), are deleted. Finally, the future state (positions
or other relevant quantities) of each established track and corresponding
measurements at next scanning step are predicted. Gates which can be defined
as validation regions around these predicted quantities where the probability of
correct observations falling inside is quite high, are placed and the processing
cycle repeats. Now, we will discuss functions of the elements, block by block,

in more detail.

2.2.1. Detection (Observation Formation) Part of The MTT System

The functions in detection part of Figure 2.1 are described in this section:

2.2.1.1. Decision on the origin of the sensor return

In detection (observation formation) part of an MTT system, decision on
the origin of the sensor returns (i.e. whether they come from interested targets
or result from extraneous sources, such as potential false alarms produced by
noise and radar clutter) is performed. For that purpose we simply compare the
incoming measurement signal power to a threshold level. Signals whose power
levels are below that threshold are discarded, and those of higher levels are fed
to the tracking part of MTT system. But, here we should ask the following
question: "How should we determine that threshold level?". For this purpose
and for some other requirements, one can perform feedback operation between

tracking and detection parts of MTT system (Figure 2.2). In other words, results



from tracking part of an MTT system can be used as feedback to affect the
detection (observation formation) part. And, probably the most important use of
this feedback is "adaptive threshold control”.

Detection (observation formation) and tracking parts are often designed
independently for MTT systems as shown in Figure 2.1. However these should
be interrelated.

Figure 2.2 shows how information (feedback) from the tracking part can

be fed into the detection part.

DETECTION (OBSERVATION FORMATION) PART OFF MTT SYSTEM

. |ANTENNA FURTHER

AND - 4 OBSERVATION

TRANSMISSION THRESHOLDING | {[PROCESSING

CONTROL PROCESSING (REDUNDANCY
A ELIMINATION)

MTT TRACKING PART

Figure 2.2: Feedback Between Detection and Tracking Parts of an
MTT system



Feedback can first be applied to determine antenna positioning, resource
allocation, and transmission control. Basically, the approach is to use a higher
sampling rate in regions where established tracks exist. So, we increase the time
on target in order to improve the detection probability.

In addition, in some tactical situations, our transmitted radar signal power
should be controlled so that we don't miss the target while minimizing the
probability that the radar signal is detected by hostile aircraft or groundbased
tracking systems. This may be realized by limiting the system to intermittent
search and adjusting the transmitted power according to the target range while
illuminating the target.

Feedback is also used to affect signal processing. In the signal processing
unit, special processing that can not feasibly be done everywhere may be
performed in regions of expected target returns.”

In the use of feedback for threshold control, it is aimed to reduce the
threshold in region of expected target return (this leads higher probabilities of
detection and false alarm) and to increase it in region of greater than average
background (clutter) power (which yields reduced probability of false alarm but
also reduced probability of detection). Thus, by selective choice of threshold it
may be possible to obtain a tolerable false alarm rate without loss of tracking

performance.

®one application in this area is to form finer Doppler (range rate) filters in the
region of expected target return. Another application would be to apply special
processing to recognize and reduce the effects of JEM (Jet Engine Modulation)
returns in the vicinity of the expected target range rate.



2.2.1.2. Combination of multiple simultaneous observations from the
same target

In order to simplify the design of MTT elements we should be sure that
sensor does not produce multiple simultaneous observations from the same
source. But, in practice, we have multiple simultaneous observations from the
same source due to the scanning requirements. (For example, a radar may
achieve a required elevation angle coverage by scanning two or more bars at
different elevation angles. So we encounter with multiple simultaneous
observations received on different bars from the same target) These
observations should be combined and the composite observation should be input
to the tracking part of the MTT system.. For this purpose a "Preprocessing
Redundancy-Elimination” process is realized by "Detection (Observation
Formation)" part of MTT system. Trunk, [10], presents an algorithm for

combining multiple simultaneous detections from the same source.

2.2.1.3. Determination of multiple targets within the radar's
beamwidth when single  observation from multiple targets is obtained

In addition to the problem of multiple observations from a single target,
the problem of single observation from muitiple targets may be produced too.
For example, radar measurement techniques might not be able to resolve several
closely spaced targets that are within the radar's beamwidth. But, some data
processing techniques can be performed to determine whether multiple targets
exist within the radar's beamwidth, even if distinct measurements from all targets

cannot be obtained. This is another function of the "Detection (Observation



Formation)" part of MTT system. Reference [11] proposes a method for

determining target multiplicity within the radar’s beamwidth.

2.2.1.4. Coordinate system transformation

Another function performed during the process of observation formation
is the transformation of the measured kinematic quantities (e.g., position) to a
coordinate system which is more convement for performing the functions of

other MTT elements.

2.2.1.5. Improving observation quality

A fifth function of the "Detection (Observation Formation)" part of MTT
system is that of improving observation quality. For example, certain known
characteristics of the radar signal return may be used to remove the undesired

components caused by jet engine modulation (JEM).

2.2.2. Filtering and Prediction

Actually target tracking is a problem of estimation. Estimation can be
defined as the operation of assigning a value to an unknown system state or
parameter (e.g. position of a target, in our case) based on noise corrupted
observations involving some function of the state or the parameter [12].
According to the choice of mathematical models used, we are able to classify an
estimation problem into two basic groups:

1. Linear estimation

2. Nonlinear estimation

10



A linear estimation problem may be static (time-invariant) or dynamic
(time-varying). And same classification is also true for nonlinear estimation
problems.

Practical problems, including target tracking, are generally nonlinear
dynamic estimation problems because either state equation or measurement
equation (which will be given later) or both are nonlinear. But, for most
practical purposes, the overall MTT system design problems are the same,
regardless whether a linear or a nonlinear model is used. For that reason, we
will concentrate on linear estimation problems by considering an MTT problem
before giving a brief summary of Kalman filtering which is the® state estimator
for discrete time linear dynamic systems driven by white noise. First of all, some
general definitions will be given:

For the case of an MTT problem, assuming we are at scan time “k”.

The measurement for each jth scan can be denoted by:

Z(y=hGx().w()  =1,2.3,.....k 2.1

where w(j) is the measurement noise at the jth scan.

The aim is to find a function

A

A k
x(k=x(k,Z) 22)

® Actually, there are two commonly used approaches to filtering and prediction
problem:

1. Filters using fixed tracking coefficients for the statistics of measurement
noise and target dynamics. For example, a-f filter.

2. Kalman filtering which generates time-variable tracking coefficients
However, Kalman filter will be analyzed in this thesis.

11



where ZX denotes all previous observations, 1.€.,
Z=(zG)) 23)

Equation (2.2) is called the estimator and the value of this function for the

kth scan time is the estimate of x(k). The estimation error corresponding to the

A

estimate x (k) is

~ A A
(k)= x(k)-x(k) 24)

Parameter ,x, (state of a target ) can be time-invariant or time varying, as
stated above. In Section 2.2.2.1, we will analyze time invariant case (i.e., static
estimation problem). Dynamic estimation problem will be analyzed in Section

2N

2.2.2.1. Linear Estimation in Static Systems (Le., Parameter, x, is
Time-invariant)

There are two approaches one can use in the estimation of a time-
invariant parameter:

1.Non random (“unknown constant”):There is an unknown true value x.
This is also called the Non-bayesian or Fisher approach.

2 Random: The parameter is a random variable (or vector) with a prior (a

priori) pdf p(x) -a realization of x according to p(x) is assumed to have

12



occurred; this value then stays constant during the measurement process. This is
also called the Bayesian approach.

Here, these two approaches will be analyzed in more detail:

The Bayesian Approach
In this approach, one starts with the prior pdf of the parameter from

which one can obtain its posterior (or a posterior pdf) using Bayes’ formula:

PZxp(0) _ 1

p(x|Z)= 2 —(;p(ZIx)p(x) (2.5)

where c is a normalization constant (doesn’t depend on x)

The posterior pdf can be used in several ways to estimate x. Two of them
are

1. Maximum A Posterior Estimation (MAP Estimation)

2. Minimum Mean Square Error Estimation (MMSE Estimation)

The Non-Bayesian (Likelihood Function) Approach

In contrast to the above case, in the non-Bayesian approach there is no
prior pdf associated with the parameter and thus one can not define a posterior
pdf for it.

In this case one has the pdf of the measurements conditioned on the
parameter, called the likelihood function (LF) of the parameter, which is

denoted by:

13



Az(x)=p(Zx) (2.6)

or

A(x)=p(ZK}x) 2.7

It is a measurement of how “likely” a parameter value is for the
observations that are made.

The likelihood function can be used in several ways to estimate x. Two of
them are :

1. Maximum Likelihood Estimation (ML Estimation)

2. Least Square Estimation (LS Estimation)

If in a given set of measurements, errors are additive, zero-mean,
Gaussian and independent, then ML estimate coincides with the LS estimate and
MAP estimate coincides with MMSE estimate.

In Appendix A, estimation of Gaussian random vectors is given as an
example:

Now, dynamic estimation problem will be explained:

2.2.2.2, Linear Estimation in Dynamic Systems (Le., Parameter, x, is
Time-varying)

Consider a discrete time linear dynamic system described by a vector
difference equation with additive white Gaussian noise that models
“unpredictable disturbances.” The dynamic equation is

14



x(k+HD=FR)x(k)*GRuk)y+v(k)  k=0,1.2,.... (2.8)

where x(k) is the ny-dimensional random state vector (e.g., position, velocity,
..., etc), u(k) is an ny-dimensional known input vector ( e.g., control or sensor

platform motion), and v(k), k=0,1,......, is the sequence of zero-mean white

Gaussian process noise (also n, vectors) with covariance®™ :

E[v(k)v(k)'1=Q(k) (2.9)

The measurement equation is

2)=HIx(kH+wk) k=12,... (2.10)

with w(k) the sequence of zero-mean white Gaussian measurement noise with

covariance

E[w(k)w(k)T-R(k) 211

The matrices F,G,H,Q, and R are assumed known and possibly time
varying. In other words, the system can be time varying and the noises can be

nonstationary.

¢vectors which are primed with symbol () are the transpose of the
corresponding vectors.

15



The initial state x(0), in general known, can be modeled as a random
vector, Gaussian distributed with known mean and covariance. The two noise
sequences and the initial state are assumed mutually independent.

Equations (2.8) through (2.11) and the condition stated in the previous
paragraph constitute the linear Gaussian (LG) assumption.

In the dynamic equation ,Equation (2.8), the process noise term v(k) is
sometimes taken as I'(k)v(k) with v(k) an n, -vector and I'(k) a known n, by n,
matrix. Then the covariance matrix of the disturbance in the state equation,

which is Q(k) if v(k) enters directly, is to be replaced by

E[ [MvaI vl |= Qe (212)

The linearity of Equation (2.8) and Equation(2.10) leads to the
preservation of the Gaussian property of the state and measurements - this is a
Gauss-Markov process.

The following notations will be used:

The conditional mean

" . A ~ 7K
x (k) = E[x()IZ"] (2.13)

where

16



k2 (2(5), j<k

denotes the sequence of observations available at time k.

It can be proven that the estimate of a random vector x(k) in terms of
z(k), according to the minimum mean square error (MMSE) criterion, is the
conditional mean of x(k) given z(k) (proof is available at page 98 of [12]).
Considering the above fact, the conditional mean given in Equation (2.13) will

be defined as the

.Estimate of the state if =k (also called filtered value)
.Smoothed value of the state if j<k

.Predicted value of the state if j>k.

The estimation error is defined as

x(lk) = xG)- x (k) @.15)

The conditional covariance matrix of x(j) given the data Z¥ or the

covariance associated with the estimate (Equation (2.13))is:

PGI=E[[ xG)-x GG xGOTZ<]-Elx () xGkY1Z<]  @.16)

17



2.2.2.3. Kalman Filtering
In the previous section we stated some basics of estimation concept. In
this section we will analyze an algorithm related with Kalman filtering which is

the state estimator for a linear discrete time time-varying (dynamic) system

Algorithm, [12]

The algorithm start with the initial estimate x(0j0) of x(0) and the
associated initial covariance P(0|0), assumed to be available. The second
(conditioning) index O stands for Z°, the initial information.

One cycle of dynamic estimation algorithm - the Kalman filter (KF)- will

thus consist of mapping the estimate

A

x (k|k)=E[x(k)|Z*] (2.17)
which is the conditional mean of the state at time k (the ‘current stage’) given

the observations up to and including time k, and the associated covariance

matrix

P(k)=E[ [x(k)- x (kllJx(k)- x (kik)11ZE] (2.18)

A

into the corresponding variables at the next stage, namely, x(k+1jk+1) and

P(k+1]k+1).
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This follows from the fact that a Gaussian random variable is fully
characterized by its first two moments.

The values of past known inputs are subsumed in the conditioning, but
(most of the time) will not be shown explicitly

The recursion that yields the state estimate at k+1 and its covariance can
be obtained from the static estimation equations. Detailed derivation of the
dynamic estimation algorithm can be found in Appendix B. However, as an
overview, we can say that :

Under the Gaussian assumption for the initial state ( or initial state error)
and all the noises entering into the system, the Kalman filter is the optimal
MMSE state estimator. If these random variables are not Gaussian and one has
only their first two moments, then the Kalman filter algorithm is the best linear
state estimator, that is, the LMMSE state estimator.

The flowchart of one cycle of the Kalman filter is presented in Figure 2.3.

Note that at every stage k the entire past is summarized by the sufficient statistic

A

x (k|k) and the associated covariance P(kk).

The left-side column represents the true system’s evolution from the state
at time k to the state at time k+1 with the input u(k) and the process noise
v(k).The measurement follows from the new state and the noise w(k+1). The
known input(e.g., control, platform motion, or sensor pointing) enters (usually)
the system with the knowledge of the latest state estimate and is used by the

state estimate to obtain the predicted value for the state at the next time.
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Figure 2.3: The Flowchart of one Cycle of Kalman Filtering




The state estimate cycle consists of

1. State and measurement prediction (also called time update) and

2. State update (also called measurement update).

The state update requires the filter gain, obtained in the course of the
covariance calculations. The covariance calculations are independent of the state
(and control-assumed to be known) and can, therefore, be performed off-line.

As a summary, we can say that filtering and prediction are used to
estimate present and future target kinematic quantities such as position, velocity,
and acceleration. Fundamental (not sophisticated) techniques which are used for
filtering and prediction purposes, assume widely separated targets in a sparse
false-alarm background so that the errors introduced by uncertain observation-

to-track correlation can be ignored.

2.2.3. Gating, [1]

Gating is the first part of the correlation algorithm (data association
algorithm) used to decide if an observation belongs to a previously established
target track or to a new track. In other words, gating is a coarse test that
classifies an observation into one of the following two categories:.

1. Candidate for track update

2. Inttial observation for new tentative track

Gates are established, and gating is performed in the following general
manner:

Assume that, we are at scan time "k+1". The measurement at this time is:
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7= z(k+1)= H(k+1) x(k+1) + w(k+1) (2.19)

where

H(k): The measurement matrix, and

w(k): Zero-mean, white Gaussian measurement noise with covarnance
matrix R(k).

The vector difference between measured and predicted quantities,

y=y(k+1)= z(k+l)—H(k+1);(k+1 1K)
(2.20)

is defined to be the residual vector (or innovation) with residual covanance
matrix,

S= S(k+1)=H(k+1)P(k+1 | k)H(k+1)’+R(k) (2.21)

where P(k+1 [k) is the predicion covariance matrix.. Assume that the

measurement is M dimensional. The norm of the residual vector is defined as :
2 =yS-ly .21

and the M-dimensional Gaussian probability density, related with the residual is:



where |S] 1s the determinant of S

If the probability of detection is unity or no extraneous returns are
expected, considening the Gaussian density above, we can say that the optimal
gate size should be infimte in order to obtain an optimal correlation
performance. But, even for the above case , we should determine a finite gate
size in order to reduce the number of observation to track pairings.

But, for the most part of the tracking problems the probability of detection
1S not unity or there exist extraneous returns in the surveillance volume. So, the
determination of a finite gate size is more meaningful.

In general, three types of gating method is used in MTT systems. They
are:

1. Rectangular gates

2. Ellipsoidal gates

3. Gates with more than one level.

Rectangular Gates
While we are using this method, an observation is said to satisfy the gate
of a given track if all elements,y;, of the residual vector y satisfy the relationship

tzr;l E il <Kgo, (2.23)

where o, is the residual standard deviation as defined in terms of the

measurement (o) and the prediction (o,) variances:
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o =1/o(2) +°12) (2.24)

Now., we will concentrate on how to chose Kg; Assume that for all
dimensions Kg=K; We are going to make use of the probability (Pg) of a

valid observation satisfying the gating relationship which is defined as
Pg = [1-Pr( t BKG)IM =1 - MPr( It K() + higher order terms ~ (2.25)

where Pr( t EK(_;) is the probability of the magnitude of a standard, normalized
Gaussian random variable (t ~ N(0,1)) exceeding Kg . If we assume that

Pr( [t >K) is small enough we can neglect higher order terms and we get
PG = [1-Pr( It BK@M =1 - MPr( It >K5) (2.26)
For example, if K is chosen to be 3,

Pr( It £3)=2Pr(t=3)=2(0.00135)=0.0027

and, for 4-dimensional radar measurement (azimuth, elevation, range, range
rate), the theoretical probability of a valid observation satisfying the gating test
forKg3is.
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PG =[1-Pr( It 23)]4=1-4Pr( It [>3)=1-4(0.0027)=0.99

So the choice of KG=3 1s quite meaningful. But in the presence of target
maneuver this value may be chosen around (3.5). Or, even in the above case, a
one percent probability of rejecting a valid return in every scanning period, can
lead to a much larger cumulative value (>20 percent) over the life of a typical

track. So, larger values of Kg ( Kg >3) may be used.

Ellipsoidal Gates

In this method, the gate size is determined by the following relation;
d?2 =yS-ly<G (2.27)

where
d? is the norm of the residual vector
S is the residual covariance matrix (defined in Equation (2.21))

y is the measurement residual vector (defined in Equation (2.20))

References [4] and [S] proposes a maximum likelihood gate Gy which is

defined as

Pp
=2 In — ] 2.28
Co [(I—Pp)a(zu)m,/ﬁ @28
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References [4] and [S] proposes a maximum likelthood gate G, which is

defined as

Pp
(1-Pp)Bmy M2l

Gy=2In| ] (2.28)

where

Pp is the probability of detection.

B.is the new source density which is the expected value of new sources
(true targets and false alarms) that arise per unit volume per unit scan time.

M is the measurement dimension.

The probability (Pg) that a valid observation will fall within the gate G

can be found by

Pe= | | tpdyn.iym (2.29)

Comparison of Gating Methods [1]

This comparison is realized by considering gating volumes of the two
methods mentioned above.

The volume of an M-dimensional rectangular gate normalized with

respect to residual variances is:

VeiM~2KeM ‘ (2.30)
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The normalized volume of an M-dimensional ellipsoidal gate 1s:

V1 (M)=CyGM (231)
where
MR
nM , M even
My
( 5 )i
KMQ
Cy = ———— = (2.32)
G((M/2)+1))
M1 M-1
(M~+ D! » Modd

In Equation.(2.32) G(.) stands for Gamma function

Now, we define the ratio of the two volume expressions above as

VoiM)
r(M)= Vg2 M) (2.33)

Table 2.1, taken from [1], give appropriate values of Kg and G for
different measurement dimension (M). Referring to this table, we can say that
the relative volume required by the rectangular gating method increases rapidly
as the measurement dimension increases. This means that the probability of
accepting an extraneous return for the rectangular gating method increases as
compared to that of ellipsoidal gate. That is, the ellipsoidal gating decreases the
probability of an extraneous observation falling within the gates. However, use
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of the ellipsoidal gate requires somewhat more computation because the
normalized distance function must be computed using Equation.(2.27) An
alternative way of gating 1s to do a coarse gating test first, using relatively large
(Kg~ 4.0) rectangular gates, and then to use ellipsoidal gates for those
observation-to-track pairings that satisfy the coarse gating. This process has

been found to decrease significantly the number of required calculations.

Table 2.1:Comparative Probabilities Of Accepting Extraneous

Observations
(Pg is assumed to be 0.99)
M Kg G (M)
2 2.81 921 1.09
3 2.94 11.34 1.28
4 3.04 13.28 1.59
5 3.09 15.09 20

2.2.4. Data Association (Correlation)

The correlation algorithm takes the output of the gating function and
makes final observation-to-track assignments. In the case where a single
observation is within the gate of a single track, the assignment can be
immediately made. However, for closely spaced targets, it is more likely that
conflict situations, such as those shown in Figure 2.4 will arise. Basically there
exist two types of conflicts situations: ‘ )

1. An observation may fall within the gates of multiple target tracks (such
as O1 of Figure 2.4.)
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2. Multiple observations may fall within the gate of a target track. (such as
02. 03 of Figure 2.4.)

In chapter 2, We will introduce DATA ASSOCIATION algonthms in

more detail.
O4
e
01,02,03 : MEASURED OBSERVATION LOCATIONS
P1.P2 : PREDICTED OBSERVATION LOCATIONS

Figure 2.4: An Example of a Correlation Conflict Situation

2.2.5. Track Initiation, confirmation, and Deletion

Depending on the correlation algorithm used, some observations might
not be assigned to existing tracks. Those observations are candidate for
initiation of new tentative tracks or they are deleted. In order to maintain
accurate tracking it is best to initiate new tracks whenever initiation may be
questionable, but then to make confirmation requirements more stringent.

Once a tentative track is formed, a confirmation logic is usually required
because the probability of a single observation being from an extraneous source
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confirmation criteria are three-out-of-four or three-out-of-five. However, for a
radar system in which Doppler (range rate) information is available, two
observations may suffice so that two-out-of-three or two-out-of-four critena
may be used. If the required confirming observations are not received, the
previous observations are dismissed as false alarms.

If we don't have no correlating observation to update a track within a
sufficiently long time period or within a finite number of consecutive scans, that

track must be deleted. It might be best to delete a track just because of its low

quality.
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CHAPTER 3

EXISTING MULTITARGET TRACKING (MTT) METHODS

3.1. INTRODUCTION

As we mentioned in the previous chapter, the purpose of the multitarget
tracking (MTT) methods is to associate new observations with one of the
existing tracks or to initiate a new tarck. In the litterature, (e.g., in [1], [2], [3]
and [9]), one can find several MTT methods developed for the above purpose.

There exist two main distinctions when comparing multitarget
trackingMTT) methods:

The first distinction:

Methods are of batch or recursive (sequential) type.

The second distinction:

Methods use “nearest-neighbor” or “all-ueighbor” approaches.

3.1.1. Differences between batch and recursive (sequential)
methods?

Batch processing techniques represent the ideal situation (optimal
solution to MTT) where no information is lost due to preprocessing because all

observations are processed together. If we use lower case "j" as a running
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index, and the lower case "k" as the index for the last scan of a set of
observations then, using batch processing, at scan k. the data recetved on that
scan as well as the data received on all previous scans j=1,2,3,.. k-1 would be
processed together to form target tracks and state (positions, velocity, et cetera.)
estimates. On the other hand, using recursive (or sequential) methods,
processing is done at each scan using only data received on that scan to update
the results of previous processing. For example, in the simplest recursive
processing, observations received at scan k would be compared for correlation
with tracks formed on the previous (k-1) scan, but would not affect the previous
correlation decisions.

Using recursive methods, we have an advantage when computational
capacities are considered because we process only data in a particular scan. But,
as mentioned above, using this approach, data association decisions are
irrevocable once made.

The computations associated with batch processing rapidly begin to
exceed computational capacities as more and more data are received. Thus,
batch methods are usually ideal solutions which are not computationally
feasible.

A modified version of batch processing, known as deferred decision
approach, allows the final decision on difficult data association situations to be
postponed until more information, such as the next frame of data is received.
Alternative hypotheses are formed and evaluated when later data are received.
This approach clearly has the potential for ultimately achieving a much higher
correct decision probability then the sequential decision method. However, to
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maintain computational feasibility, an intricate logic to delete (prune) unlikely

hypothesis and to combine similar hypothesis is required.

3.1.2. Differences between ‘“nearest-neighbor” and “all-neighbor”
approaches?

A second distinction between multitarget tracking algorithms arises in
solving correlation conflict situations in which multiple observations fall within
the same gate (or gates) or observations fall within the gates of more than one
track. There are two basic approaches to this problem. The first approach,
called "nearest-neighboor,” looks for a unique pairing so that at most one

observation can be used to update a given track. Using this approach, the

optimal solution is obtained by assigning observations to tracks in order to
minimize the total summed distance from all observations to the observation
prediction positions of existing tracks.

To illustrate one suboptimal solution, the example shown in Figure 2.4
will be solved.

In Figure 2.4. O1, 02, O3 and 04 are new observation positions received
at last scan k. P1 and P2 are predicted observation positions for track 1 (T1)
and track 2 (T2) respectively. Circles show the gated regions of the two tracks.

The suboptimal solution is reached using the following rules:

1. O1 is assigned to T1 because O1 is the only observation within the
gates of T1 while T2 has oﬂ}er observations (02,03) within its gate.

2. 03 is assigned to T2 because the distance between 03 and P2, is
smaller than the distance between O2 and P2.
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3. 04 can, without question, be used to initiate a new track, but new track
initiation using O2 may be restricted This restriction is based upon the practical
consideration that multiple observations within the gate of a single established
track are often the result of a failure in the observation redundancy-elimination
logic, discussed in Section 2.2.1.2. Thus, this restriction serves to prevent
nitiation of extraneous tracks.

In Section 3.2, two different suboptimal and an optimal solution are given
for an other conflict situation which is presented in Figure.3.1. |

The alternative to nearest-neighbor correlation is the "all-neighbor"
approach, which incorporates all observations within the neighborhood, as
defined by the gate around the predicted target position. The position update is
then based on a weighted sum of all observations, with the weighting calculated
using probability theory. For the example shown in Figure 2.4, this means that
01, 02, and O3 would all be used to update the position estimate of T2, but the
weighting of O1 would be much smaller than the weightings for O2 and O3,
since O1 is also within the gate of T1.

Considering two main distinctions between MTT methods discussed
above, we are able to classify MTT methods in litterature into one of the
following methods:

1. Method using sequential nearest neighbor correlation (standard
(sequential) nearest neighbor method), [2]

2. Methods using probabilistic (non-bayesian) approaches, [2], [9]. Two
of them are:

.The track splitting approach
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The maximum likelihood method
3. Methods using bayesian approaches, [9]

a-) Nearest-neighboor, single scan (or N scan back), a posteniori
algonthm. Basically this is a sequential method. But difficult decisions may be
deferred until more data are received. This method 1s generally called "Multiple
Hypothesis Tracking" (MHT) approach.

b-) All-neighboor, single scan, a posteriori algorithms. There are
essentially two types of this approach.

i-) Probabilistic Data Association (PDA) which is suitable
for tracking only one single target.

ii-) Joint Probabilistic Data Association (JPDA) which is
suitable for tracking multiple targets.

¢-) Multiple-scans, all neighbors, a posteriori algorithm. This
method is essentially suitable for tracking only one single target but may also be
used in tracking several targets. There are essentially two types of this approach.

i~) "Batch processing approach” where number of scans
is infinite. This is the OPTIMAL SOLUTION between all
of the solutions using Bayesian rule (i.e. algorithms using
a posteriori probabilities)

ii-) "Deferred decision approach” where number of scans

The methods mentioned above will be discussed in followng sections.
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3.2. STANDARD (SEQUENTIAL) NEAREST NEIGHBOR
METHOD, [2]

Assumptions:

1 It is assumed that N; observations are taken for each scan.

2. N; observations taken for each scan, are associated with the existing
tracks at same time.

3. Number of targets are not known. Therefore, new tracks can be
initiated after each scan (after N; observations are taken).

4. It is assumed that only one observa;don is received for each target at
each scan.

5. It is assumed that any observation belonging to at least one of the
existing gates, will be used to update one of the established tracks, i.e., they can
not initiate a new track. Candidate observations for track initiation are those
which belong to none of the existing gates.

In this method, each track is defined by its state vector . Existing
established tracks, if any, first are extrapolated to the current sample time and
validation gates are computed. An assignment matrix, which will be explained
below, is computed. The nearest neighbor association rule is invoked.
Established tracks are updated, using some filters such as Kalman Filter

Unassigned detections are processed by the track initiator. New tracks
satisfying the initialization criteria are promoted to established tracks (ie. ,
tentative tracks become confirmed) and their filter states and validation gates are
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Established tracks that have exceeded the minimum number of sample
times without an assigned detection are terminated

The critical point of this method lies on the determination of the
assignment matrix and the solution of this matrix will give the assignment of
observations to existing tracks. For that reason, we will concentrate on how to
form the assignment matrix and how to solve it:

An assignment matrix consists of elements which give a value related with
the measurement residual (Equation (2.20)). These values are calculated as
follows:

Assume a Gaussian distribution for the residual. So, the likelihood
function associated with the assignment of observation j to track i (for M-

dimensional measurement vector) is:

-di
e @3.1)
gi.= -
" emM2s]
where §; is the residual covariance matrix for track i, and
dg = y5S1 Y3 (3.2)

yijj = residual vector between new observation Oj and the predicted

observation value, P; ,of track “i” (T; ) defined at Equation (2.20)

37



The basic goal is to choose assignments that maximizes the sum of
corresponding g; terms. Or alternatively. taking the logarithm of Equation (3.1),
1t 1s seen that maximization of the gy 1s equivalent to minimization of the
quantity:

2
dG

2
= +InfS;| (33)

i

Since, using “nearest-neighbor” approach, each observation can be
assigned only one track and a track can be updated using only one observation,
we can only chose one element from each row and one element from each
column of the assignment matrix. So we will have M assignments if we deal

with an M by M assignment matrix. The choice of these M elements sould be

such that the sum of corresponding de_. terms should be minimum of all
i

possible alternatives.

This concept is explained considering the hypothetical distance values of
the assignment matrix of Figure 3.2, which is related to the situation given in
Figure 3.1.

In Figure 3.1, O1, 02, O3, and O4 are new observation positions
received at last scan; P1, P2, and P3 are predicted observations of track 1 (T1),
track 2(T2), and track 3(T3) respectively; and circles with centers located at P1,
P2 and P3 show the gated regions of corresponding tracks. In Figure 3.2., same
notation is used for observations, prediction observations and tracks. In
- addition, since we don’t need to calculate the residual between a predicted
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observation position and a new observation which 1s outside the gate of this
track, these type of assignments are denoted by the symbol “X” The circled
entries in Figure 3.2, show the elements of the optimal solution.

The optimal solution for this example 1s obtained by choosing the set of
observation to track pairings which have minimum summed total distance. This
set 1s determined by considering all possible set of observation to track pairings
and 1s shown by circled entries in Figure 3.2. O4 which is located outside the
gated regions of all tracks, can be used to initiate a new track. But, this example
is a simple one. For more complex situations, some algorithms should be used to
obtain optimal solution. Some of them are:

. Ford-Fulkerson Algorithm [13]

. Hunganan Algorithm [14]

. Munkres' Algorithm [15]

In some MTT problems trying to get the optimal solution may be too time
consuming and so, not feasible. For that purpose a number of approximate
solutions to the assignment problem have been developed. These solutions are
simple to implement . But, they are not guaranteed to give the optimal
assignments for all conditions. In addition, they may not be able to assign one or
several observations into existing tracks which is the case occuring in
“Suboptimal solution 2” which will be given in this section. These are
drawbacks of the suboptimal solutions. Two of these suboptimal solutions are

given below:
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.Suboptimal Solution 1

1 If the number of non-zero elements is unity in a row of the assignment
matnx the corresponding observation-to-track pairing is accepted , and related
row and column of this pair is removed from the matrix.

2. If the number of non-zero elements is unity in a column of the
assignment matrix the corresponding observation-to-track pairing is accepted,
and related row and column of this pair is removed from the matrix.

3. After each application of rule 1, the reduced matrix is again subject to
the rule 1.

4. After each application of rule 2, the reduced matrix is again subject to
the rule 2.

5. If the number of non-zero elements in a row is still greater than one
chose the observation with minimum distance.

6. If the number of non-zero elements in a column is still greater than one

chose the track with minimum distance.

« Suboptimal Solution 2

1. Search the assignment matrix for the closest (minimum distance)
observation-to-track pair and make the indicated assignment.

2. Remove the row and column of the observation-to-track pair identified
above from the assignment matrix and repeat rule 1 for the reduced matrix.



To compare the solutions obtained by the optimal and two suboptimal
methods discussed above the total distance values of these solutions for the
assignment matrix shown in Figure 3.2 are computed:

The total distance for the optimal assignment is 23. Using the first
suboptimal method, the initial assignment is O3 to T2 because O3 is singly
validated which means that there exists only one non-zero element in the
column of the O3. Then, processing T1 first will lead to assignment of O2 to T1
because the corresponding distance is 6, which is less than the distance, 9, from
O1 to T2. Finally the remaining assignment is O1 to T3. This leads to three
assignments, but the total distance is 24, which exceeds that of the optimal
solution.

The second suboptimal solution begins by making the minimum distance
(3) of O2 to T2. Then, O1 is assigned to T3., but O3 is left without an
assignment. Thus, the second suboptimal solution leads to less than the
maximum number of possible assignments.

For, most simpler cases, these three solutions will agree. But here, the
example was chosen to emphasize differences.

As a summary, we can say that the application of standard nearest
neighbor algorithm uses the measurement nearest in some sense to the predicted
measurement ("nearest neighbor filter”). But, it can lead to very poor resuits in
an environment where spurious measurements occur frequently. This is because
such an algorithm does not account for the fact that the measurement used in
the filter might have originated from a source different from the target of

mterest.
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01, 02, O3, 04 = OBSERVATION POSITIONS

P1, P2, P3 = PREDICTED OBSERVATION POSITIONS

Figure 3.1: Example of a Conflict Situation

OBSERVATIONS
PREDIC o1 02 o3

OBSERVATIONS
SIENE

X = OBSERVATION OUTSIDE GATE

O = OPTIMAL SOLUTION

Figure 3.2: Assignment Matrix for Example of Figure 2.1.
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3.3. METHODS USING PROBABILISTIC (NON-BAYESIAN)
APPROACHES (SEQUENTIAL), [9]

Those methods were motivated by the need to find a reasonable way of
incorporating measurements of uncertamn origin into existing tracks. For
example, the pioneering work of Sittler [6] in this area was based on an
algorithm which was of the type used before Kalman filter became popular. The
method consisted of spliting the track whenever more than one return
(detection) was observed in the neighborhood of the predicted measurement
(i.e, in the gate of the corresponding track). Then the likelihood function of
each trajectory was computed and those whose likelihood was below a
threshold were dropped. Similar approaches were developed within the
framework of Kalman filtering by Fraser and Meier [16] for active sonar
tracking and by Smith and Buechler [17] for radar tracking. We will explain
track splitting (or branching) algorithm in the following section in more detail

Another probabilistic (non-bayesian) method which is particularly suitable
for track formation for several targets in the same neighborhood was developed
by Morefield [18]). This method, discussed later , is based upon likelihood
functions and converts the association of measurements to form tracks into an

integer programming problem.

3.3.1. The Track Splitting Approach (Sequential)

Assumptions:
1. It is assumed that N; observations are taken for each scan.
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2. N, observations taken for each scan, are associated with the existing
tracks at same time.

3. Number of targets are not known. therefore, new tracks can be initiated
after each scan (after N; observations are taken).

4. As mentioned previously, it is assumed that only one observation is
recetved for each target at each scan.

5. It is assumed that any observation belonging to at least one of the
existing gates, will be used to update one of the established tracks. I.e., They
can not initiate a new track. Candidate observations for track initiation are those
which belong to none of the existing gates.

6. The probability of detection is assumed to be unity. In other words,
mussing detections are not included.

7. False alarms are not included.

In this method, initialization of a track is usually based upon one or two
correlating measurement. And, for every subsequent observation that falls in a
"window” (gate) around the location the new measurement for an existing track
is expected, the track is split. A Kalman filter is used to estimate the state of
each sphit track. Since the number of branches can grow exponentially the
likelihood function of each split track is computed and the unlikely ones are
discarded. In this algorithm, the state of a target is assumed to evolve in time

according to the equation:

Teer= F g + v : G4



and the corresponding measurement is given by
7= Hx +wy (3.5)

with vi and wy being zero-mean mutually independent white Gaussian
noises with known covanances Qy and Ry. respectively. (Equation (3.4) and

Equation (3.5) are the new representations of Equation (2.8) and Equation
(2.10) respectively. This kind of notation is chosen for the sake of simplicity)

A particular (say, the it ) sequence of measurements up to scan time k is:

Q&I = {zl.i 5 ZZ,i: ...... ’Zk,i} (36)
where z; j is the ith measurement at time j.

The likelihood function of this sequence of measurements conditioned

upon their having originated from the same target, say target i, can be written in

terms of normalized residual distances as follows:

AQX)y=p(21,2y,......,z5. | QKis a correct track)

=p<y1,...,yk)=fllp<y,->
i

1&
=Ck e@{-azy Sy j} 3.7
1
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where ¢y is a constant related with the 1/2x term of the gaussian assumption for
the density function of the residual denoted as y; in the above equation. The §;

term in the above equation is the residual covariance matrix obtatned from the
standard Kalman filter. Taking the negative logarithm of the Equation (3.7) and

omitting the constant term, we obtain the following equation:
' 1 -
MQK)= -log AQK=AQE 1)+~ Sy, (.8)

Then a support function Cj(k) associated with the assignment of
observation j to track i has been obtained and using the generalized distance
equation (Equation (3.3)), the recursive relationship defining this support

function can be written as:
1
Cyk)=Cik-1)-- <12Gij (k) (3.9)

where C;(k-1) is the support associated with track i from the previous scan, and
C;(0) is the logarithm of the a priori probability associated with track i (a more
complete score function reducing the effects of the assumptions made at the
beginning of this section is given and solved in chapter 9 (p. 260) of [1]). Thus,

a support function can be computed recursively for each track using the residual
information of Equation (3.3) and Equation (3.9).



The track splitting (or branching) algonthm is defined by the Equation
(3.9) and the use of three rules:

I. A gating relationship, such as that detined by Equation (2.27), 1s used
to eliminate unlikely observation-to-track pairings.

2. If two or more tracks have similar state estimates, only the most likely,
as measured by the support function, is maintained. This reduces the number of
multiple tracks on the same target and the total number of tracks is also limited.

3. Tracks are eliminated if the support function falls below a threshold

value.

A major drawback of the track splitting (or branching) algorithm is the
fact that it does not take into account the association constraint® For that
reason some hypothesis which are not consistent with each other may exist
because an observation may belong to several tracks.

This algorithm is of sequential type and can be used in an environment
where the number of targets is arbitrary and unknown. The state estimates and
covariances are obtained by a standard Kalman filter based on an assumed
sequences of measurements; however no probability that a sequence is correct
can be obtained. The main problem with this algorithm is that, its computational
and memory requirements can grow with time and saturate even large
computing systems. Another disadvantage of this algorithm is that, using this
approach, data association decisions are irrevocable once made.

© The association constraint is the fact that an observation can not truly belong
to several different targets.
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3.3.2. The Maximum Likelihood Method

Assumptions:

1. It 1s assumed that N; observations are taken for each scan

2 N; observations taken for each scan, are associated with the existing
tracks at same time.

3. Number of targets are not known. therefore, new tracks can be initiated
after each scan (after N; observations are taken).

4. As mentioned previously, it is assumed that only one observation is
received for each target at each scan.

5. It is assumed that any observation belonging to at least one of the
existing gates, will be used to update one of the established tracks, i.e., they can
not initiate a new track. Candidate observations for track initiation are those
which belong to none of the existing gates.

6. The probability of detection is assumed to be unity. In other words,
missing detections are not included.

7. False alarms are not included.

In this approach it is aimed to find the most likely set of trajectories while
"The Track Splitting Approach” deals with all "reasonably likely" tracks. In
other words, the purpose is to reduce the number of tracks to be considered in
the search for the most likely set of tracks. Again, each target's state is assumed

to evolve according to the following equation

xg+1= F X + Wy
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and the corresponding measurement is given by

7= H Xk + v

with wy and vy being zero-mean mutually independent white Gaussian noises

with known covaniances. However, when a set of measurements is obtained,
one does not know with certainty which measurement originated from which
target, if any.

Assume m measurements are obtained at scan time j (j=1,2,3,..k). and
from all particular sequences of measurements up to scan time k, each of which
consisting of N observations, we are able to construct / feasible ("not too
unlikely") tracks by associating sequentially returns by a simple gating procedure
that carries out a coarse test.

Let us define set of these feasible tracks as a "partition” (denoted as r) of
the set of measurements up to and including scan time k(denotes as Z). A
partition r is "feasible” if the union of all elements of r equals to Z, and, the
intersection of any two individual elements of r is a nufl set.

The posterior probability of one such partition being correct is

p(Zir) P{r}
P{rjz}= (3.10)

p(2)

where P{r} is the prior probability of the partition r. In the absence of target

signature or other prior information one usually assumes the priors to be equal
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for all feasible partitions. In this case searching for the most likely trajectory
based upon Equation (3.10) coincides with maximizing the likelthood function

for the measurements over all the feasible partitions, e .

max p(Z|r).

Once the most likely set of trajectories has been chosen, the state estimates
and covariances are computed in this method from a corresponding set of

standard Kalman filters.

3.4. METHODS USING BAYESIAN APPROACHES, [9]

3.4.1. MHT Approach (This approach is essentially sequential but
sometimes the final decision may be deferred for seveﬁd scans in order to
receive more data so that difficult situations are easily solved using these
data.)

Assumptions:

1. It is assumed that N; observations are taken for each scan.

2. N; observations taken for each scan, are associated with the existing
tracks at same time.

3. Number of targets are not known. therefore, new tracks can be initiated
after each scan (after N; observations are taken).
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4. As mentioned previously, it is assumed that only one observation is
recerved for each target at each scan.

S It 15 assumed that any observation belonging to at least one of the
existing gates, will be used to update one of the established tracks, i.e , they can
not mitiate a new track Candidate observations for track initiation are those
which belong to none of the existing gates.

6. The probability of detection is not assumed to be unity. In other words,
missing detections are assumed to be present.

7. False alarms are included.

In this method, we are going to make use of Bayes' rule which is :

P(Zy|H,)P(H})
P(Zy)

P(H,|Zy) = 3.11)

where Hj is identified as a hypothesis concerning the origin of received
measurement data. This hypothesis will, in general, contain some groupings of
observations into tracks and the identification of other observations to be false
alarms. Also Z; is defined to be the most recently received data set. Then,

P(H;) = a priori (before the reception of data set Z; ) probability that
hypothesis Hj is correct.
P(Z, | Hy) = probability of receiving Zy given H;

P(H; | Zy) = a posteriori (after the reception of data set Zy ) probability of
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P(Z;) = T P(Z, | H)) P(H)) =probability of receiving data set Z
In this method, first the probability of a given data association is obtained

from P(H;). Then, after each data set is recetved, the a posternion probabilities,
P(H; | Zy), are computed from P(H;) and the probability, P(Z | H;) Finally the
a posteriori probability, P(H; |Zk) becomes a priori probability, P(H;), when the

next set of data 1s received.
Whenever difficult correlation decisions arise, a final decision is postponed

and alternative hypothesis, H,, are formed and re-evaluated when later data are

received. Hypotheses whose association probabilities are high enough are
maintained and processing cycle repeats.

In the literature this method is first used for tracking a single target and
the problem of track initiation is not considered [19] because dealing with
multiple targets and new track initiation were leading to more complex
computations, but, computational capacities were not allowing to do that.
Fortunately, after the increase in computational capacities, Reid has presented,
[20, 21] a structure (denoted Reid's algorithm ) which made MHT appear
feasible in the case tracking multiple targets together with initiation of new
tracks.

MHT is essentially a method using nearest-neighboor correlation
technique. In other words, at most, a single observation is assigned to a given
track and observations are assigned, at most, to one track. But, it may hold in
abeyance the final decision until more data are received
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The need to process all observations in updating established tracks caused
the use of all-neighboors algorithms which will be explained in the following

sections

3.4.2. Single Scan (Sequential), All Neighbors, A Posteriori
Algorithms. A Suboptimal Bayesian Approach: The Probabilistic Data
Association (PDA). And Extension to The Joint Probabilistic Data
Association (JPDA)

Assumptions;

1. There exists only one target.

2. It is assumed that N; observations are taken for each scan.

3. N; observations taken for each scan, are associated with the existing
track at same time.

3. New track inintiation is not allowed.

4. All observations will be used to update the existing track.

5. The probability of detection is not assumed to be unity. In other words,
missing detections are assumed to be present.

6. False alarms may be present.

This algoritﬁm, presented in [7] and [22], incorporates sequentially into a
track clusters of measurements by attaching to each track a probability of being
correct. Such an approach yields estimates and covariances that account for the

measurement origin uncertainty.
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It is assumed that there is only one'” target of interest, whose track has
been already initiated. which 1s observed in the presence of additional
measurements that can orniginate from clutter or other targets. The incorrect
measurements are assumed to be 11.d random vanables with uniform spatial
distribution. The state and the measurements of the target of interest are
described by Equation (3.4) and Equation (3.5), respectively.

The set of measurements (obtained at scan time k) lying in a
neighborhood of the predicted location of the observation from the target is

Zy
and the accumulated set of these measurements (up to and including scan time
k) is denoted as

Zk

The best estimate of the target's state is the conditional mean based upon
all observations that with some nonzero probability originated from the target,

1e.,
2 k < k - S
ink = E{Xklz } = .zlﬁk’iE{xk‘Hk’i,Z } = .ZlBk’ixklk i (3. ]2)
1= i=

where Hy; denotes the event that the ith measurement, z; is correct

(=1,2,.....,my). Hy ¢ is the event that none of them is correct. In the Equation

©“Number of targets of interest has been extended to arbitrary in [8]
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(3.12) Py is the probability of Hy ; being correct given all set of observations

up to and including time k, and it is denoted as:
Bk.izP{Hk.i I Zk} 120,1 ...... My (3. 13)
Now, we will derive the required probabilities By ;

Assume the probability density of the state at time k given past

observations to be Gaussian with mean Xy, ; and covariance Py, i.e.,

pOxe| 2N Ry Pger) (3.14)
Using Bayes' rule, the probabilities By ; can be written as:

Bri=P {Hy ;| Z5y=p {Hy ;| 7,254

=o' P2y | Hy 2P (B 1 2y (3.15)

where ¢y is a normalization constant.
For =0, i.e., when all returns satisfying the gate are incorrect ones, their

joint density is:

P2y | By 0,21 = ﬁp(zk,ilnk,o,z"")= N (3.16)

i=1
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where V| is the volume of the gated region.

In the above equation we assumed that incorrect measurements are
uniformly distributed.

The probability of Hy_(, based on the past data 1s:

P(Hy o/ Z5"} = ety (3.17)

where o, is the probability that the correct return will not lie in the gated region
and a; is the probability that the correct return will not be detected.

For i=1,2,......,my the density on the r.h.s. of Equation (3.15) is:

p(Zic | Hy 3751 =iz ;) Vg™ (3.18)
where
filz =(1-00)) I N( Zyg » Sx) (3.19)

is a truncated normal distance which is zero outside the gated region.

The probability of Hy ; conditioned upon past data is assumed the same

for all i. Then,
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O

Inserting Equation (3.16) thorough Equation (3 19) into Equation (3.15)

yields the equations of the PDA (probabilistic data association) method:
my
Buc =iz ) i 2 Fczie ! (3:21)
i=1

where fi. is defined in Equation ( 3.19 ) and

bre=my (o ooy a)[(1-06 (1-0p) Vi ] (3.22)

Considering the Gaussian assumption and referring to the Section

2.2.2,.-we can obtain Xy ; of Equation (3.12) by using Kalman filter:

Ry =& G| k-1)+Wyew 5 (3.23)
A q ~ -~
R = 2B R =K 1" Wi (3.24)
i=0
where
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my
Vi 2 Brivici (3.25)
i=1

1s the weighted residual which uses all measurements satisfying the gate, and
Wie= Pt HiS¢! (3.26)

1s the weighting matrix

The covariance associated with the estimate (Equation (3.24)) is:

M . vl
Pg=Bic iPrce1+{1-Bic 0) Pighe Wi {Z Bk,in.in,inVk}Wk (3.27)

i=1

where P;lk is the covariance of the update if we have only one return. The last

term above is a positive semidefinite matrix which shows the effect of the
incorrect measurements by increasing the covariance of the update. The
algebraic details related to Equation (3.27) can be found in [22].

Equation (3.24) through Equation (3.27) constitute the probabilistic data
association filter (PDAF)

An important feature of the PDAF is that its computational requirements
are the same as the standard filters when only one return falls in the gate and

increase only slightly when the need of processing multiple returns arises.
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As mentioned above, this algorithm deals with tracking only one single
target. For tracking multiple targets PDA is extended to JPDA (Joint
Probabilistic Data Association) The JPDA method 1s identical to the PDA
except that the association probabilities are computed using all observations and
all tracks. In this thesis, equations related to the JPDA method (which 1s given
in [8] ) will not given. But a more general and an optimal solution to multitarget

tracking will be explain in the following section.

3.4.3. Multiple-scans (Batch), All Neighbors, A Posteriori Algorithm
An Optimal Bayesian Approach

As in the previous sections, we are going to assume that there is only one
target and the number of observations with uncertain origin is arbitrary. The
target and measurements models are the same. The main difference between this
method and the one presented in the previous section is the following: the
decomposition of the state estimate (according to the total probability theorem)
is done in terms of all combinations of measurements from initial to present time
rather than only in terms of the latest measurements This is equivalent to
splitting the track from the initial time to the current and recombining this into a
single estimate,

While memory and computational requirements are increasing with time,
this approach is of interest because it requires no approximations. Yet, this
method can not be considered as a feasible method. Instead, suboptimal versions
that are intermediate between this and the one from the previous section can be

obtained.
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The computational details of this algorithm can be found in [9] and [23].

But we are not going to analyze this method in this thesis

3.5. CONCLUDING REMARKS

The MHT and PDA methods originated around the same time. and
development has proceeded in parallel. The PDA and the later JPDA are,
however, basically a special case of MHT. The advantage of the PDA (or
JPDA) is that it is a relatively simple recursive method which does not require
the storage of past observation data nor multiple hypotheses.

An apparent disadvantage associated with the PDA (or JPDA) is the lack
of an explicit mechanism for track initiation. So, it might be suitable to employ
some other algorithms for track initiation and then to use PDA (or JPDA) for
track maintenance. Similarly, there is no well-defined technique for track
deletion associated with PDA (or JPDA), but as with track initiation, acceptable
algonithms should be used for that purpose.

The most important factor in the choice of MHT versus JPDA methods is
probably the false alarm (or false target) density. For high false target densities,
MHT is probably not feasible, so JPDA is favored. However, MHT becomes
feasible for the lower false target densities.

The following general guideline to the choice of data association methods
is offered. For sparse environment (where the probability of multiple targets
within the same gate is expected to be very low), the standard nearest-neighbor
method (suboptimal or optimal solutions to assignment matrix) can be used. If

some difficult decision situations occur, one may switch to branching algorithm
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method (suboptimal or optimal solutions to assignment matrix) can be used. If
some difficult decision situations occur, one may switch to branching algorithm
(track splitting) and the final decision may be deferred untii more data are
received. Alternatively, if the number of targets of interest is unity or perfect
gating may be realized for multiple targets (i.e., gates of different tracks don't
intersect) the PDA method can be used to reach a higher performance because it
incorporates all neighboring measurements and accounts for uncertainty in the
origin of the measurements. Switching to the track splitting algorithm may again
be required in some correlation conflict situations.

As the target or the false return density increases, application of MHT
techniques becomes most appropriate. Ultimately, as the density further
increases, JPDA becomes an attractive alternative because then, MHT requires
extremly high computational capacities and time so that the use of a sequential

method is inevitable.
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CHAPTER 4

A NEW N-SCAN BACK DATA ASSOCIATION ALGORITHM

In Chapter 3, existing tracking methods were surveyed and methods

using nearest-neighbor approaches were classified into :

e Standard nearest-neighbor method [2]

e Track splitting method [9]

e Maximum Likelihood Method [9]

e Multiple Hypothesis Testing (MHT) Method [2][9]

These methods are essentially sequential (recursive) methods, but only in
multiple hypothesis testing method, difficult decisions may be deferred until
more data are received (i.e., MHT method can be viewed as an N-scan back
algorithm). Another characteristic of these methods is that, at each scan time,
for every track, one must determine gates which can be defined as validation
regions around predicted observation positions where the probability of correct
(real) observations falling inside is quite high. In addition, in all these methods,
different data association approaches are used for assigning measured
observations to existing tracks.

In this chapter, a new data gssociation algorithm is developed. This

algorithm is an N-scan back, nearest-neighbor algorithm.
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In this algorithm, possible paths of each target are represented by trees.
Expected measurements corresponding to the nodes of these trees are estimated.
The distances of measurements to these estimated measurements are calculated.
The sums of these distances for nodes each taken from different levels, are
found. The measurements are assigned to the target which yields the minimum
sum of distances.

The proposed data association algorithm assumes followings:

1. The state of each target is assumed to evolve in time according to the

following equation:

x(k+1)=F(k)x(k) + v(K) @41

and the corresponding measurement is given by:

z(ky=H(K)x(k) + w(k) @“42)

where

x(k+1) is an n, - dimensional state vector of the target at next
scan time “k+1” | assuming we are at scan time “k” .

z(k) is an n, - dimensional measurement vector corresponding to
the state vector, x(k), at scan time “k” .

F(k) and H(k) are n,Xn, matrices which are known and possibly

time varying.
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v(k) is an n, - dimensional zero-mean white Gaussian process
noise vector.
w(k) is an n, - dimensional zero-mean white Gaussian

measurement noise vector.

&

The number, M, of targets is arbitrary but known.

3. Each component of initial states of targets is random and approximated
by a discrete random variable with “L,” possible valyes. (Behind this
assumption, lies the fact that an absolutely continuous random variable
can be approximated by a discrete random variable. This discrete
random variable will be a variable with “L” possible values where L is a
given finite positive integer. This approximation is explained in
Appendix C in detail and discrete random variables approximating the
Gaussian random variable with zero mean and unit variance is given in
Table C.1.)

4. Each component of process noise v(k), is a discrete random variable
with “L,” possible values.

5. There are no false alarms. In other words, If there are M targets to be
tracked, the number of observations taken at each scan will also be
“M”.

6. The decision for observation to target pairings will be made after each
N-scan time intervals.

For the case of a single target there does not exist a data association
problem. Because we know that all observations belong to this target since no
false alarms are allowed.



In the case of multiple targets, however, we are not sure which
observation belong to which target. In order to solve this problem, we proceed
as follows:

Consider a target. The number, B, of possible initial states for this target
will be L'll" . Consider one of these states. Using Equation (4.1), compute
possible states of the target at next scan. The number, D, of these possible states
will be Lg" . In this way, continue to computing subsequent possible state values

for following scan times. Perform these computations for other possible initial
states and for all other targets. At the end, for each target, you will be end up
with a tree structure, Figure 4.1, which is a tree representation of possible paths
of the target for N scan time periods. In Figure 4.1, each level correspond to a
scan time period and X; denotes a node of the tree such that X is the j®
possible state location at level i. (Since we develop an N-scan back algorithm

maximum value of i may be N.)

level
X11 1
Xa | X |- ).C N Xowpprny |- Xarmo) 2
£ :
N e XNEDN-1) N

Figure4.1: A Tree Representation of Possible Paths of A Target for N
Scan Time Periods.
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Similarly, another tree structure will be obtamed for estimated
observation values for M targets and for N scan time penods, using Equation
(4.2) and possible states of corresponding targets obtained previously. An
example of tree representation of estimated observation locations 1s given in
Figure 4 2, where:

Zj; the j* estimated observation location vector at level i. ( Since

we develop an N-scan back algorithm maximum value of 1 may
be N)

O,, :the m™ measured observation location vector at level i.
(m=1,1,.... M where M is number of targets.)

Each level correspond to a single scanning pernod.

level
O
1
Ox

2} - Zm) 2

com '..': ‘s
...................................................................................... ZN(B DN N

Oni Onm

Figmere 4.2: A Tree Representation of Estimated Observations of A
Target for N Scan Time Periods.



Assuming that the tree structure shown in Figure 4.2. is available for
every target and measured observation values taken from the sensor (radar or
any other sensors) for the first N scan time penods (for the first N levels) are
ready, the problem which is to be solved is to decide which observation set
belongs to which target. For the solution of this problem, first, we will suggest
to compute any possible distance values between measured observation
locations and estimated observation locations. Then, the sums of these distances
for nodes each taken from different levels, are found. The measurements are
assigned to the target which yields the minimum sum of distances.

For individual distance measurements we will use following general

distance equation:

A = YingPy Yiny “43)

where

. dizmj is a normalized squared distance value between m® measured
observation location vector O, and jﬂl estimated observation location
vector Z,-j, at level 1.

®  Yimj is the residual vector between m™ measured observation location
vector Oy, and j'h estimated observation location vectorZij, at level 1. In

other words,
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Yy =0 - %

and
q
Oimx !
Oim= Oim).
Oimz
-1— 0 0O
a
o L
B
0o o L
L Y
where,
o= Prob(Z,J\)
B = Prob(Zijv)

y = Prob(Z; )

These probabilities can be found in a tabular form in Table C.1. The

=12, N

=12 ML
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mverses of these probabilities, are included in P;;, because cost of accepting a

lower valued residual distance between any measured observation location and
an estimated observation location having a low probability, should be high as

cosmpared to an estimated observation location having a higher probability.



For the data association problem described above, we propose following

algorithm. Computer implementation of this algonthm is realized in C

programming language. Simulation results of this implementation is given in

Section 4 3.

4.1. ALGORITHM

STEP 1: Construct the tree structure for possible paths (possible

states) related with one of the targets using Equation (4.1).

STEP 2: Obtain estimated observations tree structure related with

tree structure constructed at STEP 1 using Equation (4.2).

STEP 3: Form an observation set by taking one observation from
each “level”. (e.g., for M=3, L;=3, L,=3, N=3, using estimated
observations tree structure shown in Figure 4.2, an example of

observation set will be {Oy;, 02, Os1}.

STEP 4. Compute and record all possible distance values, dlzmJ

related with any measured observation included in the observation

set formed previously.

©ln this algorithm, in addition to the assumptions made at the beginning of this
chapter, it is assumed that radar measurements (real observation values ) are
ready. In the implementation of the algorithm a random number generator is
used to cope with this problem.
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STEP 5. Form a special distance set by taking one pairing (i.e.
one dizm_] term) from each level (e.g. in Figure 4.2, for observation

set {O1;, Oxn, Ox}. an example of distance set will be

{d%“,d%“d%“}) (Some distance sets are not allowed. For

example, in Figure 4.2, if set of observations s assumed to be {Oy,
011, 031}, and if, at level 1, dfn is taken as the first item of special

set formed, one can not accept dj,,, as a second item. In other

second item.)

STEP 6: Sum all dizmj terms in the previous distance set and

record this summation..

STEP 7: Replace the distance set at STEP 5 with a different
possible one. IF there doesn’t exist any different distance set GO TO
STEP 8, OTHERWISE, GO TO STEP 6.

STEP 8: Replace the observation set at STEP 3 with a different
observation set. IF there doesn’t exist any different observation set

GO TO STEP 9. OTHERWISE, GO TO STEP 4.
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e STEP9: Identify the set of observations yielding minimum

summation. This set belongs to the target under consideration.

e STEP 10: Delete observations which assignments are made until
now from the onginal observation set. IF all observations are used
and assigned, except last M observations, assign those last M
observations to the target which is not analyzed yet., and GO TO
STEP 11. OTHERWISE , replace the tree structure with one of the

remaining targets’ which is not analyzed yet and GO TO STEP 3.

e STEP 11: Now, observations belonging to each target are known
(1.e., data associations are made ) and remaining functions needed in

an MTT system (such as filtering ) may be realized.

42. COMPUTER IMPLEMENTATION OF DATA
ASSOCIATION ALGORITHM USING C

In the implementation of the algorithm, creation of measured (real)
observation values (e.g., O11, Oa,...., Onm ) is needed and, for that purpose, a
random number generator is used to obtain a zero mean and unity variance
Gaussian random variable, x. In order to obtain a Gaussian random variable, y,
with mean being equal to m, and variance o, y=ox+m transformation is made

(proof is given at the end of Appendix C.)
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In the implementation of data association algorithm, a tree structure
creation method is used to obtain required tree structure showing estimated
observation locations. Though implementation can be extended for large values
of L;, L» and N, maximum value of L, L, and N are assumed to be 3 because
of memory limitations. This limitation will be explained by a simple example

showing a memory overflow situation where L,=8, L,=8 and N=3 :

A Memory Overflow Example

Assume we are at scan time “k”, z(k) is a 3x1 random vector, and
elements of z(k) correspond for x,y,z components of an estimated observation
location. If L=8, each component of z(k+1), estimated observation location at
time “k+1”, may have 8 possible different locations yielding totally, 8x8x8
(=512) estimated observation locations at scan time “k+1” considering all
possibilities related with all components. If we extend this calculation for 3
levels (i.e., assume N=3), total number, T, of nodes in a tree structure like that
of Figure 4.2., will be:(* )

T=1+512+512> = 262647

At each node, we have to store x,y,z component values, each requiring 4
byte memory location. In addition, at any node, pointers which are special
variable types holding memory addresses of 512 possible values of estimated

observation locations must be present and number of these pointers, each

(* )In this calculation, initial value of z(k) for the first level is assumed to be
known for the sake of simplicity.
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Finally, for 262645 nodes, total memory requirement is :
262645x2 KB=525294 KB = 525 MB

which 1s a memory overflow situation for our working conditions.

4.3. SIMULATION RESULTS AND PERFORMANCE
COMPARISON WITH “TRACK SPLITTING APPROACH”
Example 1 (A Correct Data Association):
For this example,
e Number of targets, M, is assumed to be 3.
¢ Number of possible discrete values, L, of a Gaussian random variable
approximating an absolutely continuous Gaussian random variable is
assumed to be 3. (i.e., L,=3)
e Number of scan time periods, N, between two consecutive decisions is
assumed to be 3.
¢ Imitial possible state values for targets are assumed to be:
X axis component of initial state for target 0 = 1
y axis component of initial state for target 0 = 1
z axis component of initial state for target 0 = 1
x axis component of initial state for target 1 =5
y axis component of initial state for target 1 =5
z axis component of initial state for target 1 =5
x axis component of initial state for target 2 = 10

y axis component of initial state for target 2 = 10
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z axis component of initial state for target | =5

x axis component of initial state for target 2 = 10

y axis component of initial state for target 2 = 10

z axis component of imitial state for target 2 = 10
e I matrix in Equation (4.1) 1s given as:

0
0
2

O O W
[« 2 & B ]

¢ And finally, in generating measured observation values by random number
generator, Gaussian process noise, v(k) in Equation (4.1), and Gaussian
measurement noise, w(k) in Equation (4.2), are both assumed to be random
vectors with zero-mean and unit covariance. But the program is capable of
dealing with any random variable (i.e., mean#0 and variancez1). And H

matrix in Equation (4.2) is assumed to be an identity matrix.

In simulation, real observation values are needed to be present and, as
mentioned above, a random number generator is used for that purpose. Results
are given in Table 4.! where
e observation[LEVEL : i][jJ.x is x axis component of generated observation
location of target j at level i

e observation[LEVEL : i][jl.y is y axis component of generated observation
location of target j at level i

e observation[LEVEL : iJ[jl.z is z axis component of generated observation

location of target j at level i
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At the end, program made a classification between observation values and
we saw that this classification is completely coherent with that of generated
observation values given in Table 4.1. This classification 1s given in Table 4.2
where x, y, z components of assigned observations are tabulated for different

levels and targets.

Example 2 (An Incorrect Data Association):

In this example, same assumptions used in Example 1 are considered.
Different observations are generated by changing a seed value in the random
number generator used in the program. It is seen that classification made by the
program for this simulation is not coherent with that of generated observation
values. In Table 4.3, generated observations for this example are tabulated. In
Table 4.4, data associations made by the program are presented. Notations used

in Tables 4.3. and 4.4 are similar to those of Tables 4.1 and 4.2 respectively.
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Table 4.1: Generated Observation Values For The First Simulation

observation[LEVEL - 0][0].x : -0.656862
observation[LEVEL : 0][0].y : -0.147527
observation[LEVEL 0][0].z: 0.616303
observation[LEVEL : 1][0].x : 3. 252998
observation[LEVEL = 1][0].y : 1.630326
observation[LEVEL : 1][0].z: 0.470085
observation[LEVEL : 2][0] x : 6.038915
observation[LEVEL : 2][0].y : 5.232207
observation[LEVEL : 2][0].z : 4.765645
observation[LEVEL : 0][1].x : 5.487755
observation[LEVEL : 0][1].y : 5.521997
observation[LEVEL : 0][1].z: 5.927278
observation[LEVEL : 1][1].x: 10.910786
observation[LEVEL : 1][1].y : 10.932306
observation[LEVEL : 1][1].z: 9.188408
observation[LEVEL : 2][1].x : 23.633509
observation[LEVEL : 2][1].y : 20.032001
observation[LEVEL : 2][1].z : 18.833771
observation[LEVEL : 0][2].x : 10.334901
observation[LEVEL : 0][2].y : 10.542736
observationfLEVEL : 0]{2].z : 8.129009
observation[LEVEL : 1][2].x : 21.033613
observation[LEVEL : 1][2].y : 20.184494
observation[LEVEL : 1][2}).z : 21.262737
observation[LEVEL : 2][2].x : 38.672684
observation[LEVEL : 2][2].y : 43.836178
observation[LEVEL : 2][2].z : 39.831375

Table 4.2:  Correct Associations Made By The Program For The First

Simulation
==0BSERVATIONS BELONGING TO TARGET 0—= level
X: -0.656862 Y: -0.147527 Z: 0.616303 0
X: 3.252998 Y: 1.630326 Z: 0.470085 1
X: 6.038915 Y: 5.232207 Z: 4765645 2
==0BSERVATIONS BELONGING TO TARGET == level
X: 5.487755 Y: 5.521997 Z: 5927278 0
X: 10.910786 Y: 10.932306 Z: 9.188408 1
X: 23.633509 Y: 20.032001 Z: 18.833771 2
===0BSERVATIONS BELONGING TO TARGET 2—= level
X: 10.334901 Y: 10.542736 Z 8.129009 0
X: 21.033613 Y: 20.184494 Z 21.262737 1
X: 38.672684 Y: 43.836178 Z 39831375 2
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Table 4.3: Generated Observation Values For The Second Simulation

observation[LEVEL : 0][0].x : 1.049873
observation{LEVEL : 0][0].y : 0.906048
observation[LEVEL : 0][0].z : 2.000624
observation[LEVEL : 1][0] x : 3 404015
observation[LEVEL : 1][0].y : 2.515595
observation[LEVEL : 1][0].z: 1.184208
observation[LEVEL : 2][0].x : 4322154
observation[LEVEL : 2][0].y : 2.937063
observation[LEVEL : 2][0].z: 1.149853
observation[LEVEL : 0][1].x: 6.728763
observation[LEVEL : 0][1].y : 6.139554
observation[LEVEL : 0][1].z : 3.947072
observation[LEVEL : 1][1].x : 10.134068
observation[LEVEL : 1}[1].y : 8.490119
observation[LEVEL : 1][1].z: 9.968396
observation[LEVEL : 2][1].x : 19.159565
observation[LEVEL : 2][1].y : 14.002287
observation[LEVEL : 2][1].z: 17.713900
observation[LEVEL : 0][2].x : 10.132525
observation[LEVEL : 0][2].y : 10.938110
observation[LEVEL : 0][2].z: 12.051403
observation[LEVEL : 1][2].x : 12.051403
observation[LEVEL : 1][2].y : 18.950457
observation[LEVEL : 1][2].z: 17.561136
observation[LEVEL : 2][2].x : 41.731201
observation[LEVEL : 2][2].y : 35.130291
observationfLEVEL : 2]{2].z : 39.458256

Table4.4:  Incorrect Associations Made By The Program For The

Second Simulation
==0BSERVATIONS BELONGING TO TARGET 0= level
X: 1.049873 Y: 0.906048 Z: 2.000624 0
X: 3.404015 Y: 2.515595 Z: 1.184208 1
X: 4322154 Y: 2.937063 Z: 1.149853 2
==0BSERVATIONS BELONGING TO TARGET 1— level
X: 6.728763 Y: 6.139554 Z: 3.947072 0
X: 12.051403 Y: 18.950457 Z: 17.561136 1
X: 41.731201 Y: 35.130291 Z: 39.458256 2
==0BSERVATIONS BELONGING TO TARGET 2=— level
X: 10.132525 Y: 10938110 Z: 12.051403 0
X: 10.134068 Y: 8.490119 Z: 9.968396 1
X: 19.159565 Y: 14.002287 Z: 17.713900 2
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In following subsections, effect of different parameters to the
performance of the new data association algorithm is analyzed by examples and
the performance of the new algonthm 1s compared with “Track Splitting

»¥)

Approach™ ’ . In these examples, maximum number of targets 1s assumed to be
6, maximum number, L, ,of discrete values approximating any component of
v(k) or w(k) which are Gaussian noise vectors in Equations (4.1) and (4.2)
respectively, 1s assumed to be 3; and maximum number, N, of levels (ie,
number of scans between any two consecutive decisions) is assumed to be 3. F,

H matrices, mean and covariance of wv(k) and w(k) and initial state vectors

(startpoints) related with each target are given below

Target 1:
2 12 05 21 4
F=| 1 19 1 H={1 2 2
15 2 2 1 3 2
0 1 00
mean of v(k)={ 0 Covarianceof k)= (0 1 0
1 0 01
1 1 00
mean of w(k)=| 1 Covarniance of w(k)= |0 9 0
1 0 01

© Implementation of “Track Splitting Approach” is based on the explanation
given in section 3.3.1.
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1
inttial state={ 0
o

Target 2

2 1 05
F={11 15 1
‘1.5 3 2

mean of v(k)={ 1
1

mean of w(k)=

-t D

-1
initial state=| O
0

Target 3:

1

Covariance of v(k)= | 0

Covariance of w(k)=

79

9 19 ==

9 — W

- B

0

o O

o O

o = O

-0 O

28]

o © ©



1os
mean of v(k)=1 |

I

0]
mean of w(k)=] 0
0

0
initial state= \/-3_
0

Target 4:

175 25 3
F=| 15 225 45
1 2 35

1
mean of v(k)=| 0.5
1

1

mean of w(k)=| |
1

02 0 O
Covananceof v(k)=| ¢ 4 0
0 0 02=

Covanance of w(k)= |

o o -
QO &= O
—_ O

e
il
w»m 9
— ) e
— bt b

1 0 O
Covariance of (k)= {0 9 0
0 0 025

6.25
Covanance of wk)=| 0

163
O v ©

Lh
H O O
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intial state= /G
V .”,

Target S:

1
]

—_— 9
et

0
mean of v(k)=! 0
0

1
mean of w(k)=| 1
2

0
initial state=| 0
0

1 21
H= 4 1
2 21

4 0 0

Covarianceof (k)= {0 025 O

0 0 625

025 0 0

Covarianceof wkk)=| 0 1 0

0 0 4
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Target 6:

2 3 '1 o2
F=|2 2 1} H=2 4 1
5 2 3J 203 1

0 -t1 0 O

mean of v(k)=| 1 Covariance of v(k)= 10 625 0

0 0 0 4

0 025 0 0

mean of w(k)=| 1 Covarianceof wk)=| 0 1 O

1 0 0 4

Effect of the increase in number of targets:

In this example, it is aimed to show the effect of the increase in number
of targets by considering targets which parameters are given above. In addition,
number, N, of levels (i.e., number of scan time penods between two
-consecutive decisions) is 3; and number, L, ,of discrete values approximating
any component of v(k) in Equation (4.1) 1s 3

To show the effect of the incerase in number of targets, probability of
error, Pe, is computed as number of targets increase from-2 to 6. For that
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purpose, 30 simulations are performed for each case and the number, E, of

incorrect data associations are determined. Probability of error, Pe. is computed

as

Results of this example for the new algorithm and for “Track Splitting
Approach” are tabulated in Table 4.5 and Table 4.6 and probability of error,

Pe, versus number of targets is given in Figure 4.3 and Figure 4.4.

Effect of the increase in number, L, ,of discrete values
approximating any component of v(k) in Equation (4.1):

In this example, it is aimed to show the effect of the increase in number,
L, ,of discrete values approximating any component of v(k) in Equation (4.1)
by considering first 3 targets (Target 1, Target2, Target 3) which parameters are
given previously. In addition, number, N, of levels (i.e., number of scan time
periods between two consecutive decisions) is 3.

To show the effect of the incerase in number, L, ,of discrete values
approximating any component of v(k) in Equation (4.1), probability of error,
Pe, 1s computed as L, increases from 1 to 3. For that purpose, 30 simulations
are performed for each case and the number, E, of incorrect data associations

are determined. Probability of error, Pe, is computed as:

E
P —_—
“ 30

83



Results of this example are tabulated in Table 4 7, and probability of

error, Pe, versus L. 1s given in Figure 4.5.

Effect of the increase in distance between initial states of targets:

In this example, it is aimed to show the effect of the increase in distance
between initial states of targets by considering first 3 targets (Target 1, Target2,
Target 3) which parameters are given previously. In addition, number, N, of
levels (i.e., number of scan time periods between two consecutive decisions) is
3; and number, L, ,of discrete values approximating any component of v(k) in
Equation (4.1) is 3.

To show the effect of the increase in distance between initial states of
targets, probability of error, Pe, is computed for five different choices of initial

states. Where,

Case I:
Distance between initial states of each target is 0.4

Case 2:

Distance between initial states of each target is 1

Case 3:
Distance between initial states of each targetis 1.6

Case 4:

Distance between initial states of each target is 1.8
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Cuse §:

Distance between mitial states of each target 1s 2

Case 6:

Distance between initial states of each target 1s 2 4

Case 7:

Distance between initial states of each target is 2.8

Case 8:

Distance between initial states of each target is 4

To determine probability of error, Pe, 30 simulations are performed for

each above case and the number, E, of incorrect data associations are

determined. Probability of error, Pe, is computed as:
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Results of this example for the new algorithm and for “Track Splitting
Approach” are tabulated in Table 4.8, and probability of error, Pe, versus

squared distance 1s given in Figure 4.6

Effect of the increase in variance of each component of v(k) in
Equation (4.1):

In this example, it 1s aimed to show the effect of the increase in variance
of each component of v(k) in Equation (4.1) by considering first 3 targets
(Target 1, Target2, Target 3) which parameters are given previously. In
addition, number, N, of levels (i.e., number of scan time periods between two
consecutive decisions) is 3; and number, L, ,of discrete values approximating
any component of v(k) in Equation (4.1) is 3.

To show the effect of the increase in variance of each component of
v(k) in Equation (4.1), probability of error, Pe, is computed for tree different
situations: First variance of x component of v(k) is changed by keeping y and z
components constants. Then, variance of y component of v(k) is changed by
keeping x and z components constants. And then, variance of z component of
v(k) is changed by keeping x and y components constants. For each situation,
variance values are assumed to be 1, 2, 5, 10, 100, 250, 400, 500, 1000, 5X10°,
5X10°, 5X10"2. To determine probability of error, Pe, 30 simulations are
performed for each alternative and the number, E, of incorrect data associations

are determined. Probability of error, Pe, is computed as:
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Results of this example for the new algorithm and for “Track Splitting
Approach” are tabulated in Tables 4.9, 4.10, 4.11, 4.12, 4.13, 4.14 and
probability of error, Pe, versus variances are given in Figures 4.7, 4.8, 4.9, 4.10,

411 and 4.12.
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Table 4.5:

Effect of the Increase in Number of Targets (when
distance between initial states of targets are 2)

Number |E Pe (=E/30) E Pe (=E/30)
of Targets |(New Algorithm) |(New Algorithm) |(Track Splitting|(Track Spiitting
Approach) Approach)
2 2 0.07 21 0.7
3 15 0.50 30 1.00
4 24 0.80 30 1.00
5 28 0.93 30 1.00
6 30 1.00 30 1.00
2
8
o —&— New Algorithm
°
2owt / I - Track Spiitting
-] Approach
3
2
a.

3

4
Number of Targets

+
+

5 6

Figure 4.3: Pe versus Number of Targets
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Table 4.6:

Effect of the Increase in Number of Targets (when
distance between initial states of targets are 500)

Number of |E Pe (=E/30) E Pe (=E/30)
Targets {New Algorithm) |(New Algorithm) |(Track Splitting|(Track Splitting
Approach) Approach)
2 0 0.00 1 0.03
3 0 0.00 2 0.07
4 0 0.00 15 0.50
5 0 0.00 23 0.77
6 0 0.00 25 0.83

090
080
070
060
050
040
030
020
010
000

—&— New Algorithm

——&-— Track Spiiting
Approach

Probability of error, Pe

2 3 4 5 6
Number of Targets

Figure 4.4: Pe versus Number of Targets
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Table 4.7: Effect of the Increase in Number, L,, of Discrete
Values Approximating v(k) in Equation (4.1)

L2 E Pe (=E/30)
1 20 067
2 19 063
3 15 0.50
067
& 070 5 _ 063
- 0607 *\oio
£ 0501
5 0401
2 0307
£ 020+
8 010+
a_o- 000 +
1 2 3
L2

Figure 4.5: Pe versus L,
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Table 4.8: Effect of the Increase in Distance Between Initial
States of Targets

Distance {E Pe (=E/30) E Pe (=E/30)
(New Algorithm) |(New Algorithm) |(Track Splitting {(Track Spilitting
Approach) Approach)
0.4 30 1.00 30 1.00
1 30 1.00 30 1.00
16 22 ~10.73 30 1.00
1.8 20 0.67 30 1.00
2 15 0.50 30 1.00
2.4 10 0.33 30 1.00
2.8 5 0.17 30 1.00
4 0 0.00 30 1.00
10 0 0.00 30 1.00
100 0 0.00 25 0.83
200 0 0.00 18 0.60
300 0 0.00 12 0.40
500 0 0.00 2 0.07
1000 0 0.00 0 0.00
—&—New Algorithm
100 -8B 8-8-0
€ 0%l ‘W |~ Track Spiting
] 070 4 *, Approach
E 060 +
© 050 +
% 040 +
030 +
3 020+
£ 010 1
% 000
-
(=]

Figure 4.6: Pe versus Distance
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Table 4.9: Effect of the Increase in Variance of x component of
v(k) in Equation (4.1) (when variances of y and z
components are 1 and distance between initial states
of targets are 2.8)

Variance of x |E Pe (=E/30) E Pe (=E/30)
(New Algorithm) |(New Algorithm) |(Track Splitting [(Track Splitting
Approach) Approach
1 4 0.13 30 1
2 5 0.17 30 1
5 7 0.23 30 1
10 14 0.47 30 1
100 27 0.90 30 1
250 29 0.97 30 1
400 29 0.97 30 1
500 29 0.97 30 1
1000 29 0.97 30 1
5X10° 29 0.97 30 1
5X10° 30 1.00 30 1
5X10' 30 1.00 30 1
g 1 m ..........
§‘ 080
::: 060 —&—— New Algorithm
2 040 — - Track Spiitting
§ 020 Approach
2 000 +—— : s —t i
- ° g § § 8
< ®
Variance of x (when varlances of yand z are 1)

Figure 4.7: Pe versus Variance of x (when distance between
initial states of targets are 2.8)

92



Table 4.10:

Effect of the Increase in Variance of x component of
v(k) in Equation (4.1) (when variances of y and z
components are 1 and distance between initial states
of targets are 300)

Variance of x |E Pe (=E/30) E Pe (=E/30)

(New Algorithm) [(New Algorithm) |(Track Splitting [(Track Splitting

Approach) Approach

1 0 0.00 2 0.07
2 0 0.00 3 0.10
5 0 0.00 6 0.20
10 0 0.00 13 0.43
20 0 0.00 20 0.67
50 0 0.00 28 0.83
100 0 0.00 29 0.97
250 0 0.00 30 1.00
400 5 0.17 30 1.00
500 9 0.30 30 1.00
1000 18 0.60 30 1.00
5X10° 29 0.97 30 1.00
5X10° 29 0.97 30 1.00
5X10** 29 0.97 30 1.00

2 100

§ 080 —— New Aigorithm

; 060

£ 040 — & Track Spiiting

a Approach

8 020

2 o000

- ° R 88 8 8
n

Variance of x (when variances of y and z are 1)

Figure 4.8: Pe versus Variance of x (when distance between
initial states of targets are 300)
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Table 4.11: Effect of the Increase in Variance of y component of
v(k) in Equation (4.1) (when variances of x and z
components are 1 and distance between initial states
of targets are 2.8)

Variance of y |E Pe (=E/30) E Pe (=E/30)
(New Algorithm) [(New Algorithm) |(Track Splitting |((Track Splitting
Approach) Approach
1 4 0.13 30 1
2 5 0.17 30 1
5 10 0.33 30 1
10 20 0.67 30 1
100 28 ) 0.93 30 1
250 28 0.93 30 1
400 29 0.97 30 1
500 29 0.97 30 1
1000 29 0.97 30 1
5X10° 29 0.97 30 1
5X10° 30 1.00 30 1
5X10'“ 30 1.00 30 1
100

B

—&—— New Algorithm

o
3

-- - & - - Track Splitting
Approach

55

t } + + t + + + }

- T) 8 § § g
Q

w

B v

Variance of y (when varlances of x and z are 1)

Probabliiity of error, Pe
[=]
3

Figure 4.9: Pe versus Variance of y (when distance between initial
states of targets are 2.8)
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Table 4.12: Effect of the Increase in Variance of y component of
v(k) in Equation (4.1) (when variances of x and z
components are 1 and distance between initial states
of targets are 300)

Variance of y |E Pe (=E/30) E Pe (=E/30)
(New Algorithm) |(New Algorithm) [(Track Splitting |[(Track Splitting
Approach) Approach
1 0 0.00 2 0.07
2 0 0.00 9 0.30
5 0 0.00 27 0.90
10 0 0.00 29 0.97
20 0 0.00 30 1.00
50 0 0.00 30 1.00
100 0 0.00 30 1.00
250 3 0.10 30 1.00
400 11 0.37 30 1.00
500 13 0.43 30 1.00
1000 21 0.70 30 1.00
5X10° 28 0.93 30 1.00
5X10° 28 _ 0.93 30 1.00
5X10'" 28 0.93 30 1.00

100 - -
i 080 "Mt
% i
] 080 —&—New Algorithm
g 040
8 o0 .' -——&- Track Spiliting
2 Approach
£ o000

in

Varlance of y (when variances of x and z are 1)

Figure 4.10: Pe versus Variance of y (when distance between initial
states of targets are 300)
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Table 4.13:

Effect of the Increase in Variance of z component of
v(k) in Equation (4.1) (when variances of x and y
components are 1 and distance between initial tates

of targets are 2.8)

Variance of z [E Pe (=E/30) E Pe (=E/30)
(New Algorithm) !(New Algorithm) [(Track Splitting [(Track Splitting
Approach) Approach
1 4 0.13 30 1
2 5 0.17 30 1
5 12 0.40 30 1
10 18 0.60 30 1
100 27 0.90 30 1
250 28 0.93 30 1
400 28 0.93 30 1
500 28 0.93 30 1
1000 28 0.93 30 1
5X10° 28 0.93 30 1
5X10° 30 1.00 30 1
5X10"* 30 1.00 30 1
g 1008 -0 - u- & - -
'e-‘ 080
::: 060 —&— New Algorithm
£ 040 - <& =Track Splitting
g 020 Approach
QS_ 000 +— u; t St PO —
g§ 8 g
Variance of z {(when varlances of x and y are 1)

Figure 4.11: Pe versus Variance of z (when distance between initial
states of targets are 2.8)
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Table 4.14: Effect of the Increase in Variance of z component of
v(k) in Equation (4.1) (when variances of x and y
components are 1 and distance between initial states
of targets are 300)

Variance of z |[E Pe (=E/30) E Pe (=E/30)
{New Algorithm) |(New Algorithm) [(Track Splitting |(Track Splitting
Approach) Approach
1 0 0.00 2 0.07
2 0 0.00 5 0.17
5 0 0.00 15 0.50
10 0 0.00 22 0.73
20 0 0.00 28 0.93
50 0 0.00 30 1.00
100 0 0.00 30 1.00
250 4 0.13 30 1.00
400 12 0.40 30 1.00
500 13 0.43 30 1.00
1000 18 0.60 30 1.00
5X10° 27 0.90 30 1.00
5X10° 27 0.90 30 1.00
5X10'- 27 0.90 30 1.00

8

N E-8-N-N8-0a-n

-
=

o
8

2

——New Algorithm

- - - - - Track Spfitting
Approach

§ ¢

Probabillity of error, Pe
o
8

o
8

+— +— —t

- g8 g B8
T1]

w0

Variance of z (when varlances of x and y are 1)

Figure 4.12: Pe versus Variance of z (when distance between initial
states of targets are 300)
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CHAPTER S

CONCLUSION AND FUTURE WORK

In multitarget tracking systems, data association (correlation) is an
important problem. Multitarget tracking systems use different algorithms to
solve this problem. Some of them require gating procedure, but some
algorithms don’t require it.

In this thesis, it is aimed to develop a different approach to data
association problems. For that purpose, surveillance region is initially partitioned
into subregions, called predicted state nodes, and then, sensor measurements are
classified into subgroups by a distance minimisation rule, which searches for
measurements yielding a minimum summed distance between real observation
values and predicted observation locations

This approach, or algorithm, can be named as an N-scan back, nearest
neighbour, recursive algorithm. The term “recursive” is chosen because of the
fact that a recursive distance calculation method is used in finding minimum
summed distance between real observation values and predicted observation
locations.

This algorithm, together with its software and hardware requirements, can

be viewed as a subsystem of a general multitarget tracking (MTT) system.
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As shown in Section 4.3, Performance of the new algorithm is better than
that of “Track Splitting Approach™. For example, in Figures 4.3 and 4.4, one
can easily see that the new algornithm’s performance 1s better when number of
targets decreases. In addition. in figure 4.6, it can be deduced that for any nitial
distance value between targets, the new algorithm is preferable. Moreover,
effect of the increase in variance v(k) in Equation (4.1) 1s presented in Figures
47,48,49,4.10,4.11,4.12 and it is seen that, for any variance value, the new
algorithm’s performance is higher than that of “Track Splitting Approach”.

As a result, by looking at simulation results of computer implementation
of this algorithm, one can conclude that it works properly under assumed
conditions. Especially for targets which are not closely spaced, this algorithm
can be viewed as an optimum data association algorithm.

As a future work, the implementation efficiency of the proposed N-scan
back algorithm should be examined as far as computational requirements are

concerned.
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APPENDIX A

ESTIMATION OF GAUSSIAN RANDOM VARIABLE, X, AS AN

EXAMPLE FOR LINEAR ESTIMATION IN STATIC SYSTEMS, [12]
Let x be the random vector to be estimated and z the measurement or the
observation
The estimate of the random vector x in terms of z according to the
minimum mean square error (MMSE) criterion”” is the conditional mean of x
given z. (Proof is available at page 98 of [12])
For x and z jointly Gaussian, the conditional mean is:

% =E[x|z}=X +PxPzz(z-Z) (A1)

and the corresponding conditional covariance matrix is:

Px|z=E[(x- % )(x- % ’|z]=Poc-Pxz P! Pzx (A2)

© Actually MMSE is a particular case of static estimation problems. It is a

Bayesian approach. In the Bayesian approach, the aim is to minimize a cost

function C(x-x). The MMSE cost function is a uadratic. The widespreed use of

quadratic criterion is primarily due to (relative) ease of obtaining the solution.
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z =E[z]
Pxx=cov(x)=E[(x-X }(x-X)]
Pzz=cov(z)=E[(z-Z )(z-Z)’]

Pxz=cov(x,2)=E[(x-X ((z-Z )’ ]=Pzx

Proofs of equation (A.1) and equation (A.2) are available at page 43-44 of

[23]

Remarks:

The MMSE estimate -the conditional mean- of a Gaussian random vector
m terms of another Gaussian random vector (the measurement) is a linear
combnation of

. The prior (unconditional) mean of the vanable to be estimated

. The difference between the measurement and its prior mean.

The conditional covariance of one Gaussian random vector given another
Gamassian random vector (the measurement) is independent of the measurement.

Both of the above properties hinge strictly on the assumption that the two

ramdoem vectors under consideration are jointly Gaussian.
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APPENDIX B

DYNAMIC ESTIMATION AS A RECURSIVE STATIC ESTIMATION

The state estimate at k+1 and its covanance can be calculated by

modifying static estimation equations, Equation (A.1) and Equation (A.2):

These modification can be realized by following substitutions which are

indicated by “—".
X -
X -
z -
z -
x -
Pxx -
Pz -
Px2 -
Pxxz =
PxoPzz —

x(k+1)

& (k+1K)=E[x(k+1)Z¥]
2(k+1)

2 (+ 1 R=Efz(k+ 12"

% (k+1jk+HD=Efx(k+ 1)K

P(k+ 1 k)y=covix(k+1)ZXFoov] % (k+1K)Z]
S(k+1y=cov{z(k+1){Z¥ ooV Z (k+1K)IZ*]
covfx(k+1),2(k+1)Z¥]=eor X (k+1), Z (c+1)jZK]
P+ k+ D=covix(k+ DIZE  =cov{ % (k+ 1+ 12K

W(k+1)=covix(k+1),2(k+1)ZK]S(k+1)"
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where

x(k+1)

& (k+1]k)

Z(k+1)
3 (k+1]k)

% (k+1)
Z (k+1)

x (k+1k+1)

P(k+1]k)

S(k+1)

. the vanable which will be estimated. 1.e., the state at
k+1

: mean of x(k+1) prior to k+1. It 1s also called (one-step)
predicted state

. observation at k+1

: mean of z(k+1) prior to k+1. It is also called the
predicted measurement

- x(k+1)- % (k+1[k)

s k1) z(k+1fk)

. the estimate posterior to k+1. It is also called the
updated state estimate ( or just the updated state)

: the prior covariance matrix of the state variable x(k+1)
to be estimated. It is also called the state prediction
covariance or predicted state covariance

: the prior covariance of the observation z(k+1). It is also

called the measurement prediction covariance.

cov[x(k+l),z(k+l)|lk] : the covariance between the variable to be

P(k+1jk+1)

W(k+1)

estimated x(k+1) and the observation z(k+1)
: the posterior covanance of the state x(k+1). It is also
called the updated state covariance.

: filter gain
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Using the above notation and applying dynamic and measurement
equations (equation (2.8) and equation (2.10)) where necessary we are able to
construct an algorithm which will give us the estimate of the updated state and
the updated covanance at time k+1. The detailed denivation of this algorithm is
given at page 214-215 of the [12] and the related flowchart is given in Figure

23
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APPENDIX C

APPROXIMATION OF AN ABSOLUTELY CONTINUOUS

RANDOM VECTOR BY A DISCRETE RANDOM VECTOR [24]

Let “L” be a given positive integer and D™ be the set of distribution
functions of all mx1 discrete random vectors with “L” possible values, where
superscript m stands for the dimensionality of random vectors. Then the
problem of approximating an absolutely continuous mx1 random vector X™

with distribution function FXm (.) by an mx1 discrete random vector with “L”
possible values is to find a distribution function FYd" () € D", which minimizes

the objective function J(.) over the set D™ :

J(Fyg‘(')): min m](Fym(.)). (C.1)
Fym(.)eD

where

A
J(Fym(.))=Jm[Fxm(a)-Fym(a)lzda, Fm()eD™ (C2)

note that the integration is performed over the m dimensional Euclidean space

R™. The discrete random vector defined by F ym () is referred to as the optimum

discrete random vector approximating the random vector X". Here, the

approximation of an absolutely continuous random variable X with distribution

108



necessary conditions that the optimum discrete random variable approximating
X must satisfy are obtained. Finally , discrete random variables are obtained.
Let us now now state two theorems and defined some symbols which

are used. The proofs of the theorems are given in [25]

Theorem C. 1 [25]

A
Let fy)=f{y1, y2,..., ¥:) be a real-valed function on an open set I of R/,

and let f{y) have finite partial derivatives of(y)/ dyy , k=1,2,...,/ at each point of

A
I'. If f(y) has a local minimum at the point yo= (Y10, ¥20,.-., ¥10) in I'"., then

Bf(y)/aykly=yo =0 for each k=1,2,...,/.

Therom C.2 [25]
A
Let f{y)=f{y1, ¥s,..., y)) be a real-valed function on an open set I of R’,
A
and let f(y) have continuous second order partial on I'. Let yo= (Y10, ¥20,---» ¥10)

be a point of I for which 2(y)/ dyy|y—y, =0 for eachk=12,..., /. Assume

A
that the determinant G=det{[V£(y)]y=y,} # 0, where

2 A
V3]s = f(y).

?
oyidy;
Let Gix be the determinant obtained from G by deleting the last k rows and
columns. If th / numbers G,,G;, ...,G;, are all positive, then fy) has a local

minimum at yo.
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We now define D as the set of distribution functions of all discrete
random variables witk “L™ possible values, where “L’ is a given positive
integer. We next define S as the set of all stepfunctions with L steps. A
stepfunction g(.) with L steps is, by definition, a function with “L+1" possible
values in the real line R such that g(.) is zero at -oc and one at +oo; the set of
numbers which are mapped by g(.) to a chosen possible value is an interval in R,
the intervals corresponding to the L+1 possible values are nonoverlapping, and

the union of these intervals is the real line, that is,

5= {8x)  g(x)0 for x<yy;
g(x)=P; for yi<x<yi, yi € (-0, +o0);
sx)=1 forx2yL; ¥ir,>¥i ¥i € (-0, +);
=1,2,..,L-1}

In order to find the optimum discrete random variable witl L possible
values that approximates an absolutely continuous random variable X with
distribution finction Fx(.), we must find a distribution function Fy (.) which

()

minimizes the objective function J(.) over the set D:

JF, ()=_min JF()., (C3)
Fy(.)eD
= min J(g()). .
g(t{r)xgs (=()) (C49)
where
A+w
J(Fy (D= [[Fx(a)-Fy(2)} da (C.5)
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The equality in equation (C 4) follows from the following arguments. Let a step
function go(.)eS minimize J(.) over the set S. since the distribution function
Fx( ) is nondecreasing, go(.) must be nondecreasing, hence it 1s a nondecreasing
step function whose range changes from zero to one; therefore go(.)eD. Thus
the aim is to find a step function go(.)€S which minimizes the objective function
J() over S. That is we would like to minimize the following function over
yie(-xc,+c) and P;e(0,1) (where i=1,2,... .L;j=1,2,. . L-1).

Y Y2
Jg()= [Fia)da+ [[Fc(@)-Py)*da

—® N

Y3 YL
a j [F,(a)- P, )2 da+. + j [Fy(a)- P _;1%da

Y2 YL

- T[Fx (a)-1]*da, (C.6)

YL

It follows from Theorem C.1 that if go(x), which is defined by

0, X<Y10>
go(x)= Pi,O’ lle,O <X< Yi+1,0> =1,2,.. . L-1 (C.7)
1, X2 YLO>

is a step function which minimizes equation (C.6), this must satisfy the following

set of equations:

P10=2Fx(y1,0);
Piot Pin1,0=2Fx(Yi+1,0), =1,2,3,....L-2;

1+ PL,0=2Fx(yL);
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Yit10

Pio(yi10-yio)= IFx(a)da =12, L-1 (C.8)

Yig
Using equation (C 8) and Teorem C.2, the discrete random vanables (with L
possible values where L=1.2, .8) which approximate the normal random
variable with zero mean and unit variance have been numerically obtained and
are tabulated in Table C.1.

Let yo be the optimum discrete random variable with L possible values
Y1.0,¥20,...,YLo Which approximate the normal random vanable wit zero mean
and unit variance, and let P,y be defined by Prob{ yo= yie}. Let z, be the
optimum discrete random variable with L possible values z;9,25,...,z1.0 Which
approximates the normal random variable with mean p and variance 6 ; and let
Pi',o be defined by Prob{zy=z0}. By equation (C.8) , it can easily be verified
that

Zi 0= OYyioT.1, P1,0= Pi,o, i=1,2,...,L (C9)
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Table C.1: Discrete Random Variables Approximating The Gaussian
Random Variable with Zero Mean and Unit Variance

Number

of possible L possible values and corresponding probabilities of y

values of

Yo i 1 2 3 4 5 6 7 8

=1 Yo | 0.000

P, | 1.000

L=2 |y | 0675|0675

P.o | 0.500 | 0.500

L= Yio | -1.005 [ 0.0 1.005

P, 0315|0370 | 0315

L=4 |y |-1.219[-0.355 |0355 | 1.005

P, 0.223 { 0.227 0227 0223

L=5 |y |-1.376 | 0.592 | 0.0 0592 | 1.376

Po | 0.169 | 0.216 0230 0216 |]0.169

L=6 Yio |-1.499|-0.767 | -0.242 | 0.242 | 0.767 1.499

Po | 0134 | 0.175 0.191 0.191 0.175 0.134

L= Yio | -1.599 | -0905 | -0.423 |00 0.423 0.905 | 1.599

Pio 10.110 | 0.145 0.162 10.166 | 0.162 0.145 | 0.110

L=8 Yio }-1.683 |-1.018 }-0.567 |-0.183 | 0.183 0.567 | 1.018 | 1.683

Pio {9.093 | 0.123 0139 10145 |0.145 0.139 | 0.123 | 0.093

Yo, is the discrete random variable with L possible values yio, y2g,...,

yro, which approximates the normal random variable with zero mean and unit

variance.
. . » A
yio, 1s th ith possible value of yo: Pio=Prob{ yo= yio}.
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