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ABSTRACT

DEVELOPMENT OF AN INSTRUCTIONAL UNIT FOR DEVELOPING
KINDERGARTEN STUDENTS’ ALGEBRAIC REASONING PRIOR TO
FORMAL ARITHMETIC EDUCATION

Sofuoglu, Sevgi
Doctor of Philosophy, Secondary Science and Mathematics Education
Supervisor: Assoc. Prof. Dr. Biilent Cetinkaya

July 2024, 399 pages

The aim of this study is to develop an instructional sequence that focuses on algebraic
reasoning before arithmetic education. The study is based on Davydov’s approach to
early algebra education, which promises a better understanding of variability and
functions in higher grades. The instructional design includes creating effective
learning trajectories and materials for use in kindergarten mathematics courses. To
achieve this goal, the study investigated the following research question: How can
kindergarten students’ algebraic reasoning be supported by a proposed instructional
sequence? A hypothetical learning trajectory was developed and adapted for the
kindergarten level based on the Davydov & Elkonian curriculum of first-grade
mathematics. Based on the Design-Based Research perspective, classroom activities
aligned with this hypothetical learning trajectory were further refined during the
implementation of instruction based on student learning outcomes. Following the
implementation and testing of the trajectory through 20 in-class and online sessions
with 10 students, an effective learning sequence and practical instructional materials
were developed. Students’ progression through the trajectory, related to design
principles, contributed to the theory of how students develop algebraic learning in
early grades. Piaget’s conservation principles were effective in students’ perception
of structures in the equations. The data showed that students could develop an
algebraic understanding of equality and operations at the kindergarten level by



adapting the Davydov-Elkonian curriculum with modifications on materials and
symbolization in activities.

Keywords: Early Algebra, Davydov, Kindergarten Students, Mathematics
Education, Design-Based Research
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0z

ANAOKULU OGRENCILERININ ARITMETIK EGIiTiMi ONCESINDE
CEBIRSEL MUHAKEMELERININ GELISTIRILMESI ICIN EGITIM
ICERIGI GELISTIRME

Sofuoglu, Sevgi
Doktora, Ortadgretim Fen ve Matematik Alanlar1 Egitimi
Tez Yoneticisi: Dog. Dr. Biilent Cetinkaya

Temmuz 2024, 399 sayfa

Bu calismanin amaci, aritmetik egitiminden once cebirsel akil yiiriitmeye odaklanan
bir 6gretim dizisi gelistirmektir. Calisma, daha yiiksek siniflarda degiskenlik ve
fonksiyonlarin daha iyi anlagilmasini vaat eden Davydov’un erken cebir egitimi
yaklasimina dayanmaktadir. Ogretim tasarimi, anaokulu matematik derslerinde
kullanilmak tizere verimli 6grenme yollar1 ve materyaller olugturmay1 igermektedir.
Bu amac1 gergeklestirmek i¢in ¢alismada su arastirma sorusu incelenmistir: Onerilen
bir ogretim dizisi ile anaokulu Ogrencilerinin cebirsel akil yiiriitmesi nasil
desteklenebilir? Birinci simif matematigi Davydov & Elkonian miifredatina dayali
olarak, anaokulu diizeyine uyarlanmis ve gelistirilen bir varsayimsal 6grenme yolu
olusturulmugtur. Tasarim Tabanli Arastirma perspektifine dayali olarak, 6grenci
ogrenme ¢iktilar1 dogrultusunda sinif aktiviteleri bu varsayimsal 6grenme yolu ile
hizalanmis ve 6gretimin uygulanmasi sirasinda daha da rafine edilmistir. 10 6grenci
ile 20 smif i¢i ve gevrimi¢i oturum boyunca 6grenme yolunun uygulanmasi ve test
edilmesinin ardindan, etkili bir 6grenme dizisi ve pratik Ogretim materyalleri
gelistirilmistir. Ogrencilerin tasarim ilkelerine dayali olarak 6grenme yolu boyunca
ilerlemesi, Ogrencilerin erken siniflarda cebirsel Ogrenmeyi nasil gelistirdigi

teorisine katkida bulunmustur. Piaget’in miktarin korunumu ilkesinin belirledigi
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siirlar 6grencilerin denklemlerdeki yapilari algilamasinda etkili olmustur.Veriler,
ogrencilerin anaokulu diizeyinde Davydov-Elkonian miifredatini materyaller ve
aktivitelerdeki sembollestirme diizenlemeleriyle uyarlayarak esitlik ve islemler
konusunda cebirsel bir anlayis gelistirebildiklerini géstermistir.

Anahtar Kelimeler: Erken Cebir Egitimi, Davydov, Anaokulu Ogrencileri,

Matematik Egitimi, Tasarim Tabanli Arastirma
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CHAPTER 1

INTRODUCTION

Algebra is generally associated with relations, functions, variation, and modeling
languages through symbolization, generalization, and acting on generalized
structures by the language of symbols (Kaput, 2008) and “well-defined methods of
manipulation” (Katz & Barton, 2007, p. 185). Defining algebra and distinguishing
algebra from arithmetic is difficult (Cai & Knuth, 2011; Kaput, 2008), particularly
in the early grades of teaching algebra (Kaput, 2008). Through systematic strategies
for computations, relational properties, operations, and dynamic problem-solving,
algebra is fundamental to most mathematical domains (Katz & Barton, 2007),
including arithmetic, where rules and generalizations occur in computations (Cai &
Knuth, 2011). In this context, algebra is sometimes referred to as generalized
arithmetic (Kaput, 2008; Katz & Barton, 2007).

Algebra has been seen as generalizations and anything that consists of operations,
systems, and computations underlies an algebraic point of view. From a historical
perspective, algebra started by explaining general strategies to solve numerical
problems and evolved to studying operational systems. It gradually evolved from
explanations through words to the total use of symbolization (Katz & Barton, 2007).
Even with the help of notational representations it created, algebra formed more of a
language (Stacey & Chick, 2004) to communicate and also a base for studying

mathematics.

Central to most mathematical areas and foundational to everyday mathematics and
every branch of mathematics, the importance of algebra education is unquestionable.
Although intertwined, arithmetic and algebra are taught at different educational

levels: arithmetic in elementary school and algebra in middle and high school (Cai



& Knuth, 2011). This separation may be the cause of problems in learning algebra
(Kieran, 2007). Learning algebra is found to be difficult and seen as problematic in
education (Cai & Knuth, 2011; Kaput, 2008; Stacey & Chick, 2004). Seen as a
“gatekeeper,” mathematics education studies focus on difficulties in understanding
algebraic topics and developing algebraic curricula, as these challenges significantly

impact mathematics learning (Cai & Knuth, 2005, p. 1).

These major problems involve difficulties or misconceptions of algebraic thinking
and the initial introduction of algebra after arithmetic education, where new concepts
challenge students' arithmetical thinking. Consequently, studies focus on introducing
algebraic thinking in earlier contexts, creating a smooth transition from arithmetic to
algebra, or teaching arithmetic from an algebraic perspective without conflicting

with algebra.

Transitioning from the arithmetic of four operations with numbers to the algebra of
generalizations, variables, functions, and operational properties introduces many
misconceptions and difficulties (Kieran, 2007; Ndemo & Ndemo, 2018), which may
persist and affect future mathematics learning. While learning arithmetic, certain
limitations or misunderstandings may hinder the future learning of algebra
(Ketterlin-Geller, et al., 2007). For example, due to the emphasis on "finding the
answer" in arithmetic, understanding the equal sign as an operator rather than as a
symbol of relational equivalence, is common (Byrd, et al., 2015; Kieran, 1981,
Saenz-Ludlow & Walgamuth,1998). This misconception not only affects young
students but also has long-lasting effects on college mathematics (Fyfe, et al., 2020).
Particular tasks are recommended at “the very beginning of early algebra education”
to support students’ understanding of the structural meaning of equation signs
(Stephens, et al., 2013, p. 173). Therefore, why not enforce tasks that support

structural understanding when students first encounter equal signs?

Similarly, focusing on finding unknown values hinders the understanding of
variables (Rosnick, 1981). Functions and relations between quantities become the

most difficult subjects as a result of a limited understanding of equality and



variability. Moreover, from a Piagetian perspective, it is believed that algebra can
only be understood by secondary-grade students who have reached the level of

abstract thinking.

To overcome problems related to algebraic understanding, researchers have begun
to focus on early algebra education. This involves introducing algebraic ideas, such
as the use of letter notation, in a less formal and earlier way, or defining pre-algebra
stages to facilitate a smoother transition from arithmetic to algebra (Herscovics &
Linchevski, 1994; Linchevski & Herscovics, 1996; MacGregor & Stacey, 1998;
Pillay, et al., 1998; Van Amerom, 2003) This transition is supported by using

familiar contexts through word problems and visual demonstrations.

The dominant approach in early algebra education is to support future algebraic
learning by focusing on functions through the generalizations of solutions to
problems or pattern detection among number sets or geometric figures in the early
grades (Blanton, 2010). Another common approach is not bringing traditional
algebraic curriculum earlier but rather incorporating concepts such as unknowns
through familiar contexts (Carraher, et al., 2008). This approach also involves
teaching arithmetic in a way that supports algebraic reasoning (Cai & Knuth, 2011),
such as learning equal signs as symbols of balance relations and focusing on
operational properties from the very beginning of arithmetic education. This helps to
prevent contradictions and misconceptions during the transition from arithmetic to
algebra (Ramirez Uclés, et al., 2022; Warren, 2003).

In addition to these approaches, Davydov offers a radical solution for algebra
education. Based on VVygotskian perspectives, he argues that there is no age limit for
abstract thinking, and algebraic discussions can be advanced in the proximal zone of
development, where students can develop their understanding with the guidance of
a knowledgeable other. Following Hegel's perspective, Schmittau and Morris (2004)
state that Davydov introduces theoretical algebraic discussions as early as the 1st
grade of elementary school, even before arithmetic education. This approach

involves first teaching operations algebraically, then arithmetically, designing



instruction with a deductive hierarchy where arithmetic is viewed as a numerical
subset of algebra. Consequently, this method aims to prevent inconsistencies,
cognitive conflicts, and the hindrance of arithmetical thinking while transitioning to

algebra education, and ultimately fostering algebraic reasoning from the start.

From a Piagetian perspective, students can not be taught anything at any age.
Opposing Piaget, Bruner's work challenged age boundaries for learning and
identified stages to go through for learning a new concept (Bruner & Kenney, 1965;
Conway, 2007). These stages are; enactive, iconic, and symbolic stages, which are
compatible with Davydov’s curriculum, where concepts are handled starting with
real-life illustrations and iconic representations, then connected with formal
algebraic expressions. Davydov (1988) stated the importance of “concrete activity”
in investigations for the abstraction of learning concepts (p. 195). Starting actions
with concrete materials in mathematical investigations is also suggested by APOS

(Action-Process-Object-Schema) Theory at early grades (Arnon et al., 2014).

Davydov's curriculum has been shown to be effective in developing strong algebraic
understanding at early ages, as supported by replicative studies (Dougherty, 2008;
Schmittau & Morris, 2004;). His work has inspired numerous studies aimed at
establishing better connections between algebra and arithmetic and providing strong
bases for algebraic understanding across different age groups (Dougherty &
Venenciano, 2007; Eriksson & Jansson, 2017; Okazaki et al., 2006; Tortora &
Mellone, 2017). Regarding the relationship between arithmetic operations and
algebraic reasoning, integrating algebraic concepts into arithmetic has been proposed
as a remedy for difficulties in arithmetic, demonstrating that algebra is not inherently
more difficult than arithmetic (Gerhard, 2009).

Early algebra studies have influenced the revision of curricula significantly.
Traditionally, algebraic education around the world and in the US began at the
secondary level, aligning with Piagetian stages of abstract thinking. However,
affected by recent research on early algebra education, the US curriculum now

includes patterns and generalization of numbers as early as elementary grades



(Schimittau & Morris, 2004), aiming to foster relational thinking and understanding

of functions.

In these early stages, relationships often begin with considering the relations among
concurrent numbers in a series defined by an operation. This approach helps in
understanding the trend of change in a function. However, it sometimes neglects
emphasis on the independent variable. The focus on the patterning of numbers tends
to be discrete and can pose challenges when transitioning to understanding

continuous functions.

Schoenfeld and Arcavi (1988) stated that variables define the transition from
arithmetic to algebra, and generalizations of patterns should be mastered before using
variables. This suggests a transition from arithmetic to algebra from a relation of
numbers to a variable perspective. Davydov’s perspective indeed takes a reverse
approach compared to traditional methods. His curriculum begins by introducing
relations involving variables first. This means considering non-discrete, unknown,
and varying quantities and exploring their relationships through equations and
inequalities. According to Davydov, algebraic theoretical thinking about operations
starts with an understanding of the dynamicity of the equations. He advocates that
this approach to algebraic thinking can begin even before the introduction of
numbers and arithmetic. Davydov's philosophy states that starting mathematical

reasoning empirically prevents thinking theoretically (Schimittau & Morris, 2004).

Davydov's curriculum introduces equations and multiple types of solution sets early
on, aiming to enhance students' understanding of equal signs and variables rather
than just the concept of the unknown. Theoretical thinking on operations and their
properties begins immediately with instruction on equalities. Students act on
equalities and inequalities with addition and subtraction operations and discuss
adding or subtracting equivalent quantities to reform equalities. They model the
A£B=C=D form of equations with real-life situations. In Davydov's approach, after
discussing equations and operations theoretically through unknown quantities,

number sense is developed based on the concept of equality relations, where one



quantity relates to another as a multiple. Unitization is introduced not through
discrete counting of some units, but by understanding measurement through
multiplicative relations between quantities in equations in the form A=kB, where k
IS a counting number. This multiplicative relationship is then integrated with
addition, laying the groundwork for problem-solving involving multiple unknowns,
which is the final topic in the Grade 1 Mathematics Book of Davydov's curriculum
(Davydov et al., 1995).

Davydov's curriculum shows promise for developing strong algebraic reasoning
skills, but it may potentially delay instruction in arithmetic (Schmittau & Morris,
2004). Implementing this curriculum also presents challenges related to cultural
adaptation, teacher education, and acceptance (Mellone et al., 2021; Schmittau &
Morris, 2004; Sidneva, 2020). These factors highlight the need for careful
consideration and adaptation when introducing Davydov's approach into different

educational contexts.

In the Turkish curriculum, there is a focus on developing a relational understanding
of equality from an early age. The recent Kindergarten curriculum emphasizes
comparing objects based on different attributes, like color, shape, and length, as well
as ordering or classifying objects based on these attributes (Ministry of National
Education [MoNE], 2013). While the curriculum does not explicitly mention the use
of > and < signs, teachers often incorporate activities involving these signs in their
classrooms. In 1st Grade, equality is exemplified by real-life objects. Then, objects
are compared and ordered based on length, volume, and weight with the help of units.
Addition takes place with traditional one-sided equations in Grade 1. Relational
understanding of equality is stressed in the 2" Grade by introducing two-sided
operations by the objective “He/She recognizes the meaning of 'equality’ between
mathematical expressions represented by the equal sign. It is emphasized that the
equal sign does not always imply the result of an operation but also indicates the
balance (equality) between the mathematical expressions on both sides. For example,
5+6=10+1; 15-3=18-6; 8+7 = 20-5; 18= 16+2” ([MoNE], 2018, p. 33). After getting
reluctant to traditional equations with operations on the left side, students might



develop an operational meaning that hinders the relational meaning of the equal sign
(Byrd et al., 2015; Sfard & Linchevski, 1994) or they might develop a tendency to
focus on solving the operation even/if they develop a relational understanding of the
sign (Lee & Pang, 2023). Moreover, the mentioned objective stresses that the equal
sign does not always have an operational meaning. We propose that equal sign
should always be acquired to have relational meaning, which will not contradict the
traditional equations presented in the 1% Grade. It takes a long time to alter the
operational understanding students might bring from kindergarten and develop a
relational understanding even in Grade 1 (Falkner et al., 1999). Hence, starting

teaching the equal sign with a relational meaning at an early age is essential.

Starting with discussion on equality rather than operations fosters a relational
understanding of the equal sign. Davydov's approach is not only promising for a
meaningful understanding of equality but also for understanding variables. Adapting
Davydov's curriculum to the kindergarten curriculum offers an opportunity to
develop a robust algebraic foundation before formal arithmetic education in Grade

1, particularly focusing on equations involving addition and subtraction operations.

Arithmetic education traditionally begins in kindergarten with counting, and many
students are familiar with solving simple arithmetic problems even before starting
school (Kilpatrick et al., 2001). Drawing from Davydov’s deductive perspective,
advocating for starting algebra education before arithmetic can help prevent
reluctance toward arithmetic reasoning. Therefore, introducing algebraic concepts
aligned with Davydov's approach in kindergarten can adequately prepare students
without delaying arithmetic education or compromising traditional elementary

education goals (Stephens et al., 2021).

By adapting Davydov’s deductive perspective at the kindergarten level, the goal of
this study is to mitigate difficulties in learning algebra and facilitate the transition
from arithmetic to algebra by emphasizing variables over unknowns, continuous
variables over discrete variables, and relational over operational reasoning by

addressing inconsistencies from the outset.



1.1 Purpose of the Study

This study aims to develop an instructional sequence for the kindergarten level that
adapts Davydov's approach (algebra before arithmetic) and focuses on the algebraic
understanding of equations in the form of A+B=C=D. In this study, unitization in the
multiplicative form of A=kB expression is not included. Introduction of numbers and
operation with numbers is left to formal arithmetic education in Grade 1. Bruner’s
modes of algebraic representations (Bruner & Kenney, 1965) will be enhanced in
structuring activities, and APOS Theory (Dubinsky & McDonald, 2001) will be used
to ensure and assess the development of students' algebraic understanding
throughout the activities. The following research questions will guide a Design-

Based Research study to develop and improve the intended instructional sequences.

1.2 Research Questions

The research questions outlined below guide a Design-Based Research study aimed

at developing, revising, and refining an instructional sequence.

General Research question: Based on Davydov's approach, how can kindergarten
students' algebraic understanding of equations be effectively supported before

arithmetic education?

1. What is an adapted learning trajectory for supporting kindergarten
students' algebraic understanding of equations from Davydov’s non-
numerical perspective?

a) To what extent do kindergarten students learn equations with
addition and subtraction with an adaptation of Davydov’s
curriculum for first graders?

b) What are kindergarten students' strengths and difficulties in

understanding the equations in the adapted trajectory?



2. What are the effective and practical activities for supporting kindergarten
students' algebraic understanding of equations from Davydov’s non-
numerical perspective?

a) Which characteristics of the activities help kindergarten students
understand and resolve their difficulties in comprehending

equations?

1.3  Significance of the Study

This study has three main significances: 1) contributing to the literature on teaching
equality and quantity in earlier grades by filling the gap with an algebraic
perspective, and 2) providing an evidenced-based trajectory for teaching algebra at
the kindergarten level. 3) generating effective and practical activities to support the
trajectory.

First, there is limited research on teaching algebra in the early grades. Studies of
early algebra focused on one of the major problems of understanding of equal sign.
The problem with equal signs is that students have operational understanding rather
than relational understanding. Several studies have explored understanding and
teaching equality in a structural way (Matthews, et al., 2012; Stephens et al., 2021),
suggesting the use of various equation structures. Matthews et al. (2012) developed
a test for relational understanding of equal signs and assessed among 2nd to 6th
graders. Stephens et al. (2021) used this framework to observe students' progress in
understanding the equal sign during an early algebra intervention from kindergarten
to Grade 1. These studies emphasize that understanding equality is fundamentally
relational. Based on these studies we can draw conclusions about how students
develop a relational understanding of the equal sign in arithmetic. However, there is
a significant gap in understanding how students develop a relational understanding

of equality and equations with unknowns.



There are some studies about students’ understanding of indeterminate quantities in
the 1st grade through numerical generalization for interpretation of variables.
(Brizuela, et al., 2015) These studies have shown that first graders can use symbols
to interpret variables and manipulate a mathematical expression with variables. The
findings are promising for understanding variables at early ages, leading to a
proposed trajectory for developing representations of quantity to variables in Grade
1 (Blanton, et al., 2017). Building on these findings, Ventura et al. (2021) revised
the trajectory to include kindergarten and Grade 1. Their results were consistent with
those of Blanton et al. (2017) showing that Grade 1 students can interpret variables
and work with them in meaningful algebraic expressions. While kindergarten
students could produce some symbolic notation for indeterminate quantities, they
struggled to perform operations or use these symbols in algebraic expressions. These
studies showed that with the right opportunities, students can reason about variables
and construct algebraic expressions using unknowns, providing hope for early

algebra education.

However, the variables used in these studies were discrete numerical quantities, and
generalization was achieved by analyzing patterns in number tables. Adopting
Davydov’s perspective necessitates studying the teaching of continuous variables
such as volume, weight, and length.

These studies on teaching equality and variables primarily address discrete
numerical quantities, whether indeterminate (variables) or determinate numbers. We
aim to extend this research by incorporating non-numeric continuous quantities.
Adopting Davydov’s perspective, this approach focuses on developing a relational
understanding of equality and enabling kindergarten students to work with

continuous unknowns in equations.

There is no study applying Davydov’s trajectory perspective at the Kindergarten
level, but some studies have demonstrated its effectiveness starting from Grade 1
(Dougherty, 2008; Schmittau & Morris, 2004), which gives hope for teaching

equality with continuous variables in early grades. In the Measure-Up Project
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(Dougherty, 2008), students compared continuous quantities and used additive and
multiplicative reasoning to interpret algebraic equations at the Grade 1 level, as in

Davydov’s trajectory.

To avoid delaying formal arithmetic education in Grade 1, there is a need to adapt
Davydov’s trajectory to the kindergarten level. This adaptation would support the
understanding of the relational meaning of equal sign and addition/subtraction
operations involving unknowns. Introducing these concepts before formal arithmetic
education can build a strong foundation for relational reasoning, thus preparing

students for more advanced mathematical concepts.

Hence, this study's results will illuminate students' understanding of equality and
continuous quantities as early as kindergarten. The results will clarify students'
difficulties and how they overcome them while developing their understanding at the
kindergarten level. This study will contribute to the literature on early algebra
education by focusing on equality and quantity, filling the gap by exploring the
understanding of continuous non-numeric quantities and algebraic equality at the

kindergarten level.

The second significance of this study is its outcome as a learning trajectory. Not only
will students' difficulties and strengths in understanding equality and quantities be
illuminated, but also, through advancing design-based perspectives, a trajectory for
students’ improvement on quantity, equality, and equations with addition and
subtraction involving unknowns will be developed empirically. This trajectory will
provide a connected explanation of students' learning and progression through these
concepts. Students’ learning progression will be assessed by APOS Theory.
However, there is little research using APOS Theory to develop or assess students'
algebraic learning in early grades (Arnon et al., 2001). Hence, this study results will

also contribute to APOS Theory, at early ages.

Moreover, the trajectory will serve as a guide for further studies aimed at developing
comprehensible algebraic reasoning at the kindergarten level. Curriculum

development that supports algebra from very early ages is possible through this

11



trajectory, which will be validated based on design-based perspectives. Studying
further revisions and improvements on the learning trajectory and instructional
sequence are also possible based on the implementation conditions. Thus, this study's
trajectory will be a valuable tool for educators and researchers, offering a proven
framework for teaching algebraic concepts to young learners and paving the way for
continuous enhancement of early algebra education. The design principles, as a
practical outcome of this study, explain its third significance. Practical activities and
materials will be developed to support the learning trajectory. These ready-made
activities and materials, proven to be practical and supportive of the learning
trajectory based on a design-based perspective, will facilitate the adoption of
kindergarten curriculums and simplify implementation for teachers. By providing
evidence-based, user-friendly resources, this study ensures that educators can readily
integrate these activities into their teaching practices. The design principles will
guide the creation of effective instructional materials that align with the learning
goals, making early algebra education accessible and manageable for both teachers
and students.

Briefly, this study and its theoretical outcomes will enable us to explain students’
development of algebraic understanding through an adapted Davydov curriculum at
the kindergarten level. Moreover, the adapted trajectory and supportive activities

developed through this study will benefit future curricula and instructional practices.

1.4  Limitations of the Study

The study's results will yield a learning trajectory along with supporting practical
activities. While the resultant learning trajectory may not be optimal, it can be refined
through analysis and implementation of micro-design cycles over a semester.
Furthermore, the findings are constrained by the characteristics of the classroom
environment. Testing the efficacy of the trajectory in different classroom settings
and exploring alternative learning trajectories can be achieved through macro design

cycles.
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15 Definition of Terms

Algebraic reasoning

From the point of view of symbolization and beyond, algebra involves patterns,
generalizations, rules, and actions taken on those generalizations. Algebraic
reasoning can be defined by how individuals perceive and act upon these rules,
highlighting differences in their approaches (Kaput, 2008). From this perspective,
algebra education centers on patterns and generalizations, primarily within number
sequences. In this study, our perspective focuses on the rules and actions involving

operations with continuous quantities, aligning closely with Davydov’s approach.
Learning trajectory

A learning trajectory is the learning path that is partially or wholly planned before
implementation and is open to adjustments based on the conditions during the trip
(implementation) (Simon, 1995, p. 136).

Hypothetical learning trajectory

A hypothetical learning trajectory is designed before classroom intervention and
includes objectives, defined activities, and a predictive learning process. The
hypothetical learning trajectory is tested and refined in the procedure, and it is
hypothetical in the sense that it is based on the “prediction of the path which learning

might proceed” until a resultant path is accomplished (Simon, 1995, p. 135).
Quantity

“Quantities are attributes of objects or phenomena that are measurable; it is our
capacity to measure them—whether we have carried out those measurements or not

that makes them quantities” (Smith & Thompson, 2007, p. 101).
Variables

Variables can be defined through symbolization or a placeholder to represent

indeterminate quantities that are assumed to be or can be varying in mathematical
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sentences. In algebra education, variables are mostly used as tools for representing
generalizations, underlying dynamicity in quantities, or deriving solutions for

unknowns in equations (Schoenfeld & Arcavi, 1988).
Genetic decomposition

“From a cognitive perspective, a particular mathematical concept is framed in terms
of its genetic decomposition, a description of how the concept may be constructed in
an individual’s mind. This differs from a mathematical formulation of the concept,
which deals with how the concept is situated in the mathematical landscape—its role
as a mathematical idea” (Arnon et al., 2014, p. 17).

Mental Structures

Individuals make sense of mathematical concepts by building and using specific
mental structures (or constructions), which are considered in APOS Theory to be

stages in the learning of mathematical concepts (Arnon et al., 2014, p. 17).
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CHAPTER 2

LITERATURE REVIEW

With secondary school education becoming compulsory worldwide, algebra has
become a fundamental part of the curriculum and the primary difficulty in
mathematics education (Kaput, 2008). Despite extensive research and numerous
interventions, algebra remains one of the major challenges in learning and teaching
mathematics (Warren et al., 2016). The difficulty arises from the cognitive gap
between the arithmetic calculations students are accustomed to and the algebraic
systems they are newly encountering (Herscovics & Linchevski, 1994). Never before
have students focused on rules, relations, generalization, symbols, operation by
unknowns, and variables, all of which require a cognitive shift in problem-solving.
In algebra, perception and the context of the problem determine how to interpret
expressions (Sfard & Linchevski, 1994). This presents another challenging step for
students. Equality acquires a new relational meaning, and numbers are replaced with
unknowns and variables in calculations. Operating with these unknowns and
variables necessitates understanding operational properties (Sfard & Linchevski,
1994).

Not only do quantities pose a challenge, but the abstraction of operations in
calculations also presents difficulties. Warren (2003) indicated that the difficulty in
readiness for algebra stems from a lack of understanding of “arithmetic operations
as general processes” (p. 133) and pointed out the importance of recognizing patterns
and generalizations in operations for an abstract understanding of arithmetic. Beyond
calculations, the abstraction of operations needs to be more prominent and should be
connected to real-life language. These changes require students to develop new
cognitive abilities. Additionally, their reluctance toward arithmetical processes
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hinders their ability to focus on algebraic structures. These factors contribute to the

difficulty in transitioning from arithmetic to algebra.

In the following sections, we will address these difficulties and possible solutions in

algebra learning in the literature that guided this study.

2.1  Transition from Arithmetic to Algebra

In the transition from arithmetic to algebra, students encounter the challenge of
conducting operations on unknowns, a new concept for them. The didactic cut
emerges with the introduction of unknowns and operations on them. Strategies that
students apply to arithmetical problems and equations are not effective for solving
algebraic problems and equations, which require the use of an operation on
unknowns, causing the didactic cut (Filloy & Rojano, 1989). Thinking about this
problem from Davydov’s perspective, if students were to learn to develop algebraic
strategies and operations on unknowns first, these strategies would then apply to
arithmetic problems and equations, thereby eliminating the didactic cut. Students’
tendency to assign numbers when solving algebraic equations shows the cognitive
gap between numerical operations and the ability to operate on unknowns
(Herscovics & Linchevski, 1996).

In addition to operations with unknowns, Herscovics and Linchevski (1994)
emphasize the importance of understanding the equal sign for solving algebraic
equations. Arithmetic and algebraic problems/equations may differ in the positioning
of operations, which can lead to misunderstandings and misreadings by students
because of their arithmetical-solving practices. Their intention was to improve
arithmetic education designed to support algebraic reasoning, and algebraic

arithmetic, drawing attention to the understanding of the meaning of the equal sign.

According to Warren (2003), not only abstraction of operations but also
generalizations of their properties, their use in real-life language, and their symbolic

interpretations are essential for the transition from arithmetic to algebra. Therefore,
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there is also a need for developing activities that support everyday language to

express generalizations of algebraic properties.

One way to bridge arithmetic to algebra is to challenge students to discover informal
strategies based on their prior knowledge of arithmetic to solve algebraic problems
at the pre-algebra stage. However, reasoning algebraically in those types of activities
does not guarantee to be successful in interpreting algebraically (Van Amerom,
2003). Algebraic problem solving differentiates from arithmetical problem solving
in that, to solve algebraic problems you must first symbolize the problem situation
to operate on it. This difference in solving problems or equations introduces a
cognitive difficulty in transitioning from arithmetic to algebra, described as a
“didactic cut” by Filloy and Rojano (1989) and as a “cognitive gap” by Herscovics
and Linchevski (1994). To overcome this difficulty, a gradual transformation to letter
notation is suggested (Carraher et al., 2017, Mason, 1996). Another “learning leap”
appears in the transition from discrete to continuous variables (Boote & Boote, 2017,
p. 456). Davydov’s perspective has the potential to eliminate this difficulty by
starting with continuous variables such as volume, length, and height, and then

continuing with discrete/numerical calculations.

In the following sections studies on equal sign and quantity will be presented to
explain major difficulties and cognitive demands in algebra education. Then early
algebra studies will be discussed as a solution to these challenges. Among these, the
studies inspired by Davydov’s approach will be detailed to explain the focus of this
study.

2.2 Understanding of Equal Sign

The most problematic and misleading meaning of the equal sign is as a command to
interpret the resultant, a perception rooted in arithmetical learning that generally does
not pose an issue until algebraic reasoning is required. Perceiving the equal sign as

a “do something signal” persists through elementary school and is even observed in
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early high school students, often leading to misunderstandings and errors in solving
equations (Kieran, 1981, p. 317). Falkner et al. (1999) found more than 90% of
students in primary school showed misconceptions in solving the equation: 8+4=?
+5, and the percentage does not lower with aging. Misconceptions were specifically
“finding a result for the left side of the equal sign”, or “adding up all numbers in the
equation”. In another study (Stephens et al. 2013), higher percentages of correct
responses to solving the equation “7+3=? +4” were observed in higher grades of
primary school, however, the percentage was lower than 50%. Giirel and Okur
(2018) reported that misconceptions of adding numbers on the left side or adding all
numbers in the equation: 83+14=? +16 can be persistent in 7" Graders with a
percentage of 25%, while these misconceptions were not observed among 8™
graders, where algebra courses take place.

This misconception stems from students’ conceptualization of the equal sign are
rooted in students' conceptualization of equal signs as an indication of a process
rather than a static relation (Sfard & Linchevski, 1994). Students often think that the
left side of the equal sign represents a process to be carried out, while the right side
merely the result, due to their arithmetical background where the equal sign signals
the completion of calculations (Sfard & Linchevski, 1994). This interpretation is
reinforced by the typical structure of arithmetical computations, where the equal sign
is seen as the final step in a series of operations rather than a symbol of equivalence.
As a result, students may overlook the importance of the equivalence of quantities
on both sides of the equal sign, focusing instead on executing operations and
obtaining results (Sfard & Linchevski, 1994).

Byrd et al. (2015) defined students' explanations, such as “something is equivalent
to something else” or “balanced on both sides,” as the relational definition of the
equal sign. Explanations such as “end of question” and “a symbol to let you know
the answer is next” are not relational meanings of equal sign. Other specific non-
relational meanings of the equal sign are arithmetic-specific, such as “it means when
you add something, get the total” or “the number you add, subtract, divide, and

multiply.” Arithmetic-specific interpretations are found to be more hindering than

18



non-arithmetic-specific interpretations among non-relational understandings. This
underscores how initiating the learning of equal signs in a solely arithmetic context

can be detrimental to future algebraic learning.

Knuth et al. (2006) explained how understanding the equal sign is related to solving
equations. They conducted a study with 6™, 7", and 8" graders and reported that all
grades had a low relational understanding of the equal sign. They categorized
students' understanding of the equal sign as either relational or non-relational. They
found that students with a relational understanding of the equal sign performed

significantly better in solving equations.

Recent studies also show that college students might have a non-relational
understanding of equal signs which affects their algebraic abilities. Fyfe et al. (2020)
categorized the understanding of the equal signs as relational, operational, and other
non-relational types. Shockingly, they found that 1 out of 6 college students, whom
they refer to as adults, held only the operational meaning of the equal sign and

performed significantly lower than others in solving algebraic equations.

Mathews et al. (2012) categorized students’ understanding of equal sign into four
levels: rigid operational (operations on the left), flexible operational (operations on
the right), basic relational (operations on both sides), and comparative relational
(transformations applied, without solving). They found that students from Grades 2
to 6, with higher levels of understanding of the equal sign were more capable of
solving simple algebraic questions with letters as variables and performed better on
questions demanding advanced relational thinking about transformations and the

preservation of equality.

Their categorization of understanding of the equal sign is compatible with the
categories in another study. Stephens et al. (2013) used three categories of
understanding equal sign in an assessment of 3™, 4™ and 5" graders' understanding,
which are “operational”, “relational-computational”, and relational-structural (p.
174).
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Operational understanding of equal signs can be associated with the “rigid
operational” level in Mathews et al.'s (2012) studies, where students understand the
equal sign as calculating the left side. Relational computational understanding can
be associated with the “basic relational” level, where students perform calculations
on both sides and indicate equality between them. Their reasoning is limited to

operating and comparing, and they cannot focus on structural properties.

In the last type of structural understanding, students focus on structures and
properties to evaluate equations and do not need to carry out operations (Stephens et
al., 2013). This is similar to the “comparative relational” level that students can do
transformations without actually solving operations to determine the correctness of
equations such as “67 + 86 = 68 + 85” (p. 320).

Consistent with the literature, Stephens et al. (2013) also found that the operational
understanding of equal sign is common among students, who mostly have difficulty
seeing structures in arithmetical operations. However, they remarked that some
tasks, such as “5 + 3 =+ 3” evoke students to see structures in the operations.
Hence, they concluded that making students investigate tasks that underline

operational properties and structures can be beneficial prior to algebra education.

Using non-traditional formats in arithmetical problems was tested through an
experimental study for their effects on developing students' understanding of
equivalence at the age of 8 (McNeil et al., 2011). The study showed that using non-
traditional formats improved students' understanding of the equal sign, equation
encoding, and equation solving more effectively than traditional formats or no

intervention.

In an earlier intervention study (Falkner et al., 1999), it took one and a half years for
1st and 2nd graders to develop a relational understanding of the equal sign through
contextual problems and discussions on the correctness of non-traditional
expressions of equations. The challenge was to shift students’ interpretation from the
operational meaning of the equal sign, which they might have carried over

kindergarten. The authors observed an operational meaning in kindergarteners, even
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though they had no prior formal education on the equal sign. This highlights the
importance of constructing a correct understanding of the equal sign as early as

possible, as changing this conception becomes more difficult over time.

Lee and Pang (2023) outlined the difficulty of developing a relational understanding.
They emphasized that even after students develop a relational understanding, they
might depend on their operational understanding of unfamiliar questions. They
defined this type of understanding as ‘“‘simultaneous operational and relational”
(SOR) understanding (p. 561). Discussions on non-traditional tasks did not help
much; instead, this issue was more effectively addressed by using a pan balance to

simulate equations.

A remarkable study on building a relational understanding of equal signs is
conducted by Stephan et al. (2021). They started the intervention in kindergarten and
continued into the first grade. Besides non-traditional tasks, they used balance scales
in Kindergarten to compare and illustrate equations with addition on both sides.
Based on the studies of Falkner et al. (1999) and Lee and Pang (2023), starting
intervention from kindergarten and using pan balances are effective strategies for
developing a relational understanding of the equal sign. However, the illustration
they used in the first grade requires knowledge of physics because balance is not
solely associated with the weights or amounts of numbers but also with their distance
from the center. They begin comparing unknown weights on balance in kindergarten,
though the unknowns they compare are discrete and numerical. Hattikudur and
Alibali (2010) also pointed out the importance of comparison tasks in understanding
equality. In their experimental study, they showed that using greater and less than
signs together with the equal sign helped better than using only equal signs in these

tasks for a relational understanding.

Our aim extends this approach by having students compare unknowns in a weight
balance context, where unknowns are continuous variables and non-numerical, as

outlined in Davydov’s trajectory. We will then proceed with operations on
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unknowns, inclusive of arithmetic calculations, based on Davydov’s deductive

perspective.

2.3 Understanding of Quantity

Usually, quantity or quantitative reasoning is misleadingly associated solely with
numbers and numerical calculations. “Quantities are attributes of objects or
phenomena that are measurable; it is our capacity to measure them—whether we
have carried out those measurements or not that makes them quantities” (Smith &
Thompson, 2007, p. 101). Discrete quantities are represented through numbers,
whereas continuous quantities such as area, volume, and weight can be represented
through non-numerical symbols. (Ellis, 2011; Stavy & Babai, 2016).

The development of algebraic reasoning involves two distinct stages: firstly,
progressing from numerical calculations to operations involving fixed unknowns,
marking a shift from operational to structural algebraic thinking. Secondly,
advancing from operations with unknowns to the use of variables represents the
transition from structural to functional algebraic thinking (Sfard & Linchevski,
1994). By adopting Davydov’s perspective we aim to make students operate by
unknowns and focus on structures. This approach excludes numerical (operational)
computations. In this study, the teaching of variables is not objected to but discussed
through varieties of solutions.

In the Early Algebra Learning Progression (EALP) for Grades 3 to 7, researchers
attempted to develop instructional strategies to foster functional thinking in early
grades (Blanton et al., 2015). Building on insights from the GEAARR project, they
observed and reported that students could grasp functional thinking earlier than
anticipated, illustrated by tasks like relating dogs to the number of eyes and tails.
From kindergarten to 5 grade, students demonstrated the ability to identify and

interpret patterns in numerical data across different contexts, including pattern
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detection in number sequences, an area typically challenging for elementary students
(Blanton & Kaput, 2004).

Within the EALP Project, starting in 3 grade, students begin by interpreting
functional relations between two numerical datasets derived from contextual
problems through a learning trajectory. This trajectory starts with the relational
understanding of equality, progresses through additive operational properties, and
culminates in modeling and solving linear equations involving unknowns and
variables. The curriculum further integrates multiplication in equation-solving,
facilitating a developmental progression from operational to structural
understanding, emphasizing the use of unknowns. Ultimately, the focus shifts
towards fostering a functional understanding through variability and variable
notation, underpinned by a generalized arithmetic perspective for interpreting
variables (Blanton et al., 2015).

Blanton et al. (2015) empirically developed a learning trajectory using a design
research perspective to cultivate functional thinking among 1st-grade students by
generalizing relationships. Through contextual problems, students engaged in
exploring additive function types, suchasy =X,y =X+ X, y=X+X+X+X,y=Xx +
l,y=x+2,y=x+3,y=x+x+ 1. To elucidate how Grade 1 students generalize
functional relationships between two quantities, researchers did not rely on existing
frameworks designed for older students, aiming to avoid constraining their
perceptions of data. They observed that students demonstrated the capability to
develop either recursive or functional thinking when generalizing patterns. This
ability to shift between a specific or more generalized view of relationships stems
from their proficiency in using notational interpretations (Blanton et al., 2015, p.
542).

Brizuela et al. (2015) reported on how first-grade students can use variable notation
to interpret relations by focusing on interviews with four students. They found that
even young students can use letter notations to explain relationships between

guantities and act on variable notations. During their progression, students displayed
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some difficulties with notational interpretations. They might use letters to represent
objects or indeterminate quantities, consider the letters' ordinality, or avoid using
letters with numbers in expressions. The authors argued that using letter notation in
Grade 1 might not make the transition smoother, but it is promising in discussing
variability and understanding functions. In this study, we decided to introduce letter
notation by making it easier through pre-given letters on objects, using letters

familiar to the students.

The trajectory of learning variables in the first grade is explained in relation to the
use of letter notation to interpret the unknown (Blanton et al., 2017). Evolving from

representing an object to representing a variable, students might go through 6 stages:

- Level 1: Pre-variable / pre-symbolic

- Level 2: Pre-variable / Letters as labels or as representing objects

- Level 3: Letters representing variables with fixed, deterministic values
- Level 4: Letters representing variables as arbitrarily chosen values

- Level 5: Letters representing variables that are varying unknowns

- Level 6: Letters representing variables as mathematical objects

At the level of 6, students not only represent variables using letter notation, but they
also carry out operations on the constructed algebraic expressions. This ability allows
them to treat variables as algebraic objects that can be manipulated and acted upon
(Blanton et al., 2017).

This trajectory was revised by Ventura et al. (2021) at the kindergarten level, and in
their study, they analyzed data from 8 kindergarteners and 8 Grade 1 students,
reporting their learning levels on variables. Levels 2 and 3 are not observed among
kindergarten students in the study. Kindergarteners showed an understanding of
variables up to Level 5, where they could use letters as indeterminate quantities and
quantities can vary. However, they could not operate on the constructed notations or
create a meaningful expression representing relationships. Therefore, these
kindergarteners often struggled to define new letter notations or connect different

letter notations in a single. Moreover, they often struggled to define new letter
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notations or connect different letter notations in a single expression. Level 6
understanding was also rare among Grade 1 students; only 2 out of 8 students
demonstrated the ability to operate with letter notations, and one of these students

was unable to maintain this understanding in the post-interview.

Following Davydov’s trajectory, operating with variables is beyond our scope;
instead, we focus on interpreting determinate fixed quantities with symbols. These
trajectories emphasize pattern detection among number sets to determine relations
between quantities, conducted through arithmetical calculations. In each subject,
quantities are numerical, arithmetic is known, and expressions are built on them.
Their perspective is generalized arithmetic for algebra, where students use letter

notations to generalize arithmetical relations.

In this study, we aim to teach algebraic operations to which arithmetic will apply,
adopting a deductive perspective following Davydov. We will use continuous types
of variables for quantities rather than discrete numerals for more inclusive learning

about quantity.

Two studies have explored the use of continuous variables with young children. One
study aimed to enhance sophistication in mass measurement (Cheeseman et al.,
2014). This study involved Grade 1 and Grade 2 students and developed a learning
trajectory. Another study focused on length measurement with Kindergarteners,
Grade 1 and Grade 2 students (Sarama et al., 2021). Both studies began with non-
discrete comparisons of given objects based on weight or length. The goal in both
was to teach unitization for measuring continuous variables, specifically length, and
weight. Initially, students constructed non-standardized units and subsequently
learned to use standard units in measurement. In both studies, they were not expected

to perform operations with continuous variables.

Another study inspired by Davydov is the Measure-Up Project (Dougherty, 2017),
which focused on comparing continuous variables such as area, volume, and length.
This project examined how to make unequal objects equal and determine the amount

that can be added or subtracted to achieve equality. The concept of difference was
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central, and there were no operations with different quantities independent of this
concept. The discussion of “how to make equal” immediately led to the need for
unitization. Operations were conducted with these units and their relation to a whole,
represented in equations suchas “E+ E+ E+E=W, W=3E+E,W-4E=0"to
conclude multiplicative relations such as 4E=W (Dougherty & Venenciano, 2007, p.
454). Questions of the form A+B=C=D, as seen in Davydov’s trajectory during
discussions of “equal, not equal, equal again” before unitization, were not explicitly
included in the Measure-Up Project. The project’s focus appeared to be on measuring
continuous quantities and creating unitization. This study will focus on teaching

operations on definite and continuous quantities.

2.4  Early Algebra Education

Early algebra education has been proposed as a solution to the challenges faced in
traditional algebra education. However, early algebra does not teach algebraic
concepts earlier (Carraher et al., 2008). Problems that arise in higher grades will not
be resolved by introducing them earlier. They argued that early algebra should not
overload existing curricula but it should connect algebraic topics to existing ones
through contextual problems and gradual symbolization instead. They criticized the
idea of limiting instruction based on developmental readiness and maturation. To
improve students' functional thinking in earlier grades, specifically in Grade 3, they
used contextual problems where students construct numerical data sets and
investigate relations between them. They found that there is a cognitive leap that
hinders students from thinking functionally, as they tend to focus on specific
numbers instead. Their study suggested that it is essential to investigate the
appropriate conditions for effective early algebra education.

A common approach in teaching algebra at earlier grades is through patterns. As
emphasized in Carraher et al.'s (2008), functional thinking requires the detection of
patterns among number sets. Consequently, patterning has gained attention in early

algebra studies, and activities focusing on constructing patterns are included in
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curricula as early as possible. Even for students as young as 3-4-year-old, activities
are designed to help them iterate patterns using geometric shapes (Lee et al., 2016;
Rittle-Johnson et al., 2015). Lee et al. (2016) suggest several pre-algebra activities
to support future algebraic thinking. These activities include matching and sorting,
identifying, following, and creating patterns, comparison of concrete materials based

on qualitative attributes, and Venn diagrams to classify objects.

Moyer et al. (2004) provided empirical evidence that the U.S. elementary school
curriculum supports functional thinking through patterns and relations through K-5
grade levels. In their study, they emphasized that at the kindergarten level, it is
crucial to include not only repeating but also growing patterns to ensure a
comprehensive understanding of functions in the future. Hence, the researchers
recommended constructing new knowledge on students’ existing understanding and

cautioned against rushing into symbolization in early algebra education.

In addition to patterns and generalizations for fostering functional thinking, early
algebra studies also emphasize teaching arithmetic from an algebraic perspective to
ease the transition from arithmetic to algebra. This perspective views algebra as
“generalized arithmetic,” helping students bridge the gap between these two domains
smoothly (Lee & Wheeler, 1989, p. 41). Understanding the laws of arithmetic
supports early algebra by focusing on the generalizations and properties of
operations (Schifter et al., 2008). Slavit (1998) pointed out the importance of
operational sense in algebraic thinking, defining it as not only the ability to perform
operations but also understanding their underlying structure, use, relationships with

other operations and structures, and potential for generalizations.

Addition and subtraction can be taught through “the set model, the number line
model, and the function machine model” (LeBlanc et al., 1976, p. 3). A functional
understanding of operations is essential in understanding arithmetic from an
algebraic perspective. Particularly, an algebraic understanding of addition requires a
relational understanding between input and output sets rather than the joining of

amounts (Carraher et al., 2000).
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Four activities that are common in both arithmetic and algebra, aiming to connect

these two areas were defined by Russell et at (2011):

- understanding the behavior of the operations,
- generalizing and justifying,

- extending the number system, and

- using notation with meaning. (p. 44)

For example, to understand the behavior of operations they had students compare
different operations to each other. Students focused on the similarities and
differences in behaviors of addition and subtraction (Russell et al., 2011). They
argued that including these four factors in the curriculum not only supports early

algebra but it is also essential for arithmetic education.

Linchevski (1995) argues that pre-algebra activities can take place even in early
arithmetic and defines a pre-algebra course as “algebra with numbers and arithmetic
with letters” looking from a generalized perspective of arithmetic calculations, and

using letter notations in expressions for generalizations (p. 113).

2.5  Studies Utilizing Davydov's Perspective in Early Algebra Education

Among early algebra education studies, Davydov’s curriculum offers a unique
perspective, proposing the introduction of algebra even earlier than arithmetic
(Schmittau, 2005). Developed between the 1950s and 1960s for grades 1-3,
Davydov’s curriculum is based on Vygotskian perspectives (Eriksson & Jansson,
2017). It focuses on structured scientific development rather than building on
students’ prior knowledge, as in the constructivist perspective (Schmittau, 2004).
Davydov (1982) emphasized understanding principles over solving problems in
mathematical thinking, and he opposed teaching numbers and operations by simply
focusing on their procedural aspects. Instead, he stressed the importance of
understanding the “origins of numbers and arithmetical operations” from a

theoretical perspective (p. 225). Davydov's algebraic instruction begins in 1st grade
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with comparing quantities and representing relations with letter notations. It then
continues with addition and subtraction operations until it defines the number system
from a multiplicative perspective of unit counting. Davydov’s instruction begins
with exploring relationships between continuous quantities such as length, area,
volume, and weight, rather than relationships between numerical data sets.
Operations are conducted on these continuous quantities algebraically, and numbers
are subsequently constructed based on the multiplicative relationships between
quantities.

Davydov’s curriculum was tested in a US context in a three-year-long study
(Schmittau, 2004). Schmittau and Morris (2004) explained that while children in the
US had pre-algebraic experiences that were numerical, Russian children studying
Davydov’s curriculum had pre-numerical experiences that were algebraic. They
argued that in Davydov’s perspective, arithmetical/numerical operations were
concrete applications of algebraic operations. However, this approach might be
criticized for its view that numbers in Davydov’s approach appear primarily as
symbolic representations of ratios between definite quantities. The study found that
Davydov's approach is powerful for developing students' algebraic reasoning even

in elementary school, though it may delay the learning of arithmetic.

Another study implementing the Davydov curriculum is the Measure-Up project
(Dougherty & Venenciano, 2007; Okazaki et al., 2006). For Grade 1, the instruction
centers on constructing quantities and numbers through measurement and
unitization. Students use letter notation for quantities in comparisons. They interpret
the relation between quantities with >, <, = and use properties such as transitivity to
deduce new relations in equality and inequality concepts. Then, they discuss how to
equalize quantities by focusing on the difference in addition and subtraction. They
subsequently construct numbers through unitization in comparisons and express
equations with additive and multiplicative relations between two quantities. Around
measuring concepts, it is shown that students in Grade 1 can compare quantities,

reason by transitivity, create equalities with addition and subtraction, and interpret
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multiplicative relations between quantities by repetitive addition following

Davydov’s trajectory.

Other studies have also been inspired by Davydov’s approach. Eriksson and Jansson
(2017) reported three key algebraic activities designed in a pilot project for 7-year-
old students. In the first activity, students learn =, >, < signs by comparing dots on
two dice. This activity focuses on numerical and non-algebraic comparisons but only
underlies the relation between two sides. The second task focuses on unitization in
the comparison of volumes and includes discrete counting in relations. The third task
involves expressing equations with one-side addition using wooden rods. This
activity is similar to the paper strips activity in Davydov’s trajectory, where students
are asked to cut or paste strips to make them equal. However, in Davydov’s activity
quantity is continuously manipulable, and the student determines how much to cut
or paste. In Eriksson and Jansson’s (2017) activity, adding quantities means

combining them rather than increasing the quantity.

Schmittau and Morris (2004) reported that differences in learning theories and
cultural contexts present challenges in adapting to Davydov’s perspective. Sidneva
(2020) examined the implementation of Davydov’s curriculum and assumed that
teacher experience and school readiness would impact its adaptation. However, the
researcher found no differences in student success based on motivation or teacher
backgrounds. Besides, Mellone et al. (2021) also pointed out the importance of
teachers’ perspectives and flexibility in adapting the Davydov-Elkonian curriculum,
noting that a rigid curriculum could hinder successful adaptation.

Gerhard (2009) addressed the difficulty of curriculum change in 1% year as it will get
an adverse reaction from teachers and parents, and proposed using Measure-Up
project activities in grades 1 to 5 to meet the needs of low-achieving students and
improve their arithmetic abilities, even if they had prior arithmetic instruction (the
reverse of Davydov’s approach). The study showed that some low-achieving
students, after participating in Measure-Up activities, began to use algebraic

solutions to arithmetic problems. This led to the conclusion that algebra is not
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inherently more difficult than arithmetic and can help students approach arithmetic
problems with algebraic reasoning. It also supports the idea that algebraic reasoning
underlies arithmetic operations. Another issue in adapting Davydov’s curriculum at
the primary level is the use of letter notation. This is also pointed out by the
researcher that letter representation can be problematic, as it may be unclear whether

a letter represents a quantity or an object.

To sum up, all studies inspired by Davydov’s perspective focus on Grade 1,
involving students aged 6 and 7. No study specifically addresses the adaptation of
the perspective of algebra-before-arithmetic perspective for kindergarten-level
education. As mentioned earlier, even kindergarten students may have arithmetic-
specific reasoning before formal education, which can hinder algebraic thinking
(Falkner et al., 1999). There is a need to adapt Davydov’s curriculum at the
kindergarten level to introduce algebraic thinking about quantities and equalities
from the very beginning, potentially alleviating the issue of delaying arithmetic
education in Grade 1.

By adopting a design research perspective, we can adjust learning trajectories based
on students’ needs and develop ready-made activities to facilitate implementation
for teachers. Following Davydov’s perspective integrating action-based activities
into the kindergarten curriculum is also more feasible, as it offers flexibility and
provides ample time and space for using mathematical toys with informal

symbolization.

Studies utilizing Davydov’s approach are promising for an adaptation at the
kindergarten level. However, maturation may create problems in understanding
certain topics such as transitivity which has very low development among students
below age 8 (Smedslund, 1963), and is highly associated with understanding the
conservation of amount based on Piaget’s Theory (Owens & Steffe, 1972). A design-
based research perspective in the adaptation procedure will facilitate the refinement

and optimization of strategies for addressing specific problems.
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2.6 Studies on Teaching and Learning Mathematics in Preschool and

Kindergarten

Preschool and kindergarten mathematics education has gained importance due to its
potent effects on future mathematical learning (Claessens & Engel, 2013; Jordan et
al., 2012). Duncan et al. (2007) reported meta-analysis results of six longitudinal
studies, finding early mathematical skills as the most predictive effect of school
readiness for later achievement. Nguyen et al. (2016) reported that advanced
counting skills in pre-K skills are most potent in 5th-grade mathematics achievement.
Basic counting, patterning, geometry, measurement, and data skills are not
significantly related to fifth-grade mathematics achievement. Patterning abilities
might be correlated with higher grades where algebraic learning takes place.
Similarly, Watts et al. (2018) investigated the effects of preschool math achievement
on a late elementary school. They concluded that mathematical readiness is effective

in fifth grade but not as much in fourth-grade achievement.

Kindergarten mathematics is dense and has gained importance as first-grade
mathematics (Bassok et al., 2014). Intervening with mathematics instruction at the
preschool level can significantly enhance students' learning progress throughout their
elementary school years (Dumas et al., 2019). Hence, there have been many
interventional studies on teaching mathematics at the preschool or kindergarten level
in recent years. In their meta-analysis, Wang et al. (2016) concluded that
interventional studies can be highly effective if they focus on a limited subject with

an extended amount of time, suitable in a grade-level environment.

Recent interventional studies on kindergarten and preschool have been mainly
interested solely in numbers and operations (Arnold et al., 2002; Curtis et al., 2009;
Jordan et al., 2012; Kidd et al., 2008; Monahan, 2007; Ramani & Siegler, 2008;
Sood, 2009; Tarim, 2009; Young-Loveridge, 2004), whereas some studies also
included algebra (Chard et al., 2008; Clements et al., 2011; Klein et al., 2008; Papic
et al., 2011; Pagani et al., 2006; Starkey et al., 2004), geometry (Aunio, 2005;
Clements et al., 2011; Chard et al., 2008; Clarke et al., 2011; Pagani et al., 2006;
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Sophian, 2004; Starkey et al., 2004), and measurement (Aunio et al., 2005; Char et
al., 2008; Clarke et al., 2011; Clements & Sarama, 2008; Fuchs et al., 2001; Pagani
et al., 2006; Sophian, 2004; Starkey et al., 2004) tasks besides numbers and
operations (Wang et al., 2016). Casey et al. (2008) focused on only spatial abilities
and geometry in their intervention. Studies about teaching algebra at this grade level
mainly focus on patterns (Chard et al., 2008; Clements et al., 2011; Klein et al., 2008;
Papic et al., 2011; Rittle-Johnson et al., 2015; Starkey et al., 2004).

There are also studies related to algebraic tasks other than shape patterning. Pagani
et al. (2016) studied the grouping of objects, fractions, and number lines in addition
to counting. Besides, Pasnac (2006) studied grouping, the extension of series, and
oddity in addition to numeracy at preschool age. Rather than shape patterning or
repetition and extension of geometric patterns, Ventura et al. (2021) studied the
generalization of numerical patterns for variable notation at the kindergarten level.
In this study, kindergarten students could notate unknown quantities with letters and
recognize patterns in number sequences but could not operate on unknowns.
Khosroshahi and Asghari (2013) showed that kindergarteners can reason
algebraically in similar numerical tasks, including unknowns and operations on
them, without using algebraic symbols. They discussed the necessity of formal
notations at this early age to reason algebraically.

The analysis of studies on teaching and learning mathematics in preschool and
kindergarten shows that none comprise a relational understanding of non-numerical
quantities and operations on unknowns with algebraic properties, as in Davydov’s

approach.

2.7  Theoretical Background: APOS Theory

APOS is a constructivist theory developed by the Research in Undergraduate
Mathematics Education Community (RUMEC) (Arnon et al., 2014). They aimed to

improve Piaget’s work on reflective abstraction to explain students' learning in post-
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secondary mathematics (Dubinsky & McDonald, 2001). They explained changes in
students’ mental constructions while solving problems with the assimilation and

accommodation of schemas (Asiala et al., 1996).

They associated actions with Piaget’s active schemas, processes to operations, and
defined objects as the encapsulated processes on which further actions and processes
can be taken. Schema consists of all of these procedures, which is related to Piaget’s
schemata or Tall and Vinner’s concept images (Asiala et al, 1996). Assimilation and
accommodation regulations are not explained through these stages in the figure, but

they are related to the idea of generalization in APOS Theory (Arnon et al., 2014).

“Sometimes new Actions, Processes, or Objects can be assimilated to a
previously constructed Schema by establishing new relations among the
components of the Schema. In other situations, a Schema may be related to
one or more different Schemas that lead to the construction of a new, more
extensive Schema.” (Arnon et al., 2014, p111).

Actions are taken on previous mathematical concepts, then they are interiorized into
processes. Processes are encapsulated into mathematical objects, which can be de-
encapsulated into processes (see Figure 2.1). Schemas are the organization of mental
constructions; actions, processes, and objects (Asiala et al. 1996). Mental
constructions have a “circular feedback system” (Dubinsky, 1991, p. 106). However,
there is no strict linear improvement through stages from action to process to objects

in the construction of schemas (Arnon et al., 2014).

The action stage is the first step and it plays an essential role in the development of
the other stages (Arnon et al., 2014). It is the stage where new mathematical
knowledge is retrieved from external stimulus, and performed by the student by the
guidance of the external instructions. In this stage, students can perform operations
step-by-step, by reminding his/her self or by external guidance (Dubinsky &
McDonald, 2001).
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Figure 2.1. Constructions for Mathematical Knowledge Through APOS Theory
(Asiala et al., 1996, p. 6)

By the repetition of the actions or reflecting on them (Asiala et al., 1996), they are
interiorized or coordinated into processes (Arnon et al., 2014). In the process stage,
students perform the same actions (Asiala et al., 1986). As Arnon et al. (2014) stated,
“In particular, Processes are interiorized Actions” (p.20). However, by becoming
fluent in those actions, they do not need to perform them by reminding themselves
of all the steps internally (Arnon et al., 2014), nor do they depend on external
instructions anymore (Asiala et al., 1986). It is the same action, but students do not
perform the action in the same way and can think about the action. Hence, he/she
can think about the reverse of the procedure and compose it with other internalized
processes (Dubinsky & McDonald, 2001).

When the student encapsulates the process, that means seeing the process as a
totality, that process becomes an object (Dubinsky & McDonald, 2001). By
reflecting on the processes, the student recognizes operations can act on the
processes, and perform those operations. This reflection empowers the abstraction
of the subject (Dubinsky, 1991). This means the student uses the encapsulated
totality as an object on which he/she can act (Asiala et al., 1986). Arnon et al. explain
the role of actions in the encapsulation of objects as; “In particular, Processes are
interiorized Actions, and mental Objects arise because of the application of Actions.

New Actions lead to the development of higher-order structures. For instance, in the
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case of functions, performing operations on them spurs their encapsulation as
objects.” (Arnon et al., 2014, p.20). Dynamic structures of processes become static
structures in objects (Arnon et al., 2014), and those structures can be de-encapsulated
into the processes in manipulations (Asiala et al., 1986). Encapsulation of processes

into objects is not an easy procedure (Asiala et al, 1986; Arnon et al., 2014).

Schema is the composition of processes and objects with their connections to each
other. (Asiala et al., 1986). Concept images are related to mathematical structures
(Tall & Vinner, 1981) while schemas describe mental structures in a concept (Arnon
et al., 2014). Schemas act as static objects in their connections to higher-level
schemas (Asiala et al., 1986). Comparison between schemas of students may help
explain how students develop certain mental construction and students' achievement
on a topic can be tested through these schemas. Schemas help to develop genetic
decompositions to describe how certain mathematical learnings are acquired in detail
(Dubinsky & McDonald, 2001).

Instructions can be constructed based on preliminary hypothetical genetic
decompositions, which are detailed descriptions of learning through schemas of
mental constructions (Arnon et al., 2014; Dubinsky & McDonald, 2001). In this
study, we use Davydov’s trajectory as a hypothetical trajectory and combine the
objectives of this trajectory with hypothesized APOS levels to determine

hypothesized genetic decomposition on learning equations.

Even though APOS Theory was developed to understand how college-level
mathematics is learned, it has also been applied in studies at the elementary level.
Arnon et al. (2001) investigated the learning of equivalence sets in the concept of
fractions with 5™ graders using APOS Theory. They highlighted the cognitive
difference between Piaget’s formal and concrete operational stages and developed
their instruction to start with actions involving concrete objects (Arnon et al., 2014).
They illustrated the difference between the stages of APOS at post-secondary and
elementary levels with the following figures, showing that while the actions are taken
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on concrete objects at the elementary level, the resultant objects are abstract in both

cases.
Schema
interiorization
actions \
i processes
objects
(typically astract)
New encapsulation
abstract _
objects de-encapsulation

Figure 2.2. APOS for Postsecondary Students (Arnon et al., 2014, p. 153)

Schema
interiorization
actions \
,I, processes
concrete
objects
New encapsulation
abstract
objects de-encapsulation

Figure 2.3. APOS for Elementary School Students (Arnon et al., 2014, p. 154)
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Arnon et al. (2014) concluded that APOS Theory enhances the development of a
meaningful path for learning when adapting higher-level mathematics subjects to the
elementary school level. In this study, we will also advance APOS stages to ensure
students’ learning of algebraic topics through investigations with concrete materials
at the kindergarten level. Even though Arnon et al.' study enlightens a starting point
for initiating actions at the elementary level, APOS Theory is usually used in
investigations of algebra learning at secondary and graduate levels. (Sefik et al.,
2021). The implication of APOS Theory at this very early age (kindergarten) will
contribute to the APOS Theory of learning algebra.
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CHAPTER 3

METHODOLOGY

The purpose of this study is to adapt the Davydov-Elkonian Mathematics Grade-1
curriculum to the kindergarten level. For this adaptation, a design-based study is
conducted to develop an instructional sequence and observe its effects on
kindergarten students’ algebraic learning based on APOS Theory.

In this chapter, the design of this study, phases of conducted design-based research,
context, implementation, and analysis procedures are explained in detail.

Trustworthiness is discussed at the end of the chapter.

3.1  Design of the Study: Design-Based Research

Design-based research or design research was initiated by Brown in 1992 with the
term design experiment, to develop complex classroom interventions to test and
refine developed designs by formative assessment procedures (Brown, 1992; Collins
et al.,, 2004). Adopting design perspectives in educational studies, prototypical
instructional designs are systematically tested and refined iteratively, and theoretical
explanations for learning are signified. The outcome as developed design and
explanation of “why the design works” outlines practical and theoretical aspects in
design-based research (Cobb et al., 2003, p. 9). Gravemeijer and Cobb (2006)
explain that “the purpose of design experiments is to develop theories about both the
process of learning and the means designed to support that learning.” (p. 18). This
explanation highlights the contribution of design-based research to theory in two
ways: by defining processes of learning and design principles that support learning,
and by developing a practical instructional sequence. Design research is;

interventionist in a real context, iterative in cyclic procedures of design, evaluation,
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and revision, process-oriented in interpretations, practicality-oriented in designs,
theory-oriented in the construction of designs, and in contribution to theory by results
(Van den Akker, et al., 2006).

These distinctive characteristics of design-based research make it appropriate for
designing this study. Cognitive abilities may play a big role at the kindergarten level
and adaptation procedures must be constructed and assessed carefully. One-shot
design and testing may not result in success as we expected. However, our aim is to
develop effective and practical instruction. To satisfy and observe student learning,
each step taken must be assessed and further steps must be built upon it. Design-
based research will help construct a working trajectory and practical instruction due
to its cycles of assessment and refinement procedures. The effectiveness of the
instruction will be tested in a natural classroom environment not in laboratory
settings, based on Desing-based study principles, which will confirm practicality
(Brown, 1992; Cobb et al, 2003; Gravemeijer & Cobb, 2006). Most importantly,
guided by theory, students' algebraic learning will be monitored and explained in

each step through design-based research procedures.

Advancing the design-based research, the study will produce both theoretical and
practical outcomes (Gravemeijer & Cobb, 2006). These include an adapted trajectory
for kindergarten-level algebra from Davydov’s perspective and effective activities
that support this trajectory. The first outcome contributes to early algebra education
theory at the kindergarten level, while the second provides practical benefits for
curricular improvements. These outcomes are directly answering our main research

questions:

- What is an adapted learning trajectory for supporting kindergarten students'
algebraic understanding of equations?
- What are the effective and practical activities for supporting kindergarten

students' algebraic understanding of equations?
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Gravemeijer and Cobb (2006) define design research by discussing it in three phases:
(1) preparing for the experiment, (2) experimenting in the classroom, and (3)
conducting retrospective analyses (p.19). A local instructional theory is constructed
in the first phase, which will be refined and developed further in the second phase
through “cycles of design and analysis” (Gravemeijer & Cobb, p.24). In the last
phase, after development and revision through experimentation, the whole data is
analyzed to contribute to local instructional theory. One of the most common models
of design-based research is Bannan’s model which determines phases of design-
based research as Informed Exploration, Enactment, Evaluation: Local Impact, and
Evaluation: Broader Impact (Bannan, 2009). Reeves (2006) used a four-staged
design model to construct an educational technology; analysis of practical problems,
development of solutions, iterative cycles of testing and refinement, and reflection
to produce “design principles” and enhance solutions. In all models, a preparation
stage exists where problems and possible solutions are investigated, which will be
tested and refined in implementation cycles and evaluated at the last stage to reflect
on the theory (local or broader).

Design Research

Analysis of Development of Iterative Cycles of Reflection to
Practical Problems Solutions Testing and Produce “Design

by Researchers Informed by Refinement of Principles” and
and Practitioners - Existing Design - Solutions in - Enhance Solution
in Collaboration Principles and Practice Implementation

Technological
Innovations

L T T l

Refinement of Problems, Solutions, Methods, and Design Principles

Figure 3.1. Design-Based Research Model for Educational Technology Research
(Reeves, 2006, p. 60)

We adopted Reeves’s (2006) four-stage model for the design of the study. Analysis
of the problems step is adopted as pre-investigations. For the development of the

solutions phase, we constructed a hypothetical learning trajectory (HLT) in the study.

41



The “iterative cycles” stage of Reeve’s model corresponds to the refinement of the
HLT by implementation and testing. Finally, reflections on the construction of
“design principles” are represented in the further investigation step where the
student’s learning progress (theoretical findings) and criteria to support learning
progress (design principles) are investigated in depth. This final step is also called
retrospective analysis by Gravemeijer and Cobb (2006) for the contributions to local
instructional theory, which also supports our aim for developing an algebraic
learning trajectory at the kindergarten level. A hypothetical learning trajectory is a
construct composed of objectives and defined activities for supporting these
objectives, which are tested and refined in the procedure. HLT is hypothetical in the
sense it is based on the “prediction of the path which learning might proceed”

(Simon, 1995, p. 135).

The following figure illustrates the design of this study in four phases: pre-
investigation, construction of hypothetical learning trajectory (HLT),
implementation, assessment, refining of HLT, and further theoretical analysis.
Arrows in the figure indicate the sequence in the model. Cycles of piloting,
implementation, and revision of the HLT are shown with rounded arrows. These

phases will be explained in detail in further sections.
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Figure 3.2. Stages in the Design Model of the Study
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3.2  Pre-investigations

Pre-investigation includes literature review, exploration of Grade-1 Mathematics
Book with a 5-year-old kindergarten student (Ecem, a pseudonym), investigation of
kindergarten students’ readiness through Piaget’s conservation test, and pre-
interview with kindergarten students in real-life knowledge of volume, weight, and

length contexts. All of these pre-investigations helped to construct the first HLT.

Firstly, the first 72 pages (up to the section on numbers) of the Grade-1 Mathematics
Book (Davydov et al., 1995), based on the Davydov-Elkonion Curriculum, were
reviewed with kindergarten student Ecem through one-to-one interventions to
observe a kindergartener’s perspective and abilities in this context. She had
remarkable success in completing tasks in the book, except she had some difficulty
in grouping and area problems. Her struggles and attitudes provided initial insights.
Literature plays an important role in the explanation of her struggles. At this age,
cognitive abilities may be important for capabilities. According to Piaget’s
conservation Theory, before age 7, most children have no thought of the conservation
of amounts when they are partitioned or dispositioned. Davydov’s book was full of
part-whole problems, volumes of cups problems, and most challenging area
problems. Even though Ecem had conservation of amount, she had some difficulty
in area tasks. Hence, Piaget’s conservation test was decided to be conducted on
kindergarten students we targeted in classroom implementation before we

constructed trajectory and activities.

While the literature on Davydov-inspired studies, non-numerical mathematical
studies at the kindergarten level, and algebra and arithmetics education in earlier
grades helped structure our instructional design, Davydov’s trajectory and context of
implementation and students’ prior knowledge dominated structure. The following
sections will detail how pre-tests, Piaget’s conservation Test, and pre-interviews as
pre-investigations contributed to decisions taken to construct the first HLT. Then
construction of HLT and adoption from Davydov’s trajectory will be given in the

second phase of research design under the heading of construction of the first HLT.
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3.2.1 Piaget’s Conservation Test

Our intention was not to improve or force students’ cognition on conservation with
our activities. We decided to assess their readiness for these activities by typical
Piaget’s conservation test questions; the same number of coins on two different
length rows, sharing a chocolate bar, and pouring liquid from one cup to another.
These tasks are open to discussion; however, they were internally consistent. A

student gives the correct answer to all or gives an incorrect answer to all.

The task of pouring liquid from one cup to another was particularly important to us
and was directly incorporated into our activities focused on the concept of equality.
To effectively teach the principle of balance, it was essential to include not only
weight but also the variable of volume. This ensures a comprehensive understanding
of equality in different contexts. Additionally, area-related questions were closely
connected to the concept of dividing chocolate bars, which helped illustrate practical
applications of area measurement in sharing. On the other hand, counting coins was
not relevant to our activities because it involves discrete measurement rather than

continuous variables, which are central to our focus on balance and equality.

We assigned these three tasks to our participants, comprising 10 students in a
kindergarten classroom in a public school. Only two of ten demonstrated that they
had reached the level of Piaget’s conservation of amount. The remaining eight
clearly showed that they do not understand the amount is preserved when it is

partitioned or displaced.

Based on the results of the pre-investigation on students' readiness to understand the
conservation of amount, we modified all activities. We eliminated the activities on
the concept of area. It was also difficult to interpret equality in certain areas. For the
volume of cups, we decided to use an instrument to see equivalence. For weight, we
used a balance scale as an instrument, and for volume, we used identical cylindrical
transparent cups. It worked like balance scales as a measurement instrument for

observing equality and interpretation of equality can be just placing equal sign in
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between. As a result, the measurement of the volume of cups turned out to be the

measurement of height on identical cylinders.

Through our work with Ecem and two additional pilot students, as well as pre-
interview observations and feedback from kindergarten teachers, we found that
discussing variables such as volume, area, size, height, length, and width would be
challenging and require additional effort. Furthermore, focusing on how to compare
these variables correctly or learning to discriminate and name them could divert the
students' attention away from the core discussions on equality. This study aims to
focus on one concept at a time, following expert opinion, with equality as a major
theme. Pre-interview results showed that students can interpret comparisons of
objects based on multiple attributes. Therefore, we could implement our activities
relying on students’ ability to interpret different variables/attributes. Building on
their previous knowledge, we can focus on multiple types of variables/attributes and

their equality.

3.2.2 Pre-interview

A pre-interview was conducted before implementation to assess students’ familiarity
with algebraic signs, different attributes, equality, and operations in the context of
weight. The questions were contextual and may have had an instructional role in
addition to assessing their prior knowledge. Some students gained new insights
during the implementation of instruction or the post-interview. The last question
about balance scales was particularly enlightening for instructional purposes.
Questioning their thoughts served as an inquiry method, helping them realize or learn
new concepts. These context-based questions were kept brief, lasting 5-10 minutes,

with no guidance toward correct answers.

The results of the pre-interview indicated that they were familiar with algebraic

signs, some were aware of the equality sign (n=4), and very few knew the plus sign
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(n=2). One guessed an unequal sign, related to an equal sign. They all can considered

different attributes of objects for comparison without or with little guidance.

From the results of the pre-interview, we concluded that students were capable of
interpreting different attributes/variables depending on the activities. Balance scales
were relevant for them from playgrounds, but they need more theoretical discussion
on equality and operations, as well as practical observations using the scales. While
addition correctly influences balance movement, subtraction may cause
inconsistencies, as seen in Ecem’s case. Not only paperwork, as in Davydov’s book

(Davydov et al., 1995), but also extensive observation and action are necessary.

The problem with subtraction in the context of equality is not just about predicting
movement but also about preserving equality when subtracting or identifying the
larger side after subtraction, which proved challenging for most students. The
algebraic interpretation of equality and operations was unfamiliar to all students.

In addition to contributing to instruction, the results from the pre-interview, post-
interview, and in-class implementation can be used to assess students’ individual
progress or the overall success of the classroom in the program. See the Findings

Chapter for detailed results of the pre-interview.

3.3 Construction of First HLT

The first HLT was adopted based on Davdov’s trajectory. In constructing the HLT,
we followed these steps: First, Davydov’s trajectory was outlined. Second, the
objectives for this study were aligned with Davydov’s trajectory. Third, the activities

based on these objectives were constructed.

In this dissertation, APOS Theory is used as the algebraic learning framework, to
guide the construction and revision of the trajectory, as well as to observe students’
algebraic understanding during implementation. Therefore, Davydov’s trajectory

and the construction of the first HLT will be explained based on this theory.
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3.3.1 Davydov’s Trajectory on Teaching Equations Through Quantity,
Equality, and Operations

The aim of this study is to teach kindergarten students algebraic equations adopting
Davydov’s trajectory. There are three main components of equations to focus on:
variables, equality, and operations. These three components act on each other and
compose equations. It means their action and dynamicity, and properties of these
actions form the knowledge of equations. Representation of the algebraic knowledge
of equations appears as knowledge of notation. Notation is not just representation
but also a shortcut of communication of mathematical actions, making it a significant

concern of algebra.

In the following table, you can see components/domains of learning on equations
and the major topics under these components. These major topics are derived from
Davydov’s Grade 1 Book, and directly included in the study, with a difference in
algebraic notational interpretations. Our pre-investigations and teacher opinion
suggested not to include full letter notation, but to use iconic pictures for representing
objects/quantities. (A “try-out” activity for letter notation using beans was planned

but could not be implemented.)
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Table 3.1 Teaching Domains in Equations with Addition and Subtraction in the

Form: A+B=C+D

Variables

Equalities

Operations

Continuous not discrete

Multiple attributes:

Height, weight, volume (as
water height).

Area is excluded

Variable rather than unknown
- Construction for the
missing.
- Multiple answers
(infinitely many)

Equality/inequality
A=B A#B A>B
B<A

Relational properties

Symmetry
Transitivity
- Ordering 3 obj
- Constructing scale

Increase/decrease
action with (+, -) signs

Increase/decrease
amount (how to make it
equal)

One side operation
A+B=C, A-B=C,
A=B+C, A=B-C

How to make equal
A>B =>

A=B+C or A-D=B
Recognize C=D

Algebraic Interpretations

Equations

Davydov full letter notation

This study:

No letter notation

Use of pictures to represent
guantities of objects.

Less writing of signs, with
more activities involving
choosing or placing.

Double side single type
operations in the form;
A+B=C+D & A-B=C-B

Operational properties
1.A=B => A+C=B+C, A-
C=B-C

2.A=B & C>D =>
A+C>B+D & A-C<B-C
3.A-B=C => A=B+C

4. Symmetry for addition
integrated into discussions

Modeling equations

The teaching domains in equations with addition and subtraction listed in the above

table are taught in the following trajectory/sequence in Davydov’s Grade 1

Mathematics Book. The following summary highlights Davydov's trajectory's

keystones and main learning themes.
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Table 3.2 Keystones in Davydov’s Trajectory (Davydov et al., 1995)

Concepts Trajectory keystones

Equality Different attributes of objects

=, # signs in comparisons
Part-whole equality

How to make equal: verbal

>, <signs in comparisons
Part-whole grouping

Determine attributes based on relations.

Transitivity Ordering four objects

Transitivity enactive

Use and create an intermediary

Operations Increase/decrease to make equal

Use of +/- signs to make equal

Increase/decrease amount

Equations Operations on both side

Modeling real life with equations

Introduction of units and numbers

Davydov’s trajectory of Grade 1 (Davydov et al., 1995) before the introduction of

units and numbers can be outlined in terms of learning objectives as follows:

1.

2.

How to compare objects properly based on their properties.
Interpret equal and unequal quantities with equal or unequal lines.
Interpret equality with equal and unequal sign.

Discuss equality in part-whole situations.

Discuss how to make daily life objects equal in quantity.

Use <, > signs to interpret the relation between quantities.
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10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

Use <, > signs in-part whole situations.
Imagine and construct quantities based on given relations.

Construct quantities of an unknown third quantity based on relation to other

quantities: transitivity with enactive representations.

Match given relations with given situations.

Determine types of attributes of quantities based on the given relation.
Order 3 or 4 objects using <, > signs.

Use transitivity to deduce the third relation from the given two symbolic

relations.

Construct an intermediary or equivalent scale to compare distant objects: use

of transitivity.

Explain how to achieve equality by determining which side to manipulate,
including the meaning of increase and decrease.

Describe where an increase or decrease occurs in a verbal interpretation
based on a given situation that is initially unequal and then made equal (one-
sided).

Determine the appropriate sign choice for increases and decreases based on
a given situation that is initially unequal and then made equal (for both sides),
starting with real-life examples and progressing to full algebraic

interpretations.

Interpret increases and decreases to achieve equality with addition or
subtraction on one side, and assign new letter notations such as ¢ or d to

expressions like a+b or a-b.

Define the difference, added, or subtracted part to achieve equality in the

context of water height.
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20. Pay attention to the amount in the concept of difference: The importance of
determining the exact amount needed to increase or decrease to achieve

equality.

21. Discuss how to make inequality by changing equality situations through

increasing and decreasing.

22. Equal, not equal, equal again: properties of operations, equal amount added,

subtracted to preserve equality.

23. Modelling and matching real-life situations to algebraic expressions of

equations or inequalities of one or two-sided addition and subtraction.

The objectives in Davydov’s trajectory are included and detailed in the construction
of the first HLT. Adaptations are explained in the next section, which covers the

construction of instructional design objectives.

3.3.2 Construction of Instructional Design Objectives

To facilitate algebraic learning, we utilized APOS Theory to construct the HLT.
APOS Theory, which encompasses actions, processes, objects, and schemas, was
also employed to observe and assess students' understanding. To develop objectives
based on the APOS Theory, we first assessed Davydov’s trajectory through the
APOS levels. Then, the objectives in the first HLT were designed to align with these
levels in Davydov’s trajectory. We adhered to the APOS definition provided by
Dubinsky and McDonald (2001) throughout all stages of this study: analyzing
Davydov’s trajectory in terms of algebraic understanding, designing our trajectory

and activities, and evaluating learning stages at the conclusion.

Action: the transformation of objects perceived by the individual as
essentially external and as requiring either explicitly or from memory, step-
by-step instructions on how to perform the operation.

Process: When an action is repeated, and the individual reflects upon it, he or
she can make an internal mental construction called a process in which the
individual can think of performing the same kind of action but no longer with
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the need for external stimuli. An individual can think of performing a process
without actually doing it and, therefore, can think about reversing it and
composing with other processes.

Object: constructed from a process when the individual becomes aware of
the process as a totality and realizes that transformations can act on it.
(Objects can be used in other processes)

Schema: individuals’ collection of actions, processes, objects, and other
schemas which are linked by same general principles to form a framework in
the individual’s mind that may be brought to bear upon a problem situation
involving the concept.

(Dubinsky & Mc Donald, 2001, p.275)

Firstly, we analyzed Davydov’s trajectory in terms of the APOS steps. The trajectory
showed alignment with the APOS learning steps that will ensure effective learning
of equations with addition and subtraction. In the following, the main trajectory is
outlined, with its corresponding APOS steps for the major learning components

aligned horizontally.

As seen in the figure, one step may include the object level of learning while it is put
in action of some other learning. It is important to recognize that each object level of
learning occurs at the process level of the next learning, as the definition indicates.
Obiject level is gained either before or at the time when it is used in some other
processes. Although it may have been acquired earlier, the primary observation of
the object level occurs when students can apply it in new processes. However, the
need to use new procedures might force students to objectify it. Details for each
learning stage will be illuminated by the research results.
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Since this figure shows the steps in the sequence of the trajectory, it may be difficult
to see the object-process dominance of specific learning components. Therefore, the
APOS steps for the major components/domains of algebraic learning variables,
equality, operations, and equations are resented separately below for clarity.

Variables
Object: f—} Construct variables using transitivity
ﬁ Process: f—b Determine variables based on relations
Action: (How to) compare variables
Equality
O: Use of =, #, >, <signs and concepts to solve
transitivity problems
A, P(=): = Use of >, <to interpret unequal comparisons
A: Use of =, # to interpret comparisons
Operations
O: _ ﬁ operational properties by manipulation
on both sides
Pto O: f-b interpretation of increase decrease amount
AtoP: r-b choose of sign +, - to represent increase or decrease
to make equal
A: increase or decrease to make equal verbal
Equations
O: — modeling real life by equations
P: ~— operational properties by manipulation on both sides
A: how to make equal
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As seen, Davydov’s trajectory is aligned with APOS steps, which will ensure
learning. Adopting Davydov’s trajectory, we prepared activities taking similar
actions. From a design research perspective, we tried to satisfy learning based on
APOS levels in each learning outcome (to satisfy, it is open to evolving in the
procedure). Details can be seen from the table of our first HLT, explaining how/why
each activity will lead to the referred APOS levels for the intended objectives. This
research results will show if assumed/hypothesized mental actions (genetic
decomposition) taken in those steps will result in those APOS levels or will result in
different paths of mental actions. While we try to compose a working, purposeful
instructional design for a younger age throughout this hypothetical learning
trajectory, students’ level of understanding based on APOS Theory will be assessed
through students’ actions. In other words, instructions will be ensured to satisfy the
hypothetical learning trajectory through intended mental actions (genetic
decomposition), and the resultant learning trajectory will be the mental actions

observed in the students' learning procedures.

Following this consistent trajectory, we based the trajectory and objectives for each
classroom lecture on APOS Theory. Each learning experience begins with actions
on known objects using provided algorithms. Through repeated actions, we aim to
develop an understanding at the process level. Then, the developed processes are

used as objects in new actions and processes after encapsulation.

There are 32 lectures designed for the first HLT, to be conducted in 16 days in 8
weeks. Each week, there will be two lecture days. Each day, two complementing
lectures were planned to be implemented consecutively, where each would take
about 30 minutes. The hypothesized APOS levels (genetic decomposition) and
objectives as student behaviors for each lecture in the first HLT are listed in Table
3.3. Hypothesized learning trajectory will evolve into the resultant learning
trajectory after implementation procedures, revealing a resultant genetic

decomposition based on students learning through the activities.
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Table 3.3 Objectives and Respective APOS Levels in the First HLT

L APOS

First HLT objectives

1 Action=, #

1. The student interprets equal and not equal signs.

2. The student compares objects and uses equal and not equal
signs to interpret relations based on size.

3. The student uses balance scales to compare the weight of
objects and interprets the relation using equal and not equal signs.

4. The student differentiates height, length, volume, and weight

as different variables.

2 Process =, #

1. The student uses equal and not equal signs to interpret a

relation in a part-whole context.

3 Process =, #

1. The student uses equal and not equal signs to compare volumes
of cups.

4 Process =, #,

1. The student reports the comparison of volumes of objects
symbolically on the paper with =, #signs

2. The student reads the symbolic interpretation of equality and
inequality and checks it with concrete objects.

5 Action >, <

Object =, #

1. The student interprets inequalities with greater or smaller
relation.

2. The student uses >, < signs to interpret relations

3. The student interprets (verbally) how to make equality from
greater or less than relations

6 Algebraic notation

1. The student uses the first letter of his/her name as notation.
(planting bean)

7 Process >, <

Object =, #

1. The student uses >, <, = signs to interpret (without reminding
the algorithm) the comparison of weights.

2. The student manipulates both sides /increases or decreases play
dough to make equal-weighted pieces.

8 Process >, <
Object >, <

Transitivity

1. The student uses >, <, = signs to interpret the comparison of
volumes (as a new continuous variable) of cups.

2. The student uses two relational interpretations of three cups to
guess the third relation (transitivity property).

9 Object =, #,>, <

1. The student finds suitable objects for a predetermined relation,
finds an equal and unequal object, and interprets the relation
between them by using =, #, >, < signs.
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Table 3.3 (continued)

10 Object =, #, >, <

1. Given the relation between two objects, the student determines
the attribute for the comparison

11 Object =, #,>, <

1. The student completes the unknown/variable in the given
relational interpretation (equality, inequality, >, <) by drawing

2. The student discusses the variability of the drawing

12 Mid-assessment/
Repetition

1. The student uses signs on worksheets

2. Given two different-sized paper strips, the student cuts a long
paper strip to make it equal to a shorter one

3. Given two different-sized paper strips, the student glues an
extra paper strip to make it equal to the longer one

4. Given two different-sized paper strips, the student
interprets/shows how much paper to cut or add to make paper
strips of equal length

13 Action sequence

1. The student orders 3-4 objects and puts relevant signs between
them based on their relation: with toys

14 Process sequence

1. The student orders 3-4 pictures and puts relevant signs between
them based on their relation: with cards

15 Action, transitivity

1. Given two relations among two of three objects, the student
determines the relation of the third comparison.

16 Process transitivity

construction

1. Given two objects and their relation to a third unknown object,
the student draws/constructs an unknown object.

17 Object transitivity

Action intermediary

1. The student uses his height or a rope as a scale to compare two
stable and distant objects by concluding from their relation to
both.

18 Process intermediary

Action notation

1. The student constructs scales to compare distant objects.

2. The student uses the same notation to indicate same-size
objects. Squares activity

19 Reverse process
intermediary

1. Given two objects and their relation to a third one
(intermediary), the student constructs, and draws the third object

20 Object/process
intermediary

1. The student uses equal-sized scales to represent measurement.

Report/graph plant height

21 Object =, #

Action +, -

1. The student verbally interprets on which side to increase or
decrease to make/satisfy equality (play dough)
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Table 3.3 (continued)

22 Object =, #

Action +, -

1. The student discusses increase/decrease in volume context to
make equality

23 Object =, £

process +, -

1. The student chooses the correct sign +/- to interpret increase or
decrease on sides to satisfy equality. (weight & volume context)

24 Object =, £

Process +, -

Action equation with

one side +/-

1. Given symbolic interpretations (worksheets) the student
chooses the correct sign +/- to interpret the increase or decrease
on sides to satisfy equality.

25 Object =, #

Process +, -

1. The student uses + and — signs to construct equations with one-
side addition/subtraction in part-whole context.

26 Process +, -

Action increase
amount

1. The student determines addition amount to make equality

2. The student interprets a quantity as the addition of one to
another

Action equation with Animal height game: one-side addition

one side addition

27 Process +, -

action increase
amount

1. The student uses +/- signs to interpret operations to make equal-
length

2. The student enactively investigates increase and decrease
amount (difference amount) to create equal length (paper strips)

28 Process +, -

Process increase
amount

1. The student interprets the increase amount iconically

2. The student compares increase amount of different situations
increase amount: plant height

29 Object +, -
Object >, <

Object increase
amount

1. The student discusses how to make equality, unequal, and equal
again by addition and subtraction

2. The student interprets effects of addition or subtraction of the
same amount on both sides on equality (in volume and weight)

30 Action equations

With two-side
addition

1. The student models equalities with two-side addition

2. The student uses algebraic notation to interpret equalities with
addition on two sides (in height context)

31 Reverse-process
equations

1. The student models symbolic equations with one-sided addition
or subtraction in the enactive mode of representation: paper strips
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Table 3.3 (continued)

32 Modeling equations 1. The student reads equalities and inequalities based on real-life
models

2. The student uses algebraic equalities and inequalities for real-
life designs.

The following table shows the alignment of the first trajectory (first HLT) and
Davydov’s trajectory based on APOS levels for learning subjects; equality, quantity,
transitivity, operations, and equations. Planned activities to support learning of the
subjects are included in the table.

Table 3.4 Summary/Keystones of Davydov’s Trajectory and Its Adaptation as the
First HLT with APOS Levels and Designed Activities

APQOS Davydov First HLT Activities
Equality Equality- Equality-inequality = Compare objects
-, _action-process inequality
E Inequality Greater-lessthan ~ Greater-less than Compare objects
< action-process
O  Pre-action How to make How to make Balloons,
®  increase/decrease equal: iconic equal: play dough
E enactive & verbal
S Actiontoprocess Determine Determine variable  Paperwork,
& Quantity variable card play
Action ordering Ordering Ordering Order 3-4
objects
Action transitivity — Construct based Transitivity Guess the third
on relations Construct based on  relation
Guess the third transitivity
relation
Object Create Create intermediary Compare objects
guantity intermediary in the classroom
Action
intermediary
Pre-action
equal scale
Object - Squares: fixed Color notation
equal scale guantity notation squares
. Process to object
S Quantity
£ Object Transitivity Construct based on  Draw
E transitivity symbolic transitivity intermediary
|_
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Table 3.4 (continued)

Pre-action +/-

Verbal Inc/dec to
make equal

Enactive
increase/decrease
to make equal

Playdough and
water cups

Action +/- +/- signs to make  +/- signs to make Enactive and on
equal: iconic equal: continuous paper: to make
steady: first this, manipulation equal
then this

Action Increase/decrease  Increase/decrease Part-whole

increase/decrease  amount to make amount to make

amount an equal, equal
continuous
quantity

Action Equation One-side One side addition Animal height

One-side add/subtract to to make equal: Find game

operation make equal: iconic unknown: height:
continuous fixed quantities

Action difference  Exact amount One side Paper strips

,,  amount adds/subtracts to
= make equal
2 Object Compare increase Compare plants
‘g,_ increase amount amount
o
Two-side op. Two-side addition  Two-side addition ~ Discuss how to

Equations action

and subtraction:
equal not equal,

and subtraction:
equal not equal,

make equality
again

equal again equal again
Equations process Two side addition:  Animal height
find unknowns game

Modeling two- Matching real-life  Create a model of Paper strips
side equations examples with equations
equations
2 Modeling Use expressions of  Rainbow
.2 equation with one equality and
(U - -y . -
S side addition equations to model
& And inequality

3.3.3 Designing Activities

Activities are designed based on Bruner’s Theory of representation; enactive-iconic-
symbolic stages (Bruner, 1966). In the enactive stage, the learner interacts with the

physical world and discovers new learning with concrete materials. In the iconic

61



stage, the learner gains insight into the new learning and creates visual images in
mind or uses visual imitations of the concrete world to create meaning. At last,
symbolic stage, he/she can use symbolic figures and notations and communicate
through them (Conway, 2007). In the development of learning from the enactive to
the symbolic stage, Bruner (1965) pointed out the importance of concrete

investigation with the words;

“Note that constructions can be "unconstructed and reconstructed even when
the child does not yet have a ready symbol system for doing so abstractly. In
short, construction, unconstruction, and reconstruction provide reversibility
in overt operations until the child, in Piaget’s sense, internalizes such

operations in the symbolized world.” (p.52).

Boundaries to learning a concept are not limited by maturation but by mastering
through these three stages (Conway, 2007).

In this study, extensive time is devoted to investigations with concrete materials and
providing a connective path to symbolic algebraic representations as we advance
these stages. For each learning objective, activities are designed through all of these
three stages, starting with concrete manipulatives, material, toys, etc., developing
algebraic discussions by iconic representations, and going forward to symbolism
with algebraic notations as much as possible at this age. Adhering to this order of
representation is consistent with the APOS levels and ensures that alignment. The
enactive stage is aligned with the Action level. Repetition of actions with toys
(enactive) or iconic representations satisfies understanding of those actions as
processes. Algebraic symbols are first introduced on concrete material, and students
use these symbols in iconic modes in the processes. Advancing symbolic
representations, students can act on it or use it in new algebraic actions, which

supports object-level understanding.

See Appendix A for details of how each activity is chosen based on Bruner’s mode
of representation and APOS Theory. In this appendix table, the activities designated

for the first HLT, and explanations of how each action contributes to the

62



development at each APOS level can be observed. However, research results will
either confirm or refute the hypothesized relation between these actions and APOS
levels, leading to a better understanding of how these levels develop through the

actions.

The following figure presents samples from enactive, iconic, and symbolic
representations used in this study in weight context. Students enactively represented
on concrete manipulatives (measurement tools). In iconic mode representation,
measurement is not explicit. Objects are icons of the implicit attributes (weight,
volume) in the expression. Pictures of objects are used as symbols of the attribute in

algebraic expressions.

Enactive Iconic Symbolic

Figure 3.4. Samples From This Study Based on Bruner’s Modes of Representation

3.4 Implementation

Activities in the first HLT were initially planned to be implemented over 8 weeks,
comprising 32 lectures during 2nd semester. However, due to pandemic regulations,
5 in-class lectures are followed by 12 online lectures. The final 3 lectures were
conducted in the classroom, making a total of 20 lectures completed.

63



After designing the objectives and sequence for the first HLT, activities were pre-
designed for each objective. Each activity was initially tested separately with 2 pilot
students. The results from these pilot tests, which served as the laboratory phase for
activity design, helped to revise and refine the activities.

Subsequently, each activity was implemented in a classroom environment. In-class
results were evaluated through mini-interviews with students during lectures and
after-class notes taken by the researcher and the teacher. The achievement of the
objectives, observed difficulties, and student motivations informed revisions to the
next activity and the overall HLT. The revised activity was then pre-tested with pilot
students before being implemented in the class. The results of this second activity
informed the design of subsequent activities, with pilot testing continuing to guide
further development. (see Figure 3.5) These cycles continued throughout the entire
semester. Sometimes, pilot testing could last 2-3 weeks before implementation to
ensure a smooth flow or to allow additional time for corrections and re-piloting of

activities and alternatives.

* Pilot
¢ Implement
¢ Revise HLT

e Pilot
¢ Implement
¢ Revise HLT

S

Figure 3.5. Development Cycles of HLT and Implementation Flow

¢ Pilot
¢ Implement
¢ Revise HLT

Briefly, designing the next class was based on:

- In-class assessments through individual mini-interviews
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- After-class notes

- Pilots

- Hypothetical learning trajectory
The implementation in the class also serves as a revision of the activity itself.
Laboratory and real environment situations may differ. The focus of Design-Based
Research is not on implementing all activities and then testing to see if they work
but on the evolution of the activity for optimal efficiency. If we were to first design
HLT, implement it entirely with pilots, and then use it in a classroom to see results,
the error estimate would be larger. Pilot and in-class implementations differ
significantly. Design should be developed through real classroom experience and

assessment.

If no pilots were included in the study, we would have very little information about
what we would face during implementation. For example, if we encounter
difficulties during classroom implementation and the activity is not working, we

design alternative/additional activities to overcome these difficulties and fill learning
gaps.

We have the opportunity to immediately test these with pilot students and then bring
them to class because we continue working with pilots. Pilot and in-class lectures
worked in cycles, sufficiently feeding into and aligning with each other, resulting in

very similar HLTSs.

Assessment of the lecturing in these cycles led to major and minor changes in the
HLT. For example, as a major change, letter notation was simplified to photos, and
the focus on variables shifted to the practical use of variables. While classroom
objectives helped to ensure satisfaction with each lecture and development of
activities, further detailed analysis based on APOS theory was needed for theoretical
contributions. This analysis would also provide empirical findings to define

principles for designing effective activities.

65



34.1 Participants

There are two students in individual piloting and ten students (five girls and five
boys) involved in classroom implementation. All students are in kindergarten, at a
public elementary school, with a mean age of 61 months, ranging from 50 to 66
months old. They had no formal education of addition and subtraction prior to this
study. Few (3) of them can add and subtract verbally with numbers less than 10. One
of them showed an interest in addition and subtraction in written form. They did not
even know the terms for addition and subtraction or the symbols representing them.
Based on the results of Piaget’s conservation test, they lacked an understanding of

the conservation of amount, with the exception of one student.

3.4.2 Setting

The study was conducted in a public school during the second semester of the 2020-
2021 academic year. The school is on the property of a factory; the parents are
primarily from the working class. The school has two kindergarten classes.
Implementation took place in only one of them. During the implementation, COVID-
19 pandemic regulations were in effect. As a result, the students attended school two
days a week for 3 hours each day. Implementation took two lecture hours for two
days each week in the classroom. After three weeks of classroom implementation
(six lectures), 12 lectures are implemented online. The remaining two lectures are

implemented in the classroom, completing 20 lecture hours of implementation.

Ten students were taught by one teacher, with an intern/trainee assisting for half of
the classroom implementation time. The researcher was present in the class, guiding
students. In the online lectures, mothers assisted students with using manipulatives

and materials.

Through warm-up activities in the previous semester, students became familiar with
the researcher, videos, and similar classroom activities. There were three warm-up

activities. In the first one, students used different-sized circular stamps to cover equal
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areas. In the second one, they discovered different surfaces of square prisms,
cylinders, cubes, and triangular prisms by painting and stamping wooden toys. In the
third activity, students used two dice with animal pictures and numbers on the other

to count and perform animal steps in a competition context.

Not all students attended every class. Out of 10 students, one student did not attend
pre-interview and post-interview. However, this student made remarkable

contributions during classroom implementations.

3.4.3 Data Collection

Video and audio recordings are used to capture students’ behaviors and verbal
interpretations during implementation and interviews. Students’ written works,
kindergarten teacher’s reflection notes, and field notes are other kinds of collected
data.

3431 Observations

To observe the behaviors of 10 students during in-class implementations, four
cameras, and two audio recorders were used. Students worked at 2 round tables, with
their seating arrangements changing for each activity. For each table, 2 video
cameras recorded the students from different angles. For online lectures, audio of
each student and video of online meetings are recorded. Transcriptions of the
students' verbal interpretations and detailed explanations of their behaviors were
used to analyze their learning. Both the researcher and the classroom teacher were
present to guide the students. The researcher conducted inquiries and mini-
interviews to scaffold students' learning and encouraged think-aloud sessions to
reveal their understanding and thinking processes.
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3.43.2 Interviews

The data related to students’ preconceptions on the topic, their real-life experiences,
and their knowledge of signs were collected through pre-interviews. The post-
interviews were conducted to lay out their final conceptions and schema on the
algebraic concepts. Both interviews included the same items, with additional items
included in the post-interviews as described in the following Table of Specifications.
We adjusted the extension of inquiry during interviews based on each student’s
knowledge of the topic to expose the boundaries of their understanding. These semi-
structured interviews allowed for questions to be directed informally or

algebraically. See Appendix B for the semi-structured interview items.

Table 3.5 Table of Specifications for Interviews

APOS Level Objectives Item #

Process signs =,>, < The student interprets name of signs =, >, < 1signs &
objects

Process equality The student uses =, >, < signs to interpret 1 signs &

equality and inequality in several contexts:  objects
height, width, weight, volume.

Process quantity The student interprets equality for several 1 signs &
attributes for comparison of quantities. objects
Transitivity The student predicts the third relation 2 Animals

based on two weight comparisons, deduces

the third relation by transitivity.

Action The student verbalizes increase/decrease to 3 Wood/plant

Increase/decrease make it equal.

Process +/- signs The student interprets increase/decrease 3 Wood/plant
with signs +/-

Process The student interprets increase/decrease 3 Wood/plant

Increase/decrease amount  amount to make equal.
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Table 3.5 (continued)

Process equations with The student models equations with one- 4 Apples
one-side side addition/subtraction.

addition/subtraction The student uses difference amount to

Object difference amount  model addition from given subtraction.

Equations with two-side  The student models equations with two- 5 Children
addition process side addition weight context balance
Process increase/decrease  The student finds unknown in one-side and 6 Animal
amount two-side addition height game

Process equations with

two-side addition

The student models equations with two-

side addition height context

Properties of operations
process
Obiject addition/

subtraction amount

The student guesses comparison of results
for adding or subtracting same or different
amounts based on initial situations in

volume context.

7 Properties

Reverse process
equality/inequality
Multi-solution action

The student constructs quantities based on
a given relation to a quantity.

The student interprets multi or single
solution to quantity based on given

relations when asked.

8 Drawing

circles

Note: Items #2, 6, 7, and 8 belong to only post-interview. Others are included in both pre-

and post-interviews

The interview items are semi-structured in that the researcher proceeded based on
the students' responses. Especially in the pre-interviews, students’ knowledge of
signs or language capacity to interpret attributes affected the follow-up of the
interview items. The researcher used algebraic and formal expressions or informal

daily life language based on the student’s ability to answer the first items.

The researcher interviewed students individually in their classrooms, separated from
their peers. Each interview took about 15 minutes and was videotaped. In the

interview questions, no enactive manipulatives were used. Students are provided
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with pictorial illustrations of physical worlds, =, <, > signs, and pencils for written

items (see Appendix B).

3.4.3.3 Student’s Written Work

As students investigated algebraic topics enactively, there was no written work in
some of the lectures. When there was written work, they were collected and further
analyzed through content analysis, searching for patterns or differences in their
works to gain insight into their understanding. Written works and photos taken by
mothers of students’ enactive works were essential for online lectures. Written works
did not only consist of drawing or writing on paper items; it also included cut or paste

manipulations.

3.4.3.4  Debriefing with Design Team Members

The researcher had meetings with the design team members to design the activities.
Member opinions were taken verbally and audio recorded and through feedback on
instructional documents. These meetings took place at the beginning of the
instruction and in the middle of the implementation procedure to decide revisions in

the trajectory.

Debriefing between the researcher and the kindergarten teacher occurred before,
during, and after implementing the activities. Debriefings were noted by the
researcher. These debriefings helped plan the lecture, handle problems during
implementation, and reflect on the strengths and difficulties in the implemented
lecture. Before the lecture, the kindergarten teacher evaluated the activity in terms
of difficulty based on students’ levels and suggested implementation planning.
During the implementation, debriefing helped to decide how to proceed lecture,
support students with additional activities, respond to particular difficulties, or report
remarkable learning of students to each other. Awareness of other students’ learning

procedures connected and empowered discussions and inquiries throughout the
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class. After the implementation of each lecture, kindergarten teachers' reflections are

gathered through the following questions:

- Was the lecture successful in creating intended learning, or was it difficult?
- Was the lecture engaging and fun for students?

- Is there anything to change or improve in the lecture?

3.4.35 Field Notes

The researcher took field notes in written and audio-recorded form during and right
after the implementation. The notes included conclusions on students’ learning or
struggles and observations on teaching strategies by kindergarten teachers or
researchers that emerged out of the plan. These field notes worked as the first
analysis and implications of data; some were used in revising further lectures, and
some helped understand why specific learning or difficulties occurred during

implementation.

3.5  Analysis

Due to Design-Based Research perspectives, analysis is an ongoing process. The
following table (Table 3.6) lists analysis tools and their contributions to each phase
of design-based research. In this table, analysis procedures are associated with their
purpose and data collection tools in each research phase; construction of the first
HLT, implementation and revision of HLT, and retrospective analysis. In the first
phase, the first analysis is conducted on students’ understanding of conservation by
Piaget’s conservation test, with three questions on conservation of volume, area, and
number quantity. Then, a qualitative content analysis was conducted on the pre-
interview data to understand students’ informal knowledge of the topic and their
achievement of the pre-determined objectives described in the table of specifications

for interview items (see Table 3.5).
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Table 3.6 Design-Based Stages, Data Collection Tools, and Data Analysis

Procedures
Construction of Implementation and Retrospective
first HLT Revision of HLT Analysis
Aim of - Determine - Effectiveness of - Theoretical
Analysis  readiness activities analysis on
- Starting point - Revision for HLT APOS level
progress
- Design
principles
Data -Piaget’s - Field notes - Video analysis
Collection conservation test - Mini-interviews - Post-interviews
-Pre-interviews - Peer debriefing
Data - Content analysis - Ongoing assessment - Constant
Analysis comparative
-Thematic
analysis

During the implementation process, analysis cycles occurred at every stage to assess
the effectiveness of activities. The analysis was based on objectives described for
each activity regarding the intended APOS Levels (see Appendix A). Effectiveness
was measured by the success of the majority of students in the classroom. Any
difficulty in understanding was addressed through further instructions which
included adding extra activities for support or revising the subject's difficulty. These
revisions could occur during the lecture, with changes in implementation made

immediately.

Classroom field notes, after-class assessments by researchers on achievement and
difficulties through immediate reflection or video checking, peer debriefing, and
reflections by kindergarten teachers were all parts of the analysis process. Individual

student difficulties were addressed immediately. If a pattern of difficulty was
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observed among students, new activities or revisions were investigated, piloted, and
added to the trajectory to meet the objectives or revised objectives as needed. This
cyclic process of implementation, analysis, and HLT revision forms the core of the
study, ensuring effective activities throughout the trajectory.

Further analysis of student progression on APOS Levels through activities and the
effectiveness of these activities was conducted after all implementation was
concluded. Videos were transcribed, capturing students’ verbal responses and
behaviors with thick descriptions (Gravemeijer & Cobb, 2006), and analyzed using
qualitative data analysis methods. Four themes guided open coding for research
questions and APOS levels for each activity: student response, lecture flow, APOS
levels, and design principles. APOS Level code is included to answer the theoretical
research question of how students' learning progressed through implementation.
Open coding on students’ responses provides information for the APOS theme. The
design principles theme addresses the research question of why these learning
progressions occurred. Lecture flow and inquiry are expected codes to contribute to
the explanation of design principles. In other words, these four preliminary themes,
which guided open coding, come from the design of the study and research questions.
Under each theme, codes are given to specify the focus on open coding. By constant
comparative methods, resultant codes and themes will emerge from the data in

retrospective analysis.

Table 3.7 Preliminary Codes and Themes Guiding Open Coding

Themes Codes Themes Codes
Aha moments action stage
Student Response  Student difficulties process stage
algebraic intuition Apos Levels object stage
motivation anchoring points
Lecture Flow Introduction of each step Materials
Order of instruction Design Principles  Inquiry
Enactive-iconic-symbolic Teacher needs
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These categories evolved as the analysis progressed. Students’ responses and their
understanding at various APOS levels highlighted the trajectory, while the lecture
flow identified effective activities that supported this trajectory. Design principles
were articulated in relation to material characteristics and inquiry methods,
illustrating why these activities were effective in supporting specific APOS levels
through student interaction with manipulatives and the teacher. Resultant themes and

categories are given in the table below:

Table 3.8 Resultant Themes and Categories Used in the Retrospective Analysis

Themes Categories Codes
Algebraic Equality Equality/inequality
concepts/topics Relational properties
Symmetry
Transitivity
Ordering three obj
Intermediary
Operations Increase/decrease action (+,-)
Increase/decrease amount
One side operation
A+B=C, A-B=C, A=B+C, A=B-C
how to make equal
A>B => A=B+C or A-D=B
Recognize C=D

Equations Double side single type (+/-) operation
A+B=C+D, A-B=C-B
Operational properties
1.A=B => A+C=B+C, A-C=B-C
2.A=B & C>D =>
A+C>B+D & A-C<B-C
3.A-B=C => A=B+C
4. Symmetry for addition integrated into
discussions
Modeling equations
Variables/Quantity ~ Continuous vs discrete
Multiple attributes
Variable vs unknown
Construction for the missing.
Iterating answers (infinity)

Addition of two quantities to construct
another
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Table 3.8 (continued)

Notation Algebraic

Interpretation

Verbal interpretation

Enactive interpretation

Iconic interpretation

Symbolic interpretation

Student Response

Student Difficulties

APOS evident responses

APOS Levels Action

Understand algorithm sign

Choose appropriate sign

Placement of sign correctly (notation)

Carry out algorithm with self-talk

Follow algorithm instructions by
reminding

Process

Carry out algorithm without reminding /
fluent algorithm

Carry out the algorithm in a new context

Self-consider reverse process

Enforced reverse thinking

Composition of processes

Object

Use in the new actions and process

Interaction Teacher interaction

Enhancing
Language
Inquiry

Hindering
Teacher’s difficulties

Interaction
with manipulatives

Enhancing:
Choice of material

Hindering:

Students’ lack of physical world
experience/knowledge
Manipulative limitations

Lecture Flow

Daily-life example

Previous class reminding

Pre-algorithm

Verbal algorithm

Action algorithm

Repetition of algorithm

Dictation of algorithm

Reminding algorithm in a new context

Reverse process inquiry

Use of prior concepts in new actions

Underlying
Algebraic Intuition

Symmetry
Transitivity
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The data analysis focused exclusively on individual student progress. Students’
advancement through APOS levels served as empirical evidence of the activities'
effectiveness on these levels. Specific student actions acted as indicators of APOS
stages, enriching theoretical insights into their progression. The design principles
were determined by the characteristics of the activities, shaped by students'
interactions with manipulatives and inquiry. These elements, along with the lecture
flow, were instrumental in defining effective activities as tangible outcomes of the

study.

351 Definition of APOS Levels for Analysis

Students' APOS levels were deduced using the following table which defines
indicative behaviors used for coding each APOS level. These definitions were
applied to both interviews and classroom implementation data. Additionally, APOS
levels and expected behaviors as objectives were noted for each activity (see
Appendix A). As previously mentioned, Dubinsky & McDonald’s (2001) definition
of APOS level was considered for a holistic perspective on assessments and for
making additional inferences. In this definition, the actions, processes, and objects
mentioned refer specifically to algebraic actions, processes, or objects. For example,
a student might use an algebraic object in an action that takes place in a real-life
context, but this does not necessarily indicate an algebraic action. Hence, we cannot
conclude student has an object level of understanding.

Another clarification is needed regarding the algebraic process-object definition. It
is distinct from the procedural-conceptual understanding dichotomy. Students who
apply processes in new contexts may demonstrate evidence of conceptual
understanding, but this does not equate to an object-level understanding. New
contexts help us observe a student’s ability to perform algebraic actions without
relying on a memorized algorithm, indicating a process-level understanding. APOS
Levels specified in the context of learning equations at the kindergarten level are

given in the following table.
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Table 3.9 Definition of Codes for APOS Levels Used in Analysis

APOS level

Student behaviour

Action level equality

The student uses =, <, > signs in limited contexts when
reminded.

Process level equality

The student uses =, <, > signs fluently in several contexts
without reminding.

Student finds objects based on given 0, <,> relation.
(reverse process)

Object level equality

The student uses equality in actions of operations or
equations.

Action level quantity

The student compares objects based on a type of quantity
when reminded.

Process level quantity

The student compares quantities in several contexts
fluently.

The student decides which quantity type is used in given
comparisons. (reverse process)

Object level quantity

The student uses quantities in actions of operations or
equations.

Action level operations

The student uses +/- signs when reminded to interpret
increase decrease.

Process level operations

The student uses +/- signs for increase/decrease fluently.

Object level operations

The student uses +/- in the action of increase/decrease by
an amount, equations, or properties of operations.

Action level
increase/decrease amount

The student interprets how much increased/decreased to
make equal when asked.

Process level

increase/decrease amount

The student finds unknown amounts in equations.

Process level

increase/decrease amount

The student finds unknown amounts in equations.

Obiject level

increase/decrease amount

The student reasons by +/- amount in properties of

operations.
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Table 3.9 (continued)

Action level equations The student compares and interprets equality/inequality of

one/two-sided operational interpretations when reminded of
algorithms.

Process level equations The student interprets/models equations with operations on

one or two sides.

Object level equations The student discusses the properties of operations in

equations.

3.5.2 Definition of Design Principles

Design principles are not something that is coded or discovered in the data through
analysis. They do not emerge directly as results of analysis but rather as conclusions
drawn from those results. Determining design principles involves inferring from the
findings, and they are presented as suggestions, recommendations, or applications of
the research outcomes. While coding, they do not manifest as codes for specific
student or teacher behaviors; instead, they arise from the interactions among other
codes and categories. To understand design principles, the following literature
discusses what design principles entail and how to formulate them. Subsequently,
we can explore the relationship between design principles and other emerging
themes.

According to Bakker (2018) “principle” has different meanings;

- Value, ethical norm

- Criterion

- Guideline, heuristic, advice

- Prediction
Design principles may be written in the form of the last three meanings. Design
principles explain the criteria of the activities to reach a certain aim/learning. They

may be in the form of prediction; “if you proceed in this...., you probably achieve
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this result”. The form of a design principle may include theoretical (from literature),
empirical (research findings), and advisory base (observations, experience). Design
principles are not necessarily specific, and they are open to (or maybe as advice to)

revision or future testing “hypothetical nature of principle” (Bakker, 2018, p. 51).

Van den Akker (2013) has a formulation for writing a design principle;
“s If you want to design intervention X [for purpose/function Y in context Z]

* then you are best advised to give that intervention the characteristics CI,

C2, ..., Cm [substantive emphasis]

» and to do that via procedures P1, P2, . . ., Pn [methodological emphasis]
* because of theoretical arguments T1, T2, ..., Tp

« and empirical arguments E1, E2, ..., Eq”

(p. 67)
Van den Akker’s (2013) template guided our reporting design principles. In
conclusion, general design principles for teaching algebra at the kindergarten level
will be discussed theoretically. Findings for each specific learning activity will reveal
design principles based on students’ interaction with activities, instructors, or

manipulatives and the stages they undergo.

Characteristics of the activity and manipulatives, guided inquiry methodologies,
lecture flow procedures, theoretical insights detailing stages for achieving each
APOS level, and empirical evidence from student responses and their levels of
understanding will contribute to formulating design principles. These principles are

derived from interactions at the micro-level for each activity and learning step.

Characteristics of the activity and manipulatives, guided inquiry methodologies,
lecture flow procedures, theoretical insights detailing stages for achieving each
APOS level, and empirical evidence from student responses and their levels of
understanding will contribute to formulating design principles. These principles are
derived from the interactions at the micro-level for each activity and learning step.
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3.5.3 Interaction of Themes

Lecture flow, as an instructional activity, and its impact on students' learning
(including their responses and evaluation on APOS levels), form the foundation for
design principles in this study. Lecture flow serves as a teacher intervention, eliciting
responses from students that correspond to specific APOS stages. At times, students’
responses, such as encountering difficulties, prompt further teacher intervention (for
correction or support). The effectiveness of these interventions in relation to students'
development provides insight into how learning unfolds.

Beyond interventions, the nature of the activity and the use of manipulatives are
crucial criteria for learning. Design principles aim to elucidate the criteria for
effective activities and interventions, addressing the "what" questions of our
research. Meanwhile, analysis of APOS levels contributes to understanding how
students engage in algebraic reasoning, addressing the "how" questions of research

from a theoretical perspective.

3.54 An Example of an Analysis Procedure

Theoretical analysis and inferences from the analysis of the first lecture are

summarized below by examples from the analysis of the first lecture:

1. Detailed transcripts were openly coded under four themes and predefined
categories. At the right column (see Table 3.10) detailed transcript of data is
placed. Students’ responses regarding indicator behavior at APOS levels and
underlying algebraic structures in their responses are determined. Lecture flow

and design principles are coded and associated with the students’ responses.
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Table 3.10 Example From Open Coding for Lecture 1

Design Student Algebraic Lecture flow  Transcript
principles response and  concepts/ and teacher/
APOS levels  topics manipulative

and interactions

intuitions
Let enactive Understanding  Notation  First Trials go on.
interpretation  the action of Equality  presentation of The researcher
be on the determining, iconic encourages Ekim to
action with choosing, Intuition  interpretation  think aloud.
toys on the placing a=a How to form Taking two identical
scale or equal or not iconic wooden toys, Ekim
between water  equal sign is interpretation  finds them equal.
tubes; iconic not a problem based on the R: Which sign do
interpretation ~ anymore situation is you choose?
be between for the student. shown at this Ekim finds the
objects but They are at the stage but not correct sign and puts
not with the process stage. expected from it on the table
action They can the students The researcher
manipulatives; follow yet. removes wooden
symbolic the procedure toys from balance
interpretation  freely in and puts them on
be with the different two sides of equal
photos of the situations and sign.
object placed  contexts

on the paper

2. Students’ APOS levels and individual behaviors were documented to observe
their progress. Criteria for developing indicator behaviors are deduced from

lecture flow, instructional inquiry, and interaction with manipulatives.

Table 3.11 Coding APOS Levels for Individual Behaviors in Lecture 1

Student APOS Behavior Criteria
Eylem  Process Explains process procedure  Explaining own process
= # Reverse process Available identical toys

Inquiry into which one is heavier:
Student own strategy: quantitative
reasoning

Discuss the inequality of
identical toys’ weights
Diff: balance for weight,
higher one is heavier,
inexperience 300-500
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Table 3.11 (continued)

Didem  Absent At home, equal or not equal
Action exercise. We assume action
= # level.
Ekim Process  Process freely without Repetition of algorithm
= # reminding New contexts
Process in a new context
without reminding
Aylin Process  No reminding
= # Discovering equal and Reportage for equal and unequal
unequal toys (reverse objects.
process)
Medine Process  Action repeated by different Investigator.
=, material toys of the same Repetition of algorithm
size Lots of experience with various
toys
Ufuk Process  Automatic in new context Lots of experience with various
= # weight toys
Tendency to find equality Investigator
Investigation of addition
A+B=C+D
Bekir Process  Discuss unequal weights of  Discussion on equality
= # identical toys Lots of experience with various
Tendency to discover toys
equality Investigator
Addition to lighter size to
make equal A+B=C
Hasan Process  Different faces for Affected by a warm-up activity
= # comparison of obj Repetition of algorithm
Investigation of addition
A+B=C
Yaman  Process  Difficulty: Focus on number He likes numeric calculations
= # of objects for equality p.8 Repetition of algorithm
Tendency to find equality (Investigator)
Multiple toys
No reminding algorithm
Ali Process  No reminding algorithm Boys seem to be affected by each
= # Tendency to find equality other for the investigation of

equalities with multiple toys.

3. Patterns were detected through the constant-comparison method (Bakker, 2018)

in students’ behaviors, identifying stages and indicators of APOS levels for each
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algebraic learning domain. This stage provides information for common

indicator behaviors for certain APOS levels (theoretical) and the reasons for their

development (design principles). (See Table 3.12)

Table 3.12 Determining Patterns of Students’ Behaviors and Reasons Behind Them

in Lecture 1

Students

Student behavior evidence for process
level

How/why

Medine, Follows the algorithm fluently without Repetition of actions

Ekim, reminding

Aylin, Ali

Ekim, Carries out the algorithm in a new context New context, weight
without reminding

Medine, Explains the algorithm/process in his/her Make std explain actions

Eylem, own words

Hasan, Discusses equality for different attributes of ~ Use of different materials

Eylem, objects for same-size toys

Bekir

Bekir, Tends to find equal objects; testing identical Exposure to identical toys

Eylem, Ali  toys

Hasan, Tends to discover equalities, multiple toys -Lots of toys

Yaman, Ali -Inquiry into how to make

Bekir equal

Aylin, Finds objects based on a given sign (reverse  -Inquiry

Eylem, process) -Tendency to match two

Ekim signs

4. For each lecture, APOS levels on algebraic learning domains were determined

by the level of the majority of students. All learning levels observed in the

lecture, along with specific difficulties, were reported for each domain. Progress

through each learning domain was noted as steps towards the intended learning

level, contributing to theoretical outcomes. Each progress step was explained by

design principles that supported the learning stages. (See Table 3.13)

Additionally, students’ algebraic intuitions, materials used in the activity, and

teacher needs were documented alongside the design principles (see Table 3.14).

This stage organized the development of stages and related design principles

specific to the lecture.
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Table 3.13 Connection of Design Principles to Learning Outcomes in Lecture 1

APOS Level:

ﬁ Process =, #

Action =, #

Variables

Action

limited to size,
height, weight
discrete materials

Notation
Enactive, Action

Action steps

. Verbal interpretation
of sign names =, #

. Verbal interpretation
of equality for the
comparison of 2
objects

. Inquiry for choosing
of right sign for
interpretation of
equality (algorithm)

. If not successful in
choosing of sign,
dictation of the
algorithm

. Repetition of
algorithm

. Students’
explanation of the
algorithm.

Process steps

. Following the
algorithm
fluently

. Carry out the
algorithm in a
new context
without
reminding

. Explains the
algorithm in
his/her own
words

. Discuss equality
for different
attributes of
objects

. Tendency to
discover
equalities and
find equal objects
. Finds objects
based on a given
sign (reverse
process)

. Pre-action level for
variables: exposure
to different attributes
of objects for all
students

. Action level for
variables:
interpretation(verbal)
of how they are equal
for all students

. Process for
variables: Discuss
equality for different
attributes of objects
(Hasan, Eylem,
Bekir)

activity

. Comparison of
objects

. New contexts for
comparison

. Recognition of
multiple attributes of
objects

. All action to
process level for
enactive
representation of
equal and unequal
sign except
Medine is at
action level and
has difficulties.

. Sign meaning

. choose of sign
rather than writing
. Placement of
sign correctly

. Reporting weight
comparisons on
the table is an
iconic way of
algebraic
interpretation.

Design principles:

. definition of signs
direction as the action
. connect the sign to
comparison through
matching/choosing
inquiry

. Dictate the algorithm
if needed.

. make students
verbalize the
algorithm

-identical toys:
reverse process
-different
material toys

- lots of
experience,
-different
attributes
exploration
-students
verbalizing their
actions.

. use of how equal
questions

. multiple types of
materials and toys

. discuss unexpected
(inequality) results of
weight comparisons
for identical toys

. Interpretation of
sign direction as
action

. make students
report their
comparison of
weight on the
table

. Direct students to
find equal and
unequal weights
for reporting
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Table 3.14 Algebraic Intuitions, Material Properties, and Teacher Needs in Lecturel

Students’ algebraic intuitions:

Materials: Teacher needs:

- a=b=>b=anotseen and
given
- used intermediary
(fingers)
- a=a
- atb=c+d
- atb=e
- atb=atb
guantitative reasoning Eylem
300-500

Balance scales:
inappropriately working,
the student thinks about
equality free from
measurement problems
Identical toys: equality
discussions

Check what if we change
order symmetry discovery
on balance

. Material experience
. Develop language to
address attributes.

5. For each lecture implementation, findings were reported theoretically by

documenting progression through APOS levels and indicator behaviors specific

to each level within the algebraic domains (see Figure 3.6).
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Mental Constructions: Indicator behaviors:

Equality _ . :
Verbal interpretation of sign

names

Verbal interpretation of
@ pre-action equality for comparison of 2
objects

A

Equal/

unequal Choose of right sign for

— | interpretation of equality

\ (algorithm)

Use signs to represent comparisons
fluently, without reminding

Use signs in new contexts (weight)
without reminding algorithm

Explain algorithm in his/her own
words

Discuss equality for different
attributes of objects

Reverse process:

Tendency to find equal objects; testing
identical toys

Tendency to discover equalities,
multiple toys

Figure 3.6. Mental Constructions and Indicator Behaviors in Lecture 1

6. For each lecture, practical outcomes were reported as design principles to support
each algebraic learning domain (see Figure 3.7):
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Design principles for interpreting equality with equal and unequal signs for process level:

Lots of experience and experience in different contexts help becoming fluent in the

algorithm.

- Different material same size toys provide anchor for discussion on weight comparison

- Identical toys trigger to test equality in weight context; which is a typical thinking type]
of reverse-process: finding objects based on a given relation.

- Encourage students to find equal (weighted) toys which forces reverse-process, while]

also being motivational.

Figure 3.7. Design Principles for Supporting the Learning of Equality in Lecture 1

3.6 Trustworthiness

Design-based research is a type of qualitative naturalistic research, where we talk
about trustworthiness instead of validity and reliability. Validation of constructs and
assessments for correct inferences, and transferability of inferences are important for
the trustworthiness of the study results (Gravemeijer & Cobb, 2006). Credibility,
transferability, dependability, and confirmability are considered under
trustworthiness (Lincoln & Guba, 1985).

Activities based on HLT of Davydov involve one-to-one projection of objectives for
validation. In design-based research, the design team plays a crucial role in this
validation process. The team comprises the researcher, a PhD student specializing in
mathematics education who has experience in designing grade 1 activities for
teaching addition and subtraction operations, and a kindergarten teacher with a

master's degree in education management.

Piloting the activities with two students serves to triangulate and validate each
learning step. This piloting step creates a laboratory-controlled environment to
construct and test activities for intended learning outcomes. The PhD student’s
insights and reflections, particularly on teaching operations, guided the initial

construction and subsequent revisions of the activities as needed.
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The kindergarten teacher contributed not only to designing activities and adjusting
difficulty levels but also enhanced instructional techniques to ensure actions aligned
with student understanding during implementation. This interaction influences HLT
and informs further task designs. Peer debriefing with the kindergarten teacher
ensures the credibility of inferences drawn from the study. Additionally, the
researcher's dual role as an instructor provides continuous observation throughout
the study. Prolonged engagement and persistent observation further enhance the
credibility of the study's findings.

For interviews, expert opinions were sought. Initially, a detailed first interview was
not necessary at the beginning of the design-based research, given that it involved
entirely new knowledge that had not been implemented before. In design-based
research, assessment primarily focuses on monitoring the progress of the processes.
Initial assessments are used to gauge students' readiness. However, to triangulate
data collection on student progress, pre-interviews were matched with post-
interviews. Pre-interviews were structured with a level of formality by the researcher
to elicit students’ informal knowledge on the topic. In addition to Table of
Specifications and expert opinions, interviews were piloted with two kindergarten
students to assess the effectiveness of the interview items. The credibility of
inferences was enhanced through prolonged engagement, persistent observations,

peer debriefing, and triangulation of data.

The effectiveness of the activities and students’ achievement of the intended
objectives were assessed through classroom observations, as well as in-class and
after-class reflections by both the researcher and the kindergarten teacher. Both
researchers and kindergarten teachers took on the role of instructors during lectures,
guiding students through inquiry and devising strategies for supporting their
understanding. Following each lecture, the researcher designed subsequent lessons
and revised the HLT based on their interpretations, as well as input from the
kindergarten teacher's reflections and ideas at each step. The implemented lecture

and plans for the next classroom lesson were discussed between these two team
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members, with consultation from the third member of the design team when

necessary.

To assess students’ APOS levels, 5% of classroom implementation videos and
interviews were jointly analyzed with a second coder who holds a PhD in
mathematics education. There was only one instance of mismatching in the coding,
which was resolved by clarifying the definition of the relevant code, achieving 100%

agreement.

Thick descriptions were provided in terms of applications and environment to ensure
replicability. Barab and Squire (2016) emphasize that replicability also depends on

the role of the researcher.

“It is also the responsibility of the design-based researcher to remember that
claims are based on researcher-influenced contexts and, as such, may not be
generalizable to other contexts of implementation where the researcher does

not so directly influence the context.” (Barab & Squire 2016, p. 10)

Hence, the researcher’s role not only influences confirmability but also transferability

in this study.

3.7  Researcher and Kindergarten Teacher Roles

The researcher actively participated in the implementation as an instructor, bringing
a different background compared to a kindergarten teacher. While a kindergarten
teacher also served as an instructor, she was guided by the researcher throughout all
processes. The kindergarten teacher and the researcher belong to the design team,
working together to improve HLT. They are also observers in the implementation to
determine students’ strengths and difficulties in the lectures. They informed each
other, and brought solutions to problems of design by consensus during
implementation. The researcher has a role in ensuring mathematical appropriateness
in scaffolding, while kindergarten teachers develop pedagogical strategies in the
implementation. Briefly, the researcher and the kindergarten teacher have
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participant-observer roles in the study (Creswell, 2002). Both design team members
being present in the classroom environment ensured consensus on the interpretation
of data (Gravemeijer & Cobb, 2006) and enabled development for the instructional
design during implementation (Barab & Squire, 2004).

3.8 Ethical Issues

This study is found to be appropriate regarding ethical issues by the Middle East
Technical University Human Subjects Ethics Committee (see Appendix C) based on
its structure, used materials, and instructions. Necessary permission for
implementation in a public school is taken from the Ministry of National Education

(see Appendix D).

Parents are informed about the implementation, data collection procedures, and
privacy in the use of data. Parents’ consents are taken by permission forms (see
Appendix E). Students’ confidentiality in video recording and voluntarism is
ensured. Students’ names are kept pseudonyms in the reporting and their data is not

shared with others.

The participant teacher is informed about the study, and her consent is taken (see
Appendix F) for the use of video and audio recordings of implementation and

debriefing sessions.
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CHAPTER 4

FINDINGS

The resultant learning trajectory is completed in 20 total in-class and online lectures,
approximately 30 min on average. In this chapter, the results of 20 lectures will be
given separately, in three parts: lecture plan, APOS stages, and design principles, by

answering research questions:

- What is an adapted learning trajectory for supporting kindergarten students'
algebraic understanding of equations from Davydov’s non-numerical
perspective?

- What are the effective and practical activities for supporting kindergarten
students' algebraic understanding of equations from Davydov’s non-numerical

perspective?

Presenting the results of each lecture will begin with the plan of the activity, outlining
learning objectives, lecture flow, and revision on HLT. Next, the learning
progression in the sense of APOS Theory achieved for each algebraic domain in the
lecture will be documented to address the theoretical research question on
developing a learning trajectory. Finally, the characteristics of the instruction to meet
the criteria for an efficient learning trajectory will be presented under the title

“Design Principles”.

Activities are initially planned based on HLT, piloted, and then implemented in the
classroom environment. Revisions continue during implementation, allowing the
researcher to adapt objectives and modify instruction based on students’ progress,
thereby enhancing the design of effective activities. Not only the current lecture but
also future HLT are revised based on classroom implementation. HLT evolves into
a resultant learning trajectory, throughout effective activities which are ensured by

pilot (laboratory) and classroom (natural) testing. The learning trajectory is called a

91



hypothetical learning trajectory until all implementations and revisions are

completed. After that, it is called the resultant learning trajectory.

In the findings of each lecture, under the title “Plan of Lecture”, we present the
generated activities as implemented lectures, along with objectives belonging to the
resultant trajectory. These resultant objectives are explained with reference to their
origins in the initial HLT, as well as the revisions made during piloting and
classroom testing. For a summary of changes for each lecture, including the first
HLT and resultant learning objectives, see Appendix G. This section also explains
mini-cycle procedures, the implementation process, and the results from daily and

weekly analysis.

The second subtitle is “Theoretical Findings” focusing on activities found to be
supportive of students' advancement. APOS levels are reported by indicator student
behaviors for related APOS levels of understanding in each algebraic learning
domain: equality, variable, operations, equations, and notation. How students
progressed through these APOS levels and what specific difficulties they
encountered are explained under this title. This section is concluded with a
theoretical (retrospective) analysis through “how” questions.

The “why” (and “in what circumstances”) questions clarify the last title “Design
Principles”. These principles guide how to characterize activities from theoretical
and empirical evidence to support intended learning outcomes. Hence, under this
title, design principles are specified for learning progression in the sense of APOS
Theory. They are not intended to restrict activities but to regulate actions needed for
each learning step. The resultant trajectory will be presented after documenting the
results of all 20 lectures.

4.1 Results of Lecture 1

This is the introductory and most important lecture. Equality and quantity learning

is introduced and gates to other topics open in this first lecture as all learning topics
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improve on meaningful learning on equality and quantity. Sufficient time and
attention are dedicated to discussion and free experimentation. It took approximately
40 minutes on the first day and was followed by 2" lecture on the same day. Nine
students (out of 10) attended class. The absent student was supported by homework.

41.1 Plan of Lecture 1

The activity aims to teach equal and unequal signs and interpret equalities or
inequalities with these signs. Interpretation of equality includes the following
algebraic domains regarding APOS levels:

- equality conception: use of equal and unequal signs at action APOS level,

- variables: consider different attributes for representing quantities at the action
APOS level,

- notation: choose the correct sign in the enactive stages

To satisfy targeted APOS levels at the mentioned domains, students are expected to

fulfill the following objectives:

1. The student interprets equal and not equal signs verbally.

2. The student compares objects and uses equal and not equal signs to interpret
relations based on size.

3. The student uses balance scales to compare the weight of objects and uses
equal and not equal signs to interpret the relation.

4. The student uses different variables/attributes (which she already knows) to
interpret equality.

The fourth objective in the first hypothetical learning trajectory expects the student
to differentiate height, length, volume, and weight as distinct variables. Due to pilot
applications and pre-investigations in class, this initial plan includes some
modifications that differentiate it from Davydov’s curriculum. Davydov’s approach
begins with teaching students to compare attributes such as length, height, width,
weight, volume, and area. Pilot results showed that verbalizing these attributes,

treating the area as quantity, and making accurate comparisons are confusing for
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students at this age. Moreover, comparing volume (and area) may be difficult due to
the lack of maturation based on Piaget’s conservation theory. Pre-investigation into
Piaget’s conservation levels showed that about 80 percent of students do not hold the
concept of preservation of quantity. Hence, attributes compared are limited to what
students already know and express in their own words. The focus is on interpreting
multiple attributes to address multiple contexts for equality, and students are
encouraged to explain how and why they are equal to clarify any confusion about
equality. In future lectures, the context of volume will be turned into height
comparisons with the help of appropriate manipulatives. Following the general
trajectory from Davydov, the scope of the subject domains and teaching strategies
may be adjusted. Our goal is to adapt Davydov’s curriculum at the preschool level
by modifying their explanations to better fit the needs of young learners.

Students know what equal or not equal means in their daily lives. In this activity, the
use of equal and not equal signs for the comparison of two objects is a new algorithm
for them. Experience with lots of toys enables practice for remembering and applying
algorithms themselves, which evolves into the process stage. Using concrete objects

provides an enactive representation of equality.
The lecture is implemented through the following steps;

- presentation of signs =, #

- verbal interpretation of equality for comparison of 2 objects/toys

- inquiry for choosing of right sign for interpretation of equality
(algorithm)

- repetition and dictation of algorithm with new toys

- make students interpret different attributes for comparison and
interpretation of equality, including height as an attribute

- introduce weight as a different attribute for comparison

- introduce how to compare weight with balance scales.

- repetition of weight comparisons and enactive interpretation of

equality in terms of weight
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Following these steps, all students managed to show success in achieving the
mentioned objectives throughout the lecture period. The progression of the students
on these objectives will be explained based on APOS Theory in the following

section.

4.1.2 Theoretical Findings of Lecture 1

Equality

Students are expected to use the equal and unequal signs at the action level; which
means they are expected to choose the correct sign for a comparison when asked,
with the help of guidance on the algorithm. All of the students showed evidence that
throughout the activity they progressed from action level to process level in the
interpretation of equalities. The following schema shows indicator behaviors for the
mentioned APOS levels. These indicator behaviors reveal how students progressed
through APOS stages and can also be used to determine their APOS levels for
interpreting equality.

Pre-action levels are not mentioned in APOS Theory, which eventuated from our
data seems to be important at this grade level. The pre-action stage may refer to pre-
knowledge required for learning new knowledge or can be understood as a level of
understanding on the topic but not at the action level; actually, carrying out the
algorithm. Commonalities of pre-action stages will be discussed in the discussion
chapter. Now, it has to be understood as a prior level. In this lecture, it is observed
that prior to presenting the algorithm, the presentation of sign names is essential and
may take time for remembrance. Hence, each future lecture is adopted to create
strategies to learn new signs and remind previous ones. Teaching of equal sign
needed to use actions of hand gestures (teacher strategy). (Even sign learning seems

to start as action evolved to static objects then later.)
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Mental Constructions: Indicator behaviors:

Equality : . :
Verbal interpretation of sign
names
Verbal interpretation of

@ pre-action equality for comparison of 2
objects
Pl
Equal/
unequal \\ Choose of right sign for
signs — | interpretation of equality
\ (algorithm)

Use signs to represent comparisons
fluently, without reminding
Use signs in new contexts (weight)
without reminding algorithm
Explain algorithm in his/her own

words

Discuss equality for different
attributes of objects

Reverse process:

Tendency to find equal objects; testing
identical toys

Tendency to discover equalities,
multiple toys

Figure 4.1. Schema for Learning Equality in Lecture 1

Verbal interpretation usually acts as prior knowledge and comes prior to the
algebraic interpretation of new algorithms. In this lecture, verbally interpreting

equality is essential and appears as a pre-action. Matching with the newly learned
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signs, this stage turns into an action level of using equal and unequal signs for
algebraic interpretations. Making students verbalize equality not only outlies their
knowledge of equality in real life but also bridges/anchors it to its algebraic

interpretation.

After the presentation of equal and unequal signs, the investigation starts with the
equality of simple objects. Students tend to interpret identical toys as being the same
or equal, but they can interpret equality based on size and height when asked to do
so. Some students focused on the surfaces of wooden blocks being equal because
they had a lecture on investigating surfaces. Students have a tendency/motivation to
find equal objects. Height is a common attribute they use when they are guided to
find non-identical toys that are equal in size. Inquiry is deepened into questioning
“How objects are equal based on one attribute while they are not equal based on
another attribute?”. At first height and width are used in inquiry as different
attributes. Weight context helped to clarify this discrimination. Before the
presentation of weight comparison by balance scales, they recognized that same-size

objects may have different weights when they weighed objects by hand.

Repetition of comparisons, and introduction of new contexts; particularly height and
weight, helped students’ progress to the process-level understanding of equal and
unequal signs. Their tendency to find equal objects increased motivation in the
weight context, as it was challenging. Finding equal objects proves they can reverse-
process the interpretation of equality with algebraic signs by starting from the sign
(equal) and finding objects based on it. Because of the presence of identical toys and
the challenge of finding equal-weighted toys, this lecture evokes the motivation of
finding equals and intuitively initiates the reverse process. Some students (e.g.,
Aylin) tend to stick to the procedure (algorithm). Guiding these students to find
objects based on both signs and report their findings (ironically, on the table) enables
reverse-process thinking. Moreover, this guidance encourages notational
interpretation and refocuses students on inequality and unequal signs, which they

may lose attention to while investigating equal objects.

97



Even without being required, most of the students showed evidence they could
reverse-process, all of them became fluent in the algorithm of using signs, and some
were capable of transferring the algorithm to weight context automatically. At the
end of the lecture, these capabilities were common and fluent among all students,

showing they were at the process level.
Variables

In this lecture, for a variable domain, students are expected to use different attributes
for interpreting the relation between quantities at the action APOS level, which
means they are expected to explain “how objects are equal/ or not” based on
quantitative attributes, size, height, width, and weight when asked. Recognition of
multiple attributes serves as a pre-action level. Students expose this recognition by
enactive investigations of comparing objects based on different attributes they know
and verbally interpreting “how” or “based on what” they are equal. Through inquiry,

attributes they know are oriented to quantitative attributes.

At the end of the lecture, all the students were able to refer to these quantitative
attributes in equality of objects which shows they are at action level for quantities.
Some students were even able to discuss equality for multiple attributes of the same
chosen pair of objects. Procedures they have undergone, and how they accomplished

this level will be explained in this chapter.

If not guided on height or width comparisons, students may focus on the appearance
of the compared objects for equality. Some students interpreted equality based on
the similarity of the surfaces of toys, which was motivated by a previous activity
where they reported/found different shapes on the surfaces of wooden blocks.
Students could discuss equality based on different attributes, but putting equal or
unequal signs based on one non-trivial attribute, such as width, was a little bit
confusing for them. Students were free to explain equality based on whatever they
wanted. Guiding students’ comparisons based on pre-determined attributes; height
and width gain attention but are not sufficient to evoke quantity and create a meaning

of equality differentiated from being the same. This guidance only helped the
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recognition of objects’ being equal based on one attribute but not based on another
attribute. Interpretation of equality in multiple attributes starts after this recognition.

This whole stage worked as a pre-action to the understanding of quantity.

Mental Constructions: Indicator behaviors:

Variables

Enactive investigation for
comparison of objects based
— on different attributes.

@ pre-action ) ]
Interpret equality for multiple

attributes of the same object.

Comparison based on weight
as quantity.

\ Verbal interpretation of

equality for comparison of 2
objects

Quantity

Choose of right sign for
interpretation of equality
(algorithm)

Figure 4.2. Schema for Learning Quantity in Lecture 1

By the use of weight comparisons; most importantly, students understand
comparison is made not between objects, equality is not mentioned as being the
same; but comparison is on quantity. Moreover, quantity is obtained from multiple
attributes of objects if multiple (size, weight, height, and width) contexts are

discussed together in the same objects being compared. Quantity exists independent
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of the object and the context; which makes it more close to objectifying. (Quantity
is a matter of measure, and equality is a representation of the relation between
quantities, not objects compared.). In addition, weight context made it explicit which
side is bigger and promoted quantitative reasoning. quantity becomes a matter of
comparison rather than similarity when they see the comparison as “one is more and

the other is less”.

Eylem had quantitative reasoning associated with numbers 300-500 in weight
context Being one bigger makes students focus on quantity inequality, which evoked
Eylem to think about big and small numbers, associating the heavier side with bigger
numbers. She had some difficulty like other students in the weight context. She can
state which side is heavier, and which number is bigger, knows the heavier side has
to take a bigger number, but stated sides incorrectly at first. After an inquiry into
questioning, the mentioned knowledge she has, she corrected herself immediately.
Students seem to be confused in weight context, because they sometimes associate
the higher side with being bigger, especially when subtracting reduce take away
something to make it equal (not only in kids, I had the struggle in my first experience
with the chicken balance game). When asked to interpret which side is bigger or
heavier, they had no problem. Hence, experiencing a lot in the weight context was
essential for beginning activity. Other students also had similar problems even
though they had non-numerical reasoning. This activity is also essential because they
got experience on weight comparison for the first time; which side is heavier, and

how they become equal.

Eylem: 300-500
Researcher: Which one is 300, and which one is 500?

Eylem: This one is 300, and this one is 500 (referring to the heavier one as
300, because it is down. She interprets the upper side to be bigger and assigns
500)

Researcher: Which one is heavier?

Eylem: This one is 500 (pointing to the one above) (finding: even though they
understand inequality, they might have trouble identifying the heavier one.
Pay attention to separate sub-learnings).
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Researcher: Is the 500 one heavier, does the heavier one stay up or go down?

Someone: Down.

Eylem: (Immediately says) down.

Researcher: Yes.

Eylem: Then this is 300, this is 500 (correctly shows).

Researcher: High five.
In piloting, no identical toys were provided to students, following Davydov,
assuming that students would focus on quantity not being identical when provided
different toys, but it was hard to find equally weighted toys. The use of identical toys
not only initiated the reverse process of equality but also created a learning
opportunity on quantity. Some students faced a cognitive conflict after they
compared identical toys on balance scales and found they had different weights. This
cognitive conflict is resolved through discussions on why they are differently
weighted. Especially wooden blocks caused this problem. Errors in factoring are
shown as one cause for the difference. Even though toys have the same shape, same
size, and are produced from the same material, students could recognize that they
may have different weights. This made them abstract and discuss the weight of the
objects they compared.

Weight was a suitable measure for them to comprehend comparison quantitatively.
Weight context also enabled to investigate following algebraic expressions

intuitively:

- a=a
- atb=c+d
- atb=e

- atb=a+b

The first and last one is triggered by the presence of identical toys and if they have
equal weights. All investigations are carried out through comparisons of non-
manipulatable discrete objects (the next lecture will include continuously

manipulable objects: play doughs compared in weight context). Finding equality is
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again motivation. No investigation of addition is guided but permitted. Hence this
lecture was pre-action level for addition operation for some students whereas they
are motivated to make equality by adding. The next lecture will focus on how to
make equality, intentionally creating a pre-action stage for operations.

Yaman is an outlier student in the classroom. (He has an analytical and mindful
understanding of mathematics throughout the semester.) He is interested and
experienced in arithmetic with addition and subtraction. His knowledge of arithmetic
may hinder some focus on the algebraic knowledge learned, giving chance to observe
the difference in algebra education before and after arithmetic. In this lecture, he
focused on the number of toys and had some difficulty focusing on quantity in the
beginning. When asked whether two objects are equal or not, he focused on a number

of the objects and concluded equal reasoning by 1=1.

Researcher: Are yours equal, Yaman?

Yaman: Uh-huh (meaning yes).

Researcher: What is equal about yours, Yaman?
Yaman: Two of them.

Researcher: Because there are two of them? Is this one equal to this one,
Yaman?

Yaman: No.

Researcher: Then you will choose this sign. These two are not equal to each
other.

Notation

As planned, all students could use equal and unequal signs in the enactive mode of

notation by going through the following procedure:

- learn the name of the sign
- choose the correct sign for comparison
- place the sign on the enactive mode of representation

We began with directly giving equal and unequal sign names, contradictory to

Davydov. Davydov’s interpretation with long and short lines for inequality seems
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more appropriate to focus on quantity but our piloting showed that children are
confused about learning this interpretation and associating it with the real sign
interpretations. Moreover, most of the students knew the equal sign earlier, and in
our pre-interviews, we showed all signs, including the unequal sign. Students have
intuitions that a line crossing over something indicates canceling of the sign, which
will ease the learning of “not equal”. We focused on learning signs and matching

them with verbal interpretations of equality and inequality.

Learning the name of the sign was also a challenge at this age. The kindergarten
teacher’s intentions to teach signs as the action of two moving arms in orientation
helped to teach equal signs. Even sign learning seems to start as action evolved to
static objects later. The unequal sign is thought to refer to the canceling of equality.
After learning the sign, matching the sign with the situation becomes problematic.
Even if verbalizing signs and situations correctly, the student may not match these
situations correctly as in Medine’s case, which needs a dictation of the algorithm.
Matching the correct sign, the student is expected to use the sign in enactive mode.
Placement of the sign in the correct place (between objects) and the correct
orientation is challenging at this stage, which is solved through guidance and lots of
experience. Medine used A=B+# incorrect representation when asked to use both
signs. Other students had no problem matching the sign with the compared objects
and representing equality, but only some orientation of the sign was difficult for

some students.

In the weight context, students were expected to use signs on the balance scales as
enactive representations. It is found to be difficult to move onto the iconic mode of
representation in this lecture for some students (Ekim). However, some students
(Aylin) also could interpret iconically based on weight through guidance on the
representing comparison on the table rather than on the balance scale, or through
ordering reportage of one equal and one not equal situation based on weight.
Motivation to find equal loose attention on using signs and interpretation. Reporting

by two signs encourages interpretation.
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Figure 4.3. Eylem’s Enactive Representation of Identical Toys with Different
Weights

4.1.3 Design Principles for Lecture 1

Design principles for interpreting equality with equal and unequal signs for

action and process levels
Action:

- To alter students’ difficulties in matching signs to comparison results; be
precise in expressing alternatives (signs: =/#) rather than asking what to do.

The inquiry should follow as
“What is the name of this sign”
“Are these toys equal or not?”
“Which sign should you choose then?”

- If a student knows the names of the signs and interprets equality relations
verbally but cannot match the correct sign, the dictation of the algorithm may
be a solution (Medine’s case). Connecting the two, sign and relation, may be
difficult.
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Making students verbalize the algorithm while they use interpretation
enhances self-guidance, which is a part of learning at the action level.
Do not reject interpreted equality; ask “how” or “based on what” they are
equal to encourage them. The “why” questions make them step back.

Design principles for interpreting equality with equal and unequal signs for process

level:

Extensive experience and exposure to different contexts help students
become fluent in the algorithm.

Different material, same size toys provide an anchor for discussion on weight
comparison

Identical toys trigger to test equality in weight context, which is a typical
thinking type of reverse process: finding objects based on a given relation.
Encourage students to find equal (weighted) toys that force reverse-process

while being motivational.

Design principles for understanding quantity at (pre-)action level

Design materials for exposure to multiple types of materials and toys and
build inquiry into how they are equal to make students enactively investigate
and compare objects based on different attributes.

Support recognition of different attributes through inquiry for staging a base
for action level of comparison on quantities.

Have students verbalize different attributes that indicate quantities, such as

height and weight, to help them decontextualize quantity as a measure.

These were what we expected before, and so how we designed the activity. What

experimentation evidenced is that;

Provide identical toys for students’ investigation, because the presence of
identical toys not only enforces the reverse process for equality but also
creates a cognitive conflict when they have different weights. This cognitive

conflict is resolved by a discussion on why identical toys are not equal in
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weight. Discussions promoted a focus on weight as a comparison of quantity.
Abstraction of weight as a quantity eventuated independent of objects that

are identical in appearance.

Design principles for enactive mode notation of equality with equal and unequal

signs

- Give sufficient time and attention to students’ learning of sign names.
Presentation of sign direction as action helps students differentiate signs.

- Make students report their comparison of weight on the table to encourage
iconic representation when students seem to be ready, showing evidence
she/he can interpret equality verbally in terms of quantity.

- Direct students to find objects with equal and unequal weight for their reports
to encourage them to use and learn both signs and their correct placement
and orientation. Reporting their interpretation of equality provides notational

learning and algebraic communication.

4.2 Results of Lecture 2

This lecture is given after Lecture 1 on the same day. It has two activities in it; play
dough weight and part-whole equality. These two activities seem very different, but
both have common aims; firstly, to provide new contexts, continuous and part-whole
contexts, supporting process level of equality, and secondly to enable change on the
sides of the inequalities to make equality creating a pre-action level for operations.
Play dough activity took about 20 minutes, while the part-whole activity took 30
minutes. These times may sound too long for activities. These are not the amount of
time to complete tasks for students. Mini-interviews to ensure each student’s learning
and to observe their thinking took the majority of time. When they complete the task,
which they are guided through, they are freely exploring and playing with the
materials provided which also supports their experience and learning. Those times

are also recorded, observed, and analyzed to conclude their learning. One student is
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missing in class. Make-up is conducted by the researcher, which is added to the data.

The analysis of her (Didem) data indicates her individual learning..

421

Plan of Lecture 2

In the first HLT, playdough activity was not in this lecture, but it was after greater

or less than the subject, in “how to make equal” activities, to anchor increase and

decrease. Pilots and in-classroom implementation showed that students have

intuitions and tendencies to make equal and part-whole activity also supports this

intuition. Dividing playdough into two activities is decided to be moved earlier to

Lecture-2 by the researcher and kindergarten teacher based on the following reasons:

1.

In the initial plan, there was no discussion on increase or decrease, or how to
make things equal at this lecture. However, discussing equality in Lecture-1,
along with piloting and classroom implementation, showed that students’
tendencies and early intentions led to discussions on how to achieve equality
earlier than we expected. These discussions could not be ignored. Although
this activity was originally planned for later, it was moved here to address
students’ intuitive understanding of achieving equality. Our approach is to
present concepts in three stages: first intuitively (through actions: enactive
investigations/pre-action), then verbally (through inquiry: verbal
interpretation/pre-action), and finally algebraically (with signs: algebraic
algorithm/action). This process requires time and concentration in different
contexts. Hence, discussions can be introduced earlier whenever necessary
to align with students' intuitive grasp of the concept.

Investigations in the first lecture were limited to discrete comparisons. There
was a need to include continuous manipulatives in the weight context.
Discussions on variables and equality must include all continuous and
discrete variables and manipulations to prevent inconsistencies and
overgeneralizations Relying solely on greater/less than comparisons would

make the discussion of equality in weight incomplete without continuous
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materials. Also, students might think that certain manipulations or variables
are associated with certain signs or subjects. Hence, to address this, we aimed
to include continuous variable manipulation in the concept of equality using
equal and not equal signs. In this class, manipulations involving increases
and decreases with continuous weight activities, such as using play dough,
were well-suited to this approach.

Physical world experience with weight context, particularly using balance
scales, was insufficient and required more attention for understanding
equality in weight context. In some cases, a higher scale was incorrectly
interpreted as representing a larger quantity, especially when integrating this
understanding with other issues, such as numbers or achieving equality. The
emergence of the need for more experience in weight equality was identified
as a priority to address misconceptions. Decreasing weight proved to be
confusing for making equal comparisons, even for older students. Using play
dough, which offers flexibility in manipulations, was found to be helpful in
addressing this issue, as discrete objects were challenging for observing
weight equality.

The entire activity includes an intuitive understanding of equality, so it is
better to address this issue earlier. We did not want to start with increase and
decrease activities using discrete variables, which appeared as discrete
parting in part-whole activity. Beginning with objects that allow for
continuous dynamicity and partitioning aligned well with the deductive
approach of Davydov for algebraic generalizations. Before going on with
discrete part-whole activity, weight comparisons should include continuous
variables to compare first. Without this, the trajectory might lack coherence
until volume comparisons are introduced, potentially leading students to
perceive weight as discrete. Therefore, all comparisons involving weight,
volume, and height should include discrete and continuous elements.
Students get quickly tired and unmotivated to see the same toys again (pilot

result). Completing the investigation in a single session, whenever possible,

108



appears to be more effective for maintaining motivation and fostering in-

depth discussion.
Hence objectives of the Lecture 2 are revised from:

“The student uses an equal and not equal sign to interpret a relation in part-whole

context.”
To:

1. The student uses balance scales to partition play dough into two equal masses
by increase/decrease actions.

2. The student uses an equal and not equal sign to interpret a relation in a part-
whole context.

3. The student manipulates (increase/decrease) one side for the satisfaction of

equality in part-whole activities

Play dough activity is the continuum of the weight comparison activity in Lecture-
1; students are given a piece of play dough and asked to separate it into two equally

weighted parts. It has two particular aims:

1. Equality subject in continuous variable context at the process level of the

equality sign.

2. “How to make equal” subject in continuous variable context at the pre-action
level of increase /decrease.

As observed in pilot studies and Lecture 1 results, students initially tend to focus on
increasing quantities rather than decreasing them to achieve equality. To address this,
the amount of play dough is fixed to prevent free experimentation, thereby guiding
students to decrease the heavier side. Additionally, determining which side to
decrease has been identified as another challenge (based on pre-investigation and
pilot results), which requires further experimentation. This lecture provides a

solution to address that issue.
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In the second part of the Lecture, a part-whole activity is conducted, which also
requires manipulation to achieve equality, but in a part-whole context. The alignment
of objectives between this activity and the play dough activity can be seen in the

following list:

1. The concept of equality in discrete part-whole context at the process level of

the equality sign

2. The concept of "how to make equal™ in a discrete part-whole context at the

pre-action level of addition/subtraction (adding or taking apart).

Figure 4.4. Part-whole Equality (Davydov et al., 1995, pp. 18-19)

Figures for part-whole items are taken from Davydov’s book (Davydov et al., 1995).
Working on these figures, it is expected to serve as an iconic mode for equality,
whereas the previous class was actually on enactive investigations. The figures
include three items; one representing an equality situation (a rocket), and two others
representing inequalities that require manipulation of adding and taking some parts

(asquare and a truck).

In the figures, Davydov’s initial interpretation of the equal or unequal sign is
represented. When two given figures are equal, lines are drawn to show equality;
when they are unequal, one side is left smaller. When you take apart and add some

parts to make equality; you cannot talk about one side being bigger than the other.
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Thus, Davydov's first interpretation of the unequal sign does not indicate that one

side is larger, as inequality typically suggests.

Moreover, the figures do not correspond to the interpretation of one side being larger.
Including this interpretation, without anchoring it to one side being larger, only adds
another step to remember before actually using equal and unequal signs (pre-
investigation). We removed this step, focusing instead on the actual equal and
unequal signs to be chosen based on the figures and placed between them in this

lecture.
Lecture Flow:

Based on the objectives and designed activities explained above, Lecture 2 is

implemented in the following order:

- Introduction to making things equal (setting focus); show unequal objects and
continuously manipulable objects such as balloons; inquire into both increase and
decrease to achieve equality, focusing on manipulating one side at a time to reach
equality.

- Given a fixed amount of play dough (continuously manipulable objects), students
are expected to experience themselves partitioning it into equal weights by
decreasing one side while increasing the other to achieve equality.

- Inquiry into which side is heavier to ensure physical world understanding and

connect it to how to increase and decrease to achieve equality.

- Part-whole equality with one equal case and two unequal cases with iconic
figures are presented one by one, and students are expected to choose the correct

sign for each.
- Discussion of equality in the context of discrete parts relative to the whole.

- Inquiry into “how to make equal” unequal situations: encourage manipulation of

one side by taking away and adding parts to achieve equality with the whole.
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Following these steps, students could use equality and inequality signs in weight and
part-whole contexts. The mentioned objectives are satisfied by the majority of
students. However, for the first objective, instead of decreasing/increasing, some
students (3 out of 10) had different strategies to create equal-weighted play dough
pieces. Difficulties and progression in students’ learning will be explained further

based on APOS Theory.
Further implications to trajectory and further recommendations:

After implementation, the play dough activity seemed to be difficult for some of the
students, because simultaneous manipulation on both sides was needed to achieve
equality when the play dough amount was fixed. Hence, further activities and
inquiries were oriented toward including only one side manipulation. Moreover, it is
recommended to revise this activity to include one-side manipulation: for example,
fix an amount and create equal-weighted chunks to enforce decreasing or guide
intentional increases or decreases on one side with additional inquiries in a freely

manipulable environment using continuously manipulable objects.

Secondly, we decided to add additional activities in the trajectory, for part-whole
equality, because it was difficult for some students. For additional activity, Lego toys
were planned to be used to provide a more intuitive context, helping students
remember how wholes are composed of parts. Moreover, it was decided to present
the activity in enactive mode to provide a more hands-on approach. The iconic mode,
as outlined in Davydov’s book (Davydov et al., 1995), did not succeed as expected.
Thus, the enactive stage was incorporated into the trajectory and is recommended for
future implementation. However, due to pandemic regulations, the Lego activity had

to be conducted in iconic mode once again.

4.2.2 Theoretical Findings of Lecture 2

The aim of the second lecture on the first day is to continue processes of equality

with new contexts, continuous and manipulative variables/quantities (play doughs),
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and part-whole equality. In the previous lecture, quantities that were compared were
stable (discrete), but now, they can be manipulated (continuous). The “How to make
equal” inquiry starts in this lecture, which will evolve into operations later. Results
won’t be given based on the activities but based on the APOS Theory they support;

firstly, process level for equality, and then pre-action level for operations.
Equality

The main APOS level intended in this lecture is the process level of equality, which
is fluent in using equal and unequal signs for compared objects. The previous lecture
includes a comparison of discrete objects. This lecture includes two different
contexts: continuous variable, and part-whole equality for progression at the process

level.

All students show the level of process; fluent in using signs (process level), using
equality to manipulate quantities (reverse process), and interpreting equality in a new
context. They had no difficulty using equality in the continuous context of weight,
but they had difficulty transferring their knowledge to part-whole equality. The
researcher and teacher needed to remind the algorithm (to 4 students out of 10) to
use equal or unequal signs to interpret equality between parts and whole. Some other
students (2 out of 10) had difficulty interpreting part-whole equality and inequality
with equal and unequal signs. These students (6 out of 10) seem to be at the action
level for interpreting equality in a part-whole context. However, the problem is not
about remembering algorithms or not knowing how to use signs. The problem is

about understanding how parts are equal to the whole.

There are some reasons observed causing this problem. Mainly, the parts do not
directly make the whole; some pictures are confusing (square), which means they
overlap or need some construction procedure to make the whole. In this situation,
students have explained what part-whole equality means as “if we can produce this
whole from these parts”. Secondly, the activity is in iconic mode. Guided one-by-

one matching of parts helped students to determine equality. In addition, cutting
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pictures of parts and trying to compose the whole is used as a strategy to investigate

equality in an enactive mode.

The addition of Lego activity to the trajectory is decided to clarify part-whole
equality in enactive mode. The results of this activity revealed that part-whole
context is perceived as a new context for students and cannot be used as an iconic
stage of equality, which was our first intention. Part-whole equality should also start

with enactive investigations.

Mental Constructions: Indicators:

Equality

Use signs to represent
comparisons fluently,
@ without reminding

Equal/ Use signs in new
—_ contexts: continuous
unequal —*| weight and part-whole

signs :
reverse process:

manipulate objects to
make equal

Figure 4.5. Schema for Learning Equality in Lecture 2

Operations

The operations action starts with answering the “how to make equal” question
through verbal interpretation of increase and decrease with the pre-algorithm action
stage. In this lecture, no verbal interpretation of actual increase or decrease is
expected. However, students use increase or decrease actions to make equality in
both play dough and part-whole activities, which is even before the verbal pre-action
level for increase and decrease (operations). Focus seems to make an

increase/decrease (play dough), or to take away/add (part-whole) in activities. They
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are implicit aims under the questioning/inquiry of how to make equality out of
inequality. Implicitly we aim to appeal to students’ intuitions to make those actions
enactively, but it is early mention about increase/decrease verbally at this stage. This
stage is brought back earlier, to meet students’ intuitions on making equal. Pre-action
stages play an important role in making students ready for action. While verbal pre-
actions are the anchor to algorithms of algebraic actions, enactive pre-actions usually
take place even before that, as investigations or acts. Hence, we tried to embed those
stages in the trajectory whenever possible and appropriate. We took the range of the
distribution of a subject in the trajectory as wide and as early as we could to support

long-term remembering and learning.

Mental Constructions: Indicators:
Operations
How to make equal
investigation
@ Increase/decrease: by
Increase/ chunks or little increments
. __—»| two side manipulation
pre-action .
decrease | — (weight context)
Take apart or add: one

side manipulation (part-
whole context)

Figure 4.6. Schema for Learning Operations in Lecture 2

If we could define this stage as an action level for increase/decrease, we could say
that students use equality as an object in this action. However, this is a prior stage,
but not an actual algebraic action of increase/decrease. Moreover, students focus on

creating equality, seeing equality as a process (reverse process), not a static state yet.
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The student tries to compose an equality situation. In play dough and part-whole

activities, the focus is on creating equality action, rather than increase decrease.
Playdough activity:

Students’ capacity promised their early intuitions to make equal to be at a higher
level to make equal, and we expected them to decrease heavier ones and add it to the
lighter side intuitively. However, with some students, it did not work very well for
two reasons; firstly, limited play doughs require additional understanding steps for
manipulations, not singly but on both sides. Thinking about increase/decrease
amount and partitioning was difficult (Ekim, Medine. 2 out of 10). Secondly, which
side to decrease was difficult to determine due to a lack of experience in weight
comparisons physically trying to reduce the upper scale (Ekim, Medine). Given
unlimited play doughs would also make it easy to experience physically which side
to increase/decrease when one manipulation at a time is adequate. Pre-investigations
showed that even for adults, intuitively decreased higher scale is emergent when
quantities are not comparable and structured. This problem does not count to be very
important, there is no misunderstanding in terms of algebra. The student wants to
decrease bigger size to make it equal. However, this misleading physical
inexperience creates an opportunity to discuss equality, the bigger side in weight and
reducing the heavier side. Reflecting upon these concepts will improve

understanding of quantity.

Students (3 out of 10) who have difficulty modifying sides of balances by
increasing/decreasing actions in the play dough context, tried the strategy of taking
equal amounts/sizes of play doughs and comparing them by balance scales. 3 other
students had another strategy of changing play dough on the scales in small
increments. All others (4 out of 10) could successfully decrease the heavier side and
increase the lighter side intentionally. For the majority of the class (7 out of 10),

playdough activity seems to evoke increase and decrease actions.

Part-whole activity:
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Students were expected to take away excessive parts by putting a cross on them and
add missing parts by drawing. Adding or taking away was not difficult for students
when they were directed to manipulate parts. Some students (4 out of 10) had
difficulty interpreting equality after manipulations on the paper. They are guided by
instructors. However, cutting excessive parts would be more beneficial to see
equality. In addition, students who had difficulty modifying play doughs on balance
scales also had difficulty in manipulating parts to make them equal to whole (2 out
of 10). They needed close guidance to manipulate and interpret equality after
manipulations. They both seem to interpret equality/inequality but are not ready to

act on it.

Briefly, these two activities succeeded for the pre-action level for operation where
the play dough activity served pre-action for increase/decrease, and the part-whole

activity completed as increase/decrease amount.
Variables

Play dough activity serves a continuous context, which is a new context for quantity,
supporting process-level understanding. Moreover, they engage change in quantity
in an inequality relation, and change is continuous. This must be promising for a
better understanding of the quantity. However, some students were not capable of
focusing on one side being bigger, and manipulations were through increase and
decrease. Part-whole activities also are not a superiority of one side being bigger, the
focus is lost on quantity totally, to similarity. We could say we change quantity in
play doughs, but not actually changing quantity algebraically, not operating on
quantity algebraically, but a step ahead. Quantity might be still in progress for the
process level until the bigger/smaller concept is. For some students change is on the

object rather than quantity, even in playdough activity.

While play dough activity serves as a continuous context for quantity, there is no
explicit quantity focus in part-whole activity, it is more on the similarity. However,
part-whole activity underlies the message that quantity consists of parts. (It is

recommended further as a Lego activity, which was not unearthed until retrospective
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analysis, uses two whole figures made out of equal or unequal parts for comparison.
Students can separate to see if they are equal in quantity, to focus on the quantity to
compose rather than the similarity of the resultant figures. Composition action will
be executed from the procedure, which makes students hesitate to decide on equality.
In this way the discussion will be on the equality of inclusion, rather than part to

whole (which makes a difference.))

Focus on creating equal parts may lead to a loss of focus on the overall quantity.
Part-whole equality shifts attention to similarity instead of quantity. In our study, it
worked effectively at the pre-action stage for addition and subtraction, a stage not
present in Davydov’s trajectory.Davydov only used this stage as being equal or not
in a part-whole context, not discussing how to achieve equality. We expected
students to make things equal by adding and subtracting parts from the same side,
which again misplaced the focus on quantity. The preservation of quantity in
subtracted and added parts was not discussed. In the previous class, students
discussed the equality of objects in terms of the quantity they represent as an
attribute. This might be why they paused in this context because they did not know
which attribute to use to compare parts to the whole. The change was also based on

the shape rather than the quantity.

The playdough activity focused more on changing the quantity to achieve equality.
Most of the students seemed to manipulate quantity to make it equal (7 out of 10).
Three of them (Didem, Ali, and Hasan) changed quantity by small increments while
others increased or decreased to make it equal successfully, taking away from the
heavier side and adding to the lighter side. Three students (Bekir Ekim, and Medine)
took equal amounts and then tested on balance scales. This might have originated
from not knowing how to increase or decrease in the weight context (Ekim, Medine),
or not concentrating on quantity, in the weight context, yet. Bekir was shocked when
identical toys had different weights in the previous lecture. In this lecture, he took
equal-shaped playdough pieces by using a mold and then placed them on the balance
scale to test their equality. Hence, we cannot conclude that all students perceived

weight as a quantity measure.
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Small increments of change in quantity seem to be the result of being careful to
balance weight, as balance scales are sensitive to little differences. It makes a good

starting point to understand continuity in change of quantity.
Notation

Playdough activity is enactive in representation, which students ignored and focused
on creating equality. Not to create confusion, an iconic representation of play dough
equality is not expected. Interpreting equality on the tables rather than the
comparison manipulative represents comparison based on size, rather than other
quantity types for students. Hence, this lecture does not aim at this stage yet. There
appeared some intentions for iconic representation but it seemed confusing and

remained as teachers showed off.

Part-whole activity is planned to be in iconic representation mode; being an on-paper
work. One-to-one matching may be difficult, or how parts compose the whole may
need explanation through cutting and paste. This activity turns into an enactive mode
in terms of the necessity to address these problems. More essentially, they struggle
to interpret equality for then and now situations algebraically. The inclusion and
exclusion of parts on the paper are completed by students. However, they may not
see equality, because resultant figures are not similar. To make it look more similar,
especially cutting off excluded parts rather than crossing over, might help those

students.

Orientation of signs is still a problem for some students even if they choose the
correct ones. They may place sign notations in the wrong way. (Ekim, Medine), or

they may create a sequence of a=b# to use all signs (Hasan).

4.2.3 Design Principles for Lecture 2

Process Equality
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The play dough activity serves as a new context for equality using
continuously manipulable materials. The part-whole activity not only acts as
a new context but redefines equality in its context. However, discrete material
alternates with the play dough activity's nature. For further implications and
explorations, the revision of the part-whole activity to a Lego activity that
compares two holes to each other in terms of their inclusive parts is
suggested. At least this part-whole activity can be carried out in enactive
mode by using scissors to cut parts and bring them together to compose
wholes.

Be careful about the language and provided materials. When pictures of parts
and wholes are provided in separate papers, students may think of equality of
the size of papers provided to them. The precision of inquiry and what they
understand from words affects a lot at this age.

Pre-action operations

Play dough activity enactively, part-whole activity iconically enables
investigations for increase and decrease. While one supports continuous
change and sets out pre-action for increase/decrease action, the other uses
discrete manipulation and bases pre-action for change amount
(increase/decrease by an amount).

“How to make equal” inquiry and ease of change in both activities encourage
doing operations on equality. However, equality is not perceived as an object
yet, because the focus is on making equality, displaying the reverse-process
level for equality.

In the play dough activity, the focus is on increase and decrease actions,
which students can control in small increments change. However, the change
amount is not as visible as it is in part-whole activity. Part-whole activity
inspires taking away and adding actions naturally because what is missing or

extra is clear in terms of parts.
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- Drawing missing parts creates an analogy for addition, while the exclusion
of parts is simulating subtraction by crossing over. Interpretation of equality
before and after manipulations of parts can be facilitated by an enactive mode
of representation.

- In this study, addition and subtraction are included together in the items of
part-whole activity. “One manipulation at a time” case could be included for
clarity.

- In play-dough activities, also increase and decrease actions take place
together in manipulations, but on different sides. Play dough activity can be
revised to include an unrestricted amount of play dough to experience
increase and decrease controllably. Then, students should be supported by
guidance for also using decreased actions to make equality. Instead of
directly guiding through decrease, a reference weight can be used to create
equal-weighted chunks of play dough to make equal to. However, in this way,
the flexibility to manipulate both sides will be lost. Providing a free amount
of play dough and no ordering for division into two, but creating an equal
amount of play dough pieces is another suggestion.

- If practicing on balance scales does not alleviate the problem of deciding
which side to decrease due to physical world inexperience, inquiry by “which
one is heavier” question creates the needed anchor. The student verbally
interprets which side is heavier and decides which side to decrease instead of

automatically decreasing the higher side.
Quantity

- Using continuously manipulable material (play dough) helps students
develop an understanding of variables.

- Manipulations for achieving equality underpin the understanding of
continuous change in quantities.

- Allowing two-sided manipulation for change is crucial to prevent

misconceptions and preserve consistency in understanding of variability.
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- Continuously manipulable material and the capability to create equality in
weight context prevents expectancy vs measurement conflict.

- Part-whole context makes it easy to change and take away, grounding an
analogy for addition and subtraction.

Notation

- Start the activity part-whole with the enactive stage, or turn it into an enactive
mode through cut-and-paste actions in need.

- Make students interpret inequality and equality at each stage, before and after
making equal to keep them focused on the interpretation. In part-whole
activity, interpretations may be assisted by enactive modes.

4.3 Results of Lecture 3

3rd lecture took place in 2nd day of the first week which took 45 minutes. The
equality concept is explored in a volume context, which demands plenty of time
being new and complex. Accurate measurement and connection of measures to the
capacity of cups are additional learning challenges. 2 students’ data are missing
because they were absent. No make-up is provided and volume context is delayed
until greater/smaller context for these two students (Eylem, Didem). They were both
successful in previous contexts. The findings chapter does not aim to reveal students’
individual learning progress throughout the activities. Data relies on features of
designed lectures and how attendants’ learning is affected. Moreover, in natural
classroom settings, where design-based research takes place, there is always a similar
concern of attending. If it is an important keystone, it is made up for the student. If
future lectures have the potential to close up, students are assisted in opportunity.
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43.1 Plan of Lecture 3

In this lecture, students compare cups based on their capacity/volume. To compare
cups, students fill two different cups with salt and then pour each cup into identical
transparent cylindrical measuring cups. This turns volume comparison into height
comparison, to make it comprehensible for students who do not hold Piaget’s
conservation of amounts. Then, they use equal and unequal signs to interpret relation
results from the comparison. This activity aims to teach equality in a new context
volume for process level of equality and to teach iconic representation of equality in

a volume context. The following objectives address these aims;

1. The student uses equal and not equal signs to compare volumes of cups.
2. The student interprets equality of volumes of cups iconically.

2nd objective is added later to the hypothetical learning trajectory. In the first plan
interpretation of equality of cups seemed to be trivial. However, it creates an
additional challenge for students to interpret iconically. Iconic representation is
where it appeared first. In weight context, some students could report iconically
based on weight when asked. Yet, iconic representation did not appear as objective
in the weight context as it was difficult for the majority. Volume activity is
convenient for iconic interpretations because measurement tool distinguishes
measurement from cups. On weight comparison when students represent enactively
on balance scales, objects being compared are present on the sides of the equality
sign being on the balance pans. In volume context, when the sign is placed on the
measurement tool, what you see is salt, but not cups. The need to represent equality
with cups emerges to interpret which cup is equal/or not equal to which. By the
nature of this activity iconic representation gains importance and becomes intrinsic
whereas it was confusing in weight context because it reminds size in iconic mode.
However, it is not straightforward and needs stimulation. It took 2 lecture-hour
investigations to ensure all students made accurate comparisons and interpreted their

comparisons iconically. The investigation was held through the following steps.
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Lecture flow:

- Reminding the previous lecture on equality in weight context.

- Introduction of comparison of volume, a tool for mapping volume to height
- Introduction of iconic representation for volume comparison

- Lots of experience with comparison and placement of a sign

- Encourage to find equal cups that are not identical, and report equality

between these cups.

Encouraging students to find equal cups has two purposes. Firstly, previous lectures
showed finding equality creates motivation. Secondly, non-equal cups are obvious
in shape and capacity, but students need to consider height, and size issues to choose
cups in close capacity and then experience their being equal or not by measuring.

Volume comparison gains meaning and importance in representing equality.

The next class would be on the same day on reporting equality between cups in the
symbolic mode of representation. Then, students would be reading each other’s
reports. Based on the equality relation they read, they would conduct a comparison
experiment to check if the peer’s report is correct. This would facilitate the action of
creating symbolic representations, and reverse process for this action by reading and
making sense of the created algebraic expressions. This lecture on symbolic
reportage of volume comparisons is held up until teaching of greater and less than
signs due to two challenges. Firstly, students are not ready for symbolic
representation as they met iconic representation recently. Half of the students had
difficulty representing iconically on their own in a volume context. The second
challenge comes from the measurement error in the volume context. Comparisons of
cups mostly result in inequality; which would cause mediocrity/commonness in
reportage and checking reports. Using ‘>, <” signs besides equality will solve this

problem.
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4.3.2 Theoretical Findings of Lecture 3

Equality

This lecture aimed to process level for understanding equality preserving volume as
a new context. As the majority of students (7 out of 8 attendants) show evidence at
the process level for using equal and unequal signs in volume comparison, the lecture
IS successful at its purpose. The one remaining student was able to state equality in
volume context verbally but had some difficulty choosing the correct signs (Hasan).
Focusing on finding equality, they all can be said to be at the process level. (Reverse

process).

The comparison tool was helpful and no students had doubt or confusion using it to
compare cups and interpret equality based on the comparison. The inquiry included
the following questions in order: “Did you compare? Did it become equal or not?”,
“Which two cups do you compare?” “Then, are these cups equal or not?”. These
questions firstly pay attention to measurement tools to make students interpret
equality, then change focus from measurement tools to measured cups to match

comparison results to the relation between cups.

From the very beginning of the lecture, some students (3 out of 8: Aylin, Medine,
and Yaman) showed their capability to transfer their knowledge of equality into this
new context of the volume. All got fluent in interpreting equality in this lecture, after
going through the following steps;

- compare volumes by tool (cylindrical cups)

- verbal expression of equality

- reporting by placing sign between cups. (Algebraic iconic representation)
- focusing on finding equality (Reverse process)

- showing equal cups by iconic representation

These stages represent what students could do gradually, also pointing out the flow
of the lecture. Guidance took place to make students encounter all of the steps. Going
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through these steps, they succeed in the mentioned indicator behaviors addressing
the process-level understanding of equality in a volume context. These behaviors

evident from the data are summarized in the below figure.

Mental Constructions: Indicators:
Equality
Use signs to represent
volume comparisons
@ fluently (in enactive or
Equal/ iconic mode)
Use signs in new contexts:
unequal . o
_ q e > | volume without reminding
signs algorithm
Reverse process:
Finding equal capacity cups

Figure 4.7. Schema for Learning Equality in Lecture 3

Variables

The volume serves as a new context for understanding quantity after weight context,
which is expected to lead to process-level understanding. However, in the weight
context, students confused weight and size for iconic representations, which shows
they have difficulty conceptualizing quantity from the object itself. Hence, in weight
context, quantity preserved action level progress. In volume context, no student had
difficulty relating measurement results to objects being compared. Moreover, by
interpreting results iconically, they were not misled by the size of the cups. Directing
students to discover equality between different cups may be one of the reasons, for
eliminating cups being the same or not in the first place of choosing cups to compare.

After comparison, relating measurement to cups and interpreting based on the
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measurement was not difficult for them (except for one student, Hasan) after
guidance. Most of them (5 of 8) became fluent in these interpretations, while the
others correctly interpreted by guidance, showing they had no problem
understanding what they were comparing and interpreting. The volume context

seems to address the concept of quantity more effectively.

When envisioning volume as heights in identical cups, it becomes clearer that one
side is bigger compared to the weight context, where some students mistakenly
assume that the higher side is bigger. Another reason for conceptualizing volume as
quantity stems from the use of measurement tools. These tools do not directly
compare objects but rather their capacity, such as the amount of salt they hold. Thus,

capacity is distanced from the object itself.

Besides all this, this activity indicates an action level for quantity, as it is still in
progress (until we observe reverse process thinking on quantity through “based on
what?” questions for equality). Only one student (Ufuk) expressed “capacity” for
interpreting the equality of cups. This lecture, while introducing a new context, does
not guarantee advancement in the quantity concept but still contributes to

constructing an understanding of quantity as a measure of comparison.

Mental Constructions: Indicators:

Variables

Use capacity of cups as a
measure to compare

@ objects

Interpret (iconically)
Quantity @ __w| equality of cups based
—_— on their capacity when
guided

Figure 4.8. Schema for Learning Quantity in Lecture 3
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Volume context needed more investigation and discussion. Motivation for finding
equal cups prevents students from trying different shapes. They choose similar size
cups, mostly based on height or precisely small cups to small cups. Hence, they miss
opportunities for finding equalities for different shapes. To prevent this problem,
activities can be more structured to satisfy certain comparisons. The investigation
was not structured, but through guidance, students were directed to compare the
capacity of wider to taller cups. The results of the comparisons could be discussed
deeper, based on size, height, and volume. This would distinguish volume as a

quantity measure from size.

The material used (salt) is continuously manipulable, but the comparison is between
fixed quantities (capacity of cups). Even if quantity is nonmanipulable and fixed,
creating that amount needs continuous manipulation. Filling of the salt and pouring
reveal continuous change physically, which will add up to students’ experience and

envision.
Notation

Volume context empowers iconic representation as the measurement procedure
separates the measurement aspect from the measured objects. We measure the
volume/capacity of cups by the salt they contain, then interpret iconically using the
objects themselves: cups. When interpreting comparisons by icons, what is referred
to is their attribute of them. Moreover, the measurement tool lies in differences in

quantity. In weight context one side is heavier, but not apparent as in volume context.

Even the majority of the students (7 out of 8) could use signs perfectly on enactive
mode without reminding (process level on enactive mode), 4 of them carried it to the
process level of iconic representation. In contrast, four others needed guidance or
reminding for iconic representation till the end of the lecture. Hence, this activity is
assigned to be action level for interpreting iconically in a volume context. Even
though some (3 out of 7) students could transfer their knowledge on equality in
volume context in enactive mode, only one of them was automatically representing

iconically (own, without guidance) from the beginning (She was also the only one
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who could iconically represent in weight context by reporting comparison results of
one equality and one inequality on the table without hesitation.). Others needed
repetition and encouragement for representation in iconic mode to actualize it or
become fluent in it. Directing to find equal cups was one of encouragement for iconic
representation (Medine, Aylin, Ekim). Inquiry for anchoring measurement to the
compared objects is another method for stepwise teaching of the iconic
representation. Stepwise inquiry consisted of the following questions: “Which cups
did you compare?”, “Were they equal or not?” “Which sign did you choose to put
between the cups.” These questions aim to connect cups to measurement, then
measurement results to the relation between cups. At last, the chosen sign is placed
between cups, working as an iconic representation of capacity and volume. An
additional template would be helpful for iconic representation where students can
place their compared objects and sign the resultant comparison. In further lectures,

it is planned to place templates as much as possible.

Guidance for the iconic representation relied on starting with enactive representation.
The researcher assumed that iconically interpreting the relation between cups (using
the cups) is trivial. However, the struggle of some students or their tendency to put
signs on the measurement tool proved it to be non-trivial. (In this lecture, the
cognitive connection of measurement results to the objects was sufficient. It became
more complicated in >, < signs in volume context in symbolic mode, where the

kindergarten teacher’s step-wise inquiry helped more.)

The following lecture would be on reporting, reading, and checking each other’s
reports in symbolic mode. It moved forward for three reasons. Firstly, they learned
about iconic representation. Iconic representation was not as straightforward as we
thought. Hence, symbolic representation requires extra time at a later time after
students strengthen their understanding of iconic representation (at least process
level). Secondly, using only unequal signs has a higher probability in a volume
context, as experienced in the first half of the lecture. This can make all reporting
monotonous, and checking the reports will consistently result in correct inequality

findings. The inclusion of >, < signs would be more meaningful and interesting.
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Lastly, reporting and checking peers’ reports activity would be revisited after >, <
signs are taught. Repeating the same activity decreases their enthusiasm. It is better

to delay, as the former activity would also comprise this one.

Mental Constructions: Indicators:
Notation
Relate comparison result to
capacity of cups or relation
@ — between cups
Through guidance interpret
lconic / equality iconically in volume
context (put sign between
mode cups based on the result of
\ comparison on the tool)
D

Interpreting relation between
fixed quantities (cups) in
iconic mode of
representation fluently in
volume context.

(automatically representing
iconically (own, without
guidance) from the
beginning: transfer
knowledge iconic mode
representation in weight
context to volume context.)

Figure 4.9. Schema for Learning Notation in Lecture 3

Interpretation of equality in iconic mode requires “based on what” thinking, as
putting signs between cups is based on their capacity, not based on size or height.
However, until we observe reverse process thinking on quantity through direct

“based on what” questions for equality, we cannot deduce students have a proper
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understanding of quantity in their interpretations. They may be one-to-one projecting

their representations. Half of them were fluent and showed no hesitation. They seem

to be interpreting consciously based on the capacity of objects. Iconic representation

contributes to the understanding of quantity.

43.3

Design Principles for Lecture 3

Equality

The teacher can guide students to compare certain kinds of cups so as not to
miss opportunities to find equalities for different shapes. However, first
classes are recommended to be less structured, so by getting more exposure
to manipulatives, students may connect the physical world to mathematical
deductions.

Finding equality should be a part of the activity to support reverse process
thinking and also improve motivation for investigations.

By being restricted to choosing different cups that seem equivalent to see if
they are equal, students are oriented away from choosing the same cup and

seeing that it is unequal due to measurement errors.

Variables

Using a tool to measure volume changes a 3D variable (volume) to a 2D
variable (height) for comparison. (regarding the readiness test on Piaget’s
conservation theory). However, interpretation should be based on the
capacity of the cups.

Focusing on finding equal cups, students tend to compare similar-sized cups.
Structured inquiry can improve investigations to compare certain cups with
different shapes, such as those that are wider or taller.

The volume context elevates understanding of quantity. For students, volume

is a new attribute that is unpredictable from appearance. Comparing one
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volume to another reveals its superiority, which distinguishes it from merely

being an attribute to representing a magnitude.

Notation

Stepwise inquiry should connect comparison results to the relation between
compared objects through questions such as “Which cups did you compare?”
“Were they equal or not?” and “Which sign did you choose to put between
the cups?” Interpretation of the relation between objects based on volume
forms iconic representation.

To support iconic representations we can form templates, where they can
place their compared objects and sign the resultant comparison. It is
recommended with the teaching of equal and >, < signs together. It will work
as a reminder algorithm tool till it gets automatic.

Finding equality not only encouraged investigations but also created a natural
motivation to use iconic representations to show their findings to teachers.
Being inexplicit based on shape, volume context necessitates iconic

interpretation.

Materials

4.4

Having different shapes but equal volume cups helped with experimenting
but did not guarantee equality due to measurement error.

Having equal cups with different colors helped in discovering equalities.
Comparison tools can be non-sectional to prevent oversensitivity for

comparisons to reduce measurement error.

Results of Lecture 4

This lecture took place in the second week. It is the introduction lecture for >, <

signs. After using>, < signs for simple object comparison, the lecture continues with

weight context. Investigation and discussions took about 50 minutes long. nine
students out of 10 attended class. (Aylin did not attend).
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441 Plan of Lecture 4

To teach how to use >, < signs to interpret inequalities, this lecture is planned around

the following objectives in the first HLT.
Planned objectives:

1. The student interprets inequalities with greater or smaller relation.
2. The student uses >, < signs to interpret relations.
3. The student interprets (verbally) how to make equality from greater

or less than relations.

The first two objectives aim for action level for >, < sign use for interpreting
inequalities, while the third objective is for the pre-action stage for addition and
subtraction operations through verbal interpretation as increase/decrease. Each
context is centered around equality and how to make things equal from Davydov’s
perspective. If not equal, discussion on how to make it equal prepares students for
further operations topics. (While teaching operations, discussion on how to make
equal facilitates properties of operations.) This lecture is planned to discuss how to
achieve equality, through verbally interpreting as increase/decrease, by examples of
balloons and apples. However, before verbal pre-action on the increase/decrease, we
studied it enactively, with a balloon example in the second lecture. Enactive pre-
actions appear essential and less demanding/challenging than verbal pre-actions. The
balloon example was successful as being an analogy for increase/decrease. Students
have control over balloons to make them equal. In the apple example, there are two
apples then one is bitten, and then the other one should be bitten, too, to make it
equal to the first one. It seems a good analogy to enforce decrease/subtraction with
an equal amount. However, students at this age have difficulty accepting the equality
of two objects (pilot and first lecture results). Hence, the apple example is removed.
Through the balloon example, 3rd objective has partially been accomplished in 2"
lecture. Lecture 2 objective #3 is: “manipulate (increase/decrease) one side for the

satisfaction of equality in part-whole activities,” and Lecture 2 included
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demonstrations with two balloons at the beginning. Some students already could
interpret increase/decrease verbally in the balloon example, and play dough activity
in 2" lecture. Verbal interpretations would require extra challenge for students in
this new topic. Hence, 3" objective is omitted for this lecture, delayed for
introduction to operations. This lecture focuses on interpreting bigger or smaller
objects verbally and with algebraic signs. The following objectives define the revised

aims of Lecture 4:
Revised objectives:

1. The student interprets inequalities with greater or smaller relation.

2. The student uses >, < signs to interpret relations.

Interpreting inequality with new signs, the lecture starts connecting new signs to
unequal sign. For this reason, students are expected to represent simple object
comparisons with equal and unequal signs, which they knew before, and then
presenting new signs, students are asked to replace unequal signs with these new
signs. Actually >, < signs are provided to students as single signs, which are twisted
to place in the proper orientation. At this age, students do not know how to read
words or expressions from left to right. We did not teach equal signs with orientation
as well. We did not say, “This is equal to this,” but “These are equal (to each other),”

emphasizing balance.

The lecture follows a structured path for replacing unequal signs, connecting to
previous learning, ensuring the use of inequality, and aligning them all in the
discussion of the replacement of signs. Finally, the use of signs is continued with a
weight context, as in every topic we learn. Moreover, the weight context promotes

quantitative comparison for inequality situations.
Lecture flow:

1. Presentation of new sign >, < for indication of bigger and smaller.
2. Student finds objects based on given sign =, #, based on size.

3. Inquiry into which signs we can use for equality and inequality situations.
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4. Students use >, < sign instead of # sign to interpret comparisons of discrete
objects based on size.

5. Students interpret weight comparisons by >, < signs.

This last step also helps to understand which side is heavier. The previous lecture
addressed the lack of experience in the physical world of comparing weight. This
step takes students one step back for condensation on weight comparison and
interprets which side is bigger. It also teaches how to interpret being bigger based

on weight.

While teaching >, < signs at the action level, this lecture uses =, # signs.
Replacement of unequal signs needs reflection upon it. However, only one
student could achieve this, which will be described in the theoretical findings.
Hence use of =, # signs does not necessarily indicate an object-level
understanding yet. Lecture flow stimulates following APOS level learnings;

Action >, <, Process =, #

1. reverse process =, #, (find objects)
2. action <, >: interpretation of inequality with <, > signs
3. action to process <, >: interpretation of inequality with <, > signs, in new

context: weight

442 Theoretical Findings of Lecture 4

Action level inequality:

This lecture successfully teaches >, < signs at the action level. Only two students had
difficulty carrying out the algorithm (Ekim, Medine). One of them (Ekim) had poor
attention and was ignored due to her unwillingness. However, her loss of motivation
seemed to originate from her poor understanding of quantity. She does not interpret
equality relation between two objects based on any attribute related to volume,
height, or weight, but limits herself to comparing the size of some parts.
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R: What is bigger, Ekim? (according to what)

E: The circle is bigger. (There are two wooden blocks: a cylinder and a square
prism. She points out that the circle's surface is bigger than the square's, but
there is no significant difference in size between them.)

R: Have you looked at their heights?

Ekim shakes her head, meaning no.

R: Look, their heights are the same.
To overcome these problems, structured comparisons can be created by limiting toys.
For example, toys of the same kind or similar shapes but different heights would
initiate comparisons based on height.

Another student’s (Medine) struggle was with the orientation of the sign. Previous
sign interpretations depended on only choosing the correct sign, but now she needs
to interpret relation by the orientation. Moreover, she had difficulty seeing the sign
as a static object. Teaching which side is bigger and which side is smaller by actions
did not work for her, while others had no trouble. She moved the sign like a paper

plane to interpret relations; the sign worked like an arrow indicating an action.

Seven students could carry out the algorithm of using >, < signs to interpret relations
based on size or weight. Three of them (Ufuk, Yaman, Ali) became fluent, and two
(Yaman, Ali) of which were preferring unequal signs sometimes. We can conclude
that this lecture not only served for action level but also supported process level
understanding for some of the students. The lecture level is determined as action due
to the majority's understanding, which needs support and reminding in the algorithm.
Two students (Eylem and Hasan) had difficulty transferring the knowledge to weight
context. The difficulty was not because of understanding the interpretation of the
relation with the signs but determining the heavier, bigger side in weight context.

Asking, “Which side is heavier?” helped them correct immediately.
Inquiry for teaching algorithm of using <, > signs is as follows:

- Find objects based on previously learned signs (=, #)

- Which signs are appropriate for the situation? Discuss inequalities.
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- Interpret bigger and smaller sizes for inequalities.

- Replace #, with >, <signs

However, when it came to replacing the unequal sign through discussion, only
Yaman was successful. Yaman is interested in numbers and arithmetic. From the
very beginning, his arithmetical abilities hinder equality with non-numerical
quantities. For being equal or not, or being smaller or bigger, he has numerical or
quantitative reasoning in mind rather than the shape or properties of the objects
compared. The sentence is mostly correct, but it could be improved slightly for
clarity: The others might not develop the concept of equality solely based on
quantity, or they might think only one answer can apply to a situation. However, it
seems they just acquired it as a new concept independent from the previous ones.

Despite his successful understanding of the signs conceptually, Yaman preferred
using unequal signs. Restrictions for signs might regulate acceptance of the new
signs. But this stage needs clarification of the replacement conceptually. Whereas
most of the students could not understand replacement, rather than restricting signs,
students were guided to verbally interpret which object was bigger when they used
unequal signs. Then, they are directed to use newly learned signs to indicate the
bigger side. Interpreting bigger or smaller object based on an attribute, not only
indicates their understanding of quantity but forms a pre-action level being a
prerequisite for the interpretation. Together with the notational orientation, an
algorithm for the interpretation of the new signs is accomplished. Orientation of the
sign demands reminding its algorithm, standing as a distinct ability/knowledge.
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Mental Constructions: Indicators:

Equality

Verbal-action:
pre-action — 5 | interpretation of
bigger or smaller
@ / side
—

Use of sign interpreting
inequality, by reminding

T algorithm (orientation, or
connecting to verbal

interpretation)

Greater/less

than signs

\ Fluent interpretation

Transfer to new situations
or context

Figure 4.10. Schema for Learning Equality in Lecture 4

Weight context did not guarantee process level being new context, but supports
action level as it indicates one side being bigger. Additional restricted contexts for
example height could be helpful. Moreover, it is a difficult context to interpret the
bigger side. Not guarantee the process but it satisfies the action level enforcing

algorithm on quantities.

All of the students were fluently using =, # signs interpreted equality for different
attributes of objects, could do reverse-process, and they could relate inequality with
new signs >, < which shows they can compose it with other processes (Dubinsky &
Mc Donald, 2001). Only one student (Yaman) could reflect on the use of >, < signs
instead of inequality. That might be an indicator of his object-level understanding of
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equality relations. Other student's use of inequality sign in unequal situations hinders

using equal/unequal signs.

R: Very good, well done. Now listen to me. You found that these two shapes
are not equal, Medine. Yaman, listen. Did you find them to be equal? No,
you found they are not equal. Well done, Yaman. Now, can we put an equal
sign between these two shapes?

Students: No.

R: Why not?

Some students: Because their heights are not equal.

R: Yes, exactly. It means they are not equal, so can we put this sign? (unequal
sign)

Students (all): Yes.

R: Can we put this sign? (greater/less than sign)

Students (all): No.

Yaman: yes

R: Yes? Yaman, why yes?

Yaman: Because one side shows small, and the other side shows big.

R: Yes, indeed. (all the students are shocked, especially Eylem) We have a
big side and a small side, don't we? But not everyone may have it. Medine,
do you know which one is big and which one is small?

Medine: This one is big.

R: That's right. So, can we put this sign between them?

Medine: No.

R: Why not?

Medine: Because they are not equal.

R: They are not equal, that's correct. But one is big, and one is small. Which
one can we use to show which one is big? Let's everyone take this sign, and
hold it in your hand. Show the big side to the big side and the small side to
the small side. Put it between the two. Let's see, put it between their pictures.
Some students: | did it. (Medine, Eylem, and Ali put the sign unattentively,
and Yaman put it correctly)

Yaman was a little bit cautious about using new signs after this conversation. His
level of consciousness in his reply was obvious from his gestures and consistent
throughout the lecture. He is one of the students who considers quantity in
comparisons rather than shape and always uses the sign in the correct orientation.
Using unequal signs, and greater-less than sign alternatively was not challenging for
him. For some students, it was difficult to use signs to indicate the relation between

sides, but they were matching situations with signs. For these students, guidance for
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the orientation of the signs takes extra effort, specifying an extra level of

understanding.

In addition, the lecture allowed some specific mathematical deductions while
students were freely experiencing. Eylem compared herself to friends based on
height and put signs between them. She said, “I am bigger than you and bigger than
you. So, you two are equal, but I am bigger than both of you”. It was a wrong
deduction, but it showed she had conservation on quantities and could relate three
quantities in a row using the newly learned signs. She was using newly learned
correctly in her own created situations. However, the weight context challenged her
to transfer new knowledge. (Eylem’s incorrect algebraic intuition: a>b, and c>b =>

a=c>b)

Another mathematical intuition aroused from Bekir’s experimentation with weight
balance on which he likes to experience additive relations. After composing a
relation of a+b=a+b on the balance scale using two types of identical toys, he added
another toy to one of the balance pans and immediately concluded that a+b<a+b+c.
He knew how to change equality and how the result will be affected. He did not
forget to interpret the result with new learned sign <. (Bekir’s correct algebraic

intuition: a+b=a+b => a+b<a+b+c)

Allowing various materials and giving sufficient time throughout different contexts
provided students with experience and discussed equalities and inequalities in

multiple aspects associated with quantity.
Variables

In the first part of the lecture, students are free to choose attributes of objects for
comparison. Still, choosing an attribute defining a quantity was problematic for some

students (Ekim). Size and height were discussed in the comparison of simple objects.

In the second part, comparing based on a pre-determined attribute weight is more
appropriate for focusing on the quantity. However, the weight context has its
difficulties. For Hasan, defining heavier as bigger was complicated. When placing
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>, < signs, he considered size rather than weight. Some other orientation problems
(Ufuk) might address the same difficulty. Another problem with weight context is
that it might be complicated for some students to determine the bigger side without
guidance, as in Eylem’s case. When thinking about the bigger side, she automatically
considered a higher balance pan. Weight context ensured quantity comparison. Due
to difficulties and students’ inexperience in weight context, starting teaching of >, <

signs structured around height context would be more apparent beforehand.

In both parts, comparison is between discrete and non-manipulable objects. The first
part was confusing in quantity. However, in the second part, not only weight context
aided focusing on quantity, but in contrast >, < signs helped to clarify the quantity
concept by focusing on one side more. In other words, it is a double side benefit,
based on the student's difficulty. Weight context provided natural context for these
signs, while signs helped students who had difficulty understanding quantity in

weight context.

In previous lectures, students could see quantity differences as images in a volume
comparison context. Hence, we assigned the previous lecture for action level of
quantity (comparison). In this lecture, it is not only observed visuals but also students
interpreted quantity comparison verbally and algebraically by the use of signs,
indicating in “one is bigger” relation. For the comparisons, not being the same or
not, but being bigger or smaller became the aspect, which will be turned into more
or less relation in the volume context in the following lecture. Not only through the
attribute contexts but also in the equality relations, quantity knowledge improves and

evolves.
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Mental constructions: Indicators:

Variables :
Interpret relation

between fixed quantities
with smaller or greater
@ relation verbally and

enactively.
. g y
Quantity
E—

Figure 4.11. Schema for Learning Quantity in Lecture 4

Notation

This lecture recommends only using enactive mode in notation; students put signs
between objects or on a balance scale in weight comparison. They were all enactively
notating the relation between quantities with equal and unequal signs. Sometimes,
they needed to be reminded to use new signs in their comparisons (Ali, Yaman,
Bekir). Some (Hasan, Didem) needed a reminding algorithm for the orientation,
which side shows bigger, which side shows smaller. Some of the students became

fluent in the use of new signs (Bekir, Ufuk, Yaman, Ali).

Big and small are not new concepts for students. However, the interpretation of signs
is complicated, as observed. Hence, it is proved to be a good decision that this whole
lecture is dedicated to new sign and their connection to inequality. If it also included
how to make equal progress as it was in the first plan, it would be difficult and would

not fit in a day lesson. (Also, it is due to the difficulty of comparing weight.)

Orientation of the sign demands reminding its algorithm, standing as a distinct
ability/knowledge (Ali, Ufuk, Medine). These students having difficulty in
orientation seem to choose signs based on the situation, not to relate or connect the

sides. Thus, they may even place a sign pointing upwards.

142



Explanation of the sign played an important role in how they used it. There are no
two signs: >, <. There is only one, and it is dynamic. First, it was planned to include
two static signs, and students would show off with two banners. At the beginning of
the lecture, when signs are introduced, students would choose the sign and hold up
the banner based on the situation given. However, the interpretation is confusing by

matching. The single sign was adequate and comprehensible.

The researcher tried teaching signs as actions based on previous class findings, which
showed that teaching equal signs as actions worked.
R: What am | doing to show this? I am holding the big side to the big, wide-
open side. It is showing the small side; it is getting smaller and smaller,

showing the small one. Here is the small side. Then it gets wider and wider,
showing the big one. Did this confuse you a bit?

Ekim: Yes.
Aylin: No.
Ekim: My head is spinning.

Especially this type of kinetic explanation confused Medine;

R: How will we show with the big-small sign? Show it to the big one.

Medine: This one is getting smaller and smaller. It becomes small. Then it
goes like this: bigger and bigger.

R: Medine, it does not move like this; it stays like this. The big side shows
the wide one. This side has shrunk and become small. This shows the small
side. Our sign will stay like this, okay? Now, let us see, Ufuk ....

Following a static explanation of the sign, which matches objects to the sides (point
on corresponding sides, not decrease), worked better;
R: They are not equal, but one is big, and one is small. We can use this big-
small sign to show which one is big. Let everyone take this sign, hold the big

side to the big side and the small side to the small side, and put it between
the two. Let us see, put it between their pictures.
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443

Design Principles for Lecture 4

Inequality

Provide all signs learned and do not restrict choice. Previous knowledge of #
signs may prevent/hinder the use of >, < signs. However, it will strengthen
the relationship between the two, when included and discussed together.
Appreciate the use of unequal signs when appropriate. Then, by inquiry,
make the student verbalize which side is bigger, ask whether >, < signs are
appropriate, and encourage to interpret with >, < signs.

Replacement of unequal sign with >, < signs is complicated because
inequality did not solely develop on the quantitative reasoning up to now, or
students may believe only one answer applies to a situation.

Quantity

Even discussed in previous lessons, quantity could be underestimated or not
attended by students for comparisons. Inquire into their thought when
expressing inequalities and how they connect them to the newly learned >, <
signs. Based on the algorithm, they will compare objects and put signs in
between based on the quantity. However, they will need to consider quantity
to compare objects (to set up a comparison) to use these signs. It seems that
learning this new knowledge builds on the previous knowledge of quantity.
Indeed, it provokes quantification in comparisons, proving the importance of
the subject in the trajectory.

Learning of <, > signs and how to use them to interpret the relation between
quantities is challenging enough that a lecture should be dedicated to it. No
additional inquiry on “how to make equal” is applicable unless students
become fluent in the use of these signs.

Weight context creates extra difficulty in determining the bigger side. Do not
question the bigger side or heavier side, but the question “Which has bigger

weight” in inquiry to connect the weight to being bigger. Besides difficulties,
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weight context generates satisfactory circumstances to discuss quantitative

relations in comparisons.
Notation

- Teaching signs as static objects, which have corresponding indicator sides
for being smaller or bigger, deserves dedication of sufficient time and effort.
Static explanation of matching sides of the sign to compare objects (“wider
side shows bigger one, narrow side shows smaller one”) is mathematically
compatible and creates long-term knowledge.

- Systematically remind notation for comparisons, even for reverse-process
activities. Verbal interpretations for their interpretations should be requested
to understand and underly their thoughts and develop mathematical language
for equality and quantity concepts.

- To focus on one learning at a time, iconic representation for weight context

delayed for its complexity. Enactive notation keeps it simple and focused.

45 Results of Lecture 5

The previous lecture was introductory to interpreting inequalities with >, < signs
with simple object comparisons, and additionally in weight context. This lecture
continues the use of >, <sign in volume context. It has two main parts: interpretation
in symbolic mode, reading peer’s reports, and checking by enactive investigations.

Reporting took about 35 minutes reporting, while checking reports took 15 minutes.

All ten students attended class. Aylin did not attend the previous class, the
introduction on >, < signs with simple object comparison and weight context. She
learned these signs in this lecture in volume context for the first time with a little

individual introduction. She was a quick learner and did not face any difficulty.
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45.1 Plan of Lecture 5

This lecture aiming process level in the use of >, <, = signs and continues with
volume context. We started symbolic representation with equal unequal signs in
Lecture 3, which stayed at the action level. We continue with additional >, < signs
for symbolic representation and aim to carry it to the process level, including the
reverse process of symbolic representation immediately after. Hence, it includes two
stages of activities: symbolic representation of three comparisons in volume context

and reading and checking peers’ symbolic representations.

Reporting and checking back was planned earlier with using only equal and unequal

signs for the fourth lecture:
Obijectives for symbolic representation in the first HLT:

1. The student reports comparison of volumes of objects symbolically on the
paper with =, #signs.
2. The student reads symbolic interpretation of equality and inequality and

checks it with concrete objects.

We thought reading and checking back symbolic representations would be more
meaningful, including >, < signs. Reporting volume with >, < signs was planned to

be in transitivity concept in the first HLT.
Obijectives for using >, <, = signs in volume context in the first HLT

1. The student uses >, <, = signs to interpret the comparison of volumes of
cups.
2. The students use two relational interpretations of three cups to guess the

third relation (transitivity property).

Symbolic representation and transitivity concepts are both problematic concepts that
deserve the dedication of separate and sufficient time. Mainly, the transitivity
concept was found to be challenging in pilot studies. Hence, transitivity will be

handled longer and in a more structured environment. Measurement errors in volume
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context would create divergencies and problems for stability in class for correct
answers and deductions for transitivity. Hence, it should be structured around
obvious experimentations. Additionally, symbolic representations should be
understood for deductions of transitivity, as it appeared in Davydov’s book
(Davydov et al., 1995). Supporting symbolic representation before the transitivity
concept is more meaningful. Moreover, the transitivity concept is decided to be
placed after the ordering concept in the learning trajectory, as a pilot study shows
that ordering inquiry is the only working strategy we discovered. In this lecture,
symbolic representation plays a central role, together with its reverse process:
reading symbolic representation. Reading algebraic representation means deducing
meaning from the written expression. Checking its correctness works as the reverse
process of the algorithm of comparing objects and interpreting equality between
them. Volume context creates the perfect environment for symbolic expressions.
However, it requires considerable time, as students cannot get fluent even in iconic
representation the first time they encounter volume context (based on Lecture 3
results). Hence, we decided to handle symbolic representation with volume context
and transitivity in a separate time. Briefly, supporting process level understanding in
using >, <, = signs in volume context for developing symbolic interpretation and
promoting reverse process in symbolic representation; Lecture 5 is constructed
around the following objectives:

Revised objectives for Lecture 5:

1. Report: The student interprets the comparison of volumes of cups by >, <, =
signs symbolically on paper by using pictures of compared cups as letter
notation. (symbolic representation)

2. Read report and check: The student reads/uses a symbolic representation of
a peer’s comparison and checks with manipulatives if the comparison is

valid. (reverse process for algebraic notation in symbolic representation)
To acquire these objectives, the lecture proceeds in the order below:

1. choose two cups and compare volumes with the help of identical cylinders.
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2. use pictures of cups to represent comparison symbolically on paper.

a. place cups near corresponding cylinders. (If necessary for the student,
step back for enactive representation; place sign between identical
cylinders.)

b. place sign between cups (iconic representation)

c. place pictures of cups near corresponding cups.

d. carry sign between pictures

e. stick pictures and signs on paper for reporting

3. repeat comparison and reporting three times
4. change reports with peers

5. peers check comparisons by cups based on peers’ reports

2" step is extended after classroom implementation. We thought symbolic
representation would be straightforward because representative cup photos seemed
clear. However, representing the relation between these photos was challenging for
students. The kindergarten teacher developed major steps from “a” to “e” to help
students relate compared amounts to the pictures of cups. The reportage was not

tricky once this connection was acknowledged.
Trajectory:

- discrete/fixed quantity comparison of a continuous variable (volume)
- iconic representation of >, <, =
(process >, <, =, new context: new variable volume)
- symbolic representation of > <, =
- read the given symbolic representation >, <, =
(reverse process, algebraic/symbolic notation)
- model the given symbolic representation with a real-life experiment

(reverse process, algebraic notation/ equality
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45.2 Theoretical Findings of Lecture 5

Equality

The majority (8 out of 10) of students are capable of fluently interpreting inequality
relations with >, < signs, demonstrating that this lecture supports process-level
learning of using >, < signs in representing inequalities with new context volume.
Four of these students were immediate in representing without help, showing they
were already at the process level and successfully transferring previous knowledge

to the new context.

The remaining (2 out of 10, Medine & Ekim) had difficulty using these signs
correctly showing they are still at the action level of using them. Both struggled to
remember to use sign independently and needed guidance and reminding. Unequal
signs might still be hindering them (Medine), which also evidences their level.
Reminding the “wider side to bigger object algorithm” or inquiry into which side is
bigger, pointing to the sides of the signs, helped them remember. Step-wise inquiry
connecting bigger objects to bigger/wider sides and smaller objects to narrow sides

took attention to see the signs as static objects having particular sides.

Not only using >, <, = signs in new context volume, the process level is supported
through the transformation of representation modes because the process of using
signs is composed with the process of symbolic notation. In the reporting procedure,
when enactive representations are transferred into symbolic representations, students
need to use these signs. In reading reports for checking, they reverse processes using

signs.

The following schema gives mental constructions for greater/less than signs for
Lecture 5 (see Figure 4.12).
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Mental Constructions: Indicators:

Equality
@ Fluent use of signs in
volume context
Greater/less ___» | Reverse-process: Read
thansigns | — algebraic expressions,
deduce meaning, check in
real-life situation

Figure 4.12. Schema of Learning Equality in Lecture 5

Variables

Volume is a continuous quantity, but again, we work with fixed quantities. The
challenge about quantities in this lecture is that it is conserved through modes of
representation. Representing interpretation based on the quantity type can be
problematic for some students. Quantities are transferred through representation
modes through step-wise one-to-one projection guidance. In reading reports,
students need to interpret the relation between quantities verbally. Didem forgot all
the processes we go through for volume comparison and assessed the peer’s report

based on size.

Verbal interpretations are essential at this stage to observe students’ deductions based
on the reports. If a student reads symbolic relation as “this one takes more” verbally,
we can conclude that he/she is considering the volume/capacity of the cup in the
picture. “This one is more” response is also acceptable. However, if he/she says,
“This 1s bigger,” he/she might be considering the size. Students should be questioned
and guided if the deduction is valid based on the size but not volume (as in Didem’s
case). These interpretations not only give clues when checking reports but also in the

interpretation of relations in different modes. These types of verbal interpretations
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give clues about their transfer of quantity. Students tend to depend on size rather than
comparison in iconic modes (previous findings from Lecture 3), possibly in symbolic

modes.

Mental Constructions: Indicators:

Variables

Consider volume when

Quantity interpretig symbolic
— ——» | algebraic expressions.

Figure 4.13. Schema for Learning Quantity in Lecture 5

Notation

This lecture is assigned to be teaching action level for symbolic representation of >,
<, = signs in volume context, as it is planned to be. 4 of the students (Ekim, Medine,
Yaman, Ali) constantly needed step-wise inquiry to construct symbolic
representation, proving that they are at action level. 2 of them (Ekim & Medine) had
difficulty in determining >, < signs also. Five of the ten students (Eylem, Didem,
Ufuk, Bekir, Hasan) improved the process level for symbolic representation after

guidance for only reporting the first comparison.
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Mental Constructions: Indicators:

Notation Construct symbolic
represeantation based on the

comparison, by the help of
_—» | step-wise guidance from
@ enactive to symbolic or
from enactive to iconic to

) symbolic modes
Symbolic

mode

Interpreting relation

T~ | between fixed quantities
(cups) in symbolic mode of
representation fluently in
volume context.

Reverse process: read
symbolic representation and
check by enactive
investigation.

Figure 4.14. Schema for Learning Notation in Lecture 5

The researcher tried to connect enactive investigation to symbolic representation by
bringing representative pictures and asking relation between them based on the
comparison result. This guidance does not involve iconic representation. The
kindergarten teacher’s strategy of stepwise inquiry to go from enactive to iconic, and
iconic to symbolic representation worked better. The stages for this step-wise inquiry

are summarized below:
Enactive to symbolic representation stages:

a) place cups near corresponding cylinders. (enactive)

b) place sign between cups (iconic)
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C) place pictures of cups near corresponding cups. (match picture (algebraic)
notation with iconic representation)
d) carry sign between pictures (reflect iconic to symbolic)

e) stick pictures and signs on paper for reporting (full symbolic notation)

One student (Aylin) needed no guidance, and she was immediate and auto for
symbolic interpretation after photos of the cups were provided to them. She had
conservation of amount based on Piaget’s testing, which might be the reason that she
easily connected pictures to amounts in comparison without receiving a step-wise

algorithm to connect these two.

For the second part of the lecture, checking reports back: two students (Aylin and
Bekir) were immediately reading and checking reports without guidance, and one
student (Hasan) became fluent in checking reports. Two out of 10 students (Medine
and Ekim) had difficulty reading symbolic representations. Medine could read
interpretations by guidance through row by row. The reverse process of symbolic
representation flowed from the symbolic to the enactive mode in the following order

(reversing the kindergarten teacher’s strategy);
symbolic to enactive:

a) read symbolic representation
b) put cups on symbolic representation (iconic)

C) test by comparison (enactive)

45.3 Design Principles for Lecture 5

- Guide students through the connection between representation modes, as it is
not obvious for them to represent quantities with symbols, even if they are
pictures of the objects they represent. A row that guides from enactive to
iconic and then iconic to symbolic is suggested, which they could easily see
without skipping any stage or representation modes. Even when reading

reports and checking for correctness, include all stages in reverse: symbolic
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to iconic (simply by putting cups on the representation), then iconic to
enactive.

Reporting and checking back reports can be conducted one by one to prevent
confusion in reading symbolic interpretation. Focus on one algebraic
expression at a time. Then, repetition of these procedures helps students
become fluent.

Encourage students to use signs in each procedure; even when they assess a
peer’s report, ask for correct notation.

Encouraging verbal interpretations is also essential to make students connect
equality to algebraic representations and focus on the quantities in their
comparisons or interpretations. Encourage verbal interpretations of back and
forward processes. In their symbolic interpretations or when they assess
peers’ reports, be cautious about students’ use of quantities, which can be
detected through their verbal interpretations.

Arrange materials carefully. Include a variety of equal and unequal cups,
which are not apparent in size. Appreciate equal results by students’
interpretation and welcome measurement errors. Focus on the interpretation,
not the precision of comparisons, unless there is a logical misunderstanding,
such as not filling measured cups.

For this activity, we can restrict students to using>, <, = signs, as # signs still
appear to be hindering some students. Make sure they understand the
replacement relation between # and >, < signs.

Value the use of all signs. If they stick to one type of representation, peer-
check activity will allow variety.

Representative photos of cups are better in color to match.

For checking the correctness of reports, the “try it” comment is more

understandable and encouraging than the “test it” comment.
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4.6 Results of Lecture 6

Due to pandemic regulations, this lecture was conducted online. The online lectures
continued for 12 sessions. Students were video recorded and individually

interviewed during these lectures to observe their improvement.

This first online lecture is a mid-assessment for previous learning, while it assures
clarification on some complex topics, such as part-whole equality and symbolic
representation based on weight. All ten students attended the lecture; one student,

Bekir, lacked material until the last item. It lasted about 30 minutes.

46.1 Plan of Lecture 6

This lecture is a paper-work activity, which assesses their previous learning on signs,
among the contexts that students had difficulty and which we wanted to revisit. There
are additional or revisited topics in the items we wanted to close up. Naturally, items
of the paperwork have the potential to teach those topics, while we restrict guidance
while they learn to assess their understanding of previous topics. In this way, we
assessed their pre-knowledge of the new contexts or topics, observing their using or
transferring their existing knowledge. Using the same context, or items as in the
previous lectures would be boring and meaningless as we already observed their
knowledge before in that way. New context and topics added to the assessment while
assessing their knowledge did not break the chain we constructed between lectures.
Each lecture teaches new concepts while requiring the use of previous knowledge on
the topic, which allows us to observe student’s level of knowledge. As well, this
lecture functions as an activity and assessment at the same time. The difference is
that contexts and topics are chosen among those we wanted to close up, which will

be explained in this section through item objectives listed below:

1. The student constructs an unknown quantity based on a given algebraic
relation to another quantity by >, <, = signs
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2. The student uses =, # signs to interpret part-whole equality given by
symbolic figures (Lego photos).
3. The student uses >, <, = signs to interpret relations symbolically based on

given representations of weight comparisons.

The first objective is to assess students' use of signs and reverse-process level
indicators by their ability to construct quantities based on the signs and quantities
pre-given to them. There are three parts in the item assessing this objective. In each
part, there is blank space for their drawings of an object, a sign, and a reference
drawing. The first part is a tree; they are expected to draw a smaller one. In the
second, they are provided an ice cream with a cone, which they would draw a bigger
one. In the last one, they will draw a pencil equal to the given one. The construction
of variables in the equation works as an assessment for sign knowledge. It is a reverse
process such as finding objects, but at a higher-level perspective. Now, they draw an
unknown object by given relation: information with comparison to another object
and sign for the result of comparison. (As explained before, the assessment was not
a copy of previous lectures. Because learning is assessed at the process level,
performing in a new context is essential. Hence, drawing objects acted as a new

context (new era) but not a new algebraic concept.)

Construction or imagining for the unknown object is often addressed in Davydov’s
book (Davydov et al., 1995) as it is not only a higher level of reverse-process aim
but also allows students to think about multiple solutions to an unknown. We make
students feel flexible but do not expect multiple drawings/solutions. The variety of
their solutions will be discussed in a later class (see Lecture 11) for a more vital

awareness of multiple solutions.

In the second objective, a problematic topic, part-whole equality, is revisited, also
students’ remembrance of =, # signs is assessed. As decided before, based on the
results of Lecture 2, Lego toys are used to accept parts composing a whole easily. It
was decided to be enactive, using Lego toys, but we could use/deliver only drawings

of the toys. This item also has another implicit purpose: reminding the use of unequal
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signs because it is overshadowed by >, < signs. In this item, students choose the

correct sign among =, # signs for given part-whole relations.

(The first construction item could also be extended, using unequal sign. There was
no item like that in Davydov. However, it can be evaluated for future
implementations. However, it should be studied carefully because unequal may
represent many things that students may consider and ruin being a smaller, bigger
idea. Ordering of those signs is another study topic.)

3" objective is assessment on the use of >, <, = signs in symbolic mode of
representation. Weight context is problematic for deciding which side is bigger;
understanding that the heavier side is lower needs some experience, and more
importantly, reporting the comparison with iconic representation may be hindered
by the size of the compared/weighted objects, as we observed during lectures. In
previous lectures, we used iconic representation for weight comparisons and
symbolic representation for volume comparisons. However, for the first time, they
are expected to represent weight comparison symbolically in this lecture. Another
new concept is that student interprets a symmetric version of the algebraic relation
of weight comparisons. This appears as an experience rather than an inquiry into
symmetry. Hence, in the last item students are provided three different situations of
weight comparison in picture mode (which was difficult to interpret based on pilot
results.). Then, below are representative comparisons where the student chooses the
sign among >, <, = alternatives. Relations are also asked in reverse order to
experience symmetric property. (Verbalizing or discussing this property
conceptually is difficult based on pilot results, so we aimed solely at experience, as

we did in most activities.)

The lecture flow is summarized by the item description and trajectory in the
following. Students were not left alone with the items; the researcher explained one
part of each item without intervening or guiding their response, and they
accomplished each step at the same time.
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Items:

1. Construction: a. smaller, b. bigger, c. equal
2. Part-whole equality: a. equal b. not equal

3. Symbolic representation: weight context a. smaller, b: bigger c: equal

Trajectory

- Process =, >, <: reverse process, continuous variable: size. Construction of
unknown
- Process part whole equality

- Process symbolic representation

Item 1, part 1 Nl

— ’#‘ Uygun isareti yapistir

Item 2, part 1 Item 3, part 1

Figure 4.15. Sample Items in Mid-assessment in Lecture 6

158



4.6.2 Theoretical Findings of Lecture 6

Equality and inequality

Responding to the first item, 8 out of 9 students proved to be at the process level
(reverse-process evidence) using >, <, = signs by drawing objects based on pre-given
objects and their relation to them. No problem occurred in remembering or
understanding the use of signs, but constructing the quantity based on a relation was
a new topic for them. They were all handled successfully. Only Medine had some
difficulty with signs consistently through all items, showing. She appears to be at
action level for the use of signs. Aylin hesitated for the last part (drawing equal-
length pencils); she wanted to write “1”” as a number of pencils because her mother
guided her to do so. (The researcher is careful about mother distractions.) They
drew a smaller tree in the first part without much difference. In the second part, when
they were expected to draw a bigger ice cream on a cone, their drawings varied; some
preferred little change, some drew bigger scoops, and some drew a greater number
of scoops, all consistent with the relation. Varieties were sufficient for discussion on
multi-solution later. Findings on their level of understanding confirm results from
previous lectures, with a difference. Ekim improved from the action to the process
level in using >, < signs. Bekir did not have the material for the first two items,
however, his response on the last item shows he can use all of the signs fluently. We
can conclude that nine of the ten students are at the process level of using signs based

on the results of all lectures/mid-assessment.

In the second item, they need to match =, # signs with part-whole equality situations.
Only Medine’s result was unclear. On the other hand, EKim had difficulty seeing
some parts of the whole (Lego construction). Others (7 students) completed the item

easily.

Medine also had difficulty in the last item, interpreting weight comparisons

symbolically; she tended to use unequal signs instead of using >, <. Her use of signs
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in previous lectures was poor and she needed guidance based on quantity

consideration or reminding sign orientation algorithm most of the time.
Variables

Quantities that are expected to be constructed in the first item are variables.
Construction of them is continuous. However, we do not expect students to create
multiple solutions, while they have experience in this continuous environment.
Nonetheless, the construction of those quantities is a reverse process for quantity
comparison, which we expect at this level. Eight of them completed all parts of this
item correctly. In contrast, Medine was not clear in drawing the tree in the first item,
and needed inquiry into which one is smaller. As a result, we observed, that students
were capable of constructing quantities, as well as they were choosing guantities

based on relations. Reverse-process quantity as the amount is comprehended.

Some students had difficulty in the third item, reporting weight comparison.
However, the difficulty did not originate from their misunderstanding or

misinterpreting weight as quantity.
Notation

7 of 10 students did not face any difficulty interpreting weight comparisons
symbolically. Most of them were immediate in completing tasks. They successfully
apply their knowledge on weight context, even when they see it for the first time,
proving they are at the process level for symbolic interpretations. Three of these
seven students were at action level in symbolic representation in volume context,
showing evidence they improved to the process level in this lecture. Four of them
were already showing signs that they were at the process level in the volume context
in the previous lecture, and this lecture proved their capability to transfer their

knowledge in a new context.

Three other students (Ufuk, Hasan, and Medine) struggled with the symbolic
representation of weight comparison results. In contrast, in the previous lecture, all

three students were observed to improve from action to process level in symbolic
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representation in a volume context. This might be from their inability to transfer
knowledge on symbolic representation, or their poor understanding of it. The
previous lecture was on the symbolic representation of volume. However, symbolic
representation is not discussed through variables. Step-wise inquiry for symbolic
representation of volume had to be on matching cups to the representative picture.
One of these three students (Ufuk) successfully interprets volume as quantity
(Lecture 3 results). His problem with symbolic representation of weight occurs as
misleading figures in the item and his inability to connect symbolic representation to
a given comparison situation. He preferred equal signs to interpret their relation

because acorns and apples are given in similar sizes.

Figure 4.16. Ufuk’s Misinterpretation of Equality Based on Weight Symbolically

The researcher guided him to focus on weight comparison for interpretation.

R: What symbol did you put, Ufuk?
Ufuk: Equal.

R: So, they seem equal in size, right? Then, when you put them on
the scale, which one weighs more?

Ufuk: Apple.
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R: The apple is heavier. The weight of the apple is greater, okay? So,
you should put the sign accordingly.

After this conversation, Ufuk still has not changed the sign. Some time passed

R: What did you do, Ufuk? You made it equal. They seemed equal in
size, but I am asking about their weights, Ufuk. Put the sign according
to which one is heavier, okay? Not according to their sizes but
according to their weights.

He completed other parts of the item correctly after guidance. Hasan is another
student who had difficulty interpreting symbolically. He had a good understanding
of signs. However, he depends solely on his imagination of the compared objects
and rejects guidance on the interpretation based on weight comparisons. Even though
he interprets referring to the weight of the objects, not size, he does not conclude it
from the illustration given. He ignores all the guidance to connect illustration to
interpretation. He even does not show action level at symbolic representation in
weight context. Inquiry is restricted to the following, not to interfere with assessment

results.

R: What did you do, Hasan?
Hasan: Tweet, tweet. (duck compared to the clock)

R: Hasan did something different. Why did you do that? Tell me. Which one
is larger?

Hasan: Duck.
Hasan: The clock is light; the duck is heavy.

R: Is that so? The clock is light, the duck is heavy, right? Do you have a clock
at home or a duck?

Hasan: No.

R: But you imagined it that way, didn't you? All right, there is a scale there.
What does it say about their weights?

Hasan: It says “equal.”
R: It says “equal” about the weights, huh? Hmm, I see.
Hasan nods yes

R: But do you think the duck is larger?
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Hasan thought a while and said “yes” only. (not confidently)

R: If we need to put a sign according to their weights, what would be the sign
between them?

Hasan: Equal (pause) unequal.

R: Unequal, right? Are they not equal, Hasan? (actually, they are equal in
illustration)

Hasan: Yes.

R: Okay, I understand, my dear. | think everyone did it. We can say goodbye
now.

Possibly, the inquiry is poor in connecting illustration to symbolic representation
because the researcher does not ask the students to interpret based on their weights,
as illustrated in the picture. Instead, she solely asks, “If we need to put a sign
according to their weights, what would be the sign between them?”” The inquiry is
distinct in the interpretation of illustrated comparison and on their weight, which
might push the students to think about their actual weight.

The last student who had difficulty in symbolic representation was Medine. Her
difficulty arises from her weak understanding of sign use. She is at action level for
>, <signs. Hence, she responded to the first two parts of the item wrongly. She could
interpret symbolically with equal sign in the third part, with an orientation problem,
she also had in previous lectures. She correctly chooses and matches signs correctly,
but orientation is problematic. Especially in >, < signs she needs guidance. Little

guidance on paying attention to the wider, narrower side helps her.
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Figure 4.17. Medine’s Use of Equal Sign Vertically

This assessed students’ transfer of learning on symbolic representation on volume
comparison to new context weight. Previous lectures and this lecture showed that
connecting symbolic representation to comparison situations is difficult. Enactive
representation on a given illustration of weight comparison could be asked, before

moving on to symbolic representation.

Another remarkable finding on sign notation is that structured paperwork assessment
helped one student recognize two modes of greater/less than sign on the paper, which

they learned as a single sign changing directions in need.

Eylem: There are two signs, one small and one big.

R: Yes, but their directions are different, right? They are looking in different
directions.

They saw two signs from the instructions above and also when writing them down
below. They then symbolically interpret the relation between quantities with their
symmetry. We did not aim to teach symmetric property, so we did not ask them about

it. No students revealed intention or awareness of the symmetric property.
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4.6.3

Design Principles for Lecture 6

Ask which one is bigger based on weight comparison and guide to focus on
weight comparison for interpretation created the connection between
comparison and the representation.

Support students who had difficulty in symbolic interpretation with enactive
representation.

Working ideas on paper is a new activity for them, and assessing their
knowledge on paper is difficult. Guide them through how activities work and
what the instructions are. Communicate a lot to guide them through items or
understand their thinking.

New context volume, paper-work, reverse-processes quantities through
construction, symbolic representations, altogether supported process level of
understanding signs.

Be careful in structuring items to prevent misinterpretations. The real-life
context of compared objects or pictures of them may be hindering. Try to
choose similar-sized and weighted objects in real life and also in illustrations,
which may differ a little bit: like apple and pear. In this way, the item
becomes more effective in teaching but may become weaker in the
assessment of symbolic interpretation. At least try to prevent systematic
errors in the items. Namely, do not provide situations where a bigger one is
heavier, which allows students to choose a bigger object to be the heavier one
in interpretations. Do not also provide situations that give clues about their
weight in a real-life context.

Be sure objects in figures touch the pans of balance scales.
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4.7 Results of Lecture 7

Lecture 7 is the second online lecture which is about a new topic; ordering, built
upon using >, < signs from previous learnings. Lecture 7 lasted about 30 minutes. 8
out of 10 students attended. (Hasan and Ali did not attend.)

Lecture 7, being the second online lecture, is revised to fit online circumstances, even
the objectives did not change too much. Online lectures are kept neat, focused, and
short. Structure is constructed around instructions to be easily followed by all
students at the same time. Then, all students are individually interviewed for
presenting their work and questioned to observe their understanding. Materials are

chosen from home environment, or delivered to them in need.

4.7.1 Plan of Lecture 7

This lecture aims teaching ordering; creating a sequence of objects using >, < signs.
By piloting sequence of Davydov; ordering objects is decided to be taken earlier than
transitivity. In Davydov’s Book (Davydov et al., 1995), by the comment “deduce”,
transitivity is used first time implicitly for deduction of unknown relations between
objects that are not compared directly to each other, but their relation to another
object is known. Then trajectory continues with ordering of 3-4 objects. After

ordering, transitivity is handled by deducing third relation out of two relations.

The first hypothetical trajectory, following Davydov’s, included deduction using
transitivity implicitly in a volume context. Pilots and classroom implementations
showed that students have trouble with that kind of deduction due to a lack of
transitivity intuitions, which Davydov’s trajectory depends on, to deduce third
relations symbolically. Pilots showed that transitivity had a chance to be thought
through ordering strategy (1 student out of 2 students). Hence, the deduction on
volume context is canceled. Transitivity is decided to be thought after the ordering
concept because it is constructed on ordering strategy. A summary of trajectory

adaptation can be seen in the following table.
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Table 4.1 Trajectory Change in Transitivity

Davydov First HLT Last Trajectory

. L ) L - reporting dual
- using transitivity for - using transitivity for

) i . ) ) comparisons of three
deduction of the third deduction of the third relation

objects in a volume

relation intuitively in volume context intuitively
context
] _ - order multiple objects
- order four objects - order 3-4 objects
and extend the sequence
- transitivity in symbolic - transitivity in symbolic - transitivity by ordering
representation representation strategy

At first, we aimed to teach ordering at the action level while they use >, < as objects.
Children would order stones found in the school garden based on their weight. They
would enlarge the sequence by comparing new stones to the stones on the row, using
the relational information they got. Weight context is chosen because it is not
apparent and needs an iconic representation of relational information. This relational
information would be the algebraic objects they use in ordering algorithms.
However, weight comparison seemed difficult for symbolic interpretations and
deductions for ordering. Hence, it is simplified for comparison based on the size of
the stones. In this way, using >, < signs stays as a process composed with the ordering

process.

Davydov points out the recursive relation in ordering four objects of similar shape
but different sizes. We aimed to at least show the extension of the sequence to
students by ordering stones. Due to the impossibilities of online lecturing,
discussions and ordering needed to be simplified and restricted to include fewer

objects. However, the aim of enlarging the sequence is still presented in the aims.

In the first HLT, ordering is planned for two lectures; the first will use simple objects,

while the second will use pictures and illustrations to order as a game.
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First HLT objectives:

1. The student orders 3-4 objects and puts relevant signs between them
based on their relation: with toys
2. The student orders 3-4 pictures and puts relevant signs between them

based on their relation: with pictures
Revised HLT:

1. The student orders at least 4 objects based on their size and uses the> sign
to interpret the sequence.

2. The student extends the sequence of ordered objects based on size

As in Davydov’s Book (Davydov et al., 1995), we started by using similar object
comparisons. They prepared four toys belonging to the same class, such as balls,
cars, or dolls, to order during the lecture. They also drew and cut out four members
from their family to compare and sequence based on height. At last, they brought
some stones for extending the sequence activity. The lecture flow is summarized in

the following, which will be explained further.
Lecture flow:

- Ordering algorithm: presentation by balloons

- Ordering four toys (enactive representation)

- Ordering drawings of 4 family members (symbolic representation)

- Interpret two relations out of a sequence of family members (reverse process)
- Compare two stones and place a sign between

- Extend sequence with 3rd and 4th stones

- Imagine extending further.
Algorithms for ordering in the lecture flow:

- Ordering four toys; algorithm: find the biggest and second biggest. Put a sign
between them. Continue with the third one and then the last.
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- Ordering drawings of four family members: Order four family member
drawings from biggest to smallest. Take two of them, compare them, and put
a sign between them. Take another two, compare, and put a sign between
them.

- Ordering four stones: Take two stones, compare them, and put a sign between
them. Take the third stone, place it in the proper place, and put a sign. Take
the fourth stone randomly, place it in the sequence with the proper sign, and

continue the sequence as much as you can.

There seems to be too much restriction for order, from biggest to smallest; however,
continuing the sequence is possible by doing it. Allowing to order from smallest to
biggest is also possible. However, they might not have a sense of order from left to
right at this age as they do not know writing. It gives a starting point for ordering
(Whether they use right or left, they start with biggest). They might need specific
directives. If they start by putting a relevant sign between two objects and then add
a third one related to one of them, the sequence might be disordered; signs would be

disoriented in the sequence.

After creating a sequence of family members, we wanted students to look for a
relationship between two members. We aim to reverse the process by this, making
students recognize dual relations composing the sequences. If it was not online but
an in-class lecture, the relation of members in the sequences deserved more time and
step-by-step visualization to look for recursion in the relations. As we will see later,
ordering three objects is also essential and will be used for transitivity. Looking for
relations between two items out of a sequence will also create a base for transitivity

activity, where we will try to infer relations between 3 objects.
Trajectory:
Action sequence: algorithm of ordering (4 objects; enactive)

- state biggest and the next, represent relation with > sign

- put the third biggest in the row with > sign
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- complete the sequence with the smallest
process:

- repeat the algorithm with new objects (iconic representations of family

members)
reverse process:
- interpret the relation between two objects out of the sequence
extending sequence:
- adding items in both directions (enactive)

Extending the sequence gives a chance to mention infinity. Implementation was not
complete in the discussion of infinity; however, it provided a good starting point. A
more focused in-class activity of ordering stones would better support the discussion.
It enables adding to the row as much as possible, not only going through the
imagination of extending the sequence. Extensions not only on the ends but also in

the rows have the potential to fruitful discussions on infinity

4.7.2 Theoretical Findings of Lecture 7

Equality (inequalities)

All of the eight students were capable of using>, < signs fluently in comparisons and
ordering. Aiming action level at ordering four objects, this activity helped students
order at least four objects from bigger to smaller with the correct use of >, < signs. 6
out of 8 students became fluent in ordering and needed no help, while two students

(Ekim, Medine) needed guidance or help with ordering representations with signs.
Use of >, < signs in process level indicators in ordering activity appears as:

- Fluent use for interpreting dual relations (already from previous lectures)
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- Use >, < signs for ordering four objects, with step-wise directions on

extending a relation between 2 objects
Action ordering indicator:
- order four objects from bigger to smaller, using signs >, <

Process level indicator behaviors for using>, < signs are also indicators of action
level in the ordering algorithm if supported by guidance. If no guidance is needed,
and students can order four objects fluently using these signs, they are at the process
level for ordering.

The use of signs fluently is also indicated in previous lectures. The ordering
algorithm builds upon the use of these signs. Students compare two objects and
interpret the relation between them using these signs, then extend relational
interpretation using third and fourth objects through relative comparisons. The use
of these signs does not significantly indicate students’ object-level understanding of
relations. They may know the object level, but this ordering activity requires
procedural action of comparing and representing the objects. Hence, this lecture did
not provide evidence of students’ use of greater/less than relations as objects in the
ordering procedure. If the lecture were built upon weight comparisons as planned in
the first place, they would have to depend on the iconic interpretations of weight
comparisons for ordering. In this way, the iconic relational interpretation of
objectl>object2 would be the algebraic objects students will use in the ordering
procedure. However, in this lecture, students order based on not pre-given or pre-
obtained relations. Dual interpretations and comparisons appear to be procedurally
composed in the ordering process.
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Greater/less /' between 2 objects

than T

& quantity

relations
Fluently order 4 objects
with using >, < signs
Extend sequence of
_ " order
Ordering

Reverse process:

\ interpret relation
— | between two objects
belonging to the order

sequence

Figure 4.18. Schema of Learning Inequality, Quantity, and Ordering in Lecture 7

When they become fluent in ordering four objects, they do not refer to or start with
dual comparisons anymore because they compare them in their minds priorly. It
means they do not follow the first thought algorithm but just use >, < signs to
construct the sequence. When they extend the sequence, the dual comparison
procedure is again composed into ordering process. It is not easy to separate ordering
from comparison relation as a new algebraic procedure. It is the continuum of
interpretation of equality/inequality. However, using the signs in the comparison
procedures becomes an object for those interpretations as we see. Students no longer

refer to wider and narrower side analogies and use these signs without hesitation to
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interpret comparison results or construct ordering sequences. From this perspective,

>, < signs became objects, while a>b did not become yet.

We expect the type of algebraic representations to become objects in the
increase/decrease topic where students meet “how to make equality out of
inequalities,” acting on inequality situations by increase/decrease actions to create
equality situations. Ordering and transitivity concepts come just before the
increase/decrease topic. The following figure shows the alignment of ordering and
transitivity in the trajectory, which seems disconnected from the trajectory of
teaching equations: There is nothing about equations for ordering and transitivity
concepts. Our sequencing of lectures and Davydov’s instruction do not directly
connect anything about transitivity to the subsequent topic increase/decrease or the
further topics. Connection is in the development of mental constructions. In ordering
subject, the student finds an area to use >, < signs as an object component. Then,
ordering helps transitivity, which uses two relational interpretations as object
components to deduce the third one. Ordering or transitivity processes are not used
further in any way. Connection is on the mental constructs: as object >, < signs to
object relations to use, which will be acted upon to make equal in the following topic
increase/decrease. (Transitivity could not be used as objects again. No deduction on
interpretation is easy for our students. However, it supported process level for

inequality.)

Despite its unnecessity in terms of components of equations, ordering and transitivity
create extra support for the trajectory in terms of mental constructs. It creates a soft
transition from process to object mental construct for greater/less than relations.
Moreover, ordering sequences and transitivity opens horizons to many important
algebraic topics; with thinking quantities and relations in the system (which students
struggled with due to lack of conservation). In this lecture, students could relate and
interpret more than one quantity and then, with reverse processes, focus on dual

relations within the sequences of relations properly.
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Figure 4.19. Transitivity in the Whole Trajectory

174



Variables

Comparisons are between fixed and non-manipulable variables. However, the
ordering stones activity has the potential to discuss extending sequences on the ends
and in the middle of the sequence. It would be better to actively investigate the
extension of the sequence of stones as much as possible in the school garden.
Students would gather stones, which would extend the sequence to any place. Online
lecturing limited the number of stones they experienced. Sequence extension is

presented by the researcher and discussed further for infinity.

Students have a poor imagination of infinity; usually matching with the biggest
number they know (Bekir). One of the students stated infinity as “every day”
(Didem), and one stated as “many days” after (Medine). Eylem and Aylin stated as
“never-ending.” Ekim and Yaman had no idea about infinity. After Bekir tried to
state the biggest number he knew, the discussion evolved to “Is there a bigger
number than this one?”. In each number stated, students could find a bigger number
by doubling it: “Two hundred thousand is bigger than hundred thousand” (Medine);
by adding one to it, “thousand-thousand is bigger than 999 thousand” (Eylem).

Discussion on infinity through recursion is possible in this activity, which may
support number sense and sets. The density of sequences may also be sensed through
extension in the middle. This activity is out of Davydov’s trajectory, limited to
ordering four objects. However, Davydov also allows infinitely many solutions in
constructing quantity activities. Ordering stones activity can also be structured to
support multiple solutions by asking students to create a proper stone for a particular
place, extending the sequence as we first planned. However, discussions were poor

and led to the imagination of infinity only due to online lecturing conditions.
Notation

In this lecture, students no longer had trouble determining the orientation of the>, <

sign. They started to see the sign as a static object (even Medine) and easily
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determined the orientation without reminding the wider or narrower side by the

teacher or themselves, they could use it fluently in their representations of ordering.

Interpreting ordering is objected to in an enactive mode of representation. Ordering
toys or stones is in enactive mode; sequencing consists of objects themselves.
Ordering family members is done through students’ symbolic drawings of the family
members. They represented the heights of the family members correspondingly.
While ordering pictures, they use symbolic pictures to represent the heights, but they
might solely depend on the pictorial height in order. Whether they refer to family
members’ height in their verbal interpretations is not apparent. In discussions, the
researcher pointed out the real-life reflection of what they interpret, which is trivial
primarily in real life and in their drawings, which made no clear differentiation. The
activity of ordering family members did not support symbolic representation,

whereas it created a successful context for ordering and reverse-ordering processes.

4.7.3 Design Principles for Lecture 7

- Beginning ordering by the biggest (or smallest) creates a connection between
what they already know (ordering objects) and what they will learn (using >
sign notation in a sequence).

- Starting by comparing two objects and then adding the third and fourth
objects to the row supports the idea of extending sequences.

- Once students get fluent in the ordering, they may forget this algorithm and
order objects directly based on size. This is not necessary, but the algorithm
may be reminded in the stone activity to initiate and structure the extension
of the sequence.

- Extend sequences purposefully, in a single direction (bigger/smaller side
always) to support the infinity idea, or keep end points fixed, placing mid-
items to support the idea of density (such as infinity in real numbers between

two items). The inquiry should be very structured for those purposes.
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- Remember the one learning at a time principle, and it is kept simple, focusing
on order. Based on weight or volume is difficult at this stage.

- Ordering and the idea of infinity can be supported by quantitative reasoning,
but be careful that students might have incorrect knowledge of numbers.

- Use similar types of objects to make it easy to compare based on size. Stones
may also have a decision problem regarding size. Weight context would solve

the problem, including the = sign in the sequencing.

4.8 Results of Lecture 8

Lecture 8 is on the transitivity property, where two dual relations between three
objects are appropriate to conclude the third relation. Transitivity is thought in a
volume context. Students determine the relation between the capacity of two cups
based on their relation to another one. It was the third online lecture, which took 35
minutes, for two investigation activities of transitivity. The first activity took 22
minutes, while the second took 13 minutes, and both had the same algorithm. All

ten students attended the class.

48.1 Plan of Lecture 8

Because it is a complex topic for students (pilot results), the lecture is kept neat and
focused on two structured investigations on only two transitivity situations. It is built
around symbolic interpretation and volume context because transitivity needs
deductions based on pre-determined or given relations of non-obvious situations.
Materials are chosen carefully so as not to give clues about their volume. Students
experiment with relations between fixed quantities in this lecture. However,
experimentation is step-wise structured. The researcher provides three cups to
compare, and in each step, they compare two of them, which the researcher told them

to do. After all students do one comparison, a second comparison is done
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simultaneously. Comparisons are chosen in the order which allows the deduction of

the third comparison out of the first two comparisons.
The objective in the first HLT:

1. Given two relations among two of three objects, the student determines the
relation of the third comparison.

Revised objective:

1. Given three objects, the student experiences and reports two comparisons (in
an order) and guesses the third relation.

As seen in the objectives, the purpose is directed from determination to guessing
based on relations because it was challenging to pilot. Moreover, given relations are
changed to enactively experienced relations based on piloting results. One of the
pilot students (Kerem H) could not consider anything about transitivity or any idea
that would lead to transitivity. However, for the other piloting student (Kerem A),
ordering objects in the given relations worked as a strategy to guess the third relation,
which encouraged us to try it with the students in the classroom. Ordering quantities
is an implicit objective used as a strategy for transitivity deductions. Piloting showed
that iconic or symbolic representations make it more difficult to understand variables
in a system of relations. Hence, we stepped back and started with enactive
comparisons. Additionally, based on the piloting results (Kerem A), volume context
and inclusion of equality relation made deductions easier. (Kerem H struggled in

transitivity activities. He just depended on size and height for comparisons.)
The lecture Flow is planned as in the following;

- Pre-chosen 3 cups were given to students. 2 of them were in equal volume,
and one was different than the others.

- Two comparisons are conducted and reported, one of which results in an
equality relation

- Ask students which cups are left for comparison.

- Make students guess the result of the last comparison.
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- Make them order three cups in terms of volume if needed.

- Let them check their guess through measurement.

- Continue with the new 3 cups; comparing, reporting, ordering, and guessing

for the last relation.

In the implementation, making students guess for the last relation immediately
directed them to check by comparison. Hence, the ordering did not work as a strategy
for guessing. As a result, we could not accomplish the objective following this lecture
flow. Thus, we decided to revisit transitivity further. There are two different lecture
flows suggested for further implications (which will be used in our second attempt

at teaching transitivity.):

1.

- Report two relations based on comparisons symbolically

- Order three objects based on these two comparisons (through which one is
the biggest, which one is the smallest inquiry) (iconically)

- Guess, then interpret the result for the third comparison out of your ordering

- Report one relation after one comparison
- Compare the third unknown to one of the unknowns in the represented
(related) relation and report
- Extend the first reported relation as a sequence with the new knowledge
(relation) obtained (ordering step: extending sequence) (symbolic or iconic)
- Report the third relation that is asked for.
There are also other reasons which made this lecture unsuccessful in the objective.
Volume comparisons are vulnerable to measurement errors. Equality relations made
measurement errors more effective. Students’ investigations differ a lot due to these
reasons, making deductions impossible. Make-up activity would eliminate these by
controlling investigations through researcher conduct and show activity. (It would
also make it similar to Davydov’s pre-given comparisons. In Davydov’s book
(Davydov et al., 1995), transitivity is expected based on ready-given comparisons

and structured on symbolic representations. Hence, deducing the third relation by
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transitivity is definite. Because we enactively investigated relations, measurement
errors affected structures. They also have difficulties interpreting symbolic
representations. Hence, a make-up lecture on transitivity will be better based not on
symbolic representations but on visual experimentations. However, these

experimentations will be shown by the researcher, for guaranteed results.)

Intermediary construction is another learning objective from Davydov also included
in the first HLT after transitivity. Creating an intermediary seems as a result of
reasoning by transitivity. However, it seems more intuitive and can be considered as
a base or a support for transitivity. Hence planned make-up activity for transitivity
will be placed after creating scale lecturing. Make-up instruction will be considered
and structured carefully. Fulfilling needs purposefully, implementation will be
delayed even further. Lecture 16 in the first HLT also aimed to teach transitivity at
the process level by constructing quantities. The objective was “Given two objects
and their relation to a third unknown object, the student draws/constructs the
unknown object.”. due to the difficulty of the transitivity topic, this lecture and

objective are canceled.

In addition to the suggested lecture flows mentioned before, the following revisions

in this activity are considered to achieve the intended objective:

- Eliminate measurement errors: Dictate specific results in comparisons or do
not use equality relations. Use non-obvious cups.

- Do not try to depend on intuition but depend on more structured symbolic
representation and ordering procedures

- Dedicate more time to ordering objects in different contexts of variables/
attributes before this lecture.

- Strengthen symbolic representation in ordering and extending sequences to

use ordering as a base inquiry to converge transitivity idea.
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4.8.2 Theoretical Findings of Lecture 8

Pre-Action transitivity

There are two transitivity activities through the investigation of relations between
three cups. Mainly, out of 3 cups, two of them are compared, and the relation between
them is reported. Then, another two are chosen, and their relation is also reported.
This lecture is constructed around one equality relation. If the first two relations
include equality relation, then deduction of the third relation is possible. Cups and

their relation are provided as follows:
1% activity cups: coffee mug = tall cup > short cup
27 activity cups: plastic cup = bowl < bottle

The first comparison was between a coffee mug and a short cup in the first activity.
All of the students found coffee mugs> short cups. The second comparison was
between a coffee mug and a tall cup. While we expected an equality relation, only
three students found equality, one student found a tall cup > coffee mug, and most of
the students (6 out of 10) found a coffee mug > tall mug. These incorrect responses
(and divergence in their findings) result from measurement error. In volume context,
especially, finding equal cups is difficult. Unfortunately, designing transitivity
activity with cups with different volumes may give clues based on their size. (The
second activity is more appropriate, not giving clues). Out of these two relations, we
cannot deduce the relation between tall cups and short cups mathematically.
However, students tend to see taller cups to be bigger. Hence, they could deduce the

correct relation between tall cup > and short cup, but their reasoning is unclear.

To understand their reasoning, students are asked to show the biggest, middle, and
smallest cups and order them. Three students (UE, Hasan, Ali) found the relation
coffee mug = tall cup. These three students hesitated to choose the biggest cup,
consistent with their findings. One student found the relation to be taller cup > coffee

mug. His ordering is also consistent with his findings. Independent from their
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comparison results, some students (4 out of 10: Ekim, Medine, Didem, Bekir) had
difficulty ordering or verbally stating the biggest cup. They depend on the height of
the cups for order. The researcher asked one of the students (Ekim): “Is there a cup
bigger than the one you are holding (which she shows as the biggest)? Is there any
cup which takes more water than this cup?”. Then, three students (Ekim, Bekir, and

Didem) corrected their ordering.

One of the students (Medine) struggled to correct her ordering. The researcher asked
her, “When we compared this and this cup, which was bigger, Medine?””. She showed
the correct cup based on her volume comparison but did not correct her ordering.
After a while, the researcher asked which cup was the biggest. She showed tallest.
The researcher reminded volume: “We compared these two. Which one was bigger?”’
She showed again based on the volume comparison. She insisted on the same
reasoning at two different times. She knows verbal interpreting based on volume
comparisons but interprets bigger based on height. More discussions are needed on
quantity, what does means to be big in volume, and why we depend on volume for
cups. Teachers should be aware of this issue. Height is also a quantity and she

interprets being big based on height correctly.

In the second experiment, we started by comparing equal cups, bowls, and plastic
cups. Three students (Ekim, Didem, and Bekir) found equality between them. One
student (Ufuk) found a “bowl>plastic cup.” Others (Ali, Yaman, Medine, Aylin,
Hasan, Eylem) found “plastic-cup>bowl.” In the second comparison, a bottle is
compared to a plastic cup. All found the bottle to be bigger, but Medine may still
have a problem with the use of >, <signs correctly. She signed “plastic cup>bottle”
while showing the bottle to be the bigger one. She corrected her sign after reminding
the sign algorithm to a wider side to a bigger object. For the last comparison between
bottle and bowl, Eylem said they might be equal. It is not the result of her
interpretations, as she found “plastic cup > bowl” and” bottle>plastic cup.” Then she
immediately changed her mind and showed the bottle to be the biggest. Five students
out of 10 (Ali, Didem, Eylem, Bekir, Aylin) correctly guessed bottle>bowl. When
asked why, they did not have a reply.
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Classroom results were aligned with pilot results, as students understood relations
separately, but it may not be easy to understand relations within a system. When
ordering objects, some students do not consider the relations they noted in the system
unless guided. They might base their ordering on size (height in this case). Even if
they correctly interpret ordering based on volume, they might order based on height
(Medine). The previous lecturing was on order but depended on the size as a
variable/attribute. This lecture results show that ordering objects was learned
contextually, not transferred to new contexts automatically. Hence, we cannot say
they are at the process level. This result calls for more time spent ordering concepts
with different contexts. At ages 5-6, we see that no concept is transferred
automatically to other contexts, even though we have discussed them before. We can
say learning occurs context-based even though the majority would consider volume
in their verbal, symbolic interpretation and ordering. However, we cannot say they
conclude based on them, using transitivity. Ordering based on volume context should

be dedicated to lecture time before this transitivity activity in volume context.

The findings in this lecture did not address the action level for transitivity. Even
though many students could deduce the third relation correctly., we do not know their
reasoning behind it. In addition, the lecture flow does not necessarily support a
systematic procedure for transitivity (alternatives/revisions are suggested).
However, through enactive investigations, we settled a pre-action stage before a
planned additional lecture on transitivity. Some students could even be guided to use
their reports to order cups based on their volume. This shows a significant foundation

for using relations for deduction and staging for transitivity.
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Mental constructions: Indicators:

Ordering
\ \

Order based on
volume

pre-action

Transitivity >

\ Intuitive
deductions by

_—"> | guidance

Figure 4.20. Schema of Learning Transitivity in Lecture 8

Process =, <, > relations

Our aim for this activity was for students to become at object level understanding for
=, <,> relations because they use these relations as algebraic objects in transitivity
processes. However, students’ reasoning by transitivity (intuitively) depending on
reported relations could not be observed clearly. Their reports of relations are
constructed through comparisons procedurally and composed into ordering
processes (as in the previous lecture), not becoming objects for deductions. Some
students could refer to their reports in the ordering process. In addition to previous
lecture results, some students could refer to relations reports for ordering when
guided. Referring reports may be seen as using these relations or reverse-processing
to deduce real-life meaning. They showed no evidence of acting on relations or using
these relations to extend sequences for ordering. The use of relations through
ordering and transitivity is complicated to explain. However, the use of these
relations in the trajectory of equations is apparent in how they become objects acted

upon by operations.
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Process Ordering three objects

Some students were confused when asked to order cups because they tend to size for
ordering, even though they could symbolically report relations based on volume. The
previous lecture was on ordering solely based on size or height. Volume acts as a
new context for order, and some students are still at the action level of ordering based
on volume. Half of the students (5 out of 10) had difficulty ordering based on volume.
Some reason may be the difficulty of representing based on volume (and weight) as
it appeared in previous lectures. Some reason may be the difficulty of ordering not
from direct measurement but using symbolic representations. Students' ordering
strategies were not on the extension but on determining the biggest, middle, and
smallest quantities. Ordering based on volume and weight is strictly suggested to be

studied before this lecture on transitivity.
Variables

This became an influential activity for volume discussion for determining what is
big for cups. In dual interpretations, students used volume without any problem
because they had prior experience, but in ordering some of them used height. In
addition to being a new context for ordering, ordering based on the volume brought
the discussion of “what does it mean to be big for cups.” Teachers should be aware
of what students consider in their ordering. Ordering based on height can be
appreciated, but students also should be oriented to consider the capacity of cups in

ordering.
Notation

Representations of relations in a volume context are in symbolic mode. No student
had difficulty symbolically reporting dual relations. Ordering based on height
iconically was straightforward for some students. They could read and depend on
their reasoning on the reports without doubt when guided. Ordering based on volume
improved these students' ability to represent iconically based on volume. They can

represent symbolically and read algebraic/symbolic representations successfully. All
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students at least showed process and reverse process behaviors in symbolic

representations. Only Medine had difficulties in using signs.

4.8.3

Design Principles for Lecture 8

Teaching of ordering three or more objects should be revisited in all contexts
of variables you want to teach. Dedicate more time to ordering objects in
different contexts of variables/ attributes, and strengthen symbolic
representation in ordering and extending sequences to use ordering as a base
inquiry to converge transitivity idea.
Guide students to order unknowns, which are noted by relations in a system,
as pre-action for transitivity
o Guide them to represent their ordering iconically or symbolically
o Guide them to depend on representations
o Guide them through the ordering algorithm by extending sequences
Create a need for guessing the third relation out of the system;
o That need is to be consistent with the context (variable)
o Try to reduce the bias of size
= Choice of the suitable material
= Lots of experience on the variable context, experience, and
discussion on what is bigger (which variable is reasonable to
consider) in terms of related context
Using equality relations may be avoided if it would be heavily on the
student’s own experience and one-to-one discussions are limited.
Measurement error ruins the structure of transitivity and guesses for the third
relation in classroom discussions.
Ordering activities before transitivity, are suggested to be supported also by
equality relations.
Be aware that ordering based on volume is not straightforward. Appreciate

order based on height, but direct students for capacity.
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49 Results of Lecture 9

The previous Lecture was on transitivity. This lecture applies the transitivity
property. Students use transitivity to compare two distant objects by constructing a
movable object. The lecture is adapted to online situations. Nine students attended

the online lecture, while Medine was absent. The lecture took 30 minutes.

49.1 Plan of Lecture 9

In Davydov’s Book (Davydov et al., 1995), transitivity takes a prominent place, from
drawing unknowns or ordering objects based on given relations to creating a scale to
compare distant objects. These activities focus on concluding a third relation with

the help of two pre-determined relations, which ensures the use of the transitivity
property.

In this lecture, students are first introduced to creating a scale for comparing two
distant objects. They construct a scale and compare it to distant objects to look for
their relation to the scale. Then, they develop a relation between these distant objects
from their relation to the scale. Constructing the scale equal to one of the distant
objects is the easy and handful strategy used in Davydov’s Book (Davydov et al.,
1995).

In the first HLT, creating scales will be taught through guidance at the action level,
whereas students will need to use transitivity property to construct scales. Hence,

students’ mental constructions on transitivity were expected to be at the object level.

Aiming these mental constructions, the objectives of the first HLT were designed as

follows;

1. The student uses their height or a rope as a scale to compare two stable and

distant objects by deducing their relation to both.

Revised objectives of the implemented Lecture 9 are:
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1. The student creates an equivalent scale for an object to compare it to another
distant object.

2. The student interprets the result of the comparison in terms of the distant
objects, not in terms of the scale he/she used.

Based on the previous classroom implementation, transitivity is found to be difficult.
Hence, the deduction is removed from the main objectives. The change in the
objectives also underlies the use of equal scales only to make comparisons easier.

Lecture 9 starts with an introduction on how to compare distant or unmovable objects
with the help of another object. Then, students complete two activities to compare
distant objects. In the first one, students compare the heights of the table, kitchen
counter, and bathroom sink. Students are asked, “Which one is higher, your table or
kitchen counter?”. First, they measure the height of the table by marking the same
level on their bodies with their hands. This is constructing an equal scale to the table.
Then, they go to the kitchen to compare this measure to the height of the counter.

They come back and interpret which is higher: the table or the kitchen counter.

This was an obvious and easy way of using transitivity. To make up for the previous
class's failure on transitivity, the researcher increased the level of transitivity with
another object: the bathroom sink, which is added to be compared to the table and
kitchen counter. Students are asked to order these objects by guessing. Students are
expected to converge to intuition on transitivity without notations or actual use of

the property.

In the second activity, students cut a rope representing their height and used it to
compare their height to unmovable objects around them. This activity repeated the

algorithm, where they constructed an equal scale to their height.
Lecture Flow:

- (Pre-algorithm) Exemplifying how to use a movable object to compare two

distant/unmovable objects
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o Compare movable objects to unmovable objects one by one and come
up with a result based on their equality or not.
- (Algorithm) Creating equal scales for comparing unmovable objects:
o Create a measure/scale of height (with the help of their hands and
bodies) equal to the height of the first unmovable object
o Carry the scale and compare it to the second unmovable object.
o Conclude a relation between two unmovable objects by the relation
between the scale and the second unmovable object.
- (Repeat algorithm) Use a created scale to compare with another (third)
unmovable object.
- Interpret comparison as the relation between measures of two distant objects.
- (Order three unmovable objects) Interpret the highest and lowest objects
based on comparisons or representative measures. (Anchoring, ordering)
- (Repeat algorithm) Use the rope as a scale to compare two unmovable objects
(rugs)

- (Repeat algorithm/process) Use rope as an equal scale for student’s height to
compare with unmovable objects, and interpret relations between student’s
height and the objects, restricted to the relation between two objects, not a

sequence (or ordering for 3-4 objects)
Trajectory

- Continuous gquantity manipulation to make equal: use equality (object =)

- Substitution of equal objects in relations (use transitivity with equality: object
transitivity with equality)

- Interpretation of the relation of objects using their relation to another

constructed object
Further suggestions on learning trajectory:

The trajectory is complicated. Creating and using the scale as a moving version of
the object seems to be underlying transitivity. There appears to be a very naive

version of it. To see if there is an underlying understanding of transitivity, using

189



discrete objects (nonmanipulative objects) as scale and lots of practice observed and
guided by the instructor is suggested for further studies. We had no chance during
online classes. Manipulating a continuous quantity and creating an equal scale is
easier than using discrete equal objects. It was the reason why we preferred equal
scales in online lectures. Using equal scales may hinder the use of discrete objects as
scales. They may even mark discrete objects to create equal lengths, making discrete
objects turn into continuously manipulable tools. Discrete object use is essential for
understanding transitivity. Creating equal scale does not act as a distinct object of
transitivity. When a student uses continuously manipulable material, he/she may not
see it as a distinct object but as a measure using a ruler (as it will be seen in the next
activity better). Using movable but discrete objects for comparing distant objects
(classroom situations will give chance a lot with lots of toys), students may see the
movable object as another object. Moreover, they will have a chance to use non-
equal objects for comparison, leading to transitivity with inequalities. Our first plan
existed to create an intermediary, which also took someplace in Davydov’s Book
(Davydov et al., 1995). Students' poor understanding of transitivity in previous
classes and lack of conditions due to online lecturing reduces transitivity. Transitivity
first began with volume construction, which created the struggle. We thought the
size would be trivial; however, distant objects would make it nontrivial and more
meaningful. As a result, for future studies, we recommend trying trajectory, starting
with using equal objects or intermediaries to compare distant objects and then

transitivity.

4.9.2 Theoretical Findings of Lecture 9

Create a scale for comparison; Action to process

Interpretation of comparisons between two distant objects without referring to scale
was expected from students. Lecture 9 achieved its objective for all students at an
action level mental construction on creating a scale for comparison of distant objects.

6 out of 9 (Aylin, Ekim, Didem, Eylem, Bekir, Hasan) students show clear evidence
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that they developed their level to process as they could use scale fluently and
interpret comparison results referring to unmovable objects (free of scale). Action to
process mental construction using the scale in comparisons is empowered through

the following algorithm:

- Manipulation of a continuous variable to create an equal quantity scale to an
object (reverse-process equality)

- Substitution of the equal amount scale instead of the object in comparison to
other objects (includes use of transitivity intuitively)

- Interpretation of the comparison results referring to a substituted object

- Creating and using a scale to compare two distant objects and fluently state
the relation between them without any guidance or recommendation.

Mental Constructions: Indicators:

Follow algorithm:
Equality reverse- -create equal scale

process - substitiute equal scale
instead of the object in
the comparison

P -interpret comparison
Transitivity results
> /

Create and use a scale to
compare two distant

Create/use objects and state
_—— relation between them
scale fluently without any
/ guidance or
I

recommendation

Figure 4.21. Schema of Transitivity, Ordering, and Using the Scale in Lecture 9
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Transitivity

Substitution of the scale in comparisons underlies the understanding of transitivity

relation with an equality relation in the systems (1) and (2).

(1) If Obj1 = scale & scale > Obj 2, then Obj1 > Obj 2
(2) If Obj1 = scale & scale < Obj2, then Objl < Obj2

In addition to these, in activity one, holding heights corresponding to each compared

object with both hands, Eylem had another algebraic intuition (3);

(3) If Objl=scalel & Obj2=scale2 & scalel>scale2,
then Obj1>0b;j2

These types of transitivity properties, including relations, are students’ mental
constructions, which make it possible to accept the idea of creating a substitute for
an object and conclude if this substitute is smaller/bigger than the reference object is

smaller/bigger than the compared object.
Deduction is guided through the following steps;

- Objl is compared to Obj2 with the help of a scale.

- Scale is constructed equal to Obj1.

- Scale is compared to Obj2.

- Relation between Objl and Obj2 is concluded from the previous

relations.

The second activity fulfilled this deductive algorithm more effectively. In the first
activity, scales did not occur as different objects but acted as measurements, which
caused an understanding of transitivity to remain implicit throughout the actions.
Students used their bodies to imprint the heights of the compared objects. More than
the objects themselves, all of their equivalent scales appeared to be compared,
making it easier for students to conclude. However, the second activity was more
meaningful because the equivalent scale of students’ heights enabled comparing their
selves to objects. This chance created motivation to make several comparisons. They

were voluntary for stating comparison results based on their heights and the objects
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compared. (If it were a classroom lecture, we would use their heights directly as

inequivalent scales, probably causing difficulties for deductions.)

As a result, transitivity was not solely based on deductions from symbolic
representations, which students struggle with. However, it could be used intuitively
to construct equivalent scales and to deduce relations between distant objects based
on their relation to another object (scale). Transitivity joins the action of creating
scale as an object while creating equal scale is observed as a reverse process for

equality composed within the new process.
Variables

Distant objects are fixed quantities, while the created scale is continuously
manipulable. Created quantity is singular, fixed to one of the objects. However, the

continuous manipulability of the length is a new context for them.

This lecture is limited to height and length attributes. Ordering was not challenging
because comparison is based on height. Moreover, inquiry by making students state

the highest, middle, and lowest objects helped them order immediately.
Notation

This activity does not include notation, not even enactively. Only verbal

interpretations are used throughout the investigations.

4.9.3 Design Principles for Lecture 9

- The motivation of comparing their height to objects around them creates a
motivation for interpretation free of the scale, even without asking. If not
motivating, creating a scale should bring meaning to comparing distant
objects.

- Make students interpret “what is compared to what” if their interpretation of
the result does not include them. They might only state as equal, big, or small.

Encourage verbal interpretations of the relations.
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- After students interpret their deductions on the comparison of unmovable
objects with the help of the created scale, you may simply ask “why” to
awaken intuitions on the transitivity. Even if they do not have a direct
response, inquiry into why takes attention to the equality of the scale.

- Support students in ordering by asking for highest, lowest, and medium in

height context.

410 Results of Lecture 10

Lecture 10 is the fifth online lecture. It is about creating scales to measure distant
objects, a continuum from the previous lecture. The main difference is that it is a
paper-work activity that has two parts: using scales and ordering. Grouping same-
size objects and representing them symbolically in the ordering activity facilitates
new learning on quantities. All ten students attended the online class, which took
about 40 minutes.

410.1 Plan of Lecture 10

This lecture aims to process the level of creating and using equivalent scales,
strengthening the previous lecture’s learning through many comparisons on paper-

work activity.

In the first HLT, aims are represented in objectives as in the following:
1. The student constructs scales to compare distant objects.

2. The student uses the same notation to indicate same-size objects

Based on these objectives, the activity is designed to include a comparison of squares
drawn on paper with the help of a string. Students are expected to use string to
construct an equivalent scale to one of the squares. Then, they use this scale to find
other equivalent squares and paint all of them the same color to indicate the same-
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size squares. In this way, students would use transitivity through all equal relations

to find same-size squares.
Create scale: sgl=string
&

Use scale in comparisons:  string = sq2 & string = sq3 & string=sq4 ...

I

Color equal squares: sgl=sq2=sq3=s4

An additional activity is planned to strengthen previous learning on ordering and
transitivity. Students are asked to compare and order squares using color as their
interpretation. The objectives are also revised.

Revised Objectives
1. The student constructs scales to compare distant squares.
2. The student uses the same color notation to indicate same-size squares

3. The students use colors as a notational representation to order squares based on

size.

This revision in the activity and objectives extended learning in three main topics:
Firstly, it would include a comparison of unequal squares, which needed transitivity
with one equal and two unequal relations. It will support previous learning on
transitivity. Secondly, students will order these squares and their knowledge of order
will be strengthened with new context. This structure will resemble the previous
Lecture 9 for creating scales to compare and order distant objects. What is different
is that, in this lecture, we do not directly compare objects but a set of objects with
the same size. This fact explains our intention of learning on the third topic: Quantity.
Color notation of the same size is symbolic notation for a fixed quantity. Objects

(same-size squares) are defined to be in the same set (color) by their quantity being
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the same. The coloring of the squares would probably be sufficient to indicate the
set. However, we wanted students to use this color as a symbolic representation of
quantities in comparison and ordering. This level of understanding in quantity does
not exist in Davydov’s trajectory. Davydov uses letter notations to denote a quantity
belonging to an object. Same-sized different objects are not labeled with the same
letter, but equality between them is represented by the relation between different
letters. Based on the revised objectives below lecture flow is implemented in Lecture
10.

Lecture flow:

1. Given the different sizes of squares and a string, the instructor shows how to
use string to construct a scale equal to one of the squares and compare it to
other squares to find all equivalent squares. (Reminding algorithm for
creating equivalent scale) (Transitivity with all equals) Find all equal squares.
(Reverse algorithm for using scales. The relation is given, and students find

objects based on the relation)

2. The instructor recommends that students color all equal squares in the same
color. (Preparation for color notation by assigning colors directly on the

objects: enactive representation)

3. The instructor wants students to choose two colors and makes students
compare corresponding squares by using string. (creating an algorithm for

comparing distant objects) (no reminding algorithm)

4. The instructor recommends that students interpret relations based on the
comparison using colors. (color notation in the interpretation of relations

process: symbolic representation)

5. At last, students are expected to order the size of the squares by their colors.
(color notation in the ordering process: symbolic representation) (3 of the
students' works represent iconic rather than symbolic; the size of the colors

in algebraic notation differs.)
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Trajectory:

- Reminding algorithm to create equal scales (action creating and using scales)

- Grouping all equals (action quantity sets)

- Creating notation for equal quantities (pre-action symbolic notation by color
coding)

- Using scales for comparison of distant objects. (process creating and using
scales)

- Interpretating comparison results by using colors (action symbolic notation
by color coding)

- Ordering quantities of square sizes by using colors (action to process
symbolic notation by color coding) (repetition of the algorithm in a new

context)

When we compare the size of the squares, we mean comparing the length of one size.
This is why we choose squares to make comparisons easier by just comparing one
side using a linear string. In addition, creating an equivalent scale is easier in length

compared to weight and volume contexts.

4.10.2 Theoretical Findings of Lecture 10

Create/use equivalent scale and transitivity

In finding equal squares activity, students are asked to use strings to find equal
squares. 4 out of 10 (Medine, Ali, Ekim, Bekir) students were at action level in using
scales, needing some help for comparisons by string scales. From the beginning of
the lecture, three students (Eylem, Aylin, and Ufuk) had mental constructions at the
process level. They need no help or reminding to use scales in comparison, showing
they transferred their prior knowledge to a new context. Three other students
(‘YYaman, Hasan, Didem) improved their knowledge from action to process level after

reminding in the first comparisons.

Students went through the following stages/algorithms for using the equivalent scale
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- use string to create an equivalent scale to one of the squares
- compare string/equivalent scale to other squares to find equal ones

- determine the equality relation between the squares with the help of the scale

There may be small measurement errors (Aylin), or students may be incapable of
creating a correct scale. Regardless of these difficulties with measuring, we noted
how they used scales to interpret equality relations verbally or through colors. Some
specific problems appeared, such as finding only pairs of equals (Ekim, Medine) or

irrelevant coloring (Ali).

Four students preserved action mental constructions during the lecture, all of whom
had different difficulties. Bekir is a perfectionist at measurement. His mom helped
during the process of creating and using scales. Medine did not attend the previous
lecture on using scales. Thus, she needed guidance for these procedures. Ekim and
Ali had no guidance, working on their own. Ekim was able to find pairs/equals for
squares. However, she could not reflect her ability to use scales in reporting relations
or ordering. In prior lectures, she had difficulties ordering constantly. It is not
apparent if she struggles only with ordering and comparing. She could use scales in
previous lectures and interpret relations verbally. Her difficulty seems to result from
her inability to represent symbolically, which obscured our observations about her
understanding in this lecture. Ali had the correct ordering. However, his coloring
was irrelevant. His only verbal interpretation (explaining his use of scale) is, “There
are two unequal ones.” He interpreted unequal squares he discovered. The researcher
replied, “You will color unequal ones in isolated colors.” The researcher thought,
he finished all comparisons and found only two squares that were not equal to any
of the squares. Probably, he was behind the class, and he was at first comparisons.
He successfully stated the result of using scales, that he found the squares unequal.
Then, he colored squares indistinctly based on the researcher’s command. Maybe he
successfully used scales independently but could not understand how coloring
works. Whenever he found them unequal, he chose a distinct color. Skipping the step

for finding equal ones, his image looked irrelevant.
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Figure 4.22. Ali’s Paperwork in Squares Activity

In the first part of the lecture, students needed to use transitivity between all equal
relations to find equal squares by creating an equal scale. In the second part, we asked
them to report dual relations between different colored squares. We expected them
to use transitivity with one equality and two inequality relations by creating an
equivalent scale again. Mostly, they did not need to use a scale to make comparisons,
and so did not need to use transitivity with inequalities. In some cases, when squares
are similar in size or the same size with different colors due to measurement errors
(Aylin), students need to use the scale again to compare different size squares. In
those cases, they referred to using scales again, but with one equality and two

inequality relations.

Aylin reported red = blue, which shows she used scales for comparison again. In the
first part, her scale was not always correct, painting two equals with different colors.
In the second part, based on her coloring, the difference in size was not apparent.
Hence, she needed to use scales to compare again. She was surprised to find them
equal because she was supposed to color the same if they were equal. Even the
researcher told her to leave equality that way because it was correct; she preferred to

correct her coloring.
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Briefly, the lecture was successfully supported using scales for all students with
many comparisons between squares. Coloring equal squares created a purposeful and

motivational context for the subject.
Relations and ordering

All students successfully interpreted relations, and the majority were fluent and auto
in ordering (some (Ufuk, Hasan) could not reach till the end.). The lecture revealed
students’ mental constructions on relations and ordering at the process level. Even
Ali, who had difficulties using scales, showed he could interpret and order. His
ordering and relations were relevant to the coloring of his work. EKim’s ordering was
irrelevant to the situation; her coloring of squares. However, she showed she knows
how to order well. She used colors distinctly, and in interpretation, she drew bigger
colors with a bigger size. (Her first interpretation of the relation purple > blue is the

researcher’s first example. She copied directly. Others are irrelevant.)

()>@
-

Figure 4.23. Ekim’s Paperwork in Squares Activity

The ordering process in this lecture developed through the following steps:

- comparison of two random colors and interpretation of the relation between
them

- comparison in pairs as much as possible in a limited time. Not all
combinations are expected.

- ordering all colors, from the biggest to the smallest
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Comparison and ordering may be trivial. Students may not need to use any scale

because, after coloring squares, dissimilarity becomes apparent.

All students could use > and < signs as objects in the new ordering process. Only
Ekim used the signs non-interpretive in real-life situations, but she could also use >
sign correctly to interpret dual relations and ordering. Ordering is still a process for
them because we did not have an activity to use order as an object. This activity is
just a new context and new level of symbolic representation for ordering to
encourage that type of notation. Hence it was effective in supporting the process

level for relations and ordering.
Quantity-Variables

In squares activity, fixed quantities are compared to each other by manipulating a
continuous scale. Manipulating it to a fixed quantity underlies an implicit
understanding of a continuous quantity, which any quantity can be marked on / can

be constructed from.

Different from all other lectures and Davydov, this lecture has another focus on
quantity. Quantity does not belong to a single object but represents a set of objects
in interpreting their relations or ordering. Once discussed as different attributes,
quantity evolved into comparable amounts belonging to objects. Now, quantity is
independent of the compared object and represents a fixed amount set in the relation

by advancing color notational coding.

Although the activity seems suitable for thinking about the quantity; the language
was not supported enough. There was not enough time to interview them
individually. No evidence is observed of students thinking about the quantity as a set
of squares from their verbal interpretations. However, they had no confusion in dual
comparisons or ordering. For example, students might think of just two squares in
their comparisons, but nobody asked which blue square to which red square. It may
be evidence that they know all the same color squares have the same quantity in the

comparison.

201



Ali’s case is exceptional. Ali compared brown to brown, which he colored the same
because they are the same size. Then he interpreted them as being equal:
“brown=brown.” It is correct but a sign that he does not see the color code as a
quantity; instead, he considers squares themselves in comparison. He compared two
distinct squares, not two distinct colors (not quantities represented by them). His
coloring of other squares also contributes to this evidence. No squares are colored
based on their equality. No color code, but random coloring can be observed in his
work. Squares of the same color with different sizes occur, and primarily, different
colors are used. Only two brown squares are equal in size, which he interpreted later
as brown=brown. His color notation is unsuccessful. However, his interpretation of
relations between squares by their colors is correct. This indicates another result.
Accurate relational interpretation proves their quantitative understanding of color

notation, and accurate coloring of equals is necessary.

Algorithms need to be clear, and one-to-one communication is essential at their age.
Ali misunderstood the guidance on the coloring, which resulted in this confusion.
Online lecturing limited observations on students’ work, which could be controlled
during the procedure. Other students' works showed that this lecture added a new

dimension to the understanding of quantity with the help of color notational coding.
Notation

In the previous section, we explained how color notational coding enhanced our
understanding of quantity. The color notation also improved symbolic
representation. Until this lecture, students used pictures of objects as symbols in their
interpretation. The color of the objects, in this case, the color of a set representing a
quantity, is a higher level of symbolism.

All students are at the process level for the symbolic representation of signs and
ordering. However, for color coding, they are in action to process the level of
symbolization. 6 out of 10 students showed evidence that they could use the color as
a symbol in interpreting relations and orders. Two students (Medine and Aylin)

might be adjusting the size of the colors in order, but not apparently. Their use of
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colors in interpreting dual relations is symbolic. EKim represented bigger colors with
bigger sizes. Moreover, coloring had no connection to real-life situations. Her
disjoint notation does not represent/reflect any other object or quantity, typifying an
enactive representation. Briefly, Lecture 10 supports symbolic representation

through color-coded notation at the action level.
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Figure 4.24. Correct Symbolic Interpretation with Adjusting Size of Symbols

The algorithm of color code notation is given the first time when they are interpreting
dual relations; then, they are requested to order. Children may transfer/integrate the
knowledge of color coding and use the algorithm automatically in new context
ordering, or some students may hesitate to color define a quantity (as in Medine and
Aylin’s cases). In that case, they need to show the size difference in the order
sequence, as it was when they first learned ordering in the enactive mode of
representation. Mental constructions for symbolic notation with color coding of fixed

quantities are defined below (due to student observations in this lecture):
Action:

- use color notation through guidance

- resizing when passing from relations to ordering.
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Process:

- use of colors automatically when asked to order, without resizing.

- Color represents code for fixed quantity, symbolic.

The reverse process for color notation will be held in rainbow activity. In the rainbow
activity, the object's color will be used as notation in algebraic representations.
Students will read the algebraic representation and create real-life situations out of
it. Due to potential difficulties based on the results of this lecture, in rainbow activity,

quantity color codes will be provided in sizes compatible with the relations.

In Lecture 10, color code symbolic notation, using scales, interpreting relations, and
ordering are orchestrated successfully, advancing each other and elevating a new

understanding of quantity.

4.10.3 Design Principles for Lecture 10

- Measurement errors may exist in this activity as the squares are small and
look similar. Unless the student’s technique in creating a scale is wrong,
errors may be ignored. Finding all equals and notating all equals with the
same color is more important.

- Be precise in commands and check if they follow the algorithm step by step
giving sufficient time in each step of measure, compare all, and color all.
Ordering with color notation will build on these steps if concluded correctly
and consciously, where students will need to see equal-sized squares in a set
and guantity as an amount represented by a notation.

- The inclusion of order is essential in this activity so that we do not miss the
opportunity to see the quantity concept from an object's point of view
(quantification).

- Encourage students to improve their language on quantity through
discussion. At least the instructor should use it each time to ensure thinking

about the quantity: use plural words for squares and address quantity
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comparison: “Which one is bigger: the size of blue squares or the size of
green squares?”

- Appreciate equality relations in the interpretation of dual comparisons and
ordering quantities. Guide them to reflect on their color-coding procedure.
Coloring solely in pairs is common which can be prevented from the
beginning.

- Transitivity of equal relations is not the only mathematical intuition students
encounter in this lecture. Squares become members of a set by their relevance

on quantities. Constructing sets can be prompted after this lecture.
Materials:

- Provide squares of different sizes but close to each other to create a purpose
for using scales.

- Include various numbers of equal squares, but not mention their numbers.
Avoid bigger and smaller squares (not to confuse number vs size).

- Pre-given stickers could be beneficial to enforce color-coding.

411 Results of Lecture 11

Lecture 11 Online is the sixth online lecture consisting of three parts: constructing
signs with wooden sticks, discussion on multi-solution on the prior mid-assessment
results, and graphing plants height. All of the activities are constructed during a

lecture time of 40 minutes. Only Ali was not an attendee.

4.11.1 Plan of Lecture 11

The first activity in the lecture was constructing signs they learned =, #, <, > with
wooden sticks. This lecture brought some fun while reminding signs. The

construction of signs focuses their attention on the parts of the signs that will
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strengthen their remembrance. They did not construct or write in the previous lecture

but used signs provided to them.

The second and third activities are the main activities built around the objectives of
different topics. The second activity, discussion on multiple solutions, was not in the
first designed HLT, whereas the third activity, graphing plant heights, was part of
the first HLT.

The first HLT objective was:
1. The student uses equal-sized scales to represent measurement. (plants)
By the addition of activity on multiple solutions, objectives are revised objectives:

1. The student recognizes multiple solutions to construct objects based on >, <
relations.

2. The student uses equal-sized scales to represent measurement. (plants)

3. The student verbally interprets the change in height.

In the second activity, students’ solutions on the mid-assessment for constructing
quantity items are shown to students. Students reflect on the solutions for discussion
on the appropriateness of multiple results.

Lecture Flow: Recognize multi-solutions

See two different solutions to a “>, < construction problem

Reflect on the difference between the two solutions to the problem.
- See all other solutions (10) together

- Discuss if all can be correct

- Explain why all are correct.

- Discuss extreme solutions to the question

- Repeat stages with another “>, <” problem

- See asolution to create an equal object to a given problem.

- See all other solutions

- Discuss why they all look similar.
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In the third activity, they will measure their planted beans for the third time using a
string. They stick the string on the paper to form a graph of height over time and

observe changes in the height of the plant through their graph.
Lecture Flow: Change in plant height

- Use string to measure plant: represent quantity by an equivalent scale
- Stick string on the paper: graph plant height (for the third time):
- Interpret change in plants’ height: interpret change using/reading the graph

411.2 Theoretical Findings of Lecture 11

Wooden stick signs

The researcher showed how to make a ‘> sign from sticks. The researcher asked
students to create an equal sign. Students got confused because there were no joints.
Then researcher showed how to do it. The researcher asked students which sign was
left. Most of the students replied with an unequal sign. Finally, students constructed
unequal signs. They all could remember signs and names and constructed signs
correctly. Remembering of unequal sign was remarkable, as we had not used it for a

while. All their knowledge of signs seems permanent.
Variables

There were three items for constructing quantities based on pre-given relations:
drawing a smaller tree, bigger ice cream, and equal pencil. Firstly, the researcher
shows two different solutions to drawing a tree smaller than a given one, explaining
varieties to students. The researcher then presents all solutions to the students and
asks students if all of the solutions are true. One of the students (Eylem) replied,
“No,” while four students (Ekim, Bekir, Hasan, and Didem) replied, “Yes”

confidently. Bekir could explain why they can all be correct in his own words.

R: Why all answers are correct?

Bekir: Because they are small. If they show like, then they are correct.
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The researcher continued the discussion by asking what if a tree was drawn
extremely small. Didem and Bekir replied, “It is OK”. The researcher asked the
reverse to make them recognize the limits and ensure they were not auto-replying.
The researcher asked if the tree was drawn. Very big four students (Didem, Bekir,
Aylin, Hasan) replied, “No,” all attending discussions from the beginning. Only one
student (Eylem) hesitated in discussing multiple solutions in item 1. Her hesitation
was not due to size but due to image differences. She wanted to see all the trees
looking like the reference one. The researcher explained why all these varieties are
correct. Then researcher continued with the second item: drawings for ice cream

bigger than a given one.

The researcher asked if two different drawings of a bigger ice cream were correct.
Eylem replied, “No,” while Didem replied, “Yes” again. The researcher shows all
the different drawings and asks if they are all correct. Five students replied “yes”
(Bekir, Medine, Aylin, Didem, Hasan), while Eylem insisted on replying “no.” (She
might be considering other attributes, wideness or height, or size to assess results.
She admitted that all pencils are drawn correctly in item 3 when we discussed height
as the measure, we consider inequality. Expressing based on what we are comparing

is essential.)
Inquiry to infinity

Discussion on the multiple solutions in the second item of bigger ice cream continued
with the inquiry on infinity. Infinity was discussed in a previous lecture, in ordering
before. The researcher questioned how big we could draw the ice cream bigger than

the given one: as big as a tree, as big as the biggest, bigger to infinity:

Aylin: If the paper was very big, it could be possible.
Eylem: As big as the earth

Hasan: This much

Yaman showed above his head

Student: As big as the sun
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Didem: As big as the sky

Medine: Up to infinity

Researcher: How big is infinite?

Bekir and Eylem: It means it never ends.
Eight students out of 9 attendees had recognized and accepted multiple solutions and
considered extending solutions as much as possible until now. (1 student Ufuk no
response) Infinity inquiry was on how big a solution can be. Discussions on the
number of solutions have not been conducted yet. Infinity is a new topic for them.
Moreover, we never focused on representing discrete numbers of objects before, we
kept focus on continuous quantities. In this activity, “multiple solutions are correct”
is discussed but not reflected on the circumstances they exist. They only experienced

infinite and single-solution cases.

The last item was confusing for students because it was a struggle to draw equal-
height pencils in mid-assessment also. The researcher had to prove equality in height
by the help of using a scale to Yaman. He was cautious in his drawing, matching the
endpoints of equal pencils with lines. Then researcher appreciated their work; all
students’ drawings were equally successful, and she told how they looked similar to
each other’s, all having the same height. Eylem and Didem approved the researcher.
Then the researcher asked; “Why they are all equal?” referring to students’ pencil
drawings. Medine replied: “Because all are the same thing.” Their ability to explain
and use words is limited. However, they know in terms of how they are equal. The
researcher explained further: “Yes, all are the same thing because we drew them
looking at the same pencil, and equal to it. Thus, all are equal to this pencil, all look

like this, all look like each other.”. multiple and single solution discussion ends here.

With the help of this lecture, we could make students recognize the possibility of
multiple solutions. Built on the prior environment, where they had the flexibility to
have multiple solutions with the help of continuously manipulable variables, they
had no difficulty accepting multiple solutions. In the trajectory to find and reflect on

multiple solutions as objects, we can say they are at the pre-action level. At the end
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of the whole semester, we expect them to be able to find multiple solutions as
process-level mental construction. We can list the whole trajectory for multi-solution

as follows;

- Pre-action: Flexibility to have multiple solutions in discrete and continuous
tasks

- Pre-action: Recognize multiple solutions can be possible/correct

- Action: Interpret multiple/other solutions when recommended

- Process: Find multiple solutions fluently

- Object: Discuss properties of solution sets when multiple solutions are

possible and reflect on solutions or situations.

Mental Constructions: Indicators:
Variables
@ Flexibility to have multiple
solutions in discrete and
. continuous tasks
) re-action —
Multi- P

Recognize multiple
solutions: v solutions can be

] ossible/correct
relations P

Figure 4.25. Schema for Multi-Solutions in Lecture 11

Variables

The lecture goes on with the graphing height of plants students grow. In this lecture,
they made the third measurement. The researcher starts the activity by asking about

graphs:

R: Let us see if our plants got higher or shorter
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Eylem: Mine got higher too much (showing plant) (interpreting difference on
the plant)

Didem: Mine is this much (interpreting height at present)

Bekir: It got bigger than mine; how it that happen that much? (comparing his
plant to another)

R: All yours become beautiful. Now we will measure them by strings and
stick them on the paper as we did before.

Eylem: Teacher, mine was very little, now it is very big

R: Good job. Now stick your strings on the papers...... (Eylem and others
stuck strings and showed them to the researcher.) Good job, Eylem. Eylem,
did it grow? Is it the same as last week, or did it grow higher?

Eylem: It grew/elongated
R: Yes, it did.

Eylem: They are not the same; they are different (stating the relation between
last week’s string and today’s)

After this conversation, the researcher checked the students' work and asked them if
their plants changed. Eight of them stated that their plants grew higher. (Ekim’s plant
had died.). They could use strings to create equivalent pieces and use them to
construct graphs. They could interpret change in the plant based on the graph
verbally. This lecture is a preparation for a further lecture, where they will be
questioned on the amount of change. Verbally interpreting change creates verbal pre-
action for increase/decrease actions by +/- signs. Then increase/decrease by an

amount will be questioned on these graphs.
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Mental constructions: Indicators:

Create/use o Create equaivalent
scale
\‘ scale to represent

quantity in the graph

T

Verbally interpret
change in quantity
Increase/ as increase using
7 | equivalent scales on
decrease ~ [ pre-action the graph

Figure 4.26. Schema for Learning Quantity and Increase/Decrease Actions in
Lecture 11

Plants activity: Trajectory on quantity:

- Represent quantity by an equivalent scale (use of scale for graphing, while
graphing is the process of creating scale)

- Interpret change in quantity (while interpreting change, students use those
scales to represent quantity in time and then interpret change referring to

them. These scales became objects in the observation of change)

4.11.3 Design Principles for Lecture 11

Multi-solution
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- Build multi-solution discussion on examples where students had experience
with flexibility on multiple-solutions, do not bring outer examples. Even if
students could not bring multi-solutions to the tasks, flexibility brings
diversity to their answers, providing examples needed.

- Construction of quantities creates a flexible environment for multi-solutions,
creating pre-action mental constructions for multiple solutions.

- Accepting others’ solutions is a way to recognize multi-solutions as a pre-
action level. Another way to recognize or find multi-solutions can be directly
asking the student if she could draw another one or find another solution to a
given situation. (This comes later in our trajectory.)

- It also starts the multi-solution idea with a reverse process view. (not creating
multi-solutions but assessing given solutions as multi-solution)

- Discuss extreme solutions to evoke the boundaries and infinity of solutions.

- Toclarify diversity and equality in multiple solutions, always inform students
about in terms of which attribute (size, height, etc.) quantities are constructed
when constructing and assessing.

- Be aware of students’ imaginations and hesitations, which may hinder their
focus on discussing solutions. Perfectionism or drawing preferences may also

affect their arguments.
Change in height: Plant activity

- The activity naturally evokes students' interest in the change of height.
Comparison and interpretation of change (among time and plants) appear
naturally but can also be supported through questions. Emphasize
comparison between heights.

- Change amount will be discussed through these graphs after
increase/decrease and addition/subtraction subjects are learned. In this
lecture, stating change lays the foundation for change amount. It forms pre-

action mental construction for +/- as an increase/decrease topic through
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verbal interpretations of increase/decrease. Encourage students to use

increase/decrease in their verbal interpretations of height changes.

412 Results of Lecture 12

Lecture 12 is the seventh online lecture. It is an introductory course to operations,
starting with the names and meanings of plus and minus signs. It took 40 minutes,

and only Hasan did not attend the class.

412.1 Plan of Lecture 12

Following Davydov’s trajectory, operations are first introduced through a discussion
of how to make equality. Inequalities are played as algebraic objects; students are
expected to act on them with operations to create equality situations. Now, students
do not see equalities and equalities as a process; they are static objects, where

operations become procedures.

In our first HLT, operations are designed to be introduced in three separate lectures;

objectives and activities are listed below:
HLT Lecture 21

Objective: The student verbally interprets on which side to increase or decrease to
make/satisfy equality.

Activity: Students interpret which side to increase or decrease and actively
investigate increase and decrease in a weight context using play dough.

HLT Lecture 22

Obijective: The students discuss the increase or decrease in volume context to make

equality

Activity: Students continuously manipulate salts in cylinders to investigate

increase/decrease in volume context.
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HLT Lecture 23:

Objective: The student chooses the correct sign +/—to interpret the increase or

decrease on both sides to satisfy equality.
Activity: In volume context, students use signs enactively.
HLT Lecture 24:

Objective: Given iconic interpretations (worksheets), the student chooses the correct
sign +/- to interpret the increase or decrease on sides to satisfy equality.

Activity: The student chooses signs to make equal from given unequal situations on

paper items.

In the first week, students enactively investigated increase and decrease to make
equal in a continuous context weight with play doughs. Moreover, they verbally
interpreted the increase in Lecture 11. Hence, we eliminated HLT Lecture 21 and
HLT Lecture 22. Starting with volume context would make it more difficult. We
started with iconic representations of simple height and length comparisons and how
to make an equal inquiry, as in Davydov’s Book (Davydov et al., 1995). Our revised
objective for Lecture 12 is:

Revised objective: The student chooses the correct sign (+/-) to interpret the increase

or decrease on sides to satisfy equality.

There are two activities to investigate +/- signs enactively. Both activities demand
action by using signs through the “how to make equal” inquiry. Given the inequality
situation; students determine the correct sign for a side of inequality to make it equal
to the other side. In the first activity, they are free to choose a side and discuss making
equality by manipulating both sides, which means using both signs. In the second
activity, students are expected to manipulate only one side. However, several

situations enable them to experience both signs.

1% Activity: Paper Children Height: There are two paper children simulations in

which students can increase and decrease their heights. Students choose the correct
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sign for one child to make it equal to the other and execute their choice as increase

or decrease based on the sign to make equal.

2" Activity: Paper strips: There are several paper rectangular strips, one black while
the others white. Students are expected to make all strips equal to the black paper
strip. Firstly, they choose signs for increase/decrease, then activate increase/decrease
through cut or paste to make equal strips. One of the strips is equal to the reference
black strip, which needs no manipulation.

2" activity is adapted from Davydov’s Book (Davydov et al., 1995), where two
unequal strips exist, and cutting or adding strips appear as two different options to
make them equal to each other without using +/- signs. (This activity was before
using +/- signs, in Davydov’s trajectory. We adapted changing both sides to make
equal out of equality subject in weight context with play doughs). In this lecture
strips activity, we restricted students to manipulate a single side and learn signs
connected to the actions while we made them experience and repeat several

situations.

(a) (b)

Figure 4.27. “How to Make Equal Strips” Activity Versions in (a) Davydov’s Book
(Davydov et al., 1995, p. 27) and (b) This Study
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Lecture Flow:

- Introduction of sign names as plus and minus; explaining plus for increase
and minus for decrease.

- Showing how signs act on inequality to make equality: heights of researcher
and daughter example. (From the first week, students are reluctant to this
example for increase and decrease to make equal. Now they learned signs
additional to this. One learning step at a time they had no difficulty
understanding.)

- Individual enactive investigations to make paper children's heights’ equal by
choosing right sign. Students are individually interviewed to observe if they

learned signs and manipulation correctly.
Trajectory:

- Manipulations of inequality to make equal (object inequality, action
increase/decrease)

- Match operations with increase/decrease actions (algorithm using +/- signs)

- Experience operations on both sides to make equal

- Experience operations forced on one side to make equal

- Actualize operations on one side by changing adding/subtracting quantities
(pre-action increase/decrease amount)

- Repetition of the algorithm on one side manipulation to make equal

4.12.2 Theoretical Findings of Lecture 12

Operations

The lecture starts by asking the names of the “+” and “-* signs. All attendees (9 out
of 9) knew the name of a plus sign, while only one student (Eylem) interpreted the
name of the minus sign as “subtraction”. The researcher introduced the names of the
signs and explained that they are used for increase and decrease. The researcher

demonstrated how to use these signs to achieve equality. In the demonstration, the
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researcher compared her height to her daughter’s height. She questioned, “What to
do to make heights equal”. 5 (Ali, Yaman, Bekir, Eylem, Ekim) students immediately
suggested an increase in the daughter’s height to make it equal, while 3 (Bekir,
Eylem, Ekim) of them could also suggest a decrease in the researcher’s height. These
correct and immediate responses originate from their reluctance to increase and
decrease to make equal from the first week. This verbal interpretation of
increase/decrease acts as a verbal pre-action mental construction for operations. It
was built onto the pre-action mental stage of enactive investigations of
increase/decrease actions to make equal in weight context in the first week (play
dough activity). The researcher explained how to use +/- signs for those increase
and decrease actions. This explanation formed an algorithm for increase/decrease

actions using +/- signs.

After introducing signs and their use, students took their paper children to enactively
investigate increase and decrease height individually. All students are interviewed
through their use of signs correctly to make students' height equal. Only one student
(Ali) had assigned the wrong signs to children to make them equal. His elder sister
suggested he use the + sign for higher children and the — sign for lower children.
Ali’s sister is biased that more quantity deserves a plus sign, and less quantity
deserves a minus sign. Other students had no difficulty choosing which sign to make
equality. This shows lecture is successful in teaching +/- signs as increase and
decrease. Given an inequality situation, they learned they needed to increase the
smaller side, with addition operation, and the opposite. After we ensure their use of
both signs for increase and decrease action, a third activity is conducted, in which

they would assign signs more systematically.
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Figure 4.28. Medine: Children Height; Assign + Sign to the Short Child.

In the third activity, they were provided paper strips, one of which was black. They
again enactively investigated how to make equality by increasing/decreasing actions
and using/assigning signs for their actions. They had several strips for repeating the
algorithm. Different from the previous activity, one-sided manipulation is forced.
The black strip was not manipulated, while students cut or pasted others to make

them equal to the black one.
Steps for making strips equal are described by the researcher as follows:

- Compare one of the strips to the black strip.

- Decide what to do to the white strip: increase or decrease to make it equal to
the black one.

- Write a plus or minus sign on the white paper, which is reminding the action

to take
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- Then cut the excessive part, if you use a minus sign, or add an extra part if
you use the plus sign

The majority of the students (7 out of 9) could perform both actions by assigning

correct signs, including no manipulation for the equal-sized paper. Only two students

(Ali and Medine) needed step-wise guidance until the end of the lecture. Medine

usually has difficulty remembering signs, so she needed guidance in each activity.

Ali was confused about assigning signs again in the strip activity as in the children's

height activity.

R: Which sign did you write there?

Ali: Plus

R: Is that long or short?

Ali: Long

R: What happens if you put plus on it if it is long

Ali: Tt gets longer

R: Yes, it gets longer. Then, do they become equal?

Ali: No

R: Which sign then

Ali: Minus

R: Good job, minus sign
Ali knows what to do to achieve equality, in terms of increase and decrease actions.
He needed reminding of the algorithm for choosing the correct sign for those actions.
A similar conversation with him appeared in the children's height activity. Due to his
constant need for step-wise guidance, he is assigned to be at action action-mental
stage for using +/- signs. Ali performed all others correctly after this conversation.
Yaman had no final report of the “equal strips” activity, but he had verbal
interpretation for increase and decrease actions and he exposed choosing of correct
signs in mini-interviews correctly. After all students performed operations to make
equal, the researcher asked for generalization through questions: “What did you do

to the longer strips.” “What to do, if the strip is shorter than the colored one?”
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Answering these questions, students also developed formal language for operations;
replying “I reduced/subtracted” and “I added on” (Bekir). The researcher appreciated
their response (Yaman, Eylem) of suggesting change on the black strip, but directed

students to change white strips for now.

All these activities for action level on operations are built around “how to make
equal” inquiry. “How to make equal” inquiry starts with an inequality relation, and
acts on it by operations to create an equality situation. Here inequality relations in
the form of a>b become algebraic objects acted on by increase/decrease actions.

Briefly, mental constructions belonging to Lecture 12 are summarized in the figure

below:
Mental constructions: Indicators:
Inequality
relations S
—,
Manipulate
+/- sign as inequalities by
increase/decrease
Increase/decrease - actions to make
— 7| equal
Increase/decrease pre-action
___—»

by an amount, +a

Figure 4.29. Schema of Learning Equality and Operations in Lecture 12
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As described before pre-action stages of enactive investigations and verbal
interpretation were conducted before this lecture. Lecture 12 supports
increase/decrease action levels for addition and subtraction operations. Students will
become fluent in those actions, improving to a process stage on performing
operations. In the activities of Lecture 12, they performed also increase/decrease
amounts while they were manipulating to make equalities. However, we did not want
students to express verbally how much to increase or decrease to achieve equality.
Hence, for learning increase/decrease (addition/subtraction) by an amount this
lecture found an enactive pre-action stage. In further lectures, they will be supposed
to express increase/decrease amount to make equal verbally, for verbal pre-action
level. (The increase/decrease process and quantity process are composed of
addition/subtraction by an amount process together). Later, performing
addition/subtraction by an amount will be in our trajectory. When performing an
increase/decrease by an amount becomes a process of operations, finding unknowns
defines its reverse process. At last, we want them to reflect on the effects of certain
addition/subtraction amounts to the equations, where operations become algebraic
objects reflected upon. Reminding Lecture 12 preserves an action level, the whole

trajectory of operations can be summarized as in the following figure:
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' Object: properties of operations in equations

Reverse process: find unknown in equations

]

Process: increase/decrease by an amount

P (+/- process is composed with quantity process)

Action: increase/decrease by +/- signs to make equal

L]

Pre-action: verbal increase/decrease to make equal

]

Pre-action: enactive increase/decrease to make equal

Figure 4.30. Trajectory of Operations

Variables

In this lecture, continuous variables height and length are used. These variables are
chosen for their ease of visualizing increase and decrease. Students acquired quantity
and comparison between quantities before. Now, they manipulate quantity by
increasing and decreasing actions to equal it to another quantity. In the children's
height activity, manipulation is continuous, while in the “equal strips” activity,
manipulation is piecewise. “Equal strips” activity requires determining the difference
amount between quantities. Cutting and pasting based on different amounts in one
piece is a common solution. If the addition amount is not obtained, students use
discrete amounts added onto each other until equality is satisfied (Eylem, Aylin).
Aylin’s addition of extra pieces until it reaches an equivalence can be seen in her

work. Eylem stated her addition of discrete pieces as: “I joined five paper pieces.”.
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Figure 4.31. Aylin’s Solution to Making Equal Strips Activity

The addition and subtraction of discrete pieces set the pre-action stage as an enactive
investigation for the difference amount. Students manipulate sides of the inequalities
by adding or subtracting some amount of quantity. (Underlying algebraic intuition is
a difference amount. Equivalence of increase and decrease amount is not discussed.)
Here, addition or subtraction amount is a new form of process, but not in algebraic
notational form yet. Students’ mental stages are at the pre-action level in the form of

enactive investigations for difference amounts to make equality.

The action is on inequalities. Hence, in this lecture inequality relations become
algebraic objects. The researcher emphasized these relations before manipulations to
make equalities by questioning: “If the strip is shorter than the colored one
(inequality relation), what do we do?” Didem immediately replied, “We should get

paper bigger”.

Didem’s reply shows that action manipulation is not only objecting to change on the
inequality, but change is on the quantity. Relation has two components:
inequality/equality, and quantities. To change the inequality relation to an equality

relation, students act on quantities by addition/subtraction. Didem’s reply also
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underlies a continuous change in the quantity, pointing out that it gets bigger. Her
interpretation aligns with our aim of teaching operations as actions of
increase/decrease. Eylem’s reply, “I joined five pieces to make equal,” might seem
like an addition from a “coming together” perspective. However, she also increased
the quantity by adding pieces until it equated. Other students’ interpretations also
aligned with the idea of change in quantity, and they all enactively investigated the

change amount throughout the activities.
Notation

Paper children's heights and paper strips are hands-on materials that students worked
on both enactively. They assigned signs and performed increase/decrease actions

directly on the manipulatives.

4.12.3 Design Principles for Lecture 12

- Before this lecture, discussing how to make equalities and verbally
interpreting increase/decrease actions are essential, as they play an important
role in pre-actions to operational actions.

- Start inquiry by inequality relation to build operational actions on it.
Emphasizing quantities helps students to determine increase/decrease
actions. Once increase/decrease actions are determined for particular side of
the inequality, the representative sign can be assigned. In the last step,
students should be asked to manipulate the sides / and perform the actions
based on the signs they assigned. This last step constructs the action mental
stage for addition/subtraction. They need this step, to perform
addition/subtraction actions and see the result in terms of the equality
relation.

- Emphasize both equality and quantity in interpreting relations, to act

manipulations and observe changes in them structurally.
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- Design activities to include both signs and both increase/decrease actions. If
students are confusion, make sure they use both signs and both

increase/decrease actions in their way of understanding.

4.13 Results of Lecture 13

This is the eighth online lecture to teach signs as positive/negative directions in a

“distance” context. It took about 20 minutes. Only one student, Aylin, was absent.

413.1 Plan of Lecture 13

In the concept, we aim to teach the signs associated with positivity as an increase
and negativity as a decrease. In the Previous class, the increase decreased the

meaning of the signs, but it was only discussed how to make them equal.

Objective: Student performs actions of increase/decrease by an amount by moving

forwards and backward with fixed lengths.

Activity: Students are provided two dice. One dice includes animals, while the other
includes signs. Students roll two dice at the same time. Based on the result student

will move forward or backward with imitating animal steps.
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Figure 4.32. Animal and Operation Dice Used for Animal Steps Activity

This lecturing is out of Davydov’s trajectory. Davydov always includes equality
relations in operations, and operations are built on “how to make equal” inquiry.
Based on piloting and lecture results, we decided to strengthen the positive and
negative meanings of the signs. Thinking operations increased and decreased with
the equality situation was difficult sometimes. This lecture is designed to teach action

of increase or decrease by an amount free of thinking about equality.

In the previous class, manipulatives were continuously dynamic and
increased/decreased with a fixed difference based on pre-given or pre-constructed
situations. In this lecture, students learn signs as positive and negative movements
with multiple fixed/discrete amounts/quantities. As they roll two dice, one defines
orientation by signs; the other defines jump size by animals for fixed quantity. They
will simply perform situations where quantity varies based on the animal dice. (In
warm-up activities (to meet and get used to students), there was a similar game:
animal jumps and numbers dice. In that activity students were having difficulties

even in which way they moved forward.)
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The positive and negative meanings of signs will also create bases for future learning
on number lines. We do not mean positivity and negativity as related to signs with
their dictionary meanings, nor do we directly interpret the actions verbally as positive
and negative. We wanted to emphasize the increase and decrease in the meaning of
the signs. Moreover, when piloting in operation activities, we also faced the
difficulty of falling behind the zero line to investigate subtraction in quantities. Our
activities are based on free investigations where students increase and decrease
quantities of their choice or by chance. In Davydov’s activities, there are iconic
pictures of situations, and no negativity below zero exists. Our piloting with
subtraction in volume context showed a need to make this connection. Increase or
decrease by an amount will be investigated freely in this activity in Lecture 13 before
it is given in volume context. Piloting this lecture was also successful and

motivational for students because they were active in the motions.

Recommendations for future interest: We had no dice with numbers but it can be
added as a third dice representing constants in the equation.

Lecture flow:

- Show animal dice and teach animal jumps/steps to students.

- Remind +/- sign meaning as increase decrease

- Tell students when plus comes to move forward, but when minus comes to
move backward because it means decrease. The aim is to reach the camera,
which defines forward orientation.

- Perform +/- actions by rolling two dice simultaneously. Repeat the algorithm
several times.

- Play a game as a race between two people.

4.13.2 Theoretical Findings of Lecture 13

Operations
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All students enjoyed and learned +,- signs as positive and negative directions in their
movement. The lack of equality made this lecture just focus on the sign direction.
Movement requires magnitude in its nature. The animal dice determine the quantity

of the movement.

(193]

Students performed where dice were components of this algebraic process. “a” varies
by the animal dice. Repeating action by throwing dice several times, strengthens the
perception of “+” and “-” as a process together with the quantity “a” process,
composing the process of increase/decrease by an amount “+a”. Composition is not
only performed but also visible through the result of dice. Two dice come together,
composing the image as “+ animal.” The previous lecture discussed
increase/decrease to make equality, where the focus was on the operation, and the
amount was not interpreted explicitly but investigated enactively. In this lecture, the
pre-action of investigating an increase/decrease amount evolves into the action of

increasing/decrease by an amount, where the amount is determined and performed

by animal steps.

Mental constructions: Indicators:

Variable: a Perform actions
e of
T increase/decrease

by an amount by

+/-sign as moving forwards
Increase/decrease and backward
e with fixed
lengths.

Increase/decrease /
by an amount, +a
y S

Figure 4.33. Schema for Learning Quantity and Operations in Lecture 13
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. +/- sign as
Variable: a
Increase/decrease
. J
. - Perform
actions of
X / increase/decrea
se by an
compose amount by
moving
forwards and
Increase/decrease ./, backwards with
S fixed lengths.
by an amount, +a

Figure 4.34. Composition of Quantity and Increase/Decrease Processes into

Increase/Decrease by an Amount Process in Lecture 13

Variables

Quantities are fixed relative to each other, based on students' perceptions. In previous
lectures, students also used different fixed quantities for comparisons. With dice,
randomness enables variety in a limited number of fixed quantities. Length context
improves understanding of continuous quantities. Students experience different
lengths by fixed quantities of animal steps. Continuity in the movement underlies the
idea of continuity in the distance context, which can be associated with the number

of lines on the horizon.

Notation

Enactive animal steps students perform are interpreted through symbolic
representative pictures. The action is from symbolic representation to an enactive

investigation.
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4.13.3 Design Principles for Lecture 13

- Include pictures of animals whose steps vary clearly.

- Students start games/actions from the middle of the room. The chance of
coming + can be increased by putting more plus on dice to eliminate
problems about not being able to perform negative movements when space

IS not enough. Reaching the target is not easy with equal chance.

- Do not let students turn back when moving backward. This will also prevent

confusion on negative and positive movement on a number line.

- Racing helps to limit and structure/organize actions. Racing to a peer evokes

questioning of the effect of the +/-, as well as the size of the quantity.

414 Results of Lecture 14

Lecture 14 is the ninth online lecture. It is a continuum of Lecture 13, performing
increase/decrease by an amount in a new context volume. Two students, Hasan and
Ali, are absent. Eight students attended the online class, which took about 30 minutes

of investigations and individual interviews.

4141 Plan of Lecture 14

Lecture 14 aims to teach increase/decrease by an amount, like Lecture 13. Lecture
13 has an easier context to start, which helped students understand the new topic.
Volume and weight contexts can be confusing, especially in new topics. In this
lecture, an increase/decrease by an amount action is expected to improve the process
level of students' mental constructions by working several times and with the help of

the new context volume.

Similar to Lecture 13, Lecture 14 is an outlier to Davydov’s trajectory, as it does not

construct the action of increase/decrease on the “how to make equal” inquiry.
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However, we wanted to strengthen our understanding of algebraic objects
independent of equality. For this reason, we designed the objective and the activity

as described in the following.

Obijective: The students increase/decrease a quantity by a fixed amount in a volume

context. (perform +a)

Activity: Students are provided two dice; one has + and — signs on, while the other
has photos of cups with different volumes. Starting with half-full identical cylinders,
students roll both dice and perform increase/decrease by cups in turns with their
partners (mothers or siblings). Who fills the cup first wins the race. There is a blank

surface in cup dice to represent zero quantity.

Figure 4.35. Operation and Cups Dice Used in Lecture 14 for Increase/Decrease by

an Amount in Volume Context

Lecture flow:

- Make students fill the identical cylinders half.
- Explain the algorithm of increase/decrease by an amount:

o Rolling two dice at the same time.
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o Based on the result, take the represented cup (amount), pour it in
the cylinder, or take it away from the cylinder to increase/decrease
the amount of water in the cylinders. (algorithm)

o Explain how to perform zero quantity in dice.

- Guide students through dice rolling and performing actions till one of the
cylinders is full.

- Interview each student, on their perceptions of operational actions and
quantities.

Trajectory:

- Determine signs and cups by rolling dice, constructing a symbolic
representation for +/-a.

- Associate signs to increase/decrease action and pictures to the capacity
of cups (reading symbolic interpretation).

- Perform increase/decrease actions in volume context.

In this lecture, pre-given algebraic representation is read and increase/decrease
actions are determined by the student based on this interpretation. Then, they perform
actions in real-life situations. The trajectory was in reverse order in the first lecture
on +/- signs, which was constructed around the “how to make equal” inquiry (Lecture
12). In Lecture 12, based on the real-life situation, students determined
increase/decrease to make equal, and then they assigned +/- signs for
increase/decrease. We then wanted them to perform actions of increase/decrease
similar to this lecture. Davydov’s trajectory does not include these forward actions;
instead, “first this (inequality), then this (inequality)” situations are given to students.
Action required between these “first this, then this” situations is expected to be
imagined by the students through questioning where it increased or decreased. We

included performing these actions to create the connection between Lecture 12 and
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Lecture 14 and promote action-level mental construction for increase/decrease by an

amount concept.
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Figure 4.36. Davydov’s “First This Then This” Inquiry to Match +/- Signs to
Increase and Decrease Actions (Davydov et al., 1995, pp. 48-50)
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4.14.2 Theoretical Findings of Lecture 14

Activity is a race between two people to fill their cylinders. Firstly, how to take
individual actions of increase/decrease amount is explained, then race starts. The
researcher recommended that students fill two identical cylinders almost to half.
They have to be equal, but not certainly half. One cylinder is for the students
themselves, while the other is for partners. Students rolled two dice at the same time.
Took the cup represented in the dice. The algorithm was explained as decreasing or
increasing by the amount(cup) in your cylinder. The researcher added that there will
be no action if the blank side comes in cup dice because it represents no

amount/quantity.

After the algorithm was given, each student was directed individually through their
actions. Then, it is passed to the other competitor (mother or sibling). Students
expressed who won after one turn, one roll for each competitor. The activity could
also be designed that way, with one roll for each side, and observe results. We left
this investigation by observing different amounts and operations on the sides of
equality for the last lectures. In this lecture, we wanted to focus only on actions of
increase/decrease by an amount in volume context. Getting fluent in these actions
will make comprehending further lectures on the properties of operations easier. To
reflect on operations as objects, they should be perceived as processes first. The
researcher guided the competition until one of the competitors reached the top.
Through race, we wanted students to get motivated and experience actions as much
as possible. Researcher reminded + means increasing, - means decreasing when
needed. At the end of the race, the researcher interviewed students individually to

see how they interpreted their actions.

Two students (Bekir and Yaman) understood the game wrong; they thought that when
minus came in the dice, they filled the partner’s cylinder. The guidance of the
researcher corrected them. Then, they completed the actions correctly afterward.

Explanation of games step-by-step is essential. Individual mini-interviews are also
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conducted to observe and ensure their level of understanding through the following

questions;

- Which cylinder is yours to determine what to increase/decrease? What is the
quantity
- What you do when each sign comes, increase/decrease action
- How much to increase: relate with the dice.
As a result, 6 out of 8 students showed evidence that they fluently increased and
decreased by fixed amounts in volume context without guidance. All of them
performed correctly through guidance. Hence, this lecture can be assigned to support

action to process level for increase/decrease by an amount in volume context.

Mental Constructions: Indicators:

Student
Increase/decrease action/ increase/decrease a
quantity by a fixed
amount in volume
context. (perform
+a)

by an amount, +a process

Figure 4.37. Schema for learning Increase/Decrease by an Amount in Lecture 14

Variables

Students performed “+a” using dice, where “a” has five positive possibilities and
zero amount. Students may have difficulty performing where to increase and
decrease; pouring water from where to where may be challenging to understand
(Medine). Expressing the cylinder amount is the consideration of the quantity, and
we increase it from outside with an amount. Hence, throughout mini-interviews,

students are questioned about where they increased/decreased and how much they
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increased/decreased. They could all perfectly pour and take away the required
amount. 2 students were able to express how much to increase/decrease verbally.
They usually interpreted the increase/decrease amount; by showing cups and saying,
“This much.” One of these students, Aylin, interpreted the increase/decrease amount
by generalization, even without the “How much?”” question directed to her. When the
researcher asked, “What did you do when plus comes?” she interpreted the action
with the amount, even without expecting: “I filled my cylinder with water as much

as the cup.”

Students could also perform zero quantity by doing nothing. Students interpreted
blank cups as changing turns (Ufuk, Didem) or doing nothing (Aylin, Ekim, Eylem).

4.14.3 Design Principles for Lecture 14

- Understanding the game rules can be more complicated than the algebraic
actions. Step-wise guidance and simultaneous application help to follow and
guide students.

- Through individual interviews questions: what to increase/decrease, and how
much to increase/decrease to awaken students on quantities.

- Plus and minus signs have equal chances, making it difficult to win and fill
the cups. As suggested in the previous lecture, plus signs may be placed more
on dice. Moreover, students' joy of having a positive and bigger quantity in

their turn reveals their understanding.

4.15 Results of Lecture 15

Lecture 15 is the 10™ online lecture, which has two parts: addition/subtraction
operations in part-whole context and transitivity in weight context. Only one student
(Ali) did not attend the class, but he completed items correctly later, by guidance.

The lecture took 40 minutes.
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415.1 Plan of Lecture 15

Lecture 15 has two parts, objecting to two different topics. In the first part, HLT is
followed, while the second part aims to make up the transitivity topic, which students
needed help with in previous lectures. In the first HLT, the objective of the 25"

lecture was;

1. The student uses + and—signs to construct equalities with one-side
addition/subtraction in a part-whole context.

Without revision, this objective is applied to Lecture 15. Part-whole context was also
used in equality with iconic pictures and Lego toys. Lego activity for part-whole
equality was found to be challenging to study in pictorial mode; some students (who
do not have Lego) had difficulty recognizing some parts in the constructed Lego
model (Results of Lecture 6). Hence, part-whole items are built to include clear and
distinct visions. Wooden blocks are chosen for two items as they do not lose any
parts in vision (Legos are intertwined). For one item, animal figures are used. Wholes
are represented with organized items, while parts are placed randomly to indicate

which side to manipulate/change by increase/decrease actions to construct the whole.
Lecture flow for the first part on addition subtraction in part-whole context:

- Show parts and whole, ask if they are equal or not

- Ask what to do to parts make equal/ to make the whole: increase or decrease
parts

- Place related sign + or —

- Then ask which part to decrease or increase and place the picture of parts
under the sign (showing the picture of the piece helps to differentiate and
place)

In the second part of the lecture, the transitivity subject is revisited in a weight
context. Previous lectures were not as successful as expected due to measurement

errors. In this lecture, comparisons are structured and stabilized by the activity where
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the researcher is experimenting, and students are observing and reporting the results
of the comparisons. It is expected to create a synchronized environment for
transitivity inquiry. For transitivity in weight context, additional objectives to the
trajectory in Lecture 15 are designed as follows;

2. The student reports two dual comparisons of 3 objects (in weight context)
3. The student concludes the third relation based on two relations between 3
objects (in weight context)

The second objective fulfills the purpose of symbolic representation in a weight
context, which some students had difficulty with before. Moreover, it will stage
needed relations to deduce the third relation by transitivity. The third objective
addresses the use of transitivity property to deduce the third relation. The transitivity
property used in this lecture will be based on three inequality relations, different from
previous lectures on transitivity using at least one equality relation. In this lecture,
the newly designed trajectory for transitivity will be tested. Firstly, students will be
expected to order objects, and then they will deduce the third relation. This

trajectory/ordering is hypothesized based on previous lecture results on transitivity.
Lecture Flow for the second part on transitivity:

- Present three different weighted but similar-sized objects.

- Compare two of them: biggest and middle weighted ones (Follow smallest-
to-biggest, or biggest-to-smallest order, for ease of ordering and deduction.
We followed the biggest-to-smallest order in dual comparisons)

- Students report 1% comparison by pictures symbolizing the weights of the
objects.

- Show second comparison; middle to the smallest weighted objects.

- Students report 2" comparison by pictures symbolizing the weights of the
objects.

- Ask students to order these three objects.

- Ask students results of the third comparison based on their order and report

comparison.
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- Check the result of the third comparison through an enactive investigation.

4.15.2 Theoretical Findings of Lecture 15

Operations

In the first part, three different part-whole items are provided to students. Items
include part-whole situations where they have equal signs between. Students are
expected to operate parts to make them equal to the whole. First, two items include
part-whole situations with one side manipulation to make it equal to the whole.
Students add and subtract items to satisfy the equality relation, following the “how
to make equal” inquiry. Construction of operation with amount appears first time
here with the help of easy manipulation of simple objects as parts. They do not take
out or add parts, as it was in the first week of part-whole how to make an equal
inquiry. They had enactively investigated change without referring to any operation
signs, but in this lecture wrote symbolic representations of addition and subtraction
together with the addition or subtraction amount. Templates and guidance helped all
students to complete the first two items correctly. As in the first representation of +/-
signs, the inquiry started with the “how to make equal” question. Then, the choice of
sign is associated with the determined action. At last, students placed what to add or
subtract in the equation. In this lecture, students constructed equations with one-side
manipulation through actions of increase/decrease by an amount with the help of
“how to make equal” inquiry. With the help of templates, the construction of the

equations could be established iconically.

In the third item, we wanted to make students operate on two parts sets and use two
different operations to satisfy equality to make them equal to one whole. This is the
first step to approach equations with operations on two sides. They operate on sides
distinctly but make them all equal to the whole, which is placed in the middle of

them. Prior items were completed with the guidance of the instructor. Students’
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performance on this item revealed their level of learning on constructing equations

with one side operation.

Figure 4.38. Ali’s Work on Equations With One-Side Operation in Part-Whole

Context and Transitivity Activity.

Four students out of 9 attendees immediately completed operations on two sides in
the third item, immediately when they saw the item. One student (Yaman) completed
one side operation (addition) immediately, then concluded the other side during a
given time. One other student (Hasan) completed the third item himself in the given
time. 3 (Didem, Medine, Ekim) students needed guidance on “how to make equal,”
“which sign to choose,” and “what to add or remove to make equal” for the third
item. One student who did not attend class completed items correctly after class. It
can be concluded that 6 out of 9 students can perform operations and construct
equations with one side operation without direct guidance, 5 of which are observed
to be fluent in the process. This lecture is an introduction to equations with one-side

manipulation. The lecture accomplished teaching equations with one-side
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addition/subtraction at the action level. Moreover, it supports process level for
operations by the ease of manipulatives in part-whole context. The following figure

summarizes the mental constructions observed in this lecture;

Mental Constructions: Indicators:

Equality, = —
\ By guidance,

determine
increase/decrease
actions and
increase/decrease
rease by an reverse- amount to make
process equality in part-whole
context.

Equation with
one side — Fluently,
_ increase/decrease by an
operation \ amount and construct
e equations with one side
operation.

Figure 4.39. Schema for Equality, Operations, and Equations in Lecture 15

Increase/dec

amount (£b)

As described in Figure 4.39, equality is an algebraic object in creating equations with
one side operation. Equality between parts and whole is pre-given to students.
Through how to make equality inquiry, students complete equations determining
increase/decrease by an amount. Hence, increase/decrease by an amount is composed

of reverse processes in the action of creating an equation with one side
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addition/subtraction operation. The guidance needed in actions of constructing

equations with one-side operation is in the following order;

- What is missing or an extra part to make the whole?

- How to make equal: add or take away, increase or decrease?

- Which sign to choose for increase/decrease?

- What to add or subtract from here?
This guidance procedure helped Didem and Ekim to construct equations. Medine
needed extra help because she had difficulty focusing on which side to manipulate.
Even though she knows signs and what increase/decrease means, she struggled with
interpretations. She also needed help in previous activities in part-whole contexts.
She may need to investigate add or take away enactively. Surprisingly, she could
interpret subtraction but could not interpret addition. She usually has the problem of
transferring her knowledge in new situations. She learns context-based and requires
extra guidance relating enactive real-life situations to algebraic interpretations.
Algebraic objects are not static for her, and she cannot focus on them. Even though
she struggles with interpretations or iconic pictures, she is interested in the topics,

understands them conceptually, and her verbal interpretations are accurate.

Through individual mini-interviews, the researcher ensured all students understood
and completed the operations on part-whole tasks correctly. In the second part of the

lecture, transitivity in weight context is accomplished.
Transitivity

Transitivity with one equality relation was visited earlier, in volume and height
context. In this lecture, transitivity is discussed by comparison of three objects, all
of which have different weights. Researcher shows enactive comparisons of three
toys, and students report results of dual comparisons. Three objects are a wooden
cube, a toy car, and a dog. Firs two comparisons are cube > car & car> dog.
Comparison result between cube & car is expected from students after they order

these three objects based on their weight.
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Eight of nine students were capable of guessing and interpreting the third relation
immediately, while one of them (Hasan) only ordered three objects but did not
interpret the third relation symbolically. (Materials were not sufficient to express all
relations and ordering. Students needed to interpret ordering with symbolic pictures.

Provide enough pictures next time; consider ordering also.)

One of the major difficulties in weight transitivity is that students may have an idea
about the weight of actual objects, which handicaps thinking by the measurements.
In the pilot study, there were three animals compared based on weight. Pilot student
A thought the elephant was bigger in real life, so he did not relate the iconic weight
comparison, where the giraffe is heavier, to his interpretation of the relation between
the elephant and the giraffe symbolically. This was the reason why reasoning by
transitivity was complex for him. Symbolic representation may occur distinct from
the comparison situation. In representations, real-life knowledge hinders their
mathematical deductions. Students may depend on size for representing by >, <
signs. However, this was not the problem in this activity; all students could represent
comparisons symbolically based on weight when the researcher showed the first two
comparisons to them. The problem occurs when they are asked to deduce the third
result or order objects. They may forget about previous relations and depend on their
real-life knowledge. In this activity, some students think the wooden toy is heavier,
for example, and ignore comparison. Medine was one of the students who correctly
concluded the third relation, but her explanation needed to be more sufficient. When
she is asked for dual comparisons again, she can interpret all of them one by one,
through guidance. However, she could not order them. She is confused about
ordering objects based on the previous relations she interpreted; she insisted on

considering real-life sizes for objects: “Dog is small, the car is very big.”

Like Medine, other students may also need help explaining their reasoning by
transitivity, based on their capacity in language. Ekim explained her reasoning for
“wooden cube>car” as “because wood is very big.” Aylin’s explanation included all
objects and their relation to each other; “because the wood is heavier than the car,

and the dog is even lighter than the car.” Aylin’s explanation proves her dependence
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on transitivity in her reasoning. Others' fluency in guessing the third relation also
might indicate the success of this lecture on carrying out mental construction on
transitivity from action level to process level of understanding. Step-wise
interpretations in weight topic and ordering strategy contributed to the success. Their
immediate response to the third relation, even before ordering, addresses the fact that
the sequence of the relations (cube > car & car> dog => cube>dog) helped them

deduce the third relation easily.

Mental Constructions: Indicators:
Ordering | — ——» | Order objects based
on their weight
pre-action

Intuitive deductions
by guidance

Transitivity >
\—’ .
Deduce third relation
based on observations
— | of two dual
comparisons between

three objects

Figure 4.40. Schema for Ordering and Transitivity in Lecture 15

Transitivity is a difficult topic, and determining bigger based on weight is also
difficult for students. After several attempts and systematic organization, reasoning

by transitivity is achieved. However, this transitivity is based on their enactive
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observations. We don’t know if they can reason by pre-given symbolic

interpretations of relations to deduce another relation.

In the last minutes, the researcher illustrated a third relation, to make students check
their deductions. Then researcher showed all combinations of comparisons and their
reverse again. Even though we had never discussed directly what happens when we
compared objects in reverse; they all responded correctly and immediately. In mid-
assessment, they were not asked conceptually but were expected to interpret reversed
versions of comparisons, which they were successful at. The way we taught >, <
signs also allows thinking in symmetry because they have no direction/orientation

fixed for interpreting and reading interpretations throughout the activities.
Notation

In the first activity; operations in part-whole context, notation is in the iconic mode
of representation. They iconically investigate equality situations and construct
equations with one-side operations, using signs and pictures of toys representing
added/subtracted items. They were all capable of constructing equations with one
side operation symbolically and got fluent in the third item in their representations.
Only Medine needed constant guidance for the symbolic representation of

operational actions during activity.

Part-whole context is observed to make an easy start to determine and interpret
addition/subtraction amount before volume and weight context. In previous lectures,
they actualized addition/and subtraction by an amount in a volume context. Still, they
did not determine how much to increase/decrease or what is addition/subtraction
amount (reverse-process addition/subtraction amount). This is a prior step for finding
unknowns in equations. The part-whole context created easy determination and
symbolization for unknowns in the equations. It needed to place the sign before it
supported forward processes on addition/subtraction amounts. It staged pre-actions
for finding unknowns with the help of iconic representations. Finding the unknown

is easily recognized as missing or extra parts in part-whole context.

246



In transitivity activity in weight contexts, interpretation was expected in symbolic
mode, based on enactive observations, with the help of representative pictures of
objects. All students were successful and fluent in symbolically representing

relations based on weight.

4.15.3 Design Principles for Lecture 15

- Starting equations with one-side addition/subtraction in a part-whole context
is practical and makes it easy to focus on unknowns.

- If it was not an online lecture, first, enactive investigation is suggested to
construct wholes from parts instead of pictures. We suggest using pictures on
paper templated with blank squares (to place +/- signs and parts) to enforce
operation on one side and empower symbolic representations for addition and
subtraction by an amount.

- Remind use of signs connected to the actions of increase/decrease. Add or
subtract parts can move attention on operations away from increase/decrease
actions. Follow the inquiry as follows:

o Arethey equal?

o What to do part to make equal to whole; increase or decrease?
o Which sign to choose for the determined action?

o By which piece to increase/decrease, what to add or subtract?

- Using colored pictures helped students to recognize parts in the part-whole
activity.

- Rather than repeating the algorithm in transitivity topic, dedicate more time
to a more structured activity, which strictly follows the inquiry;

o starting with symbolic interpretations of relations,
o then symbolic interpretation of the order of objects,

o then deducing the third relation based on the order.
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Ordering of objects occurs sometimes, implicitly, before symbolically
interpreting it. In that case, the student can immediately deduce the third
relation.

- Inthe transitivity activity, asking comparisons in the order of hierarchy (such
as a>b & b>c) helps in deducing the third relation. Comparisons from
smallest to biggest or biggest to smallest order are suggested. Alternatives
can be tested later.

- Provide extra representative pictures of compared objects for interpretation
of order.

- Use similar-sized objects in weight comparison to prevent misleading
conclusions.

- Refer to the attribute when you ask for interpreting comparisons or ordering
each time. Students’ consideration of attributes may not be stable among
contexts. They tend to think based on real-life properties of objects,

independent from previous findings on classroom investigations.

416 Results of Lecture 16

Lecture 16 is the 11" online lecture. It aims to teach finding unknowns in equations
with one-side addition. Eight students attended class, and one student (Hasan) was
lectured briefly after class. One student, Medine, was absent and did not take any
make-up. The lecture took about 40 minutes.

4.16.1 Plan of Lecture 16

Davydov’s trajectory focuses on one-side addition in equations, then continues with
two-side addition. Lecture 16 focuses on equations with one-side side addition in
height context. It uses a game model, “Math Forest,” where animals are represented
by numbers and respective heights (see Figure 4.41). You can put animals on top of

each other and create equality between heights of groups. Each animal has different
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heights, representing different numbers from 2-9, while only two are equal to each
other, representing number 1. We covered all numerals on the animals and
measurement tools to construct unknowns and create algebraic equations with
quantities represented by animals (see Figure 4.42). Moreover, we added an extra
wooden line so students can compare animals and observe equalities nearby, not
based on number line (which we also covered). We will use this game in teaching

equations with two-side addition in Lecture 17.

Figure 4.41. Math Forest Game
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Figure 4.42. Using Equation Templates and Covering Numbers in Math Forest

Game

Students are directed to 8 questions and guided to find unknowns in the equation.
They are provided extra templates, including three blank boxes, equality, and + signs,
in which they can place animals and construct equations. They use a measurement
tool (which has a tree on it) to compare sets of animals, try and find unknowns, and
then place the animals on the template of equations. The template can be used in
any orientation. Questions are not asked to direct an orientation but to indicate

equality/balance.

Based on the first HLT, the objectives of the 26" Lecture were:

1. The student determines the addition amount to make equality.

2. The student interprets a quantity as the addition of one to another.
Revised objectives are:

1. The student determines the addition amount to make equality.

2. The student finds unknown in an equality with one side addition.
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3. The student recognizes multiple solutions to equations with two unknowns (a =?

+7)

Revision of the objectives does not indicate a change in the focus of the lecture;
Lecture 16 aims to teach equations with one-side addition and finding unknowns in
one-side addition as planned. The second objective in HLT is canceled because
verbal interpretations are complicated for students. Hence, we only guide them
through increasing heights by adding other heights in the animal height game. 2"
and 3" revised objectives discriminate items used in Lecture 16. We decided to add
an item with two unknowns, empowering the investigation and interpretation of
addition on equations and developing an understanding of multiple answers.
Students are expected to discover equal sums and use them instead of each other by

the 3™ objective.

There are eight tasks students are guided through to find unknowns in equations with

one-side addition.

1. Addition to one side to make equal: a=b+? (“What do you need to add onto
the ostrich to make it equal to the giraffe?” type of questioning.)

2. Addition to one side to make equal (repeat algorithm): a=b+?

3. Equality situation: a=b+? when a=b (This item asks students to recognize the
equality of two animals: Ladybug=bee).

4. Addition to one side to make equal: a=b+? Two solutions, ladybug and bee:

use the same quantity of objects instead of each other

Addition to one side to make equal (repeat algorithm): a=b+?

Addition to one side to make equal (repeat algorithm): a=b+?

When unknown is the sum: ?=a+b

© N o’

Equation with two unknowns in the form: a=?+?, multi-solutions recognition

and finding

As seen from the items, we do not start by adding two quantities and asking sum of
them as a result; we leave it to the end. Every question is focusing on finding the

unknown in an equation. This strengthens the idea of equality of two sides, rather
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than add and find solution command. Starting with “how much to increase to make
equal” questions, we follow Davydov’s trajectory of how to make equal by
increase/decrease actions. Hence, items start with comparing two animals and
continue questioning where to increase and then what to increase. Some questions
are verbal, then some are directly asked on a template based on students’

understanding.

4.16.2 Theoretical Findings of Lecture 16

The lecture started with the presentation of manipulatives and how to use them, by
item 1. The researcher showed two animals and how to compare them on the
manipulative. The researcher asked how to make them equal by adding another
animal and then showed how to test their equality. At last, the researcher explained
how to place the animals on the measurement to the template. Students imitated the
solution to the first item. 6 (Aylin, Yaman, Bekir, Eylem, Didem, Ufuk) students
could immediately understand and use the template correctly. Eylem suggested the
addition of two animals instead of one answer. One student (Ekim) needed guidance
for item 1. Another student, Ali, had difficulty understanding because he was absent
from the last two lectures, where addition and subtraction by an amount were
discussed. Ali’s struggle continued through the whole lecture, while others got fluent
after the second item. The researcher reminded the use of the plus sign for increase

actions in the second item to help Ali and make other students focus on the increase.

In the third item, two animals were equal in height, and students could interpret
equality immediately. Aylin interpreted their equality by writing an equal sign
between them. The researcher put them on the template and explained nothing to do.
The researcher changed the places of equal animals on the template to show it does
not matter where they are; they are equal, and we add nothing. The equality of two

animals is used in the next item as an addendum.
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(a) (b)

Figure 4.43. Aylin’s Interpretation of (a) “Bee=Ladybug” and (b) Aylin’s Use of a
Template

In the fourth question, the researcher asked, “By which animal should we increase
gorilla to make it equal to ostrich?”. Stress is on the amount and the increase meaning
of addition connected to previous classes. The difference between ostrich and gorilla
is 1 unit in the game, which is equal to bee or ladybug. Some students replied bee;
some students replied ladybug for a solution. The researcher pointed out these two
different solutions: “Some say ladybug, some say bee!” Ufuk replied, “Because they
are equal.” Ekim said, “Both works.” The Researcher explained, “We can put this or
this because they are the same” by showing bee and ladybug onto each other to show
their equality. The researcher said, “I can put this or this instead of it.”. Not on the
template, she used them interchangeably on compared sets of animals to show
students that equality is preserved. The researcher sometimes did not use

measurement tools. Students placed animals next to each other to see equality.

The fifth question repeats the algorithm, starting with comparing two animals. Six
students (Aylin, Eylem, Bekir, Ekim, Ufuk, Didem) out of 8 attendees were fluent in
their responses, and four of them were fluent in using templates (Aylin, Eylem, Bekir,

Ekim) to construct equations by one-sided addition in this item.

In the 6" item, which is also for repletion of the algorithm of finding unknowns in
equations of the form a=?+b, the researcher emphasized the meaning of the plus sign

as the addition of two quantities rather than increasing one. Moreover, the researcher
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associated verbal questions with the template, addressing the placement of unknowns

in the equation:

“What will become a bear if 1 add it with a deer?” (addition of two quantities

meaning)
“What comes to this blank box?” (template-based questioning)

The researcher directed the 7th item directly on the template. 7% item asks for the
sum: ?=a+b. It is to make an equal process. They (Yaman, Bekir, Ufuk, Aylin, Eylem,
Didem, and Ekim) immediately replied item correctly. They had no confusion.
Yaman also improved using the template to construct equations by this item. Ali and

Hasan had difficulty finding the answer and using the template, even with guidance.

8th item is on addition of two unknowns in the form: a=?+?. The researcher directed
questions and waited for responses. When there was a different response, she pointed
out. Students were not shocked or confused to see other solutions. They accepted the
solution of their friends. Moreover, they composed an alternative solution (Bekir) or
used an equivalent to modify their solution (Eylem). The researcher illustrated all
solutions by putting on and nearby, and asking students to do the same. They all

imitated/showed multi-solutions successfully.

= R\
(@) (b)

Figure 4.44. Multiple Solutions of (a) Ufuk and (b) Didem
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In finding unknown procedures, the majority of the students successfully determined
the increase amount, created equations on templates, and tested their equality. They
successfully recognized multi-solutions and used them interchangeably. This lecture
accomplished all the intended objectives except for two students, Hasan and Ali. One

attended late, and the other missed the last classes on operations.

In previous lectures, students learned operations as actions, then operations by an
amount as actions. They determined the operation and amount on both sides of
inequalities to make it equal. Also, this lecture starts with the inequality situation to
build equality. Differently, the operation is given, and the construction of equality
depends on finding missing quantities. Moreover, the unknown does not only appear
with the operational action but is also represented by the result/addend. (Previous
lectures focused on the construction of the operations by the amount.) This means
that Lecture 16 focuses on constructing equations, with addition on one side, or given
an equation (with the defined operation), students find the unknown quantity. These
processes refer to the action level of equations. Addition operation, quantity, and
equality are objects of equations constructed in Lecture 16. Students developed
action or process-level mental constructions during the lecture on the constructions
of equations and finding unknowns satisfying the equations. Addition by an amount
process is composed in the processes of finding unknowns and constructing

equations. See Figure 4.45.
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Mental Constructions: Indicators:

T
Determine unknown,
by guidance of
T inquiry where to

increase, and what to

add to satisfy
. — | equality
Equation with
one side /

+a

addition

a=b+c
Reverse-process: find
unknown in equations

\

a1+1: /v
o .

Figure 4.45. Schema for Learning Equations With One-Side Addition in Lecture 16

Process: construct
equation on templates

Quantity

Items have the potential to teach different aspects of quantities as unknowns. Height
is a continuous type of quantity, where fixed quantities are used in this lecture. The
increase of the quantities is also by fixed quantities. There exists an equality between
two objects in height in item-2. Two animals are the same in quantity and can be
used instead of each other. Hence, quantity gets abstracted one more step away from
being particular to an object. (Students develop quantity from object to quantity to

variable.)
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Moreover, items support multi-solutions. Not only are equivalent objects used
instead of each other, but equivalent sums are also discussed as solutions to an item
(last item-8). (Variability in the equations is sensed through multiple solutions, but

dependency between quantities is not discussed in any of our activities.)
Notation

Templates helped transfer enactive representations to iconic representations. They
worked as algebraic structures of equations, with the placement of unknowns. Except
for Hasan and Ali, students had no difficulty using templates and relating them to

enactive representations.

At first, we wanted the template to be different: the addition sign should be on top
rather than by the side. It would be similar to part-whole activity and imitate height
addition directly. Then, this type of displacement side by side would also be used in
further classes. We did not have extra time to study all kinds of templates. The
researcher asked the kindergarten teacher’s advice; she said they could understand
side by side. Then, we implemented it and were not disappointed. Placing a plus

sign on top could be tried to be more intuitive in height topic.

4.16.3 Design Principles for Lecture 16

- Start inquiry on comparing quantities and actions to make them equal. Which
side to increase and how much to increase are the main questions that should
be asked to build on their prior knowledge and construct operations as an
increase/decrease in the quantity.

- Questioning which signs to use for increase/decrease actions can also be
revisited in need.

- Repeat finding unknown algorithms and using templates for constructing
equations to make students fluent.

- Ask questions to find unknowns verbally and on the templates for connecting

each other. Then, ask, referring to templates only to get used to equation
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expressions. Templates help students interpret and create algebraic meaning
in equations.

- Include different types of equations where the unknown is placed in different
places.

- Ask your questions focused on the equality of two sides rather than the
resultant of addition to support the meaning of equal sign as balance.

- Use equivalent height objects to support quantitative understanding, creating
a set of objects belonging to a fixed quantity. Then, operations are conducted
on quantities rather than on objects themselves.

- Create items that enable multi-solutions, where quantities or their sum can be
used in terms of each other.

- Measurement tools and games are not necessary for this activity. Using
different height/length objects and a template is sufficient.

417 Results of Lecture 17

Lecture 17 is the last and 12th online lecture. It is a continuum of Lecture 16 on
equations with addition on one side. Lecture 17 uses the same game Math Forest
(animal height) to investigate equations with addition on both sides. Eight students
attended online classes, and two of them (Medine and Didem) were absent. Medine
was absent in Lecture 16, the previous class on equations with addition. The lecture
took 40 minutes.

4.17.1 Plan of Lecture 17

Using the same tools as Lecture 16, this lecture aims to teach equations with addition
on both sides. It is aligned with Davydov’s trajectory, focusing solely on addition,
first on one side, then including addition on both sides. Addition on one-side topic
starts with “how to make equal” inquiry in Davydov’s and our trajectory. Addition

on two sides begins with the “equal, not equal, equal again” inquiry in Davydov’s
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trajectory, which means equality is turned into inequality by the addition of a
quantity on one side, and then it is made equal again by adding the same amount on
the other side. This approach preserves making an equal inquiry. Lecture 17 also
includes an “equal, not equal, equal again” inquiry, but in the second part of the
lecture. In the first part, finding unknowns and modeling equations with two side

additions centralize the activity.

In the first HLT, additions on two sides of the equations were planned after
discussion and modeling of increase/decrease amount (and difference amount as
increase or decrease amount to make equal). We decided to change the trajectory;
and placed equations with two-side addition immediately after equations with one-
side addition. Hence, modeling two-sided addition and discussion of “equal, not
equal, equal again” on equations is placed earlier in height context. Discussion and
modeling of increase/decrease amount is embedded in difference amount subject in
Lecture 18. Discussion of “equal, not equal, equal again” in volume context is
embedded into Lecture 20, with addition and subtraction operations on both sides.

See the change in the trajectory in the table below:

Table 4.2 Change in the Trajectory: Equations and Difference Amount

HLT Fist HLT Implemented Last trajectory
Lecture # Lecture #
26 one-side addition: animal 16 one-side addition:
height animal height
27 Increase amount: paper strips See Lecture 18

enactive, use signs +/-

Difference amount

28 Compare the increase amount: See Lecture 18

plant growth.
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Table 4.2 (continued)

29 “Equal, not equal, equal again” 17 Model two side addition:
volume and weight context animal height
Properties of operations +/- “equal, not equal, equal
again” in height context
30 model two sides addition:
animal height
See HLT Lectures 27&28 18 Difference amount: plant
growth
31 Model one-side equations in
real-life context: by paper
strips
32 Rainbow Activity 19 Rainbow Activity
20 Properties of +a in

volume context

Reasons for the change in trajectory:

1. We decided to continue modeling equations with one-side addition, with two-

side addition in height context to prevent students’ generalization of
operations being one-sided (and conserving the meaning of equality as
solving for it). To make it equal, they changed one side only in Lecture 16.
However, they are reluctant to add on both sides from the weight context,
where they add multiple objects on balance scales due to free experience.
Using a manipulative “Math Forest” toy, investigating and modeling two-
sided addition would be easy and meaningful.

Discussing addition or decrease amounts is a difficult topic and requires one-
to-one face-to-face guidance. This manipulative “Math Forest” toy is easier
to adapt to online lecturing with the additional use of a template representing
equations. Hence, continuing with the manipulative and delaying the
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discussion of increase/decrease amount to the in-class lecture was
meaningful.

In the 29™ lecture of the first HLT, addition/subtraction on both sides would
be discussed through an “equal, not equal, equal again” inquiry. Adding or
subtracting the same amount is trivial for students. Revisiting volume and
weight context would be unattractive for them. We decided to build this
lecture on their knowledge of how addition/subtraction of equal amounts on
both sides affect equations. Added amounts are different objects but have to
be equal in quantity to preserve equality (which also aligns with Davydov’s
trajectory in weight context (bunny and squirrel example; see last-interview
item?)). This approach is the reverse process for investigating the property of
the addition of equal quantities on both sides of the equation.

For these reasons, the objectives of HLT-29 and HLT-30 are revised and integrated

into the objectives of Lecture 17

Obijectives of HLT-29:

1.

The student discusses how to make equality, unequal, and equal again by
addition and subtraction (in volume and weight context)
The student interprets the effects of addition or subtraction of the same

amount on both sides of equality (in volume and weight context)

The objective of HLT-30:

1. The student models equations with two-side addition (in height context)

2. The student uses algebraic notation to interpret equations with addition on

two sides (in height context)

Revised objectives for Lecture 17:

1. The student finds the unknown in the equation with two side additions in

height context. (includes HLT-30 as iconic representation objectives)

2. The student finds multiple solutions to equations with two unknowns.
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3. The student adds equal amounts to both sides to preserve equality. (reverse-

process for HLT-29 objectives)

Lecture 17 is developed on two activities to accomplish defined objectives: finding

unknown in equations with addition on two sides and addition of equivalent sums to

preserve equality. Multiple solutions result from equivalent sums, which students are

reluctant to from the previous lecture. The lecture starts with finding unknowns in

pre-given equations defined on templates. Then, an extension of equations with

equivalent sums is conducted through an “equal, not equal, equal again” inquiry. The

template representing equations used in this lecture differs from the template used in

Lecture 16; this template includes additions on both sides. By using this template,

the following questions are asked in order;

1.
2.
3.

Find the unknown in the equation: a+?=c+d

Find the unknown in the equation a+?=c+d (repetition of the algorithm)
“Equal, not equal, equal again” inquiry: (atb=ctd) (atbte#ct+d)
(at+b+e=c+d+?)

“Equal, not equal, equal again” inquiry: a+b=c+d => a+b+f=c+d+?
(repetition of the algorithm)

“Equal, not equal, equal again’; attention on multi-solutions for addend,

how to replace with equivalents.
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Figure 4.46. Template Used in Learning Equations With Two-Side Addition in
Math Forest Game

4.17.2 Theoretical Findings of Lecture 17

The researcher directed questions on the template, asking students what comes in
blank space. Students found and illustrated solutions with the help of measurement
tools. Most of the students (6 out of 8, Eylem, Ekim, Aylin, Ufuk, Bekir, Yaman)
represented their solutions on templates even without being asked to do so in the first
two questions of finding unknown in equations with addition on two sides. The
researcher explained how illustrations on measurement tools and representation on
templates are related to each other. However, two students, Hasan and Ali, had
difficulty interpreting on template, even though they found correct answers for

unknowns using measurement tools.

The third question is on the “equal, not equal, equal again” inquiry to teach
equivalent addends on both sides of the equation. The third question starts by finding
the unknown in the equation with addition on both sides. After students found the

answer unknown, the researcher put the animals on the measurement tool,
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visualizing the equality. Then, she created inequality by adding an animal on one
side. The added animal is “ladybug,” which has an equivalent “bee.” She asked
students, “Is equality broken?” Students replied, “Yes” (Aylin, Ekim, and others).
Before they were asked “how to make equal again,” some students shouted, “Bee”
(Aylin, Ekim). After the researcher directed the question, “How do we make equal
again?”’ most of them (Aylin, Ekim, Hasan, and others) quickly replied, “Bee” to be
added on the other side. It shows they know how to make it equal again by offering
equal quantity. By offering equal sums, their performance on different items also

proves that.

The researcher then added the bee for equalizing. Then she asked, "If we remove the
ladybug, what do we do to make it equal again?" (expecting the response, "Remove
the bee"). Aylin had a good reply: "Put the ladybug." It was a normal reply because
they had only seen adding in this context. The researcher said, "Yes, we can put the
ladybug again or remove the bee. Let's remove the bee. We removed the ladybug and
bee. Now I put a duck here and broke the equality." The researcher continued with a
new question, breaking equality by adding a duck on one side. Some students
immediately replied, "Bee and ladybug" (Ekim, Aylin, Ufuk) because the sum of
ladybug and bee equals a duck. This sum is the only solution. Then researcher
questioned what if equality is broken with the addition of the giraffe on one side.
Students had different answers as sums. The researcher verbalized all students’
answers. Hasan asked, “Which one is correct?” Aylin replied before the researcher:
“We can put both of them.” The researcher explained how each answer is correct and
can be used instead of each other to achieve equality. (Hasan was not attentive in
previous classes by total concentration due to the internet; the multi-solution task
was unclear to him.) It was decided to discuss multi-solutions in the 5 item, but the

nature of the tasks allowed students to recognize and discuss multi-solutions earlier.

In the 4" item, the researcher asked the question without showing it on the
measurement tool, focusing on the addend to break the equality. The addend part is

placed somewhere else, and equivalents are placed nearby (See Figure 4.47).
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Students could generate multiple solutions. Ekim, Aylin, and Eylem interpreted the

use of equal quantities (bee and ladybug) instead of each other.

Figure 4.47. Adding Equivalent Sums to Break and Reform Equality

In the fifth item, the discussion of multi-solution deepened more, from recognition
to generation of multiple solutions. Firstly, seven of eight students (except Hasan)
replied “How to make equal again” correctly, coming up with three different
solutions. Some students (Aylin and Yaman) generated multiple solutions even
before they were expected to do so. Then, all students generated solutions as much

as possible, showing all equal sums nearby.
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Figure 4.48. Yaman’s Interpretation of Equivalent Sums and Use of a Template

The majority of students (6 out of 8) were automatically using templates and
enactively constructing on measurement tools, also finding unknowns in the
equations represented by templates. Some students (Ali, and Hasan) needed
guidance through the whole lecture. Hence this lecture addresses action to process

level for construction of equations with addition on both sides. Students were
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successful in the first attempt of constructing equations with addition on sides,
because they were reluctant to two-side manipulation from the beginning of equality,

and they learned to construct equations with one-side addition with templates in the

previous lecture.

Mental Constructions: Indicators:

Investigate and
construct equations
—— | with two side addition

Equation with
two side e
addition

atb=c+d | T Find unknowns in
equations with

addition on two sides

Properties of

operations
a=b =>a+c=b+c Determine
reverse- addition amount
process to preserve
equality

Equality —_— /

Addition by an _—

amount +a

Figure 4.49. Schema of Operations and Equations in Lecture 17

Students had no difficulty determining addition amounts to preserve equality in

equations broken by addition on one side. They used the property of addition of equal
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amounts on sides in the reverse process to determine the addition amount needed.
Moreover, they used equivalent quantities and tried to make equivalent sums instead
because they had many experiences with equivalent sums in the previous lecture.
Equality and addition of equal amounts are objects acquired to process property of
operation by equivalent amounts on equations, where they operate on equality
thinking about adding equal quantities as a construct on both sides to preserve

equality.
Variables

The idea to start with equal-height objects bee and ladybug, strengthens the concept
of quantity. First, it made it easier to understand that objects that are the
same/equivalent in quantity can be used instead of each other. Then, the “equal, not
equal, equal again” inquiry is started with the addition of one of these objects which
has an equivalent. They worked as equal quantities added on sides, satisfying the
property. Bee and ladybug, which are different objects but equal in quantity, helped
students to abstract quantity concepts from the object. (Use of similar objects, for
example, same-colored wooden blocks equal in length, might not have the same
effect because students would think they are the same object.) In the first lectures,
the same objects resulted in different quantities in weight comparisons. In this
lecture, different objects resulted in equal quantity. In both ways, quantification is

supported, by thinking independent of the objects they belong to.

Ladybug and bee worked in the equations instead of each other or in the same way
for addition amount. Students had no difficulty acknowledging, nor did they need to
experience, the result of the manipulatives. They reasoned by their equality to
construct the equations. It proves they acknowledged quantity. There were no other
equivalent objects; hence, students used sums of quantities to create equivalent
quantities. Then, they used these summative quantities successfully in the equations.
This also shows that they acquire sums as a single quantity preserving the property

of addition in the equation.
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Quantity sums provided multi-solutions earlier than we expected. Students initiated
discussion on multi-solutions. They all recognized multiple solutions and

experienced alternatives through enactive investigations.
Notation

Students experienced equations enactively using measurement tools or placing
animals nearby for comparison. Templates helped them construct equations
iconically. Finding unknown questions is also directed solely at templates or placing
animals nearby for comparison. Templates helped them construct equations
iconically. Finding unknowns questions are also directed solely on templates. 6 of 8
students had no problem and were fluent in using templates and associating equations

on templates with the enactive mode of representations.

4.17.3 Design Principles for Lecture 17

- Designing manipulatives including equivalent quantities would be easier and
more symbolic to experience structures of equations and the property of adding
the same quantity on both sides. However, with the help of the Math Forest game
as manipulative, the mentioned property occurred in the level of reverse-process
to construct equivalent quantities because rather than investigating the addition
of the same quantity on sides of the equation, they had no choice but create an
equivalent sum to the added amount. This shows they knew the property, so they
wanted to create an equivalent.

- Manipulative supports reverse-process mental construction for the property of
addition of equal amount. However, this property is initiated by equivalent
objects: ladybug and bee. Presentation or experimenting with their equality and
inclusion of them in the first question about the property is essential.

- This manipulation with objects having different quantities empowered the
investigation of multiple solutions by constructing sums belonging to

equivalence sets.
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- Template use is effective in constructing equations and finding unknown
questions.

- For investigation of the property in the “equal, not equal, equal again” inquiry,
using the prior equation as the first equality situation is confusing. Try having
additional equivalent quantities for creating the first equality situation. This
would construct a more appropriate construct for the property. In the way we
conducted an investigation, the focus was on added parts rather than equations.

- Rather than having many experiences, give sufficient time for each step and

focus on discussions.

418 Results of Lecture 18

Lecture 18 is in the class and is conducted through individual interviews. The
subjects of this lecture are increase/decrease amount to make equal, equality of
increase and decrease amount as difference amount. Students are individually
lectured by using their graphs of plant heights. Each interview/ mini-lecture took

about 10-15 minutes. Nine students were interviewed/lectured. Yaman was absent.

4.18.1 Plan of Lecture 18

This lecture is on interpreting the increase/decrease amount to make it equal.
Students are expected to recognize, increase, or decrease amount to make two objects
equal to each other. It is a difference amount between two objects; however, we do
not aim for interpretation as a difference amount. The lecture aims for enactive

investigation by using +/- signs only.

Investigations of increase/decrease amount are represented in objectives of the 27th
and 28th lectures in the first HLT. In HLT-27 students are expected to make two
paper strips equal to each other focusing on the increase/decrease amount as being
equal. In HLT-28, they were expected to interpret changes in graphs and compare

the increase amount among peers’ graphs. These lectures are delayed for reasons
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mentioned in Lecture 17. Objectives of these two lectures are embedded into the
activity in Lecture 18, which includes the interpretation of individual graphs.
Objectives of HLT-27, HLT-28, and revised objectives for Lecture 18 are listed

below.
HLT-27 objectives

1. The student uses +/- signs to interpret operation to make equal length (paper
strips)
2. The student enactively investigates increase and decrease amount (difference

amount) to create equal length (paper strips)
HLT-28 objectives

1. The student interprets the increase amount iconically in height context (plant
height)
2. The student compares an increase amount of different situations in height

context (plant height)
Revised objectives for Lecture 18

1. The student interprets the increase amount iconically in height context (plant
height) (HLT-28)

2. The student determines addition and subtraction amounts to make them
equal.

3. The student experiments and recognizes equality of addition and subtraction

amount (difference amount)

The first objective of HLT-28 is reflected in the first revised objectives. The second
objective of HLT-28 was eliminated for three reasons: they had no chance to observe
other plants' growth, the lecture was decided to be through individual interviews,
focus was concentrated on the difference amount. The student interprets change in
their graphs; no comparison between graphs exists. Other objectives are revised
versions of objectives in HLT-27 updated. The “equal paper strips” activity in
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Lecture 12 objected to the use of signs in making equal strips. Objectives in Lecture

18 focus on the increase/decrease amount using relative signs.

Lecture 18 is conducted through individual interviews on analysis of students’ own

graphs representing the height of plants. Their graph has three measurements of

height, and they used strings to interpret height for three consecutive weeks. The

lecture follows the inquiry below:

Interpret change: At first, students are expected to interpret the growth of
their plants as an increase in height. Then, they are asked how much it
increased/decreased (usually increased). One student reported a decrease in
height.

How to make equal: After interpreting change, interviews continue with the
“How to make equal” inquiry. Students focused on the first two
measurements and asked how to make them equal by adding and subtracting.
They are guided to show how much increase and decrease is needed to
achieve equality.

Represent equation with addition and subtraction iconically: They cut strings
to represent the addition amount and perform addition by that amount by
taping them on top of the shorter string to visualize equality. Then, taking the
tape out, the students’ graph is turned to the initial situation. Then, students
are asked to use strings to show how much to cut the longer string to make
equality. They show and cut out the string representing decrease amount.
Experience difference amount: Students are asked which string is longer or
equal, referring to increase and decrease amounts. Students compare strings
and see the results. If they cannot observe equality students are guided for

difference amount by comparing the height of people.

Trajectory: investigate difference amount in continuously manipulable height

context:

Interpret change in quantity as an increase

Interpret the increase amount iconically
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- Determine the increase amount and decrease amount to make equal (using
scale)

- Interpret equations with addition and subtraction iconically

- Compare the increase amount to the decrease amount to make equal

- Interpret equality between increase and decrease amounts to make it equal.

4.18.2 Theoretical Findings of Lecture 18

All students could verbally interpret change in plant height correctly, as “increase”
or “decrease.” Two trends appeared among students when asked to show how much
increase/decrease. Most students (4 out of 9) had a poor interpretation of
increase/decrease amount to make equal. They focused on ending points of compared
heights rather than focusing on the amount. It could be observed through their use of
hands. These students tried to join endpoints (Eylem) or showed end levels/points
and cutting points to make them equal (Hasan, Bekir). Sometimes, their verbal
interpretations reflected their level-vise equalization as “up to this point” (Didem).
These students could choose the right signs for increase/decrease actions to make

equal and perform cut and paste using end levels.

Three students (Aylin, Medine, and Ufuk) interpreted the increase/decrease amount
as a length. Ufuk showed difference amount by hand pointing end and increase level
simultaneously for the increase amount. Medine traced the whole length to show an
increase amount. Aylin interpreted the increase amount as “one finger length”. These
three students were also the only ones, who immediately interpreted the equality
between increase and decrease amount to make equal. Aylin even interpreted
decrease amount by referring to increase amount string and saying “This much”.
Medine and Ufuk couldn’t explain their reasoning but were confident in their
response. Medine put an equal sign immediately between strings to interpret equality
without comparison. Ufuk proved his conclusion of equality by comparing two

strings representing increase and decrease amounts.
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One student, Ali, needs clarification in interpretations and the inquiry was not
completed for a difference amount, because he was unwilling to do so. Hasan was
not questioned on the difference amount, because he was confused with a decrease
in his data. Three students (Eylem, Bekir, Didem) could not interpret equality
between increase and decrease amount. They relied on comparison; measurement
error misled them to interpret inequality. Ekim’s interpretation of the
increase/decrease amount was unclear. She showed where to cut for a decrease
amount. She also relied on the comparison of strings to interpret equality. After a

quick comparison, she found them to be equal in joy.

Students enactively investigated increase/decrease amount or found unknowns as
fixed quantities for increase amount in prior lectures. This is the first place where
they verbally interpret the increase/decrease amount or create equivalent scales for
interpreting the increase/decrease amount to make it equal. Some students focused
on the added/subtracted amount as length, while others focused on the endpoints of
action to determine up to where they would perform increase/decrease and make

them seem equal.

Students investigated difference amount, enactively to interpret equality of increase
and decrease amounts to make equal. In this investigation, some students saw
increase/decrease amount as constructs/objects that are equal to each other. They
could interpret equality between increase and decrease amount without comparing
them because they acquired them as equivalent constructs/objects. They use these
constructs to achieve equality rather than increase/decrease actions until they reach
equality. Students who use increase/decrease processes until reaching an equal level
are at process level for increase/decrease amount because they focus on construct
addition/subtraction to satisfy the equality. Students are expected to construct
equations and find unknown addition/subtraction amount in this activity. In
constructing the equation, they might have a process-level understanding of the
increase/decrease amount and procedurally focus on constructing the
addition/subtraction amount. Then they need to compare these amounts to conclude

an equality relation between them. However, students with an object-level
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understanding of increase/decrease amount could interpret increase/decrease amount
as length and did not need to compare to test their equality. They already knew the
difference amount and constructed the increase/decrease amount based on their
knowledge of the difference between the two quantities. The relation between

mentioned mental constructs is summarized in the Figure below:

Mental constructions: Indicators:
Find and perform
Increase/decrease | — > increase and decrease
amount +a amount to make equal
\ distinctly
Compare increase and

decrease amount

Equation with
one side Use difference amount
— reverse- . to determine addition or
addition process subtraction amount to
make equal.

Figure 4.50. Schema of Using Equation With One-Side Addition and

Increase/Decrease Amount in the Concept of Difference Amount in Lecture 18

For those students who could not associate increase/decrease amount in plant height
context, or who could not explain the reason for equality, the researcher showed
dotted lines to show difference amount (See Figure 4.51). Even this expression did
not work for Didem and Eylem. The researcher then guided them by showing the

difference between the heights of the students and herself, which might work as a
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real-life example. How much to grow for the student, or how much height to be
reduced in the researcher’s height, is shown by the difference amount between
height. The researcher and student were standing side by side, which made
visualizing the difference amount easier. This might be the reason why this inquiry

was successful for Didem and Eylem.

(@) (b)
Figure 4.51. The researcher Explains the Difference Amount: (a) Medine and (b)
Ufuk

Quantity

In the enactive mode of investigation, plants' height is manipulated through string
lengths. Context turns into length from height after plant heights are reported by
graphs using equivalent scales. Continuity in quantity is sensed through
manipulation in constructing scales for graphing and in addition/subtraction to make
equalities. Unknown as addition/subtraction amount is associated with the difference
of pre-constructed quantities. All students successfully interpreted the height of
plants by the length of strings. They all manipulated quantities correctly to find
addition and subtraction amounts. Some could (3 out of 10) reason by the difference

of quantities in determining unknown.
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Notation

Students interpret equations with one-side addition and investigate difference
amount in the enactive mode of representation. They are iconic lengths representing
plant height, but they manipulated strings as they are the objects of enactive
investigation. The choice of +/- or equal signs was correct in all student's work.
However, for iconic representation as addition in constructing equations (as equality
between longer string and shorter string plus addition amount), students are guided
by the researcher. This guidance was stepwise; first, choose of sign for increase,

place the increase amount on top, and then represent equality.

(a) (b)
Figure 4.52. Interpretation of Addition: (a) Eylem and (b) Bekir

All students could be guided through the iconic mode of interpretation of addition
step-wisely. Only one student, Aylin, could interpret addition and subtraction
symbolically. She used strings as quantities in the equation, written in linear form.
She substituted the increase amount for the decrease amount in the equation (See

Figure 4.53.).

277



Figure 4.53. Aylin’s Interpretation of Equation with Subtraction; Red String:

Increase Amount Substituted as Decrease Amount in the Equation

4.18.3 Design Principles for Lecture 18

- Step-wise guidance is essential for constructing equations, including
operations, at least for addition. This inquiry follows:
o choose where to increase, choose the correct sign for increase,
o placement of signs,
o determination of addition amount,
o placement of addition amount,
o representation of equality by equal sign.
- Bring strings together or compare people's heights to explain the difference
amount. Explanation by dotted lines doesn’t work for children who do not

reason by equivalence of increase and decrease amount.
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- Activity is sensitive to measurement error. Some students relied on the
comparison to investigate the difference amount. Measurement error affected

their conclusions.

419 Results of Lecture 19

Lecture 19 was an in-class implementation about reading symbolic interpretations of
equations with one-side addition. Students obtained secondary colors by using
equations and inequalities defined by primary colors as recipes to construct a
rainbow by play dough. The lecture took 45 minutes. Before the lecture, students
observed the rainbow and colors of the rainbow outside the classroom for about 15

minutes of experimentation. 8 students attended class. EKim and Yaman was absent.

419.1 Plan of Lecture 19

This lecture is auxiliary to Davydov’s trajectory. Modeling equations are part of
Davydov’s trajectory, but there is no meaning of addition as two parts coming
together to construct a quantity. The meaning of addition focuses on the increase in
quantity. In this lecture, students join two colors. We wanted to develop a fun lecture,
adopted on secondary colors subject, including a read and use of equations and
equality/inequality relations. This lecture also aims to connect their knowledge of
addition as an increase to the meaning of addition as two quantities coming together,
which they will encounter as a functional definition for addition later. In addition to
Davydov’s trajectory, modeling with equations is given in systems, including an

equality interpretation.

Placement in HLT and objectives did not change much. Objectives are elaborated to
focus on quantity. Preserving quantity in the system among expressions/equalities is

a difficult additional object for students.
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Objectives in HLT-32

1. The student reads equalities and inequalities based on real-life models

2. The student uses algebraic equalities and inequalities for real-life designs
Revised Objectives for Lecture 19

1. The student determines quantities of objects based on equality and inequality
relations in weight context.

2. The student reads and uses algebraic interpretations of equality/inequality
relations and equations with one-sided addition in a real-life weight context.

3. The student preserves the quantity represented in the interpretation to use it

in the addition equation (relations and equations are connected in a system).

In this lecture, students construct rainbow colors by using recipes to determine
quantities of a mixture based on recipes given in systems of equations with addition
and equalities/inequalities. For example, the orange color is obtained by a mix of
yellow and red in equal quantity. Quantity is compared to weight attribute. Equality
is represented by colored circles in the interpretation. The addition of red and yellow
in the equation becoming equal to orange represents a mixture. We call it a system
because to make the mixture using the equation, students must preserve the quantity

defined by the equality situation.

Figure 4.54. Example From Classroom Implementation: Eylem
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In addition to 3 primary colors, blue, red, and yellow, there are four secondary colors,

orange, purple, green, and turquoise, interpreted by four systems below:

o+ =0 o+0=-0

= C B
C O+ =

Figure 4.55. Recipes for Secondary Colors Interpreted with Systems of Inequalities

and Equations.

Additionally, after they complete the rainbow, they are asked to obtain brown by

using the system:

0=0-=
o:0+ -@

Figure 4.56. Recipe for Brown Color with Equality and Addition of Three Colors

This is not the first time students use color notation in algebraic representations. In
the prior Squares Activity, they used colors to represent equal-sized squares in
inequality relations. In this lecture colors represent relative play dough quantity in
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the system. In the Squares Activity, in symbolic representation, the size of the colors
was not correlated with their actual size. For this lecture, piloting also included
manipulatives representing all circles of the same size in the symbolic interpretation
of systems. One of the pilot students did not attend symbolic representations to
construct rainbow colors. The kindergarten teacher and researcher (as design team
members) decided to represent a larger quantity by a bigger circle in symbolic
representations to make it easier for students and not to contradict their perception
because some of them had difficulty in Squares Activity to use color as notation

independent from size.
Lecture Flow:

- Follow rainbow colors, starting with red, then present the recipe for orange
in order.

- Ask students to read and explain expressions. Explain what the recipe tells.

- Ask how to make equal amounts of playdough direct using pan balances.

- Direct and control each student to read and follow instructions for
comparison and mixture of playdough.

- Go on with the algorithm of Turquois, then purple recipe red=blue

- Discuss the reason behind getting different shades of turquoise (if any)
(multiple-solution)

- At last, present the recipe for brown color. Guide through how to make three

equivalent pieces through dual comparisons.

4.19.2 Theoretical Findings of Lecture 19

Students were presented with seven colors of rainbows and provided with three
colors of play dough and balance scales. To make secondary colors, they received
recipes in the order of the rainbow, from red to purple. In the first recipe for orange,

they all ignored using balance scales to create equal pieces of red and yellow; only
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Bekir used balance scales to construct equal-weighted pieces. Medine follows him.

Other students are reminded to use balance scales.

Students were individually questioned and guided to observe how they read and use
recipes in the form of systems, including an equality relation and equation with
addition. Students ignored reading the addition equation. They created equal pieces
by looking at equality. In some cases, just looking at the recipe they thought they
mix red and yellow to make red. They mix a little from one and a little from the other.
When asked how much to take from each, one student (Medine) replied, “There are
two pieces of yellow (in the recipe) and one red.” She ignored all algebraic
expressions. The researcher explained recipe says red is equal to yellow, so take
equal pieces. Eylem told herself she had taken them equally already. The researcher
asked, “How did you take equal?” No one referred to comparison with balance

scales. After asking this question, Eylem said they were equal, so she took equal.

The first inequality/equality relation of comparison worked for students, but the
second representation of addition didn’t mean much. They did not attend to the
expression of addition but just mixed colors. No reading was observed. The
researcher took students’ attention to the expression by saying, “The equation says:
we add yellow and red.” This activity refers to addition as “coming together,” which

confused students while reading the recipes.

Explanation of recipes and recommendations for using balance scales helped them
focus on the equality of the mixed colors. They all used balance scales correctly and
fluently to make equal pieces, by increasing and decreasing actions (Students
preferred adding doughs to make equal, researcher reminded also taking some as
decreasing to make equal.). When they needed extra playdough, they created more
by taking equal pieces using pan balances (Ufuk, Eylem). Bekir checked and ensured
equality between the resultant colors, which he used in his rainbow (He is always a

perfectionist).

Some students started loudly reading recipes provided to them (Ufuk, Bekir), mostly

focused on the equality relation. Some students (Ali and Hasan) ignored the reading
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recipe for turquoise color and took equal amounts of yellow and blue play dough.
Bekir explained the recipe loudly, which made them correct themselves. The
presentation of turquoise color improved their attention on the algebraic expressions

in the recipes.

Bekir explained the recipe of turquoise as: “Blue is big, yellow is small” How they
read the expression shows how they think about the sign. They don’t have a sentence
to read from left to right. However, dependency on quantities is not reflected in his

interpretation.

Hasan and Medine had difficulty with the recipe for brown. They placed small pieces
of all three colors on the same pan (See figure). They also had difficulty interpreting
relations on the recipe related to real life. For example, when asked Ali what the
recipe says for brown, he said, “We make equal.” he meant that all colors will be
equal. However, Hasan only read the names of signs “equal, equal” while pointing

at them.

Figure 4.57. Hasan Trying to Create Equal Pieces of Three Colors to Make Brown

Some students could take similar small pieces and obtain all equal to each other by
chance (Aylin, Eylem, Didem) and then check for the equality of all combinations

between three colors (Aylin). Some students were reluctant to work systematically
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to create equal pieces more than two (Bekir). Some students (Ufuk) get confused in
the process while making the third color equal. The struggle for equalizing the third
color results from the difficulty of holding one color constant. For brown, Ufuk
added and subtracted by increments to satisfy equality, saying, “I am adding and
adding, but it does not make equal.” He equalized yellow and blue first, then put blue
aside, saying, “Let it be sat here” when yellow stayed on the pan. He began to put
red on the other side. He increased the red by increments, but it became heavier than
the yellow. He took some from red but couldn’t equalize again. He suggested to add

to yellow. The researcher intervened at that point to guide for holding a constant.

R: If we add to yellow, will it remain equal to blue or not?

Ufuk: No

R: Then we should change to red. Do we need to increase or decrease red?
Ufuk: Decrease

Then, he decreased red by increments and satisfied equality. Then, he mixed all the

colors.

Briefly aiming for students to read and realize symbolic equality and equations in
real-life situations, we observed that they heavily depend on teachers' verbal
interpretations. Guidance, making them read aloud, and creating diversities in the
algebraic interpretations help them reverse-process in modeling, especially for
equality relations. Before this lecture, they constructed quantities based on an
equality relation (=, < signs) to a fixed quantity. In this lecture, they are provided the
relation, and quantities are not fixed, continuously manipulable (and dependent on
each other by the relation). They construct both quantities based on the relation
determined. It means they reverse-process creating equality relations based on a real-
life comparison. The majority of them were (6 out of 8) successful in interpreting
dual relations and using them in constructing quantities in weight context on their
own. However, equality between the three quantities was confusing for some

students (2 out of §).
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Equality/inequality
relations

a>h, a=b

Quantity

Equations with
addition

a+b=c

Mental Constructions:

reverse-
process

/'

a —a
GDS
aGDE

Indicators:

Create quantities
based on a given
algebraic
interpretation of
equality/inequality
relation

Add two quantities
which are obtained
based on a relation,
to construct a third
quantity.

Figure 4.58. Schema for Equations and Relations in a System in Lecture 18

Quantities obtained by the reverse process of equality relations pre-given to students
are preserved in the process of addition to create new quantities based on an equation.
We could say that quantity obtained is used in the addition operation process, if the
resultant would be compared to something, or the resultant will be determined in
quantity. However, in this activity, students used these models (equations) to create
the third quantity out of it, where the equation and equality in the system define the
relation between all three quantities. We have no evidence from students' verbal
interpretations for the use of equation and preservation of quantity obtained by

equality relation, but mental constructions are defined on their enactive

investigations.
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Quantity

Quantities are continuously manipulable. They are variables related to each other,

with no fixed amount. Students freely manipulated and constructed quantities. We

aimed to make them use these quantities preserved in the system. However, students

did not attend equations in the system.

Notation

Symbolic notation for equations with addition, reverse-process not construction but

reading and realizing equations and inequalities.

4.19.3

Design Principles for Lecture 19

Students ignored the second algebraic representation. If they focus, they just
state the first expression. Only the first algebraic relation might be enough to
complete the activity. This calls for a revision in the activity.

This lecture is incompatible with increasing quantity, meaning for addition.
We wanted to emphasize coming together meaning for addition. But it is out
of trajectory. Students had difficulty understanding addition expressions
because of this reason. Hence, use language to connect both meanings. The
words should be chosen to express adding meaning of addition as they are
used to do. Not “We will add red and yellow,” but “We add red onto yellow.”
Students still prefer increase action to make equal in weight context. Remind
decrease action, significantly to ease holding one constant in making brown
play dough.

Individually interview and guide students on their interpretation of algebraic
representations. First, ask them to read the expression, then ask, “What might
that mean?” in the real-life context.

Students ignore algebraic representations when they understand the
assignment. Create the need for reading recipes: algebraic representation, by

diversities.
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- The quantities in the equation are given in different sizes according to the
relation. Try using same-size notation to improve symbolic representation

abilities.

4.20 Results of Lecture 20

Lecture 20 is an additional activity to the first HLT. In previous lectures, Students
constructed equations with addition on two sides and used the addition of equal
amounts as an operational property in a height context. This lecture investigates how
addition/subtraction by an amount affects equality and inequality situations in a
volume context. It took 45 minutes to examine in class. It is the last lecture on

implementation. Nine students attended class; only Yaman was absent.

4.20.1 Plan of Lecture 20

In previous lectures, students constructed equations with addition on two sides. To
investigate the property of operations, they used the addition of equal amounts to
preserve equality and investigated the equality of increase/decrease amount to make
equality. In volume context, they performed addition and subtraction by an amount.
We wanted to revisit addition and subtraction operations by amount to observe the
effects of adding/subtracting equal amounts in a more structured construct in a

volume context.
Obijectives defined for Lecture 20 are;

1. The student operates addition and subtraction on equalities based on given
expressions such as +/-a in volume context.

2. The student experiences operational properties on equalities (the starting
point is equality).

3. The student realizes and compares algebraic expressions such as a+/-b in a

volume context.
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4. The student experiences operational properties on equations (starting point

changes).

Students will investigate +a properties and compare a+b situations in a volume
context. There are two levels of activities in this lecture to investigate operational
properties. Firstly, students will start with equality and use dice to perform +a with
their partners. Before performing, students are expected to guess who will win. In
this level, they are expected to acquire positive signs resulting in a higher level than
negative signs in comparison cylinders; the addition of a bigger amount will result
in a higher than the addition of a smaller amount, and the subtraction of a bigger

amount will result in a lower than the subtraction of a smaller amount:
b>c=>A+b>A+c, A-b<A-c, A+c>A-b, A+b=A+b, A-b=A-b

Students are reluctant to operations in the first phase, from Lecture 14, where they
performed increase/decrease by an amount in volume context (perform +a). In the
second level, the initial amount is not equal but is determined by another dice with
bigger cups to satisfy positivity in subtraction cases. In this level, starting amount
plays and addition/subtraction by an amount play a role in determining the result.
Students will try to guess addition/subtraction by equal amounts in different

quantities. They are expected to guess or investigate the following situations:

(1) A>B>c>d => A+c>B+c
(2) A+c>B-d

Briefly, they will reflect on addition/subtraction by equal amounts and different
amounts on equality and inequality relations. For the investigation lecture is

conducted through the lecture flow:

- Remind students what +, - means in the context of the action of filling and
pouring away.

- Each student has one cylinder cup. They work in pairs. Competition based.
They first fill their cup nearly half, but equal to each other.

- Take two dice, one representing signs and one representing cups.
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Pairs roll two dice simultaneously and place them on the table for
representation. Students place corresponding cups near the dice. They guess
for the result who wins. Then, perform increase/decrease by amount. Teacher
guidance for taking each guess and then performing for results is important.
To prepare for the second try, students are commanded to equalize their cups
again.

After several tries, add a cup of dice and cups to the performance. Make sure
the cylinders are empty at the beginning. A bigger dice distinguishes which
one to roll first and fill the cup. Bigger dice include pictures of bigger cups
(one cup is identical to one from the little dice). =

First, bigger dice are rolled, and the corresponding amount is poured into the
empty cylinders. Then sign dice are rolled with the small dice, printed on
little cup photos, to perform addition or subtraction with an amount. This
stage is different from the previous one, by determining starting point by a
dice.

Three dices form an algebraic expression of the unknowns and one addition
or subtraction sign between (A+c). Students guess and perform results.
During this game, the researcher guides students in assessing the expressions
and guessing the result. Without rolling dice randomly, the researcher places
them on the table, forming particular expressions of A+c vs. B+d. The
researcher asks “what if” questions for certain combinations in a structured
inquiry to help students see the properties of operations and quantities
affecting both sides.

After guessing the result, students perform the expression of three dice. Start
by initial amount, they perform addition/subtraction by an amount and
interpret the equality/inequality relation between them. Who guessed

correctly wins; both students can win.
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4.20.2 Theoretical Findings of Lecture 20

Starting with equality, all students could perform the first actions of
increase/decrease by an amount correctly. Usually, they forget to guess before
comparisons and create an equality situation before performing actions defined by
dice. When guided and interviewed individually, they could compare addition and
subtraction by an amount before executing operations. All of them (9 out of 9) could
correctly guess the result for addition and subtraction by the same amount and
addition by the different amount on equality. However, some students (Ali, Hasan,
Medine, Ekim) struggled to guess subtraction results by different amounts on sides

of equality.

Ali and Hasan had difficulty performing negative actions, subtraction by an amount.
The researcher guided them through actions and made them see if their prediction
was correct through an enactive investigation. While pouring out by amounts, Ali
recognized that Hasan would win because his cup was tiny. Hasan admitted the result
by saying, “If he had a smaller cup, he would win.” Guidance with Ekim also relied
on a similar development in her understanding through investigation. She
investigated subtraction by different amounts with Eylem. Eylem predicted correctly,

while Ekim thought hers would be much because, in her dice, the cup is bigger.

R: Which one is bigger?

E: Mine is bigger (correct)

R: What will be a lot then here
E: Mine...

R: Why?

E: Because my cup is very big.

R: You will pour away very big. Let’s do it. See, Eylem’s remained bigger.
Why did this happen, Ekim?

E: Because I poured some more.
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R: Because your cup is bigger. When you poured you took much salt from
here. Eylem’s cup is small, she decreased a little. It is ok if you are confused.
We check by doing to see.

E: Teacher, I understood; because Eylem’s cup is little, a little is taken off.
Because it decreased little, here remained a lot. (own explanation)

Ekim could explain the reason by the actions of subtraction and how much is
subtracted procedurally. In subtraction, pouring away took a little longer, so she
associated it with the procedure. Her mental constructions of decrease by an amount
points out process level. Guidance helped Ekim, not because she saw the result, but
experienced the procedure. It was similar in Ali’s case, where he corrected his reply

while pouring away before seeing the result.

Medine’s development has a similar procedure. She predicted wrong when she first
met subtraction with different amounts. She thought a bigger cup would result in
higher. After enactively investigating, she observed result is equality, so cups must
be equal to each other. The guidance did not improve her understanding, but her
experience with subtraction and reflecting on dice improved her understanding of
subtraction by an amount. She could reason by subtraction amount seeing it as a
stable construct, not referring to the process of long pouring as Ekim did, but
referring to how much decrease on the manipulative. The researcher asked, -b vs -c
where b>c. She replied correctly. The researcher asked, “Why?”. She held the
smaller cup on the comparison manipulative (one of the identical cylinders), saying,
“Because this is little, this will come out of it.” (See Figure 4.59.) She did not even

need to demonstrate actions.
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Figure 4.59. Medine Explains How Much to Decrease by the Cup on the Cylinder

Briefly, predicting, checking for results, and performing subtraction by amount
enactively helped students discover operational properties. One of the properties is
investigated also through reverse processes. Predicting the results of addition or
subtraction by equal amounts on both sides was trivial for all students. The reverse
process for this property is observed in investigations of Medine. In the investigation
of subtraction by two different cups, she found the result to be equal (measurement

error):

R: Why equal? Is this cup, or is this one bigger?

M: They are both the same (showing the cups, like the same level) because
they are equal (referring to the cylinders, talking about equality). (She
explained without recommendation)

When students are expected to predict the results of comparisons, they have a
common misconception of ignoring signs at the beginning of the lecture. When both
are plus signs, no difficulty occurs. However, if both signs are minus (Ekim, Medine,
or even one of them is minus while the other is plus (Ali), they ignore the sign and
think a bigger cup will win. Enactive experiences helped them overcome this

difficulty, at least in situations started by equality.
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The second phase of the activity investigates different starting points to investigate
operational properties. They investigate not the effect of operations but algebraic
expressions in the form of a+b, represented by three dice rolls. They reflect on by
comparison and operate these constructs enactively. Similar problems occurred in
this phase. Students might ignore the whole expression and focus on a particular part.

In the investigation of A-b vs A-c when b#c when Ekim focused on starting points.

Ekim: “This might be equal because these are equal” (for starting cups)
Researcher: are these equal (subtracted ones)

E: no

R: Which one is bigger?

E: This (own)

R: And this one is small (Eylem’s). First, imagine pouring these (initial big
cups), then reduce by this from Eylem’s and by this from yours.

Ekim sighs “Ha” (understanding sign)

R: Which will be bigger, who wins?

E: Eylem (she knows)

R: Yes, you know. Guessing is essential, not winning.
It might be easy to compare A+b and A+c situations for Didem, but it is difficult to
subtract equal amounts from different starting points. Didem had “A-c,” and Aylin

had “B-c,” where A>B. Aylin guessed the result correctly. Didem did not.

R: Why do you think so

D: Because a bigger one came to me (she thought she lost because A is
subtracted from c, and the question is in the form of subtraction of different
amounts from the same amount)

R: No, this is the one we put first. We put the big one first then we decrease
from it.

Didem read the algebraic expression in the wrong direction. This problem occurred
because of her missing understanding of order in the expressions. She read the
expressions from right to left. This wrong displacement also occurred in Eylem’s

interpretations, which were corrected by the researcher. Before this lecture, we had

294



no activity on writing equations with subtraction. In this lecture, we try to teach order
by taking action with the bigger dice/ bigger cups first in addition and subtraction
procedures. However, it is difficult to structure items based on their age, mainly when
they operate subtraction/addition actions without writing or expressing a starting

point before. What they did was to operate action on sides until now.

The problem of structures of equations was also problematic for Bekir. He could
comment on the A-b vs. A-c situation but could not reflect on the A-b vs. B-c
situation. Starting with a different amount or reading the expression was difficult for

him.

Aylin is the only student who could always comment on A+b objects correctly. Her
explanations are also remarkable, with his language abilities and correct connections
on mathematical topics. When A-b is compared to A-c, she reasoned her response by
saying: “because it will be decreased less” pointing out the bigger side by explaining
the decrease amounts relative to each other and expressing the operational action

simultaneously in her sentence.

In this lecture also Eylem could understand A+b expressions as algebraic construct.
The difficulty of the second phase for some students reminded the researcher about
students’ levels on Piaget’s conservation test. The researcher conducted a quick test
on the volume item of Piaget’s conservation of amount test. Ekim and Medine could
not interpret equality between two cups by pouring one from the other, as they could
not at the beginning of the whole implementation. However, Aylin and Eylem
confidently replied to this item. This might be the reason why some students have
difficulty seeing A+b as constructs and reflecting on or comparing them. They just
focus on particular aspects, operations, and equal or different amounts they see in
the expressions. Creating meaning out of the whole is difficult for them. When they
pour the first quantity (determined by the first dice) into the cylinders, it loses
connection with the expression. They comment on the operational property, add
subtracted amount, observe results at most, and lose attention to the structural

property of the expression.
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Quantity

Students compare addition/subtraction of fixed quantities in this lecture. However,
starting investigations with equality, students used three different types of
manipulation: continuous manipulation, incremental change, and begin by fixed
equal quantities. Didem filled cups equally, pouring on one by continuous
manipulation until it became equal to the other. Similarly, Aylin filled cups equally
in half by choosing a point. She stopped in command of researchers when they
became equal. Aylin compared and equalized, by small increments, almost
continuous manipulation of adding. Medine also manipulated with increments to
make it equal. Ali suggested that Hasan use the same cups to fill, and then they
continued manipulation with increments to satisfy equality. Similarly, Eylem
suggested Ekim fill with identical cups to make an equal start. Then, they filled and

did not even check for equality.
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Mental Constructions: Indicators:

Predict

Addition/subtraction ———*| comparison
by amount / result A+b vs

b \ A+c

Predict
comparison
result A-b vs
A-c

Predict

comparison

\ - /v result A-c vs B-c

Equations with Step-wise guidance
operations on to perform a+b in
two side volume context; a
_w | then+b
atb=c+d —

Figure 4.60. Schema of Equations in Lecture 20

/

Notation

We used templates to create equations with addition on two sides in height context,
in Lecture 17. In Lecture 17, the template placement of the quantities did not matter
because of the commutativity of addition. This lecture also includes subtraction. In

prior lectures, they acquired subtraction as a decrease, and the starting point was not
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a problem in their actions of decrease. In the first phase of Lecture 20, they
investigated the decrease by quantity effect on sides of equality. The second phase
starting point is added to the algorithm to obtain a+b constructions. First, “a” is added
to cylinders, then +b is performed on. When dice were rolled and three dice came
together to construct A-b, students could not reflect on it, even read the expression
from right to left, and commented by referring to “-A”. In prior lectures, they learned
equality as balance and operations acting on the sides. No ordering was mentioned,

nor was the reading of expressions based on a starting point before.

In this lecture, we thought dice would work as the template we needed to construct
subtraction. We used two different dice; one is bigger than the other. The bigger one
contained photos of bigger-sized cups on it. Students were given an algorithm to
throw these bigger dice at first and perform it. (Piloting of this lecture concluded to
add this algorithm of performing bigger dice “A” at first; throwing three dice and
performing all at once was difficult.) The student threw a second dice with the dice
indicating +/- operations. They form +b and perform it on the sides. Later, they are
directed to throw three dice at the same time. Placement of three dice in the wrong
order (Eylem) and reading from right to left (Didem) problems occurred with
subtraction cases. Students are guided to place bigger cups/dice first and operate
subtraction from them. To resolve this problem, constructing addition and
subtraction expressions not from left to right but from top to bottom can be tested for

future implications.

This lecture required more than one hour of lecture time. Investigations of operations
on equality as the first phase would have been sufficient. The second phase with atb
construction needed additional lecture time for active investigations and algebraic

interpretations.
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4.20.3

Design Principles for Lecture 20

The activity supports many free investigations that are semi-structured by
using dice, with a limited number of cups to ease comparison. However,
inquiry through certain properties of operations and structures of equations
is important if it does not occur naturally.

Time is insufficient to discuss all properties individually in a classroom
setting. Design activities more structured to lead to investigation of several
of them for all students. Limiting the number of cups represented in dice was
helpful.

We used equal-volume cups in two different dice to obtain zero quantity after
subtraction. However, no observation occurred. Differentiating the size of
cups is helpful for predictions.

Measurement error occurs in the volume context, which may lead to
difficulties in the results of investigations but may also lead to opportunities,
as in Medine’s case.

Avoid racing, focus on guessing. Racing decreases motivation with peers for
some students. Try to connect positive feelings in mathematical
investigations. Understanding a game is complex, and it is hindered by
previous games on volume. Students try to fill up their cups. Revision of the
game structure can be discussed.

Investigations through structured discussion worked for students to
understand properties and their own experience on subtraction by amount.
Additional activities or templates are needed to construct and understand a+b
structures.

Consider templates for a+b constructs, from top to bottom rather than from
left to right, to make them easy to construct, read, and perform.
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4.21 Resultant Learning Trajectory

The resultant learning trajectory is given in comparison to the first HLT and
Davydov’s trajectory in the following table. See Appendix G for a detailed
comparison and alignment of objectives in the first HLT with 32 lectures to
objectives in the last/revised trajectory with 20 lectures. Reasons and outcomes of
trajectory changes are reported under the results of each lecture in the section of the

lecture plan.

Table 4.3 Summary of HLT Adaptation and Change

APOS Davydov First HLT Last trajectory
Equality action- Equality- Equality-inequality = Equality-
_, _process inequality inequality
=  Inequality action-  Greater-less than ~ Greater-less than Greater-less than
S process
S Pre-action How to make How to make How to make
% increase/decrease equal: iconic equal: enactive & equal: enactive
.:T verbal
S Actionto process Determine Determine variable ~ Multiple types of
5 quantity variable quantities
Action order Ordering Ordering Ordering
Transitivity action Construct based Transitivity Transitivity:
on relations Construct based on  Guess the third
Guess the third transitivity relation
relation
Object quantity Create Create intermediary  Create equal-
Action intermediary scale
intermediary
Pre-action equal
scale
.. Object equal scale Squares: fixed Squares: fixed
E Procgss to object quantity notation quantity notation
= quantity
S Object transitivity  Transitivity Construct based on  Order for
= symbolic transitivity transitivity
Pre-action +/- Verbal Enactive
increase/decrease  increase/decrease to
to make equal make equal
.  Action+/- +/- signs to make  +/- signs to make +/- signs to make
g equal: iconic equal: continuous equal:
b= steady: first this, manipulation continuous
g then this manipulation
@)
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Table 4.2 (continued)

Operations

Action Increase/decrease  Increase/decrease  Increase/decrease

increase/decrease  amount to make amount to make by an amount and

amount an equal, equal then compare
continuous fixed quantities
quantity

Action one-side One-side One side addition One side addition

operation add/subtract to to make equal: Find Find unknown:

equation make equal: unknown: height: height: fixed

iconic continuous

fixed quantities

quantities
animal height

Action difference
amount

Exact amount

One side addition
or subtraction to
make equal

See further

Object increase
amount

Compare increase
amount

Equations

Two-side
operation
properties
Action equations

Two-side addition
and subtraction:
equal not equal,
equal again

Two-side addition
and subtraction:
equal not equal,
equal again

Process equations
process

Two side addition:
find unknowns

Two-side addition:
equal not equal,
equal again: multi-
solution

Animal height

Animal height
Modeling two- Matching real-life  Create a model of  Difference amount
side equations examples with equations Action recognition
equations Paper strips plants

Modeling Use expressions of ~ Use expressions of
equation with one equality and equality and
side addition equations to model  equations to
And inequality Rainbow model

Rainbow
Properties of Experience
operations properties of

addition

subtraction on two
side

The table below is the resultant trajectory defined by objectives and APOS levels for
each designed activity. The designed activities evidentially support the resultant

trajectory through the lectures from 1 to 20.
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Table 4.3: Resultant Trajectory

Objectives: APOS level
of concept
Lecture 1. The students interpret equal and not equal sign Action =, #
1 2. The student compares objects and uses equal and not equal Action
signs to interpret relation (action to process level) variables
3. The student uses balance scales to compare the weight of
objects and uses equal and not equal sign
4. The student uses different variables/attributes (which she
already knows) to interpret equality
Lecture 1. The student uses balance scales to partition play dough into Process =, #
2 two equal masses by increasing/decreasing actions verbally. Action
2. The student uses equal and not equal signs to interpret a increase/
relation in a part-whole context. decrease
3. The student manipulates (increase/decrease) one side for the
satisfaction of equality in part-whole activities
Lecture 1. The student uses equal and not equal signs to compare Process=,#
3 volumes of cups Action
2. The student interprets the equality of volumes of cups iconic
iconically (notation) notation
Lecture 1. The student interprets inequalities with greater or smaller Action >, <
4 relation. Process =, #
2. The student uses >, < signs to interpret relations
Lecture 1. Report: The student interprets comparison of volumes by >,<, Process
5 = signs symbolically on paper by using pictures of compared >,< =
cups as letter notation. Action
2. Read report and check: The student reads/uses a symbolic symbolic
representation of a peer’s comparison and checks with representati
manipulatives if the comparison is accurate. on
Lecture 1. The student draws an unknown figure based on a given Process >,
6 algebraic relation to another figure with >,<,= signs. <, =
2. The student uses =, # signs to interpret part-whole equality
given by symbolic figures (Lego photos). Process
3. The student uses >,<,= signs to interpret relations symbolic
symbolically based on given representations of weight representati
comparisons. on
Lecture 1. The student orders four objects based on their size and uses> Action ><
7 sign to interpret the sequence sequences
2. The student extends the sequence of ordered objects based on
size.
Lecture 1. Given three objects, the student experiences and reports two  Action,
8 comparisons (in order) and guesses the third relation. transitivity
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Table 4.3 (continued)

Lecture 1. The student creates an equivalent scale for an object to Action
9 compare it to another distant object. creating
2. The student interprets the comparison result in terms of the scale
distant objects, not the scale they used. Object
transitivity
Lecture 1. The student constructs scales to compare distant squares Process
10 2. The student uses the same color notation to indicate same-size creating
squares scale
3. The student uses colors as a notational representation to order Action
squares based on their size. notation
Lecture 1. The student recognizes multiple solutions to construct objects Pre-action
11 based on >, < relations. multiple
2. The student uses equal-sized scales to represent measurement. solution
(plant height) Object
equal scale
Lecture 1. The student chooses the correct sign +/- to interpret the Object
12 increase or decrease on sides to satisfy equality. =+
Action
+/ -
Lecture 1. The student dramatizes, +/- size as action of moving forwards Action +/-
13 and backwards (understanding of +/- signs as positive and Pre-action
negative directions) +/- with a
fixed
amount
Lecture 1. The student increases/decreases a quantity by a fixed amount Action
14 in a volume context. (perform +a) +/- with a
fixed
amount
Lecture 1. The student uses +/- to make equal in part-whole context Process
15 2. The student uses an ordering strategy to deduce the third +a
relation for a transitivity sequence (make-up for transitivity) Action
transitivity
Object
ordering
Lecture 1. The student determines the addition amount to make equality. Action
16 2. The student finds unknown in an equality with one side Equation
addition. with one-
3. The student recognizes multiple solutions to equations with side
two unknowns (a=?+7?) addition
Lecture 1. The student finds unknown inequality with two side addition ~Action
17 in height context. multiple
2. The student finds multiple solutions to equations with two solutions

unknowns.
3. The student adds equal amounts to both sides to preserve
equality.
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Table 4.3 (continued)

Lecture 1. The student determines addition and subtraction amounts to Process

18 make them equal (in a continuous context). addition/
2. The student uses both addition and subtraction to manipulate subtraction
both sides of an inequality to make it equal. amount
2. The student experiments and recognizes the equality of Object
addition and subtraction amounts. Addition/

subtraction

Lecture 1. The student determines quantities of objects based on equality Read the

19 and inequality relations in a weight context. model and
2. The student reads and uses algebraic interpretations of realize
equality/inequality relations and equations with one-sided equality
addition in real-life weight context. and one-
3. The student preserves the quantity represented in side
interpretation to use it in addition equations (relations and addition in
equations are connected in a system). a system.

Lecture 1. The student operates addition and subtraction on equalities Process

20 based on given expressions such as +a in volume context operations
2. The student experiences operational properties on equalities Object
(the starting point is equality). operations
3. The student realizes and compares algebraic expressions such  Action
as a+b in a volume context properties
4. The student experiences operational properties on equations of
(starting point changes). operations

Mental constructions of learning equations based on the resultant trajectory can be
summarized in the following schema (Figure 4.61). In this schema, learning
concepts, which are keystones for learning equations, are interpreted in rectangles.
Arrows indicate the use of the learning concept in the new mathematical concept.
Mental constructions noted on the arrows represent the type of mental construction
that takes place in the relation between two learning topics. For example, one
learning topic may be used as a process in a new mathematical action and as an object
in another one. Some processes are composed in new actions. From this schema, it
can be hierarchically deduced, which topics take place with what kind of mental

constructions in a new learning action.
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I8 1]

Quantity “a

procesx‘

action

Inequality
Equality
a>b
object a=b
object
object
object
+/- as
. increase/decrease
object
Two side
Increase/Decrease process addition
object amount +a T

- / atb=c+d
difference
amount +a

proces process
rocess object
P atb
process
) / object
Find
unknown Properties of
operations
atb=c
atb=atb

Figure 4.61. Schema of Mental Constructions for Equations Based on the Resultant

Trajectory
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4.22 Interview Results

In this section, pre-interview and post-interview results will be documented and
discussed together with the implementation findings. Firstly, pre-interview and post-
interview have common and different items as mentioned in the methods chapter. As
trajectory developed additional items were added to observe especially learning in
the last lecture. Findings are presented in terms of students' APOS levels on
particular algebraic topics. These interviews are conducted for triangulation of data.
Both interviews and implementation data are analyzed qualitatively, and consistency

between them will be evaluated and presented qualitatively.

The results of the pre-interview for each student in each item are summarized in the
following table. Their prior knowledge of the concepts: of quantity, equality,
comparisons, weight, width, height, increase, decrease, addition, and subtraction was
exposed and used for the design and revision of the activities. Pre-interview was
conducted for three main purposes: to explore students’ progress after
implementations compared to post-interview results individually, to bring out what
prior knowledge they bring to classroom implementations and what implementation
put on it, to design classroom instruction based on their prior knowledge or real-life

experience about the concepts.

9 students out of 10 attended pre-interviews. Students had little or no knowledge of
signs. Some know the names of +, and - signs (3 out of 9). Only one student knew
the name of the equal sign, two others knew its use as a “write result of operation”
comment. They knew size comparison, using equal, same, and bigger words. They
know height, weight, and width; while some may have difficulty with the word
“width”. Pre-investigations on Piagetian conservation showed that they had no
understanding of the conservation of amount. Hence, volume was not questioned in

the pre-interview.

They had a good understanding of increase and decrease, which we could base our

instruction on. Some of the students (1 out of 4) who knew the names of +/- signs,
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had difficulty matching these signs with increase and decrease. Some (2 out of 9)
students had difficulty with the words increase and decrease, they instead used “get

more” or “become less”.

Some students (2 out of 9) had a good understanding of difference amount and could
interpret it in subtraction and addition concepts. Most of them (5 out of 9) have a
good understanding of the comparison of weight context in the “children's balance”
item. Some of the students (2 out of 5) had some problems with subtraction to make

a balance in weight even though they had no difficulty in addition.

Considerations on designing instruction based on pre-interview results are presented
in the Methodology Chapter. In this chapter, we present the pre-interview results to
explain learning progress. Each student's progress matters individually, which is a

part of the analysis.

Briefly, pre-interview results interpret students’ real-life knowledge of the topics.
First of all, pre-interview results are used to build algebraic learning on their prior
real-life knowledge in the design of activities. Iltems in pre-interview are not directed
algebraically, not in written or verbal form. The researcher used daily-life terms to
observe their experience in real life about quantity and balance. Post-interview items
are directed in algebraic forms. Pre-interview shows that students do not know about
signs, and their names, depend on height or size to determine bigger objects, and
know balance in weight context but have difficulties maintaining balance. They have

no experience with addition and subtraction not in written form.
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Table 4.4 Pre-interview Results

1 1 ]
o+ o+ ¢ g o T
s Vox ¥ g BE PR
EL o Y < TE g =3
zr o 3 + =8 tz
Eylem  +,- Foronly  width Verbal and  Draw 5 Heavier is
signs  incr&dec sign guesses, total  down.
is more, add — compare and
(based on balance,
count) add and
subtract to
make a
balanced,
no algebraic
expression
Didem Only - Knows verbal Draw after Learned
+ sign width counting, which is
total is more,  heavier
add + balance by
adding and
subtracting
Ekim - - No width ~ Verbal by = Draw, total is  Confused
help more, add - about real-
life case
heavier is
down
Aylin +,-, Foronly  Width, Verbal and Draw 9 after  Balance and
(=:no incr&dec consider sign counting, if compare
name) volume the total is balance by
signs for more, add + adding and
deciding subtracting.
ona
bigger
Medine - - Knows verbal Draw 1, total  Heavier is
width 1s more, add - down.
balance by
adding,
wrong for
positioning
Ufuk +,-,= For No width  Verbal and -no sense Balance and
inc/dec signs Arithmetic, compare
equality no balance by
balance but addition.
execution, No algebraic
inquiry with ~ expression
some help
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Table 4.4 (continued)

Bekir +,-, width Verbal but  Number How to
(=:no no sign guess draw, balance one
name) even total is more, by one,
signs knows the  add - and by

names of adding

the signs

Hasan - Width, Confused Draw by Confused
Takes verbal guess, total is  about
more more, add + weight,
(volume) but because knows
confused both are heavier
much. but position
wrongly

Yaman

absent

Ali - Width verbal Draws by Balance and

guess, total is  compare

more, add + balance by
adding and
subtracting

When compared to post-interview results, they upgraded and associated their real-
life knowledge of balance, size, and increase/decrease actions to equality, quantity,
and operations with their algebraic representations. Multi-solutional cases, finding
unknowns in equations, and discussion of properties of operations on equality are
other particular concepts they improved. Post-interview also reveals some major
difficulties; symbolic representations and transfer of knowledge in the new context.
When they were asked about construction in weight context in symbolic
representation, the majority had difficulty reading and realizing algebraic
expressions in real-life situations. However, they performed better in height context,
which they are reluctant to from lectures on this topic, and successfully interpreted
the addition of quantities becoming equal to other quantities in verbal algebraic
representations. Their success outlined strengths of instructional sequence, while
their difficulties revealed areas to support through revision and call for further

investigation of teaching mentioned topics at this grade.
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Table 4.5 Post-interview Results

. :
" S
- : s Tz % -
<o + z T P o) o @ ? T
© ¥ ~ . = - = H o = 4
TRV A s L= 2 S 2E = & =
g V. ® & E F Leos A+ S VE s 2 =
Shoar e & & af2a® iz zHEl
~QO a4 OB °0O
Eylem + + + + 4+ + + + + +,+,4,+,+,
J’_
Dide +/- + + - + focus3 + - + +,+,+,-
m quantit
y
verbal
Ekim + + + - + - - - + +,4+,+,+
Aylin  + + + +  + + and + + + + 4+, ++,
reverse +
J’_
Medin + + + +  + - + - + +,+,+,+
(&
Ufuk + + + +  + height - + + ++,+,+,+
J’_
weight
verbal
Bekir + + + + + verbal + - + +,4+,+,+
Hasan - + + + + -/- + - + +,+,+,-
Yama
n
absent
Ali +/- +/- +/- - verb /- - - + +,+, 4+
Weig al
No No ht -
+/- +/-

These findings are consistent with the implementation findings. Students also had
difficulty in using templates, constructing and reading expressions, and transferring
knowledge in new contexts in lectures. Particular reasons and solutions are explained

in each lecture in detail. Findings on post-interview are compared to students’
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individual development through topics for triangulation to validate our inferences

out of implementation by students' understanding levels on post-interview.

Table 4.6 Students’ Individual Development in Implementation Through Lectures

s
= = 2
E_f § 5 =2 %5 £ g £ E ¢
& = < s ) = S > = = > A~
- < == 2 = = < = a | <
1 + + + + + + + + + + A= £
A:“a”
2 + o+ + + + + + + + + P:=,#
P: +/-
3 + o+ + + + + + + P:=,#
P: “a”
A iconic
notation
4 + o+ + + + - - + + A:>, <
P:=#
5 + o+ + + + - + - + + P:> < =
+ + A:
symbolic
notation
6 + o+ + + + - + + + + P:> < =
- - P:
symbolic
notation
7 + + + + + + + + A:
ordering
8 - + + + + - + - - - A:
transitivity
9 + + + + + + + + + A: mid-
- value
O:
transitivity
10 - + + - + - + - + + P: mid-
+ + - + + + + - + + value
A:
notation
11 + + + - + + + - - A: multi-
solution
12 + - + + + + + + + O:=#
A+, -
13 + + + + + + + + + A, -
P-A: +/-a
14 + + + + + + + + A:+/-a
15 + + + + + - + - + + P:+/-a
+ A:
transitivity
O:
ordering
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16 + + + + + + + + + A:a=b+c
- P: multi-
solution

Table 4.6 (continued)

17 + + + + + + + + + A:

- - atb=c+d
A: multi-
solution

18 + + + + + + + + + P: +/-a
- + + + - - - O: +/-a
difference
amount
19 + - + + - + + + O:a>b
O: atb=c
20 + + + + + + + + + + O: +/-a
A:
properties
of +/-a

Post-test results (see Table 4.5) reveal students’ mental construction schemas on
equations. Students’ individual developments through classroom implementation
(see Table 4.6) are compared with these schemas. Further, development on each
topic is evaluated with the results of related lectures. Students’ individual APOS
levels in each lecture are given in the table relative to the APOS level assigned for
the lecture. “+” means the student achieved at least a determined level, while “-
“means the student had difficulty in that topic and his/her APOS level is below the
majority in class. Blank spaces indicate the student’s absence in that lecture.
Students’ individual development, and classroom implementation results are
consistent with post-interview results, except for some differences. For example,
Hasan’s schema based on post-interview results coincides with his learning
trajectory through lectures (see Figure 4.62). He had difficulty in two-sided addition,
difference amount, and subtraction of different amounts in properties both in the

post-interview and during classroom implementations.
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Quantity “a” (Lectures:1,2,3)

\\acti:)n

process
: Equality
Inequality (Lectures:1,2,3)
a=b
a>b
object
) (Lectures:4,5,6) object
objec\
+/- as
increase/decrease (Lectures:12,13)
%bject
Increase/Decrease (Lecture:15,18)
amount +a
process
process
Properties:
. addition of .
Find (Lecture: 20)
same amount
unknown (Lecture:16)
a+tb=a+tb
atb=c

Figure 4.62. Hasan’s Schema on Equations Based on Post-interview Results

Matched with His Learning Trajectory Through Lectures

Some inconsistencies appeared between the schemas based on post-interview results
and individual progression in lectures. One reason for the inconsistencies might be
that post-interview is limited to time and items based on students’ attention. Some
items had implicit learning objectives, creating inconsistency. Coding as “+ or ““-*
in items of post-interview may not correlate with individual progress in the

classroom. Hence, results are compared qualitatively and not restricted to the result
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tables. Inconsistencies are investigated for the possible reasons. For example, for the
difference amount concept, only Aylin, Ufuk, and Medine successfully reasoned by
difference amount to construct equations of addition and subtraction in Lecture 18.
However, post-interview results showed that Eylem, Aylin, and Ufuk successfully
constructed equations with addition and subtraction symbolically reasoning by
difference amount. Eylem seemed to understand guidance about the difference
amount in the lecture and showed her understanding in her response for the post-
interview item. Medine’s difficulty was because of her not attending lectures about
the construction of equations with one-side and two-side addition. Her inability in
symbolic representations continued in further lectures and other post-interview
items. She could not command addition on two sides for weight and height context.
Except for Medine’s difficulty, the results of this item correlate with the related
lecture. This explains why this difference does not indicate an inconsistency but

Medine’s difficulty in symbolic representations.

Another problem in post-interview results in the item about the construction of
equality in weight and height context. Students had difficulty in weight context.
Hence, the researcher directed the item in the height context as it appeared in Lecture
17. Students could verbally interpret the addition of items and their equality, but
some (Ali, Hasan, Ufuk, Bekir, Didem) had difficulty reading and depending on
symbolic representations. Symbolic representation was overshadowed in this lecture
while investigating unknowns. Ufuk and Bekir had difficulty in symbolic
representation but could verbally interpret equality with four unknowns.
(Inconsistency between their post-interview and classroom implementation results
does not occur among their schema of understanding equations but originates from
their inability to interpret algebraically in different modes.) Especially Ali and Hasan
could not catch up with the classroom in Lecture 17, and they both could not reply
to this item. Didem could reply item using three unknowns representing the equation
as one side addition. She was absent in Lecture 17 but attended Lecture 16 on

equations with one side addition in height context.
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A remarkable consistency is between the results of the last post-interview item and
Lecture 20. Students (Eylem, Aylin) who had an object-level understanding of
constructs in Lecture 20 could correctly answer all questions in the last post-
interview item. Other students could interpret properties based on the
addition/subtraction amount. However, they could not reason by the starting amount

in the last post-interview item, consistent with their Lecture 20 results.

Briefly, students’ individual development is consistent with their success in post-

interviews, which proves our inferences from both data validates each other.

315






CHAPTER 5

CONCLUSION AND DISCUSSION

The main purpose of this study was to develop a learning trajectory for teaching
equations from an algebraic perspective before arithmetic education through cyclic
implementation, analysis, and revisions of designed activities. Furthermore, the
purpose of the study included a detailed analysis to explain how students'
understanding of algebraic concepts developed, which was interpreted using APOS
Theory. Additionally, the study aimed to assess why certain activities supported the

resultant trajectory, leading to the generation of design principles.

This chapter discusses the results of the study through the relevant body of literature
under four major topics. In the first part, the research questions will be addressed by
summarizing the developed trajectory and common design principles, reflecting on
both the theoretical and practical outcomes of the study. Secondly, the theoretical
contributions to early algebra education and APOS Theory will be discussed. In the
third section, the practical implications of the study will be provided. Finally,

suggestions for further revisions and studies will be given.

51  Outcomes of the Study: Discussion of Findings

Advancing a design-based research perspective, this study yielded two key
outcomes: a theoretically grounded learning trajectory and practical design
principles for activities supporting this trajectory. This section will address the
research questions by presenting these outcomes and reflecting on their implications
for the literature. Research questions guiding this study were:
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General Research question: Based on Davydov's approach, how can kindergarten
students' algebraic understanding of equations be effectively supported before they

receive arithmetic education?

1. What is an adapted learning trajectory supporting kindergarten students'
algebraic understanding of equations from Davydov’s non-numerical
perspective?

a) To what extent do kindergarten students learn equations with
addition and subtraction with an adaptation of Davydov’s
curriculum for first graders?

b) What are kindergarten students' strengths and difficulties in
understanding the equations in the adapted trajectory?

2. What are the effective and practical activities for supporting kindergarten
students' algebraic understanding of equations from Davydov’s non-
numerical perspective?

a) Which characteristics of the activities help kindergarten students
understand and resolve their difficulties in comprehending

equations?

The results of this study revealed that by adapting symbolization and contexts in
Davydov’s learning trajectory, kindergarten students' algebraic understanding can be
supported through investigations with concrete manipulatives in balance contexts
(General research question). By simplifying formal symbolization from letter
notation to pictorial and color-coded notation, and modifying the investigations
related to the concepts of area and volume, Davydov’s trajectory has been

successfully adapted to the kindergarten level (Research question #1).

With this adaptation, kindergarten students can develop an algebraic understanding
of equality, quantities, and addition/subtraction operations on both sides of the
equalities (Research question #1a). While students faced difficulties in reasoning by
transitivity, they developed a strong understanding of equality and operations acting

on equalities with non-numerical quantities (Research question #1b).
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Enactive investigations of equalities and operations with balance manipulatives in
weight, height, length, and volume context helped students understand algebraic
concepts of equality, quantity, and addition/subtraction. Reporting enactive
representations first iconically, then algebraically, helped them connect and model
investigations with concrete manipulatives to algebraic expressions (Research
question #2). Free explorations with manipulatives, the use of various objects in
investigations, and a focus on different attributes helped students quantify and
understand equality and operations algebraically across several contexts (Research

question #2a).

These conclusions of the study will be detailed and discussed within the related
literature in the following sections. Section 5.1.1 will address the first research
question by presenting the resultant trajectory in each domain—equality, quantity,
operations, and notation—to explain the extent to which students learned algebraic
concepts. Section 5.1.2 will address the second research question by outlining the
design principles and characteristics of the activities that supported the algebraic

understanding of kindergarten students.

51.1 Theoretical Outcome: Resultant Trajectory

As one of the outcomes, this study generated an evidence-based, effective trajectory
for teaching equations with addition and subtraction at the kindergarten level from
an algebra-before arithmetic perspective. We followed Davydov’s trajectory to
design the first hypothetical learning trajectory in teaching equations to kindergarten
students from an algebraic perspective. Adaptation continued through revisions of
the hypothetical learning trajectory until it evolved into a resultant learning
trajectory. In the adaptation procedure, the trajectory did not change a lot for teaching
quantity, equality, and operations. See Table 4.2 for a summary of the adaptations
and changes made to HLT, comparing Davydov’s original trajectory with the
resultant trajectory developed in the study. The only change in the order involved

moving the instruction on equations with two-side addition to precede the teaching
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of difference-amount in equations with one-side addition. In the “using scale”
subject, a square activity was added to Davydov’s trajectory to aid in the notational
interpretation of equivalent quantities. Revision from Davydov’s to the first HLT,
and subsequently to the resultant trajectory, primarily involved simplifications rather
than exclusions or reordering of the topics. These simplifications were both
contextual and notational. Contextual simplifications were made based on students’
developmental levels concerning Piaget’s conservation of quantity. The area context
was removed and the volume context was turned into height. Letter notations were
reduced to pictorial representations of quantities due to students’ illiteracy and their

difficulty in representing objects with outer icons.

Adapting Davydov’s trajectory without sacrificing the teaching of equality, quantity,
and addition and subtraction operations, the resultant trajectory was successfully
adopted to the kindergarten level. The effectiveness of this adaptation was proven
through the evaluation of APOS levels pre-determined for both Davydov’s trajectory
and the resultant trajectory.

Not only activities and dedicated time for the subjects but also objectives were
revised based on students’ learning. Hence, the resultant trajectory was evidenced
based on students’ indicator behaviors through each learning step, as documented in
the findings chapter. In other words, students’ learning progression created the
trajectory, allowing us to interpret this trajectory as students’ achievement
throughout the topics. In this section, using the resultant trajectory, we will reflect
on the students’ achievements in the learning domains of quantity, equality,

operations, and notation with related literature.

5.1.1.1 Resultant Trajectory on Quantity

One of the components in the equations is variable/quantity. Quantities are defined
by Smith and Thompson (2007) as “attributes of objects or phenomena that are

measurable; it is our capacity to measure them—whether we have carried out those
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measurements or not that makes them quantities” (p. 101). In Davydov’s perspective,
non-numerical quantities are used in equations. Numbers are constructed with ratios
of quantities. Until numbers are presented, quantities are compared, composing an
equality/inequality relation. Numbers are represented as multiplicative relations

between quantities, which is out of the scope of this study.

Teaching variables in equations begins with teaching how to compare different
attributes correctly in Davydov’s trajectory. Those attributes include area, weight,
volume, and length, all of which can be measured in quantities (Ellis, 2011).
Comparison of objects based on area and volume would cause problems because
students don’t have conservation of quantity. We started by interpreting equality
between objects based on different attributes students already knew. The area
attribute was omitted, while volume was shifted into height with the help of
manipulatives. Objects have different attributes, and quantities of objects can be
compared based on these attributes. Comparing attributes and interpreting equality
between objects based on several attributes did not guarantee understanding of
quantities. Some students reasoned by quantities to interpret equalities, while for
some of them, attributes did not define quantity in comparisons, but remained as
different aspects of objects. They simply used measurement tools based on the
attribute to decide on equality without mentioning which quantity was greater. They
continued interpreting equality between objects regarding non-quantitative aspects
of them (i.e. similar shape or parts). Quantity was acquired for all students when >,
< signs were used to interpret inequalities, leading them to understand that objects
conserve a quantity in the comparisons based on the attributes of consideration. The
use of >, < signs underlined one quantity is greater than the other, enforcing the idea

that equality is associated with quantities being in equal amounts.

This finding showed that teaching >, < signs was essential in the early stages of
teaching quantity from a non-numerical perspective. After this stage, comparison
shifted from being between objects to between the quantities associated with those
objects. This idea was strengthened by comparing the same objects based on
different attributes. Different attributes created different contexts for quantities and
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helped quantity become an object independent from being specific to objects.
Abstraction of quantity away from objects was an important and non-trivial stage.
Using different attributes as various contexts, and applying greater/less than relations
helped the quantification of compared objects. As stated in design principles,
presenting different objects with equal quantities in a specific attribute, similar-
looking objects with different quantities, or discussing equality based on different
attributes of compared objects all helped the quantification process. Iconic
representation of comparison results, based on implicit attributes such as volume and
weight, revealed students’ understanding of the quantity abstracted from the objects.

This was evidenced by their use of icons to represent quantity.

After quantity was acquired, students used this knowledge for comparisons and
interpreted equality/inequality based on different attributes. The second stage
involved constructing quantities based on given relations, essentially reversing the
process used to determine equality between two quantities. In this stage, the quantity
was treated as unknown in the given relation, and students either found or

constructed a suitable object to meet the requirements of the relation.

Finding unknown quantities continued in the equations with addition or subtraction
operations. Before that, students increased or decreased quantities by addition or
subtraction to achieve equality. This process of adjusting quantities turned into
finding the added or subtracted amounts as unknowns in equations. These
adjustments were applied to continuous variables such as length, height, volume, and
weight (Stavy & Babai, 2016). Some activities required continuous manipulation,
while others involved working with fixed quantities to find unknowns in equations.
Using continuous variables in comparisons and operations was promising for
enhancing students’ future understanding of continuous variables as opposed to
discrete ones. Therefore, Davydov’s perspective not only reorders arithmetic and
algebra but also shifts from discrete to continuous variables before discrete
numerical or countable comparisons. Boote and Boote (2017) discuss the difficulty
of transitioning from discrete to continuous variables as a “learning leap” (p. 456)

where students need to understand both the similarities and differences between
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these two types of variables. They call for a better-organized transition starting
earlier. Davydov’s inclusive and deductive perspective has the potential to solve this

transition difficulty, as it shifts the transition from arithmetic to algebra.

Creating quantities based on given relations naturally resulted in an infinite number
of possible answers in both Davydov’s and our trajectories. In addition to Davydov’s
trajectory, we stressed the concept of multiple solutions. We developed a trajectory
that gradually introduced students to recognizing and generating multiple answers
for finding unknowns in equations. Firstly, students learned to extend sequences of
inequalities by systematically adding bigger objects to conceptualize infinity.
Secondly, they experienced creating quantities based on given inequalities and
equalities, which led them to observe and discuss multiple and single solutions, as
well as boundaries in these solutions. Finally, in equations involving two-sided
addition, students recognized and generated multiple solutions for finding unknowns
by manipulating fixed quantities. The use of combinations of fixed amounts enabled
them to come up with several answers. Moreover, they developed an understanding
of quantities as sums of two other quantities, leading to the formulation of

equivalence sets composed of equivalent sums.

The following is the resultant trajectory of quantity in this study:
- Comparison between objects for equality as similarity
- Comparison of different attributes of objects for equality

- Quantity as a comparison measure/consideration for inequalities (by use of

>, < signs)

- Conservation of amount/quantity in different modes of representation

(represent quantity by an icon or symbol)
- Determine the attribute based on the given relation

- Construct quantity based on a given relation. (reverse-process) quantity as

unknown
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- Recognize multiple solutions to construct unknowns in inequality relations
- Interpret equivalent quantities with the same notation.
- Find the unknown quantity as an increase/decrease amount

- Find multiple solutions for equations with addition on two sides: quantities
can be added to construct another quantity (quantity operated on), and

equivalent sums: equivalent sets of sums

The last step in developing a learning trajectory for the concept of quantity involved
extending Davydov’s trajectory. Davydov discusses “equal, unequal, equal again”
by adding a quantity on one side of equality to break equality and then adding another
equal quantity on the other side to make it equal again. In this study, students did not
add an equal amount but used an equivalent sum to make it equal again, which
allowed them to determine all equivalent sums and use them as substitutions of each

other.

Blanton et al. (2017) studied the trajectory of variables for 1% graders, and Ventura
et al. (2021) revised this trajectory to include both first graders and kindergarteners.
When comparing these trajectories to our learning trajectory for quantity, students
began at Level 2 where letters are used as labels or to represent objects that
correspond to the first stage in our trajectory They then progressed to Level 3, where
letters are understood as representing variables with fixed deterministic values. The
difference is while they used letter notation, we used pictures as symbols. By color
coding, quantity is interpreted with color notation and abstracted as being
representative of an equal quantity set. Based on Ventura’s study, students may be
willing to change or not the letter notation of a quantity when they are operated on,
or represent different quantities with the same notation at Level 5. In Davydov’s
perspective, every object has a different letter notation even if they are equal in
quantity, which is also represented by using different symbolic pictures for each
object. However, by using color coding, we abstracted quantity and defined a

representation/notation independent from the object itself. At the last stage, students
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in this study could operate with unknowns which potentially contributed to Ventura’s

6th level, where no kindergarteners achieved this stage in their study.

These comparisons are based on the use of quantity and representation of quantity.
However, Blanton et al.’s (2017) and Ventura et al.’s (2021) studies focused on
teaching variables, with all assessment questions including varying unknowns. Our
objectives and achievements concerning variability were limited to recognizing,
finding, and iterating multiple solutions in activities involving finding or creating
unknown activities. The selected contexts were continuous, which helped in
understanding variability. In addition, in studies of Blanton et al. (2017) and Ventura
et al. (2021), stages of knowledge of quantity were defined through the use of letter
notation, while we disintegrated notation to explain the understanding of quantity
more comprehensively. We evaluated verbal, enactive, and iconic representations in
addition to symbolic representations as algebraic expressions of quantity.
Furthermore, in this study, students investigated continuous non-numerical
quantities, whereas in Blanton et al.’s (2017) and Ventura et al.’s (2021) studies,
unknowns were discrete and countable objects. This difference makes the
comparison of trajectories even more difficult in terms of evaluating students’

learning and development.

5.1.1.2  Resultant Trajectory on Equality

For students, equality initially meant being the same. They focused on finding
identical toys or interpreting geometric similarities between some parts of the objects
they compared. The equal sign was presented with its reverse, the unequal sign as in
Davydov’s trajectory. Students engaged with different contexts, such as volume
weight, and part-whole relationships. However, for some students, equality
continued to mean being the same or similar until greater/less than relationship was
introduced. They did not consider the quantity being compared but used the
measurement tools to decide whether it was equal or not. After being taught the >, <

signs, these students still tended to use unequal signs instead. This tendency might
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be due to the difficulty of contexts such as weight and volume, where interpreting
which one is bigger posed a challenge. The “>" and “<” signs enforced reasoning by
quantity by clearly determining the bigger side. This finding is consistent with the
experimental study by Hattikudur and Alibali (2010), which indicated that including
inequality signs in the instructional sequence helped students understand equality in
a relational structure more effectively than an instructional when compared to the
instructional sequence including only equal signs. Deciding which side is bigger
likely helped students see the sides of the relationship as algebraic constructs,

thereby creating a balance relation between them.

In this study, students began learning about equality through balance relations in
each context. As a result, they developed a relational understanding of the equal
signs. Some students progressed to a “relational-computational” understanding,
while others developed a “relational-structural” reasoning (Stephens et al., 2013, p.
174). Asking about the properties of adding and subtracting equal and different
amounts to equalities helped students reflect on the structures of addition and
subtraction by amount. This reflection facilitated a deeper understanding of the

algebraic structures underlying these operations.

For inequality situations, only students who had a mature understanding of the
conservation of amount could reflect on the structures such as a+b and compare them
algebraically without needing to test operationally. Stephans et al. (2013) suggested
tasks supporting relational, structural understanding of equations in arithmetic for
early algebra education. Operational understanding of equal sign can persist and
cause problems when solving algebraic problems, even in college grades (Fyfe et al.,
2020). Non-relational (operational) understanding of equal sign can be classified as
arithmetic-specific ~ or  non-arithmetic-specific,  with  arithmetic-specific
interpretations posing a greater obstacle to early algebraic learning (Byrd et al., 2015)

This study eliminated the hindrances of arithmetic from the beginning and taught
equality in a relational way. Direction was never presented, and it did not matter in

equations for students, who could operate on both sides of equations algebraically.
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Misconceptions of solving from left to right or viewing equality as a “solve it”
response did not occur in our students’ behaviors. This outcome resulted naturally
from using manipulatives that emphasized balance and allowed manipulations on

both sides. Students verbally and algebraically interpreted equality between them.

This finding conforms to a recent study by Lee and Pang (2023), who pointed out
the difficulty of building a relational understanding of equality and how pan balances
helped in achieving this understanding. Lee and Pang (2023) defined simultaneous
operational and relational (SOR) conceptions of equal sign. They found that even
when students possess a relational understanding of the equal sign, they often revert
to an operational conception when faced with an unfamiliar equation. Improving
students’ conception of the equal sign was difficult until they engaged with a pan
balance. This tool helped students understand the quantitative balance between sides,
leading to a more stable relational understanding. The “a + b = ¢” form of
equations hinders relational understanding in the “a + b = ¢ + d = e” type of
equations (Lee & Pang, 2023). To address this, we started with pan balance and
focused on operations that change the balance or imbalance situations. Students
consistently operated on equality or performed operations to construct “a + b =
¢ + d” types of equations and worked with inequalities to construct“a + b = ¢”
types. Consequently, students developed a relational understanding of equal sign in

equations.

Moreover, equality or inequality relations became algebraic objects acted/operated
on by unknowns, which is a major difficulty even for high school students, causing
a cognitive gap between arithmetic and algebra (Linchevski & Herscovics, 1996).
In this study, it was not difficult for students to identify equal signs as algebraic
objects. They constructed equality relations by combining equality and quantity
processes and then operated and reflected on these relations to grasp how to change

and preserve equality.

Furthermore, students operated by equivalences of quantities on equations.

Understanding equality and equivalent algebraic expressions as substitutes is
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important for solving algebraic problems (Nicaud et al., 2004). Students might have
difficulties in differentiating equality and equivalence in algebraic expressions, often
reasoning by particular numerical equality rather than by equivalence of algebraic
expressions (Saldanha & Kieran, 2005). By using a non-numerical approach in this
study, the problem of numerical reasoning can be prevented. The students could
reason by the equivalence of sums of unknown quantities to maintain equality. They
can use these sums as substitutes for each other in equations. In other words, if e =
a+b=c+d, then they can conclude f+e=f+a+b=f+c+d (See

“equal, unequal, equal again” activity in Lecture-17).
The trajectory for equality in this study can be summarized as:

- Equal sign and unequal sign for the determination of similarity

- Equal sign and unequal sign for the determination of equality based on
different attributes

- Greater/less than signs related to an unequal sign for the determination of the
quantitative relation between sides in inequalities.

- Operating on inequalities by addition and subtraction to achieve equality:
one-side operational equation

- Operating on equalities to make them unequal, and then equal again by
addition: additional properties on equations

- Operating on equations by equivalence sets/relations to maintain equality.

- Operating by addition and subtraction on two sides of equalities and

inequalities: properties of operations

Briefly, the equality concept evolved by associating inequality with greater/less than
relations, which evoked a quantitative understanding. Then, equality and quantity
concepts became objects of equality relations (a < b). These relations are
acted/operated on by addition and subtraction. See Figure 4.61 for the resultant

schema on equations.

This trajectory supporting the relational understanding is found to be effective in
preventing misconceptions about the meaning of the equal sign. Students developed
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a relational understanding of equal signs, and they had no misconception of
perceiving the equal sign as “solve for”. Research studies have shown that
misconceptions regarding the equal sign are prevalent even at higher grade levels.
(Falkner et al., 1999; Giirel & Okur, 2018; Kieran, 1981; Stephens et al. 2013)

Studies suggest that introducing non-traditional formation of tasks, such as
operations on the right side of the equation before formal algebra education, can help
address these misconceptions (McNeil et al., 2011; Stephens et al., 2013). Even
kindergarten students may have an operational view of the equal sign and carry
forward misconceptions from their early exposure to equality in solving simple
addition problems (Falkner et al., 1999). McNeil et al. (2011) suggest that exposing
students to the equal sign outside of the arithmetical context can help counteract their
resistant, unidirectional operational meaning of the equal sign. Hence, this study’s
intervention successfully prevents such misconceptions by grounding the concept of
equality in a non-arithmetical context and by employing non-traditional operations
on both sides of the equation from the very beginning.

5.1.1.3  Resultant Trajectory on Operations

The trajectory for operations starts by acting on equality. As in Davydov’s trajectory,
increasing and decreasing actions start with “how to make equal” discussions. These
discussions do not start with the introduction of +/- signs, but much earlier, almost
as early as the equality concept. In these discussions, students engage in actions of
increasing and decreasing amounts without yet interpreting these actions explicitly.
Students learn they can use both types of actions to achieve equality. They learn to
use both types of actions to achieve equality, understanding them as tools for
balancing sides rather than as formal arithmetic operations. The first introduction of
+/- signs occurs in the activities where students assign the correct signs to sides of
inequalities to make them equal to the other side. Therefore, plus and minus signs
are presented simultaneously for the given situation, associated with the given

increase/decrease actions both of which can be applied. Davydov presents this
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association with before and after situations and asks assignment of signs based on
the actions taken to make sides equal. In this study, with the help of continuously
manipulable manipulatives, students enactively investigated increase/decrease
actions (as in other activities, enactive investigations dominate). After determining
these actions to make sides equal, and assigning signs associated with actions,
students enacted the increase/decrease actions. At this stage, how much to

increase/decrease is enacted but not interpreted explicitly yet.

Due to measurement errors, the concept of finding the unknown was almost
impossible to discover/investigate in weight and volume contexts. Prepared
quantities would not result in expected equations on students’ perception. Moreover,
learning signs and associating them with actions is somewhat complicated for the
kindergarten level. Therefore, we added an extra step to strengthen positive and
negative actions associated with the plus and minus signs. This involved an activity
where students moved backward and forward by different animal steps, initiating an
increase/decrease action by a predetermined amount independent of equality. These
increase/decrease actions by an amount are revisited in volume context, stressing the
quantity in the expression +a. While +a is always discussed in the equation “b +
a = ¢”in Davydov’s trajectory, we wanted to objectify the +a statement on its own.
We also wanted to make students understand these actions by amount properly,
because they had to think about two things simultaneously: equality and the actions
in the “how to make equal” discussion. In this way, +a is investigated in the forward
process rather than being reverse-processed in finding +a as unknowns in equations,
in making equal processes. Racing activities in volume and length contexts using
+a constructs helped students compare two constructs, and reflect on which is
greater, or advantageous in an informal but effective way. This enactive/informal
investigation was more structured in the final activity in the volume context, where

students observed the effects on equality situations.

After acting by +a constructs, finding unknowns in equations with one-side addition

and two-side addition is studied in height context (animal height game). Students
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found addition amount to make two unequal quantities equal to each other. Hence,
addition and addition amount “a” are handled in equation “b = a + ¢” as unknown.
The form of the equation does not matter, facilitated by the height context and
templates used. In equations with two-sided addition, students used the property of

adding two equivalent quantities on two sides to make them unequal and equal again.

After finding unknowns in the equations with addition, the concept of difference
amount was individually taught to students by constructing equations with one-side
addition and subtraction in a length context. Firstly, students graphed the plant
heights by strings at three different times. They observed and interpreted changes
and increase amounts on the graphs. The change in a quantity (height of plant) over
time was observed, and the amount of increase was verbally and enactively
interpreted. Then, they constructed equations by interpreting the increase and also
decrease amounts to make two strings (representing plant height) equal to each other.
They were asked about the equality of increase and decrease amounts to understand

the difference in amount.

In finding the increase or decrease amount to achieve equality, students engaged in
actions that treat +a as a process. Rather than simply performing +a, they reverse-
processed it; in other words, they identified the +a when processed forward, would
achieve equality. In the last activity, adding or subtracting equal amounts on the sides
of the equalities was discussed. In that activity, before enactively testing and seeing
the results students reflected on addition and subtraction of fixed amounts by
comparing +a to +b constructs, where the relation between a and b is known.
Obijectifying +a on equalities was not difficult for all students in this activity.
However, comparing and reflecting on a + b constructs was difficult for those
students who had no conservation of amount based on Piaget’s test. This lecture on
the properties of operations was added later in the trajectory. We thought it would
be difficult for this grade level, but we wanted to try it with some simplifications.
This lecture helped us to conclude about mental constructions related to students’

limitations.
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There was another activity introduced before the discussion of properties of
operations, which does not align with this trajectory or Davydov’s trajectory. We
wanted to teach up to equations with addition on two sides and complete trajectory
with a modeling activity: the Rainbow Activity. In this activity, secondary colors
were given in an equation as the sum of two primary colors. However, this activity
does not align with the trajectory; because it represents addition as the joining of two
colors (or two pieces of play dough) to compose another color. As a result, students
had difficulty to make sense of the equations in this context. It introduces the concept
of joining, which does not align with our trajectory’s emphasis on addition as an
increase in quantity. Traditional teaching often defines addition through this joining
model, viewing the binary operation on particular sets (Carraher et al. 2000) and as
a set model for addition (LeBlanc, 1976). This model allows the exploration of
commutativity and associativity properties in addition, which is reflected naturally

in the balance contexts used in this study.

Properties of operations were investigated through their effects on the
equality/inequality in our trajectory. There was also a number line model in this study
(Animal Steps Game) for addition and subtraction operations, which we wanted to
reflect in our activity using +/- signs for initiating forward and backward movement.
Davydov’s trajectory and our trajectory predominantly support the functional model
for addition, because +a actions are treated as operations on any initial quantity.
Investigating change in a quantity over time and associating these changes with the
operations further supports relational functional thinking. The Rainbow Activity and
Animal Steps Activity are embedded in our instructional sequence to connect
students’ operational understanding with the set model and number line model that

they will encounter in primary school.
The trajectory for operations in this study can be summarized as:
- Increase or decrease actions to achieve equality

- Determine actions on both sides to achieve equality
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- Associate +/- signs with the increase/decrease actions to achieve equality

- Increase and decrease as positive negative direction (number line model:

Animal Steps Activity)
- Increase or decrease by an amount
- Find unknowns in equations with one-side addition

- Find unknowns in equations with two-side addition: addition of equal

amounts property in reverse-process
- Interpret change in quantity
- Interpret the increase amount
- Discover difference amount through equality of increase/decrease amount
- Use the addition model in real life (set model: Rainbow Activity)
- Properties of operations

Through this trajectory, both continuously manipulable quantities and fixed
quantities are operated.

5.1.1.4  Resultant Trajectory on Notation

Activities for the first hypothetical trajectory were designed based on Bruner’s
modes of algebraic representations. Each concept would be revisited firstly in
enactive modes through physical investigations, secondly in iconic modes through
paperwork activities, and finally in letter notational symbolic modes of algebraic
representations. In this study, we could not achieve in letter notational symbolic
mode in any concept, and used photos of objects to symbolize objects for three

reasons:

- Students did not know the names of letters and had difficulty distinguishing

them
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- They had difficulties with iconic representations and pictorial symbolic
representations. Through modes of representation, they lost focus on the
quantity of the objects based on the attributes but reason by the size of the
pictures themselves. Their difficulty in transferring between modes may be
a result of their lack of conservation of amount.

- Pictures were also representative of quantities, which may be treated as
symbols for quantities. Activities were designed first to be represented
through comparison tools as an enactive mode, then as an iconic mode based

on an implicit attribute, and finally as a symbolic mode through pictures.

Students' transfer between modes of representation was not as straightforward as we
expected. They had difficulty associating pictures with the enactive investigation.
We had to use a strategy to associate enactive to iconic, then iconic to symbolic mode

through one-to-one correspondence in the following way;

- Compare toys on the measurement tool

- Put a sign on the measurement tool to represent enactive measurement.
- Put the compared toys near the measurement tool

- Move the sign on the measurement tool between toys

- Place pictures near toys

- Move the sign between the toys to between representative pictures

In the symbolic mode of representations in relations and equations, unknowns are
represented by blank boxes. These unknowns may be a fixed quantity or a varying
quantity. Davydov used illustrations of curtains hiding objects to represent
unknowns iconically or letters to represent unknowns symbolically. In Davydov’s
notation system, every object is assigned a different letter notation, even if they have
the same quantity. Moreover, when an object’s quantity is increased or decreased
through operations, its letter notation is changed to reflect its transformation into a
new object. In Davydov’s system, the letter notation primarily represents the object
itself. In this study, pictures of objects were used to notate objects or fixed quantities

related to different attributes of objects. In addition to pictures, color code notation
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was used in the Squares Activity, where color codes represented quantities through

sets of objects rather than the objects themselves.

Notating quantities by letters is challenging for younger students. Brizuela et al.
(2015), in an investigation with kindergarten to 2nd-grade students, reported: “We
provided evidence that first-grade children, of approximately six years of age, can
develop a variety of understandings about variable notation.” (p.57) even if they do
not claim these students perfectly understood what symbols mean as quantities or
variables. Students have difficulties choosing letter notation for specific quantities
and interpreting problem situations with these letter notations in algebraic
expressions. Ventura et al. (2021) exemplified this difficulty in a first-grade student’s
work on the Candy-Box Task. A student notated the number of candies in a box with
the letter “a”. Then, adding two more candies, he notated the new situation as a +
2 = a. As the authors denoted, he struggled to assign new letters for quantities in
revised situations. However, he might also notate the number of total candies a child
might have at two different times with the same letter notation. The authors also
noted that some kindergarten students had this emergent use of letter notations for
quantities or variables; no one could use these notations correctly/purposefully in

algebraic expressions (Ventura et al., 2021).

Khosroshahi and Asghari (2013) showed how a 6-year-old student could succeed in
algebraic tasks without using letter notations. Van Amerom (2002) also pointed out
the importance of reasoning by algebra over formal symbolizing for bridging the gap
between algebra and arithmetic because “algebraic notation is not necessary for
algebraic reasoning” as a result of their study with 6 and 7 graders (p. 54). Van
Amerom suggested informal symbolization and discovering algebraic strategies for
pre-algebra classes. In this study, students showed they could use pictures as
informal notations for quantities and successfully used them in algebraic expressions
and operations. In addition to Davydov’s trajectory, in this study, color-code notation
was used to upgrade the symbolization of quantity in Squares Activity (see Findings
Chapter, Lecture-10).
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5.1.15 Resultant Trajectory on Transitivity

By transitivity property, we mean transitivity between dual equality/inequality
relations between three objects (a < b &b <c => a <c). Trajectory on
transitivity started with ordering three or more objects. Then, based on two
relations/comparisons between three objects, students were expected to deduce the
third relation in a volume context. It was not easy for students to imagine the third
relation, moreover, volume context brought measurement errors causing disorders in
the volumes of compared cups. Then students learned how to create an equivalent
scale to an object and use this scale to compare the object to a distant one. Creating
an equivalent scale and using it in the comparison of two distant objects require the
use of transitivity property, including one equality relation. After learning how to
create and use scales, the students used this understanding to find all members of
equivalent sets in Squares Activity. The transitivity property was then revisited in
the weight context with more structured enactive investigations. Students struggled
to reason using the transitivity property in a volume context. Thus, in the final
activity, before students were asked to express the third relations, they were guided
to order the three objects based on the dual comparisons. They then deduced the third
relation based on the order. However, while this strategy worked for the majority of

the students, some of them struggled with ordering and deducing the third relation.
The summary of the trajectory is as follows:

- Ordering objects

- Transitivity in volume context

- Creating and using an equivalent scale to compare distant objects

- Using an equivalent scale to determine elements of equivalence sets

- Transitivity in weight context using ordering strategy.

In Davydov’s trajectory, the transitivity property is assumed to be intuitional, and
tasks are designed to use symbolic notations for deductions or to create quantities

based on the relations and using the transitivity property. However, it required extra
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effort to guide our students and to make them follow the ordering strategy in the
transitivity trajectory. Interpreting “being bigger” based on volume and weight was
always difficult for some students. After several attempts and systematic
organization, reasoning by transitivity is achieved. However, students’ reasoning by
transitivity is based on their enactive observations. We do not think they could reason
using pre-given symbolic interpretations of relations to deduce another relation.
Based on the results of the project “Measure-Up” which aimed to develop an Early
Algebra curriculum following Davydov’s perspective for Grades 1 to 5, starting with
measuring continuous quantities and constructing number sense on multiplicative
measurements, Dougherty (2008) reported that Grade 1 students can reason by
transitivity by the following dialog:

“Imagine the following dialogue in first grade as Caylie and Wendy compare

three volumes, D, K, and P:

“I think that volume D is greater than volume K,” said Caylie.

“How do you know that, Caylie? We didn’t directly compare those two
volumes,” said Mrs. M.

“Well,” said Caylie, “we found out that volume D is equal to volume P and
volume P is greater than volume K, so volume D must be greater than volume
K.,’

“I agree with Caylie,” said Wendy. “Because volume D and volume P are
really the same amount so if volume P is greater than volume K, then volume
D also has to be greater than volume K.”

(Dougherty, 2008, p.389),

However, it was not easy and clear for kindergarten students in this study. The results
of our study are more compatible with the results of another study about
kindergarteners' performance on transitivity (Owens & Steffe, 1972). In their study,
students were required to use transitivity between two dual relations of discrete
quantities, between three sets of objects; stars, squares, and circles, to conclude the
third relation. They were also asked questions to determine if they conserved the
number of objects when they were rearranged in the illustration. There were 42

students ranging from 65 months to 75 months, which is similar to the age of this
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study's participants. The study concluded that students’ conservation performance
on the “as many as” relation, which corresponds to Piaget’s conservation test we
used, is correlated with their achievement on the transitivity test. Conservation on
“more than” or “less than” relations are found to be insignificantly correlated to
transitivity. This result is consistent with our results, where students who did not
have an understanding of the conservation of amount (majority of our students) could

not reason by transitivity property of relations.

Only Aylin and Ekim reasoned by transitivity immediately, as they were the only
ones who demonstrated conservation of amount. This suggests that transitivity is a
complex concept for kindergarten school because the majority of the students had no

conservation of amount for “as many as” relations.

For being unrelated to the trajectory of equations, and difficulty due to conservation
of amount, transitivity can be excluded from the trajectory for further studies.
However, creating equivalent scales had some benefits more than supporting or using

transitivity:

- It prepares students for measurements by introducing the concept of
comparing quantities through a consistent reference, which later connects to
numerical measurements as multiples of determined scales, as seen in
Davydov’s trajectory.

- It plays an important role in graphing changes in quantities (e.g., the plant
height activity).

- It underlies a continuous view of quantity. It is a scale, like a ruler, without
discrete numerals placed on it. Continuous manipulation of a scale and the
idea of continuous change of quantities may have been gained before having

measurements by classical rulers indicating cm/inches.
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5.1.1.6 Interplay of Equality, Quantity, Operations, and Notations in
Learning Early Algebra

Equality and quantity concepts can be thought to be developed together. However,
they are both elevated after the presentation of >, < signs. They became objects of
equality/inequality relations. Acting on inequality relations, one-sided equations are
composed to make equality. Operation appeared as increase and decrease actions by
fixed amounts. Then, acting on equalities, the properties of operations were
discussed through comparison. These properties were used to break and reconstruct
equalities, building knowledge of two-sided operations on equations. Notations
helped mathematical communication and enabled using prior concepts as objects in
new algebraic processes. The gradual development of notations helped students
abstract algebraic concepts out of the objects they are defined on. (see Findings

Chapter, Figure 4.61for the schema for equations)

51.2 Practical Outcome: Design Principles

The design principles for each lecture were given in the findings chapter in detail. In
this section, we will point out common design principles throughout the activities.
We followed Davydov’s trajectory, and designed activities supporting it. Adaptation
at the kindergarten level was achieved with the help of these design principles. These

design principles explain how/why activities support learning trajectories.

5.1.2.1  Free Experimentation

The concepts of equality, quantity, and operations are enactively experimented with
physical manipulatives. Free experimentation allows students to choose the materials
and the way they experience the physical world of related mathematical contexts.
This enables observation of students’ underlying mathematical reasoning in the

investigations. For example, they choose identical toys to compare or add on the
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balances to investigate a = a or a + b = a + b situations in the weight context.
Students initiate free investigations based on their mathematical intuitions or

assumptions.

Kindergarten students have little experience with volume and weight context,
especially in subtraction. Free experimentation with sufficient time, improves their
physics experience in these attributes. Students not only build mathematical
knowledge on their physical world experience, but they also learn how to interpret
physical conclusions mathematically. Moreover, they developed their strategies
leading to important algebraic learnings; such as incremental change of quantities to
make equality. Activities, not only support the comparison of continuous variables

but also enable enactment of continuous change in quantity.

As a result, we suggest giving sufficient time for free experimentation in activities.
If students have not already discovered by themselves through free investigations,

they can be guided through discussions, or directed to guided investigations.

Besides its advantages, free experimentation also brings its difficulties.
Measurement errors and the limitations of manipulatives may distract from the
investigation procedures. Measurement tools, measured objects, and students’
measuring may not be as precise as we expected. Turning the disadvantages of
physical experience into opportunities for learning can be achieved through
discussions of possible reasons for the unexpected situation. These discussions can
facilitate reflection on the subject and help the abstraction of it (Dubinsky, 1991).

Free experimentation in the activities can be supported through the following stages

in order:

- Free experiment

- Sufficient time

- Guide for specific learning

- Welcome measurement errors and the imperfect environment of comparisons

- Discuss and reflect on possible reasons for unexpected results
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5.1.2.2  Quantification

Abstraction of quantity from objects is an important and non-trivial stage. Students
might refer to objects rather than their quantity in algebraic expressions. In this study,
quantification is supported through five key strategies. Firstly, studying quantity as
different attributes (different types of continuous variables) supported abstraction by
improving context independence. Through several contexts, students compared
objects and interpreted equality based on the quantity defined by the attribute.
Different contexts are visited in different lectures. Secondly, for the comparison of
two objects, students were expected to interpret equality for different attributes of
objects. This also helped think away from the objects themselves and referred to
different attributes of objects in comparison results. These are what we expected and
designed our activities based on before implementation. These two strategies
supported taking a step in reasoning by quantity. However, the equality may be
interpreted between objects based on some properties by using certain comparison
manipulatives, but it does not essentially indicate a quantity in the algebraic
statement for some students. Including >, < signs to interpret comparisons emerged
from our data as a third strategy of supporting quantification. Thinking by

greater/less than relations signified quantity in comparisons.

Another strategy supporting quantification was observed during the investigation of
identical objects resulting in different quantities in comparisons. Students expected
identical toys would have equivalent weight. Discussion led them to think about the
actual weight of the objects, rather than being the same. Finally, investigating
different objects and finding equality between them helped students quantify
comparisons. Briefly include all varieties of toys (similar and distinct, continuously
manipulable or fixed quantity) in investigations with physical experiments to
improve students' reasoning by quantity. Davydov did not include identical objects
in comparisons. We included and took advantage of them in the discussion on
guantities. However, we limited students to comparing different objects in some

activities to make them discover equal quantities for different objects.
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Briefly, quantification can be enhanced by;

Using different contexts
Interpreting equality based on different attributes of compared objects
Using >, < signs

Including identical objects, with different quantity

a > Wb oE

Including different objects of the same quantity.

5.1.2.3 Notation

Bruner’s mode of representation worked, with some modifications on the level of
symbolism. The same color or pictorial symbols are appropriate for this grade.
However, the step-wise connection between enactive, iconic, and symbolic modes
of representation is essential, as it is not straightforward for this grade. Templates
can be developed, and lectures should be designed to address all the modes of
representation in every context. Be precise in expressing which type of
attribute/variable you refer to in discussions so as not to confuse students. They tend
to reason by the size of objects rather than based on the attribute, even transferring

between notations.

5.1.2.4 Motivation

Motivation is essential for engagement in topics. The only and strongest motivation
is having fun for the majority of the students. Building conceptual discoveries around
games is important. Finding equality, and winning through determination of bigger
quantities creates motivation and meaning for algebraic concepts. Free experience or
gaming is more fun than structured investigations. Build lectures around free
experiences or games that lead to investigation/observation of certain algebraic
expressions. Using dice helps to structure the investigation. Then, create a motive to

continue the investigation, like winning, filling the cup, finding equality, etc.
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5.1.25  Sequencing Activities

Sequencing of subjects emerged in the following order through activities: seeding,
teaching of signs, investigating, reporting, reading, and modeling. The seeding stage
involves mentioning the algebraic topic in informal ways much before it is taught,
whenever possible. It completes the relativeness, creates connections, and gives time
for acknowledging as being prior steps to algebraic actions. Stages of algebraic
concepts coincide; i.e., some learning in the modeling stage includes the seeding of
a further learning concept. We value the seeding stage at the kindergarten level and
suggest including it as much as possible associated with future learning even leading
to outer horizons. Individual student progress may not follow a linear path through
APOS levels. Therefore, it is important to design activities that revisit stages of

learning in different contexts and at different times.

5126  Online Lecturing

If students have access to manipulatives and are given time for individual interviews
during online education, the experience can be similar to in-class instruction. The
primary difference is the observation of students’ work, which can be more
challenging online. Activities can be adapted for online conditions. If comparison
manipulatives and paper templates can be provided to students, other manipulatives

can be substituted with items they have available at home.

5.2 Theoretical Contributions

By adapting Davydov’s approach at the kindergarten level, the findings of this study
contribute to the theory of early algebra education. Analyzing these findings in
relation to the use of APOS Theory for designing and assessing the trajectory at
younger ages may further enrich APOS theory.

343



521 Contributions to Early Algebra Education

Davydov’s perspective differentiates from others in early algebra education by
teaching algebra before arithmetic in the 1 Grade. Adopting Davydov’s trajectory
in kindergarten makes three significant contributions to early algebra education
theory: kindergarten algebra trajectory, boundaries of early algebra, and assessment

of Davydov’s trajectory based on APOS Theory.

5.2.1.1  Adopted Algebra Trajectory at Kindergarten Level

This study demonstrates that Davydov’s perspective can be successfully adapted to
the kindergarten level by simplification of notation and restriction on contexts.
Hence, gquantity based on continuous variables, equality/inequality relations, and
addition/subtraction operations can be learned at the kindergarten level.
Kindergarten-level early algebra studies mostly focus on starting algebra by patterns
to improve relational thinking (Wang et al., 2016). Some kindergarten studies
developed learning trajectories on generalizations and operations by indeterminate
variables, whereas quantities were discrete numerals (Ventura et al., 2021). In this
study, as in Davydov’s trajectory, quantities are continuous variables that are
compared, manipulated, and operated on. The most related study is the Measure-Up
project following Davydov’s trajectory for 1-5th graders (Dougherty, 2008). This
study aimed and succeeded in initiating algebraic by Davydov’s approach in
kindergarten, before formal arithmetic education. Following Davydov, with some
regulations on notations and contexts, students as young as kindergarten could
compare and operate on unknowns with a non-numerical perspective and continuous
variables rather than discrete numerals. Letter notation is simplified to photos of
objects in algebraic expression and could be improved to color notation to represent
equivalent quantities in expressions. Contexts for enactive investigations are
restricted to height, length, weight, and volume as height, to meet students’ level of

understanding on conservation of amount.
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With those regulations, the resultant trajectory explains how kindergarteners learn
algebraic equations theoretically, and design principles explain how it can be adapted
to teaching algebra at early grades. These are what implementing Davydov’s
trajectory at the kindergarten level contributes to the theory of early algebra.
However, there are also alterations we made in adaptation. Major changes are
explained as simplification of notation and variables. There are also additions to
Davydov’s trajectory in the implementation. The most remarkable is the discussion
on multiple solutions in equations and inequalities. Extending sequences,
representing the equivalent set of quantities with color notation, and constructing
equivalent sums are other additional concepts taught. Depending on Davydov’s
trajectory and empowered by enactive investigations, our implementation supported
understanding equality, quantity, unknowns, solution sets, continuous variables,

relations, operations as change, and sequences at the kindergarten level.

5.2.1.2  Defining Boundaries of Early Algebra

Regulations made for the adaptation at the kindergarten level give clues about
boundaries, limitations of algebra at early grades, and how we can alter them. We
found that Piaget’s conservation of amount is a boundary in learning some concepts,
so we made alterations to handle students’ limitations. Pushing the limits, we hit on
some learning boundaries. Piaget’s conservation of amount is essential in defining
boundaries of what students at this age can learn. Due to a lack of conservation,
students struggle in particular contexts such as area and volume, the symbolism of
quantities, and the preservation of quantity in expressions. We reduced area, and
modified volume investigations into height comparisons. For symbolism, we thought
not knowing letters would cause problems. However, the association of the quantity
to the symbol that represents it is not straightforward at this age. Switching between
modes shows that students cannot conserve knowledge in the prior mode to represent
it in the new mode. This was common among students who had no conservation of

amount. These students could not construct or reflect on algebraic objects such as
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“a + b". Lack of conservation of amount also makes it impossible to reason by
transitivity, as discussed earlier. These problems show how Piaget’s conservation of
amount is related to learning specific algebraic topics in Davydov’s trajectory.
Design principles and regulations, such as simplifying symbolism and reducing
variable types, provide strategies for altering limitations. These adaptations explain

what we can teach as algebra at this grade level.

5.2.1.3  Evaluation of Davydov’s Trajectory Based on APOS Levels

In this study, Davydov’s trajectory, and students learning in our trajectory are
investigated by APOS Theory. We implemented a constructivist assessment method,
APOS Theory, to analyze a Vygotskian trajectory: Davydov (Schmittau, 2011, p.71).
Firstly, Davydov’s trajectory is decomposed based on the APOS levels. Each subject
in Davydov starts with actions of components of the taught topic. Actions are
developed through new context and reverse processes, then used in new actions
being objects. We showed that Davydov’s trajectory is consistent with APOS stages,
which proves it ensures algebraic learning and develops gradually in stages. The
adaptation procedure protects matching the steps taken based on the APOS Levels.
Then, students’ learning is assessed based on APOS Levels. Hence, algebra learning
at early/younger ages is explained by APOS Theory for the first time. APOS levels
enabled an explanation of each learning stage for any topic in detail. Assessment of
Davydov’s trajectory matched with the observed students’ progression through
concepts based on APOS Theory. Hence, Davydov’s trajectory is also empirically

proven to be consistent with the APOS Theory.

522 Contributions to APOS Theory

We explained students' progression on algebraic concepts through the APOS Theory
at the kindergarten level. There is limited research applying APOS Theory to
elementary education (Arnon et al., 2001), and none specifically at the kindergarten
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or first-grade level 1. Most studies on algebra education using APOS Theory focus
on secondary and graduate levels (Sefik et al., 2021). Arnon et al. (2014) explained
the differences between APOS for elementary school (4" and 5" grades) and
postsecondary (after K-12) school students, noting that while postsecondary students
initiate actions on abstract objects, elementary students develop actions on concrete
objects. They suggest that working with concrete objects helps make abstract
mathematical concepts more accessible to young learners, with actions on concrete
objects facilitating the understanding of “abstract mathematical objects in a child’s
mind” (Arnon et al., 2014, p.153). Students internalize actions on concrete objects
by imagining these actions in their minds, which leads to the development of a

process level (Arnon et al., 2001).

Similarly, in this study, it was observed that students performed actions in their
minds before actions on concrete objects and initiated their investigation/actions
based on those abstract algebraic actions. Like reasoning algebraically in solving
arithmetical problems, students reasoned algebraically to investigate concrete
objects. We called them as pre-actions. Before using algebraic expressions with
concrete objects in the action stage, they showed they had abstract algebraic
reasoning in their minds, either through modifying enactive investigations based on
it or explaining it verbally. Hence, we categorized them as enactive pre-action and
verbal pre-action. At the kindergarten level of algebra, we found that these stages are

essential in students learning.

We build algorithms for new algebraic actions on students’ verbal or enactive pre-
actions, which can be seen as prior informal knowledge related to the newly learned
algebraic topic. These pre-actions sometimes function as prerequisites or prior
knowledge but are not necessarily algebraic in nature. They are not merely pre-
existing knowledge that students bring to the classroom; rather, they are intentionally

developed through the lectures

As we stated, pre-action stages appear in two forms: enactive or verbal, where there

is no essential order. In general, enactive pre-actions occur when students' algebraic
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reasoning is reflected in enactive investigations but cannot be interpreted verbally.
We guide students to interpret concepts verbally if they do not do so on their own,
even though they are not yet able to use algebraic expressions at this level. We then
make connections between algebraic signs and these verbal interpretations.

Pre-action stages play an important role in making students ready for algebraic
actions. While verbal pre-actions are the anchor to algebraic actions, enactive pre-
actions take place even before that, as investigations or acts. As a result, we tried to

embed those stages in the trajectory whenever possible and appropriate

Recognition is another pre-action we observed and embedded as a strategy to teach
specific topics, if not all. It is about recognizing others' actions and enactive
investigations, or it helps to scaffold the discovery of some algebraic learning. We
used this stage in multi-solutions to make students recognize other solutions, and
build an algorithm for constructing new solutions on this recognition. Another
recognition phase is discovered in the difference-amount concept. When students
could not reason by difference amount, we made them recognize that increase and
decrease amounts are equal to each other. Although it was beyond the scope of this
study, interpreting and using the concept of difference amounts can be developed

based on this recognition.

Algebraic actions are given through an algorithm connected to pre-actions.
Understanding and following these algorithms are also found to be difficult for
kindergarten students. Learning algebraic signs and expressions requires extra effort,
even after enactive and verbal pre-actions. After students become fluent in
algorithms, the process stage is supported through different contexts and reverse
processes. Then in new algebraic actions, processed algebraic objects are observed
to be used as algebraic objects. The order of development between process and object
levels is not clear. Whether algebraic processes become objects and then they are
used in new actions, or they became objects when they are forced to be
acted/reflected on new actions is not clarified through our data. Difference amount

activity is a good example of this causal relation. Two students reasoned by
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difference amount in the new action, which shows they had an object level of
knowledge on difference amount already, while another student developed
knowledge of difference amount when she had to reflect on in the new action. Arnon
et al. (2014) describe the progression between APOS Levels as not being always
linear. In our study, we observed that moving back and forth between action and
process levels often occurred across different contexts in our study. However, we
also observed when a student reaches the object level of understanding, he/she might
use it procedurally, reflecting the duality of object and process levels as described
by Sfard & Linchevski (1994). Despite this procedural use, the student typically

retained their object-level understanding when encountering new concepts.

5.3  Practical Contributions and Implications

In addition to theoretical contributions, this study has provided a practical
instructional sequence and activities. Advancing design-based research, this study
developed activities within natural classroom environments, ensuring both the
applicability of theory in real-world settings and the practicality of implication.
Theoretical outcomes indicate that students at the kindergarten level can learn
equality, quantities, and addition/subtraction operations algebraically. These
activities were not only aligned with the learning trajectory but also proved practical

for implementation in a public-school setting with a group of ten students.

As previously mentioned, challenges in implementing Davydov’s trajectory include
the postponement of arithmetic education and acceptance by authorities, teachers,
and parents. Introducing algebra in kindergarten addresses the issue of delaying
formal arithmetic education until 1st grade. Moreover, initiating algebra education
from Davydov’s perspective is crucial, as early intervention is essential—students
often face arithmetic problems even before starting school (Falkner et al., 1999).
Curricular revisions are possible based on the trajectory proposed in this study. The
activities developed, along with accompanying design principles, provide teachers

with practical tools that facilitate easier implementation.
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In the Turkish Elementary Mathematic Curriculum (Ministry of National Education
[MoNE], 2018), algebra starts in 6th grade and is heavily studied in 8™ grade. In the
1st grade, addition and subtraction are given in one-sided equations where the
resultant is always on the right side, supporting a “solve for” meaning for equal signs.
The 1st-grade curriculum includes the balance concept to compare objects in a
weight context to interpret which one is heavier and not associated with arithmetic.
In the 2nd grade, students see equation structures with operations on the left side or
both sides. In the 3™ grade, >, < signs are learned to compare numerical quantities.
There is an attempt to support algebraic reasoning in early grades, but concepts are
presented in a fragmented manner. In our trajectory, we introduce operations on both
sides of an equation, emphasizing their use in balance and imbalance situations from
an algebraic perspective. Moreover, our study demonstrated that students could solve
for unknowns in two-sided equations within an arithmetic context before reaching
2nd grade, where such equations typically appear. Students were able to transfer their
understanding seamlessly to arithmetic problems, proving that our trajectory aligns
with and even enhances the elementary curriculum. Rather than obstructing
arithmetic education, our trajectory strengthens it by laying a solid algebraic

foundation.

The results of this study may be used to develop more structured manipulatives and
templates to investigate algebraic structures. These manipulatives can be either
hands-on manipulatives/toys or technological tools/games, which will enable
individual or parent-guided learning, resulting in a more manageable and worldwide

algebra education.

Adopting Davydov’s deductive perspective, this study not only introduces algebra
before arithmetic but also emphasizes continuity over discrete variables and
relational thinking over operational thinking. This approach has the potential to
inform the development of spiral curricula that introduce mathematical concepts
such as continuity, sequences, variables, and relations through informal

investigations at younger ages.
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5.4  Suggestions for Further Studies

Advancing a design-based research perspective, we ended up with an adapted
learning trajectory. However, we do not claim it is the best learning trajectory.
Suggested revisions on the trajectory for a 2nd cycle and additional study concerns

will be presented in this section.

Unequal sign has been found to be unnecessary and potentially hindering when
teaching the concepts of <and > in the trajectory. Moreover, since the unequal sign
is not included in the kindergarten curriculum, omitting it may make the
implementation more acceptable to authorities. While the unequal sign can be seen
as a complement to the equal sign, serving as its reverse, its use may cause students
to focus more on the concept of equality rather than on understanding quantities.
Furthermore, the concept of 'being unequal’ is not always related to quantities,

especially in the part-whole examples.

While addressing the three cases of equal, greater, and less than may seem
complicated, focusing on these through solution cases that address quantity could be
more effective. Presenting the equal, greater than, and less than signs simultaneously
can evoke quantification in comparisons. Dynamic models, where the equal sign (=)
transitions into greater than (>) or less than (<) signs by changing angles, could help

students better understand which side is bigger and which side is smaller.

It is easier to use =, # signs in weight and volume contexts, as interpreting greater or
less than with > and < signs can be more challenging in these scenarios. In future
studies, spending more time in these contexts to learn signs is recommended. For
this grade level, using =, >, <signs while excluding # seems to be a practical solution,
but it is mathematically incomplete and may affect future understanding of solution
sets for systems. Evaluating and testing both trajectories based on their advantages

in further cycles would be beneficial.

Similarly, transitivity stands as an outlier in the trajectory of learning equations.

Transitivity is mostly related to inequality relations, and it was difficult for
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kindergarten students because they had no conservation of amount. Exclusion of

transitivity is another revision suggested to be tested in further trajectories.

Letter notation has been simplified to pictures of objects. It is suggested to further
investigate new trials for the gradual development of letter notation, or possibly
color code notation. Additionally, exploring the relationship between symbolic or

letter notation and Piaget’s Theory on conservation of amount would be valuable.

Variables naturally emerged as flexibility in constructing quantities based on
relations and as multiplicity in solutions for equations. The trajectory can be enriched
to better ground the concept of variability. Although symbolizing variables may be
difficult at the kindergarten level, there is a need to connect the notation of non-
numerical quantities in Davydov’s trajectory to the notation of variables as a
generalization of numbers, as discussed in the literature (e.g., Ventura et al., 2021).
Dynamic environments in enactive investigations offer the potential to investigate
variability by adjusting quantities and corresponding changes on the other side based
on defined algebraic expressions. While we have followed Davydov’s trajectory
closely to adopt a proven trajectory to an earlier grade level, any improvements that
could enhance algebraic learning deserve further studies through new cycles.

This study also indicated that student exhibited algebraic reasoning underlying their
enactive pre-actions, indicating that they can think about algebraic structures even
before formal investigation. Thinking about arithmetic from an algebraic perspective
is crucial, yet recognizing structures in arithmetic equations can be challenging for
some students. Davydov’s approach helped prevent arithmetic from hindering
algebraic thinking. One reason arithmetic may obscure the recognition of structures
in equations is that students often approach equations like a+b=c by reading and
solving them from left to right, focusing on procedural methods. Another reason
might be an over-reliance on arithmetic operational procedures. The relationship
between the ability to identify algebraic structures in arithmetic problems and the
algebraic intuitions discovered in this study deserves to be studied further to explain

how arithmetic education hinders algebraic intuitions.
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APPENDICES

A. Objectives, Activities, and Theory Behind Choosing Activities in the First

Hypothetical Learning Trajectory

- o Objectives Activity Theory behind
® 22
g 29
4 <%
1. The student Comparison of simple  Students know what equal
interprets equal and objects based on size or not equal means in
not equal sign and weight their daily lives. Using
2. The student comparison: equal and not equal signs
compares objectsand  use toys to compare to compare two objects is
uses equal and not objects a new algorithm for them.
equal sign to interpret interpret different Experience with lots of
relations based on size  variables, and ask for ~ toys will be good practice
(action to process the weight of the same  for remembering and
level) height objects. (pilot applying the algorithm
3. The student uses result) themselves, which will
balance scales to use different objects, evolve into the process
compare the weight of  balloons, water cups, stage. Using concrete
objects and uses equal  books, and human objects will provide an
and not equal signsto  height to discuss enactive representation of
interpret the relation equality on different equality.
4. The student examples (to refer to Balance scales and
Ty differentiates height, variables) inquiry into variables
; " length, volume, and use a balance scale to construct the first step on
5 § weight as different compare the weight of  variable/
S 5 variables objects quantity
4 <
1. The student uses Constructing whole Not entirely, but more
equal and not equal from its parts on symbolically, for iconic
signs to interpret a paper. representation, working
relation in a part- Davydov’s part-whole  on paper activities are
whole context. activities for being included. However, if
equal or not students have difficulty,
step back to the enactive
stage; make students cut
H pieces with scissors so
N they use pieces as
(] 7] .
5 3 concrete objects to try to
g 9 construct whole from
= A parts.
_ 1. The student uses Guessing and New context volume and
Dk " equal and not equal comparing volumes of  Continuous variable
= § signs to compare cups using identical
8 © volumes of cups cylinders.
- o H
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1. The student reports

Reporting (letter

Double-sided process

equal-weighted pieces

3 the comparison of notation) comparison Symbolic self-
2 volumes of objects relations between interpretation
@ symbolically on the volumes of cups and Read interpretation
= paper assessing peers’ symbolic algebraic, assess
8 2. The student reads reports by through concrete objects
*E the symbolic comparisons. relation.
3 I interpretation of
5 3 equality and inequality
g 8 and checks it with
- A concrete objects.
1. The student Comparison of simple  Inequality turns out to be
interprets inequalities  objects and discussion  greater/smaller than
with greater or smaller  on how to make them  relation
relation. equal: apple and Inequality and equality
2. The student uses >,  balloon examples are used (as objects) to
< signs to interpret interpret newly learned
relations Verbal interpretation greater or smaller
Vo4 3. The student to make equal relations.
N interprets (verbally)
S 638 how to make equality
g B2 from greater or less
-4 <O than relations
1. The student uses the  Planting beans and Letter notation is essential
first letter of his/her giving letter notations.  for algebraic notations.
name as notation. (stem activity, First impressions can be
discussion on how given at this stage for the
plants grow, parts of need to discriminate
plants can be among plants. Reporting
embedded as science.  the height and
Labeling plants with comparison among
the first letter of different plants will add
names, reporting to the use/need of this
5 growth, and letter notation.
S comparing growth will
2 be done through
© 3 lettering, which will
5 S complete
g 2= symbolic(algebraic)
- < notation.
1. The student uses >, Comparing play New context for greater
<, =signsto interpret  doughs in weight smaller, continuous
(without reminding context and creating variable, manipulation of
algorithm) comparison  equal weighted pieces.  play doughs on both
of weights(as sides. To make equal. Use
continuous variable) Hands-on equality (as object) base
of play doughs manipulation to make  target to manipulate
2. The student equal greater less than
manipulates
Vo (concrete/enactively)
™ Ao both sides /increases
E § 2 or decreases
[&] b=~
2 ng 2 playdoughs to make
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Transitivity property

Process >, <
Object >, <

Lecture 8

1. The student uses >,
<, = signs to interpret
the comparison of
volumes (as a new
continuous variable)
of cups.

2. The student uses
two relational
interpretations of three
cups to guess the third
relation (transitivity

property)

Comparison of
volumes of cups.
Transitivity of
relations.

Given 3 cups,
investigate two dual
relations and predict
the last relation for the
following situations
a=b ve b>cise a>c
a>b ve b>cisa>c

The new context for
continuous variables,
volume

Use interpretation of
relation with signs >, < to
investigate transitivity
property, which will carry
>, < to object level.

Predict and investigate
enactively.

Lecture 9
Object =, #
Object >, <

1. The student finds
suitable objects for a
predetermined
relation, finds equal
and unequal objects,
and interprets the
relation between them

Based on the given
relation, discover toys
in the classroom.
Using pictures as
iconic representations
of objects, and choose
of cards based on
given relations.

The reverse process is
essential for
encapsulating into object.

2 #

Lecture 10
Object
Object >, <

1. Given relation
between two objects,
the student determines
the attribute(variable
type) for the
comparison

Based on given objects
and the relation
between them,
determine attributes in
comparison.
Determine attributes
using identical
cylinders and
balances.

Given cards and
relations between
them, discuss
attributes.

The reverse process
extended to variables.
We call attributes
variables because
activities that include
continuously changeable
attributes (e.g., weights of
playdough, water height)
act like variables (not just
unknowns) in algebraic
interpretations.

2 #

Lecture 11
Object >, <
construction

Object

1. The student
completes the
unknown/variable in
the given relational
interpretation
(equality, inequality,
> <) by drawing

2. The student
discusses the
variability of the
drawing

Based on a given
relation and attribute,
completing a given
picture of an object

Manipulation on the
variable (size):
Variability,

Multiple, infinite
solutions,

Reading algebraic
interpretation,
Self-construction,
Work-sheet, more
symbolic

Fill in the gaps,
determination of x, not
unknown but variable
situations given first.
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Mid-assessment and repetition

1. The student uses
signs on worksheets
2. Given two
different-sized paper
strips, the student cuts
a long paper strip to
make it equal to a
shorter one

3. Given two
different-sized paper
strips, the student
glues the Ekstra paper
strip to make it equal
to the longer one

4. Given two

Assessment and
repetition of
worksheets
Part-whole

Paper strips enactive
investigation to make
equal.

Assessment

It also improves symbolic
more algebraic
understanding, as it is on

paper.

The new context of
length, continuous, and
self-control of unknown
The first step was
discussing how to make it
equal by
increasing/decreasing cut
and pasting the amount of

different-sized paper increase/decrease)
«~ strips, the student
o interprets/shows how
5 much paper to cut or
3 add to make paper
- strips of equal length
- " 1. The student orders ~ Comparison and Using relations in
o3 3-4 objects and puts ordering of 3-4 objects  sequence context.
5 S5V§& relevant signs between using toys.
g BN Z  thembased on their
-4 <Ho relation
1. The student orders ~ Symbolic more symbolic
3-4 pictures and puts representation of already known
relevant signs between comparisons by using ~ comparison between 2 obj
them based on their cards and then on- process is used. New
relation paper activities context, new situation.
Maybe for ordering, this
% process will turn into
2 object parts of the
% ordering process.
(]
v Ordering three or more
A objects can help think
< 5 about transitional
<. properties between 3
5 & objects. Hence, this
% g activity is planned to be
(=W

earlier.
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1. Given two relations
among two of three
objects, the student

determines the relation

of the third
comparison.

Given two dual
relations between 3
objects, guess the third
relation.

Non-investigated or
observed but based on
pre-given relations. Not
apparent in size as in
Davydov’s book
(Davydov et al., 1995).
Just relying on symbolic
interpretation, the student
should determine the third
relation. Guessing is not
based on observation but
on algebraic knowledge.
Second and higher step

object

2 for transitivity.
;E The activity includes
o = worksheets with pictures
— 5 of objects and their
(3] - . -
5 § relations, as in Davydov’s
S B book (Davydov et al.,
- < 1995).
1. Given two objects Drawing the third Unknown construction.
© > 5 and their relationtoa  object based on its
< £ § third unknown object, relatlor_]s to the other
5 § = = the student two objects.
8 985 draws/constructs an
- a 50 unknown object.
1. The student uses | am using strings as Using transitivity to
their height or a rope an intermediary to compare distant objects,
2 as an intermediary to compare distant transitivity becomes an
~ > 8 . ; A
N S §  compare two stable objects in the algebraic object.
5 B = S E and distant objects by classroom.
8 =558 concluding from their
- O 5 <= |glation to both.
1. The student Comparing distant Using an intermediary to
? constructs an squares by using determine the class of
S intermediary to strings. Using equal-sized objects. Letter
g5 compare distant notation to interpret notation to a set of fixed
w &8 objects. squares. quantities makes quantity
. E 2 2. The student uses the belong to an equivalent
5 85 same notation to set rather than specific to
8 8% indicate same-size an object.
- o< objects
1. Given two objects Drawing Construction of
o ? and their relationtoa  intermediaries based intermediary
PR = third intermediary), on given relations to
5 £3¢€ the student constructs ~ compare distant
S 39S &  anddraws the third objects.
| X o .c
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1. The student uses an

Observing plant

The first step is for

equal-sized heights, and making measurement and
intermediary to the first measurement  graphing.
9 represent and graph using string. ~ Students learn that an
§ measurement. equal-sized intermediary
s &% represents the one it is
S 53 compar'ed to. Gr.aphing
S BE occurs in a continuous
g o2 variable, not with
- O.= numbers as usual.
1. The student Discussion of increase  Enactive investigations
o verbally interprets on  and decrease in weight  for increase and decrease
N F which side to increase  context to make equal.  actions to make equal.
5 88 or decrease to
§ 'g E; make/satisfy equality
1. The student Discussing increase New context for
o verbally interpretson  and decrease to make increase/decrease actions
N ¥ which side to increase  equal in volume
3 g g or decrease to context
§ 'g g make/satisfy equality
1. The student chooses  Assigning +/- signsto  Use of algebraic
o o the correct sign +/—to  increase/decrease expressions for verbal
T interpret an increase actions to make them interpretations of
E 58 or decrease on both equal in volume increase/decrease actions
8 o6 sides to satisfy context.
-4 0O« equality.
1. Given more Worksheet activities to  Symbolic representation
symbolic use +/- signs to make mode to use +/- signs in
interpretations equal. increase/decrease actions.
(worksheets), the
< W student chooses the
S ot gorrect sign 4_-/— to
5 38 § interpret the increase
g =9 or decrease on sides to
- Osg5 satisfy equality.
1. In part-whole Use of +/- signs in Anchoring for
£ < examples, The student part-whole contextsto  increase/decrease amount
'S 2 uses+and-—signsto make equal. for cont. Variables. It
2 2 construct equalities includes known parts for
= + T 2 withone-side addition or subtraction
Y L% < addition/subtraction. For 1st-grade students, it
5 85 22 may be extended to
| 5] = 0o i i -
8 g 823 equations with double

side addition/subtraction
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1. The student
determines an addition
amount to make
equality

2. The student

Animal Height Game.
Addition on one side
to make equal to the
other side.

Still, addition refers to
action, but the
addition/increase amount
is not interpreted. It is an
object of the addition

©o _,l_' . .
S o, interprets a quantity as process.
5 3 § the addition of one to The addition means an
g =9 another increase of one by a
- OCo certain amount.
Use the plus and New context+ more
~ + minus signs to symbo_lic+ testing at the
N increase and decrease ~ same time
5 B8 3 the lengths of paper
58 28 i
g8 =9 strips to make them
- Ono equal.
1. The student Second measurement The change concept is
interprets the increase  for plant height. central to algebra.
amount iconically Interpreting increase in  Comparing change
2. The student height. Comparison of  amounts is complicated.
compares an increase  increase amounts. This activity can be a
amount of different complete research title.
situations
= We aim to focus on the
3 interpretation of the
5 increase/change amount.
3 Together with letter
e notation, comparison of
o] + © . . .
D= increase final heights of
5 85 plants may strengthen
S 33 algebraic interpretation
- a<g skills.
1. The student Using identical Not only making equality
discusses how to make cylinders to discuss but also destroying
equality, unequal, and  how to make equal, equality. It focuses on
equal again by unequal, and equal how actions (operations:
addition and again in a volume addition and subtraction)
subtraction context. affect equality. The
2. The student question of how to make
interprets the effects them equal again forces
of addition or students to think about the
subtraction of the relation between actions
= same amount on both taken on both sides.
3 sides in an equality. Probably, this step will
S carry the action level to at
@ least the process level as
5 it makes students not only
e learn how to increase or
2 decrease but also has the
§ potential to make them
o 5 think about the increase
N ; o decrease amount.
5 85 (especially to make equal
g o3 again)
4 a<
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1. The student models
equalities with two-

Animal Height Game
Interpretation of

§ side addition equations with
o 5 2. The student uses addition on two side
® *E algebraic notation to
5 84885 interpret equalities
S 882  withaddition ontwo
- focs sides
" 1. The student models  Using paper strips to The reverse process is an
a equalities with one- create real-life models  essential and handy step
- S sided addition or of given equations for objectifying.
@ e subtraction with addition or Student turns, reads
Ei S subtraction on one algebraic interpretation,
S side. and visualizes it in real
e N life.
1. The student reads Observing colors of The rainbow activity
about equalities and the rainbow. serves as a new
inequalities based on Constructing rainbow interpretation and context
real-life models out of play dough by and shows useful, fun
2. The student uses obtaining secondary parts of algebraic
algebraic equalities colors from primary expressions.
and inequalities for colors by reading
real-life designs expressions of We do not know where
equations with one- actually +,- becomes an
~ Y side addition, and object. It may be even
DN equality/inequality earlier than we expected.
5 ©%g relations. Implementation will
g o enlighten the process of
-4 OO

becoming an object.
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B. Semi-structured Pre- and Post-Interview Questions

Soru 1:
a) Bu isaretleri taniyor musun?
= * > < (isaretler kartlarla verilir, kagit lizerinde degil)

b) Bu isaretlerle bu resimleri eslestirebilir misin?

[l
@
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c) Neye gore eslestirdin? Sorusunu sor.

Isaretleri bilmiyorsa her bir resmi anlatmasi beklenir? Sence bunlar esit mi, yoksa

biri daha m1 biiyiik? Sorusu yoneltilir.

sence esit olanlar hangisi? Hangisi biiyiik kiiciik nesneleri gosteriyor? Sence bu

resimde esit mi degil mi?)

Neye gore biiylik, neye gore kii¢iik? Sorulartyla biiyiik kiiciik esit esit degil

kavramlar1 ve degiskenler {izerine konusulur.

Soru 2: Hayvanlar arasinda verilen ikili agirlik iliskilerine gore 3. Olgiimiin nasil
sonuc¢lanacagini tahmin etmesi beklenir. Hayvan resimleri kesilerek verilir. Terazi
i¢in kesilen dikddrtgen iiggen ile igne yardimiyla birlestirilir. Ogrenci hareketli

terazi kolunu fil ile ziirafa arasindaki agirlik iliskisini ifade etmek i¢in kullanir.
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Soru 3:

A

TR

Bu resimlerde ne oldugu sorulur, anlattirilir. “6nce bdyleymis, sonra boyle olmus”
seklinde agiklanir. “Bu resimleri anlatir misin? Hangi ¢igek uzun? Sonra ne

olmus?” sorular1 yoneltilie.

Ikinci adimda art1-eksi isaretlerinden hangisi ile degisen nesneyi isaretleyecegi

sorulur.

Artma-azalma miktari; Bu soru lizerinden artma azalma miktar1 ne sorusu sorulur.

“Ne kadar artmis?” “Ne kadar azalmis?”
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Soru 4: “Sence bu ifade ne anlatilmak istenmis?” “Bu bos kareye ne ¢cizmemiz
gerekiyor?” Sorulariyla denklem ifadesi yorumlatilir. Bunlar kagit tizerinde degil
kartlar ile sunulur. Ve sonrasinda kartlarin asagidaki toplama ifadelerine

yerlestirmaleri istenir.

/ I

|
+
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Soru 5: Iki tarafta toplama bulunan denklemin giinliik hayat ile modellemesi

Hareketli terazi modeli olusturulur. Kagit {izerinde liggene igne ile tutturulmus ince

uzun dikdortgen hareketli kalasi temsil eder.

¢ w

Viilearida raciil racimlarivla ifada adilan danklamin tarazi ii7arinda mndallanmaci ictanir Nanocovi

Soru 6: Hayvan boylar1 oyunu tizerlerindeki rakamlar gizlenerek oynanir.
Oncesinde oyunun tanitimi yapilir ve boy kavramina odaklanildig: belirtilir.

a) A=?+B tarzi sorular cebirsel ifadeleriyle verilerek sorulur. Cebirsel ifade
dogru algilanamazca 6grenciye soru sozel, o da algilanamazsa sekil

tizerinden sorulur. (sadece post-teste)
- Esitlemek icin ne tarafa eklenmeli?
- Ne kadar eklenmeli?

- Bunu isaretlerle nasil ifade edersin?
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- Buradaki ifade de bosluga ne gelmeli? Sorulari yoneltilir.

b) A+B=C+D tarzi ifadeler verilerek bunlarin sekil iizerinde modellenmesi

istenir. Sekil tizerinde verilen toplamlarin da cebirsel ifade edilmesi istenir.

€) A+?=C+D tarzindaki tek bilinmeyenli ifadeleri ¢6zmesi istenir.
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sonucunun

ilen durumlarin

Soru 7: Asagidaki sekillerle ve islem ifadeleriyle ver

istenir

karslastirilmasi
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tamamlanmadan ve derhal son verilecektir.

Bu calismayla ilgili daha fazla bilgi almak isterseniz: Calismaya katiliminizin
sonrasinda, bu caligmayla ilgili sorulariniz yazili bigimde cevaplandirilacaktir.
Calisma hakkinda daha fazla bilgi almak ic¢in Sevgi Sofuoglu ile (e-posta:
e142596@metu.edu.tr) ile iletisim kurabilirsiniz. Bu ¢alismaya katiliminiz igin

simdiden tesekkiir ederiz.

Yukaridaki bilgileri okudum ve c¢ocugumun bu calismada yer almasini

onaylyyorum (Liitfen alttaki iki segenekten birini isaretleyiniz.
Evet onayliyorum___ Hayir, onaylamiyorum___

Annenin adi-soyadi: Bugiiniin Tarihi:

Cocugun adi1 soyadi ve dogum tarihi:
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F. Informed Consent Form for Participant Teacher

ARASTIRMAYA GONULLU KATILIM FORMU

Bu ¢alisma ODTU Ortadgretim Matematik Egitimi Boliimii doktora dgrencisi Sevgi
Sofuoglu tarafindan yiiriitiilmektedir. Bu form sizi arastirma kosullari hakkinda

bilgilendirmek i¢in hazirlanmistir.

Cahsmanin Amaci Nedir? Bu ¢alismanin amaci okuldncesi seviyede cebirsel
altyapiya uygun matematik egitimi verebilmek ig¢in, okuldncesi 6gretmenlerinin

sahip olmasi1 gereken matematik alan bilgisini belirleyebilmektir.

Bize Nasil Yardimeir Olmamzi Isteyecegiz? Calisma siiresince, 2020-2021 2.
Doénemi’nde,sinifinizdaki okuldncesi Ogrencilere cebir etkinlikleri uygulamada
aragtirmacinin  esliginde Ogretmen rolii ile ve her etkinligin sonrasinda
karsilasilastiginiz zorluklara yonelik kisa miilakatlara katilimc1 olarak bu ¢calismaya

katki sunmanizi bekliyoruz.

Katiminizla ilgili bilmeniz gerekenler: Bu c¢alismaya katilmak tamamen
goniilliiliik esasina dayalidir. Herhangi bir yaptirnma veya cezaya maruz kalmadan
caligmaya katilmayr reddedebilir veya calismayr birakabilirsiniz. Arastirma

esnasinda cevap vermek istemediginiz sorular olursa bos birakabilirsiniz.

Sizden toplanan veriler tamamen gizli tutulacak, verilere sadece arastirmacilar
ulagabilecektir. Bu arastirmanin sonuglar1 bilimsel ve profesyonel yayinlarda veya

egitim amagh kullanilabilir, fakat katilimeilarin kimligi gizli tutulacaktir.

Arastirmayla ilgili daha fazla bilgi almak isterseniz: Calismayla ilgili soru ve

yorumlarinizi arastirmaciya e142596(@metu.edu.tr adresinden iletebilirsiniz.
Yukaridaki bilgileri okudum ve bu ¢alismaya tamamen goniillii olarak katiliyorum.

Isim Soyad Tarih Imza
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G. Comparison of First HLT and Resultant Trajectory

L# First HLT objectives L# Resultant Trajectory objectives
1 1. The student interprets equal and 1 1. The student interprets equal and not
not equal sign equal sign
2. The student compares objects and 2. The student compares objects and
uses equal and not equal sign to uses equal and not equal sign to
interpret relations based on size interpret relation (action to process
(action to process level) level)
3. The student uses balance scales 3. The student uses balance scales to
to compare the weight of objects compare the weight of objects and
and uses equal and not equal signs uses an equal and not equal sign
to interpret the relation 4. The student uses different
4. The student differentiates height, variables/attributes (which she already
length, volume, and weight as knows) to interpret equality
different variables
2 1. The student uses equal and not 2 1. The student uses balance scales to
equal signs to interpret a relation in partition play dough into two equal
a part-whole context. masses by increase/decrease actions
verbally.
2. The student uses equal and not
equal signs to interpret a relation in a
part-whole context.
3. The student manipulates
(increase/decrease) one side to make
equality in part-whole activities
3 1. The student uses equal and not 3 1. The student uses equal and not
equal signs to compare volumes of equal signs to compare volumes of
cups cups
2. The student interprets the equality
of volumes of cups iconically
(notation)
4 1. The student reports a comparison Included in Lecture 5
of volumes of objects symbolically
on the paper with =, #signs
2. The student reads the symbolic
interpretation of equality and
inequality and checks it with
concrete objects.
5 1. The student interprets 4 1. The student interprets inequalities

inequalities with greater or smaller
relation.

2. The student uses >, < signs to
interpret relations

with greater or smaller relation.
2. The student uses >, < signs to
interpret relations
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3. The student interprets (verbally)
how to make equality from greater
or less than relations

unknown/variable in the given
relational interpretation (equality,
inequality, >, <) by drawing

6 1. The student uses the first letter of Beans are planted before all lectures to
his/her name as notation. (The first save time.
step is to use letter notation to Letter notation is given up.
interpret and compare the heights of
their plants.) planting bean Lecture 6: They did the first

measurement with rope and glued it on
the paper.

7 1. The student uses >, <, = signs to It was implemented in Lecture 2
interpret (without reminding the without >, < signs.
algorithm) the comparison of
weights (as a continuous variable)
of play doughs
2. The student manipulates
(concrete/enactively) both sides
/increases or decreases play dough
to make equal weighted pieces

8 1. The student uses >, <,=signsto 5 1. Report: The student interprets the
interpret the comparison of volumes comparison of volumes by >, <, =
(as a new continuous variable) of signs symbolically on paper by using
cups. pictures of compared cups as letter
2. The student uses two relational notation.
interpretations of three cups to 2. Read report and check: The student
guess the third relation (transitivity reads/uses a symbolic representation
property). Delayed, see Lecture 8 of a peer’s comparison and checks

with manipulatives if the comparison
is true.

>, < relation; volume, discrete
comparison

9 1. The student finds suitable objects Embedded in previous Lectures.
for a predetermined relation, finds Beginning activity for Lecture 4
equal and unequal objects, and
interprets the relation between them
by using =, #, >, < signs.

10 1. Given relation between two Embedded through discussions in
objects, the student determines the previous lessons as interpretation
attribute(variable) for the based on various types of variables
comparison difficult to construct: Davydov’s

images not clear (pilot result)
emergently and naturally discussed in
lectures.

11 1. The student completes the This lecture is embedded into the mid-

assessment.

. They know how to choose

. They will construct a new context
assessment.
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2. The student discusses the
variability of the drawing

12

1. The student uses signs on
worksheets

2. Given two different-sized paper
strips, the student cuts a long paper
strip to make it equal to a shorter
one

3. Given two different-sized paper
strips, the student glues an extra
paper strip to make it equal to the
longer one

4. Given two different-sized paper
strips, the student interprets/shows
how much paper to cut or add to
make paper strips of equal length

Cutting strips activity is related to the
increase/decrease amount concept.
Hence, it will be used in
addition/subtraction concepts in a
structured way.

Mid-assessment

1. The student constructs an unknown
quantity based on a given algebraic
relation to another quantity by >,<=
signs.

2. The student uses =, # signs to
interpret part-whole equality given by
symbolic figures (Lego photos).

3. The student uses >,<,= signs to
interpret relations symbolically based
on given representations of weight
comparisons.

13

1. The student orders 3-4 objects 7
and puts relevant signs between

them based on their relation: with

toys

14

1. The student orders 3-4 pictures
and puts relevant signs between
them based on their relation with
cards

1. The student orders 4 objects based
on their size and uses the> sign to
interpret the sequence

2. The student extends the sequence of
ordered objects based on size.

15 1. Given two relations among two 8
of three objects, the student
determines the relation of the third
comparison.

16 1. Given two objects and their

relation to a third unknown object,
the student draws/constructs an
unknown object.

1. Given 3 objects, the student
experiences and reports two
comparisons (in an order), and guesses
the third relation.

17

1. The student uses their height ora 9
rope as a scale to compare two

stable and distant objects by

concluding from their relation to

both.

1. The student creates an equivalent
scale for an object to compare it to
another distant object.

2. The student interprets the result of
the comparison in terms of the distant
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objects, not in terms of the scale
he/she used.

18 1. The student constructs scales to 10 1. The student constructs scales to
compare distant objects. compare distant squares
2. The student uses the same 2. The student uses the same color
notation to indicate same-size notation to indicate same-size squares
objects 3. The student uses colors as a
Squares activity notational representation to order
squares based on their size.
19 Reverse process Creating scale Canceled due to difficulty of
1. Given two objects and their transitivity
relation to a third
one(intermediary), the student
constructs draws the third object
20 1. The student uses equal-sized 11. 1. The student recognizes multiple
scales to represent measurement. solutions to construct objects based on
Report/graph plant height >, <relations.
2. The student uses equal-sized scales
to represent measurement. (plants)
3. Student verbally interprets change
21 1. The student verbally interprets on First week
which side to increase or decrease
to make/satisfy equality (play
dough)
22 1. The student discusses increase or
decrease in volume context to make
equality
23 1. The student chooses the correct 12. 1. The student chooses the correct sign
sign +/- to interpret the increase or +/- to interpret the increase or decrease
decrease on sides to satisfy equality. on sides to satisfy equality. Height
(weight & volume context) context
24 1. Given symbolic interpretations Strips cut-paste: length context
(worksheets), the student chooses
the correct sign +/- to interpret the
increase or decrease on sides to
satisfy equality.

13. The student dramatizes +, - size as the
action of moving forwards and
backward with a variety of lengths.

14. The student increases/decreases a
quantity by a fixed amount in a
volume context. (perform +/-a)

25 1. The student uses + and —signs to  15. 1. The student uses + and — signs to

construct equalities with one-side
addition/subtraction in a part-whole
context.

construct equalities with one-side
addition/subtraction in a part-whole
context.

2. The student reports two dual
comparisons of 3 objects (in weight
context)
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3. The student concludes the third
relation based on two relations
between 3 objects (in weight context)

26 1. The student determines an 16. 1. The student determines an addition
addition amount to make equality amount to make equality.
2. The student interprets a quantity 2. The student finds unknown in an
as the addition of one to another equality with one side addition.
Animal height game: one-side 3. The student recognizes multiple
addition solutions to equations with two
unknowns (a =? + ?)
Animal height game: one-side addition
27 1. The student uses +/- signs to See Lecture 18
interpret operation to make equal-
length
2. The student enactively
investigates increase and decrease
amount (difference amount) to
create equal length (paper strips: cut
and paste)
28 1. The student interprets the
increase amount iconically
2. The student compares increase
amount of different situations
increase amount: plant height
29 1. The student discusses how to 17 1. The student finds unknown in an
make equality, unequal, and equal equality with two side addition in
again by addition and subtraction height context.
(in volume and weight context) 2. The student finds multiple solutions
2. The student interprets the effects to equations with two unknowns.
of addition or subtraction of the 3. The student adds equal amounts to
same amount on both sides of both sides to preserve equality.
inequality (in volume and weight Animal-height game two sides
context) height context
30 1. The student models equalities

with two-side addition (in height
context)

2. The student uses algebraic
notation to interpret equalities with
addition on two sides (in height
context)

Animal height with two sides
addition

See HLT Lectures 27&28 18

1. The student interprets the increase
amount iconically in height context
(plant height)

2. The student determines addition and
subtraction amounts to make them
equal.

396



3. The student experiments and
recognizes equality of addition and
subtraction amount (difference
amount)

Difference amount plant height

31 1. The student models symbolic Letter notation is taken out of
equations with one-sided addition trajectory.
or subtraction in the enactive mode
of representation by using paper
strips
32 1. The student reads equalities and 19 1. The student determines quantities of

inequalities based on real-life
models

2. The student uses algebraic
equalities and inequalities for real-
life designs

Rainbow Activity

objects based on equality and
inequality relations in a weight
context.

2. The student reads and uses algebraic
interpretations of equality/inequality
relations and equations with one-sided
addition in a real-life weight context.
3. The student preserves the quantity
represented in interpretation to use it
in addition equations (relations and
equations are connected in a system).
Rainbow Activity

20

1. The student operates addition and
subtraction on equalities based on
given expressions, such as +/-a, in a
volume context

2. The student experiences operational
properties on equalities (the starting
point is equality).

3. The student realizes and compares
algebraic expressions such as a+/-b

in volume context

4. The student experiences operational
properties on equations (starting

point changes)
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