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ABSTRACT

APPLICATION OF THE QUANTAL DIFFUSION APPROACH BASED ON
THE STOCHASTIC MEAN-FIELD THEORY

Kayaalp, Arda
M.S., Department of Physics
Supervisor: Prof. Dr. Osman Yilmaz

Co-Supervisor: Prof. Dr. Sakir Ayik

August 2024, [75| pages

This thesis investigates the application of the quantal diffusion approach based on
Stochastic Mean-Field (SMF) theory to low-energy heavy-ion collisions, with a fo-
cus on multinucleon transfer (MNT) reactions. The study specifically examines the
reactions of 8Fe + 2%Pb at E,,, = 238.5 MeV, %6S + 238U at F.,, = 151.1 MeV,
6ANj + 13Te at E,,, = 184.3 MeV, and 2°Pb + ''8Sn at E_,, = 436.8 MeV. The
Time-Dependent Hartree-Fock (TDHF) theory, widely utilized for analyzing reaction
dynamics, is extended by incorporating SMF theory to address the limitations related
to fluctuations and deviations in fragment mass and charge distributions. This ap-
proach allows for a more accurate description of the complex dynamics involved in
MNT processes. Primary production yields and secondary cross-sections are thor-
oughly analysed after evaporation and calculated using the statistical de-excitation
model with the GEMINI++ toolkit. The results demonstrate a good agreement with
experimental data, validating the effectiveness of the SMF approach. This integration
of SMF and GEMINI++ significantly enhances the precision of predicting reaction

outcomes, contributing to a deeper understanding of nuclear reaction mechanisms.



Keywords: Stochastic Mean-Field Theory, Time-Dependent Hartree-Fock Theory,

Multi-Nucleon Transfer Mechanism, Low Energy Heavy-lon Reactions
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0z

STOKASTIK ORTALAMA ALAN TEORISINE DAYALI KUANTAL
DIFUZYON YAKLASIMININ UYGULAMASI

Kayaalp, Arda
Yiiksek Lisans, Fizik Boliimii
Tez Yoneticisi: Prof. Dr. Osman Yilmaz
Ortak Tez Yoneticisi: Prof. Dr. Sakir Ayik

Agustos 2024 ,[75]sayfa

Bu tez, diisiik enerjili agir iyon carpismalarina Stokastik Ortalama Alan (SOA) te-
orisine dayali kuantal difiizyon yaklasiminin uygulanmasini, ¢oklu niikleon transfer
(MNT) reaksiyonlar1 cercevesinde arastirmaktadir. Calisma 5Fe + 2°Pb reaksiyo-
nunu E.,, = 238.5 MeV enerji seviyesinde, 3¢S + 238U reaksiyonunu E,,, = 151.1
MeV enerji seviyesinde, %‘Ni + 13°Te reaksiyonunu E.,, = 184.3 MeV enerji sevi-
yesinde ve 2°°Pb + !8Sn reaksiyonunu E.,, = 436.8 MeV enerji seviyesinde ince-
lemektedir. Reaksiyon dinamiklerini analiz etmek i¢in yaygin olarak kullanilan Za-
mana Bagimli Hartree-Fock teorisi (TDHF), carpisma sonrasi ortaya ¢ikan iiriinlerin
kiitle ve yiik dagilimlarindaki dalgalanma ve sapmalara iligkin sinirlamalari ele almak
icin SOA teorisini icererek genisletilmistir. Bu yaklasim, MNT siireglerinde yer alan
karmagik dinamiklerin daha dogru bir sekilde tanimlanmasina olanak tanir. Birincil
tiriinlerin tiretim dagilimlar1 ve GEMINI++ kodu ile hesaplanan istatistiksel soguma
modeli kullanilarak buharlasma sonrasi ortaya ¢ikan ikincil iiriinlerin tesir kesitleri

analiz edilmistir. Sonuglar, deneysel verilerle iyi bir uyum gostererek SMF yakla-
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stiminin etkinligini dogrulamaktadir. SOA ve GEMINI++ kiitiiphanesinin bu enteg-
rasyonu, reaksiyon sonuglarinin tahmin edilmesinin dogrulugunu 6nemli dlciide ar-
tirarak, diisiik-enerjili agir-iyonlari iceren niikleer reaksiyon mekanizmalarinin daha

derinlemesine anlasilmasina katkida bulunmaktadar.

Anahtar Kelimeler: Stokastik Ortalama Alan Kurami, Zamana Bagli Hartree-Fock
Kurami, Coklu Niikleon Transfer Mekanizmasi, Diisiik Enerjili Agir Iyon Reaksi-

yonlari
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CHAPTER 1

INTRODUCTION

1.1 A Brief Description of the Atomic Nuclei

An atom’s mass comes mainly from its tiny, dense nucleus at the center of the atomic
complex and measures about ~ 10~ meters across. The nucleus comprises protons
and neutrons, collectively known as nucleons, and is identified by the neutron number
N and the proton number Z. A unique combination of these numbers forms a nuclide,
symbolically represented as 4 X y, where A is the mass number (A = N + Z), and X
is the element symbol corresponding to the atomic number Z. Nuclei with the same
number of protons but different numbers of neutrons are called isotopes. Those with
the same number of neutrons but different numbers of protons are known as isotones.

Nuclei that share the same mass number are referred to as isobars.

The atomic nucleus is a finite, self-bound, non-relativistic quantum many-body sys-
tem of protons and neutrons [1]. These two kinds of fermions interact through the
nuclear force. The nucleus is self-bound because of attractive nuclear interactions
and has no internal core like an atomic system. The range of the nuclear force is
finite; the distance between nucleons is represented by d, and the attractive compo-
nent of the force extends to around d ~ 1.4 femtometers (fm), while the repulsive

component occurs at distances less than d ~ 0.5 fm.

The primary focus of our research is the study of nuclear reactions, which serve as
illustrations of quantum many-body dynamics. Our primary objective is to utilize a
microscopic quantum many-body theory to accurately predict the optimal processes
for generating specific nuclei. These theoretical projections have the potential to

enable the examination of unstable nuclei that have not yet been synthesized.



Multi-nucleon transfer (MNT) and quasi-fission (QF) events in low-energy heavy-ion
reactions are examples of non-equilibrium quantum many-body dynamics. They have
gained great attention because they provide insights into the microscopic reaction
mechanisms that reveal both colliding nuclei’s static and dynamic features. These
procedures have recently gained attention as potentially effective ways to produce

unstable nuclei that are challenging to produce in other ways [2].

The transfer of many nucleons between two colliding nuclei occurs in both MNT and
QF processes. You could think of QF processes as a specific type of MNT. Several
variables affect the dynamics of these transfers, such as the projectile and target com-
bination, the incident energy, the initial angular momenta, and the relative orientations

if the colliding partners have ground state deformations.

1.2 Heavy-Ion Reactions and Means to Produce Super-Heavy Elements (SHE)

A nuclear reaction occurs when ions approach closely enough to interact via the nu-
clear force, leading to structural changes in their atomic nuclei. Nuclear reactions
are classified as low-energy heavy-ion reactions if the interacting ions are larger than
helium nuclei and the bombardment energy per nucleon is roughly ~ 10 MeV per nu-
cleon. The impact parameter (b), or the initial orbital angular momentum (¢), defines
the closeness to the central collision in low-energy heavy-ion collisions. The impact
parameter is the perpendicular distance measured from the center of the projectile
nuclei to the central beam axis, shown as a dashed line in Fig. @ In terms of the

impact parameter (b), the initial angular momentum () can be also defined as,

0= b2uEem) ", (1.1)

where p is the reduced mass of the reaction system. When the impact parameter ex-
ceeds the combined radii of the two atomic nuclei, referred to as distant collisions,
the ions do not come close enough for significant nuclear interaction. In this case,
only the Coulomb force affects their trajectory, leading to elastic and quasi-elastic
reactions. Nuclear interaction becomes more significant as the impact parameter de-

creases to the grazing impact parameter, equal to the sum of the radii of the two nuclei.
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This leads to multiple nucleon exchanges between the colliding ions, known as graz-
ing collisions. Some of the bombardment energy dissipates into internal degrees of
freedom, heating the system. The two-center nuclear system may rotate together for

a while before separating, a phenomenon known as deep-inelastic collisions (DIC).

Elastic (Rutherford scattering, Coulomb excitation)

(a) Distant collision

Incomplete fusion and deep inelastic
collisions

(b) Grazing collision

(c) Close collision Fusion

Figure 1.1: Classical trajectories of heavy-ion collisions [3]].

As the impact parameter decreases further, the nuclei interact very strongly, classified
as close collisions. In close collisions involving relatively light systems, the projectile
and target nuclei may fuse to form a hot compound nucleus, a process known as

nuclear fusion.

Elements heavier than plutonium (atomic number Z = 94) are unstable and do not
occur naturally; they are produced artificially through nuclear reactions and elements
with atomic numbers Z > 104 are called superheavy elements and are produced via
fusion reactions of heavy nuclei. The production cross-section in these reactions is
very small (around a few picobarns), making it crucial to understand the reaction
mechanisms theoretically. Various factors such as collision energy, mass symmetry,
deformation, isospin, and the shell structure of the colliding nuclei affect the fusion

probability. Isolating the effect of a single variable is a challenging task to achieve.

Fusion reactions occur in three stages. In the first stage, the projectile nucleus over-
comes the Coulomb barrier and fuses with the target nucleus. The fused system
reaches thermal equilibrium in the second stage, forming a hot compound nucleus.

In the third stage, the excited compound nucleus cools down by splitting into smaller



nuclei, fusion-fission (FF), or emitting light particles like neutrons, protons, and alpha
particles, a process known as fusion-evaporation. Superheavy elements are produced

as fusion products through the evaporation residue at the end of this cooling process.

Composite System

‘USION =
o . [ ‘ rsK Compound
/ Nucleus (CN)
Ocapture PcnN
QUASI-FISSION (QF) Psurvival FUSION-FISSION (FF)
l . . Fission
’ Fragments

Evaporation
Residue (ER)
Figure 1.2: A schematic representation of a heavy-ion collision around the Coulomb

barrier [4].

In heavy systems, the reaction mechanism develops differently from the fusion pro-
cess, as shown in Fig.[1.2] Specifically, in systems where the Coulomb factor calcu-
lated as the product of charge numbers exceeds a critical value (Z; 2> > 1600), the
projectile and target nuclei stick together during the collision, forming a two-center
structure similar to deep-inelastic reactions. Multiple nucleons are exchanged through
the hypothetical window between the two nuclei, maintaining the total mass number.
At the same time, a significant portion of the bombardment energy and angular mo-
mentum transfers into internal degrees of freedom. Without forming a compound
nucleus, the system may separate into two nuclei with different proton and neutron
numbers from the initial values. This mechanism, which prevents the formation of a
compound nucleus, is known as QF. These reactions in heavy systems represent an in-
termediate reaction mechanism between DIC and the fusion reaction of a compound
nucleus. Understanding this mechanism is important for MNT processes and syn-
thesising super-heavy elements (SHE). Additionally, QF reactions provide a suitable
method for obtaining heavy nuclei rich in neutrons and protons. The MNT mech-
anism observed in these reactions may enable the creation of transuranium-heavy

elements. Studying new elements and the static and dynamic properties of unstable
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nuclei rich in protons and neutrons, particularly those near the nucleon drip line, are

currently significant and current research topics in heavy-ion physics [} 6].

Fusion-evaporation reactions around the Coulomb barrier energies are the only way
to produce SHE. However, the formation of SHE after evaporation is hindered by FF
and QF processes, which are the two effective reactions preventing the formation of
a compound nucleus (CN) through fusion, following different paths during the CN
formation and having different average contact times. The typical contact time for
QF is about 102" seconds, whereas, for FF reactions, it is about 10~'¢ seconds [[7,
8l]. Consequently, QF is the primary reaction mechanism that hinders the formation
of super-heavy nuclei. Additionally, while the FF process exhibits significant mass

transfer, QF processes show minimal mass transfer related to their contact time.

It is important to develop theoretical models to analyze experimental data and select
appropriate projectile and target nuclei for the intended purpose. Various macroscopic
transport models have been proposed to explain the evolution of collective variables
in deep-inelastic heavy-ion collisions and QF reactions. In these models, the system’s

potential energy and transport coefficients are empirically calculated [9].

1.3 Outline of The Thesis

In this work, we employed a quantal diffusion description of multi-nucleon transfer
in heavy-ion collisions based on the stochastic mean-field (SMF) approach, offering a
fully microscopic description without adjustable parameters. The thesis is structured
into five chapters. Chapter [I] introduces the problem and the motivation. Chapter [2]
delves into the time-dependent Hartree-Fock theory (TDHF) and its application to se-
lected heavy-ion reaction systems, establishing the foundation for subsequent chap-
ters. Chapter [3|extends this description stochastically using the SMF approach, incor-
porating fluctuations and correlations into the TDHF model. Chapter ] utilizes the re-
sults from the SMF approach to calculate production yields and cross-sections, com-
paring theoretical results with experimental data and analyzing differences. Chap-
ter [5| summarizes the key findings, emphasizing the contributions of the quantal dif-

fusion description and SMF approach to our understanding of multi-nucleon transfer

5



in heavy-ion collisions, and suggests directions for future research.



CHAPTER 2

TDHF THEORY AND ITS APPLICATION TO THE MNT REACTIONS

Characterizing nuclear events and determining their results is a substantial effort be-
cause of the multitude of potential reactions that can occur, frequently competing
with one another at a specific collision energy. Mean-field theories, which involve
the independent evolution of particles within a mean-field created by a group of par-
ticles, have emerged as fundamental microscopic approaches for characterizing nu-
clear dynamics. These techniques have undergone significant advancements in recent

years [10].

Dirac established the theory of Time-Dependent Hartree-Fock (TDHF) in 1930 to
explain the behaviour of electrons in atoms [11]. Research on nuclear collision dy-
namics started in the 1970s [12]]. Most current TDHF computations employ three-
dimensional models that incorporate comprehensive Skyrme functionals, which also
account for time-odd components [[13]. The Skyrme interactions are chosen to accu-
rately replicate a wide range of nuclear properties across different mass nuclei without
requiring individual parameter adjustments for each reaction. Overall, TDHF theory

proved to be reliable in characterizing low-energy nuclear processes.

The TDHEF theory is microscopic and gives a detailed account of nuclear dynamics.
This capability is crucial for understanding the behaviour of nuclei during reactions.
TDHF can describe many nuclear phenomena, such as heavy-ion fusion, fission, and
MNT reactions. Once an energy density functional (EDF) is defined, TDHF needs
no further empirical parameters. This property increases its predictive power and
diminishes the dependence on experimental data for parameter tuning. One of the
most critical limitations of TDHF is its mean-field approximation, which assumes that

all particles move independently inside the average field this ensemble generates [14,



15]. Such an assumption may lead to neglecting critical two-body correlations, failing
to describe some processes like multi-nucleon transfer and quantum tunneling [10].
The TDHF theory is semi-classical by construction and optimized to predict average
quantities rather than the fluctuation or distribution of observables. Therefore, it often
underestimates distributions of observables, implying a more detailed treatment is
required under quantum mechanics. The single-determinant formalism of TDHF also
tends to underestimate fluctuations and correlations of one-body observables. Beyond
mean-field methods have been developed to manage these drawbacks, like the Time-

Dependent Random Phase Approximation (TDRPA) and the SMF approach [9].

A brief description of the Hartree-Fock equations with Skyrme effective interactions
will be provided in later sections of this chapter. Subsequently, we shall expand this
framework into the time domain to better understand the dynamics of nuclear pro-
cesses, leading to the formulation of the TDHF equations. Finally, we will present
the results of TDHF calculations for *®Fe + 2°*Pb reaction with E.,, = 238.5 MeV,
36S + 238U reaction with E.,, = 151.1 MeV, %Ni + ¥°Te reaction with E., =
184.3 MeV and 2°°Pb + 1¥Sn reaction with E, , = 436.8 MeV, where E.. ,, represents

the initial collision energy of the reaction system in the center-of-mass frame.

2.1 Hartree-Fock Equations

According to the Hartree-Fock approach, one can investigate the structural proper-
ties of nuclei by treating each nucleon as moving independently within a mean field,
which is an average potential. The interactions between each nucleon in the nucleus
produce this mean-field. As with other fermions, nucleons are governed by the Pauli
exclusion principle. The wave function of the collective state must be antisymmet-
ric when two nucleon coordinates are exchanged. The Hartree-Fock approximation
states that the trial wave function of a nucleus containing A nucleons can be expressed

as a Slater determinant, a product of antisymmetrized occupied states [16]].

A Slater determinant is formed by using a set of single-particle wave functions, called
the Hartree-Fock basis, ¢;(r;), where r; represents the spatial, spin, and isospin co-

ordinates of the jth nucleon. The construction of the Slater determinant follows this



definition,

¢1(r1) ¢1(r2) -+ ¢1(ra)

(,152(7“1) ¢2(7“2) ¢2(7’A)

@(Tl...T’A)—)@HF(Tl.. . (21)

oL
.TA \/E

da(r1) ¢a(ra) -+ ¢al(ra)

Although the precise shape of the individual particle wave functions within a nucleus
is initially uncertain, they can be estimated using oscillator wave functions. This ap-
proximation is true when the number of wave functions corresponds to the number of
nucleons in the nucleus unless pairing correlations are included. The initial step in-
volves considering the complete many-body Hamiltonian, which may be represented
in terms of a one-body kinetic energy term and a two-body force for a system con-

sisting of A particles, as stated below,

A
Z o +%ZV(ri,rj). (2.2)

i#j
In this instance, the nucleon-nucleon force, which includes the Coulomb interaction,
is denoted by V(r;, ;). The primary concept behind the mean-field technique is to
represent the two-body potential, V' (r;,7;), by a one-body mean-field, U(r;), while
incorporating as much of the physics as possible. The average value of the entire
Hamiltonian for the Hartree-Fock wave function provides an approximation of the

ground-state energy in the Hartree-Fock method.

B = <q>HF ‘H‘ @HF>
— % i / (b;‘(r)V%i(r) dr
. Z [ 601656 6660 drar o

wﬁj

- ‘Z//¢ V(r,r")gi(r") ¢ (r) dr dr'.

i#j



Here, the integral [dr = " [ d°r is employed. The final term in the previously
mentioned expression accounts for the antisymmetrization of the wave function when
exchanging any pair of particles. The optimal Slater determinant to describe the
ground state of the system is the one that minimizes the expectation value of energy.
Afterwards, the optimal arrangement is determined by applying the variational prin-
ciple, which aims to minimize the expected energy value by considering all potential

single-particle wave functions.

(5 A
50 (E%F — ;e / | (r)|? dr) =0, (2.4)

in which,

5
0¢5(r)

{o:(r")} = 63 (r — 1'). (2.5)

The Lagrange multipliers, denoted as ¢; in Eq. [2.4] provide the function of assuring
the proper normalizing of the wave functions and including the constraint that ensures

the conservation of particle number inside the system as,

A
Z/ ()| dr = A. (2.6)
i=1

Now, substituting ground state EDF in Eq. [2.3|to the principle of least action defined
as in Eq.[2.4] we obtain The Hartree-Fock equations as,

(1) = — 5 V26r) ns [ aeveame )

7>

-3 [Vt

>t

2.7)

The initial term in the equation is the kinetic energy contribution. The second term
in Eq. is the so-called "Hartree" potential term. The Hartree potential is an av-
erage field that the :th particle experiences due to all other particles in the system.

This is a local potential depending solely on the one-body density, represented as
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p(r) = Z;\:l ¢3(r)¢;(r). The third term is the exchange or "Fock" potential. The
Fock potential is a non-local potential, p (7, 7') = S ¢* (r') ¢;(r) reflecting the
exchange interaction where particles can swap their positions while preserving the
antisymmetrized nature of the overall wave function. Substituting these definitions,

the Hartree-Fock equations become,

hQ
2m

e (1) = V2¢i(r) + UD (r) g (1) — / UD(r )i (P dr'. (2.8)

The Hartree-Fock approach produces single-particle wave functions that make up the
Slater determinant of the ground state. Due to the dependence of the potentials on the
wave functions being solved, the equations become nonlinear and demand iterative,
self-consistent solutions. This process requires introducing trial wave functions, for-
mulating the potential, solving the Schrodinger equation to update the wave functions,

and iterating until convergence is achieved.

2.2 The Skyrme Effective Interaction

Self-consistent mean-field models often employ effective interactions with free pa-
rameters. Given the short-range nature of nuclear interactions and the long wave-
lengths of single nucleon states, a Taylor expansion of zero-range interactions in mo-
mentum space is feasible. A local interaction with a spatial dependence §(r — r’)
is used to approximate this expansion. Different symmetries, including translational,
Galilean, rotational, and time-reversal invariance, are followed by the potential, which
depends on nucleon positions, momenta, spins, and isospins. The local density ap-
proximation simplifies the Hartree-Fock equations significantly, leading to a math-
ematical representation of the exchange term that nearly resembles the direct term.
One important method in developing mean-field models for nuclear property estima-
tions has been building the Skyrme interaction. The Skyrme interaction is widely ac-
knowledged as the major effective interaction used in these models [17]. The Skyrme

Hamiltonian can be represented as follows:

11



Horme =T+ Y 0+ > Dk + Voo (2.9)

i<j i<j<k

Here, T represents the kinetic energy operator,

N 52
T = L 2.10

; = (2.10)

In the above equation, p; = —ihVi.f/Coul defines the Coulomb interaction between

protons and m in the denominator denotes the nucleon mass. Coulomb potential is

defined as,

2
~ e
VCOul - E - 61]1’]75(11'17' (211)
i — 14

1<j

The effective two-body interaction, which includes the effects of the three-body forces,

is expressed as a density-dependent interaction,

f)ij =9 (TiO'Z', TjO'j) =ty (1 + x0p0> 5 (7"2' _ rj)

1 s .
+—t3pa (7" +7"]) (1—{—:L‘3PU)(5(’I"Z‘—’I"]‘)

6 2
+ %h (1 + :L‘lpg) {5 (ry — ;) K2 4 K26 (r; — Tj)} (2.12)

~

+ t9 (1 +x2}50> /2;’-5(7;- —rj)k

+1WQ (5'7,*|>0A']) . {];’/ X (S(’f‘l —T‘j) ]23} .

Here, & is the Pauli spin matrices, P, = 1(1+6; - 6;) defines the spin exchange

operator. Relative wave vectors are defined as,

/;:%7 ];/:_u_ (2.13)

The operator 2 operates on spatial functions to the right, while the operator k' acts on

spatial functions to the left. Additional parameters are adjusted to reproduce the fixed

12



structural characteristics of nuclear matter accurately. The EDF can be expressed as

the expected value of the Skyrme Hamiltonian.

ESHF[pv ijv 87T7 ‘7] = <q) ‘HSkyrme

q>> _ / drH(r). (2.14)

In Eq. 2.14] p represents the local density of nucleons, 7 denotes the local kinetic
energy density, and s is the local spin density. The current density j describes the flow
of nucleons, while 7" accounts for the contribution to the energy due to spin motion,
known as the spin kinetic energy density. The spin-current tensor J characterizes the

spin-orbit interaction.

2.3 Time Dependent Hartree-Fock (TDHF) Equations

To study the behaviour of a nuclear system, the static Hartree-Fock equations can be
expanded to the time domain by applying the time-dependent least action principle,
similar to the static Hartree-Fock method. The temporal fluctuation of an action can

be mathematically represented in the following manner,

B / d*(r, t) (z’h% — H) ®(r,t)dt = 0. (2.15)

By using a single Slater determinant as a trial function, we can derive the TDHF

equation,

. a¢i<r7 t) T

In this work, we numerically solve the mean-field dynamics using the TDHF code [/18|,
13]] for Eq[2.16| with the SLy4d Skyrme EDF [19]. This TDHF code uses basis-spline
discretization for high numerical accuracy, makes no assumptions on geometrical
symmetry such as axial or reflection symmetries, and incorporates the full EDF. The
Coulomb trajectory determines the initial approach up to Ry, where the strong nuclear
interaction between nuclei becomes effective. Beyond Ry, the system dynamics are

governed by the TDHF equations, which are solved self-consistently, starting with
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an initial guess of orthonormal single-particle states until the convergence criteria are

met.

In this work, we studied the following nuclear systems: *®Fe + 2°*Pb reaction with
E. .. =238.5MeV, 35S + 238U reaction with £, = 151.1 MeV, %Ni + 1*°Te reaction
with E,,, = 184.3 MeV and ?"°Pb + '8Sn reaction with E.,, = 436.8 MeV. These
systems were selected due to their relevance in understanding various aspects of nu-
clear reactions, such as multi-nucleon transfer processes, quasi-fission dynamics, and
the production of exotic nuclei. The *®Fe + 2°Pb system helps evaluate the interac-
tion processes between mid-mass nuclei and heavy targets, highlighting transfer and
quasi-fission processes. The 3¢S + 233U system is particularly interesting for studying
the dynamics involving very heavy nuclei and shell effects in quasi-fission [20]]. The
64Ni + 130Te system allows us to explore the behaviour of neutron-rich and proton-
rich interactions, which are crucial for producing exotic nuclei far from stability [21].
Finally, the 2°°Pb + 18Sn system is important for studying neutron-proton asymmetry
and its influence on reaction dynamics and nucleon transfer mechanisms [22]. The
outcomes of the TDHF computations for these systems will be given and discussed

in the subsequent section.

2.4 Results of TDHF Calculations for Selected Heavy-Ion Systems

For the TDHF solutions of reaction systems, static calculations are performed for
each collision partner in the reaction system. These static calculations model the
ground state properties of each nucleus. The static solutions for the collision partners
are then placed in a numerical box sized 60 x 60 x 36 fm in the (x-y-z) coordinates
for dynamic calculations. Each nucleus is given a boost towards the other according
to their Coulomb trajectories. The dynamic calculations continue until the colliding
nuclei reach a separation distance after their interactions, and at this point, the strong

interaction between the nuclei ceases.

In Fig. 2.1} each system’s mass densities are presented at different time windows:
the beginning of the dynamical calculations, initial neck formation, and final neck

formation before and after separation. From the mass densities, the placement of the
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Figure 2.1: Snapshots of density profiles for each system at different times on the

reaction plane.

nuclei inside the numerical box and their deformation throughout the process can be

observed.

From the initial interaction to the point after the separation of two nuclei, the result of
the TDHF calculations for each system’s observables is presented in TDHF tables and
drift plots. On TDHEF tables, ¢; denotes the initial angular momentum of the system,
which can be defined in terms of impact parameter b as given by Eq. z1, A{
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represents the final proton and mass numbers of projectile-like fragment and Z. ! Ag
represents the target-like fragment. ¢; indicates the final angular momentum of the
system, while 7K' I/ is the final total kinetic energy of fragments. The final centre-
of-mass angle of the reaction system is denoted with 6., , where we can calculate

scattering angles of reaction partners in the laboratory frame as,

sin 0. .
tan 07" = , (2.17)
A{A] B,
AQ‘A% TKE

+ cos O

and

sin O .
[AAL B,
m TKE — COS Oc.m.

The drift path plots illustrate the movement of the reaction system on the N-Z plane,

tan 05" = (2.18)

with the direction of the reaction’s evolution over time indicated by an arrow. Points
labelled A, B, and C will be utilized in the subsequent chapters to compute average
values of reduced curvature parameters « and /3. The N-Z-t graphs additionally indi-
cate the respective times of these points in the reaction dynamics. In this work, the
entrance channel charge asymmetries (6 = %) vary across the collision partners of
all the reaction systems. This leads to a quick transition to charge equilibrium at the
initial phase of the reaction. Once the charge equilibrium point has been reached, the
rate of nucleon transfer decreases, and the reaction system progresses along the iso-
scalar line with a nearly uniform charge asymmetry. The iso-scalar line is a straight
path that connects the reaction partner with lower mass to the reaction partner with

higher mass. This line passes via the mass symmetry point, which is defined as,

No= (N1 + No2)/2,  Zo=(Zi+ Z)/2. (2.19)

In *®Fe + 208Pb reaction system, the ground state of the ®Fe nuclei has prolate defor-
mation as shown on Fig. [2.1] which requires to study two different collision geome-

tries. We define collision geometries as a tip when the principal deformation axis of
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the deformed partner lies on the beam direction and side, as the principal deforma-
tion axis is orthogonal to the beam direction. Figure[2.2]and Fig. [2.3|show results for
Fe-like fragments in the **Fe + 2°Pb reaction system with E, , = 238.5 MeV in tip
and side collision geometries with an initial angular momentum of ¢ = 40h, which
shows reasonable drift behaviour for further calculations. Fig.[2.2(a) and Fig. [2.3(a)
show the drift path of the reaction system indicated with magenta lines. Both systems
show similarities in drift paths. Initial charge asymmetries of collision partners are,
%Fe is § = 0.10 and 2°®Pb is § = 0.21. To reach charge equilibrium, Fe-like frag-
ments lose protons and drift towards the iso-scalar line, represented by solid black
lines with dashed ends, which makes an angle about ¢ = 33.1° from the neutron
axis on the N-Z plane. On the iso-scalar line, drift continues through the symmetry
point (Ny, Zy) with a nearly constant charge asymmetry of 0.17. In Fig. b) and
Fig.[2.3[b), neutron and proton number change in time on the drift path is presented.

Results of the TDHF calculations for these systems are shown in Table 2.1] which
shows similarities for tip and side collision geometries. The initial angular momen-
tum range is 40h < ¢ < 240h. Below ¢ = 40h, collision partners do not separate in
the calculations, assuming the system is fused. Above ¢ = 240h, collision becomes
an elastic one. ¢ = 20h intervals optimize the calculation time whilst preserving the

gradient in reaction dynamics.

28 T T T T T T T "tAE'tF?"'l"'fiC"'l'
| (a) ’/ i 36 __(b) H : N
26 -
A
Z (Tip)
24 - %Fe + 2Ph ]
E.n = 238.5 MeV
£ =40h
22 P ¢ = 33.1° - : :
A T T S S 23-..:.5...|...i...|.
30 32 34 36 38 0 400 800 1200 1600
N time (fm/c)

Figure 2.2: (a) Drift path for the F'e-like fragments and (b) the mean neutron and pro-
ton numbers of Fe-like fragments in the **Fe +2"*Pb reaction with E , =238.5 MeV
in the tip orientation of the 5®Fe for £ = 40A.
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Table 2.1: TDHF results for °®Fe + 2°%Pb reaction with E, ,, = 238.5 MeV.

- G(h) b(fm) z{ Azl Al (;(h) TKE(MeV) 6, (deg) 61®(deg.) 6*(deg.)

40 18 262 615 81.8 2045 35.1 191.5 105.5 86.7 35.7

60 26 266 624 814 2036 494 189.5 93.1 74.7 416

80 35 255 59.6 825 2064 657 187.0 1032 84.6 36.0

100 44 258 585 822 207.5 99.5 231.7 107.8 -88.7 35.9

120 53 260 582 820 207.8 1232 236.9 99.6 834 40.2

tip(%Fe) | 140 62 260 58.1 82.0 207.9 143.7 2375 91.3 75.6 443

160 70 260 580 82.0 208.0 163.0 237.8 84.1 69.0 479

180 79 260 580 82.0 2080 1823 238.0 777 63.2 51.1

200 88 260 580 82.0 208.0 2022 238.0 71.9 582 54.0

220 97 260 580 820 208.0 2226 238.1 66.8 53.8 56.5

240 105 260 580 82.0 208.0 2423 238.2 62.4 50.1 58.8

40 18 274 649 80.6 201.1 333 190.3 100.5 81.1 38.8

60 2.6 255 594 825 2066 47.0 184.3 117.7 -80.8 29.2

80 35 255 587 825 2073 741 217.5 1163 -80.6 31.2

100 44 259 584 821 207.6 958 235.3 1102 -86.2 34.9

120 53 260 582 820 2078 1164 236.6 101.0 84.8 39.4

side(®Fe)| 140 62 260 58.1 820 2079 1364 237.0 927 76.8 436

160 70 260 580 82.0 2080 1569 2372 85.2 70.0 473

180 79 260 580 82.0 2080 17638 2375 787 64.1 50.6

200 88 260 580 82.0 208.0 197.4 237.6 72.8 59.0 535

220 97 260 580 82.0 208.0 2182 237.8 67.6 545 56.1

240 105 260 580 820 208.0 238.6 237.9 63.1 50.6 584
T T T T T ]
28 @ 1 < .
= ]
26 | 1 4 ]
Z (Side) H
24 1 Ec_jiezgg).??/{ev 1 = L , )
. ot ikl I S RS ]
22 ,/’ : 25 g\éxa’— . ]
1 1 1 1 1 1 1 1 1 24_ PRI N S SRR R ISR RN RSN S N T

30 32 34 36 38 40 0 400 800 1200 1600

N time (fm/c)

Figure 2.3: (a) Drift path for the F'e-like fragments and (b) the mean neutron and pro-
ton numbers of Fe-like fragments in the **Fe +2°Pb reaction with E , =238.5 MeV

in the side orientation of the °®Fe for ¢ = 40h.
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Figure 2.4: (a) Drift path for the S-like fragments and (b) the mean neutron and proton
numbers of S-like fragments in the 3¢S + 238U reaction with E.,, = 151.1 MeV for
¢ = 40h.

The reaction system featuring %S + 2*®*U consists of a projectile *°S with no ground
state deformation and a target partner 238U with a prolate deformation in its ground
state [23]]. This can be observed in Figure 2.1} The collision geometry directly affects
the reaction dynamics when reaction partners exhibit ground state deformation. In
this particular instance, our initial computations on various collision geometry con-
figurations indicated that, at ., = 151.1 MeV, there was minimal nucleon transfer,
except for the tip orientation of the >**U nuclei. Therefore, we exclusively utilized tip
collision geometry for subsequent calculations on this system. Figure.[2.4(a) displays
the trajectory of the system’s motion when the initial angular momentum is ¢ = 40h.

This trajectory is suitable for subsequent calculations.

The initial charge asymmetries of the collision partners are as follows: S has a
charge asymmetry of § = 0.11, while ?**U has a charge asymmetry of § = 0.23. On
Fig. 2.4(b) S-like fragments acquire neutrons while losing protons to reach charge
equilibrium on the iso-scalar line with a charge asymmetry of 6 = 0.20. The iso-
scalar line makes an angle of ¢ = 32.6° from the neutron axis on the N-Z plane.
Drift continues along the iso-scalar line. Initial angular momentum ranges ¢ = 34h to
¢ = 50h is considered for this system where fusion is observed up to ¢ = 34h. After
¢ = 40h, quasielastic components becomes dominant and beyond ¢ = 50A, collision

becomes elastic as can be observed on Table 2.2]
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Table 2.2: TDHF results for the 3°S + 238U reaction with E,,, = 151.1 MeV.

G(h) b(fm) zl Al z] A} 4y (h) TKEMeV) 6., (deg.) 6%(deg.) 6(deg.)

34 23 267 660 813 208.0 272 179.4 87.7 76.4 59.3
35 23 269 662 81.1 207.8 302 177.5 93.5 81.9 55.1
36 24 273 674 80.7 2066 28.8 178.3 96.4 84.6 534
37 25 271 662 809 207.8 29.1 174.9 82.7 71.5 62.6
38 25 273 664 80.7 207.6 29.6 172.2 64.1 54.4 77.1
39 26 260 630 820 211.0 312 167.6 36.4 30.5 -T71.7
40 27 260 633 82.0 2107 322 169.1 46.5 39.2 -88.6
41 2.7 163 395 91.7 2345 45 124.7 141.1 -46.2 19.0
42 2.8 156 380 924 2360 1438 126.5 136.7 -50.9 21.0
44 29 150 366 93.0 2374 25.1 125.1 132.9 -55.0 22.5
46 3.1 15.1 36.0 929 2380 35.0 128.7 129.7 -58.3 24.1
48 32 154 359 92,6 238.1 462 138.0 127.2 -60.7 25.7
50 33 15.7 360 923 2380 53.8 144.8 125.3 -62.6 27.0

32 ) T T T T T T T

“Ni + 19Te ot

E.. = 184.3 MeV s
30 F ¢ = 82h -
¢ =32.8°
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Figure 2.5: (a) Drift path for the Ni-like fragments and (b) the mean neutron and pro-
ton numbers of Ni-like fragments in the 64Ni+ 30Te reaction with E, ,, = 184.3 MeV
for ¢ = 82h.

For the ®!Ni + '3°Te reaction system, no ground state deformation is observed on
collision partners, for which both nuclei are nearly spherical. The initial angular
momentum range of 82h4 < ¢ < 180h is considered. The system is fused below
¢ < 82h, and beyond ¢ > 180%, fragments elastically scatter. Figure [2.5]a) illustrates
the drift path of the reaction system, shown by magenta lines. The initial charge

asymmetry of %*Ni is § = 0.13, while *°Te has a charge asymmetry of 6 = 0.20. On
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Fig.[2.5(b) after the initial contact, Ni-like fragments show a distinct trend of gaining
neutrons and losing protons to reach charge equilibrium with a charge asymmetry of
0.16 on the iso-scalar line, which is making an angle of approximately ¢ = 32.8°

relative to the neutron axis on the N-Z plane.

Table 2.3: TDHF results for the *Ni + '3Te reaction with E,,, = 184.3 MeV.

Gy b(fm) z{ Al z{ AL 4 (h) TKE(McV) Oun(deg) 69%(deg.) 6i(deg.)

82 42 282 68.0 51.8 1260 69.4 135.5 49.4 31.2 58.6
84 43 277 655 523 1285 669 145.7 75.3 49.8 48.6
86 44 276 653 524 1287 68.5 145.1 79.6 52.9 46.6
88 45 271 639 529 130.1 73.7 154.9 92.7 63.9 41.2
90 46 272 638 528 130.2 80.0 160.4 92.7 64.3 41.7
92 47 276 640 524 130.0 88.0 172.5 92.7 65.2 42.7
94 48 278 640 522 130.0 93.0 177.4 92.7 65.5 43.1
96 49 279 64.1 521 1299 96.8 179.8 93.5 66.3 43.0
98 50 279 641 521 1299 993 181.0 93.0 66.0 43.3
100 5.1 279 641 521 1299 1013 181.5 923 65.4 43.7
110 57 280 640 520 1300 1135 183.1 88.0 62.1 45.9
120 6.2 280 64.0 520 1300 1235 183.5 83.6 58.7 48.1
140 72 280 640 520 1300 1434 183.8 75.4 524 52.3
160 82 280 64.0 52.0 130.0 162.8 184.0 68.5 47.3 55.7
180 9.3 280 640 520 1300 1826 184.1 62.5 429 58.7

For the 2°°Pb +1¥Sn reaction system, no ground state deformation is observed. Initial
charge asymmetries of collision partners are, 2°Pb is § = 0.20 and '**Sn is § = 0.15.
After the initial contact, the system moves towards the charge equilibrium with a
charge asymmetry of 0 = 0.19 on the iso-scalar line, which makes an angle about ¢ =
33.0° from the neutron axis on the N-Z plane presented in Fig.[2.6(a). In Figure2.6(b),
until charge equilibrium is reached, the projectile 2°Pb fragment loses neutrons while
gaining protons from the target. This behaviour differs from other systems studied
in this work, where the target is heavier, leading to initial charge equilibration by the
projectile gaining neutrons and losing protons to the target partner. The initial angular
momentum range 60h < ¢ < 260h is utilized where below ¢ = 60/ collision partners

are fused. Above ¢ = 260/ collision system becomes elastic.

Detailed microscopic insights into the time development of single-particle wave func-

tions are provided by the TDHF theory, which has shown to be a powerful tool for
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Figure 2.6: (a) Drift path for the Pb-like fragments and (b) the mean neutron and pro-
ton numbers of Pb-like fragments in the 2°Pb+!18Sn reaction with E, ,, =436.8 MeV
for ¢ = 60h.

Table 2.4: TDHF results for the 2°Pb + ''8Sn reaction with E,. ,, = 436.8 MeV.

G(hy b(fm) zl Az A) 4y (h) TKE(MeV) e (deg.) 61%(deg.) 6%°(deg.)
60 1.5 807 2007 513 1233 527 329.8 144.9 27.1 16.0
80 20 809 2013 51.1 1227 689 3325 136.0 29.6 20.1
100 25 816 2028 504 1212 833 330.7 127.7 30.3 23.9
120 3.0 820 2035 500 1205 982 337.1 120.4 30.8 27.4
140 35 823 2044 497 1196 1145 352.2 1153 31.1 30.2
160 40 826 2055 494 1185 139.0 377.8 110.6 31.6 33.2
180 45 823 2055 497 1185 1689 406.4 106.8 32.3 35.8
200 51 821 2060 499 118.0 196.9 428.7 104.0 325 37.8
220 5.6 820 2060 500 1180 219.9 433.9 99.7 31.9 40.1
240 6.1 820 2060 500 1180 241.7 434.9 95.2 31.0 424
260 6.6 820 2060 500 118.0 2622 435.4 90.8 30.0 44.5

explaining nuclear dynamics. This has been important to understanding various nu-
clear phenomena, ranging from collective excitations to heavy-ion collisions. The
strength of this framework is its nature to predict things without including more em-
pirical parameters once the EDF is defined. This results in a unified description of
such static properties as binding energies and deformations with dynamic processes

such as fusion and QF.

However, TDHEF is subject to substantial limitations due to the mean-field approxi-

mation. The mean-field approximation assumes particles move in the average field
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created by all other particles, neglecting extensive two-body correlations. Generally,
TDHF underestimates fluctuations and correlations in one-body observables, and the

method is optimized to predict average quantities because of its deterministic nature.

Beyond mean-field approaches, like the SMF theory [24], have been developed to
address these limitations. The SMF extends TDHF by including stochastic ingredi-
ents to follow the influence of initial state fluctuations and their time evolution and
introduces one-body dissipation and fluctuation mechanisms in a way that respects

the quantum fluctuation-dissipation relations.

The following chapter will briefly review beyond-mean-field approaches and describe
the SMF theory. We calculate the transport coefficients of the reaction systems using
the TDHF solutions presented in the current chapter. With the fluctuations included,

we can give a more realistic picture of the outcome of the reactions.
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CHAPTER 3

SMF THEORY AND ITS APPLICATION TO THE MNT REACTIONS

Studying the mechanics of MNT reactions requires an extensive theoretical frame-
work to model these complex events effectively. Reaction dynamics are explained
using the TDHF theory, which has been widely used to analyze MNT reactions [7,
8, 25, 26]. The TDHF framework allows for calculation of dynamical observables
such as the average charge and mass of a fragment, as well as the average kinetic
energy loss resulting from one-body dissipation [27]. While TDHF theory has many
benefits, it is unable to account for fluctuations and deviations in fragment mass and
charge distributions. To get around this restriction, one must go beyond the mean-

field approximation [24} 28].

3.1 Beyond Mean-Field Approaches

The extended variational theory presented by Balian and Vénéroni [29] is the basis for
the time-dependent random phase approximation (TDRPA), significantly enhancing
the description of MNT reactions. The TDRPA formula considers the fluctuations and
correlations of one-body observables around the TDHF average trajectory by includ-
ing dispersions into a single Slater determinant. The approach has been successfully
applied to deep-inelastic collisions involving **O + 1°0 [30] and “°Ca +*°Ca [31], re-
sulting in significant enhancements in the description. However, the current TDRPA
formula is not suited for asymmetric systems, which limits its use for extensive in-

vestigations, including various combinations of projectiles and targets [32].

S. Ayik introduced a novel method for describing MNT reactions that goes beyond

mean-field fluctuations and correlations: the SMF approach [24]. This method uti-
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lizes time-dependent mean-field solutions to describe the quantum many-body prob-
lem. The incorporation of initial mean-field fluctuations in this context is similar
to the derivation of quantum mechanics from Brownian particles, as described by
Nelson in 1966 [33]. Beyond one-body fluctuations and correlations, the SMF ap-
proach featured a simplified Bogoliubov-Born-Green-Kirkwood-Yvon (BBGKY) hi-
erarchy [34]. When the fluctuations are small, the SMF approach is analytically
equivalent to the TDRPA formula [24, 28], and is especially well-suited for asym-

metric systems.

Recent developments have led to improvements in the SMF description. The initial
methodology employed a semiclassical approach, utilizing the Wigner transformation
and the Markov approximation, as shown in the references [35,136, 137, 38.,139]. Using
the completeness relation [40]], which depends on single-particle orbitals obtained
from mean-field theory, a quantum-based formula for the diffusion coefficient was
proposed and refined in reference [41]]. Quantal expressions were applied to head-on
collisions of 223U +238 U [42] and to central collisions of symmetric systems, namely
80280, 1048Ca+1948Ca, and *°Ni-+9Ni, occurring just below the Coulomb barrier.
Subsequently, the quantal diffusion model was expanded to incorporate non-central

collisions [43]].

3.2 Description of the SMF Theory

3.2.1 Derivation of the Langevin Equation for Macroscopic Variables

Starting with a given initial state, the standard TDHF equation determines the time
evolution of the single-particle density matrix. While the standard approach estimates
the overall development of collective movement, it does not include the impact of
variations around the average value of collective motion. In contrast to the standard
mean-field theory, the SMF theory incorporates a stochastic method that considers
the system’s initial state’s quantum and thermal density fluctuations. Quantum and
thermal fluctuations are determined by the initial conditions. To account for these
fluctuations, quantal calculations are carried out by averaging over ensembles with

the suitable distribution of various initial conditions.
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The initial density fluctuations are simulated as density matrices rather than a single
density matrix. Thus, a superposition of Slater determinants is considered instead
of considering a single Slater determinant. In the SMF approach, an element of the
ensemble of single-particle density matrices, represented by the index A, includes

quantum and thermal fluctuations in the initial state defined as,

pa (T 7 8) = il 1 N lp) (to) 1) 05 (R, 1 ). (3.1)
(4]

Here, i, j subscripts represent the index of singe-particle wave functions ¢; (7, t; A),
a subscript goes between the type of nucleon and pﬁj = <z | pj(tg)‘ J > is the time-
independent element of the density matrix defined by the initial conditions. The fun-
damental assumption in the SMF approach is that the density matrix elements are
independent random numbers. The mean values of these random numbers, which

follow Gaussian distributions, are given by,

py = (AP (to)] 5) = dign;, (3.2)

while the variances of the elements corresponding to fluctuations in the density are

given by,

1
(@ |0p5(to)] J) <]" |5Pb/\(t0)’ Z"> = §5ab5ii’5jj’ n; (1 — ”j) +n; (1—mny)]. (3.3)

In this context, n; denotes the occupation factors of the initial wave functions. At ab-
solute zero temperature, the values can only be 1 or 0. However, the Fermi-Dirac dis-
tribution determines the values at temperatures above absolute zero. The ensemble’s
mean-field Hamiltonian is used by the TDHF equation to calculate the single-particle

wave function in each event.

m%@ (F.5A) = h [pa(D)] ¢ (7, 15 2). 34

When projectile-like and target-like nuclei form a two-center structure in collision
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reactions like QF and DIC, the window between the colliding partners can be cho-
sen appropriately to define collective variables like the mass and charge asymmetry,
relative distance, and relative momentum of the projectile-like and target-like nu-
clei [37,[38]]. The geometry of the di-nuclear system is represented in Fig.[3.1]in the
CM reference system, where the collision axis is the x-axis, and the equation for the

window plane is written as,

(y —yo)sinf + (x — zg) cosf = 0, (3.5)

and for the symmetry axis,

(y — yo) cos — (x — ) sinf = 0. (3.6)

In the above equations, (g, yo) marks the center of the window plane, and ¢ measures

the angle between the symmetry and collision axes.

Figure 3.1: Representation of the coordinate system for a di-nuclear system with a
finite impact parameter. The symmetry axis is labelled as 2/, and the window plane
between the collision partners is labelled as 3’. The normal vector of the window

plane is represented with é.
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In this case, the macroscopic variables are the nucleus’s neutron and proton numbers
on one side of the window. The neutron and proton densities are expressed in terms
of these macroscopic variables, p)(7,t) and p) (7, t) for the event \ generated by the

SMF theory, are defined as:

N?@)) / 3 . pn(7,1)
= [ &’rO{[x — xo(t)]cos @ + [y — yo(t)]sind} ("7, . (3.7)
(Z?(t) pp(7, 1)
In the Eq. - 3.7, O(f(x)) denotes the Heaviside step function. The SMF theory claims
that the stochastic Langevm dynamics drive the temporal evolution of collective vari-

ables. The temporal variations in the number of protons and neutrons within the

projectile-like nuclei are described by the following expression:

i(50) =[x (G0« [eowr G(300). 69

where, 2’ is the point on the window plane and 2 is the velocity and §(z’) is the delta

function. The continuity equation for the current j and the density p is written as,

d .. > oy P N o N
api(ﬁt) ==V jo(i 1) = = [002 o (P, 1) 4+ 0,55 o (F 1) + 0200 (T 1) . (3.9)

In the given equation, o denotes the type of nucleon, whereas A indicates the label
assigned to the event. Equation [3.9]can be utilized to obtain the stochastic Langevin

equation that describes the change in neutron and proton numbers.

i) =/ et e )
= (i)

For each )\ event in the ensemble, the proton current j,(7,¢) and the neutron current

(3.10)

Jn(7, t) within the window determine the proton drift coefficient v (¢) and the neutron
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drift coefficient v\ (t), respectively. For small values of &, instead of using the delta
function, we can replace it with a Gaussian distribution g(x). The equation for this

substitution is as follows:

1

K\ 2T

g(x) = exp (—2%/2k%), (3.11)

x = 1.0 fm is in the lattice spacing order for numerical computations. The current

density vector in the SMF approach is defined as,

. I . .
DV ewd *o (= 4. ol 4. a(= 4. *ou (= 4. A
TaF0) = 5o 30 |25 F N TF 6 N) = B (F, 6 VR 10)] o)
ijEa
= ST (@ 6 e )
_E;m<]’(r77 ) i(rva )10]2 :
1]EQ

(3.12)

The ensemble average of the Langevin equations is used to calculate the mean proton

Z1(t) = Z}(t) and neutron N, (t) = N;\(t) numbers of projectile-like and target-like
collision partners. Using the mean values for density matrix elements p_?z = 0;;n;

with small fluctuations TDHF equations can be written as,

) e (R -8, e

where mean values of the nucleon density,

polFst) =Y O (F, 1)} (7, 1), (3.14)

hea

and the current density is defined as,

- . h L= .
JolF,t) = =3 Im (cb;;a(r, t)Vcb;;(r,t)) . (3.15)

hea

The subscript h in equations Eq. and Eq. denotes the summation over the

occupied states of the projectile and target nuclei, which are referred to as "hole"
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states. The net currents of protons and neutrons across the window plane are indicated
by the drift coefficients v,,(¢) and v,(¢). One can linearize the Langevin equation
around the mean values of V;(¢) and Z;(¢) to compute the fluctuations around the
mean values of neutron and proton numbers. Fluctuations can be caused by two
distinct sources. The first source is the variation in wave functions across various
events, denoted as A. The second source is the initial stochastic fluctuations in the

density matrix components, represented as 6/)3\1- = pJA-i — d;in;.

In the stochastic Langevin equation, the neutron v, (t) and proton v, (t) drift coeffi-
cients of an ensemble in the event \ are determined by the proton and neutron currents
in the window; their fluctuations, dv,(¢) and dv,(t), respectively, are expressed as
stochastic expressions of the proton and neutron currents. For small amplitude varia-
tions, the drift coefficients v, () and proton v, (t) are approximated as linear functions

around their average values,

The stochastic components of the proton and neutron currents give rise to the fluctua-

tions 5v]),‘ (t) and 0v)(¢) in the SMF theory. These fluctuations are uncorrelated Gaus-

sian distributions with mean values of v () = 0 and dvj(¢) = 0. In the Markovian
approximation, the variances are related to the diffusion coefficients of proton and

neutron exchange, denoted as Dz (t) and Dy y(t), respectively as,

OVA(t)ov) (1) = 20 (t —t') Dzz(1), (3.17)

SVAE)OVA () =26 (t — ') Dyn(t), (3.18)

and mixed diffusion coefficient is Dzx(t) = 0. Using Eq. [3.10} temporal change in

fluctuations of neutron and proton numbers written as,
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1040 (a— (2 -2) + G (v - Nf)) (53
dt \ON{\(t) %<ZA_Z—1A>+%(N3_N—%>

If the fluctuations are coherent around the average values, the linear limit becomes
even more accurate at approximating small amplitude fluctuations. The derivatives
of the drift coefficients evolve along the mean trajectory. The following definition
of §v\(t) gives the stochastic parts of the drift coefficients: §;)(7,t) represents the
fluctuations in the current density and the elements of the density matrix dp) (7, t) as

follows,

Sul(t) = /d?’rg (x) (x"5p;\y(77, ) +é- 650 (F, t)) : (3.20)

In the above equation, fluctuations in neutron and proton current density are written

as,

T Zlm (<I>*°‘ £V (7, )5@1), 3.21)

szOé

and fluctuations in elements of neutron and proton density matrix,

Spa(Tt) =Y (7, 4)0p) @5 (7, 1). (3.22)

1JEQ
3.2.2 Dispersion Calculations for Fragment Charge and Mass Distributions

The normal vector é to the window plane can be determined in Eq. Instead of
the Dirac delta function, we employ the Gaussian distribution given in Eq. 3.11] for
small values of x. For collision partners, neutron, proton, and mixed variances can be

defined as follows:

oAlt) = (M2 =37 (3.23)
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o) = (2~ 77) (3.24)

oAa(t) = (N} =) (22 - 27). (3.25)

The temporal change of these variances is written as,

0 ov,, ov,,
5012\,]\, = 28]\7 onn 282 oxn +2Dyy, (3.26)
0 ov ov
aoéz = 2@2p 0%, +2 3 N” 0%, + 2Dz, (3.27)
0 , Ovp 2 OA Ovp | Ovy
9 . 3.28
20N = g ONN T 50zt o Nz | Go g (3.28)

To calculate variances from Eqns. [3.26] [3.27], [3.28] diffusion coefficients and deriva-

tives of drift coefficients should be known.

3.2.3 Derivation of Neutron and Proton Diffusion Coefficients

We mentioned that 0v;,(t) = 0 6v,(t) = 0, the fluctuations resulting from the stochas-
tic components of the drift coefficients have zero mean values. The proton and neu-
tron diffusion coefficients are defined by integrating the relevant correlation functions

over the time span of the process,

t
/ dt' SV (1)0vE (V') = Daul(t). (3.29)

0

Current density fluctuations around the window plane and density fluctuations are the
two main sources of the stochastic components of the drift coefficients. The current
density changes become more apparent because of the greater nucleon flow rate rela-

tive to the window’s collective velocity. Consequently, for the stochastic components
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of the drift coefficients, the following equation only considers the variations in current

density.

sur(E) = L / &rg (z Zlm[ &- Vol (7, 1)5p%] (3.30)

iJEQ

In this context, the subscript j € P represents the summation over the states from
which the projectile nucleus originates, while the subscript ¢ € T represents the
summation over the states from which the target nucleus originates. The diffusion

coefficient becomes,

t e —
Daal(t) = /0 dt' 50 (£)6v) (1)
/dtRe S OANMAL )+ ) AL ()AL, ()

pEP, heT peT, heP
In Eq.[3.31} p and h subscripts denote particle and hole states, respectively, for colli-

(3.31)

sion partners. Matrix elements can be written as,

A (t) = ;L / &rg (z )(@*a( )é-%g(m)—q>g(m)é-%q>;a(?,t))

/
= —/dgrg ) @ (7, 1) (é -VOR(7,t) — ’

(3.32)
Equation [3.31] includes an infinitive number of particle states; thus, the following

approximation is used, if empty states are added and subtracted to the first term of

Eq.B31

Yo AROAR ) = Y AR@AR )~ Y AROA (). (333)

pePheT a€PheT h'e PheT

All of the projectile’s states are added up to form the summation. Since the wave func-
tions include distinct times, the first term cannot be eliminated by applying the com-
pleteness property of the wave functions. Nevertheless, the single-particle wave func-

tions that vary with time demonstrate a nearly diabatic nature within short intervals.
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Thus, during the brief time evolution 7 = ¢ — ¢/, the time-dependent wave functions
can be shifted forwards or backwards using the expression @, (7, t') ~ ®, (7 — ur, t),
where ﬂ(ﬁ, T') represents the drift velocity of nucleons passing through the window.
This velocity depends on the average position R= (71 + 72) /2 and the average time

T = (t+t') /2. Therefore, the completeness relation can be expressed as follows:

Z OF (Fy, t) @ (Fy — iir,t) = & (Fy — Ty + Ur), (3.34)

and Eq. [3.33| becomes,

> AN@AG (W Z/drld 790 (F1 — To + UpT) W (71, 1) Wi (75, 1)

a€P,heT heT

(3.35)
where the hole states simply need to be added up. For every chosen drift velocity,
the completeness relation provided by Eq.[3.34]is applicable. For each term in the to-
tal, choosing the velocity of the empty states ﬂh(f%, T) is the best option. Therefore,
by eliminating the summation over single-particle states, the calculation of the quan-
tal diffusion coefficients becomes much simplified. One needs to take into account
empty states originating from the target ion. The term W2 (7, t) in Eq. - can be

expressed as follows:

o (= h A~ — o (= x/ 1o
Wh (T1, t) = Eg (Zlfll) (6 . vl(bh (7’1, t) — 2—;2(1)}1 (’I"l,t)) . (336)
Equation becomes,
> ALMAG () = / &*rg (2') Gp(r)JT (7t — 7/2), (3.37)
a€P,heT

where Appendix B of [43] has the computational details. Here in Eq. , Jia (P, t—
7/2) represents the sum of the magnitudes of the current densities perpendicular to
the window for each wave function coming from the target, and its explicit expression

is given by,
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JT (Rt —7/2) = )Imcp 7t —7/2) (é V(T T — 7/2)) . (3.38)
M her
Gh(7) at 7 is the memory kernel defined as,
Gh(r) = L exp [— (7’/27'}1)2} (3.39)
T \/ETQI} T )

for the memory time, 77 = x/ ‘ﬁ’i | But we are using an approximation by replacing

G (1) with its average value,

Gr(r) = exp [— (7‘/2TT)2] : (3.40)

1
AT

A similar analysis can be performed for the second term as well,

S A% (A () = / 31 () Gp(r) L (7ot — 7/2). (3.41)

a€T ,heP

The total of the average magnitudes of the current densities of the wave functions
originating from the projectile ion is represented by J{ (7,¢ — 7/2) in the equation
above. For convenience, the lowercase vector 7 is employed instead of the upper-
case letter R. The proton and neutron diffusion coefficients can be expressed in the

following form,

/ dT/dSTg )JLa( —7'/2)+GP(T)Jf7a(?,t—T/2)}

/ dT Re

This expression, derived from a fully quantum mechanical framework and a micro-

Z Ah/h A?‘(L’h t - 7_ Z Ah'h Ah'h(t - 7_)

h'eP, heT h'eT, heP

(3.42)

scopic form, contains no adjustable parameters. The integral over time in the ex-
pression corresponds to memory effects. It automatically includes the Pauli blocking

effect, which has no classical counterpart. In this expression, the summation is only
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over a finite number of occupied states, and these single-particle wave functions are

obtained from TDHF solutions.

3.2.4 Calculating the Derivatives of Drift Coefficients

To determine the covariances as described by the Eqns. [3.26] [3.27] [3.28] it is nec-

essary to calculate not only the diffusion coefficients but also the derivatives of the
drift coefficients. The one-sided flux method is used to calculate the drift coefficient
derivatives. As a side note, when the charge asymmetry values of the colliding ions
are equal or nearly equal, the net drift becomes zero, rendering this approach ineffec-
tive. If that is the case, neighbouring reaction systems with different charge asymme-
try, the same energy in the CM frame, and the same initial angular momentum could
be used for calculating the reduced curvature parameters v and . While calculat-
ing the iso-scalar curvature parameter 3, the selected point’s charge asymmetry must
be close to the colliding ions and near the iso-scalar drift path. The selected point’s
charge asymmetry for the iso-vector curvature parameter must be very different from
those of the colliding ions and far from the iso-scalar drift path. The calculations will
also be at the same energy and initial angular momentum as the central system. In
this way, the criteria guarantee proper conditions for the appropriate determination of

curvature parameters and the related drift and diffusion coefficients.

In all of the systems studied in this work, initial charge asymmetries of the reaction
partners are different, resulting in a distinct mean-drift path shown in Figs. 2.2(a),
2.3(a), 2.4@a), 2.5(a) and [2.6(a). The potential energy surface of the two-center
nuclear system governs the diffusion of protons and neutrons in the N — Z plane.
Symmetry energy enables rapid diffusion in the direction perpendicular to the aver-
age drift path (beta stability valley), resulting in a swift equalization of the charge
asymmetry. Meanwhile, the process of diffusion proceeds at a slow pace through the

beta stability valley.

The collision partner’s state is represented by Ny, Z; on the N — Z plane in Fig.[3.2]
while the system’s local equilibrium point is shown by Ny, Z,. When the charge
asymmetries of the collision partners are close to the charge asymmetry of the com-

posite system, the quick equilibration of the charge asymmetry is not easily observ-
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Figure 3.2: Example drift path on the N — Z plane. The solid red line represents the
iso-vector drift, and the solid blue line represents the iso-scaler drift. The drift path is
illustrated with a solid magenta line. Ny, Z; is the projectile or target-like fragment

and Ny, Zj is the local equilibrium point.

able. During the extended period of interaction, we notice that the two-center nuclear
system gradually moves towards a state of symmetry. However, it eventually sepa-
rates before achieving complete symmetry. From this insight, it is feasible to parame-
terize the potential energy surface of the two-center nuclear system for each collision

parameter, using Ny and Z; as variables, in the following manner:

U(Ny, Zy) = %b(n cos ¢ — zsin@)? + %a(n sin ¢ + z cos ¢)*. (3.43)

The equation consists of two terms. The first term represents the iso-vector drift
path perpendicular to the beta-stability valley line. The second term represents the
iso-scalar drift path along the beta-stability valley line. Here, n = Ny, — N; and
2z = Zy — Z, as shown on the Fig.[3.2] For any point Ny, Z;, the distance from the
iso-vector path is represented by the term n cos ¢ — zsin ¢, and the distance from

the iso-scalar path is represented by the term n sin ¢ + 2 cos ¢. The Einstein relation,
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which explains the relationship between the diffusion and drift coefficients in the
transport mechanism of collective variables, is utilized to find the reduced curvature
parameters « and 3. The Einstein relation states that the relationship between the
neutron drift coefficient v, (¢) and the proton drift coefficient v,(t), as well as their

respective diffusion coefficients, could be expressed as follows:

(1) = -2 00
Ul =TT AN, (3.44)
= Dyn (BR,(t) cos ¢ + aRg(t) sin ¢) ,
- DZZ oU
wlt) === a7 (3.45)

= DZZ (/BRl)(t) Sin¢ - aRs(t) COS Qb) :

The relationship between the temperature and the curvature parameters can be ex-
pressed as § = b/T and o = a/T. The terms R,(t) = ncos¢ — zsin¢ and
Rs(t) = nsin ¢ + z cos ¢ represent the orthogonal distances of the collision partner,
defined by Ny and 77, from the iso-scalar and iso-vector paths, respectively. There-
fore, the derivatives of the drift coefficients with respect to the diffusion coefficients

and curvature parameters can be determined in the following manner:

8;}1\25 ) —Dyn (B os® ¢+ asin’ ¢) (3.46)
8§Z(f ) = +Dyn(a - B)cos psin. (3.47)
aglé(t) = =Dy (Bsin® ¢+ acos’ ¢) , (3.48)
|
8;]5\% )= 4Dzl B)cosorin (3.49)

These expressions relate the derivatives of the drift coefficients to the diffusion co-
efficients and the curvature parameters, incorporating the angle ¢ between the beta

stability valley and the neutron number axis.
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The time-dependent reduced curvature parameters are influenced by shell effects and
the microscopic character of the collision dynamics included in TDHF. In a macro-
scopic transport description, one has to average out this time dependence. Conse-
quently, we calculate the reduced curvature parameters by taking the average over an
appropriate time span. As observed from the drift path depicted in Figs.[2.2)a), [2.3]a),
2.4(a), [2.5(a), and [2.6(a), the drift occurs in the direction of symmetry. Points la-
beled as A and B along the drift path are utilized to compute the mean value of the
iso-vector reduced curvature parameter. The B to C proportion is utilized to compute

the mean value of the iso-scalar reduced curvature parameter. Corresponding times

of these points are shown in Figs. [2.2(b), 2.3(b), 2.4(b), [2.5[b) and [2.6(b).

The time interval between the initial contact point for the collision partners at ¢ 4 to the
point where the charge asymmetry equilibrium is reached, the point 3, is chosen to
compute the average iso-vector reduced curvature parameter. During this time frame,

the average value of the iso-vector reduced curvature parameter is determined as:

(3.50)

«

1 ts {vn(t) sing  up(t) cosgb} 5
"~ Rs )., | Dnn(t) Dy4(1) '

Taking the average on the same time interval, we can calculate iso-vector distance as,

Rgz/tB{[Nl(t)—No] sin ¢ s

— [Z1(t) — Zy] cos ¢} dt.

The average value of the iso-scalar reduced curvature parameter for the time interval

from ¢ 3 to t, when the collision partners are close to separation, is determined as:

_ 1 [ [va(t)cos¢ vp(t)sin¢}
b= Ry Ji, { Dyn(t) T Dy4(t) dt. (3.52)

The iso-scalar distance can be found by taking the average on the same time interval,

Ry = / {IVi(#) — NoJ cos .
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For the %4Ni + 3°Te and 2°°Pb + !'8Sn reaction systems, in numerical calculations,
the perpendicular Rg and Ry distances fluctuate abruptly, yielding unrealistic results
for the reduced curvature parameters. To address this issue, we included perpendic-
ular distance to the integral term to smooth out the fluctuations in the selected time

intervals. For these systems the o reduced curvature parameter becomes,

U S / " (w(t) sing  v,(t) cos¢) IRt G54

tg—ta Ji, Dyn Dzz

and the (3 reduced curvature parameter becomes,

f=— 1 / ‘ (U”(t) cos¢ | wlt) Sin¢) R (1)dt (3.55)

Cte—tp )y, Dyn Dzz

3.3 Results of TDHF + SMF Calculations for Selected Heavy-Ion Systems

To calculate diffusion coefficients, reduced curvature parameters and the dispersions,
the following initial angular momenta were utilized for reaction systems: **Fe +20%Pb
at { = 40h, 3°S + 23U at { = 40h, “Ni + **Te at £ = 82h and 2*°Pb + ''®Sn at
¢ = 60h. These initial angular momenta were selected to maximize the drift before
the collision partners separated, making the mean drift path of the reaction system

more pronounced.

Diffusion coefficients for the reaction systems were calculated using Eq. [3.42] and
the results shown in Figs. [3.3(a), 3.4(a), 3.5(), 3.6(a), 3.7(a). The solid blue line
depicts the time variation of the neutron diffusion coefficient, whereas the dashed red
line indicates the variation of the proton diffusion coefficient. The data shows that
the neutron diffusion coefficients are approximately double the value of the proton
diffusion coefficients. The observed effect is anticipated as a result of the repulsive
force between protons, known as Coulomb repulsion, and the fact that the colliding
partners are nuclei with an excess of neutrons [44, 42,143 145, 46| 47, 48|, 127,149, 50,
5141521531 154].

The reaction system’s potential energy surface is described by the reduced curvature

parameters « and 3, whose average values are calculated through the time intervals
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Table 3.1: Calculated average curvature parameters and their time intervals in **Fe +
208pp reaction with F. , = 238.5 MeV, %¢S + 238U reaction with E,,, = 151.1 MeV,
64Nj+ ¥0Te reaction with F.,, = 184.3 MeV and ?°°Pb+ ''8Sn reaction with F. ,, =
436.8 MeV. The time intervals between ¢4 and ¢z are utilized for calculating the
i1so-vector curvature parameter . Similarly, the time intervals between tp and ?¢

are employed for calculating the iso-scalar curvature parameter 3 using equations

Eq. @ and Eq. @ respectively.

System Orientation ta(fm/c) tg(fm/c) tc(fm/c) o  B(1073)

tip 290 410 1200 0.335 1.5

58F6 + 208Pb
side 290 410 1500 0.378 1.3
368 4 238y - 350 550 3500 0.245 11.1
64Ni + 130Te - 270 500 2200 0.269 8.0
206pp 4 1189 - 270 400 800 0.542 7.0

ta, tg, and to. These points correspond to the locations labelled as A, B, and C

on the mean drift paths displayed in Figs. 2.2(a), 2.3(a), [2.4(a), [2.5(a), [2.6((a) using
Egs. [3.50] and [3.52] Table [3.1] shows the average values of the reduced curvature

parameters determined by the calculations and the corresponding time intervals.
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Figure 3.3: Calculated (a) neutron and proton diffusion coefficients, (b) neutron, pro-
ton and mixed dispersions of the **Fe + 2%Pb at E., = 238.5 MeV for the tip

orientation of the **Fe nucleus with an initial angular momentum of ¢ = 40h.

Solutions to the coupled differential Eqns. [3.26] [3.27]and [3.28]yield the neutron, pro-
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ton and mixed dispersions. These equations are solved with the initial conditions,
oyt =0)=0,0%,(t =0) =0and 0%,(t = 0) = 0 for each system with the
selected initial angular momentum range. For the 5*Fe + 2°*Pb system at ¢ = 40h,
temporal change of the neutron, proton and mixed variances shown in Fig. [3.3(b) for
the tip orientation and in Fig. [3.4(b) for the side orientation with a solid blue line, red
dashed line and dotted magenta line respectively. Results of the calculations for each
initial angular momentum for this system are given in Table 3.2{for the tip orientation

and Table 3.3] for the side orientation.

Table 3.2: SMF results for the *Fe + 208Pb reaction at E ,, = 238.5 MeV in the tip

orientation of the ®®Fe nucleus with an initial angular momentum of ¢ = 40h.

4 ONN Ozz ONzZ OAA
40 95 62 75 155
60 7.8 51 60 126
80 45 30 32 7.1

100 1.5 08 04 1.8

120 08 05 0.1 1.0
140 06 03 01 0.7

160 04 02 00 05

180 03 01 00 03
200 02 01 00 02
220 02 01 00 0.2
240 0.1 00 00 0.1

For *®Fe + 28Pb system in the tip orientation with an initial angular momentum of
¢ = 40h, as shown in Fig. from the beginning of the interaction up to ¢ ~450 fm/c,
dispersion has the following order of magnitudes oz < 07z < onn. As the nucleon
exchange continues, correlation develops between the exchange partners and after ¢ ~
fm/c point, this ordering changes to 0z, < onz < onn showing that after substantial
energy dissipation, correlations become important. Within the standard mean-field
framework, magnitudes of fluctuations and the correlation is underestimated in the
dissipative collisions, and correlation term oy is calculated as zero. In the SMF

approach, these fluctuations are much larger, yielding a more realistic picture. Similar
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behaviour on variances is also observed for the rest of the systems studied in this
work. As nucleon exchange slows at around ¢ ~ 1500 fm/c, dispersions reach the

final asymptotic values.
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Figure 3.4: Calculated (a) neutron and proton diffusion coefficients, (b) neutron, pro-
ton and mixed dispersions of the **Fe + 2°®Pb reaction with E,, = 238.5 MeV for

the side orientation of the **Fe nucleus with an initial angular momentum of ¢ = 40h.

Table 3.3: SMF results of the ®Fe + 2%8Pb reaction with E,,, = 238.5 MeV for the

side orientation of the *®Fe nucleus with an initial angular momentum ¢ = 40h.

l;  ONN Ozz ONz Oaa
40 92 60 72 150
60 44 30 32 70
80 22 14 1.0 3.0
100 1.1 06 02 1.3
120 0.8 04 0.1 09
140 0.6 01 01 07
160 04 02 00 05
180 03 02 00 04
200 02 01 00 03
220 02 01 00 02
240 0.1 0.1 00 0.1

In Fig. 3.4 neutron, proton, and mixed dispersions are displayed in side orientation
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of the *®Fe + 2%®Pb system for ¢ = 40h. Similar to the tip orientation of the same
system, dispersion exhibits the following order of magnitudes from the beginning of
the contact until approximately ¢ ~ 450 fm/c. The ordering of oz, 07z, and onN
changes as correlation becomes important. Initially, oy is less than o, which
is less than ony. However, as correlation becomes more significant, the ordering
changes to oz, being less than oz, which is less than o . This transition occurs

when the system reaches asymptotic values at around ¢ ~ 1500 fm/c.
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Figure 3.5: Calculated (a) neutron and proton diffusion coefficients, (b) neutron, pro-
ton and mixed dispersions of the 3°S + 23%U reaction at F.,, = 151.1 MeV with an

initial angular momentum of ¢ = 40h.

For the 3¢S + 238U system with an initial angular momentum of ¢ = 40h, calculated
dispersions presented on Fig. [3.5(b). Around ¢ ~ 800 fm/c, correlation develops and
order of magnitude changes as 0, < onz < onn. Beyond the ¢ ~ 3300 fm/c point,

nucleon exchange slows down, and dispersions reach their asymptotic values.

On Fig. [3.6(b), calculated dispersions presented for the **Ni + 3°Te reaction system
with an initial angular momentum of ¢ = 82.h. Beyond ¢ =~ 600 fm/c, correlations
becomes effective and order of magnitude changes to 07, < onz < oyn. After
t ~ 2750 fm/c, dispersions arrive at their asymptotic values as the nucleon exchange

slows down.

For 2°Pb + '18Sn system with an initial angular momentum of ¢ = 604, results of the
dispersion calculations presented on the Fig.[3.7(b). Correlations become significant

after t ~ 400 fm/c, and as nucleon exchange decelerates beyond ¢ ~ 700 fm/c, the
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Table 3.4: SMF results of the ¢S + 23U reaction with E,,, = 151.1 MeV with an

initial angular momentum of ¢ = 40h.

Ui ONN Ozz ONz Oaa
34 79 53 6.1 129
35 79 52 6.1 128
36 78 52 60 127
37 79 53 6.1 128
38 80 53 62 13.0
39 80 54 62 13.1
40 80 53 62 130
41 43 29 28 65
42 36 24 21 53
44 30 21 15 43
46 25 17 1.1 34
48 19 12 05 23
50 14 09 03 18
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Figure 3.6: Calculated (a) neutron and proton diffusion coefficients, (b) neutron, pro-
ton and mixed dispersions of the %4Ni + 3Te reaction at £, ,, = 184.3 MeV with an

initial angular momentum of ¢ = 82h.

dispersions reach their asymptotic values.
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Table 3.5: SMF results of the %Ni + '3°Te reaction with E,,, = 184.3 MeV with an

initial angular momentum of ¢ = 82h.

l; ONN Ozz ONz Oaa
82 86 57 67 14.1
84 42 29 28 64
86 39 26 25 59
88 28 19 14 40
% 26 17 12 35
92 20 12 06 25
94 1.7 09 04 20
%% 15 08 03 1.7
9% 13 07 02 15
100 1.2 0.7 02 15
110 09 05 0.1 1.0
120 0.7 04 01 038
140 04 02 00 05
160 03 0.1 00 03
180 02 0.1 00 0.2
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Figure 3.7: Calculated (a) neutron and proton diffusion coefficients, (b) neutron, pro-
ton and mixed dispersions of the 2°Pb + 1'¥Sn reaction with E.,, = 436.8 MeV with

an initial angular momentum of ¢ = 60h.
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Table 3.6: SMF results of the 2°°Pb + '8Sn reaction with E,,, = 436.8 MeV with an

initial angular momentum of ¢ = 60h.

l; ONN Ozz ONz Oaa
60 63 42 48 102
80 6.1 41 46 08
100 57 39 43 9.2
120 52 35 38 83
140 46 31 32 72
160 3.7 25 24 56
180 27 1.8 14 38
200 1.7 09 04 20
220 1.2 06 02 14
240 1.0 05 0.1 1.1
2600 08 04 01 09

o4al) = XN (0) 4 05, (0) + 207 4(0). (3.56)

Using the dispersions calculated in this section, mass variance can be calculated as
in Eq. The next chapter will present calculation details for the production yield
and cross-sections of primary and secondary fragments. Subsequently, the results
obtained from these calculations for the reaction systems studied in this work will be

compared with the available experimental data.
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CHAPTER 4

FRAGMENT DISTRIBUTION AND CROSS-SECTION CALCULATIONS

4.1 Probability Distribution Calculations for the Production of Primary Frag-

ments

The solutions of a Langevin equation, Eq. [3.19] obtained in numerous iterations, de-
fine the joint probability distribution function P,(NN, Z) for creation of binary frag-
ments with N neutrons and Z protons. For the distribution function of macroscopic
variables, the Langevin equation is similar to the Fokker-Planck equation [S5)]. In
this specific case, where the drifts are linear functions of macroscopic variables as
described by Eq. [3.19] the distribution function for protons and neutrons at the ini-
tial orbital angular momentum /¢ can be expressed using a correlated Gaussian dis-
tribution. This distribution is characterized by the mean values and dispersions for

neutrons, protons, and their mixed dispersions.

1

27TO'NN(€)0'22(€)\/ 1-— p?

PyN, Z) = exp (—Cy) (4.1)

(' exponent for initial angular momentum ¢ defined as,
1 (Z—Zg)Q ) (Z—Zg) (N—Ng>
20=4) [\ozz0) ~ P \oz2(0) ) \onn(0)
<N — N4>2
+
ONN (f)

In the above equation, the correlation coefficient is defined as,

Cy =

4.2)
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. g JQVZ (5)
P o (Oonn (O]

4.3)

The mean neutron and proton numbers for projectile-like and target-like fragments, as
obtained from the TDHF computations, are denoted by the symbols N, and Z,. The
double probabilities can be determined by substituting the expression for the cross-
section with the mass number distribution. The summation is performed across N and
Z while maintaining a constant total mass number A = N + Z within the probability

distribution of the resulting fragment’s mass numbers.

11 1 A—A,S)2 44

B = Zom ™ [‘5 (o

where mass variance o 44 defined by the Eq.[3.56] Here, the S superscript defines the

fragment type as projectile-like or target-like.

4.2 Cross-Section Calculations for Primary Products

To calculate the cross-section for the primary products of the reaction, we can utilize

the standard expression as [56],

Th &
ok > (+1)P(N, 2), (4.5)
T

o%(N, 2)

min

where 1 is the reduced mass of the reaction system. P°(N, Z) defined as,

1
PPN, Z) = 5 [Plro(N. Z) + Plu(N, Z)] (4.6)

To ensure the total probability distribution is normalized to unity, the 1/2 factor is
added to the above equation. The cross-section for the mass distribution is similarly

written as,
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7Th2 emax

o*(A) = PRF Z(% + 1) P (A), 4.7
where P°(A) defined as,
1
]DZS<A) = 5 []Dl:gpro(A) + Pl:,gtar(A)} : (48)

The production yield of the primary fragments can be calculated in a manner similar

to that used for the cross-section expression as follows,

1 emax

Y(A) = ——— ) (20+1)P(A). (4.9)
> (@20+1) o

‘emin

Experimental investigations for the reaction system studied in this work [20, 21} [22]]
show that for the mass symmetric region between the QF peaks, fusion-fission (FF)
reaction mechanism has great contribution which cannot be calculated using TDHF.
To gain insight into the fragment distribution of that region, statistical decay code
GEMINI++ is utilized [52]. Using this methodology, within the mass asymmetric

region, the compound nucleus excitation energy is calculated as,

Eé’N = Ec.m. + Qgga (410)

where (), is the disintegration energy released in the fusion reaction. Distribution of

the primary fragments becomes,

Y (A" = YO (A) + oY FF(A), (4.11)

here, 7); is the normalization factor for the QF region, and 7), is the normalization fac-
tor for the FF region. 7); is calculated by fitting the calculated QF data to the experi-
mental data in the QF region. Similarly, the 7, is calculated by fitting the calculated
FF data to the FF region of the experimental data.
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4.3 Cross-Section Calculations for Secondary Products

Initially excited, primary fragments cool down by fission or releasing light particles
like protons, neutrons, and alpha particles. To incorporate these de-excitation pro-
cesses into the primary product computations, we utilize the GEMINI++ toolkit, a
C++ library containing statistical functions for de-excitation [57]. The following ex-
pression is utilized to estimate the overall excitation energy of the generated primary

fragments,

E}(Z,N) = E.m — TKE; — Qg(Z, N). (4.12)

In the above equation, 7KK IV represents the final value of the total kinetic energy in
collisions with the initial orbital angular momentum ¢, and Q,,(Z, N) indicates the
ground state () value of the resulting primary fragments compared to the initial value.
Collisions involving an initial orbital angular momentum ¢ will result in distributions
of the total spin and excitation energy in the exit channel centerd around their aver-
age values. This approach does not consider the variations in excitation energy and
spin of the primary fragments. We distribute the average value of the total excitation
energy and total angular momentum transfer according to the mass ratio of the pri-
mary fragments. The parent nucleus, which is in an excited state, releases particles
and performs secondary fissions until it can no longer decay due to insufficient en-
ergy. The GEMINI++ toolkit calculates the probability W (N, Z — N’ Z’) of tran-
sitioning from an excited parent nucleus with proton and neutron numbers (Z, N),

excitation energy E*(Z, N), and spin J to the final nucleus Z’, N'.

The probability distribution of secondary fragments is given by,

P (N, Z)= > > PM(N,Z)W(N,Z— N2, (4.13)

N>=N'Z>Z'

the summation over Z and N includes all pairs of projectile-like and target-like frag-
ments of the di-nuclear system according to their probability distributions. The cross-

section for the secondary fragments, 03°°(N’, Z') is then expressed as,
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Zrﬂax
mh?

= 5B > @+ 1P (N, Z'), (4.14)

min

U;ec (N,, Z/)

where the summation over ¢ ranges from /,,,;, t0 ;4.

4.4 Calculation Results for Selected Heavy-Ion Systems and Comparison with

Experiments

As previously discussed in the TDHF results section (see Section [2.4)), the range of
initial angular momentum for the studied system spans from the point where QF is
observed to the point where the reaction becomes purely elastic. We divide this initial
angular momentum range into smaller intervals to optimize computing time while

preserving the details of reaction dynamics at different impact parameters.

Further refinement may be required to improve comparability before matching our
results with the available experimental data. For experiments measuring the final
fragment scattering angles, which can be compared to our calculations, we compute
our cross-sections within the initial angular momentum range corresponding to the
experimentally observed scattering angles of the final reaction products in the labora-

tory frame.

For the *®Fe + 208Pb reaction with E., = 238.5 MeV, within the initial angular
momentum range of 40h < ¢ < 240h, the scattering angles of the final fragments
are calculated as 50.1° < 012 < 86.7° and 35.7° < 4 < 58.8° for tip orientation,
and 50.6° < 0% < 81.1° and 38.8° < #l** < 58.4° for side orientation, as presented
in Table 2.1 In the experimental data for this system, final reaction products are
measured with the CORSET spectrometer [20], with measurement arms placed at
0l® = 60 £ 20 degrees and 6* = 60 & 20 degrees, which are covered by our
calculations. Therefore, the initial angular momentum range 40h < ¢ < 240h is also

used in calculations for final product yields and cross-sections.

Similarly, an initial angular momentum range of 604 < ¢ < 260#A is considered for
the 2°°Pb + 1!8Sn reaction with E.,, = 436.8 MeV. Table [2.4]displays the computed

scattering angles in the laboratory frame, which correspond to the angular coverage
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range of the experiment. The detector was positioned at 6;,, = 25° [22]].

In the %4Ni + !3°Te reaction with E,, = 184.3 MeV, an initial angular momentum
range of 82h < ¢ < 180h is considered, and the calculated scattering angles of the
final fragments are presented in Table[2.3] In this case, no angular measurements of
the scattered final products were made in the experiment [21]]. Thus, we utilized the

same initial angular momentum range for final product calculations.
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Figure 4.1: Selection of initial angular momentum for production yield calculations

of 36S + 23U reaction with E,,, = 151.1 MeV. Corresponding ¢ values for TK E

points that reside inside the red selection box [20]] are utilized for yield calculations.

In the experiment for the 3°S + 23®U reaction with E.,, = 151.1 MeV [20], a selec-
tion box was applied on the T K — A plane to eliminate contributions from elastic
events for yield calculations. Measurements outside this selection box were consid-
ered elastic events due to the higher T K I/ of the fragments. We employed a similar
methodology for this system to enhance compatibility with the experimental data.
Using the TDHF calculations presented in Table[2.2] we plotted the 7K E of the final
fragments for each initial angular momentum against their final masses. Figure {.1]
illustrates the 7K E points corresponding to the final masses with different initial an-

gular momenta. The selection box used in the experiment was also plotted, and points
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outside this box were considered elastic and excluded from the production yield cal-
culations. Based on these results, the initial angular momentum range 34h < ¢ < 40h

was considered for the yield calculations of final reaction products.

For the 58Fe+2%8Pb and 3°S+238U reaction systems, experimental data are available in
the form of mass distributions of primary fragment yields [20]. For the *Ni + 3Te
system, experimental data include secondary production cross-sections for various
transfer channels and mass distributions of secondary products [21]]. For the 2°°Pb +
118Sn system, experimental data are available for secondary production cross-sections

across different transfer channels [22].

Figure 4.2|shows the primary cross-sections for the final reaction product. The white
stars indicate the highest cross-section points. Peak points for **Fe 4 2°*Pb, 54Ni 4
130Te and 2°6Pb + 18Sn systems corresponds to the initial projectile and target pairs
with zero nucleon exchange, meaning that the quasi-elastic and elastic reaction dom-
inate around the peak points. For %S + 233U system, as we mentioned before, we ex-
cluded most of the contributions from the elastic reactions to comply with the experi-
ment. As we can see from Fig.[d.2((b), this results in a broader peak, where the lighter
peak is located at Z = 27, N = 39 and heavier peak located at Z = 81, N = 127

with relatively lower peak cross-section compared to the other systems.

Figure [4.3] shows the SMF results for the QF process and the GEMINI++ results
for the FF process according to the MNT mechanism. The dashed light-blue lines
represent the mass distributions of the final primary products estimated using the
SMF framework. The orange hatching area indicates the contributions from the FF
events, which were computed using the GEMINI++ toolkit. The black dotted lines
correspond to the summation obtained using Eq. To understand the possible
potential surface of these systems, we utilized the proximity model to compute the
driving potential of the composite systems. The calculations were conducted using
the default settings provided on the NRV site [38], with the distance between mass
centers determined via TDHF calculations. Each system’s driving potential energy

distribution is displayed in the upper panels of Fig.[4.3]

QF and FF processes overlap in the mass-symmetric area, situated between the QF

peaks shown in Figi4.3] The only areas with QF contributions are the mass-asymmetric
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Figure 4.2: Final primary production cross-sections for projectile-like and target-like
fragments on the N-Z plane, (a) for the **Fe + 2°°Pb with E.,, = 238.5 MeV, (b)
for the 26S + 238U with E.,, = 151.1 MeV, (c) for the *Ni + 3°Te with E,,, =
184.3 MeV and (d) for the 2°°Pb + '8Sn with E,,, = 436.8 MeV. Cross-sections are

shown on a logarithmic scale in the units of millibarn.

areas surrounding the initial masses. Using Eq. .4 we calculate the probability dis-
tributions P(A) for the projectile-like and target-like fragments A in the QF reactions
of *®Fe + 208Pb in both tip and side geometries. These distributions provide infor-
mation about the mean mass numbers and mass dispersions for each initial angular
momentum value. The contributions from the tip and side collision geometries are

combined simply using P(A) = (Pyp(A) + Psiae(A))/2.

We assume that the reaction partners are fused and evaporated according to their ex-
citation energies for the FF calculations since we are only interested in observing the
shape of the distribution. The computed distributions are compared with the empirical
yields indicated by the solid red dots. The normalization constants 7; and 7), for the
QF and FF processes are obtained independently by fitting the experimental yield data

at appropriate locations. The experimental peak value is utilized for the 36S + 238U
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Figure 4.3: Results of the primary fragment yield calculations (bottom) and potential
energy surface at the contact point of collision partners (top) for the (a) **Fe + 2°8Pb
reaction with E,,, = 238.5 MeV and for the (b) 36S + 233U reaction with E,,, =
151.1 MeV. Experimental data obtained from [39]] for the **Fe+2®Pb system and [20]
for the 35S + 238U system.

reaction system. Unfortunately, it is difficult to determine the maximum values in the
QF data for the *®Fe + 2°%Pb reaction system. The normalization constant for this

reaction system is obtained by utilizing data points near A = 80.

The calculations accurately depict how the QF and FF processes depend on the entrance-
channel characteristics of the reactions for the systems depicted in Fig/d.3] In the
368 + 238U reaction system, due to a smaller Coulomb effect and larger mass asym-
metry, a greater number of nucleon exchanges occur. This effect is explained as with
an increasing Coulomb factor, the contact time between reaction partners decreases
exponentially, meaning a smaller time frame to exchange nucleons [60]. At ener-
gies above the Coulomb barrier, the major contribution comes from the FF processes

that yield the mass symmetric fragments for ¢S + 238U system. However, the domi-
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nant process for ®*Fe + 28Pb is the QF process [20]. This is also observed with the
Coulomb factors Z; Z, presented in Table 4.1}

Up to seven nucleons can be transferred in collisions with low initial angular mo-
mentum in the *®*Fe + 2°®*Pb reaction system, according to TDHF calculations dis-
played in Tables and With an increase in the initial angular momentum, the
collisions approach a state of near-perfect elasticity, leading to no transfer of nucle-
ons and negligible dispersion of mass. The computed primary mass distribution, as
shown in Fig. a), exhibits a peak location that is centered around 2°*Pb for heavier
fragments and 5®Fe for lighter fragments. The SMF approach yields satisfactory out-
comes in describing this system’s observed distribution of primary fragment masses.

However, the data near the mass symmetric region is still underestimated.

The differences can be attributed to the symmetrical distribution of secondary fission
fragments as projected by the GEMINI++ toolkit. Shell effects can cause secondary
fission to show an uneven mass distribution at low excitation energy of about 0.5
MeV; these effects are not considered by the GEMINI++ toolkit. The limitations of
the current diffusion description in SMF theory could also contribute. This is because,
at small initial angular momentum values near the fusion formation region, it may be
difficult to determine the window position between collision partners, which leads
to an underestimate of the diffusion coefficients during the time interval following

maximum overlap.

The difference in diffusion coefficients is clearly shown in Figs a), a), whereas
the diffusion behavior for the S + 23U system in Fig. [3.5|is almost symmetrical. A
lower yield around mass symmetry could result from this imbalance in diffusion co-
efficients. The GEMINI++ toolkit exhibits symmetrical behaviour in its calculations
of thermal fission and does not include the influence of shell effects, which become
significant at energy levels of about 0.5 MeV. The observed asymmetrical behaviour
inside the symmetrical portion of the mass distribution is most likely caused by shell

effects.

The impact of the closed shell near the doubly magic 2°Pb nucleus on the %S + 233U
reaction system may be noticed by examining the final proton and mass numbers of

the target-like fragments (Z o, As2), as presented in Table The duration of con-
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tact is enough for the target-like fragments to reach the doubly magic stable 2°8Pb
nuclei, with an initial angular momentum of ¢ = 40Ah or less. The impact of this
phenomenon is also evident in Fig. [4.3(b), where the final primary mass calculations
of this system do not consider elastic events. Within the quantal diffusion mechanism
framework, a wide range of binary fragments are associated with each initial angular
momentum. This complicates precisely determining the experimental angular cover-

age range in TDHF calculations.

In Fig.[4.3](b), the dotted black line shows yield calculations by summing over the ini-
tial angular momentum range ¢ = 34h — 40h. The primary mass distribution exhibits
a peak position close to A ~ 208 for target-like fragments. The half-width of the
asymmetric QF distribution is 20u, which is calculated as the difference between the
mass with the maximum yield and the more symmetric mass with half the maximum
yield. This statement is consistent with the findings in Figure 15(a) of reference [39].
The ratio of the integrated yield value within the mass symmetric interval A% £ 20
(117 < A < 157) to the integrated yield value confined by the bounds of the existing
experimental data set (59 < A < 221) is determined to be 15.2%. The observed
connection closely matches the calculated ratio of 14.9% obtained from the existing

experimental data [20]].

There is a strong correlation between the maxima of the mass distribution and the
local minima of the potential energy surface [60]. In particular, the lowest potential
energy is associated with the highest production of asymmetric QF fragments. The
characteristics of asymmetric QF are mostly influenced by the potential energy of
the combined system. The maximum yield in the **Fe + 2°*Pb reaction is found for
fragments having masses of around 208u. Nevertheless, the inability to determine
the yield peak points makes it impossible to provide a precise value [S9]. This cor-
relation additionally emphasizes the role of shell effects in shifting the heavier mass

asymmetric peak.

In Fig. [d.4] we show the secondary production cross-sections for Ni-like and Te-like
fragments in the 4Ni+13°Te reaction with E, = 184.3 MeV and in Fig. for Sn-
like fragments in the 2°°Pb + ''8Sn reaction with E, , = 436.8 MeV. The experimen-

tal cross-sections are represented by solid red circles, while the secondary production
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Figure 4.4: Results of the secondary cross-section calculations for Ni-like fragments
with Z = 26, 28, 30 and for T'e-like fragments with Z = 50, 52, 54 in the ®*Ni 4 3°Te
reaction with F. ,, = 184.3 MeV. Results of the GRAZING model [61] 62] were also

presented for the same transfer channels. Experimental data obtained from [21]].

cross-sections, calculated using the SMF theory, in addition to post-evaporation uti-
lizing the GEMINI++ toolkit, are depicted as solid blue lines. Each panel displays

the isotopic distribution of the reaction result based on the neutron number.

The calculated cross-sections for the ®*Ni and '*°Te transfer channels from (-2p) to
(+2p) with £, = 184.3 MeV compared with the experimental data [21]] in Fig.
The calculations indicate a tendency to underestimate the experimental results for
proton transfer channels of larger amounts, which is also found in other models [63].
In addition, we compare our findings with those of the GRAZING model [61]], which

is represented by a dashed green line.

The cross-sections for the transfer channels from (+1p) to (-2p) in the 2°Pb + 18Sn
reaction system, with F, ,, = 436.8 MeV, were calculated and compared with exper-
imental data [22]]. These calculations were done for the lighter fragments, and the
incident energy was above the Bass barrier (Vi,s = 410MeV'). The peak positions

and cross-sections exhibit a strong similarity to the experimental results. A review
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has been done in a recent study [64] to analyze this reaction within the framework of

time-dependent covariant density functional theory.
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Figure 4.5: Results of the secondary cross-section calculations for Sn-like fragments
for different transfer channels (Z = 48, 49, 50, 51) in the 2°Pb + ''¥Sn reaction with
E.m = 436.8 MeV. Results of the GRAZING model [61] were also presented for the

same transfer channels. Experimental data obtained from [22]].

In the bottom portion of Fig. the mass distribution of secondary products in the
64Ni + 130Te and 2°°Pb + ''8Sn systems are presented while corresponding potential
energy surface shown at the top. The solid blue line represents the results of the
secondary production cross-section calculations based on the SMF approach, with
post-evaporation calculations done by the GEMINI++ toolkit. The dashed lighter blue
line shows the primary production cross-sections for these systems. For %4Ni 4 130Te

system, experimental mass distribution for secondary products were available [21].

The orange hatches in the symmetric region indicate the contributions from the FF

reactions computed using the GEMINI++ toolkit. The dotted black line shows the
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summation using a similar equation to Eq. 4.T1] In this case, the QF fragments are
computed as cross-sections rather than yields; therefore, there is no need for a normal-
izing factor. As previously done, the FF yields are adjusted to match the experimental

data at around A = 100.

The secondary fragment distribution of the reaction products in the 2°Pb + 1!8Sn
system is displayed in Figure d.6(b). This system does not exhibit FF in this reaction,
and no experimental data are available. The dashed line of a lighter blue colour

represents the distribution of primary production cross-sections.
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Figure 4.6: Results of the secondary fragment cross-section calculations (bottom)
and potential energy surface at the contact point of collision partners (top) for the (a)
64Ni 4 130Te reaction with F,,, = 184.3 MeV and for the (b) 2°°Pb + ''¥Sn reaction
with E ,, = 436.8 MeV. Primary fragment cross-sections are also presented. Exper-

imental data for mass distribution for the ®*Ni + 3Te system obtained from [21]].

In both systems shown in Fig. 4.6 the peak points of the primary and secondary
production cross-sections overlap, indicating that most contributions arise from quasi-

elastic and elastic reactions near the peak points. In these reactions, the system’s
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energy is predominantly released as the kinetic energy of the outgoing fragments,
resulting in no internal excitation and, therefore, no decay. As we move away from the
peaks, contributions from QF reactions increase, suggesting that primary products are
more likely to be left excited. The primary and secondary production cross-sections

in this region do not completely overlap.

In Fig. [4.6(b), this effect is more noticeable for the 2°°Pb + '!8Sn system. The sec-
ondary fragments are represented by the blue line in the mass distribution. We find
that secondary fission occurs in the highly excited Pb-like fragments. The peak ob-
served at A = 80 corresponds to the decay products produced due to this fission
process. Additionally, the cross-sectional peaks match the local minima on the poten-

tial surface depicted in the upper portion of Fig. 4.6

Table 4.1: Entrance channel parameters, magicity, Coulomb factor, mass asymmetry
and positions of the projectile-like and target-like peaks related to exchanged nucleon
numbers in the final primary mass distributions of asymmetric QF fragments in reac-

tions.

Reaction = Magicity 2174, n  Mp Mpy Exc. Nucl.
206pp 4 1188p 2 4100 0.271 123 201 35
8Fe + 208Ph 2 2132 0.564 65 201 7

365 + 28y 1 1472 0.737 67 207 31
0INi + 130Te 1 1456 0.340 68 126 4

Table [.1] provides each system’s reaction results and entrance channel parameters.
The table presents the values of the entrance channel charge product (Z; Z5) and mass
asymmetry (n). My and My denote the mean mass numbers of the light and heavy
fragments at their initial angular momenta when the maximum number of nucleons

are exchanged between the reaction partners.
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CHAPTER 5

SUMMARY AND CONCLUSION

5.1 Summary

This thesis presents an in-depth exploration of nuclear reactions, focusing on the ap-
plication of the quantal diffusion approach based on the SMF theory to low-energy
heavy-ion collisions. The study begins with a detailed review of the TDHF theory,
discussing its theoretical aspects and relevance to nuclear reaction systems. The
TDHF framework, combined with the Skyrme effective interaction, sets the foun-

dation for understanding the initial dynamics of heavy-ion collisions.

The study extends the TDHF solutions stochastically in subsequent chapters using the
SMEF approach. This extension is crucial as it introduces fluctuations and correlations
that are not captured by the mean-field alone. The derivation of the SMF theory is
briefly examined, along with the computation of dispersions, which plays a crucial

role in describing the MNT processes.

Extensive calculations were performed for selected heavy-ion systems, including
%Fe + 208Pp reaction with E.,, = 238.5 MeV, 36S + 238U reaction with F., =
151.1 MeV, **Ni + '3°Te reaction with E,,, = 184.3 MeV and ?°Pb + ''¥Sn reac-
tion with E.,, = 436.8 MeV. These calculations focused on determining the final
production cross-sections and yields of primary and secondary fragments resulting
from the collisions. The SMF approach, utilizing quantal nucleon diffusion derived
from MNT, incorporates the full geometry of collision dynamics without additional
adjustable parameters apart from the Skyrme parameters of the TDHF. The statis-
tical code GEMINI++ was employed for evaporation calculations to determine the

secondary fragment distributions. The GEMINI++ toolkit is also utilized to calcu-
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late contributions from fusion-fission-like events. Understanding the MNT mech-
anism is crucial for synthesizing neutron-rich super-heavy elements and producing

new neutron-rich nuclei.

5.2 Conclusion

In conclusion, this thesis demonstrates the usefulness of the quantal diffusion ap-
proach based on SMF approach in modelling the dynamics of low-energy heavy-ion
collisions. The integration of TDHF and SMF theories offers a comprehensive frame-
work that captures both the deterministic and stochastic aspects of nuclear reactions.
The results from this study align well with experimental observations, validating the

theoretical models used.

Despite significant advancements in the microscopic description of low-energy heavy-
ion reactions using the SMF theory compared to the mean-field models, there are
still areas for improvement. The current model linearizes the Langevin equation
around the mean trajectory, assuming small amplitude fluctuations, and uses a simple
parabolic form for the driving potential U(N, Z); introducing anharmonicity could
reduce isotopic width and improve agreement with experimental data. Additionally,
the SMF theory has not yet addressed fluctuations in scattering angles and total kinetic
energy (TKE) distributions, which are linked to the total excitation energy distribu-
tion. Adapting the SMF concept to the relative motion of colliding systems could al-
low for evaluating TKE fluctuations based on microscopic mean-field dynamics. The
SMF theory assumes Gaussian initial fluctuations in the density matrix, which sim-
plifies the formulation of the quantal diffusion approach, but relaxing this assumption
could improve the description of higher moments of one-body observables [63, 166].
However, it would require generating a vast ensemble of TDHF trajectories, leading to
significant computational costs. Recent proposals, such as applying the SMF concept
to the time-dependent reduced density matrix approach, suggest potential extensions
of the current framework [67]. These efforts aim to enhance the accuracy of the SMF
theory in describing complex nuclear reactions, marking substantial progress in un-
derstanding heavy-ion reactions while highlighting the need for further research to

refine and expand the theoretical model.
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The application of the TDHF-SMF approach to various heavy-ion systems demon-
strates its versatility and robustness. The methodologies and findings presented in
this thesis pave the way for future research, offering a valuable tool for studying and

predicting the outcomes of heavy-ion collisions.
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