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ABSTRACT

APPLICATION OF THE QUANTAL DIFFUSION APPROACH BASED ON
THE STOCHASTIC MEAN-FIELD THEORY

Kayaalp, Arda

M.S., Department of Physics

Supervisor: Prof. Dr. Osman Yılmaz

Co-Supervisor: Prof. Dr. Şakir Ayık

August 2024, 75 pages

This thesis investigates the application of the quantal diffusion approach based on

Stochastic Mean-Field (SMF) theory to low-energy heavy-ion collisions, with a fo-

cus on multinucleon transfer (MNT) reactions. The study specifically examines the

reactions of 58Fe + 208Pb at Ec.m. = 238.5 MeV, 36S + 238U at Ec.m. = 151.1 MeV,
64Ni + 130Te at Ec.m. = 184.3 MeV, and 206Pb + 118Sn at Ec.m. = 436.8 MeV. The

Time-Dependent Hartree-Fock (TDHF) theory, widely utilized for analyzing reaction

dynamics, is extended by incorporating SMF theory to address the limitations related

to fluctuations and deviations in fragment mass and charge distributions. This ap-

proach allows for a more accurate description of the complex dynamics involved in

MNT processes. Primary production yields and secondary cross-sections are thor-

oughly analysed after evaporation and calculated using the statistical de-excitation

model with the GEMINI++ toolkit. The results demonstrate a good agreement with

experimental data, validating the effectiveness of the SMF approach. This integration

of SMF and GEMINI++ significantly enhances the precision of predicting reaction

outcomes, contributing to a deeper understanding of nuclear reaction mechanisms.
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ÖZ

STOKASTİK ORTALAMA ALAN TEORİSİNE DAYALI KUANTAL
DİFÜZYON YAKLAŞIMININ UYGULAMASI

Kayaalp, Arda

Yüksek Lisans, Fizik Bölümü

Tez Yöneticisi: Prof. Dr. Osman Yılmaz

Ortak Tez Yöneticisi: Prof. Dr. Şakir Ayık

Ağustos 2024 , 75 sayfa

Bu tez, düşük enerjili ağır iyon çarpışmalarına Stokastik Ortalama Alan (SOA) te-

orisine dayalı kuantal difüzyon yaklaşımının uygulanmasını, çoklu nükleon transfer

(MNT) reaksiyonları çerçevesinde araştırmaktadır. Çalışma 58Fe + 208Pb reaksiyo-

nunu Ec.m. = 238.5 MeV enerji seviyesinde, 36S + 238U reaksiyonunu Ec.m. = 151.1

MeV enerji seviyesinde, 64Ni + 130Te reaksiyonunu Ec.m. = 184.3 MeV enerji sevi-

yesinde ve 206Pb + 118Sn reaksiyonunu Ec.m. = 436.8 MeV enerji seviyesinde ince-

lemektedir. Reaksiyon dinamiklerini analiz etmek için yaygın olarak kullanılan Za-

mana Bağımlı Hartree-Fock teorisi (TDHF), çarpışma sonrası ortaya çıkan ürünlerin

kütle ve yük dağılımlarındaki dalgalanma ve sapmalara ilişkin sınırlamaları ele almak

için SOA teorisini içererek genişletilmiştir. Bu yaklaşım, MNT süreçlerinde yer alan

karmaşık dinamiklerin daha doğru bir şekilde tanımlanmasına olanak tanır. Birincil

ürünlerin üretim dağılımları ve GEMINI++ kodu ile hesaplanan istatistiksel soğuma

modeli kullanılarak buharlaşma sonrası ortaya çıkan ikincil ürünlerin tesir kesitleri

analiz edilmiştir. Sonuçlar, deneysel verilerle iyi bir uyum göstererek SMF yakla-

vii



şımının etkinliğini doğrulamaktadır. SOA ve GEMINI++ kütüphanesinin bu enteg-

rasyonu, reaksiyon sonuçlarının tahmin edilmesinin doğruluğunu önemli ölçüde ar-

tırarak, düşük-enerjili ağır-iyonları içeren nükleer reaksiyon mekanizmalarının daha

derinlemesine anlaşılmasına katkıda bulunmaktadır.

Anahtar Kelimeler: Stokastik Ortalama Alan Kuramı, Zamana Bağlı Hartree-Fock

Kuramı, Çoklu Nükleon Transfer Mekanizması, Düşük Enerjili Ağır İyon Reaksi-

yonları
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CHAPTER 1

INTRODUCTION

1.1 A Brief Description of the Atomic Nuclei

An atom’s mass comes mainly from its tiny, dense nucleus at the center of the atomic

complex and measures about ≈ 10−14 meters across. The nucleus comprises protons

and neutrons, collectively known as nucleons, and is identified by the neutron number

N and the proton number Z. A unique combination of these numbers forms a nuclide,

symbolically represented as A
ZXN , where A is the mass number (A = N +Z), and X

is the element symbol corresponding to the atomic number Z. Nuclei with the same

number of protons but different numbers of neutrons are called isotopes. Those with

the same number of neutrons but different numbers of protons are known as isotones.

Nuclei that share the same mass number are referred to as isobars.

The atomic nucleus is a finite, self-bound, non-relativistic quantum many-body sys-

tem of protons and neutrons [1]. These two kinds of fermions interact through the

nuclear force. The nucleus is self-bound because of attractive nuclear interactions

and has no internal core like an atomic system. The range of the nuclear force is

finite; the distance between nucleons is represented by d, and the attractive compo-

nent of the force extends to around d ≈ 1.4 femtometers (fm), while the repulsive

component occurs at distances less than d ≈ 0.5 fm.

The primary focus of our research is the study of nuclear reactions, which serve as

illustrations of quantum many-body dynamics. Our primary objective is to utilize a

microscopic quantum many-body theory to accurately predict the optimal processes

for generating specific nuclei. These theoretical projections have the potential to

enable the examination of unstable nuclei that have not yet been synthesized.
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Multi-nucleon transfer (MNT) and quasi-fission (QF) events in low-energy heavy-ion

reactions are examples of non-equilibrium quantum many-body dynamics. They have

gained great attention because they provide insights into the microscopic reaction

mechanisms that reveal both colliding nuclei’s static and dynamic features. These

procedures have recently gained attention as potentially effective ways to produce

unstable nuclei that are challenging to produce in other ways [2].

The transfer of many nucleons between two colliding nuclei occurs in both MNT and

QF processes. You could think of QF processes as a specific type of MNT. Several

variables affect the dynamics of these transfers, such as the projectile and target com-

bination, the incident energy, the initial angular momenta, and the relative orientations

if the colliding partners have ground state deformations.

1.2 Heavy-Ion Reactions and Means to Produce Super-Heavy Elements (SHE)

A nuclear reaction occurs when ions approach closely enough to interact via the nu-

clear force, leading to structural changes in their atomic nuclei. Nuclear reactions

are classified as low-energy heavy-ion reactions if the interacting ions are larger than

helium nuclei and the bombardment energy per nucleon is roughly ≈ 10 MeV per nu-

cleon. The impact parameter (b), or the initial orbital angular momentum (ℓ), defines

the closeness to the central collision in low-energy heavy-ion collisions. The impact

parameter is the perpendicular distance measured from the center of the projectile

nuclei to the central beam axis, shown as a dashed line in Fig. 1.1. In terms of the

impact parameter (b), the initial angular momentum (ℓ) can be also defined as,

ℓ = b(2µEc.m.)
1/2, (1.1)

where µ is the reduced mass of the reaction system. When the impact parameter ex-

ceeds the combined radii of the two atomic nuclei, referred to as distant collisions,

the ions do not come close enough for significant nuclear interaction. In this case,

only the Coulomb force affects their trajectory, leading to elastic and quasi-elastic

reactions. Nuclear interaction becomes more significant as the impact parameter de-

creases to the grazing impact parameter, equal to the sum of the radii of the two nuclei.
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This leads to multiple nucleon exchanges between the colliding ions, known as graz-

ing collisions. Some of the bombardment energy dissipates into internal degrees of

freedom, heating the system. The two-center nuclear system may rotate together for

a while before separating, a phenomenon known as deep-inelastic collisions (DIC).

Figure 1.1: Classical trajectories of heavy-ion collisions [3].

As the impact parameter decreases further, the nuclei interact very strongly, classified

as close collisions. In close collisions involving relatively light systems, the projectile

and target nuclei may fuse to form a hot compound nucleus, a process known as

nuclear fusion.

Elements heavier than plutonium (atomic number Z = 94) are unstable and do not

occur naturally; they are produced artificially through nuclear reactions and elements

with atomic numbers Z ≥ 104 are called superheavy elements and are produced via

fusion reactions of heavy nuclei. The production cross-section in these reactions is

very small (around a few picobarns), making it crucial to understand the reaction

mechanisms theoretically. Various factors such as collision energy, mass symmetry,

deformation, isospin, and the shell structure of the colliding nuclei affect the fusion

probability. Isolating the effect of a single variable is a challenging task to achieve.

Fusion reactions occur in three stages. In the first stage, the projectile nucleus over-

comes the Coulomb barrier and fuses with the target nucleus. The fused system

reaches thermal equilibrium in the second stage, forming a hot compound nucleus.

In the third stage, the excited compound nucleus cools down by splitting into smaller

3



nuclei, fusion-fission (FF), or emitting light particles like neutrons, protons, and alpha

particles, a process known as fusion-evaporation. Superheavy elements are produced

as fusion products through the evaporation residue at the end of this cooling process.

Figure 1.2: A schematic representation of a heavy-ion collision around the Coulomb

barrier [4].

In heavy systems, the reaction mechanism develops differently from the fusion pro-

cess, as shown in Fig. 1.2. Specifically, in systems where the Coulomb factor calcu-

lated as the product of charge numbers exceeds a critical value (Z1Z2 > 1600), the

projectile and target nuclei stick together during the collision, forming a two-center

structure similar to deep-inelastic reactions. Multiple nucleons are exchanged through

the hypothetical window between the two nuclei, maintaining the total mass number.

At the same time, a significant portion of the bombardment energy and angular mo-

mentum transfers into internal degrees of freedom. Without forming a compound

nucleus, the system may separate into two nuclei with different proton and neutron

numbers from the initial values. This mechanism, which prevents the formation of a

compound nucleus, is known as QF. These reactions in heavy systems represent an in-

termediate reaction mechanism between DIC and the fusion reaction of a compound

nucleus. Understanding this mechanism is important for MNT processes and syn-

thesising super-heavy elements (SHE). Additionally, QF reactions provide a suitable

method for obtaining heavy nuclei rich in neutrons and protons. The MNT mech-

anism observed in these reactions may enable the creation of transuranium-heavy

elements. Studying new elements and the static and dynamic properties of unstable

4



nuclei rich in protons and neutrons, particularly those near the nucleon drip line, are

currently significant and current research topics in heavy-ion physics [5, 6].

Fusion-evaporation reactions around the Coulomb barrier energies are the only way

to produce SHE. However, the formation of SHE after evaporation is hindered by FF

and QF processes, which are the two effective reactions preventing the formation of

a compound nucleus (CN) through fusion, following different paths during the CN

formation and having different average contact times. The typical contact time for

QF is about 10−20 seconds, whereas, for FF reactions, it is about 10−16 seconds [7,

8]. Consequently, QF is the primary reaction mechanism that hinders the formation

of super-heavy nuclei. Additionally, while the FF process exhibits significant mass

transfer, QF processes show minimal mass transfer related to their contact time.

It is important to develop theoretical models to analyze experimental data and select

appropriate projectile and target nuclei for the intended purpose. Various macroscopic

transport models have been proposed to explain the evolution of collective variables

in deep-inelastic heavy-ion collisions and QF reactions. In these models, the system’s

potential energy and transport coefficients are empirically calculated [9].

1.3 Outline of The Thesis

In this work, we employed a quantal diffusion description of multi-nucleon transfer

in heavy-ion collisions based on the stochastic mean-field (SMF) approach, offering a

fully microscopic description without adjustable parameters. The thesis is structured

into five chapters. Chapter 1 introduces the problem and the motivation. Chapter 2

delves into the time-dependent Hartree-Fock theory (TDHF) and its application to se-

lected heavy-ion reaction systems, establishing the foundation for subsequent chap-

ters. Chapter 3 extends this description stochastically using the SMF approach, incor-

porating fluctuations and correlations into the TDHF model. Chapter 4 utilizes the re-

sults from the SMF approach to calculate production yields and cross-sections, com-

paring theoretical results with experimental data and analyzing differences. Chap-

ter 5 summarizes the key findings, emphasizing the contributions of the quantal dif-

fusion description and SMF approach to our understanding of multi-nucleon transfer
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in heavy-ion collisions, and suggests directions for future research.
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CHAPTER 2

TDHF THEORY AND ITS APPLICATION TO THE MNT REACTIONS

Characterizing nuclear events and determining their results is a substantial effort be-

cause of the multitude of potential reactions that can occur, frequently competing

with one another at a specific collision energy. Mean-field theories, which involve

the independent evolution of particles within a mean-field created by a group of par-

ticles, have emerged as fundamental microscopic approaches for characterizing nu-

clear dynamics. These techniques have undergone significant advancements in recent

years [10].

Dirac established the theory of Time-Dependent Hartree-Fock (TDHF) in 1930 to

explain the behaviour of electrons in atoms [11]. Research on nuclear collision dy-

namics started in the 1970s [12]. Most current TDHF computations employ three-

dimensional models that incorporate comprehensive Skyrme functionals, which also

account for time-odd components [13]. The Skyrme interactions are chosen to accu-

rately replicate a wide range of nuclear properties across different mass nuclei without

requiring individual parameter adjustments for each reaction. Overall, TDHF theory

proved to be reliable in characterizing low-energy nuclear processes.

The TDHF theory is microscopic and gives a detailed account of nuclear dynamics.

This capability is crucial for understanding the behaviour of nuclei during reactions.

TDHF can describe many nuclear phenomena, such as heavy-ion fusion, fission, and

MNT reactions. Once an energy density functional (EDF) is defined, TDHF needs

no further empirical parameters. This property increases its predictive power and

diminishes the dependence on experimental data for parameter tuning. One of the

most critical limitations of TDHF is its mean-field approximation, which assumes that

all particles move independently inside the average field this ensemble generates [14,
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15]. Such an assumption may lead to neglecting critical two-body correlations, failing

to describe some processes like multi-nucleon transfer and quantum tunneling [10].

The TDHF theory is semi-classical by construction and optimized to predict average

quantities rather than the fluctuation or distribution of observables. Therefore, it often

underestimates distributions of observables, implying a more detailed treatment is

required under quantum mechanics. The single-determinant formalism of TDHF also

tends to underestimate fluctuations and correlations of one-body observables. Beyond

mean-field methods have been developed to manage these drawbacks, like the Time-

Dependent Random Phase Approximation (TDRPA) and the SMF approach [9].

A brief description of the Hartree-Fock equations with Skyrme effective interactions

will be provided in later sections of this chapter. Subsequently, we shall expand this

framework into the time domain to better understand the dynamics of nuclear pro-

cesses, leading to the formulation of the TDHF equations. Finally, we will present

the results of TDHF calculations for 58Fe + 208Pb reaction with Ec.m. = 238.5 MeV,
36S + 238U reaction with Ec.m. = 151.1 MeV, 64Ni + 130Te reaction with Ec.m. =

184.3 MeV and 206Pb+118Sn reaction with Ec.m. = 436.8 MeV, where Ec.m. represents

the initial collision energy of the reaction system in the center-of-mass frame.

2.1 Hartree-Fock Equations

According to the Hartree-Fock approach, one can investigate the structural proper-

ties of nuclei by treating each nucleon as moving independently within a mean field,

which is an average potential. The interactions between each nucleon in the nucleus

produce this mean-field. As with other fermions, nucleons are governed by the Pauli

exclusion principle. The wave function of the collective state must be antisymmet-

ric when two nucleon coordinates are exchanged. The Hartree-Fock approximation

states that the trial wave function of a nucleus containing A nucleons can be expressed

as a Slater determinant, a product of antisymmetrized occupied states [16].

A Slater determinant is formed by using a set of single-particle wave functions, called

the Hartree-Fock basis, ϕi(ri), where rj represents the spatial, spin, and isospin co-

ordinates of the jth nucleon. The construction of the Slater determinant follows this
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definition,

Φ (r1 . . . rA) → ΦHF (r1 . . . rA) =
1√
A!

∣∣∣∣∣∣∣∣∣∣∣

ϕ1 (r1) ϕ1 (r2) · · · ϕ1 (rA)

ϕ2 (r1) ϕ2 (r2) · · · ϕ2 (rA)
...

... . . . ...

ϕA (r1) ϕA (r2) · · · ϕA (rA)

∣∣∣∣∣∣∣∣∣∣∣
. (2.1)

Although the precise shape of the individual particle wave functions within a nucleus

is initially uncertain, they can be estimated using oscillator wave functions. This ap-

proximation is true when the number of wave functions corresponds to the number of

nucleons in the nucleus unless pairing correlations are included. The initial step in-

volves considering the complete many-body Hamiltonian, which may be represented

in terms of a one-body kinetic energy term and a two-body force for a system con-

sisting of A particles, as stated below,

Ĥ =
A∑
i=1

p̂2i
2mi

+
1

2

A∑
i ̸=j

V (ri, rj) . (2.2)

In this instance, the nucleon-nucleon force, which includes the Coulomb interaction,

is denoted by V (ri, rj). The primary concept behind the mean-field technique is to

represent the two-body potential, V (ri, rj), by a one-body mean-field, U(ri), while

incorporating as much of the physics as possible. The average value of the entire

Hamiltonian for the Hartree-Fock wave function provides an approximation of the

ground-state energy in the Hartree-Fock method.

E0
HF =

〈
ΦHF

∣∣∣Ĥ∣∣∣ΦHF

〉
=− ℏ2

2m

A∑
i=1

∫
ϕ∗
i (r)∇2ϕi(r) dr

+
1

2

A∑
i ̸=j

∫∫
ϕ∗
i (r)ϕ

∗
j(r

′)V (r, r′)ϕi(r)ϕj(r
′) dr dr′

− 1

2

A∑
i ̸=j

∫∫
ϕ∗
i (r)ϕ

∗
j(r

′)V (r, r′)ϕi(r
′)ϕj(r) dr dr

′.

(2.3)
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Here, the integral
∫
dr =

∑
σ,q

∫
d3r is employed. The final term in the previously

mentioned expression accounts for the antisymmetrization of the wave function when

exchanging any pair of particles. The optimal Slater determinant to describe the

ground state of the system is the one that minimizes the expectation value of energy.

Afterwards, the optimal arrangement is determined by applying the variational prin-

ciple, which aims to minimize the expected energy value by considering all potential

single-particle wave functions.

δ

δϕ∗
a(r)

(
E0

HF −
A∑
i=1

ϵi

∫
|ϕi(r)|2 dr

)
= 0, (2.4)

in which,

δ

δϕ∗
a(r)

{ϕ∗
i (r

′)} = δiaδ(r − r′). (2.5)

The Lagrange multipliers, denoted as ϵi in Eq. 2.4, provide the function of assuring

the proper normalizing of the wave functions and including the constraint that ensures

the conservation of particle number inside the system as,

A∑
i=1

∫
|ϕi(r)|2 dr = A. (2.6)

Now, substituting ground state EDF in Eq. 2.3 to the principle of least action defined

as in Eq. 2.4, we obtain The Hartree-Fock equations as,

ϵiϕi(r) =− ℏ2

2m
∇2ϕi(r) +

A∑
j>i

∫
ϕ∗
j(r

′)V (r, r′)ϕi(r)ϕj(r
′) dr′

−
A∑
j>i

∫
ϕ∗
j(r

′)V (r, r′)ϕi(r
′)ϕj(r) dr

′.

(2.7)

The initial term in the equation is the kinetic energy contribution. The second term

in Eq. 2.7 is the so-called "Hartree" potential term. The Hartree potential is an av-

erage field that the ith particle experiences due to all other particles in the system.

This is a local potential depending solely on the one-body density, represented as

10



ρ(r) =
∑Λ

j=i ϕ
∗
j(r)ϕj(r). The third term is the exchange or "Fock" potential. The

Fock potential is a non-local potential, ρ (r, r′) =
∑A

i=1 ϕ
∗
i (r

′)ϕi(r) reflecting the

exchange interaction where particles can swap their positions while preserving the

antisymmetrized nature of the overall wave function. Substituting these definitions,

the Hartree-Fock equations become,

ϵiϕi(r) = − ℏ2

2m
∇2ϕi(r) + U

(i)
H (r)ϕi(r)−

∫
U

(i)
F (r, r′)ϕi(r

′) dr′. (2.8)

The Hartree-Fock approach produces single-particle wave functions that make up the

Slater determinant of the ground state. Due to the dependence of the potentials on the

wave functions being solved, the equations become nonlinear and demand iterative,

self-consistent solutions. This process requires introducing trial wave functions, for-

mulating the potential, solving the Schrödinger equation to update the wave functions,

and iterating until convergence is achieved.

2.2 The Skyrme Effective Interaction

Self-consistent mean-field models often employ effective interactions with free pa-

rameters. Given the short-range nature of nuclear interactions and the long wave-

lengths of single nucleon states, a Taylor expansion of zero-range interactions in mo-

mentum space is feasible. A local interaction with a spatial dependence δ(r − r′)

is used to approximate this expansion. Different symmetries, including translational,

Galilean, rotational, and time-reversal invariance, are followed by the potential, which

depends on nucleon positions, momenta, spins, and isospins. The local density ap-

proximation simplifies the Hartree-Fock equations significantly, leading to a math-

ematical representation of the exchange term that nearly resembles the direct term.

One important method in developing mean-field models for nuclear property estima-

tions has been building the Skyrme interaction. The Skyrme interaction is widely ac-

knowledged as the major effective interaction used in these models [17]. The Skyrme

Hamiltonian can be represented as follows:
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ĤSkyrme = T̂ +
∑
i<j

v̂ij +
∑
i<j<k

v̂ijk + V̂Coul. (2.9)

Here, T̂ represents the kinetic energy operator,

T̂ =
N∑
i=1

p̂2i
2m

. (2.10)

In the above equation, p̂i = −iℏ∇i.V̂Coul defines the Coulomb interaction between

protons and m in the denominator denotes the nucleon mass. Coulomb potential is

defined as,

V̂Coul =
∑
i<j

e2

|ri − rj|
δqipδqjp. (2.11)

The effective two-body interaction, which includes the effects of the three-body forces,

is expressed as a density-dependent interaction,

v̂ij = v̂ (riσi, rjσj) =t0

(
1 + x0P̂σ

)
δ (ri − rj)

+
1

6
t3ρ

α

(
ri + rj

2

)(
1 + x3P̂σ

)
δ (ri − rj)

+
1

2
t1

(
1 + x1P̂σ

){
δ (ri − rj) k̂

2 + k̂′2δ (ri − rj)
}

+ t2

(
1 + x2P̂σ

)
k̂′ · δ (ri − rj) k̂

+ iW0 (σ̂i + σ̂j) ·
{
k̂′ × δ (ri − rj) k̂

}
.

(2.12)

Here, σ̂ is the Pauli spin matrices, P̂σ = 1
2
(1 + σ̂i · σ̂j) defines the spin exchange

operator. Relative wave vectors are defined as,

k̂ =
∇⃗i − ∇⃗j

2i
, k̂′ = −∇⃖i − ∇⃖j

2i
. (2.13)

The operator k̂ operates on spatial functions to the right, while the operator k̂′ acts on

spatial functions to the left. Additional parameters are adjusted to reproduce the fixed
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structural characteristics of nuclear matter accurately. The EDF can be expressed as

the expected value of the Skyrme Hamiltonian.

ESHF[ρ, τ, j, s, T, J⃡ ] =
〈
Φ
∣∣∣ĤSkyrme

∣∣∣Φ〉 =

∫
drH(r). (2.14)

In Eq. 2.14, ρ represents the local density of nucleons, τ denotes the local kinetic

energy density, and s is the local spin density. The current density j describes the flow

of nucleons, while T accounts for the contribution to the energy due to spin motion,

known as the spin kinetic energy density. The spin-current tensor J⃡ characterizes the

spin-orbit interaction.

2.3 Time Dependent Hartree-Fock (TDHF) Equations

To study the behaviour of a nuclear system, the static Hartree-Fock equations can be

expanded to the time domain by applying the time-dependent least action principle,

similar to the static Hartree-Fock method. The temporal fluctuation of an action can

be mathematically represented in the following manner,

δ

∫
Φ∗(r, t)

(
iℏ

∂

∂t
− Ĥ

)
Φ(r, t)dt = 0. (2.15)

By using a single Slater determinant as a trial function, we can derive the TDHF

equation,

iℏ
∂ϕi(r, t)

∂t
= ĤΦ(r, t). (2.16)

In this work, we numerically solve the mean-field dynamics using the TDHF code [18,

13] for Eq.2.16 with the SLy4d Skyrme EDF [19]. This TDHF code uses basis-spline

discretization for high numerical accuracy, makes no assumptions on geometrical

symmetry such as axial or reflection symmetries, and incorporates the full EDF. The

Coulomb trajectory determines the initial approach up to R0, where the strong nuclear

interaction between nuclei becomes effective. Beyond R0, the system dynamics are

governed by the TDHF equations, which are solved self-consistently, starting with
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an initial guess of orthonormal single-particle states until the convergence criteria are

met.

In this work, we studied the following nuclear systems: 58Fe + 208Pb reaction with

Ec.m. = 238.5 MeV, 36S+ 238U reaction with Ec.m. = 151.1 MeV, 64Ni+ 130Te reaction

with Ec.m. = 184.3 MeV and 206Pb + 118Sn reaction with Ec.m. = 436.8 MeV. These

systems were selected due to their relevance in understanding various aspects of nu-

clear reactions, such as multi-nucleon transfer processes, quasi-fission dynamics, and

the production of exotic nuclei. The 58Fe + 208Pb system helps evaluate the interac-

tion processes between mid-mass nuclei and heavy targets, highlighting transfer and

quasi-fission processes. The 36S+ 238U system is particularly interesting for studying

the dynamics involving very heavy nuclei and shell effects in quasi-fission [20]. The
64Ni + 130Te system allows us to explore the behaviour of neutron-rich and proton-

rich interactions, which are crucial for producing exotic nuclei far from stability [21].

Finally, the 206Pb+ 118Sn system is important for studying neutron-proton asymmetry

and its influence on reaction dynamics and nucleon transfer mechanisms [22]. The

outcomes of the TDHF computations for these systems will be given and discussed

in the subsequent section.

2.4 Results of TDHF Calculations for Selected Heavy-Ion Systems

For the TDHF solutions of reaction systems, static calculations are performed for

each collision partner in the reaction system. These static calculations model the

ground state properties of each nucleus. The static solutions for the collision partners

are then placed in a numerical box sized 60 x 60 x 36 fm in the (x-y-z) coordinates

for dynamic calculations. Each nucleus is given a boost towards the other according

to their Coulomb trajectories. The dynamic calculations continue until the colliding

nuclei reach a separation distance after their interactions, and at this point, the strong

interaction between the nuclei ceases.

In Fig. 2.1, each system’s mass densities are presented at different time windows:

the beginning of the dynamical calculations, initial neck formation, and final neck

formation before and after separation. From the mass densities, the placement of the
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Figure 2.1: Snapshots of density profiles for each system at different times on the

reaction plane.

nuclei inside the numerical box and their deformation throughout the process can be

observed.

From the initial interaction to the point after the separation of two nuclei, the result of

the TDHF calculations for each system’s observables is presented in TDHF tables and

drift plots. On TDHF tables, ℓi denotes the initial angular momentum of the system,

which can be defined in terms of impact parameter b as given by Eq. 1.1. Zf
1 , Af

1
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represents the final proton and mass numbers of projectile-like fragment and Zf
2 , Af

2

represents the target-like fragment. ℓf indicates the final angular momentum of the

system, while TKE is the final total kinetic energy of fragments. The final centre-

of-mass angle of the reaction system is denoted with θc.m., where we can calculate

scattering angles of reaction partners in the laboratory frame as,

tan θlab1 =
sin θc.m.√

Af
1A

f
1

Af
2A

f
2

Ecm

TKE
+ cos θc.m.

, (2.17)

and

tan θlab2 =
sin θc.m.√

Ai
1A

f
2

Af
1A

i
2

Ec.m.
TKE

− cos θc.m.

. (2.18)

The drift path plots illustrate the movement of the reaction system on the N-Z plane,

with the direction of the reaction’s evolution over time indicated by an arrow. Points

labelled A, B, and C will be utilized in the subsequent chapters to compute average

values of reduced curvature parameters α and β. The N-Z-t graphs additionally indi-

cate the respective times of these points in the reaction dynamics. In this work, the

entrance channel charge asymmetries (δ = N−Z
A

) vary across the collision partners of

all the reaction systems. This leads to a quick transition to charge equilibrium at the

initial phase of the reaction. Once the charge equilibrium point has been reached, the

rate of nucleon transfer decreases, and the reaction system progresses along the iso-

scalar line with a nearly uniform charge asymmetry. The iso-scalar line is a straight

path that connects the reaction partner with lower mass to the reaction partner with

higher mass. This line passes via the mass symmetry point, which is defined as,

N0 = (N1 +N2)/2, Z0 = (Z1 + Z2)/2. (2.19)

In 58Fe+ 208Pb reaction system, the ground state of the 58Fe nuclei has prolate defor-

mation as shown on Fig. 2.1, which requires to study two different collision geome-

tries. We define collision geometries as a tip when the principal deformation axis of
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the deformed partner lies on the beam direction and side, as the principal deforma-

tion axis is orthogonal to the beam direction. Figure 2.2 and Fig. 2.3 show results for

Fe-like fragments in the 58Fe + 208Pb reaction system with Ec.m. = 238.5 MeV in tip

and side collision geometries with an initial angular momentum of ℓ = 40ℏ, which

shows reasonable drift behaviour for further calculations. Fig. 2.2(a) and Fig. 2.3(a)

show the drift path of the reaction system indicated with magenta lines. Both systems

show similarities in drift paths. Initial charge asymmetries of collision partners are,
58Fe is δ = 0.10 and 208Pb is δ = 0.21. To reach charge equilibrium, Fe-like frag-

ments lose protons and drift towards the iso-scalar line, represented by solid black

lines with dashed ends, which makes an angle about ϕ = 33.1◦ from the neutron

axis on the N-Z plane. On the iso-scalar line, drift continues through the symmetry

point (N0, Z0) with a nearly constant charge asymmetry of 0.17. In Fig. 2.2(b) and

Fig. 2.3(b), neutron and proton number change in time on the drift path is presented.

Results of the TDHF calculations for these systems are shown in Table 2.1, which

shows similarities for tip and side collision geometries. The initial angular momen-

tum range is 40ℏ ≤ ℓ ≤ 240ℏ. Below ℓ = 40ℏ, collision partners do not separate in

the calculations, assuming the system is fused. Above ℓ = 240ℏ, collision becomes

an elastic one. ℓ = 20ℏ intervals optimize the calculation time whilst preserving the

gradient in reaction dynamics.

30 32 34 36 38

N

22

24

26

28

Z

(a)

A

B

C

(Tip)
58Fe + 208Pb

E c. m.  = 238.5 MeV
 = 40 
 = 33.1o

30
32
34
36

N
1(t

) (b)

tA tB tC

0 400 800 1200 1600
time (fm/c)

23
24
25
26

Z 1
(t)

Figure 2.2: (a) Drift path for the Fe-like fragments and (b) the mean neutron and pro-

ton numbers of Fe-like fragments in the 58Fe+208Pb reaction with Ec.m. = 238.5 MeV

in the tip orientation of the 58Fe for ℓ = 40ℏ.
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Table 2.1: TDHF results for 58Fe + 208Pb reaction with Ec.m. = 238.5 MeV.

- ℓi (ℏ) b(fm) Zf
1 Af

1 Zf
2 Af

2 ℓf (ℏ) TKE(MeV ) θc.m.(deg.) θlab1 (deg.) θlab2 (deg.)

tip(58Fe)

40 1.8 26.2 61.5 81.8 204.5 35.1 191.5 105.5 86.7 35.7

60 2.6 26.6 62.4 81.4 203.6 49.4 189.5 93.1 74.7 41.6

80 3.5 25.5 59.6 82.5 206.4 65.7 187.0 103.2 84.6 36.0

100 4.4 25.8 58.5 82.2 207.5 99.5 231.7 107.8 -88.7 35.9

120 5.3 26.0 58.2 82.0 207.8 123.2 236.9 99.6 83.4 40.2

140 6.2 26.0 58.1 82.0 207.9 143.7 237.5 91.3 75.6 44.3

160 7.0 26.0 58.0 82.0 208.0 163.0 237.8 84.1 69.0 47.9

180 7.9 26.0 58.0 82.0 208.0 182.3 238.0 77.7 63.2 51.1

200 8.8 26.0 58.0 82.0 208.0 202.2 238.0 71.9 58.2 54.0

220 9.7 26.0 58.0 82.0 208.0 222.6 238.1 66.8 53.8 56.5

240 10.5 26.0 58.0 82.0 208.0 242.3 238.2 62.4 50.1 58.8

side(58Fe)

40 1.8 27.4 64.9 80.6 201.1 33.3 190.3 100.5 81.1 38.8

60 2.6 25.5 59.4 82.5 206.6 47.0 184.3 117.7 -80.8 29.2

80 3.5 25.5 58.7 82.5 207.3 74.1 217.5 116.3 -80.6 31.2

100 4.4 25.9 58.4 82.1 207.6 95.8 235.3 110.2 -86.2 34.9

120 5.3 26.0 58.2 82.0 207.8 116.4 236.6 101.0 84.8 39.4

140 6.2 26.0 58.1 82.0 207.9 136.4 237.0 92.7 76.8 43.6

160 7.0 26.0 58.0 82.0 208.0 156.9 237.2 85.2 70.0 47.3

180 7.9 26.0 58.0 82.0 208.0 176.8 237.5 78.7 64.1 50.6

200 8.8 26.0 58.0 82.0 208.0 197.4 237.6 72.8 59.0 53.5

220 9.7 26.0 58.0 82.0 208.0 218.2 237.8 67.6 54.5 56.1

240 10.5 26.0 58.0 82.0 208.0 238.6 237.9 63.1 50.6 58.4
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Figure 2.3: (a) Drift path for the Fe-like fragments and (b) the mean neutron and pro-

ton numbers of Fe-like fragments in the 58Fe+208Pb reaction with Ec.m. = 238.5 MeV

in the side orientation of the 58Fe for ℓ = 40ℏ.
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Figure 2.4: (a) Drift path for the S-like fragments and (b) the mean neutron and proton

numbers of S-like fragments in the 36S + 238U reaction with Ec.m. = 151.1 MeV for

ℓ = 40ℏ.

The reaction system featuring 36S + 238U consists of a projectile 36S with no ground

state deformation and a target partner 238U with a prolate deformation in its ground

state [23]. This can be observed in Figure 2.1. The collision geometry directly affects

the reaction dynamics when reaction partners exhibit ground state deformation. In

this particular instance, our initial computations on various collision geometry con-

figurations indicated that, at Ec.m. = 151.1 MeV, there was minimal nucleon transfer,

except for the tip orientation of the 238U nuclei. Therefore, we exclusively utilized tip

collision geometry for subsequent calculations on this system. Figure. 2.4(a) displays

the trajectory of the system’s motion when the initial angular momentum is ℓ = 40ℏ.

This trajectory is suitable for subsequent calculations.

The initial charge asymmetries of the collision partners are as follows: 36S has a

charge asymmetry of δ = 0.11, while 238U has a charge asymmetry of δ = 0.23. On

Fig. 2.4(b) S-like fragments acquire neutrons while losing protons to reach charge

equilibrium on the iso-scalar line with a charge asymmetry of δ = 0.20. The iso-

scalar line makes an angle of ϕ = 32.6◦ from the neutron axis on the N-Z plane.

Drift continues along the iso-scalar line. Initial angular momentum ranges ℓ = 34ℏ to

ℓ = 50ℏ is considered for this system where fusion is observed up to ℓ = 34ℏ. After

ℓ = 40ℏ, quasielastic components becomes dominant and beyond ℓ = 50ℏ, collision

becomes elastic as can be observed on Table 2.2.
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Table 2.2: TDHF results for the 36S + 238U reaction with Ec.m. = 151.1 MeV.

ℓi (ℏ) b(fm) Zf
1 Af

1 Zf
2 Af

2 ℓf (ℏ) TKE(MeV ) θc.m.(deg.) θlab1 (deg.) θlab2 (deg.)

34 2.3 26.7 66.0 81.3 208.0 27.2 179.4 87.7 76.4 59.3

35 2.3 26.9 66.2 81.1 207.8 30.2 177.5 93.5 81.9 55.1

36 2.4 27.3 67.4 80.7 206.6 28.8 178.3 96.4 84.6 53.4

37 2.5 27.1 66.2 80.9 207.8 29.1 174.9 82.7 71.5 62.6

38 2.5 27.3 66.4 80.7 207.6 29.6 172.2 64.1 54.4 77.1

39 2.6 26.0 63.0 82.0 211.0 31.2 167.6 36.4 30.5 -77.7

40 2.7 26.0 63.3 82.0 210.7 32.2 169.1 46.5 39.2 -88.6

41 2.7 16.3 39.5 91.7 234.5 4.5 124.7 141.1 -46.2 19.0

42 2.8 15.6 38.0 92.4 236.0 14.8 126.5 136.7 -50.9 21.0

44 2.9 15.0 36.6 93.0 237.4 25.1 125.1 132.9 -55.0 22.5

46 3.1 15.1 36.0 92.9 238.0 35.0 128.7 129.7 -58.3 24.1

48 3.2 15.4 35.9 92.6 238.1 46.2 138.0 127.2 -60.7 25.7

50 3.3 15.7 36.0 92.3 238.0 53.8 144.8 125.3 -62.6 27.0
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Figure 2.5: (a) Drift path for the Ni-like fragments and (b) the mean neutron and pro-

ton numbers of Ni-like fragments in the 64Ni+130Te reaction with Ec.m. = 184.3 MeV

for ℓ = 82ℏ.

For the 64Ni + 130Te reaction system, no ground state deformation is observed on

collision partners, for which both nuclei are nearly spherical. The initial angular

momentum range of 82ℏ ≤ ℓ ≤ 180ℏ is considered. The system is fused below

ℓ < 82ℏ, and beyond ℓ > 180ℏ, fragments elastically scatter. Figure 2.5(a) illustrates

the drift path of the reaction system, shown by magenta lines. The initial charge

asymmetry of 64Ni is δ = 0.13, while 130Te has a charge asymmetry of δ = 0.20. On
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Fig. 2.5(b) after the initial contact, Ni-like fragments show a distinct trend of gaining

neutrons and losing protons to reach charge equilibrium with a charge asymmetry of

0.16 on the iso-scalar line, which is making an angle of approximately ϕ = 32.8◦

relative to the neutron axis on the N-Z plane.

Table 2.3: TDHF results for the 64Ni + 130Te reaction with Ec.m. = 184.3 MeV.

ℓi (ℏ) b(fm) Zf
1 Af

1 Zf
2 Af

2 ℓf (ℏ) TKE(MeV ) θc.m.(deg.) θlab1 (deg.) θlab2 (deg.)

82 4.2 28.2 68.0 51.8 126.0 69.4 135.5 49.4 31.2 58.6

84 4.3 27.7 65.5 52.3 128.5 66.9 145.7 75.3 49.8 48.6

86 4.4 27.6 65.3 52.4 128.7 68.5 145.1 79.6 52.9 46.6

88 4.5 27.1 63.9 52.9 130.1 73.7 154.9 92.7 63.9 41.2

90 4.6 27.2 63.8 52.8 130.2 80.0 160.4 92.7 64.3 41.7

92 4.7 27.6 64.0 52.4 130.0 88.0 172.5 92.7 65.2 42.7

94 4.8 27.8 64.0 52.2 130.0 93.0 177.4 92.7 65.5 43.1

96 4.9 27.9 64.1 52.1 129.9 96.8 179.8 93.5 66.3 43.0

98 5.0 27.9 64.1 52.1 129.9 99.3 181.0 93.0 66.0 43.3

100 5.1 27.9 64.1 52.1 129.9 101.3 181.5 92.3 65.4 43.7

110 5.7 28.0 64.0 52.0 130.0 113.5 183.1 88.0 62.1 45.9

120 6.2 28.0 64.0 52.0 130.0 123.5 183.5 83.6 58.7 48.1

140 7.2 28.0 64.0 52.0 130.0 143.4 183.8 75.4 52.4 52.3

160 8.2 28.0 64.0 52.0 130.0 162.8 184.0 68.5 47.3 55.7

180 9.3 28.0 64.0 52.0 130.0 182.6 184.1 62.5 42.9 58.7

For the 206Pb+118Sn reaction system, no ground state deformation is observed. Initial

charge asymmetries of collision partners are, 206Pb is δ = 0.20 and 118Sn is δ = 0.15.

After the initial contact, the system moves towards the charge equilibrium with a

charge asymmetry of δ = 0.19 on the iso-scalar line, which makes an angle about ϕ =

33.0◦ from the neutron axis on the N-Z plane presented in Fig. 2.6(a). In Figure2.6(b),

until charge equilibrium is reached, the projectile 206Pb fragment loses neutrons while

gaining protons from the target. This behaviour differs from other systems studied

in this work, where the target is heavier, leading to initial charge equilibration by the

projectile gaining neutrons and losing protons to the target partner. The initial angular

momentum range 60ℏ ≤ ℓ ≤ 260ℏ is utilized where below ℓ = 60ℏ collision partners

are fused. Above ℓ = 260ℏ collision system becomes elastic.

Detailed microscopic insights into the time development of single-particle wave func-

tions are provided by the TDHF theory, which has shown to be a powerful tool for
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Figure 2.6: (a) Drift path for the Pb-like fragments and (b) the mean neutron and pro-

ton numbers of Pb-like fragments in the 206Pb+118Sn reaction with Ec.m. = 436.8 MeV

for ℓ = 60ℏ.

Table 2.4: TDHF results for the 206Pb + 118Sn reaction with Ec.m. = 436.8 MeV.

ℓi (ℏ) b(fm) Zf
1 Af

1 Zf
2 Af

2 ℓf (ℏ) TKE(MeV ) θc.m.(deg.) θlab1 (deg.) θlab2 (deg.)

60 1.5 80.7 200.7 51.3 123.3 52.7 329.8 144.9 27.1 16.0

80 2.0 80.9 201.3 51.1 122.7 68.9 332.5 136.0 29.6 20.1

100 2.5 81.6 202.8 50.4 121.2 83.3 330.7 127.7 30.3 23.9

120 3.0 82.0 203.5 50.0 120.5 98.2 337.1 120.4 30.8 27.4

140 3.5 82.3 204.4 49.7 119.6 114.5 352.2 115.3 31.1 30.2

160 4.0 82.6 205.5 49.4 118.5 139.0 377.8 110.6 31.6 33.2

180 4.5 82.3 205.5 49.7 118.5 168.9 406.4 106.8 32.3 35.8

200 5.1 82.1 206.0 49.9 118.0 196.9 428.7 104.0 32.5 37.8

220 5.6 82.0 206.0 50.0 118.0 219.9 433.9 99.7 31.9 40.1

240 6.1 82.0 206.0 50.0 118.0 241.7 434.9 95.2 31.0 42.4

260 6.6 82.0 206.0 50.0 118.0 262.2 435.4 90.8 30.0 44.5

explaining nuclear dynamics. This has been important to understanding various nu-

clear phenomena, ranging from collective excitations to heavy-ion collisions. The

strength of this framework is its nature to predict things without including more em-

pirical parameters once the EDF is defined. This results in a unified description of

such static properties as binding energies and deformations with dynamic processes

such as fusion and QF.

However, TDHF is subject to substantial limitations due to the mean-field approxi-

mation. The mean-field approximation assumes particles move in the average field

22



created by all other particles, neglecting extensive two-body correlations. Generally,

TDHF underestimates fluctuations and correlations in one-body observables, and the

method is optimized to predict average quantities because of its deterministic nature.

Beyond mean-field approaches, like the SMF theory [24], have been developed to

address these limitations. The SMF extends TDHF by including stochastic ingredi-

ents to follow the influence of initial state fluctuations and their time evolution and

introduces one-body dissipation and fluctuation mechanisms in a way that respects

the quantum fluctuation-dissipation relations.

The following chapter will briefly review beyond-mean-field approaches and describe

the SMF theory. We calculate the transport coefficients of the reaction systems using

the TDHF solutions presented in the current chapter. With the fluctuations included,

we can give a more realistic picture of the outcome of the reactions.
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CHAPTER 3

SMF THEORY AND ITS APPLICATION TO THE MNT REACTIONS

Studying the mechanics of MNT reactions requires an extensive theoretical frame-

work to model these complex events effectively. Reaction dynamics are explained

using the TDHF theory, which has been widely used to analyze MNT reactions [7,

8, 25, 26]. The TDHF framework allows for calculation of dynamical observables

such as the average charge and mass of a fragment, as well as the average kinetic

energy loss resulting from one-body dissipation [27]. While TDHF theory has many

benefits, it is unable to account for fluctuations and deviations in fragment mass and

charge distributions. To get around this restriction, one must go beyond the mean-

field approximation [24, 28].

3.1 Beyond Mean-Field Approaches

The extended variational theory presented by Balian and Vénéroni [29] is the basis for

the time-dependent random phase approximation (TDRPA), significantly enhancing

the description of MNT reactions. The TDRPA formula considers the fluctuations and

correlations of one-body observables around the TDHF average trajectory by includ-

ing dispersions into a single Slater determinant. The approach has been successfully

applied to deep-inelastic collisions involving 16O+ 16O [30] and 40Ca+ 40Ca [31], re-

sulting in significant enhancements in the description. However, the current TDRPA

formula is not suited for asymmetric systems, which limits its use for extensive in-

vestigations, including various combinations of projectiles and targets [32].

S. Ayik introduced a novel method for describing MNT reactions that goes beyond

mean-field fluctuations and correlations: the SMF approach [24]. This method uti-
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lizes time-dependent mean-field solutions to describe the quantum many-body prob-

lem. The incorporation of initial mean-field fluctuations in this context is similar

to the derivation of quantum mechanics from Brownian particles, as described by

Nelson in 1966 [33]. Beyond one-body fluctuations and correlations, the SMF ap-

proach featured a simplified Bogoliubov-Born-Green-Kirkwood-Yvon (BBGKY) hi-

erarchy [34]. When the fluctuations are small, the SMF approach is analytically

equivalent to the TDRPA formula [24, 28], and is especially well-suited for asym-

metric systems.

Recent developments have led to improvements in the SMF description. The initial

methodology employed a semiclassical approach, utilizing the Wigner transformation

and the Markov approximation, as shown in the references [35, 36, 37, 38, 39]. Using

the completeness relation [40], which depends on single-particle orbitals obtained

from mean-field theory, a quantum-based formula for the diffusion coefficient was

proposed and refined in reference [41]. Quantal expressions were applied to head-on

collisions of 238U+238 U [42] and to central collisions of symmetric systems, namely
28O+28O, 40,48Ca+40,48Ca, and 56Ni+56Ni, occurring just below the Coulomb barrier.

Subsequently, the quantal diffusion model was expanded to incorporate non-central

collisions [43].

3.2 Description of the SMF Theory

3.2.1 Derivation of the Langevin Equation for Macroscopic Variables

Starting with a given initial state, the standard TDHF equation determines the time

evolution of the single-particle density matrix. While the standard approach estimates

the overall development of collective movement, it does not include the impact of

variations around the average value of collective motion. In contrast to the standard

mean-field theory, the SMF theory incorporates a stochastic method that considers

the system’s initial state’s quantum and thermal density fluctuations. Quantum and

thermal fluctuations are determined by the initial conditions. To account for these

fluctuations, quantal calculations are carried out by averaging over ensembles with

the suitable distribution of various initial conditions.
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The initial density fluctuations are simulated as density matrices rather than a single

density matrix. Thus, a superposition of Slater determinants is considered instead

of considering a single Slater determinant. In the SMF approach, an element of the

ensemble of single-particle density matrices, represented by the index λ, includes

quantum and thermal fluctuations in the initial state defined as,

ρλa(r⃗, r⃗
′, t) =

∑
ij

ϕi(r⃗, t;λ)⟨i|ρλa(t0)|j⟩ϕ∗
j(r⃗

′, t;λ). (3.1)

Here, i, j subscripts represent the index of singe-particle wave functions ϕi(r⃗, t;λ),

a subscript goes between the type of nucleon and ρλij =
〈
i
∣∣ρλa(t0)∣∣ j〉 is the time-

independent element of the density matrix defined by the initial conditions. The fun-

damental assumption in the SMF approach is that the density matrix elements are

independent random numbers. The mean values of these random numbers, which

follow Gaussian distributions, are given by,

ρλij = ⟨i |ρλa(t0)| j⟩ = δijnj, (3.2)

while the variances of the elements corresponding to fluctuations in the density are

given by,

⟨i |δρλa(t0)| j⟩
〈
j′
∣∣δρλb (t0)∣∣ i′〉 = 1

2
δabδii′δjj′ [ni (1− nj) + nj (1− ni)] . (3.3)

In this context, nj denotes the occupation factors of the initial wave functions. At ab-

solute zero temperature, the values can only be 1 or 0. However, the Fermi-Dirac dis-

tribution determines the values at temperatures above absolute zero. The ensemble’s

mean-field Hamiltonian is used by the TDHF equation to calculate the single-particle

wave function in each event.

iℏ
∂

∂t
ϕj(r⃗, t;λ) = h

[
ρλa(t)

]
ϕj(r⃗, t;λ). (3.4)

When projectile-like and target-like nuclei form a two-center structure in collision
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reactions like QF and DIC, the window between the colliding partners can be cho-

sen appropriately to define collective variables like the mass and charge asymmetry,

relative distance, and relative momentum of the projectile-like and target-like nu-

clei [37, 38]. The geometry of the di-nuclear system is represented in Fig. 3.1 in the

CM reference system, where the collision axis is the x-axis, and the equation for the

window plane is written as,

(y − y0) sin θ + (x− x0) cos θ = 0, (3.5)

and for the symmetry axis,

(y − y0) cos θ − (x− x0) sin θ = 0. (3.6)

In the above equations, (x0, y0) marks the center of the window plane, and θ measures

the angle between the symmetry and collision axes.

Figure 3.1: Representation of the coordinate system for a di-nuclear system with a

finite impact parameter. The symmetry axis is labelled as x′, and the window plane

between the collision partners is labelled as y′. The normal vector of the window

plane is represented with ê.
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In this case, the macroscopic variables are the nucleus’s neutron and proton numbers

on one side of the window. The neutron and proton densities are expressed in terms

of these macroscopic variables, ρλn(r⃗, t) and ρλp(r⃗, t) for the event λ generated by the

SMF theory, are defined as:

(
Nλ

1 (t)

Zλ
1 (t)

)
=

∫
d3rΘ {[x− x0(t)] cos θ + [y − y0(t)] sin θ}

(
ρλn(r⃗, t)

ρλp(r⃗, t)

)
. (3.7)

In the Eq. 3.7, Θ(f(x)) denotes the Heaviside step function. The SMF theory claims

that the stochastic Langevin dynamics drive the temporal evolution of collective vari-

ables. The temporal variations in the number of protons and neutrons within the

projectile-like nuclei are described by the following expression:

d

dt

(
Nλ

1 (t)

Zλ
1 (t)

)
=

∫
d3rδ (x′) ẋ′

(
ρλn(r⃗, t)

ρλp(r⃗, t)

)
+

∫
d3rΘ(x′)

∂

∂t

(
ρλn(r⃗, t)

ρλp(r⃗, t)

)
, (3.8)

where, x′ is the point on the window plane and ẋ′ is the velocity and δ(x′) is the delta

function. The continuity equation for the current j and the density ρ is written as,

∂

∂t
ρλα(r⃗, t) = −∇⃗ · j⃗λα(r⃗, t) = −

[
∂xj

λ
x,α(r⃗, t) + ∂yj

λ
y,α(r⃗, t) + ∂zj

λ
z,α(r⃗, t)

]
. (3.9)

In the given equation, α denotes the type of nucleon, whereas λ indicates the label

assigned to the event. Equation 3.9 can be utilized to obtain the stochastic Langevin

equation that describes the change in neutron and proton numbers.

d

dt

(
Nλ

1 (t)

Zλ
1 (t)

)
=

∫
d3r g (x′)

(
ẋ′ρλn(r⃗, t) + jλx,n(r⃗, t) cos θ + jλy,n(r⃗, t) sin θ

ẋ′ρλp(r⃗, t) + jλx,p(r⃗, t) cos θ + jλy,p(r⃗, t) sin θ

)
=

(
vλn(t)

vλp (t)

)
.

(3.10)

For each λ event in the ensemble, the proton current jp(r⃗, t) and the neutron current

jn(r⃗, t) within the window determine the proton drift coefficient vλp (t) and the neutron
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drift coefficient vλn(t), respectively. For small values of κ, instead of using the delta

function, we can replace it with a Gaussian distribution g(x). The equation for this

substitution is as follows:

g(x) =
1

κ
√
2π

exp
(
−x2/2κ2

)
, (3.11)

κ = 1.0 fm is in the lattice spacing order for numerical computations. The current

density vector in the SMF approach is defined as,

j⃗λα(r⃗, t) =
ℏ

2im

∑
ij∈α

[
Φ∗α

j (r⃗, t;λ)∇⃗Φα
i (r⃗, t;λ)− Φα

i (r⃗, t;λ)∇⃗Φ∗α
j (r⃗, t;λ)

]
ρλji

=
ℏ
m

∑
ij∈α

Im
(
Φ∗α

j (r⃗, t;λ)∇⃗Φα
i (r⃗, t;λ)ρ

λ
ji

)
.

(3.12)

The ensemble average of the Langevin equations is used to calculate the mean proton

Z1(t) = Zλ
1 (t) and neutron N1(t) = Nλ

1 (t) numbers of projectile-like and target-like

collision partners. Using the mean values for density matrix elements ρλji = δjinj

with small fluctuations TDHF equations can be written as,

d

dt

(
N1(t)

Z1(t)

)
=

∫
d3rg (x′)

(
ẋ′ρn(r⃗, t) + ê · j⃗n(r⃗, t)
ẋ′ρp(r⃗, t) + ê · j̇p(r⃗, t)

)
=

(
vn(t)

vp(t)

)
, (3.13)

where mean values of the nucleon density,

ρα(r⃗, t) =
∑
h∈α

Φ∗α
h (r⃗, t)Φα

h(r⃗, t), (3.14)

and the current density is defined as,

j⃗α(r⃗, t) =
ℏ
m

∑
h∈α

Im
(
Φ∗α

h (r⃗, t)∇⃗Φα
h(r⃗, t)

)
. (3.15)

The subscript h in equations Eq. 3.14 and Eq. 3.15 denotes the summation over the

occupied states of the projectile and target nuclei, which are referred to as "hole"
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states. The net currents of protons and neutrons across the window plane are indicated

by the drift coefficients vn(t) and vp(t). One can linearize the Langevin equation

around the mean values of N1(t) and Z1(t) to compute the fluctuations around the

mean values of neutron and proton numbers. Fluctuations can be caused by two

distinct sources. The first source is the variation in wave functions across various

events, denoted as λ. The second source is the initial stochastic fluctuations in the

density matrix components, represented as δρλji = ρλji − δjinj .

In the stochastic Langevin equation, the neutron vλn(t) and proton vλp (t) drift coeffi-

cients of an ensemble in the event λ are determined by the proton and neutron currents

in the window; their fluctuations, δvλn(t) and δvλp (t), respectively, are expressed as

stochastic expressions of the proton and neutron currents. For small amplitude varia-

tions, the drift coefficients vn(t) and proton vp(t) are approximated as linear functions

around their average values,

(
vλp(t)

vλn(t)

)
=

(
vp(t)

vn(t)

)
+

( ∂vp
∂Z1

(
Zλ

1 − Zλ
1

)
+ ∂vp

∂N1

(
Nλ

1 −Nλ
1

)
∂vn
∂Z1

(
Zλ − Zλ

1

)
+ ∂vn

∂N1

(
Nλ

1 −Nλ
1

))+(δvλp(t)
δvλn(t)

)
. (3.16)

The stochastic components of the proton and neutron currents give rise to the fluctua-

tions δvλp(t) and δvλn(t) in the SMF theory. These fluctuations are uncorrelated Gaus-

sian distributions with mean values of δvλp(t) = 0 and δvλn(t) = 0. In the Markovian

approximation, the variances are related to the diffusion coefficients of proton and

neutron exchange, denoted as DZZ(t) and DNN(t), respectively as,

δvλp(t)δv
λ
p (t

′) = 2δ (t− t′)DZZ(t), (3.17)

δvλn(t)δv
λ
n (t

′) = 2δ (t− t′)DNN(t), (3.18)

and mixed diffusion coefficient is DZN(t) = 0. Using Eq. 3.10, temporal change in

fluctuations of neutron and proton numbers written as,
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d

dt

(
δZλ

1 (t)

δNλ
1 (t)

)
=

( ∂vp
∂Z1

(
Zλ

1 − Zλ
1

)
+ ∂vp

∂N1

(
Nλ

1 −Nλ
1

)
∂vn
∂Z1

(
Zλ − Zλ

1

)
+ ∂vn

∂N1

(
Nλ

1 −Nλ
1

))+

(
δvλp(t)

δvλn(t)

)
. (3.19)

If the fluctuations are coherent around the average values, the linear limit becomes

even more accurate at approximating small amplitude fluctuations. The derivatives

of the drift coefficients evolve along the mean trajectory. The following definition

of δvλα(t) gives the stochastic parts of the drift coefficients: δj⃗λα(r⃗, t) represents the

fluctuations in the current density and the elements of the density matrix δρλα(r⃗, t) as

follows,

δvλα(t) =

∫
d3rg (x′)

(
ẋ′δρλα(r⃗, t) + ê · δj⃗λα(r⃗, t)

)
. (3.20)

In the above equation, fluctuations in neutron and proton current density are written

as,

δj⃗λα(r⃗, t) =
ℏ
m

∑
ij∈α

Im
(
Φ∗α

j (r⃗, t)∇⃗Φα
i (r⃗, t)δρ

λ
ji

)
, (3.21)

and fluctuations in elements of neutron and proton density matrix,

δρλα(r⃗, t) =
∑
ij∈α

Φ∗α
j (r⃗, t)δρλjiΦ

α
i (r⃗, t). (3.22)

3.2.2 Dispersion Calculations for Fragment Charge and Mass Distributions

The normal vector ê to the window plane can be determined in Eq. 3.20. Instead of

the Dirac delta function, we employ the Gaussian distribution given in Eq. 3.11 for

small values of κ. For collision partners, neutron, proton, and mixed variances can be

defined as follows:

σ2
NN(t) =

(
Nλ

1 −Nλ
1

)2
, (3.23)
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σ2
ZZ(t) =

(
Zλ

1 − Zλ
1

)2
, (3.24)

σ2
NZ(t) =

(
Nλ

1 −Nλ
1

)(
Zλ

1 − Zλ
1

)
. (3.25)

The temporal change of these variances is written as,

∂

∂t
σ2
NN = 2

∂vn
∂N1

σ2
NN + 2

∂vn
∂Z1

σ2
NN + 2DNN , (3.26)

∂

∂t
σ2
ZZ = 2

∂vp
∂Z1

σ2
ZZ + 2

∂vp
∂N1

σ2
NZ + 2DZZ , (3.27)

∂

∂t
σ2
NZ =

∂vp
∂N1

σ2
NN +

∂vn
∂Z1

σ2
ZZ + σ2

NZ

(
∂vp
∂Z1

+
∂vn
∂N1

)
. (3.28)

To calculate variances from Eqns. 3.26, 3.27, 3.28, diffusion coefficients and deriva-

tives of drift coefficients should be known.

3.2.3 Derivation of Neutron and Proton Diffusion Coefficients

We mentioned that δvλn(t) = 0 δvλp(t) = 0, the fluctuations resulting from the stochas-

tic components of the drift coefficients have zero mean values. The proton and neu-

tron diffusion coefficients are defined by integrating the relevant correlation functions

over the time span of the process,

∫ t

0

dt′δvλα(t)δv
λ
α (t

′) = Dαα(t). (3.29)

Current density fluctuations around the window plane and density fluctuations are the

two main sources of the stochastic components of the drift coefficients. The current

density changes become more apparent because of the greater nucleon flow rate rela-

tive to the window’s collective velocity. Consequently, for the stochastic components
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of the drift coefficients, the following equation only considers the variations in current

density.

δvλα(t) =
ℏ
m

∫
d3rg (x′)

∑
ij∈α

Im
[
ϕ∗
jα(r⃗, t)ê · ∇⃗ϕα

i (r⃗, t)δρ
λ
ji

]
. (3.30)

In this context, the subscript j ∈ P represents the summation over the states from

which the projectile nucleus originates, while the subscript i ∈ T represents the

summation over the states from which the target nucleus originates. The diffusion

coefficient becomes,

Dαα(t) =

∫ t

0

dt′δvλα(t)δv
λ
α (t

′)

=

∫ t

0

dt′Re

[ ∑
p∈P, h∈T

Aα
ph(t)A

∗
ph (t

′) +
∑

p∈T, h∈P

Aα
ph(t)A

∗
ph (t

′)

]
.

(3.31)

In Eq. 3.31, p and h subscripts denote particle and hole states, respectively, for colli-

sion partners. Matrix elements can be written as,

Aα
ph(t) =

ℏ
2m

∫
d3rg (x′)

(
Φ∗α

p (r⃗, t)ê · ∇⃗Φα
h(r⃗, t)− Φα

h(r⃗, t)ê · ∇⃗Φ∗α
p (r⃗, t)

)
=

ℏ
m

∫
d3rg (x′) Φ∗α

p (r⃗, t)

(
ê · ∇⃗Φα

h(r⃗, t)−
x′

2κ2
Φα

h(r⃗, t)

)
.

(3.32)

Equation 3.31 includes an infinitive number of particle states; thus, the following

approximation is used, if empty states are added and subtracted to the first term of

Eq. 3.31,

∑
p∈P,h∈T

Aα
ph(t)A

∗α
ph (t

′) =
∑

a∈P,h∈T

Aα
ah(t)A

∗α
ah (t

′)−
∑

h′∈P,h∈T

Aα
h′h(t)A

∗α
h′h (t

′) . (3.33)

All of the projectile’s states are added up to form the summation. Since the wave func-

tions include distinct times, the first term cannot be eliminated by applying the com-

pleteness property of the wave functions. Nevertheless, the single-particle wave func-

tions that vary with time demonstrate a nearly diabatic nature within short intervals.
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Thus, during the brief time evolution τ = t − t′, the time-dependent wave functions

can be shifted forwards or backwards using the expression Φa (r⃗, t
′) ≈ Φa(r⃗− u⃗τ, t),

where u⃗(R⃗, T ) represents the drift velocity of nucleons passing through the window.

This velocity depends on the average position R⃗ = (r⃗1 + r⃗2) /2 and the average time

T = (t+ t′) /2. Therefore, the completeness relation can be expressed as follows:

∑
a

Φ∗
a (r⃗1, t) Φa (r⃗2 − u⃗τ, t) = δ (r⃗1 − r⃗2 + u⃗τ) , (3.34)

and Eq. 3.33 becomes,

∑
a∈P,h∈T

Aα
ah(t)A

∗α
ah (t

′) =
∑
h∈T

∫
d3r1d

3r2δ (r⃗1 − r⃗2 + u⃗hτ)W
α
h (r⃗1, t)W

∗α
h (r⃗2, t

′) ,

(3.35)

where the hole states simply need to be added up. For every chosen drift velocity,

the completeness relation provided by Eq. 3.34 is applicable. For each term in the to-

tal, choosing the velocity of the empty states u⃗h(R⃗, T ) is the best option. Therefore,

by eliminating the summation over single-particle states, the calculation of the quan-

tal diffusion coefficients becomes much simplified. One needs to take into account

empty states originating from the target ion. The term Wα
h (r⃗1, t) in Eq. 3.35 can be

expressed as follows:

Wα
h (r⃗1, t) =

ℏ
m
g (x′

1)

(
ê · ∇⃗1Φ

α
h (r⃗1, t)−

x′
1

2κ2
Φα

h (r⃗1, t)

)
. (3.36)

Equation 3.35 becomes,

∑
a∈P,h∈T

Aα
ah(t)A

∗α
ah (t

′) =

∫
d3rg̃ (x′)GT (τ)J

T
⊥,α(r⃗, t− τ/2), (3.37)

where Appendix B of [43] has the computational details. Here in Eq. 3.37, JT
⊥,α(r⃗, t−

τ/2) represents the sum of the magnitudes of the current densities perpendicular to

the window for each wave function coming from the target, and its explicit expression

is given by,
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JT
⊥,α(r⃗, t− τ/2) =

ℏ
m

∑
h∈T

∣∣∣ImΦ∗α
h (r⃗, t− τ/2)

(
ê · ∇⃗Φα

h(r⃗, t− τ/2)
)∣∣∣ , (3.38)

Gh
T (τ) at τ is the memory kernel defined as,

Gh
T (τ) =

1√
4π

1

τhT
exp

[
−
(
τ/2τhT

)2]
, (3.39)

for the memory time, τhT = κ/
∣∣u⃗h

⊥
∣∣. But we are using an approximation by replacing

Gh
T (τ) with its average value,

GT (τ) =
1√
4πτT

exp
[
− (τ/2τT )

2] . (3.40)

A similar analysis can be performed for the second term as well,

∑
a∈T,h∈P

Aα
ah(t)A

∗α
ah (t

′) =

∫
d3rg̃ (x′)GP (τ)J

P
⊥,α(r⃗, t− τ/2). (3.41)

The total of the average magnitudes of the current densities of the wave functions

originating from the projectile ion is represented by JP
⊥,α(r⃗, t − τ/2) in the equation

above. For convenience, the lowercase vector r⃗ is employed instead of the upper-

case letter R. The proton and neutron diffusion coefficients can be expressed in the

following form,

Dαα(t) =

∫ t

0

dτ

∫
d3rg̃ (x′)

[
GT (τ)J

T
⊥,α(r⃗, t− τ/2) +GP (τ)J

P
⊥,α(r⃗, t− τ/2)

]
−
∫ t

0

dτ Re

[ ∑
h′∈P, h∈T

Aα
h′h(t)A

∗′
h′h(t− τ) +

∑
h′∈T, h∈P

Aα
h′h(t)A

∗α
h′h(t− τ)

]
.

(3.42)

This expression, derived from a fully quantum mechanical framework and a micro-

scopic form, contains no adjustable parameters. The integral over time in the ex-

pression corresponds to memory effects. It automatically includes the Pauli blocking

effect, which has no classical counterpart. In this expression, the summation is only
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over a finite number of occupied states, and these single-particle wave functions are

obtained from TDHF solutions.

3.2.4 Calculating the Derivatives of Drift Coefficients

To determine the covariances as described by the Eqns. 3.26, 3.27, 3.28, it is nec-

essary to calculate not only the diffusion coefficients but also the derivatives of the

drift coefficients. The one-sided flux method is used to calculate the drift coefficient

derivatives. As a side note, when the charge asymmetry values of the colliding ions

are equal or nearly equal, the net drift becomes zero, rendering this approach ineffec-

tive. If that is the case, neighbouring reaction systems with different charge asymme-

try, the same energy in the CM frame, and the same initial angular momentum could

be used for calculating the reduced curvature parameters α and β. While calculat-

ing the iso-scalar curvature parameter β, the selected point’s charge asymmetry must

be close to the colliding ions and near the iso-scalar drift path. The selected point’s

charge asymmetry for the iso-vector curvature parameter must be very different from

those of the colliding ions and far from the iso-scalar drift path. The calculations will

also be at the same energy and initial angular momentum as the central system. In

this way, the criteria guarantee proper conditions for the appropriate determination of

curvature parameters and the related drift and diffusion coefficients.

In all of the systems studied in this work, initial charge asymmetries of the reaction

partners are different, resulting in a distinct mean-drift path shown in Figs. 2.2(a),

2.3(a), 2.4(a), 2.5(a) and 2.6(a). The potential energy surface of the two-center

nuclear system governs the diffusion of protons and neutrons in the N − Z plane.

Symmetry energy enables rapid diffusion in the direction perpendicular to the aver-

age drift path (beta stability valley), resulting in a swift equalization of the charge

asymmetry. Meanwhile, the process of diffusion proceeds at a slow pace through the

beta stability valley.

The collision partner’s state is represented by N1, Z1 on the N − Z plane in Fig. 3.2,

while the system’s local equilibrium point is shown by N0, Z0. When the charge

asymmetries of the collision partners are close to the charge asymmetry of the com-

posite system, the quick equilibration of the charge asymmetry is not easily observ-
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Figure 3.2: Example drift path on the N − Z plane. The solid red line represents the

iso-vector drift, and the solid blue line represents the iso-scaler drift. The drift path is

illustrated with a solid magenta line. N1, Z1 is the projectile or target-like fragment

and N0, Z0 is the local equilibrium point.

able. During the extended period of interaction, we notice that the two-center nuclear

system gradually moves towards a state of symmetry. However, it eventually sepa-

rates before achieving complete symmetry. From this insight, it is feasible to parame-

terize the potential energy surface of the two-center nuclear system for each collision

parameter, using N1 and Z1 as variables, in the following manner:

U (N1, Z1) =
1

2
b(n cosϕ− z sinϕ)2 +

1

2
a(n sinϕ+ z cosϕ)2. (3.43)

The equation consists of two terms. The first term represents the iso-vector drift

path perpendicular to the beta-stability valley line. The second term represents the

iso-scalar drift path along the beta-stability valley line. Here, n = N0 − N1 and

z = Z0 − Z1 as shown on the Fig. 3.2. For any point N1, Z1, the distance from the

iso-vector path is represented by the term n cosϕ − z sinϕ, and the distance from

the iso-scalar path is represented by the term n sinϕ+ z cosϕ. The Einstein relation,
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which explains the relationship between the diffusion and drift coefficients in the

transport mechanism of collective variables, is utilized to find the reduced curvature

parameters α and β. The Einstein relation states that the relationship between the

neutron drift coefficient vn(t) and the proton drift coefficient vp(t), as well as their

respective diffusion coefficients, could be expressed as follows:

vn(t) = −DNN

T

∂U

∂N1

= DNN (βRv(t) cosϕ+ αRS(t) sinϕ) ,

(3.44)

vp(t) = −DZZ

T

∂U

∂Z1

= DZZ (βRv(t) sinϕ− αRs(t) cosϕ) .

(3.45)

The relationship between the temperature and the curvature parameters can be ex-

pressed as β = b/T and α = a/T . The terms Rv(t) = n cosϕ − z sinϕ and

RS(t) = n sinϕ + z cosϕ represent the orthogonal distances of the collision partner,

defined by N1 and Z1, from the iso-scalar and iso-vector paths, respectively. There-

fore, the derivatives of the drift coefficients with respect to the diffusion coefficients

and curvature parameters can be determined in the following manner:

∂vn(t)

∂N1

= −DNN

(
β cos2 ϕ+ α sin2 ϕ

)
, (3.46)

∂vn(t)

∂Z1

= +DNN(α− β) cosϕ sinϕ, (3.47)

∂vp(t)

∂Z1

= −DZZ

(
β sin2 ϕ+ α cos2 ϕ

)
, (3.48)

∂vp(t)

∂N1

= +DZZ(α− β) cosϕ sinϕ. (3.49)

These expressions relate the derivatives of the drift coefficients to the diffusion co-

efficients and the curvature parameters, incorporating the angle ϕ between the beta

stability valley and the neutron number axis.
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The time-dependent reduced curvature parameters are influenced by shell effects and

the microscopic character of the collision dynamics included in TDHF. In a macro-

scopic transport description, one has to average out this time dependence. Conse-

quently, we calculate the reduced curvature parameters by taking the average over an

appropriate time span. As observed from the drift path depicted in Figs. 2.2(a), 2.3(a),

2.4(a), 2.5(a), and 2.6(a), the drift occurs in the direction of symmetry. Points la-

beled as A and B along the drift path are utilized to compute the mean value of the

iso-vector reduced curvature parameter. The B to C proportion is utilized to compute

the mean value of the iso-scalar reduced curvature parameter. Corresponding times

of these points are shown in Figs. 2.2(b), 2.3(b), 2.4(b), 2.5(b) and 2.6(b).

The time interval between the initial contact point for the collision partners at tA to the

point where the charge asymmetry equilibrium is reached, the point tB, is chosen to

compute the average iso-vector reduced curvature parameter. During this time frame,

the average value of the iso-vector reduced curvature parameter is determined as:

α =
1

RS

∫ tB

tA

{
vn(t) sinϕ

DNN(t)
− vp(t) cosϕ

DZZ(t)

}
dt. (3.50)

Taking the average on the same time interval, we can calculate iso-vector distance as,

RS =

∫ tB

tA

{[N1(t)−N0] sinϕ

− [Z1(t)− Z0] cosϕ} dt.
(3.51)

The average value of the iso-scalar reduced curvature parameter for the time interval

from tB to tC , when the collision partners are close to separation, is determined as:

β = − 1

RV

∫ tC

tB

{
vn(t) cosϕ

DNN(t)
+

vp(t) sinϕ

DZZ(t)

}
dt. (3.52)

The iso-scalar distance can be found by taking the average on the same time interval,

RV =

∫ tC

tB

{[N1(t)−N0] cosϕ

+ [Z1(t)− Z0] sinϕ} dt.
(3.53)
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For the 64Ni + 130Te and 206Pb + 118Sn reaction systems, in numerical calculations,

the perpendicular RS and RV distances fluctuate abruptly, yielding unrealistic results

for the reduced curvature parameters. To address this issue, we included perpendic-

ular distance to the integral term to smooth out the fluctuations in the selected time

intervals. For these systems the α reduced curvature parameter becomes,

α =
1

tB − tA

∫ tB

tA

(
vn(t) sinϕ

DNN

− vp(t) cosϕ

DZZ

)
/Rs(t)dt, (3.54)

and the β reduced curvature parameter becomes,

β =
1

tC − tB

∫ tC

tB

(
vn(t) cosϕ

DNN

+
vp(t) sinϕ

DZZ

)
/Rv(t)dt (3.55)

3.3 Results of TDHF + SMF Calculations for Selected Heavy-Ion Systems

To calculate diffusion coefficients, reduced curvature parameters and the dispersions,

the following initial angular momenta were utilized for reaction systems: 58Fe+208Pb

at ℓ = 40ℏ, 36S + 238U at ℓ = 40ℏ, 64Ni + 130Te at ℓ = 82ℏ and 206Pb + 118Sn at

ℓ = 60ℏ. These initial angular momenta were selected to maximize the drift before

the collision partners separated, making the mean drift path of the reaction system

more pronounced.

Diffusion coefficients for the reaction systems were calculated using Eq. 3.42, and

the results shown in Figs. 3.3(a), 3.4(a), 3.5(a), 3.6(a), 3.7(a). The solid blue line

depicts the time variation of the neutron diffusion coefficient, whereas the dashed red

line indicates the variation of the proton diffusion coefficient. The data shows that

the neutron diffusion coefficients are approximately double the value of the proton

diffusion coefficients. The observed effect is anticipated as a result of the repulsive

force between protons, known as Coulomb repulsion, and the fact that the colliding

partners are nuclei with an excess of neutrons [44, 42, 43, 45, 46, 47, 48, 27, 49, 50,

51, 52, 53, 54].

The reaction system’s potential energy surface is described by the reduced curvature

parameters α and β, whose average values are calculated through the time intervals
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Table 3.1: Calculated average curvature parameters and their time intervals in 58Fe +
208Pb reaction with Ec.m. = 238.5 MeV, 36S + 238U reaction with Ec.m. = 151.1 MeV,
64Ni+130Te reaction with Ec.m. = 184.3 MeV and 206Pb+118Sn reaction with Ec.m. =

436.8 MeV. The time intervals between tA and tB are utilized for calculating the

iso-vector curvature parameter α. Similarly, the time intervals between tB and tC

are employed for calculating the iso-scalar curvature parameter β using equations

Eq. 3.50 and Eq. 3.52 respectively.

System Orientation tA(fm/c) tB(fm/c) tC(fm/c) α β(10−3)

58Fe + 208Pb
tip 290 410 1200 0.335 1.5

side 290 410 1500 0.378 1.3
36S + 238U - 350 550 3500 0.245 11.1

64Ni + 130Te - 270 500 2200 0.269 8.0
206Pb + 118Sn - 270 400 800 0.542 7.0

tA, tB, and tC . These points correspond to the locations labelled as A, B, and C

on the mean drift paths displayed in Figs. 2.2(a), 2.3(a), 2.4(a), 2.5(a), 2.6(a) using

Eqs. 3.50 and 3.52. Table 3.1 shows the average values of the reduced curvature

parameters determined by the calculations and the corresponding time intervals.
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Figure 3.3: Calculated (a) neutron and proton diffusion coefficients, (b) neutron, pro-

ton and mixed dispersions of the 58Fe + 208Pb at Ec.m. = 238.5 MeV for the tip

orientation of the 58Fe nucleus with an initial angular momentum of ℓ = 40ℏ.

Solutions to the coupled differential Eqns. 3.26, 3.27 and 3.28 yield the neutron, pro-
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ton and mixed dispersions. These equations are solved with the initial conditions,

σ2
NN(t = 0) = 0, σ2

ZZ(t = 0) = 0 and σ2
NZ(t = 0) = 0 for each system with the

selected initial angular momentum range. For the 58Fe + 208Pb system at ℓ = 40ℏ,

temporal change of the neutron, proton and mixed variances shown in Fig. 3.3(b) for

the tip orientation and in Fig. 3.4(b) for the side orientation with a solid blue line, red

dashed line and dotted magenta line respectively. Results of the calculations for each

initial angular momentum for this system are given in Table 3.2 for the tip orientation

and Table 3.3 for the side orientation.

Table 3.2: SMF results for the 58Fe + 208Pb reaction at Ec.m. = 238.5 MeV in the tip

orientation of the 58Fe nucleus with an initial angular momentum of ℓ = 40ℏ.

ℓi σNN σZZ σNZ σAA

40 9.5 6.2 7.5 15.5

60 7.8 5.1 6.0 12.6

80 4.5 3.0 3.2 7.1

100 1.5 0.8 0.4 1.8

120 0.8 0.5 0.1 1.0

140 0.6 0.3 0.1 0.7

160 0.4 0.2 0.0 0.5

180 0.3 0.1 0.0 0.3

200 0.2 0.1 0.0 0.2

220 0.2 0.1 0.0 0.2

240 0.1 0.0 0.0 0.1

For 58Fe + 208Pb system in the tip orientation with an initial angular momentum of

ℓ = 40ℏ, as shown in Fig. 3.3, from the beginning of the interaction up to t ≈450 fm/c,

dispersion has the following order of magnitudes σNZ < σZZ < σNN . As the nucleon

exchange continues, correlation develops between the exchange partners and after t ≈
fm/c point, this ordering changes to σZZ < σNZ < σNN showing that after substantial

energy dissipation, correlations become important. Within the standard mean-field

framework, magnitudes of fluctuations and the correlation is underestimated in the

dissipative collisions, and correlation term σNZ is calculated as zero. In the SMF

approach, these fluctuations are much larger, yielding a more realistic picture. Similar
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behaviour on variances is also observed for the rest of the systems studied in this

work. As nucleon exchange slows at around t ≈ 1500 fm/c, dispersions reach the

final asymptotic values.
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Figure 3.4: Calculated (a) neutron and proton diffusion coefficients, (b) neutron, pro-

ton and mixed dispersions of the 58Fe + 208Pb reaction with Ec.m. = 238.5 MeV for

the side orientation of the 58Fe nucleus with an initial angular momentum of ℓ = 40ℏ.

Table 3.3: SMF results of the 58Fe + 208Pb reaction with Ec.m. = 238.5 MeV for the

side orientation of the 58Fe nucleus with an initial angular momentum ℓ = 40ℏ.

ℓi σNN σZZ σNZ σAA

40 9.2 6.0 7.2 15.0

60 4.4 3.0 3.2 7.0

80 2.2 1.4 1.0 3.0

100 1.1 0.6 0.2 1.3

120 0.8 0.4 0.1 0.9

140 0.6 0.1 0.1 0.7

160 0.4 0.2 0.0 0.5

180 0.3 0.2 0.0 0.4

200 0.2 0.1 0.0 0.3

220 0.2 0.1 0.0 0.2

240 0.1 0.1 0.0 0.1

In Fig. 3.4, neutron, proton, and mixed dispersions are displayed in side orientation
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of the 58Fe + 208Pb system for ℓ = 40ℏ. Similar to the tip orientation of the same

system, dispersion exhibits the following order of magnitudes from the beginning of

the contact until approximately t ≈ 450 fm/c. The ordering of σNZ , σZZ , and σNN

changes as correlation becomes important. Initially, σNZ is less than σZZ , which

is less than σNN . However, as correlation becomes more significant, the ordering

changes to σZZ being less than σNZ , which is less than σNN . This transition occurs

when the system reaches asymptotic values at around t ≈ 1500 fm/c.
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Figure 3.5: Calculated (a) neutron and proton diffusion coefficients, (b) neutron, pro-

ton and mixed dispersions of the 36S + 238U reaction at Ec.m. = 151.1 MeV with an

initial angular momentum of ℓ = 40ℏ.

For the 36S + 238U system with an initial angular momentum of ℓ = 40ℏ, calculated

dispersions presented on Fig. 3.5(b). Around t ≈ 800 fm/c, correlation develops and

order of magnitude changes as σZZ < σNZ < σNN . Beyond the t ≈ 3300 fm/c point,

nucleon exchange slows down, and dispersions reach their asymptotic values.

On Fig. 3.6(b), calculated dispersions presented for the 64Ni + 130Te reaction system

with an initial angular momentum of ℓ = 82.ℏ. Beyond t ≈ 600 fm/c, correlations

becomes effective and order of magnitude changes to σZZ < σNZ < σNN . After

t ≈ 2750 fm/c, dispersions arrive at their asymptotic values as the nucleon exchange

slows down.

For 206Pb+ 118Sn system with an initial angular momentum of ℓ = 60ℏ, results of the

dispersion calculations presented on the Fig. 3.7(b). Correlations become significant

after t ≈ 400 fm/c, and as nucleon exchange decelerates beyond t ≈ 700 fm/c, the
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Table 3.4: SMF results of the 36S + 238U reaction with Ec.m. = 151.1 MeV with an

initial angular momentum of ℓ = 40ℏ.

ℓi σNN σZZ σNZ σAA

34 7.9 5.3 6.1 12.9

35 7.9 5.2 6.1 12.8

36 7.8 5.2 6.0 12.7

37 7.9 5.3 6.1 12.8

38 8.0 5.3 6.2 13.0

39 8.0 5.4 6.2 13.1

40 8.0 5.3 6.2 13.0

41 4.3 2.9 2.8 6.5

42 3.6 2.4 2.1 5.3

44 3.0 2.1 1.5 4.3

46 2.5 1.7 1.1 3.4

48 1.9 1.2 0.5 2.3

50 1.4 0.9 0.3 1.8
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Figure 3.6: Calculated (a) neutron and proton diffusion coefficients, (b) neutron, pro-

ton and mixed dispersions of the 64Ni + 130Te reaction at Ec.m. = 184.3 MeV with an

initial angular momentum of ℓ = 82ℏ.

dispersions reach their asymptotic values.
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Table 3.5: SMF results of the 64Ni + 130Te reaction with Ec.m. = 184.3 MeV with an

initial angular momentum of ℓ = 82ℏ.

ℓi σNN σZZ σNZ σAA

82 8.6 5.7 6.7 14.1

84 4.2 2.9 2.8 6.4

86 3.9 2.6 2.5 5.9

88 2.8 1.9 1.4 4.0

90 2.6 1.7 1.2 3.5

92 2.0 1.2 0.6 2.5

94 1.7 0.9 0.4 2.0

96 1.5 0.8 0.3 1.7

98 1.3 0.7 0.2 1.5

100 1.2 0.7 0.2 1.5

110 0.9 0.5 0.1 1.0

120 0.7 0.4 0.1 0.8

140 0.4 0.2 0.0 0.5

160 0.3 0.1 0.0 0.3

180 0.2 0.1 0.0 0.2
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Figure 3.7: Calculated (a) neutron and proton diffusion coefficients, (b) neutron, pro-

ton and mixed dispersions of the 206Pb+ 118Sn reaction with Ec.m. = 436.8 MeV with

an initial angular momentum of ℓ = 60ℏ.
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Table 3.6: SMF results of the 206Pb+ 118Sn reaction with Ec.m. = 436.8 MeV with an

initial angular momentum of ℓ = 60ℏ.

ℓi σNN σZZ σNZ σAA

60 6.3 4.2 4.8 10.2

80 6.1 4.1 4.6 9.8

100 5.7 3.9 4.3 9.2

120 5.2 3.5 3.8 8.3

140 4.6 3.1 3.2 7.2

160 3.7 2.5 2.4 5.6

180 2.7 1.8 1.4 3.8

200 1.7 0.9 0.4 2.0

220 1.2 0.6 0.2 1.4

240 1.0 0.5 0.1 1.1

260 0.8 0.4 0.1 0.9

σ2
AA(ℓ) = σ2

NN(ℓ) + σ2
ZZ(ℓ) + 2σ2

NZ(ℓ). (3.56)

Using the dispersions calculated in this section, mass variance can be calculated as

in Eq. 3.56. The next chapter will present calculation details for the production yield

and cross-sections of primary and secondary fragments. Subsequently, the results

obtained from these calculations for the reaction systems studied in this work will be

compared with the available experimental data.
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CHAPTER 4

FRAGMENT DISTRIBUTION AND CROSS-SECTION CALCULATIONS

4.1 Probability Distribution Calculations for the Production of Primary Frag-

ments

The solutions of a Langevin equation, Eq. 3.19, obtained in numerous iterations, de-

fine the joint probability distribution function Pℓ(N,Z) for creation of binary frag-

ments with N neutrons and Z protons. For the distribution function of macroscopic

variables, the Langevin equation is similar to the Fokker-Planck equation [55]. In

this specific case, where the drifts are linear functions of macroscopic variables as

described by Eq. 3.19, the distribution function for protons and neutrons at the ini-

tial orbital angular momentum ℓ can be expressed using a correlated Gaussian dis-

tribution. This distribution is characterized by the mean values and dispersions for

neutrons, protons, and their mixed dispersions.

Pℓ(N,Z) =
1

2πσNN(ℓ)σZZ(ℓ)
√

1− ρ2ℓ
exp (−Cℓ) , (4.1)

Cℓ exponent for initial angular momentum ℓ defined as,

Cℓ =
1

2 (1− ρ2ℓ)

[(
Z − Zℓ

σZZ(ℓ)

)2

− 2ρℓ

(
Z − Zℓ

σZZ(ℓ)

)(
N −Nℓ

σNN(ℓ)

)

+

(
N −Nℓ

σNN(ℓ)

)2
]
.

(4.2)

In the above equation, the correlation coefficient is defined as,
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ρℓ =
σ2
NZ(ℓ)

[σZZ(ℓ)σNN(ℓ)]
. (4.3)

The mean neutron and proton numbers for projectile-like and target-like fragments, as

obtained from the TDHF computations, are denoted by the symbols Nℓ and Zℓ. The

double probabilities can be determined by substituting the expression for the cross-

section with the mass number distribution. The summation is performed across N and

Z while maintaining a constant total mass number A = N +Z within the probability

distribution of the resulting fragment’s mass numbers.

P S
l (A) =

1√
2π

1

σS
AA(l)

exp

[
−1

2

(
A− AS

l

σS
AA(l)

)2
]
, (4.4)

where mass variance σAA defined by the Eq. 3.56. Here, the S superscript defines the

fragment type as projectile-like or target-like.

4.2 Cross-Section Calculations for Primary Products

To calculate the cross-section for the primary products of the reaction, we can utilize

the standard expression as [56],

σS(N,Z) =
πℏ2

2µEc.m

lmax∑
lmin

(2l + 1)P S
l (N,Z), (4.5)

where µ is the reduced mass of the reaction system. P S
l (N,Z) defined as,

P S
l (N,Z) =

1

2

[
P S
l,pro(N,Z) + P S

l,tar(N,Z)
]
. (4.6)

To ensure the total probability distribution is normalized to unity, the 1/2 factor is

added to the above equation. The cross-section for the mass distribution is similarly

written as,
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σs(A) =
πℏ2

2µEc.m.

ℓmax∑
ℓmin

(2ℓ+ 1)P s
ℓ (A), (4.7)

where P S
l (A) defined as,

P S
l (A) =

1

2

[
P S
l,pro(A) + P S

l,tar(A)
]
. (4.8)

The production yield of the primary fragments can be calculated in a manner similar

to that used for the cross-section expression as follows,

Y (A) =
1

ℓmax∑
ℓmin

(2ℓ+ 1)

ℓmax∑
ℓmin

(2ℓ+ 1)Pℓ(A). (4.9)

Experimental investigations for the reaction system studied in this work [20, 21, 22]

show that for the mass symmetric region between the QF peaks, fusion-fission (FF)

reaction mechanism has great contribution which cannot be calculated using TDHF.

To gain insight into the fragment distribution of that region, statistical decay code

GEMINI++ is utilized [52]. Using this methodology, within the mass asymmetric

region, the compound nucleus excitation energy is calculated as,

E∗
CN = Ec.m. +Qgg, (4.10)

where Qgg is the disintegration energy released in the fusion reaction. Distribution of

the primary fragments becomes,

Y (A)sum = η1Y
QF (A) + η2Y

FF (A), (4.11)

here, η1 is the normalization factor for the QF region, and η2 is the normalization fac-

tor for the FF region. η1 is calculated by fitting the calculated QF data to the experi-

mental data in the QF region. Similarly, the η2 is calculated by fitting the calculated

FF data to the FF region of the experimental data.
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4.3 Cross-Section Calculations for Secondary Products

Initially excited, primary fragments cool down by fission or releasing light particles

like protons, neutrons, and alpha particles. To incorporate these de-excitation pro-

cesses into the primary product computations, we utilize the GEMINI++ toolkit, a

C++ library containing statistical functions for de-excitation [57]. The following ex-

pression is utilized to estimate the overall excitation energy of the generated primary

fragments,

E∗
ℓ (Z,N) = Ec.m. − TKEℓ −Qgg(Z,N). (4.12)

In the above equation, TKE represents the final value of the total kinetic energy in

collisions with the initial orbital angular momentum ℓ, and Qgg(Z,N) indicates the

ground state Q value of the resulting primary fragments compared to the initial value.

Collisions involving an initial orbital angular momentum ℓ will result in distributions

of the total spin and excitation energy in the exit channel centerd around their aver-

age values. This approach does not consider the variations in excitation energy and

spin of the primary fragments. We distribute the average value of the total excitation

energy and total angular momentum transfer according to the mass ratio of the pri-

mary fragments. The parent nucleus, which is in an excited state, releases particles

and performs secondary fissions until it can no longer decay due to insufficient en-

ergy. The GEMINI++ toolkit calculates the probability W (N,Z → N ′, Z ′) of tran-

sitioning from an excited parent nucleus with proton and neutron numbers (Z,N),

excitation energy E∗(Z,N), and spin J to the final nucleus Z ′, N ′.

The probability distribution of secondary fragments is given by,

P sec
ℓ (N ′, Z ′) =

∑
N⩾N ′

∑
Z⩾Z′

P pri
ℓ (N,Z)W (N,Z → N ′, Z ′) , (4.13)

the summation over Z and N includes all pairs of projectile-like and target-like frag-

ments of the di-nuclear system according to their probability distributions. The cross-

section for the secondary fragments, σsec
ℓ (N ′, Z ′) is then expressed as,
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σsec
ℓ (N ′, Z ′) =

πℏ2

2µEc.m.

ℓmax∑
ℓmin

(2ℓ+ 1)P sec
ℓ (N ′, Z ′) , (4.14)

where the summation over ℓ ranges from ℓmin to ℓmax.

4.4 Calculation Results for Selected Heavy-Ion Systems and Comparison with

Experiments

As previously discussed in the TDHF results section (see Section 2.4), the range of

initial angular momentum for the studied system spans from the point where QF is

observed to the point where the reaction becomes purely elastic. We divide this initial

angular momentum range into smaller intervals to optimize computing time while

preserving the details of reaction dynamics at different impact parameters.

Further refinement may be required to improve comparability before matching our

results with the available experimental data. For experiments measuring the final

fragment scattering angles, which can be compared to our calculations, we compute

our cross-sections within the initial angular momentum range corresponding to the

experimentally observed scattering angles of the final reaction products in the labora-

tory frame.

For the 58Fe + 208Pb reaction with Ec.m. = 238.5 MeV, within the initial angular

momentum range of 40ℏ ≤ ℓ ≤ 240ℏ, the scattering angles of the final fragments

are calculated as 50.1◦ ≤ θlab1 ≤ 86.7◦ and 35.7◦ ≤ θlab2 ≤ 58.8◦ for tip orientation,

and 50.6◦ ≤ θlab1 ≤ 81.1◦ and 38.8◦ ≤ θlab2 ≤ 58.4◦ for side orientation, as presented

in Table 2.1. In the experimental data for this system, final reaction products are

measured with the CORSET spectrometer [20], with measurement arms placed at

θlab1 = 60 ± 20 degrees and θlab2 = 60 ± 20 degrees, which are covered by our

calculations. Therefore, the initial angular momentum range 40ℏ ≤ ℓ ≤ 240ℏ is also

used in calculations for final product yields and cross-sections.

Similarly, an initial angular momentum range of 60ℏ ≤ ℓ ≤ 260ℏ is considered for

the 206Pb + 118Sn reaction with Ec.m. = 436.8 MeV. Table 2.4 displays the computed

scattering angles in the laboratory frame, which correspond to the angular coverage
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range of the experiment. The detector was positioned at θlab = 25◦ [22].

In the 64Ni + 130Te reaction with Ec.m. = 184.3 MeV, an initial angular momentum

range of 82ℏ ≤ ℓ ≤ 180ℏ is considered, and the calculated scattering angles of the

final fragments are presented in Table 2.3. In this case, no angular measurements of

the scattered final products were made in the experiment [21]. Thus, we utilized the

same initial angular momentum range for final product calculations.

0 50 100 150 200 250
A

150

200

250

300

TK
E

(M
eV

)

= 34
= 35
= 36
= 37
= 38
= 39
= 40
= 41
= 42
= 44
= 46
= 48
= 50

Figure 4.1: Selection of initial angular momentum for production yield calculations

of 36S + 238U reaction with Ec.m. = 151.1 MeV. Corresponding ℓ values for TKE

points that reside inside the red selection box [20] are utilized for yield calculations.

In the experiment for the 36S + 238U reaction with Ec.m. = 151.1 MeV [20], a selec-

tion box was applied on the TKE − A plane to eliminate contributions from elastic

events for yield calculations. Measurements outside this selection box were consid-

ered elastic events due to the higher TKE of the fragments. We employed a similar

methodology for this system to enhance compatibility with the experimental data.

Using the TDHF calculations presented in Table 2.2, we plotted the TKE of the final

fragments for each initial angular momentum against their final masses. Figure 4.1

illustrates the TKE points corresponding to the final masses with different initial an-

gular momenta. The selection box used in the experiment was also plotted, and points
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outside this box were considered elastic and excluded from the production yield cal-

culations. Based on these results, the initial angular momentum range 34ℏ ≤ ℓ ≤ 40ℏ

was considered for the yield calculations of final reaction products.

For the 58Fe+208Pb and 36S+238U reaction systems, experimental data are available in

the form of mass distributions of primary fragment yields [20]. For the 64Ni + 130Te

system, experimental data include secondary production cross-sections for various

transfer channels and mass distributions of secondary products [21]. For the 206Pb +

118Sn system, experimental data are available for secondary production cross-sections

across different transfer channels [22].

Figure 4.2 shows the primary cross-sections for the final reaction product. The white

stars indicate the highest cross-section points. Peak points for 58Fe + 208Pb, 64Ni +
130Te and 206Pb + 118Sn systems corresponds to the initial projectile and target pairs

with zero nucleon exchange, meaning that the quasi-elastic and elastic reaction dom-

inate around the peak points. For 36S + 238U system, as we mentioned before, we ex-

cluded most of the contributions from the elastic reactions to comply with the experi-

ment. As we can see from Fig. 4.2(b), this results in a broader peak, where the lighter

peak is located at Z = 27, N = 39 and heavier peak located at Z = 81, N = 127

with relatively lower peak cross-section compared to the other systems.

Figure 4.3 shows the SMF results for the QF process and the GEMINI++ results

for the FF process according to the MNT mechanism. The dashed light-blue lines

represent the mass distributions of the final primary products estimated using the

SMF framework. The orange hatching area indicates the contributions from the FF

events, which were computed using the GEMINI++ toolkit. The black dotted lines

correspond to the summation obtained using Eq. 4.11. To understand the possible

potential surface of these systems, we utilized the proximity model to compute the

driving potential of the composite systems. The calculations were conducted using

the default settings provided on the NRV site [58], with the distance between mass

centers determined via TDHF calculations. Each system’s driving potential energy

distribution is displayed in the upper panels of Fig. 4.3.

QF and FF processes overlap in the mass-symmetric area, situated between the QF

peaks shown in Fig.4.3. The only areas with QF contributions are the mass-asymmetric
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Figure 4.2: Final primary production cross-sections for projectile-like and target-like

fragments on the N-Z plane, (a) for the 58Fe + 208Pb with Ec.m. = 238.5 MeV, (b)

for the 36S + 238U with Ec.m. = 151.1 MeV, (c) for the 64Ni + 130Te with Ec.m. =

184.3 MeV and (d) for the 206Pb + 118Sn with Ec.m. = 436.8 MeV. Cross-sections are

shown on a logarithmic scale in the units of millibarn.

areas surrounding the initial masses. Using Eq. 4.4, we calculate the probability dis-

tributions P (A) for the projectile-like and target-like fragments A in the QF reactions

of 58Fe + 208Pb in both tip and side geometries. These distributions provide infor-

mation about the mean mass numbers and mass dispersions for each initial angular

momentum value. The contributions from the tip and side collision geometries are

combined simply using P (A) = (Ptip(A) + Pside(A))/2.

We assume that the reaction partners are fused and evaporated according to their ex-

citation energies for the FF calculations since we are only interested in observing the

shape of the distribution. The computed distributions are compared with the empirical

yields indicated by the solid red dots. The normalization constants η1 and η2 for the

QF and FF processes are obtained independently by fitting the experimental yield data

at appropriate locations. The experimental peak value is utilized for the 36S + 238U
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Figure 4.3: Results of the primary fragment yield calculations (bottom) and potential

energy surface at the contact point of collision partners (top) for the (a) 58Fe + 208Pb

reaction with Ec.m. = 238.5 MeV and for the (b) 36S + 238U reaction with Ec.m. =

151.1 MeV. Experimental data obtained from [59] for the 58Fe+208Pb system and [20]

for the 36S + 238U system.

reaction system. Unfortunately, it is difficult to determine the maximum values in the

QF data for the 58Fe + 208Pb reaction system. The normalization constant for this

reaction system is obtained by utilizing data points near A = 80.

The calculations accurately depict how the QF and FF processes depend on the entrance-

channel characteristics of the reactions for the systems depicted in Fig.4.3. In the
36S + 238U reaction system, due to a smaller Coulomb effect and larger mass asym-

metry, a greater number of nucleon exchanges occur. This effect is explained as with

an increasing Coulomb factor, the contact time between reaction partners decreases

exponentially, meaning a smaller time frame to exchange nucleons [60]. At ener-

gies above the Coulomb barrier, the major contribution comes from the FF processes

that yield the mass symmetric fragments for 36S + 238U system. However, the domi-
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nant process for 58Fe + 208Pb is the QF process [20]. This is also observed with the

Coulomb factors Z1Z2 presented in Table 4.1.

Up to seven nucleons can be transferred in collisions with low initial angular mo-

mentum in the 58Fe + 208Pb reaction system, according to TDHF calculations dis-

played in Tables 2.1 and 2.2. With an increase in the initial angular momentum, the

collisions approach a state of near-perfect elasticity, leading to no transfer of nucle-

ons and negligible dispersion of mass. The computed primary mass distribution, as

shown in Fig. 4.3(a), exhibits a peak location that is centered around 208Pb for heavier

fragments and 58Fe for lighter fragments. The SMF approach yields satisfactory out-

comes in describing this system’s observed distribution of primary fragment masses.

However, the data near the mass symmetric region is still underestimated.

The differences can be attributed to the symmetrical distribution of secondary fission

fragments as projected by the GEMINI++ toolkit. Shell effects can cause secondary

fission to show an uneven mass distribution at low excitation energy of about 0.5

MeV; these effects are not considered by the GEMINI++ toolkit. The limitations of

the current diffusion description in SMF theory could also contribute. This is because,

at small initial angular momentum values near the fusion formation region, it may be

difficult to determine the window position between collision partners, which leads

to an underestimate of the diffusion coefficients during the time interval following

maximum overlap.

The difference in diffusion coefficients is clearly shown in Figs 3.3(a), 3.4(a), whereas

the diffusion behavior for the 36S + 238U system in Fig. 3.5 is almost symmetrical. A

lower yield around mass symmetry could result from this imbalance in diffusion co-

efficients. The GEMINI++ toolkit exhibits symmetrical behaviour in its calculations

of thermal fission and does not include the influence of shell effects, which become

significant at energy levels of about 0.5 MeV. The observed asymmetrical behaviour

inside the symmetrical portion of the mass distribution is most likely caused by shell

effects.

The impact of the closed shell near the doubly magic 208Pb nucleus on the 36S+ 238U

reaction system may be noticed by examining the final proton and mass numbers of

the target-like fragments (Zf2, Af2), as presented in Table 2.3. The duration of con-
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tact is enough for the target-like fragments to reach the doubly magic stable 208Pb

nuclei, with an initial angular momentum of ℓ = 40ℏ or less. The impact of this

phenomenon is also evident in Fig. 4.3(b), where the final primary mass calculations

of this system do not consider elastic events. Within the quantal diffusion mechanism

framework, a wide range of binary fragments are associated with each initial angular

momentum. This complicates precisely determining the experimental angular cover-

age range in TDHF calculations.

In Fig. 4.3(b), the dotted black line shows yield calculations by summing over the ini-

tial angular momentum range ℓ = 34ℏ− 40ℏ. The primary mass distribution exhibits

a peak position close to A ≈ 208 for target-like fragments. The half-width of the

asymmetric QF distribution is 20u, which is calculated as the difference between the

mass with the maximum yield and the more symmetric mass with half the maximum

yield. This statement is consistent with the findings in Figure 15(a) of reference [59].

The ratio of the integrated yield value within the mass symmetric interval ACN

2
± 20

(117 ≤ A ≤ 157) to the integrated yield value confined by the bounds of the existing

experimental data set (59 ≤ A ≤ 221) is determined to be 15.2%. The observed

connection closely matches the calculated ratio of 14.9% obtained from the existing

experimental data [20].

There is a strong correlation between the maxima of the mass distribution and the

local minima of the potential energy surface [60]. In particular, the lowest potential

energy is associated with the highest production of asymmetric QF fragments. The

characteristics of asymmetric QF are mostly influenced by the potential energy of

the combined system. The maximum yield in the 58Fe + 208Pb reaction is found for

fragments having masses of around 208u. Nevertheless, the inability to determine

the yield peak points makes it impossible to provide a precise value [59]. This cor-

relation additionally emphasizes the role of shell effects in shifting the heavier mass

asymmetric peak.

In Fig. 4.4, we show the secondary production cross-sections for Ni-like and Te-like

fragments in the 64Ni+130Te reaction with Ec.m. = 184.3 MeV and in Fig. 4.5, for Sn-

like fragments in the 206Pb+ 118Sn reaction with Ec.m. = 436.8 MeV. The experimen-

tal cross-sections are represented by solid red circles, while the secondary production
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Figure 4.4: Results of the secondary cross-section calculations for Ni-like fragments

with Z = 26, 28, 30 and for Te-like fragments with Z = 50, 52, 54 in the 64Ni + 130Te

reaction with Ec.m. = 184.3 MeV. Results of the GRAZING model [61, 62] were also

presented for the same transfer channels. Experimental data obtained from [21].

cross-sections, calculated using the SMF theory, in addition to post-evaporation uti-

lizing the GEMINI++ toolkit, are depicted as solid blue lines. Each panel displays

the isotopic distribution of the reaction result based on the neutron number.

The calculated cross-sections for the 64Ni and 130Te transfer channels from (-2p) to

(+2p) with Ec.m. = 184.3 MeV compared with the experimental data [21] in Fig. 4.4.

The calculations indicate a tendency to underestimate the experimental results for

proton transfer channels of larger amounts, which is also found in other models [63].

In addition, we compare our findings with those of the GRAZING model [61], which

is represented by a dashed green line.

The cross-sections for the transfer channels from (+1p) to (-2p) in the 206Pb + 118Sn

reaction system, with Ec.m. = 436.8 MeV, were calculated and compared with exper-

imental data [22]. These calculations were done for the lighter fragments, and the

incident energy was above the Bass barrier (Vbass = 410MeV ). The peak positions

and cross-sections exhibit a strong similarity to the experimental results. A review
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has been done in a recent study [64] to analyze this reaction within the framework of

time-dependent covariant density functional theory.
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Figure 4.5: Results of the secondary cross-section calculations for Sn-like fragments

for different transfer channels (Z = 48, 49, 50, 51) in the 206Pb + 118Sn reaction with

Ec.m. = 436.8 MeV. Results of the GRAZING model [61] were also presented for the

same transfer channels. Experimental data obtained from [22].

In the bottom portion of Fig. 4.6, the mass distribution of secondary products in the
64Ni + 130Te and 206Pb + 118Sn systems are presented while corresponding potential

energy surface shown at the top. The solid blue line represents the results of the

secondary production cross-section calculations based on the SMF approach, with

post-evaporation calculations done by the GEMINI++ toolkit. The dashed lighter blue

line shows the primary production cross-sections for these systems. For 64Ni + 130Te

system, experimental mass distribution for secondary products were available [21].

The orange hatches in the symmetric region indicate the contributions from the FF

reactions computed using the GEMINI++ toolkit. The dotted black line shows the
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summation using a similar equation to Eq. 4.11. In this case, the QF fragments are

computed as cross-sections rather than yields; therefore, there is no need for a normal-

izing factor. As previously done, the FF yields are adjusted to match the experimental

data at around A = 100.

The secondary fragment distribution of the reaction products in the 206Pb + 118Sn

system is displayed in Figure 4.6(b). This system does not exhibit FF in this reaction,

and no experimental data are available. The dashed line of a lighter blue colour

represents the distribution of primary production cross-sections.
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Figure 4.6: Results of the secondary fragment cross-section calculations (bottom)

and potential energy surface at the contact point of collision partners (top) for the (a)
64Ni + 130Te reaction with Ec.m. = 184.3 MeV and for the (b) 206Pb + 118Sn reaction

with Ec.m. = 436.8 MeV. Primary fragment cross-sections are also presented. Exper-

imental data for mass distribution for the 64Ni + 130Te system obtained from [21].

In both systems shown in Fig. 4.6, the peak points of the primary and secondary

production cross-sections overlap, indicating that most contributions arise from quasi-

elastic and elastic reactions near the peak points. In these reactions, the system’s
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energy is predominantly released as the kinetic energy of the outgoing fragments,

resulting in no internal excitation and, therefore, no decay. As we move away from the

peaks, contributions from QF reactions increase, suggesting that primary products are

more likely to be left excited. The primary and secondary production cross-sections

in this region do not completely overlap.

In Fig. 4.6(b), this effect is more noticeable for the 206Pb + 118Sn system. The sec-

ondary fragments are represented by the blue line in the mass distribution. We find

that secondary fission occurs in the highly excited Pb-like fragments. The peak ob-

served at A = 80 corresponds to the decay products produced due to this fission

process. Additionally, the cross-sectional peaks match the local minima on the poten-

tial surface depicted in the upper portion of Fig. 4.6.

Table 4.1: Entrance channel parameters, magicity, Coulomb factor, mass asymmetry

and positions of the projectile-like and target-like peaks related to exchanged nucleon

numbers in the final primary mass distributions of asymmetric QF fragments in reac-

tions.

Reaction Magicity Z1Z2 η ML MH Exc. Nucl.
206Pb + 118Sn 2 4100 0.271 123 201 35
58Fe + 208Pb 2 2132 0.564 65 201 7
36S + 238U 1 1472 0.737 67 207 31

64Ni + 130Te 1 1456 0.340 68 126 4

Table 4.1 provides each system’s reaction results and entrance channel parameters.

The table presents the values of the entrance channel charge product (Z1Z2) and mass

asymmetry (η). ML and MH denote the mean mass numbers of the light and heavy

fragments at their initial angular momenta when the maximum number of nucleons

are exchanged between the reaction partners.
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CHAPTER 5

SUMMARY AND CONCLUSION

5.1 Summary

This thesis presents an in-depth exploration of nuclear reactions, focusing on the ap-

plication of the quantal diffusion approach based on the SMF theory to low-energy

heavy-ion collisions. The study begins with a detailed review of the TDHF theory,

discussing its theoretical aspects and relevance to nuclear reaction systems. The

TDHF framework, combined with the Skyrme effective interaction, sets the foun-

dation for understanding the initial dynamics of heavy-ion collisions.

The study extends the TDHF solutions stochastically in subsequent chapters using the

SMF approach. This extension is crucial as it introduces fluctuations and correlations

that are not captured by the mean-field alone. The derivation of the SMF theory is

briefly examined, along with the computation of dispersions, which plays a crucial

role in describing the MNT processes.

Extensive calculations were performed for selected heavy-ion systems, including
58Fe + 208Pb reaction with Ec.m. = 238.5 MeV, 36S + 238U reaction with Ec.m. =

151.1 MeV, 64Ni + 130Te reaction with Ec.m. = 184.3 MeV and 206Pb + 118Sn reac-

tion with Ec.m. = 436.8 MeV. These calculations focused on determining the final

production cross-sections and yields of primary and secondary fragments resulting

from the collisions. The SMF approach, utilizing quantal nucleon diffusion derived

from MNT, incorporates the full geometry of collision dynamics without additional

adjustable parameters apart from the Skyrme parameters of the TDHF. The statis-

tical code GEMINI++ was employed for evaporation calculations to determine the

secondary fragment distributions. The GEMINI++ toolkit is also utilized to calcu-
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late contributions from fusion-fission-like events. Understanding the MNT mech-

anism is crucial for synthesizing neutron-rich super-heavy elements and producing

new neutron-rich nuclei.

5.2 Conclusion

In conclusion, this thesis demonstrates the usefulness of the quantal diffusion ap-

proach based on SMF approach in modelling the dynamics of low-energy heavy-ion

collisions. The integration of TDHF and SMF theories offers a comprehensive frame-

work that captures both the deterministic and stochastic aspects of nuclear reactions.

The results from this study align well with experimental observations, validating the

theoretical models used.

Despite significant advancements in the microscopic description of low-energy heavy-

ion reactions using the SMF theory compared to the mean-field models, there are

still areas for improvement. The current model linearizes the Langevin equation

around the mean trajectory, assuming small amplitude fluctuations, and uses a simple

parabolic form for the driving potential U(N,Z); introducing anharmonicity could

reduce isotopic width and improve agreement with experimental data. Additionally,

the SMF theory has not yet addressed fluctuations in scattering angles and total kinetic

energy (TKE) distributions, which are linked to the total excitation energy distribu-

tion. Adapting the SMF concept to the relative motion of colliding systems could al-

low for evaluating TKE fluctuations based on microscopic mean-field dynamics. The

SMF theory assumes Gaussian initial fluctuations in the density matrix, which sim-

plifies the formulation of the quantal diffusion approach, but relaxing this assumption

could improve the description of higher moments of one-body observables [65, 66].

However, it would require generating a vast ensemble of TDHF trajectories, leading to

significant computational costs. Recent proposals, such as applying the SMF concept

to the time-dependent reduced density matrix approach, suggest potential extensions

of the current framework [67]. These efforts aim to enhance the accuracy of the SMF

theory in describing complex nuclear reactions, marking substantial progress in un-

derstanding heavy-ion reactions while highlighting the need for further research to

refine and expand the theoretical model.

66



The application of the TDHF-SMF approach to various heavy-ion systems demon-

strates its versatility and robustness. The methodologies and findings presented in

this thesis pave the way for future research, offering a valuable tool for studying and

predicting the outcomes of heavy-ion collisions.
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[2] Tea Mijatović. Multinucleon transfer reactions: a mini-review of recent ad-

vances. Frontiers in Physics, 10:965198, 2022.

[3] Anwar Kamal. Nuclear Reactions, pages 425–502. Springer Berlin Heidelberg,

Berlin, Heidelberg, 2014.

[4] Alexandre Obertelli and Hiroyuki Sagawa. Nuclear Shells, pages 337–370.

Springer Singapore, Singapore, 2021.

[5] M Thoennessen. Current status and future potential of nuclide discoveries. Re-

ports on Progress in Physics, 76(5):056301, apr 2013.

[6] G. G. Adamian, N. V. Antonenko, A. Diaz-Torres, and S. Heinz. How to extend

the chart of nuclides? Eur. Phys. J. A, 56:47, 2020.

[7] A. S. Umar, V. E. Oberacker, and C. Simenel. Fusion and quasifission dynamics

in the reactions 48Ca+ 249Bk and 50Ti+ 249Bk using a time-dependent Hartree-

Fock approach. Phys. Rev. C, 94:024605, 2016.

[8] Kazuyuki Sekizawa and Kazuhiro Yabana. Time-dependent Hartree-Fock cal-

culations for multinucleon transfer and quasifission processes in the 64Ni+ 238U

reaction. Phys. Rev. C, 93:054616, 2016.

[9] Kazuyuki Sekizawa. TDHF Theory and Its Extensions for the Multinucleon

Transfer Reaction: A Mini Review. Front. Phys., 7:20, 2019.

[10] C. Simenel and A. S. Umar. Heavy-ion collisions and fission dynamics with

the time–dependent Hartree-Fock theory and its extensions. Prog. Part. Nucl.

Phys., 103:19–66, 2018.

69



[11] P. A. M. Dirac. Note on Exchange Phenomena in the Thomas Atom. Math.

Proc. Camb. Phil. Soc., 26:376, 1930.

[12] P. Bonche, S. Koonin, and J. W. Negele. One-dimensional nuclear dynamics

in time-dependent Hartree-Fock approximation. Phys. Rev. C, 13:1226–1258,

1976.

[13] A. S. Umar and V. E. Oberacker. Three-dimensional unrestricted time-

dependent Hartree-Fock fusion calculations using the full Skyrme interaction.

Phys. Rev. C, 73:054607, 2006.

[14] Kazuyuki Sekizawa. Multinucleon Transfer Reactions and Quasifission Pro-

cesses in Time-Dependent Hartree-Fock Theory. PhD thesis, University of

Tsukuba, 2015.

[15] Kirsten Vo-Phuoc. Microscopic Approach to Heavy-Ion Reactions. PhD thesis,

The Australian National University, 2018.

[16] Emma Betty Suckling. Nuclear structure and dynamics from the fully unre-

stricted Skyrme-Hartree-Fock model. PhD thesis, 2011.

[17] T. H. R. Skyrme. CVII. The nuclear surface. Phil. Mag., 1:1043–1054, 1956.

[18] A. S. Umar, M. R. Strayer, J. S. Wu, D. J. Dean, and M. C. Güçlü. Nuclear

Hartree-Fock calculations with splines. Phys. Rev. C, 44:2512–2521, 1991.

[19] Ka–Hae Kim, Takaharu Otsuka, and Paul Bonche. Three-dimensional TDHF

calculations for reactions of unstable nuclei. J. Phys. G: Nucl. Part. Phys.,

23:1267, 1997.

[20] I. M. Itkis, E. M. Kozulin, M. G. Itkis, G. N. Knyazheva, A. A. Bogachev, E. V.

Chernysheva, L. Krupa, Yu. Ts. Oganessian, V. I. Zagrebaev, A. Ya. Rusanov,

F. Goennenwein, O. Dorvaux, L. Stuttgé, F. Hanappe, E. Vardaci, and E. de

Goés Brennand. Fission and quasifission modes in heavy-ion-induced reactions

leading to the formation of Hs∗. Phys. Rev. C, 83:064613, 2011.

[21] W. Królas, R. Broda, B. Fornal, T. Pawłat, J. Wrzesiński, D. Bazzacco, G. de
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