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ABSTRACT 

EXPLORING THE GENETIC LANDSCAPE OF COVID-19 

SUSCEPTIBILITY AMONG PATIENTS IN TÜRKIYE: A VARIANT 

DISCOVERY STUDY 

 
 

Çakır, Yavuzhan 

MSc., Department of Bioinformatics 

Supervisor: Assoc. Prof. Dr. Yeşim Aydın Son 

 

July 2024, 58 pages 

 

The COVID-19 pandemic, caused by the SARS-CoV-2 virus, has underscored the 
need to understand the genetic factors influencing disease susceptibility. This study 
adopts a data-driven approach to identify and analyze Single Nucleotide Variants 
(SNVs) associated with COVID-19 susceptibility in the Hacettepe University 
Hospital patient cohort.  We systematically compiled and analyzed variants 
published in diverse scientific publications.  We genotyped patients treated at the 
Hacettepe University Hospital (Ankara, Türkiye) using a multiplex approach with 
next-generation sequencing. The analysis included variant calling, linkage analysis, 
and statistical comparisons with non-Finnish European allele frequencies. Key 
findings suggest variants (rs17860115, rs2298659, rs2298661, rs4290734, 
rs9271609, rs2532300, rs34624090, rs61299115, and rs56106917) exhibit different 
frequencies compared to the European population, suggesting potential genetic 
predispositions affecting COVID-19 susceptibility in the hospitalized population in 
Türkiye. Linkage disequilibrium analysis highlighted strong correlations between 
specific genetic loci, indicating inherited patterns. The study highlights significant 
genetic variations associated with COVID-19 susceptibility within a Turkish cohort, 
differing from European allele frequencies. These findings emphasize the 
importance of considering genetic diversity in public health strategies and enhance 
our understanding of the genetic factors that may influence disease susceptibility and 
severity. Further research with larger cohorts is recommended to validate these 
associations and explore their implications for disease management and prevention 
strategies. 

Keywords: Pandemic, Covid-19, Susceptibility, Variants, SNV
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ÖZ 

TÜRKİYE'DEKİ HASTALARDA COVİD-19 DUYARLILIĞININ 

GENETİK DURUMUNUN ARAŞTIRILMASI: BİR VARYANT KEŞFİ 

ÇALIŞMASI 

 
 
 

Çakır, Yavuzhan 

Yüksek Lisans, Biyoenformatik Bölümü 

Tez Yöneticisi: Assoc. Prof. Dr. Yeşim Aydın Son 

 

Temmuz 2024, 58 sayfa 

 

SARS-CoV-2 virüsünün neden olduğu COVID-19 pandemisi, hastalığa yatkınlığı 
etkileyen genetik faktörleri anlama ihtiyacının altını çizmiştir. Bu çalışma, Hacettepe 
Üniversitesi Hastanesi'ndeki hastaları kullanarak Türk toplumunda Tek Nükleotid 
Varyantları (SNV'ler) ile COVID-19 duyarlılığı arasındaki ilişkiyi aydınlatmayı 
amaçlamaktadır. Bu çalışma, COVID-19 duyarlılığı ile bağlantılı SNV'leri 
tanımlamak ve analiz etmek için veri odaklı bir yaklaşım benimsemektedir. Yeni 
nesil dizileme kullanarak, Türkiye'deki Hacettepe Üniversitesi Hastanesi'nde tedavi 
gören hastalara odaklanarak, çeşitli bilimsel yayınlardan SNV verilerini sistematik 
olarak derledik ve analiz ettik. Analiz, varyant arama, bağlantı analizi ve Finlandiya 
dışı Avrupa alel frekansları ile istatistiksel karşılaştırmaları içermektedir. Temel 
bulgular, varyantların (rs17860115, rs2298659, rs2298661, rs4290734, rs9271609, 
rs2532300, rs34624090, rs61299115 ve rs56106917) Avrupa popülasyonuna kıyasla 
farklı frekanslar sergilediğini ve Türkiye'de hastanede yatan popülasyonda hastalık 
duyarlılığını etkileyen potansiyel genetik yatkınlıkları gösterdiğini öne sürmektedir. 
Bağlantı dengesizliği analizi, belirli genetik lokuslar arasındaki güçlü korelasyonları 
vurgulayarak kalıtsal modellere işaret etmiştir. Çalışma, Avrupa'daki alel 
frekanslarından farklı olarak, Türk nüfusu içerisinde COVID-19 duyarlılığı ile 
ilişkili önemli genetik varyasyonları vurgulamaktadır. Bu bulgular, halk sağlığı 
stratejilerinde genetik çeşitliliğin dikkate alınmasının önemini vurgulamakta ve 
hastalığa yatkınlık ve şiddeti etkileyebilecek genetik faktörlere ilişkin anlayışımızı 
geliştirmektedir. Bu ilişkileri doğrulamak ve hastalık yönetimi ve önleme stratejileri 
üzerindeki etkilerini araştırmak için daha büyük kohortlarla daha fazla araştırma 
yapılması önerilmektedir. 

Anahtar Sözcükler: Covid-19, pandemi, yatkınlık, genetik, SNV 
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CHAPTER 1 

1. MOTIVATION 

The COVID-19 pandemic, triggered by the SARS-CoV-2 virus, has posed 
unprecedented public health challenges globally. The genetic predisposition to 
infection and disease severity is a critical aspect of the disease, significantly 
influencing its management and control. This study employs a multiplexed next-
generation sequencing approach, which investigates the association of Single 
Nucleotide Variants (SNVs) with COVID-19 susceptibility among patients treated 
at Hacettepe University Hospital in Turkey.  

First, we identified SNVs that could predispose individuals to COVID-19 through a 
systemic literature review. Then, we primarily focus on a cohort of 120 patients 
admitted to intensive care and those receiving treatment in general wards. Through 
rigorous variant calling, linkage analysis, and frequency comparison with non-
Finnish European populations, we identified several SNVs with significant 
variations in allele frequencies. Notably, SNVs such as rs17860115, rs2298659, 
rs2298661, rs4290734, rs9271609, rs2532300, rs34624090, rs61299115, and 
rs56106917 exhibited distinct patterns, suggesting potential genetic factors 
influencing susceptibility to SARS-CoV-2. 

Our results revealed that specific genetic loci, including those associated with the 
ACE2 and TMPRSS2 genes, known for their roles in viral entry into host cells, show 
significant differences in allele frequencies compared to European populations. For 
instance, rs17860115 displayed a higher frequency in the Turkish cohort, which may 
correlate with an increased susceptibility to COVID-19. Conversely, other variants 
were found more frequently in the European population, potentially indicating a 
protective role against the disease. 

Linkage disequilibrium analysis further emphasized the inherited patterns of these 
SNVs, revealing strong correlations between specific loci on the same chromosome, 
which could influence the disease phenotype. Statistical analysis using the Z-test and 
power analysis with the bootstrap methods confirmed the significant differences in 
allele frequencies between the populations, underscoring the importance of 
considering ethnic and regional genetic backgrounds in disease risk assessments. 

This study highlights the critical need for integrating genetic data into public health 
strategies and personalized medicine approaches. By understanding the genetic 
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factors influencing disease susceptibility, public health authorities can better tailor 
interventions and potentially mitigate the impact of outbreaks. The findings also pave 
the way for future research into the genetic mechanisms of COVID-19, which could 
lead to more effective therapeutic and preventive strategies. 

The implications of this research are profound, suggesting that genetic diversity 
plays a significant role in disease dynamics, which can be leveraged to enhance 
disease prediction models and response strategies. Further research with larger and 
more diverse cohorts is recommended to validate these findings and explore the full 
potential of genetic markers in managing infectious diseases like COVID-19. 
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CHAPTER 2 

2. INTRODUCTION 

Advancements in molecular methodologies, particularly next-generation 
sequencing, have significantly influenced the fields of genetics and virology 
(Louten, 2023; Phalke et al., 2024). This study focuses on understanding how Single 
Nucleotide Variants (SNVs) affect susceptibility to COVID-19, a global health 
challenge posed by the SARS-CoV-2 virus. Without a preliminary hypothesis, the 
research adopts a data-driven approach to systematically compile and analyze SNVs 
from diverse scientific publications, exploring their potential impact on disease 
susceptibility.  

This study aims to identify and analyze SNVs influencing susceptibility to COVID-
19 among patients at Hacettepe Hospital in Türkiye. The research seeks to uncover 
the mechanisms of differential disease susceptibility among individuals by 
developing a comprehensive genetic profile based on this specific population. This 
targeted approach will enhance the understanding of genetic factors within the 
Turkish population and contribute to the broader scientific knowledge base, 
informing future genomic research and public health strategies against pandemic 
threats. This study is mainly aimed at tailoring public health responses and medical 
interventions to better meet the Turkish population's needs in the face of such global 
health challenges. 

Before delving into this research, it is crucial to have a foundational understanding 
of COVID-19 and the concept of SNV. Grasping the nature and implications of this 
disease enhances comprehension of the study's findings and their significance in the 
broader context of global health challenges. 

COVID-19 is a highly contagious disease caused by the SARS-COV2 virus that 
affects the upper respiratory tract. Its impact on the world has been socially and 
economically significant, particularly between 2020-2022. While no definitive 
measure exists to combat the disease, people worked diligently to find solutions and 
mitigate its impact (CDC, 2024; Coronaviridae Study Group of the International 
Committee on Taxonomy of Viruses, 2020). 

SARS-COV2 virus was first detected in Wuhan, China, in late 2019 and quickly 
spread worldwide, resulting in a global pandemic. SARS-CoV-2 is an RNA-based 
virus that belongs to the Coronaviridae family and is responsible for causing 
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COVID-19 disease. The virus has zoonotic origins which can be transmitted from 
animals to humans. These facts demonstrate the virus's ability to spread rapidly and 
its potential to cause harm, underscoring the importance of taking appropriate 
measures to prevent its transmission. The virus's outer surface has spike-shaped 
protein protrusions called Spike proteins. The Spike proteins are crucial in enabling 
the virus to attach to and penetrate human cells. COVID-19 is highly contagious and 
can be transmitted through respiratory droplets released when an infected person 
coughs, sneezes, or talks or by touching contaminated surfaces.  Common symptoms 
of COVID-19 include fever, cough, shortness of breath, and loss of smell and taste. 
The severity of the disease caused by SARS-CoV-2 can vary, ranging from mild 
cases to severe lung infections and even death (CDC, 2024; Coronaviridae Study 
Group of the International Committee on Taxonomy of Viruses, 2020; Spiteri et al., 
2020). 

The virus has a single-stranded RNA genetic structure consisting of approximately 
30,000 nucleotides, which encodes proteins essential for the virus to replicate, enter 
cells, and evade the immune system. Different variants have emerged as the virus 
has mutated over time, resulting in genetic diversity. While some of these variants 
may spread more quickly, cause more severe disease, or develop resistance to 
existing vaccines and treatments, it is essential to note that the scientific community 
is actively working to address these challenges. Several significant variants of 
SARS-CoV-2 have been identified since the beginning of the pandemic, including 
Alpha, Beta, Gamma, Delta, and Omicron. The Delta and Omicron variants have 
demonstrated high transmissibility and resistance to some vaccines, but researchers 
are continuing to study and develop new strategies to combat these variants and 
protect public health.  Implementing public health measures, vaccination campaigns, 
and treatment strategies is critical to control the virus's spread and reduce the 
disease's effects. These measures are of great importance in the fight against SARS-
CoV-2 and COVID-19. It is essential to continue learning about the virus and its 
variants to develop effective strategies against the pandemic (CDC, 2024; 
Coronaviridae Study Group of the International Committee on Taxonomy of 
Viruses, 2020; Mwendwa et al., 2024). 

The incubation period of COVID-19 is approximately one week. Therefore, 
individuals may unknowingly transmit the disease to others during this time. The 
following measures were taken to prevent the spread of the virus and protect public 
health. Local and global efforts have been made to implement precautions. In 
Turkey, schools were closed temporarily on March 21, 2020, for three days, which 
became permanent.  Curfews, public transportation bans, and restrictions on public 
gatherings followed this. These precautionary methods are implemented to control 
the spread of the disease (CDC, 2024; Coronaviridae Study Group of the 
International Committee on Taxonomy of Viruses, 2020). 

During the early stages of the pandemic, SARS-COV2, the virus responsible for 
causing COVID-19 disease, was diagnosed and thoroughly examined for vaccine 
studies. Biontech, Johnson & Johnson, and Pfizer have developed vaccines targeting 
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the spike protein found on the membrane surrounding the SARS-COV2 virus and 
binds to the ACE2 receptor in human cells. These vaccines introduce mRNA 
molecules encoding the spike protein into the body to produce it within the cell and 
present it as an antigen. It should be noted that the evaluation of these vaccines is 
ongoing. Especially before the safety and performance tests of the vaccines were 
completed, as people were unvaccinated and the disease spread, many people around 
the world caught this disease, showing symptoms of varying severity. The most 
common symptoms of COVID-19 are upper respiratory tract symptoms such as 
cough, fever, loss of smell, and shortness of breath. People showed symptoms of 
different severities depending on many factors, such as age, smoking, and general 
body health. Some people survived the disease with only a minor cough problem, 
and some patients had to be connected to mechanical ventilators due to shortness of 
breath. In addition, in many countries around the world, including Türkiye, many 
economic, logistical, or social problems were also encountered (Aral & Bakır, 2022; 
Bostan et al., 2020; CDC, 2024; El-Maradny et al., 2024; Özen, 2024). 

Due to the difference in the severity of the patient's symptoms, some patients were 
treated in intensive care units, and patients who tried to be examined or receive 
treatment in the hospital even though they were not treated in intensive care 
(Dasgupta et al., 2023; Kousathanas et al., 2022). 

The variability in COVID-19 manifestations, even among individuals in the same 
household exposed to the same viral strains, highlights the complex interplay 
between genetic makeup and disease outcomes. This variability underscores the 
necessity to identify genetic markers that could predict an individual's susceptibility 
to viral infections. Understanding these genetic determinants is crucial for 
customizing public health responses, mainly when comprehensive epidemiological 
data is unavailable (Azzarà et al., 2022; Dasgupta et al., 2023; Kousathanas et al., 
2022). 

Utilizing  SNV as susceptibility markers requires a detailed study of patient and 
healthy cohorts. SNVs, defined by single nucleotide alterations in the DNA 
sequence, contribute to genetic diversity within species. These genetic variations, 
typically occurring at intervals of 300 to 1000 base pairs along the genome, play 
crucial roles in gene function and are pivotal in understanding genetic disorders, drug 
responses, and susceptibility to environmental factors. SNVs are key markers for 
studying genetic diseases and provide insights into evolutionary biology and species 
adaptation. This research leverages next-generation sequencing to identify and 
analyze these variations, enhancing our understanding of their roles in health and 
disease (Brody, 2016; Børsting & Morling 2013; Gunderson 2007; Nelson et al. 
2004). 

SNVs are important genetic markers that can be used to understand genetic diseases, 
drug responses, and susceptibility to environmental factors. SNVs are crucial 
indicators of genetic diversity and evolutionary processes. They provide valuable 
insights into how species adapt and evolve. Additionally, specific SNVs have been 
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linked to an increased risk of developing specific diseases, such as cancer, heart 
disease, and diabetes. SNVs play a crucial role in understanding the genetic basis of 
diseases and personalized medicine (Brody, 2016; Børsting & Morling, 2013; 
Gunderson, 2007; Nelson et al., 2004).  

Today, SNV biomarkers provide a comprehensive understanding of the genetic basis 
of diseases and enable personalized treatment options. So, SNV genotyping to 
analyze the presence of these SNVs when assessing an individual's susceptibility to 
these diseases is emerging as routine clinical tests. Genomic variations can be 
genotyped with various molecular techniques, including allele-specific PCR and 
DNA sequencing. In modern genetic research, next-generation sequencing (NGS) 
technologies are frequently used for SNV analysis, allowing the simultaneous 
detection of thousands of SNVs in large-scale genomic studies (Brody, 2016; 
Børsting & Morling, 2013; Gunderson, 2007; Nelson et al., 2004). 

Some biological databases provide extensive data about the SNVs and other genetic 
variations. The dbSNV is one of the largest databases that collects and organizes this 
information. Here, information such as the locations of SNVs, allele frequencies, and 
even their possible health effects can be accessed. The 1000 Genomes Project, 
initiated to examine the genetic diversity of different human groups worldwide, 
provides a comprehensive source of genetic variation. Thanks to this project, 
valuable information such as SNV frequencies and distributions in various 
populations can be accessed. “rs” codes are a unique identifier assigned by dbSNV 
for each SNV and stand for “Reference SNV.” For example, a code such as "rs6265" 
identifies a specific SNV, and detailed information about that SNV can be obtained 
using this code. This can range from where the SNV is in the genome, what alleles 
it has, the genes it affects, and its potential health effects (Sherry et al., 2001). 

The foundation of this study rests on an exhaustive literature search designed to 
identify SNVs associated with COVID-19. This search was structured to encompass 
a wide array of studies, ensuring a comprehensive compilation of SNVs linked to the 
disease's susceptibility and severity. By employing rigorous criteria for inclusion and 
a methodical approach to data extraction, this process has facilitated the 
identification of key genetic markers. These markers provide deeper insights into the 
genetic factors contributing to COVID-19 outcomes, laying the groundwork for the 
detailed analysis of implicated genes. 

Several studies have highlighted the role of TMPRSS2 variants in COVID-19 
susceptibility. For instance, rs2298661, identified near the TMPRSS2 and MX1 
genes, has been linked to severe COVID-19 outcomes (Andolfo et al., 2021). 
Additionally, rs2298659 and other TMPRSS2 variants (rs34624090, rs35899679, 
rs4290734, rs463727) have been shown to modulate disease severity, potentially 
through androgen-responsive expression differences (Asselta et al., 2020; Barash et 
al., 2020). 
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The DPP4 gene, particularly the rs17574 variant of the DPP4 gene, has been 
associated with lower levels of sDPP4 and increased susceptibility to MERS-CoV, 
suggesting a possible mechanism for COVID-19 susceptibility (Alkharsah et al., 
2021; Posadas-Sánchez, 2021). 

The rs8178521 variant in the IL10RB gene has been significantly associated with 
long-COVID symptoms, indicating its potential role in prolonged COVID-19 effects 
(Angulo-Aguado et al., 2024). 

Variants such as rs61299115, rs11088551, and rs4303794 have been identified in the 
regulatory regions of ACE2 and TMPRSS2, potentially affecting gene expression 
and influencing disease progression (Barash et al., 2020). 

Studies like those by Kousathanas et al. (2022) have utilized whole-genome 
sequencing to uncover multiple genetic loci (e.g., rs1123573, rs12610495, 
rs17860115, rs2532300, rs56106917, rs61882275, rs9271609) associated with 
critical COVID-19, providing insights into the interferon signaling and leukocyte 
differentiation pathways. 

Wooster et al. (2020) have linked specific ACE2 polymorphisms, including 
rs1548474, with varying levels of COVID-19 severity, offering potential markers for 
assessing hospitalization risks. 

Studies have noted significant differences in the expression levels of key genes like 
ACE2, which do not show significant variations between males and females despite 
expectations based on its location on the X chromosome (Asselta et al., 2020). 

Specific TMPRSS2 haplotypes and variants (e.g., rs463727, rs34624090) show 
different frequencies between populations, suggesting population-specific risks and 
responses to COVID-19 (Asselta et al., 2020; Iyer et al., 2020). 

This review categorizes the literature based on genetic associations with either 
susceptibility or severity of COVID-19, highlighting the critical role of specific 
variants and the need for further studies across diverse populations to validate these 
findings. Each study contributes uniquely to our understanding of the genetic basis 
of COVID-19, offering potential targets for therapeutic and preventive strategies. 

Following a comprehensive literature search to identify significant SNVs associated 
with COVID-19 susceptibility and severity, the focus shifts to the genes containing 
these variants. The following section aims to delve into these genes' biological 
functions and roles, exploring their contributions to the molecular mechanisms of 
SARS-CoV-2 infection and subsequent immune responses. By elucidating these 
genes' genetic architecture and expression patterns, insights into the pathways 
through which they influence disease dynamics and patient outcomes are sought. 
Understanding the regulatory roles, interactions with other cellular components, and 
impact on the body's defense mechanisms against COVID-19 is crucial for 
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developing targeted therapeutic strategies and enhancing predictive models of 
disease progression. Detailed insights into each gene identified in the SNV analysis 
will be presented, emphasizing their importance in the broader context of genomic 
medicine and public health. 

ACE2 protein produced by the ACE2 gene is part of the angiotensin-converting 
enzyme family of dipeptidyl carboxydipeptidases and is closely related to the human 
angiotensin- I converting enzyme. This enzyme, which is secreted, converts 
angiotensin I to angiotensin 1-9 and angiotensin II to the vasodilator angiotensin 1-
7. Known as ACE2, it is expressed in various human organs, and its specific 
expression in different organs and cells indicates a potential role in regulating 
cardiovascular and renal functions and fertility. Moreover, this protein serves as a 
functional receptor for the spike glycoprotein of several human coronaviruses, 
including HCoV-NL63, SARS-CoV, and SARS-CoV-2, the latter of which causes 
COVID-19. This gene has multiple splice variants; notably, the dACE2 (or MIRb-
ACE2) variant is inducible by interferon (NCBI, 2024a). 

BCL11A gene produces a C2H2 type zinc-finger protein, similar to the mouse 
Bcl11a/Evi9 protein. In mice, the corresponding gene frequently experiences 
retroviral integration at its location, which is linked to myeloid leukemia. It might 
contribute to leukemia development, partly through its interaction with BCL6. This 
gene is typically down-regulated during the differentiation of hematopoietic cells 
and could be involved in the development of lymphoma, as B-cell malignancy-
associated translocations often disrupt its expression. Several transcript variants and 
different isoforms of this gene have been identified (NCBI, 2024b). 

The DPP4 gene codes for the enzyme dipeptidyl peptidase 4, also known as 
adenosine deaminase complexing protein-2, and the T-cell activation antigen CD26. 
This enzyme is a type II transmembrane glycoprotein and a serine exopeptidase that 
removes X-proline dipeptides from the N-terminus of polypeptides. Dipeptidyl 
peptidase 4 plays a significant role in glucose and insulin metabolism and in immune 
system regulation. It has been identified as a functional receptor for the Middle East 
Respiratory Syndrome Coronavirus (MERS-CoV), and protein modeling indicates it 
might interact similarly with SARS-CoV-2, the virus that causes COVID-19 (NCBI, 
2024c). 

The DPP9 gene produces a protein that belongs to the S9B family within clan SC of 
serine proteases. It exhibits post-proline dipeptidyl aminopeptidase activity, 
specifically cleaving Xaa-Pro dipeptides from the N-termini of proteins. While this 
protein's activity is similar to that of dipeptidyl peptidase 4 (DPP4), it is not 
membrane-bound. Dipeptidyl peptidases are generally involved in regulating the 
activity of their substrates and have been associated with various diseases, including 
type 2 diabetes, obesity, and cancer. This gene has several transcript variants, though 
they have not been fully characterized (NCBI, 2024d). 
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The ELF5 gene codes for a transcription factor belonging to the epithelium-specific 
ETS family. It plays a role in regulating the later stages of keratinocytes' terminal 
differentiation and influences various epithelium-specific genes in tissues with 
glandular epithelium, such as the salivary gland and prostate. This transcription 
factor has a low affinity for DNA, attributed to a negative regulatory domain at its 
amino terminus. It has also been identified as a tumor-suppressive transcription 
factor in breast cancer (NCBI, 2024e). 

Despite the limited information available on the FBRSL1 gene, it has been identified 
to facilitate RNA binding activity (NCBI, 2024f). 

HLA-DRB1 is a member of the HLA class II beta chain paralogs. This class II 
molecule is a heterodimer, comprising an alpha chain (DRA) and a beta chain 
(DRB), both membrane-bound. It plays a crucial role in the immune system by 
presenting peptides derived from extracellular proteins. These molecules are 
predominantly expressed in antigen-presenting cells. The beta chain weighs between 
26-28 kDa and is structured into six exons: the first exon encodes the leader peptide; 
exons two and three code for the extracellular domains; exon four for the 
transmembrane domain; and exon five for the cytoplasmic tail. The beta chain carries 
all the polymorphisms that determine peptide binding specificities. Numerous DRB1 
alleles have been identified, with some showing elevated frequencies linked to 
specific diseases or conditions, such as the DRB1*1302 allele's association with 
acute and chronic hepatitis B virus persistence. Additionally, this gene has several 
pseudogenes (NCBI, 2024g). 

The protein produced by the IFNAR2 gene is a type I membrane protein that 
composes one of the two chains in the receptor for interferons alpha and beta. When 
activated, this receptor stimulates Janus protein kinases, which subsequently 
phosphorylate several proteins, including STAT1 and STAT2. This protein is part of 
the type II cytokine receptor family. Mutations in this gene have been linked to 
Immunodeficiency 45 (NCBI, 2024h). 

The protein encoded by the IL10RB gene is a cytokine receptor family member. It is 
an essential accessory chain in the active interleukin 10 (IL-10) receptor complex. 
This protein and IL10RA need to be expressed together for the IL-10-induced signal 
transduction to occur. This gene and three other interferon receptor genes—IFAR2, 
IFNAR1, and IFNGR2—constitute a class II cytokine receptor gene cluster 
positioned on a small section of chromosome 21 (NCBI, 2024i). 

The KANSL1 gene codes for a nuclear protein that forms part of two protein 
complexes associated with histone acetylation: the MLL1 and NSL1 complexes. The 
protein is involved in various cellular functions such as enhancer regulation, cell 
proliferation, and mitosis. Mutations in this gene have been linked to Koolen-de 
Vries Syndrome (NCBI, 2024j). 
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The TMPRSS2 gene codes for a protein that is a member of the serine protease 
family. This protein features several structural domains: a type II transmembrane 
domain, a receptor class A domain, a scavenger receptor cysteine-rich domain, and 
a protease domain. Serine proteases are implicated in numerous biological and 
disease processes. The expression of this gene is up-regulated by androgenic 
hormones in prostate cancer cells but down-regulated in androgen-independent 
prostate cancer tissues. The protease domain is believed to undergo autocleavage, 
resulting in its secretion into the cellular media. This protein also assists in the entry 
of viruses into host cells by cleaving and activating the viral envelope glycoproteins. 
Viruses such as Influenza and human coronaviruses HCoV-229E, MERS-CoV, 
SARS-CoV, and SARS-CoV-2 (COVID-19) utilize this protein for cell entry. 
Multiple isoforms of this protein have been identified due to alternative splicing 
(NCBI, 2024k). 
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CHAPTER 3 

3. METHODS 

3.1.Sample collection 

Various methods are available for collecting DNA from volunteers in sequencing 
studies, such as blood samples, epithelial tissue samples, and saliva samples. In this 
study, epithelial tissue samples are obtained by scraping tissue from the inside of the 
cheek, or volunteers provide a saliva sample by spitting it into collection tubes. In 
cases where the volunteer cannot provide saliva consciously, suction methods are 
used to collect fluids. Collecting DNA from saliva samples is a non-invasive and 
user-friendly method frequently used in genotyping studies.  Saliva collection kits 
typically include sterile collection tubes, instructions, and labeling materials. 
Participants are required to abstain from eating, drinking, chewing, or smoking for a 
minimum of 30 minutes before providing a saliva sample. The collection tube has a 
marked line indicating the required amount of saliva. To provide the sample, 
participants should remove the cap from the tube and spit directly into it, following 
the instructions. It is crucial to avoid touching the lips to the edge of the tube during 
this process to ensure the accuracy of the sample. The collection tube contains a 
solution. Once the participant provides a saliva sample, the solution inside the tube 
that preserves the DNA, keeping it stable, is mixed automatically or manually with 
the saliva. The sample is then promptly sent to the laboratory for processing or stored 
at the recommended temperature (Gudiseva et al., 2016; Rogers et al., 2007; van 
Oorschot et al., 2016). 

For the COVID-19 disease, in this study, officially the first case of which was 
announced in Türkiye on March 21, 2020, public and private hospitals made great 
efforts to control the disease and its spread. One of these hospitals in Turkey was 
Hacettepe Hospital. Both intensive care patients and ward patients received 
treatment at Hacettepe Hospital. Samples were collected from 120 patients via 
NORGEN BIOTEK CORP. Saliva DNA kits. These collected samples include both 
intensive care patients and ward patients. The sample collection process involves 
collecting saliva by asking the patient to spit into a previously prepared container. 
However, this procedure was more difficult in intubated patients connected to a 
respiratory support unit, where suction of respiratory fluids was preferred. 
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3.2.DNA Isolation 

DNA isolation separates and clears DNA from cells or virus particles in a sample. 
This process is a fundamental step for genetic analyses. The DNA isolation process 
usually begins with a cell-washing step. The cells or tissue from which DNA will be 
isolated in the cell washing and collection steps can be from various sources such as 
blood, tissue samples, and bacterial cultures. Cells are washed with a suitable buffer 
solution and collected by centrifugation. Next, it is necessary to break down the outer 
layers of the cell, including the cell and nuclear membranes, to reach the DNA. This 
is usually done using a lysis buffer containing detergent or enzymes (e.g., lysozyme 
or proteinase K). Detergents disrupt membranes by dissolving lipids; Enzymes break 
down proteins. After cell lysis, purifying the DNA from outside proteins and other 
molecules is necessary. This is done by precipitating the proteins and separating the 
DNA in the solution. One frequently used method is the addition of sodium acetate 
followed by precipitation of DNA with isopropanol or ethanol. The precipitated 
DNA is usually washed with ethanol. This process removes salts and other 
contaminants remaining in the DNA. The DNA is then extracted from ethanol, dried, 
and resuspended in a suitable buffer solution or water. DNA is usually brought to the 
purity and concentration required for specific applications in the final step. This may 
involve assessing the quantity and purity of DNA using spectrophotometry or 
agarose gel electrophoresis. Isolation protocols may vary for DNA obtained from 
different sources. For example, isolating DNA from blood samples may require 
additional steps to separate red blood cells from white blood cells, but there is no 
need for an extra process for DNA obtained from saliva (Garbieri et al., 2017). 

DNA isolation in this study has been performed in the laboratory with a uniform 
isolation protocol as follows: 

1. The preserved saliva sample was mixed by inversion and gentle shaking for 
a few seconds. 

2. 0.5 mL of the preserved saliva sample was transferred to a 2 mL centrifuge 
tube (not provided). 

3. 20 µL of Proteinase K was added (after vortexing Proteinase K) to the tube, 
mixed by vortexing for 10 seconds, and the sample was incubated at 55°C 
for 10 minutes. 

4. 200 µL of Binding Buffer B was added to the sample. The mixture was 
vortexed for 10 seconds and then incubated at 55°C for 5 minutes. 

5. An equal volume (total volume of preserved saliva, Proteinase K, and 
Binding Buffer) of room-temperature isopropanol was added to the sample. 
The sample was mixed gently by inversion ten times. 

6. The mixture was centrifuged at room temperature for 4 minutes at a 
maximum speed of 20,000g (~14,000 RPM). 
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7. The supernatant was carefully removed and discarded, ensuring the DNA 
pellet was not disturbed. The tube was gently placed briefly upside down on 
a paper towel to remove residual isopropanol. 

8. Twice, 500 µL of 70% ethanol was carefully added. The tube gently swirled 
and let stand at room temperature for 1 minute. 

9. Twice, the sample was centrifuged at room temperature for 3 minutes at the 
maximum speed of 20,000g (~14,000 RPM), and then the ethanol was 
carefully removed and discarded without disturbing the pellet. 

10. The open tube was placed upside down on a paper towel for 5 minutes to 
remove the excess 70% ethanol and air-dry the DNA pellet. 

11. 50 µL of TE Buffer was added. The sample was vortexed for 30 seconds and 
incubated at 55°C for 5 minutes to rehydrate the DNA pellet, ensuring 
complete rehydration of the DNA before any subsequent steps. 

12. The tube was centrifuged at 20,000 x g (~14,000 RPM) for 1 minute and 30 
seconds to pellet any insoluble material. 

13. The clear liquid was transferred into a clean tube, ensuring it did not disturb 
the pellet. 

14. The purified DNA sample could be stored at 4°C for up to 2 months. For 
long-term storage, placing the samples at -20°C was recommended. 

All these steps were conducted in a class II biosafety cabinet (BSC) in Düzen 
Laboratories since the saliva samples were from COVID-19 patients and COVID-19 
patients are guaranteed to have SARS-COV-2 virus, an airborne virus. 

Class II BSCs are designed to protect laboratory personnel, the environment, and the 
materials being worked on. They provide a barrier between the sample and the user, 
filtering the air with High-Efficiency Particulate Air (HEPA) filters, which capture 
potentially infectious particles. These cabinets have a vertical laminar airflow. The 
air is taken through a HEPA filter, providing a sterile work environment. It also has 
filtered inflow and downflow air, preventing any infectious particles from escaping 
from the cabinet. The HEPA filters can trap and retain particles as small as 0.3 
microns with an efficiency of 99.97%, which is suitable for capturing airborne 
viruses like SARS-CoV-2. Class II BSCs are designed to provide a containment area 
for work with organisms that require Biosafety Level 1, 2, or 3 containments. For 
handling viruses like SARS-CoV-2, which typically require BSL-3 practices, these 
cabinets offer additional security when BSL-3 facilities are unavailable. These 
cabinets are versatile for various work involving microbiological samples and are 
widely used in virology, cell culture, and biotechnology. They comply with most 
safety standards required for handling pathogens. 

After these steps, nanodrop measurements were conducted to observe the DNA 
products in each tube. 
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3.3.Primer designing 

Primer design is of critical importance for the amplification (duplication) of the 
target DNA sequence in PCR (Polymerase Chain Reaction) and other molecular 
biological techniques. Primers are short oligonucleotide sequences specific to the 
target DNA and, when designed correctly, provide specific amplification of the 
targeted DNA region. For an effective primer design, the target region must first be 
determined. The region on the target DNA desired to be amplified must be clearly 
defined. This region may be a specific region of a gene or a mutation site. The rsID 
codes are used to identify and display mutation sites. When designing a primer, since 
it is necessary to design primers for the beginning and end of the region to be 
amplified on the DNA, a pair of primers should be designed to cover the region in 
between. Primers are generally 18-25 base pairs long. This length balances sufficient 
specificity and effective binding. The melting temperature of the primers, the 
temperature required to transition to the single-stranded state, should ideally be 
between 50-60°C. 

Tm (Melting Temperature) values of both primers should be close. Since the number 
of hydrogen bonds effectively determines the Tm value, it is crucial to know how 
many base pairs consist of adenine, thymine, or guanine and cytosine. GC content in 
primers should be between 40-60% if possible. Since G and C bases form stronger 
bonds compared to A and T, this balanced ratio ensures that the primer binds tightly 
to the target DNA. The presence of a G or C base at the 3' end of the primer is called 
a "GC clamp" and helps strengthen binding during amplification. Primer sequences 
can interact within themselves (secondary structures) or with each other (primer-
dimers) in undesirable ways. This may reduce amplification efficiency. The 
formation of such structures should be minimized during primer design. In addition, 
if there are repetitive regions in the DNA, choosing before or after the repetitive 
regions may be beneficial for primer design, as primers can also attach to these 
regions. Various computer software and databases are used for primer design. These 
tools are valuable for checking the specificity of primers, calculating the risk of 
secondary structure formation, and identifying possible target sites within the 
genome of the targeted organism. In silico, analyses are performed to verify the 
specificity of the designed primers. This is important to ensure that primers only bind 
to the targeted region and not mistakenly bind to similar sequences (Chuang et al., 
2013; Dieffenbach & Lowe, 1993). 

In this study, PyroMark Q24 software is used during the primer design. The designed 
primers and parameters of designing are shown in Appendix E. In primer designing, 
the following parameters were used: 

 PCR Primer Settings: 
o Min Primer Length     18 
o Max Primer Length    24 
o Optimal Amplicon Length From  80 
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o Optimal Amplicon Length To  250 
o Max Amplicon Length   600 
o Allow Primer Over SNP    No 
o Melting Temp Algorithm    Nearest Neighbor 
o Primer Concentration [µM]    0.2 
o Min Melting Temperature [°C]   56.0 
o Max Melting Temperature [°C]   86.0 
o Max Allowed Tm Difference [°C]   10.0 
o Max GC Difference [%]    30 

 Sequencing Primer Settings: 
o Min Primer Length    15 
o Max Primer Length   20 
o Min Distance From Target  0 
o Max Distance From Target  3 
o Allow Primer Over SNP   No 
o Generate Forward Primers   Yes 
o Generate Reverse Primers  Yes 
o Melting Temp Algorithm   Nearest Neighbor 
o Min Melting Temperature [°C]  35.0 
o Max Melting Temperature [°C]  65.0 

3.4.PCR 

Polymerase Chain Reaction (PCR) is a molecular biological technique that amplifies 
a specific DNA sequence into millions of copies, which can amplify even small 
amounts of DNA. PCR was developed by Kary Mullis in the 1980s and 
revolutionized modern biology. The PCR process uses a reaction mixture containing 
specially designed short pieces of DNA (primers), a DNA polymerase enzyme, four 
types of nucleotides (dNTPs), and target DNA. The PCR process occurs in cycles 
with denaturation, annealing, and elongation steps. In the denaturation step, the 
temperature is approximately 94-98°C, and the aim is to separate the double-stranded 
DNA into two single-stranded strands by heating the reaction mixture. In the 
annealing step, the temperature generally varies between 50-65°C, and by lowering 
the temperature, specific binding of the added primers to the single-stranded strands 
of the target DNA is ensured. This binding is based on the primers designed to 
complement the target DNA sequence. In the elongation step, the temperature is 
generally kept at 72°C, and the purpose of this step is to synthesize new DNA strands 
using free dNTPs, depending on the DNA polymerase enzyme (usually TAQ 
polymerase) primers. This step involves creating copies of the target DNA sequence. 
These three steps are repeated for 25-35 cycles. At each cycle's end, the target DNA 
sequence amount theoretically doubles. Thus, after an average of 30 cycles, the 
amount of DNA sequence theoretically increases to 2 to the 30th power, 
approximately 1 billion copies. Once the PCR process is completed, the presence 
and size of the amplified DNA products can be checked by agarose gel 
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electrophoresis. This technique uses electric current to separate DNA fragments 
according to their size, visualized with a DNA stain (Clark, 2019; Khehra et al., 
2023; Wages, 2005). 

In this study, according to the nanodrop results, some of the PCR products have been 
diluted before PCR experiments. If the nucleic acid (ng/uL) amount exceeds 25, the 
sample is diluted to obtain the desired 25 level. No concentration protocols have been 
conducted for samples with less nucleic acid than the desired levels. 

With the isolated DNA samples, PCR was performed on each patient and each region 
to be investigated. For 120 patients and 19 regions of interest, 2280 PCR experiments 
were conducted. The following protocol was followed for each PCR to obtain PCR 
products: 

 12.5 µL of PyroMark PCR Master Mix was added. 
 2.5 µL of CoralLoad Concentrate was included. 
 µL of Q solution was mixed in, bringing the total volume to 20 µL. 
 For each tube, 1 µL of primer was added, making the total volume 21 µL. 
 µL of template DNA was added (the concentration of the gDNA was 

specified), resulting in a final volume of 25 µL. 
1. An initial PCR activation step was performed for 15 minutes at 95°C, where 

the HotStartTaq DNA Polymerase was activated. 
2. The 3-step cycling process involved: 

a. Denaturation for 30 seconds at 94°C. 
b. Annealing for 30 seconds at 60°C for genomic DNA  
c. Extension for 30 seconds at 72°C. 

3. The number of cycles conducted was 45. 
4. A final extension step was performed for 10 minutes at 72°C. 
5. After the final step, products were stored at 4°C for up to 1 week. 

3.5.Gel electrophoresis 

Agarose gel electrophoresis is a laboratory technique separating macromolecules 
such as DNA, RNA, or proteins according to size. This method is often used in 
molecular biology and genetics research to control the size of PCR products, separate 
DNA fragments, or analyze restriction enzyme digests. It consists of gel preparation, 
sample preparation, sample loading, electrophoresis, and observation steps. In the 
gel preparation step, agarose powder is mixed with TAE (Tris-acetate-EDTA) or 
TBE (Tris-borate-EDTA) buffer solution and heated. After complete dissolution, the 
solution is allowed to cool slightly. In this step, dyes such as ethidium bromide can 
be added to the solution. The slightly cooled but still liquid solution is poured into 
the gel mold. A comb is also placed in the gel container to create spaces for sample 
loading. DNA samples are prepared by mixing them with a loading buffer. Loading 
buffer allows the samples to sink in the gel and may contain a staining agent so that 
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DNA bands can be observed later. The prepared samples are carefully loaded into 
the gel wells. The gel is placed in the electrophoresis tank and filled with a suitable 
buffer solution. When the electrical source is connected to both ends of the tank, with 
one polar end placed, the negatively charged DNA molecules move toward the 
positive electrode (anode). DNA fragments move at different speeds depending on 
their size; Small pieces move faster, and larger pieces move slower. After 
electrophoresis, the gel is examined under UV light, and DNA fragments can be seen 
as bands. During the loading phase, a control ladder is loaded into one of the wells. 
Since this control ladder consists of pre-designed DNA sequences of specific sizes, 
an idea can be obtained about the approximate sizes of the bands in the resulting 
image. It can be used to check the size of the DNA fragments obtained as a result of 
PCR and to verify whether the amplification was successful (Drabik & Bodzoń-
Kułakowska, 2016; Lee et al., 2012).  

Gel electrophoresis tests were performed on several samples to observe whether the 
PCR experiments were successful. The protocol used for gel electrophoresis is as 
follows: 

1. 2 g of agarose was weighed on a precision scale and transferred to an 
Erlenmeyer flask. 

2. 100 mL of 1X TAE buffer was removed and mixed with the agarose. 

3. The mixture was gently shaken and then placed in a microwave oven, 
operated at a high setting for 2.30 minutes. 

4. After microwaving, the flask was taken out to ensure the agarose was 
completely melted. 

5. The solution was then gently shaken again and allowed to stand at room 
temperature for 5 minutes. 

6. 4 µL of Ethidium bromide was added within a fume hood and the solution 
was shaken gently. 

7. The prepared gel was slowly poured into the cassette tank. 

8. Any bubbles present were removed with a clean pipette tip, and the gel was 
allowed to solidify. 

9. Once the gel had solidified, the comb was removed from the gel. 

10. The gel was placed in the electrophoresis tank, and a 1X TAE Buffer was 
added to fill the tank's volume. 

11. PCR products were loaded into the wells, with the ladder being loaded first 
from left to right. 

12. The electrodes were connected to the power supply, and the gel was run at 
150V for 40 minutes. 



 
 

18 

13. Upon completion of the electrophoresis, the gel was imaged using the Biorad 
Gel Doc EZ instrument. 

3.6.Sequencing 

Sequencing determines the nucleotide sequences of DNA or RNA molecules at one 
point within a specific or entire range. High-throughput sequencing technologies 
became one of the milestones for its effects on molecular biology and clinical 
sciences, such as the diagnosis of genetic diseases or variance analysis (Brown, 
2022). 

The history of sequencing begins with the introduction of the chain termination or 
"Sanger" method developed by Frederick Sanger in 1977. This method 
revolutionized the determination of DNA sequences and earned Sanger the Nobel 
Prize in Chemistry in 1980. The Sanger sequencing method has been the basis of 
DNA sequencing studies for several decades. During this period, with the 
development of automatic sequencing devices, sequencing became a faster and less 
labor-intensive process. The Human Genome Project (1990-2003) was one of the 
large-scale sequencing projects that challenged the capabilities of the Sanger 
method. The completion of the project was an important milestone in understanding 
genetic science. Following the completion of the Human Genome Project, the need 
for faster and more economical sequencing methods has led to the development of 
"next-generation sequencing" (NGS) or second-generation sequencing technologies 
(Brown, 2022; Heather & Chain, 2016). 

Illumina sequencing is one of the most widely used NGS technologies designed to 
meet high-throughput DNA sequencing needs. Also known as second-generation 
sequencing, this method allows millions of DNA fragments to be sequenced quickly 
and cost-effectively simultaneously. DNA is divided into short pieces in the first step 
of Illumina Sequencing. Adapters are added to each DNA fragment. DNA fragments 
are fixed to a surface and amplified via PCR, creating multiple copies of each 
fragment. Each amplified DNA fragment is read individually during the cyclic 
sequencing process. In this process, the sequence of each nucleotide is determined 
using four different colored fluorescent markers. The resulting raw sequence data is 
analyzed using computer algorithms, and the complete sequence of the targeted DNA 
is obtained (Hughes et al., 2013). 

Multiplex sequencing is a technique that allows multiple regions of DNA to be 
sequenced simultaneously. This method saves time and cost, especially in large-scale 
genetic analyses. As part of next-generation sequencing (NGS) technologies, 
multiplex sequencing allows multiple samples or target regions to be analyzed in 
parallel. This process finds applications in many fields, such as detecting genetic 
diseases, population genetic studies, and microbiome analyses. Thanks to the 
multiplex sequencing method applied when PCR products amplified for more than 
one region of the same organism are found in a single solution. It is aimed to 
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complete the entire sequencing at once instead of repeating the process as many 
times as the number of regions to be sequenced (Arredondo-Alonso et al., 2021; 
Beck 1993; Church & Kieffer-Higgins, 1988). 

For sequencing, Genera laboratories conducted Illumina multiplex sequencing 
protocols. This method was followed since outsourcing the sequencing for multiplex 
sequencing was both time- and cost-efficient. For sequencing, PCR products of 
individual patients were combined in tubes and sent to Genera. In other words, for 
each patient, one tube that brings all SNV PCRs together has been filled. The 
sequencing results were shared in fastq.gz format as read by the Genera laboratories. 
In this study, all targeted regions of the patient have been sequenced in one reading 
and separated analysis despite the common standard that a single gene is targeted at 
a time and 96 wells are parallelized. 

3.7.Variant Calling 

Variant calling is a process used in genomics to identify variants from sequence 
data—this means finding the differences like SNVs, insertions, deletions, and large 
structural changes in a DNA sequence compared to a reference genome. This process 
is crucial for understanding genetic variations that may influence traits, contribute to 
disease, or offer insights into evolutionary biology. For variant calling, the reads 
should be aligned to a reference genome, a standard sequence representing the 
idealized sequence of a species. This alignment shows where the reads match the 
reference genome and where there are differences. Once alignment is complete, the 
next step is identifying where the DNA sequence differs from the reference 
sequence. This involves analyzing the aligned reads to detect mismatches (SNVs), 
insertions, deletions, and other structural variants. To identify potential variants, 
software tools compare the sequenced reads against the reference genome. Not all 
identified variants are actual genetic differences. Some may be errors introduced 
during sequencing or alignment. Variant calling tools apply filters to reduce false 
positives. The identified variants are then annotated to provide information on their 
potential biological impact, such as whether they occur in coding or regulatory 
regions and if they are known to be associated with diseases. Variant calling is a 
complex but essential process in genomics, enabling researchers to uncover the 
genetic basis of diseases, understand genetic diversity, and explore evolutionary 
relationships. The choice of tools and specific workflow can vary depending on the 
type of sequencing data and the research objectives (Koboldt, 2020; Zverinova & 
Guryev, 2021). 

In this study, the variant calling steps were as follows: 

1) fastq.gz files were inspected for quality and contamination information.  
2) Reads were trimmed if required quality scores or contaminations were not 

achieved. 
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1. Raw reads with contamination were trimmed with the Cutadapt version 2.6 
tool. 

3) To generate reference indexes and alignment, the bwa version bwa-0.7.17-r1188 
tool has been utilized to align the reads with the reference human genome 
(Hg38). 

4) To compress and sort sam files samtools version 1.19.2 has been utilized. In 3 
steps, BAI files have been generated: 
1. BAM generation. 
2. BAM compression and sorting. 
3. BAI generation. 

5) To generate VCF files, freeBayes tool was used. 
6) After creating the VCF files, read depths from initial fastq.gz files were 

inspected, and locations with read depths lower than ten were ignored for the rest 
of the study since the threshold of 10 determined bad results.  

7) Locations of interested regions were inspected utilizing Python programming 
and the pandas library and information of variants were saved to a csv file. 

Codes and exact tool data for these steps can be found in the appendices. 

3.8.Linkage analysis 

"Linkage," or connection between variants, is an important concept that enables 
understanding how genetic variations are related. This term specifically refers to how 
often two or more genetic markers (e.g., SNVs) coexist. This association plays a 
critical role in understanding how genetic material is passed from parents to offspring 
and helps explain how genetic diseases, traits, or resistances are inherited. Linkage 
disequilibrium (LD) is the nonrandom coexistence of two or more loci with each 
other. If two loci are very close to each other, recombination (mixing genetic material 
during the transfer of genetic material from parents to offspring) may not separate 
them, and these loci are often inherited. LD is used to understand how often genetic 
variants coexist in each population and how these variants spread (Reich et al., 2001). 

In this study, ldlink’s LDmatrix tool was used to inspect the linkages of SNVs in the 
same chromosomes. Only the SNVs on the same chromosomes have been inspected 
because there would be no linkage between SNVs on different chromosomes. 

3.9.Frequency analysis 

For frequency analysis, as mentioned in the Variant Calling title, information from 
allele regions with read depth scores above ten is recorded in a csv file as 
homozygous wild-type, homozygous variant, or heterozygous regions. Then, this is 
done for each rs code (for the relevant gene region). Variant frequencies of alleles 
were examined. In this frequency analysis, the formula of the number of 
heterozygous patients plus the number of patients with the homozygous variant 
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multiplied by two divided by n was used, with the total number of alleles read at one 
point being n. Thus, frequency information was obtained for each RS code using the 
information obtained from the readable regions. 

3.10. Statistical analysis 

In this study, we employed various statistical methods to compare allele frequencies 
between the Turkish cohort and the non-Finnish European population, assess the 
significance of these differences, and validate our findings through robust 
techniques. For instance, z-test was used to compare with the European population 
by using the frequencies of the variants whose frequencies were determined and the 
number of alleles in which these variants (or patients with wild-type in these 
locations) were seen. 

Minor Allele Frequency (MAF) is a measure of the frequency at which the second 
most common allele occurs in a given population. It is a key metric in genetic studies 
as it helps identify variants that may contribute to disease susceptibility. In this study, 
MAF was calculated for each Single Nucleotide Variant (SNV) in both the Turkish 
cohort and the non-Finnish European population. MAF values have been calculated 
by the following formula: 

𝑀𝐴𝐹 =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑚𝑖𝑛𝑜𝑟 𝑎𝑙𝑙𝑒𝑙𝑒𝑠

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑎𝑙𝑙𝑒𝑙𝑒𝑠
 

Given the sufficient number of participants in our study, we were able to detect target 
variants and make direct MAF comparisons without the need for extensive GWAS 
methodologies. The primary statistical methods used in our analysis include the Z-
test for comparing allele frequencies and a bootstrap method for validation. 

We also designed a bootstrapping-based analysis to test the z-test results using a 
bootstrap study. Bootstrapping is a resampling technique used to estimate the 
distribution of a statistic by repeatedly sampling with replacement from the data. 
This method is particularly useful for validating the results obtained from other 
statistical tests. In this study, the bootstrap method was used to generate confidence 
intervals for allele frequencies and validate the Z-test results. The following steps 
were followed to compare the simulated data of each gene location with the 
European population within the framework of Bootstrap: 

1. To create n number of simulated alleles, the NumPy library was used in 
Python programming, and the probability of not being wild type, p-value, and 
frequency in sequenced patients was used. 

2. A total of k cohorts was created by repeating n alleles k times, and the allele 
frequency in each of these k cohorts was recorded. 

3. 95% and 99% confidence intervals were determined from the recorded 
frequencies. 
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4. It was observed whether the allele frequency seen in the European population 
fell within these intervals. 
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CHAPTER 4 

4. RESULTS 

4.1.Nanodrop Quality Control 

From 120 patients, saliva samples have been collected and DNA is isolated in class 
II BSCs with a uniform isolation protocol. These samples were collected in 
Hacettepe Unviersity Hospital and DNA is isolated in Düzen Laboratories. After the 
host DNA isolation, isolated DNA products have been relocated to CanSyl lab in 
Middle East Technical University. For the products that are relocated to CanSyl labs, 
Nanodrop experiments were conducted to observe the DNA product amounts. 
Nanodrop results were mostly satisfying regarding the nucleic acid amount in DNA 
isolate solutions. Sixty-one DNA isolates had more than 25 ng/uL nucleic acid in the 
tube. Five solutions had between 20 and 25 ng/uL, and the rest were less than 20 
ng/uL. Although less than 20 ng/uL is not optimum for PCR experiments, this does 
not mean that PCRs will not work intendedly or that there will be errors. Instead, this 
means that we should be aware of the risks of PCRs resulting in insufficient or no 
amplifications. A detailed table of results for nanodrops can be found in the 
appendices. 

 

Figure 1 Histogram of nanodrop results in Nucleic Acid amount (ng/uL). 

In figure 2, nanodrop results that are below 30 have been shown. Most of the DNA 
isolates with concentrations falling into the 'unsure' category, defined as being below 
the optimal threshold for reliable PCR amplification, are found between 5 and 7.5 
ng/uL. This concentration range is critical, as it indicates a significant uncertainty in 
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the potential success of PCR amplification. While it is not necessarily prohibitive for 
PCR, it does increase the risk of suboptimal results, such as weak or no amplification. 
The distribution of these unsure data points is particularly important for assessing 
the need for further quality control measures such as gel electrophoresis confirmation 
after PCR. 

 
Figure 2 DNA concentration histogram from nanodrop results that are below 30 ng/uL 

4.2.PCR amplification of target variant regions 

The successful amplification of the target variant regions using PCR is critical for 
the subsequent sequencing and variant analysis. In this study, we performed PCR on 
DNA samples from 120 patients to amplify 19 regions of interest. Each PCR reaction 
was designed to target specific Single Nucleotide Variants (SNVs) associated with 
COVID-19 susceptibility. To ensure robust amplification, the PCR conditions were 
carefully optimized according to the steps mentioned in methods. PCR 
amplifications have been controlled and confirmed by electrophoresis experiments. 
In 29 patients’ samples, for rs1123573, rs2532300, rs9271609, and rs17860115 
either there was not enough material for PCR experiments or PCR experiments went 
faulty such that human eye can identify errors.  Therefore, these 29 patients were not 
included in analyses regarding these SNVs’ results. 

The sequencing of the PCR-amplified target variant regions yielded predominantly 
satisfactory results. Multiplex sequencing was conducted to ensure comprehensive 
coverage and accurate identification of SNVs in the patient cohort. The majority of 
samples exhibited excellent read depths, which facilitated reliable variant calling and 
subsequent analyses. However, a few samples presented errors primarily due to 
insufficient read depths. To address this, a stringent quality control process was 
implemented. Sequencing data were carefully reviewed, and read depths were 
meticulously examined. Regions with read depths below the threshold of ten were 
identified as unreliable. Consequently, these low-quality reads were omitted from 
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further analysis to maintain the integrity and accuracy of the dataset. The read depth 
analysis ensured that only high-confidence variant calls were included in the final 
results. This rigorous filtering process is summarized in Appendix D, which provides 
detailed read depth information for each sample and target region. The table 
highlights the read depth distribution, identifying any samples with insufficient 
coverage that were excluded from the final dataset. Overall, the sequencing process 
demonstrated robust performance, with the majority of target regions being 
accurately sequenced and analyzed. The quality control measures effectively 
mitigated the impact of sequencing errors, ensuring the reliability of the genetic 
insights derived from this study. 

4.3.Electrophoresis results 

All electrophoresis experiments gave the desired results. Thus, it was seen that all 
PCR experiments worked properly, and a suitable working environment was 
created to continue with the sequencing process. Multiplex Sequencing and Variant 
Calling 

4.4.MAF Calculations and Comparisons 

For each rs code and corresponding patient, a comprehensive analysis was conducted 
to determine whether the individual exhibited wild-type alleles or polymorphisms 
within that specific genomic region. Concerning the single nucleotide variants 
(SNVs) examined in this study, the patients were categorized based on the presence 
of homozygous wild-type alleles, heterozygous alleles, and homozygous variant 
alleles, with their respective frequencies meticulously documented. Subsequently, 
these individual frequencies were aggregated to ascertain the total allele frequency 
for the cohort for each SNV. Moreover, to provide further insight into the data, the 
number of patients contributing to these frequencies was also recorded, specifically 
indicating the success rate of the readings, and this information was systematically 
included in the accompanying table. It should be noted that the frequencies displayed 
in the table below represent the number of patients, not the total number of alleles 
examined; thus, the actual number of alleles is twice the number of counts presented. 

Table 1 Frequency information. 

Region 
Patient 

Count 

Wild type  

homozygous 

patient frequency 

Heterozygous 

patient 

frequency 

Variant  

homozygous 

patient frequency 

Variant 

allele 

frequency 

rs11088551 120 0.33 0.51 0.15 0.404167 
rs1123573 97 0.42 0.45 0.11 0.340206 
rs12610495 117 0.63 0.33 0.03 0.192308 
rs1548474 110 0.61 0.17 0.21 0.295455 
rs17574 114 0.49 0.43 0.07 0.285088 
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Region 
Patient 

Count 

Wild type  

homozygous 

patient frequency 

Heterozygous 

patient 

frequency 

Variant  

homozygous 

patient frequency 

Variant 

allele 

frequency 

rs17860115 33 0.27 0.12 0.58 0.636364 
rs2298659 118 0.72 0.25 0.02 0.144068 
rs2298661 117 0.72 0.26 0.02 0.145299 
rs35899679 116 0.4 0.43 0.16 0.37931 
rs4290734 97 0.96 0 0.03 0.030928 
rs4303794 120 0.33 0.51 0.15 0.404167 
rs463727 117 0.36 0.41 0.22 0.42735 
rs61882275 112 0.31 0.53 0.15 0.415179 
rs8178521 120 0.49 0.41 0.09 0.295833 
rs9271609 76 0.61 0.38 0 0.190789 
rs2532300 106 1 0 0 0 
rs34624090 116 1 0 0 0 
rs61299115 120 1 0 0 0 
rs56106917 84 1 0 0 0 

The table below shows the z-test comparisons of SNVs’ and European (non-Finnish) 
allele frequencies. 

Table 2 Frequency comparisons of Hacettepe patients and non-Finnish European population. 

SNV 
Allele 

count 

Variant allele 

frequency 

Non-Finnish European 

frequency 
P value of z test 

rs11088551 240 0.40 0.42 0.69 
rs1123573 194 0.34 0.39 0.36 

rs12610495 234 0.19 0.27 0.06 
rs1548474 220 0.30 0.29 0.90 

rs17574 228 0.29 0.34 0.22 
rs17860115 66 0.64 0.32 0.00* 

rs2298659 236 0.14 0.23 0.03* 

rs2298661 234 0.15 0.22 0.04* 

rs35899679 232 0.38 0.47 0.06 
rs4290734 194 0.03 0.49 0.00* 

rs4303794 240 0.40 0.42 0.69 
rs463727 234 0.43 0.46 0.48 

rs61882275 224 0.42 0.37 0.37 
rs8178521 240 0.30 0.27 0.49 
rs9271609 152 0.19 0.30 0.03* 

rs2532300 212 0.00 0.22 0.00* 

rs34624090 232 0.00 0.45 0.00* 

rs61299115 240 0.00 0.42 0.00* 

rs56106917 168 0.00 0.49 0.00* 
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According to the p values obtained from individual Z-tests conducted with the 
frequencies and the sample size of Hacettepe patients’ alleles, the following SNVs 
show statistically significant differences with p-value < 0.05: rs17860115, 
rs2298659, rs2298661, rs4290734, rs9271609, rs2532300, rs34624090, rs61299115, 
and rs56106917. 

While rs17860115 shows a higher variant rate in the Hacettepe cohort, other SNVs 
show lower variant rates.  

4.5.Bootstrap algorithm results 

As mentioned, a bootstrap-based analysis is developed and applied with the existing 
variant frequency. With variant frequencies obtained from the frequency analyses, 
1000 cohorts of 100 alleles were created, and 95% confidence intervals of frequency 
means of cohorts were compared with non-Finnish European allele frequencies. The 
following table shows if the non-Finnish European allele frequencies are within the 
limits of 95% confidence intervals of simulated data. 

Table 3 Bootstrap results. 

index 95% CI 

Lower bound 

95% CI Upper 

bound 

non-Finnish European 

allele frequency 

Significant 

Difference 

rs11088551 0.30975 0.5 0.422 No 
rs1123573 0.25 0.43 0.385 No 
rs12610495 0.12 0.27 0.269 No 
rs1548474 0.21 0.38 0.29 No 
rs17574 0.2 0.37 0.339 No 
rs17860115 0.54 0.73 0.324 Yes 
rs2298659 0.08 0.21 0.231 Yes 
rs2298661 0.08 0.22 0.223 Yes 
rs35899679 0.29 0.47 0.466 No 
rs4290734 0 0.07 0.489 Yes 
rs4303794 0.31 0.5 0.422 No 
rs463727 0.34 0.52 0.46 No 
rs61882275 0.33 0.51 0.374 No 
rs8178521 0.22 0.39 0.268 No 
rs9271609 0.12 0.27 0.304 Yes 
rs2532300 0 0 0.218 Yes 
rs34624090 0 0 0.449 Yes 
rs61299115 0 0 0.421 Yes 
rs56106917 0 0 0.493 Yes 
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As can be seen in the table above, bootstrap confidence intervals of SNVs 
rs17860115, rs2298659, rs2298661, rs4290734, rs9271609, rs2532300, rs34624090, 
rs61299115, and rs56106917 does not encompass the exact non-Finnish European 
frequency. 

4.6.Linkage results 

SNVs rs17860115, rs8178521, rs463727, rs2298659, rs2298661, rs4290734, 
rs35899679, rs4303794, rs11088551, and rs61299115 are on chromosome 21. The 
following table is a matrix from ldlink (https://ldlink.nih.gov/?tab=ldmatrix) that 
shows the R2 values of linkages, which is the possibility of carrying variants together. 
The closer the number to 1 means the closer two SNVs are also means the 
probability. 

Table 4 Ldlink matrix results. 
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rs17860115 1.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
rs8178521 0.01 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
rs463727 0.00 0.00 1.00 0.20 0.08 0.55 0.44 0.02 0.02 0.02 
rs2298659 0.00 0.00 0.20 1.00 0.60 0.22 0.17 0.00 0.00 0.00 
rs2298661 0.00 0.00 0.08 0.60 1.00 0.23 0.18 0.00 0.00 0.00 
rs4290734 0.00 0.00 0.55 0.22 0.23 1.00 0.81 0.00 0.00 0.00 
rs35899679 0.00 0.00 0.44 0.17 0.18 0.81 1.00 0.00 0.00 0.00 
rs4303794 0.00 0.00 0.02 0.00 0.00 0.00 0.00 1.00 1.00 1.00 
rs11088551 0.00 0.00 0.02 0.00 0.00 0.00 0.00 1.00 1.00 1.00 
rs61299115 0.00 0.00 0.02 0.00 0.00 0.00 0.00 1.00 1.00 1.00 

As shown in the table some SNVs are very close to each other means they have a 
high probability of being carried together. Especially rs4303794, rs11088551, and 
rs61299115 have a score of 1. The linkage shows that they are in perfect linkage and 
are expected to be carried almost always together.  

In addition to the R2 matrix shown above, a heatmap has been created, the illustrated 
version of the same map. The following heatmap shows the linkages in colors. The 
darker the color, the stronger the linkage. 

https://ldlink.nih.gov/?tab=ldmatrix
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Figure 3 Linkage matrix heatmap for chr 21 variants. 

4.7.KEGG Pathway Analysis 

With SNVs that resulted in significant differences in frequency between non-finnish 
European population and Turkish population, a KEGG pathway analysis has been 
conducted. Figure 3 and Figure 4 show results of the KEGG pathway analysis.  

 
Figure 4 KEGG pathway (enrichr) 



 
 

30 

The subnetwork reveals significant associations related to COVID-19 and other viral 
diseases. Gene Ontology data shows that HLA-DRB1 and TMPRSS2 are involved 
in the biological processes regulating viral entry into host cells and positively 
regulating viral entry into host cells. Both genes also play roles in the positive 
regulation of viral life cycles and the positive regulation by symbionts of entry into 
host cells. Additionally, HLA-DRB1 and ACE2 are implicated in the regulation of 
cytokine production, a critical response during viral infections. 

From the MGI Mammalian Phenotype database, knockout (KO) mice for IFNAR2 
and ACE2 showed increased susceptibility to Orthomyxoviridae infections. 
TMPRSS2 and ACE2 KO mice exhibited lung inflammation, and KANSL1 and 
ACE2 KO mice displayed corneal opacity. Interestingly, TMPRSS2 and ACE2 KO 
mice demonstrated decreased susceptibility to Coronaviridae infections, while 
TMPRSS2 and KANSL1 KO mice showed abnormal contextual conditioning 
behavior. 

From the KEGG pathway database, the gene products HLA-DRB1 and IFNAR2 are 
part of the Epstein-Barr virus infection pathway. HLA-DRB1, IFNAR2, and 
TMPRSS2 are linked to the Influenza A pathway. HLA-DRB1 and IFNAR2 are 
associated with the Herpes simplex virus 1 infection pathway, while IFNAR2, 
TMPRSS2, and ACE2 are part of the Coronavirus disease pathway. Additionally, 
ACE2 is involved in the Renin-angiotensin system pathway, which has implications 
for COVID-19 severity and progression. 

 

Figure 5 KEGG Pathway bar chart model (enrichr) 
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CHAPTER 5 

5. DISCUSSION 

This study presents a detailed genetic analysis of Single Nucleotide Variants (SNVs) 
and their association with COVID-19 susceptibility among patients at Hacettepe 
Hospital in Türkiye. Through a robust methodological approach encompassing 
sample collection, DNA isolation, PCR, sequencing, and advanced statistical 
analyses, our findings reveal significant insights into the genetic predispositions that 
may influence COVID-19 outcomes within the Turkish population. This discussion 
seeks to contextualize these results within the broader genetic research landscape and 
public health implications related to COVID-19.  

The genetic makeup of the contemporary Turkish population exhibits notable 
similarities with non-Finnish European populations, particularly those in the 
Mediterranean region, as evidenced by clustering with Iberians from Spain and 
Tuscans from Italy. This clustering suggests a shared genetic heritage, further 
supported by the similar frequency distributions of GWAS (Genome-Wide 
Association Study) SNPs between Turkish and European populations, which 
indicate a greater proportion of ancestry sharing. Additionally, SNPs associated with 
cholesterol levels display higher frequencies in the Turkish population, aligning with 
the observed lower total cholesterol counts and different lipid profiles compared to 
Western Europeans. This study assumes that the population of Turkey shares a 
genetic predisposition similar to that of the non-Finnish European population under 
normal conditions. In other words, it is thought that the average person in Turkey 
and the average MAF in Europe populations show almost the same genetic diversity. 
The European population mentioned here, and the European population mentioned 
hereinafter, is kept separate from the Finnish population. From now on, what will be 
referred to as the European population in this discussion section is actually the non-
Finnish European population (Alkan et al., 2014; Özçelik et al., 2010).  

During the frequency comparisons in the study, significant allele frequency 
differences were observed for rs17860115, rs2298659, rs2298661, rs4290734, 
rs9271609, rs2532300, rs34624090, rs61299115, and rs56106917 variants when the 
study population and the EU population were compared. The rs17860115 variant 
appeared to show higher frequency in the study population than in Europe. It has 
been observed that the rs2298659, rs2298661, rs4290734, rs9271609, rs2532300, 
rs34624090, rs61299115, and rs56106917 variants are seen with higher frequency in 
the European population. It is possible to consider potential inferences, considering 
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that the entire study cohort was admitted to the hospital due to the disease, which 
indicates COVID-19 susceptibility.  

It is conceivable that one reason why the rs17860115 variant has appeared more 
frequently in the patient population is that this mutation increases the risk of 
contracting COVID-19 disease. For other variants (rs2298659, rs2298661, 
rs4290734, rs9271609, rs2532300, rs34624090, rs61299115, and rs56106917), it 
can be thought that these variants reduce the likelihood of contracting COVID-19 as 
they appear more frequently in the general population. 

In the bootstrap analysis variants rs17860115, rs2298659, rs2298661, rs4290734, 
rs9271609, rs2532300, rs34624090, rs61299115, and rs56106917 showed 
differences than the general population. Our data was simulated with 100 alleles for 
1000 cohorts in the bootstrap algorithm. After 1000 cohorts were simulated with 100 
alleles with the Bootstrap algorithm, 95 percent confidence interval limits were 
determined. If the allele frequency seen in the European population was not within 
this confidence interval, it was defined as having a significant difference. It is 
reasonable to think that the frequencies of these variants, which differ in 1000 
simulated cohorts containing 100 alleles, significantly differ between Turkey and 
Europe. The variants that showed differences in the z-test and those that showed 
differences in the bootstrap analysis completely overlapped, yielding the same 
direction. Variants are different, and the way they differ, whether they are high or 
low, are in the same direction. 

It was observed that the genes with the variants that showed differences were ACE2, 
FBRSL1, HLA-DRB1, IFNAR2, KANSL1, and TMPRSS2 genes. In studies 
examining the relationship of the ACE2 gene with COVID-19, direct or inversely 
proportional relationships were observed between ACE2 gene polymorphisms and 
COVID-19 severity (Rodrigues & de Oliveira, 2021; Karahalil & Elkama, 2020). 
Since the scope of this study is not the severity of COVID-19 but its susceptibility, 
it can be thought that the rs61299115 variant, which is on the ACE2 gene seen in 
this study, potentially reduces the risk of contracting COVID-19. 

The FBRSL1 gene has not been directly studied concerning COVID-19. However, 
the rs56106917 variant inspected in this study shows a potential relation with the 
disease. 

Some studies have shown potential relationships between variants in the HLA-DRB1 
gene and COVID-19 disease severity (Anzurez et al. 2021). In this study, the 
rs9271609 variant on the HLA-DRB1 gene may be potentially associated with 
decreased disease risk. 

Research has consistently identified the IFNAR2 gene as a significant factor in 
COVID-19 susceptibility and severity (Ma et al. 2020; Ma et al. 2021). With 
conformity, in this research, the rs17860115 variant is potentially related to COVID-
19 susceptibility. According to the data from dbSNP, the single nucleotide 
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polymorphism rs17860115 is located within the 5' untranslated region (UTR) of the 
gene. The positioning of this variant in the UTR suggests that it may play a 
significant role in the regulation of gene expression or translation (Brown, 2002). 

The KANSL1 gene, involved in chromatin remodeling and gene expression, has not 
been directly linked to COVID-19 in the literature. However, there is evidence that 
genetic factors, including the NKG2C receptor encoding the KLRC2 gene and HLA-
E variants, can influence the severity of COVID-19 (Vietzen et al., 2021). In this, 
the variant rs2532300 on the KANSL1 gene has been found to be potentially related 
to decreased COVID-19 susceptibility. 

The TMPRSS2 gene has been found to play a significant role in COVID-19 
susceptibility and severity. Rokni et al. (2022) identified an increased risk of 
COVID-19 in carriers of certain TMPRSS2 polymorphisms, while Wulandari et al. 
(2021) found a possible association between the p.Val160Met polymorphism and 
SARS-CoV-2 infectivity and disease outcome. rs2298659, rs2298661, rs2532300, 
rs34624090, and rs4290734 variants in this study showed a potentially protective 
effect towards COVID-19. 

In this study, we did not observe any of the following variants: rs2532300, 
rs34624090, rs61299115, and rs56106917. In other words, these variants were not 
encountered even once in the cohort of 120 patients, which means 240 alleles. It is a 
matter of curiosity that these variants, known to be encountered with frequencies 
between 20 percent and 49 percent in the European population, are not observed in 
the COVID-19 cohort. Any discussion on these variants requires more detailed 
studies conducted with larger sample groups in the future. 

It was mentioned that the rs4303794, rs11088551, and rs61299115 variants show 
perfect linkage features. This means that if a person has a polymorphism at one of 
these variant locations, they also have a polymorphism at the other location. The 
MAF for the European population for alleles in these locations are 0.422, 0.422, and 
0.421, as expected for variants with perfect linkage. In other words, there is a 
difference of one thousandth. Also, when we look at the Turkish population, the 
rs4303794 and rs11088551 variants show a frequency of 0.404 (they are close to 
each other with the European frequency, and there is no significant difference), while 
the frequency of the rs61299115 variant is measured as 0. More comprehensive 
studies with a larger sample size are required to explain the reason for this situation 
entirely. 

Identifying unique SNVs and their linkage patterns offers new avenues for research 
and potential targets for therapeutic intervention. As the global community continues 
to combat COVID-19, integrating genetic research into public health strategies 
remains a priority, promising more effective responses to this and future pandemics. 
Further research in this area will enhance our understanding of the genetic basis of 
infectious diseases and improve our ability to predict and mitigate their impacts on 
diverse populations. 
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Despite the strengths of our study, there are several limitations to consider. While 
adequate for initial analyses, the sample size limits our findings' generalizability 
across the broader Turkish population. Future studies with larger, more diverse 
cohorts must validate these results and refine the identified genetic markers. 

Additionally, while our study focused on genetic predispositions, the interaction 
between genetic, environmental, and social factors is crucial in determining disease 
outcomes. Comprehensive models integrating these factors are needed to provide a 
more complete picture of COVID-19 susceptibility and severity. 
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CHAPTER 6 

6. CONCLUSION 

In conclusion, our comprehensive analysis of SNVs and their association with 
COVID-19 susceptibility and severity among the Hacettepe Hospital cohort, 
assumed to represent the Turkish population, has provided valuable insights. Due 
to the small sample size, we have proposed a bootstrapping-based analysis 
method to observe the standard deviation within our samples, which is utilized 
during the maf percentage comparison between our cohort and the European 
population.  

The study highlights significant allele frequency variations between the Turkish 
cohort and the non-Finnish European population, particularly in SNVs such as 
rs17860115, rs2298659, rs2298661, rs4290734, rs9271609, rs2532300, 
rs34624090, rs61299115, and rs56106917. These differences suggest potential 
genetic predispositions that could influence COVID-19 outcomes. Moreover, the 
linkage analysis revealed strong correlations between specific SNVs, indicating 
that these genetic loci may be inherited together, which could affect disease 
susceptibility and severity. 

The findings underscore the importance of considering genetic variability within 
and between populations in public health strategies, particularly in the context of 
infectious diseases like COVID-19. They also highlight the need for further 
research with larger, more diverse cohorts to confirm these associations and to 
explore the potential mechanisms underlying these genetic influences. By 
expanding our understanding of genetic factors in disease susceptibility and 
severity, we can better tailor interventions and improve outcomes for affected 
populations. Thus, while promising, the results presented should be viewed as a 
stepping stone towards more extensive genetic research that could ultimately 
inform more effective public health responses to COVID-19 and other infectious 
diseases. 
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APPENDICES 

A. Nanodrop Results 

Table 5 Nanodrop results to investigate DNA products in isolates 

Sample No Nucleic Acid(ng/uL) A260/A280 A260/A230 A260 A280 

1 6,174 1.497 -442 123 82 
2 69,901 1.639 1.622 1.398 853 
3 67,300 1.668 1.579 1.346 807 
4 58,782 1.689 2.319 1.176 696 
5 82,480 1.495 886 1.65 1.103 
6 61,726 1.709 775 1.235 722 
7 6,161 1.258 -3.207 123 98 
10 3,550 1.258 -185 71 56 
11 13,619 1.516 -9.272 272 0.18 
12 112,768 1.641 1.222 2.255 1.374 
13 145,046 1.774 2.15 2.901 1.635 
14 116,280 1.729 2.039 2.326 1.345 
16 5,531 1.282 -0.49 111 86 
17 110,348 1.707 1.743 2.207 1.293 
19 133,212 1.601 1.091 2.664 1.664 
20 34,434 1.576 1.627 689 437 
21 73,139 1.702 2.147 1.463 0.86 
22 291,421 1.772 1.724 5.828 3.289 
23 70,966 1.669 1.753 1.419 0.85 
24 32,314 1.614 1.676 646 0.4 
25 49,955 1.716 3.049 999 582 
26 35,558 1.605 1.206 711 443 
27 14,033 1.784 -2.152 281 157 
28 38,017 1.673 2.464 0.76 455 
29 10,451 1.548 -1.303 209 135 
31 38,959 1.708 5.181 779 456 
32 25,989 1.498 1.681 0.52 347 
33 107,004 1.771 2.379 2.14 1.209 
35 15,349 1.63 -10.239 307 188 
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Sample No Nucleic Acid(ng/uL) A260/A280 A260/A230 A260 A280 

36 11,215 1.489 -1.54 224 151 
38 49,946 1.64 1.853 999 609 
39 17,434 1.703 -4.992 349 205 
40 25,999 1.586 3.367 0.52 328 
41 214,403 1.737 1.464 4.288 2.468 
42 42,200 1.583 2.056 844 533 
43 132,360 1.759 2.067 2.647 1.505 
44 17,590 1.567 12.617 352 225 
45 6,612 1.375 -837 132 96 
46 25,176 1.714 -6.944 504 294 
47 174,012 1.798 2.827 3.48 1.936 
48 3,790 1.224 -358 76 62 
49 5,078 1.059 -381 102 96 
50 44,194 1.77 -80.181 884 499 
51 294,288 1.546 866 5.886 3.806 
52 24,002 1.661 -1.100.688 0.48 289 
54 10,252 1.551 -687 205 132 
55 43,885 1.676 2.662 878 524 
56 44,789 1.749 266.211 896 512 
58 137,535 1.709 1.541 2.751 1.609 
59 48,839 1.604 3.364 977 609 
60 125,820 1.73 2.115 2.516 1.454 
61 106,076 1.791 2.611 2.122 1.185 
62 5,192 1.262 -396 104 82 
66 26,451 1.577 3.215 529 335 
67 44,394 1.761 -18.231 341 194 
68 190,020 1.701 1.38 3.8 2.234 
69 123,188 1.777 2.635 2.464 1.386 
70 9,075 1.515 -943 182 0.12 
71 18,662 1.454 3.257 373 257 
73 6,821 1.279 -1.021 136 107 
75 12,728 1.394 -2.383 255 183 
76 40,087 1.634 2.007 802 491 
77 24,027 1.668 10.234 481 288 
78 3,001 1.116 -206 0.06 54 
79 18,920 1.663 -8.49 378 228 
81 69,180 1.687 1.841 1.384 0.82 
82 22,124 1.632 4.993 442 271 
83 18,476 1.457 6.693 0.37 254 
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Sample No Nucleic Acid(ng/uL) A260/A280 A260/A230 A260 A280 

84 5,145 1.333 -385 103 77 
85 49,051 593 41 981 1.654 
86 6,105 44.501,00 -584 122 0.11 
88 21,992 1.705 -22.032 0.44 258 
89 164,600 1.517 789 3.292 2.17 
90 92,575 1.729 1.884 1.852 1.071 
91 37,980 1.607 1.85 0.76 473 
92 174,952 1.625 01.01 3.499 2.153 
93 106,832 1.752 2.641 2.137 1.219 
93 61,965 1.699 2.935 1.239 0.73 
94 299,177 1.843 2.79 5.984 3.247 
96 10,628 1.415 567 213 0.15 
97 7,485 1.374 -291 0.15 109 
102 175,429 1.674 1.158 3.509 2.096 
103 68,440 1.713 1.84 1.369 799 
105 5,195 1.362 -482 104 76 
106 41,416 1.602 1.485 828 517 
107 6,432 1.333 -759 129 97 
108 8,417 1.472 -922 168 114 
109 24,667 1.656 -19.796 493 298 
111 36,878 1.646 2.77 738 448 
112 160,942 1.83 2.683 3.219 1.759 
114 84,132 1.584 1.066 1.683 1.062 
116 37,433 1.592 1.484 749 0.47 
117 49,462 1.554 1.014 989 636 
119 6,406 1.254 -348 128 102 
121 105,590 1.655 1.585 2.112 1.276 
122 5,234 1.191 -373 105 88 
123 62,585 1.742 3.158 1.252 718 
124 18,578 1.451 -13.273 372 256 
127 65,155 1.737 2.858 1.303 0.75 
128 73,555 1.553 1.024 1.471 948 
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B. Variant Calling Steps Codes 

For VCF files, the following tools with corresponding scripts have been used: 

1. cutadapt: To trim raw reads. 
Version: 2.6 

Script: $ cutadapt -q 20 -m 20 -a CTGTCTCTTATA -A CTGTCTCTTATA -o 
forward_trimmed.fastq -p reverse_trimmed.fastq forward_raw.fastq 
reverse_raw.fastq 

2. bwa: To generate reference indexes and alignment. 
Version: bwa-0.7.17-r1188 
Reference genome: Ensembl, Homo_sapiens.GRCh38.dna.toplevel.fa 
Indexes were generated by `bwa index`: 
Script: bwa index Homo_sapiens.GRCh38.dna.toplevel.fa 
Alignment was made by `bwa mem`: 
Script: $ bwa mem Homo_sapiens.GRCh38.dna.toplevel.fa 
forward_trimmed.fastq reverse_trimmed.fastq > alignment.sam 

3. samtools: To compress and sort sam files. 
Version: samtools 1.19.2 
BAM generation: samtools view -b -o alignment.bam alignment.sam 
BAM compression and sorting: samtools sort -l 9 -o alignment_sorted.bam 
alignment.bam 
BAI generation: samtools index -b alignment_sorted.bam 

alignment_sorted.bam.bai 

4. freeBayes: To generate VCFs. 
Version:  v1.3.7 
Script: freebayes -f Homo_sapiens.GRCh38.dna.toplevel.fa 
alignment_sorted.bam > variants.vcf 

From created VCF files, following python scripts have been used to create 
meaningful, human-readable tables: 

1.  
import os 
import pandas as pd 
 
 
def extract_variant_status_for_patient(patient_number, expanded_regions, target_SNVs): 
    vcf_filename = f'{patient_number}.vcf' 
    if not os.path.exists(vcf_filename): 
        print(f"File not found: {vcf_filename}") 
        return {} 
 
 
def get_patient_numbers_from_vcf(directory='.'): 
    patient_numbers = [] 
    for filename in os.listdir(directory): 
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        if filename.endswith(".vcf"): 
            patient_number = filename.split(".")[0] 
            try: 
                patient_number = int(patient_number) 
                patient_numbers.append(patient_number) 
            except ValueError: 
                print(f"Invalid filename format: {filename}") 
    return patient_numbers 
 
 
patient_numbers = get_patient_numbers_from_vcf() 
 
target_variants = [('17', 44229986), 
                   ('21', 41481156), ('21', 41473715), 
                   ('21', 41471515), ('21', 41464259), 
                   ('21', 41491393), ('21', 41473447), 
                   ('21', 33287378), ('19', 4717660), 
                   ('X', 15621438), ('6', 32623820), 
                   ('21', 33230000), ('2', 162073469), 
                   ('11', 34482745), ('2', 60480453), 
                   ('21', 41508407), ('21', 41508389), 
                   ('21', 41508379), ('12', 132489231)] 
 
window_size = 10 
 
target_SNVs = {'rs2532300', 'rs4290734', 'rs2298661', 'rs34624090', 'rs463727', 
               'rs35899679', 'rs2298659', 'rs8178521', 'rs12610495', 
               'rs1548474', 'rs9271609', 'rs17860115', 'rs17574', 
               'rs61882275', 'rs1123573', 'rs61299115', 'rs11088551', 'rs4303794', 'rs56106917'} 
 
windows = [(chrom, max(0, start - window_size), start + window_size) for chrom, start in 
target_variants] 
# Here we create 20 bp windows for future work ease 
 
def process_vcf(file_name, windows): 
    with open(file_name, 'r') as file: 
        patient_id = file_name.split('.')[0] 
        for line in file: 
            if line.startswith('#'): 
                continue  # Skip header lines 
            parts = line.strip().split('\t') 
            chrom, pos = parts[0], int(parts[1]) 
            for window in windows: 
                for item in parts: 
                    if item.startswith("0/0"): 
                        if chrom == window[0] and window[1] <= pos <= window[2]: 
                            yield { 
                                'Patient': patient_id, 
                                'Chromosome': chrom, 
                                'Position': pos, 
                                'Reference': parts[3], 
                                'Alternative': parts[4], 
                                'Situation': 'HOM_REF' 
                            } 



 
 

50 

                    elif item.startswith("0/1"): 
                        if chrom == window[0] and window[1] <= pos <= window[2]: 
                            yield { 
                                'Patient': patient_id, 
                                'Chromosome': chrom, 
                                'Position': pos, 
                                'Reference': parts[3], 
                                'Alternative': parts[4], 
                                'Situation': 'HET' 
                            } 
                    elif item.startswith("1/1"): 
                        if chrom == window[0] and window[1] <= pos <= window[2]: 
                            yield { 
                                'Patient': patient_id, 
                                'Chromosome': chrom, 
                                'Position': pos, 
                                'Reference': parts[3], 
                                'Alternative': parts[4], 
                                'Situation': 'HOM_ALT' 
                            } 
 
 
# List all VCF files in the current directory 
vcf_files = [f for f in os.listdir('.') if f.endswith('.vcf')] 
 
# Process each VCF file and collect the results 
results = [] 
for file in vcf_files: 
    results.extend(process_vcf(file, windows)) 
 
# Convert the results to a DataFrame 
df = pd.DataFrame(results) 
 
csv_filename = "output.csv"   
df.to_csv(csv_filename, index=False)  # index=False to not write row indices 

2.  
import pandas as pd 
 
data = pd.read_csv("output.csv") 
 
locations = pd.read_csv("locations.csv") 
 
matched_data = pd.DataFrame(columns=data.columns.tolist() + ['UniqueID']) 
 
# Iterating through each row in 'data' 
for index, row in data.iterrows(): 
    # Finding matching rows in 'locations' 
    matched_rows = locations[(locations.iloc[:, 0] == row.iloc[1]) & (locations.iloc[:, 1] == 
row.iloc[2])] 
 
    # If match is found, add the unique identifier and append the row to 'matched_data' 
    if not matched_rows.empty: 
        # Assuming the unique identifier is in the third column of 'locations' 
        unique_id = matched_rows.iloc[0, 2] 
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        new_row = row.tolist() + [unique_id] 
        matched_data = pd.concat([matched_data, pd.DataFrame([new_row], 
columns=matched_data.columns)], 
                                 ignore_index=True) 
 
# Drop 'Chromosome' and 'Position' columns from the 'matched_data' DataFrame 
matched_data = matched_data.drop(['Chromosome', 'Position'], axis=1) 
 
 
def combine_columns(row): 
    return row["Situation"] 
 
 
matched_data['Combined'] = matched_data.apply(combine_columns, axis=1) 
 
matched_data = matched_data.drop(['Reference', 'Alternative'], axis=1) 
matched_data.drop_duplicates(inplace=True) 
matched_data.reset_index(drop=True, inplace=True) 
 
all_patients = matched_data['Patient'].unique() 
all_unique_ids = matched_data['UniqueID'].unique() 
 
 
# Creating a new DataFrame with all combinations of Patient and UniqueID 
full_combinations = pd.MultiIndex.from_product([all_patients, all_unique_ids], 
names=["Patient", "UniqueID"]).to_frame(index=False) 
 
# Merging with the original DataFrame 
merged_data = full_combinations.merge(matched_data, on=['Patient', 'UniqueID'], 
how='left') 
 
# Filling missing values in 'Combined' column with 'Wild' 
merged_data['Combined'].fillna('Wild', inplace=True) 
 
 
# Pivoting the DataFrame 
reshaped_data = merged_data.pivot(index='UniqueID', columns='Patient', 
values='Combined') 
 
# Resetting the index to make UniqueID a column 
reshaped_data.reset_index(inplace=True) 
 
 
csv_filename = "merge.csv" 
reshaped_data.to_csv(csv_filename, index=False)  # index = False to not write row indices 

In this step a file “complete_table.csv” has been created by utilizing excel functions to 
omit readings with not enough read depths (10 in this study). Therefore 
complete_table.csv is a copy of merge.csv where information is labeled as NA if 10 
read depth threshold is not fulfilled. 

3.  
import pandas as pd 
import pandas as pd 
import numpy as np 
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from scipy.stats import norm 
 
master_freq = pd.read_csv("Master_freq.csv") 
variants = pd.read_csv("complete_table2.csv") 
 
 
def one_proportion_z_test(p_hat, p0, n): 
    if pd.isna(p0):  # Handle missing known values 
        return "NA" 
    std_error = np.sqrt(p0 * (1 - p0) / n) 
    if std_error == 0: 
        return "Not calculable"  # Return a message indicating the test couldn't be performed 
due to zero std error 
    z_score = (p_hat - p0) / std_error 
    p_value = 2 * (1 - norm.cdf(abs(z_score)))  # Two-tailed test 
    return p_value 
 
 
# Define a function to calculate frequencies for each row 
def calculate_frequencies(rw): 
    # Count occurrences of each value excluding NaN 
    value_counts = rw.value_counts() 
    WIL_freq = value_counts.get("WIL", 0) / rw.count() 
    HET_freq = value_counts.get("HET", 0) / rw.count() 
    HOM_freq = value_counts.get("HOM", 0) / rw.count() 
 
    # Calculate frequencies for "WIL", "HET", "HOM" if they exist in the row, else 0 
    frequencies = { 
        "index": rw[0], 
        "WIL_freq": WIL_freq, 
        "HET_freq": HET_freq, 
        "HOM_freq": HOM_freq, 
        "Allele_Freq": HOM_freq + (HET_freq / 2), 
        "Count": rw.count() 
    } 
    return pd.Series(frequencies) 
 
 
df = variants.apply(calculate_frequencies, axis=1) 
 
 
# Iterate through df rows 
for index, row in df.iterrows(): 
    # Find the corresponding row in master_freq (assumes matching index or another 
method of identification) 
    master_row = master_freq.loc[index]   
    # Perform Z-test for EU, comparing against 'Allele_Freq' from df 
    p_value_EU = one_proportion_z_test(row['Allele_Freq'], master_row['EU'], 
row['Count']) 
    df.at[index, 'p_value_EU'] = p_value_EU 
 
 
# Now df includes p-values for comparisons to both EU frequencies from master_freq 
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# Create a new DataFrame with only the required columns 
result_table = df[['index', 'p_value_EU']] 
 
print("z_test results for allele frequencies compared to EU and TR allele frequencies") 
# Print the new DataFrame 
print(result_table) 
 
print("__________________________________________") 
print("Starting bootstrap algorithm") 
 
 
def bootstrap_CI(row, n=100, k=1000, confidence_levels=[0.95, 0.99]): 
    allele_freq = row['Allele_Freq']  # Check the allele frequency 
 
    # Create k populations with n simulated alleles each, based on allele frequency 
    simulated_data = [np.random.binomial(n=1, p=allele_freq, size=n) for _ in range(k)] 
 
    # Calculate the mean frequency of mutated alleles for each simulation 
    simulated_means = [np.mean(simulation) for simulation in simulated_data] 
 
    # Calculate the overall mean and standard deviation for the bootstrap samples 
    overall_mean = np.mean(simulated_means) 
    overall_std = np.std(simulated_means) 
 
    # Calculate confidence intervals for each confidence level 
    ci_results = {} 
    for cl in confidence_levels: 
        lower_bound = np.percentile(simulated_means, 100 * ((1 - cl) / 2)) 
        upper_bound = np.percentile(simulated_means, 100 * (1 - (1 - cl) / 2)) 
        ci_results[f'{int(cl * 100)}%_CI'] = (lower_bound, upper_bound) 
 
    return overall_mean, overall_std, ci_results 
 
 
# Iterate over rows in df 
for index, row in df.iterrows(): 
    overall_mean, overall_std, ci_results = bootstrap_CI(row) 
 
    # Store the mean and standard deviation results 
    df.at[index, 'Bootstrap_Mean'] = overall_mean 
    df.at[index, 'Bootstrap_Std'] = overall_std 
 
    # Store the CI results 
    df.at[index, '95%_CI_Lower'], df.at[index, '95%_CI_Upper'] = ci_results['95%_CI'] 
     
# Create a copy of df to ensure it's a separate DataFrame 
df = df.copy() 
 
# Set 'rs_code' as the index in a copy of master_freq for efficient mapping 
master_freq_indexed = master_freq.set_index('rs_code') 
 
# Map 'EU' frequencies to df using the appropriate column 
df['EU'] = df['index'].map(master_freq_indexed['EU']) 
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# Check the first few rows to verify 
print(df.head()) 
 
 
csv_name = "bootstrap_results.csv" 
df.to_csv(csv_name, index=False) 
print(f"Bootstrap results have been saved to {csv_name}") 
 
 
print("____________________________________________") 
print("Starting comparisons according to bootstrap") 
 
for index, row in df.iterrows(): 
    eu_freq = master_freq.at[index, 'EU'] 
    mean = row['Bootstrap_Mean'] 
    std = row['Bootstrap_Std'] 
    ci_95_lower, ci_95_upper = row['95%_CI_Lower'], row['95%_CI_Upper'] 
 
    # Confidence Interval Overlap 
    ci_overlap_eu = 'Yes' if ci_95_lower <= eu_freq <= ci_95_upper else 'No' 
    z_score_sig = 2  # Change Z_score significance threshold if needed 
 
# Handle divide by zero in standard deviation 
    if std == 0: 
 
        z_score_eu = 0 if mean == eu_freq else np.inf   
        significance_eu = 'No' if mean == eu_freq else 'Yes' 
    else: 
        # Distance from Mean 
        z_score_eu = abs(eu_freq - mean) / std 
        significance_eu = 'Yes' if z_score_eu > z_score_sig else 'No' 
 
 
    # Store results in DataFrame 
    df.at[index, 'CI_Overlap_EU'] = ci_overlap_eu 
    df.at[index, 'EU_Significantly_Different'] = significance_eu 
 
 
csv_name = "bootstrap_comparison_results.csv" 
df.to_csv(csv_name, index=False) 
print(f"Bootstrap results have been saved to {csv_name}") 
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D. Read Depth Results 

Table 7 Read depth mean and median values per location. Results below threshold indicates how 
many of the patients' results dropped below 10, therefore omitted form results. 

Location Mean Median Results below threshold (10) 

rs2532300 1306.275 1079 3 
rs4290734 1732.483333 1131 16 
rs2298661 11156.34167 11967 4 
rs34624090 6900.483333 6030 2 
rs463727 35219.68333 30999 3 
rs35899679 34687.5 21208.5 4 
rs2298659 5379.283333 4057 2 
rs8178521 17201.71667 15698.5 1 
rs12610495 51413.56667 43899.5 4 
rs1548474 5471.875 4921 7 
rs9271609 785.6583333 180.5 16 
rs17860115 161.4916667 26.5 32 
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