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In this study, a novel approach is demonstrated for converting calorimeter images from fast 
simulations to those akin to comprehensi v e full simulations, utilizing conditional Genera- 
ti v e Adv ersarial Networ ks (GANs). The concept of Pix2pix is tailored for CALPAGAN, 
where images from fast simulations serve as the basis (condition) for generating outputs 
that closely resemble those from detailed simulations. The findings indicate a strong corre- 
lation between the generated images and those from full sim ulations, especiall y in terms of 
key observables like jet transverse momentum distribution, jet mass, jet subjettiness, and 

jet girth. Additionally, the paper explores the efficacy of this method and its intrinsic limi- 
tations. This r esear ch marks a significant step towards exploring more ef ficient simula tion 

methodologies in high-energy particle physics. 
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1. Introduction 

In the field of experimental particle physics, comprehensi v e simulations are made to estimate
what the obtained experimental data will look like in the context of the Standard Model. These
simulations begin with the initial hard collision and extend to the generation of electronic sig-
nals in the detector. The most computationally demanding aspects involve modeling the de-
tector and the detailed step-by-step simulation of how particles interact with it, particularly
within the calorimeter. Notably, the Geant4 toolkit [ 1 ], which includes cutting-edge models, is
used for simulating particle detectors at CERN’s Large Hadron Collider (LHC). 

The high-energy physics comm unity, particularl y with the advent of the High-Luminosity
Large Hadron Collider (HL-LHC), has been increasingly engaged in the application of deep
learning techniques, with a specific focus on generati v e adv ersarial networ ks (GANs) [ 2 ]. Intro-
duced by Goodfellow et al. in 2014 [ 3 ], GANs comprise two deep neural networks: the generator
and the discriminator. The mov e towar ds utilizing GANs is mainly dri v en by the intense com-
putational r equir ements linked with the HL-LHC. This is particularly relevant in the areas of 
detector modeling and the comprehensi v e simulation of particle interactions in the calorime-
ter, tasks that are recognized as some of the most demanding in terms of CPU usage. [ 4 ]. The
HL-LHC’s r equir ements for fast and accurate simulation methods are critical, as over half of 
the computational r esour ces for LHC experiments are dedicated to these simulations [ 5 , 6 ]. 
© The Author(s) 2024. Published by Oxford University Press on behalf of the Physical Society of Japan. This is an Open Access article distributed under the 
terms of the Creati v e Commons Attribution License ( https://creati v ecommons.org/licenses/by/4.0/ ), which permits unrestricted reuse, distribution, and 
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Fig. 1. This image displays the calorimetric energy in GeV of an e v ent created with Geant4, presented on 

a 72 × 72 grid (5184 pixels total) within the η−φ space. Here, the horizontal axis r epr esents the η indices 
and the vertical axis r epr esents the φ indices. 
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In this study, focus shifts from the traditional full-simulation approach, known for its high
CPU consumption, to the exploration of the capabilities and limitations of a deep-learning-
based GAN. This is aimed at achieving both high-precision and rapid calorimeter simulations.
The goal is to de v elop an innovati v e fast simulation technique that could significantly reduce
both computation time and disk space r equir ements in LHC and future physics research. [ 7 ] 

The structure of this paper is organized as follows: Section 2 offers a comprehensi v e descrip-
tion of the simulation and reconstruction processes for the input images (condition) as well as
the target images. Section 3 details the ar chitectur e of both the generator and discriminator net-
works. Subsequently, Section 4 presents a performance evaluation of the generated outcomes 
by comparing the distributions of high-le v el jet properties. 

2. Calorimeter data simulation and input data pre-processing 

Monte Carlo datasets were generated for the Compact Muon Solenoid (CMS) dectector by
utilizing CMSSW, the software frame wor k designed for CMS. 1 CALPAGAN needs a Delphes
image as input along with a noise, and the target image is the image obtained from a GEANT4
sim ulation w hich is onl y possib le using CMSSW. This e xtensi v e procedure encompassed se v-
er al stages: gener a tion, simula tion, digitiza tion, and reconstruction, collecti v ely known as a
GEN-SIM-DIGI-RECO chain. The e v ent simulation was carried out using both Delphes and
Geant4. 

In this r esear ch, Geant4 and Madgraph4 [ 8 ] combined with Pythia8 and Delphes [ 9 ] were
independently used to generate 10000 e v ents each of W + Jet (with up to three jets) and dijet.
To ensure the generation of identical e v ents, both simulations utilized the same Pythia8 out-
put, which was stored in “HepMC” format files. The dataset was divided into two equal parts:
5000 e v ents for training and 5000 for testing. Subsequently, two-dimensional calorimeter im-
ages were produced by summing the hadronic and electromagnetic energy in the calorimeter
towers. The calorimeter structure of the CMS detector allows the creation of a 72 × 72 im-
age in η − φ space. Moreover, since the pixel values in these images r epr esent energy rather
than color (as shown in Fig. 1 ), they are single-channel. This characteristic means that the
standard Pix2pix [ 10 ] GAN ar chitectur e cannot be directly applied, thus necessitating some
1 https://cms-sw.github.io/index.html 
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Fig. 2. Training ar chitectur e of CALPAGAN: x r epr esents the input images, which are calorimeter im- 
ages produced by Delphes. z is random noise. G ( x ) denotes the generated data, while y signifies the real 
images, which are calorimeter images produced by Geant4. D r epr esents the discriminator. 
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modifications to the network structure. Pix2pix is successful in creating synthetic images that
closely r esemble r eal images. For example, when tasked with cr eating artificial tr ee images, a
GAN based on Pix2pix outperforms a GAN designed to mimic images created by particles
dispersing energy at specific points in the calorimeter. 

As seen in Fig. 2 , z , the random noise, has been added to calorimeter images produced by
Delphes, x , then used as input for the generator G . The generated data G ( x ) is then added pixel-
by-pixel to x , producing a combined input G ( x ) + x for the discriminator D . The discriminator
evaluates both this combined input and the real samples y , learning to distinguish between real
and counterfeit data through iterati v e training. 

The generator of CALPAGAN creates random distributions using the calorimetric jet data
from Delphes. Finally, the discriminator network ( D ) decides how realistic the distribution pro-
duced by the generator is, thanks to simulations performed by Geant4 as illustrated in Fig. 2 . 

In fact, this is a game played by the generator and the discriminator, known as a zero-sum
game [ 11 ] in the literature.The generator network creates data and engages in a zero-sum game
with a discriminator network, aiming to reach a Nash equilibrium [ 11 ] based on the feedback
from the discriminator. At equilibrium, the discriminator must randomly guess with a 50%
chance whether the generator’s data is real or fake. 

3. Netw ork structur e and method 

3.1. The CALPAGAN 

The model employed in this study, as shown in Fig 3 ., known as cGAN (conditional GAN)
[ 12 ], is designed to transform the input image, which also serves as the condition, into the target
image. 

In the Pix2pix frame wor k, the generator’s ar chitectur e is based on U-Net [ 13 ]. U-Net is an
advanced deep-learning frame wor k that utilizes an encoder–decoder structure with convolu-
tional networks to process and analyze da ta ef ficiently. Its unique feature, the incorporation
of skip connections, ensures the preservation of important spatial information. As illustrated
in Fig. 3 , the U-Net structure first compresses the input image down to a bottleneck size, and
then, following the bottleneck, it expands the image back to the r equir ed output size. 

The generator was designed using the U-Net ar chitectur e, incorporating fiv e contracting
blocks in its encoder network. Every contracting block in the sequence includes the following
3/13 
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Fig. 3. The U-Net ar chitectur e of the generator of CALPAGAN. 
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computational steps: an initial convolutional layer (with a kernel size of 3, padding of 1, stride
of 1, and a doubling of the number of input channels to generate the output channels), followed
by ba tch normaliza tion, then the Leaky R eLU (R ectified Linear Unit) activation function (hav-
ing a negati v e slope of 0.2). This is succeeded by a second convolutional layer (employing the
same hyperparameters as the first), another round of ba tch normaliza tion, a further applica tion
of the Leaky ReLU activation (also with a negati v e slope of 0.2), and concluding with a max
pooling layer at the block’s end. It is important to mention that in the first three contracting
blocks, a max pooling layer is used with a kernel size of 2 and a stride of 2. Howe v er, in the final
two blocks, the max pooling layer’s hyperparameters change to a kernel size of 3 and a stride
of 3. Additionally, at both the start and finish of the generator, there is a feature map block
in use, which includes a single convolutional layer with a kernel size of 1. Initially, this block
converts the input image channels into 16 channels, and ultimately, it diminishes the channel
count to just 1. 

During the decoding stage, fiv e e xpanding b locks ar e employed, each serving as a r e v erse
counterpart to the fiv e contracting b locks in the encoding phase. Each e xpanding b lock struc-
tured as follows: it begins with a bilinear upsampling layer, followed by a first convolutional
layer (with a kernel size of 2, no padding, stride 1, and the number of output channels being
half that of the input channels). Next is a second con volutional la yer (with a kernel size of 
3, padding 1, stride 1, and halving the number of input channels), which recei v es inputs from
both the skip-connection and the output of the first con volutional la yer. This is f ollowed by
ba tch normaliza tion and the Leaky ReLU activation function (with a negati v e slope of 0.2). A
third convolutional layer (with kernel size 2, padding 1, stride 1, and matching the number of 
input channels with the output channels), another round of batch normalization, and a second
application of the Leaky ReLU activation function (also with a negati v e slope of 0.2) follow. It
is important to note that the scaling factor of the upsampling layer is set to 3 for the first two
layers and 2 for the rest. 

The discriminator employs a feature map block to convert the input image into an 8-channel
image. This is followed by the use of three sequential contracting blocks for additional data
processing. Subsequently, a final feature map block is used to transform the input into a
4/13 
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single-channel image. The feature map and contracting blocks in the discriminator mirror those
in the generator. Howe v er, the discriminator distinguishes itself by favoring instance normal-
ization over batch normalization in its contracting blocks. 

Additionally, the Delphes calorimeter images used in the training process were normalized
by dividing by the highest energy pixel value of each Delphes image, and similarly, the Geant4
images were normalized by the highest energy pixel value of each Geant4 image. This nor-
malization moved pixel values to the range [0, 1], which also partially addressed the sparsity
problem by eliminating the impact of zero-energy pixels on the loss function (as opposed to
when pixel values were previously normalized to the range [ −1, 1], where zero-energy pixels
would contribute a value of −1 to the loss function, leading to the generator producing blank
images after a few epochs.). 

The loss function for the CALPAGAN is composed of two distinct components. The first is
the conventional loss function typically employed in cGANs. The second component is the L1
loss function, also known as the mean absolute error (MAE) loss function. This is calculated
as the average of the absolute differences and is particularly effecti v e in reducing blurriness
in the images as shown in below. By integrating these two loss functions, we formulated the
following loss function (1) , which was , of course , aimed to be minimized during the training
process. In the formula, x , y , and z r epr esent the input ima ge, output ima ge , and random noise ,
respecti v ely. 

L cGAN 

(G, D ) = E x,y [ log D (x, y )] + E x,z [ log (1 − D (x, G(x, z )))] 

L L 1 (G) = E x,y,z [ ‖ y − G(x, z ) ‖ 1 ] 

G 

∗ = arg min 

G 

max 

D 

L cGAN 

(G, D ) + λL L 1 (G) . 

(1) 

The jets were detected and identified using the FastJet program [ 14 ], which utilizes the elec-
tromagnetic and hadronic energy depositions in the calorimeter (ECAL + HCAL) towers and
the outcomes from the Geant4 sim ulation. Subsequentl y, a trimming process, as described by
Krohn et al. in 2010 [ 15 ], was employed to remove energy contributions from pile-up e v ents. 

4. Results and conclusion 

We first tried to a ppl y Pix2pix ar chitectur e as it is. Howe v er, it did not perform very well. There-
fore we have tweaked the ar chitectur e to get better r esults. Inspir ed by the Pix2pix, CALPA-
GAN has been de v eloped with the aim of creating calorimeter images similar to those produced
by Geant4, using Delphes images as a condition. CALPAGAN has been effecti v e in producing
images very close to those from Geant4, thereby reducing computational costs. Howe v er, dur-
ing this r esear ch, various challenges wer e encounter ed, the most significant of which was the
natural sparsity observed in the data. 

Data sparsity limits the success of CALPAGAN. The presence of numerous zero-valued pix-
els in the calorimeter images ad versel y affected weight calculations. Despite testing with various
activation functions such as ReLU, sigmoid, and softmax, as well as experimenting different fil-
ter sizes and strides within the generator network, these attempts failed to yield positi v e results.

Nonetheless, visually identifying the similarities between synthetic calorimeter images and
their real counterparts remains a complex task. The widely recognized metric for evaluating
GANs is the Fréchet Inception Distance (FID) [ 16 ]. Consequently, FID was employed to assess
the similarity between the generated and real images. 
5/13 
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Fig. 4. Comparison of e v ent images obtained from the test set with Delphes and Geant4 e v ent images 
(top: a randomly selected example from 5000 test events). The bottom image shows the images of jets 
obtained from these e v ent images in the η (horizontal) and � (vertical) space. 

Fig. 5. The evolving FID score with an increasing number of epoch. 
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The Wasserstein-2 distance or the FID score between these three image sets throughout the
training phase is presented in Fig. 5 across various epochs. It is noticeable that, beyond a specific
epoch, the anticipated relationship is attained. This suggests that, in terms of the FID score, the
calorimeter images produced by CALPAGAN are situated in a proximity closer to the Geant4
images as opposed to the Delphes images. 

Howe v er, this closeness is valid in training for a particular physical process. Training with
W + Jet e v ents gav e the desir ed r esults f or the W + J et test sample, while training with dijet
e v ents gav e the desir ed r esults for the dijet test sample. Howe v er, neither the training per-
f ormed with W + J et e v ents in gi ving the desir ed r esults for the dijet test sample nor the training
6/13 
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Fig. 6. The change in the loss function with the number of epochs during training with jet images. 
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performed with the dijet e v ents in giving the desired results for the W + Jet test sample were
successful. 

Additonally, Fig. 6 shows the change in the loss function values obtained from the test sample
in the GAN training conducted with jet images as the number of epochs progresses. 

The loss value of the generator in a CALPAGAN remains continuously high, and the image
generation performance is relati v ely low; this typically suggests that the generator is struggling
to produce realistic images that can fool the discriminator. 

In our CALPAGAN model, inspired by the Pix2pix ar chitectur e, we observed that the dis-
criminator learns ra pidl y, outpacing the generator and resulting in unstable training dynamics.
This quick learning provides overly strong gradient feedback, making it difficult for the gener-
a tor to ca tch up. Additionally, the architectural imbalance between the simpler discriminator
and the more complex generator makes the problem worse, leading to poor performance. This
issue can also stem from the natural sparsity of the data. Consequently, designing a GAN to
mimic images of energy dispersion by particles a t specific loca tions within a calorimeter be-
comes challenging. 

The red line represents the loss of the discriminator. It is much steadier and remains low,
which implies that the discriminator is performing its task with relati v e ease. The low and steady
loss suggests that the discriminator quickly becomes good at distinguishing real images from
the fake ones generated by the generator. 

Ther efor e the generator might need a more complex architecture to improve its performance.
There might be a need for techniques to stabilize the training, such as modified loss func-
tions , regularization methods , or different training strategies, some of which we have already
tried. 

In Fig. 7 , the distributions of 1-subjettiness τ1 and 2-subjettiness τ2 obtained from Geant4,
Delphes, and CALPAGAN are shown for the first and second jets. N-subjettiness was designed
to identify boosted hadronically-decaying objects like electroweak bosons and top quarks.
Combined with a jet invariant mass cut, N-subjettiness is an effecti v e discriminating variable
for tagging boosted objects and rejecting the background of QCD jets with large invariant
mass [ 17 ]. Hence, N-subjettiness distribution is particularly a suitable metric for the Delphes-
Geant4-CALPAGAN comparison due to its variable na ture tha t captures the internal structure
of jets. 
7/13 
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Fig. 7. The comparison of the 1-subjettiness τ1 (top) and 2-subjettiness τ2 (bottom) distributions obtained 

from Geant4, Delphes, and CALPAGAN for the first and second jets. For each comparison, the χ2 

distances between Delphes-Geant4 (D-G), Geant4-CALPAGAN (G-C), and Delphes-CALPAGAN (D- 
C) distributions are provided. 
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The linear radial moment or girth is a specific case where a general radial moment is defined
as f( r ) = r [ 18 ]. It is defined based on the components that constitute a jet as follows: 

g = 

∑ 

i∈ jet 

(p 

i 
T ) 

p 

jet 
T 

r i 

g = 

∑ 

i∈ jet 

p 

i 
T 

p 

jet 
T 

r i 

Comparison of the girth distributions obtained from Geant4, Delphes, and CALPAGAN for 
the first and second jets is shown in Fig. 8 . 

In Fig. 9 , the comparison is presented for the distributions of transverse jet momentum (top)
and jet mass (bottom) obtained from Geant4, Delphes, and CALPAGAN for the first and
second jets. 

Comparison of two-point moment distributions obtained from Geant4, Delphes, and CAL- 
PAGAN for the first and second jets can be seen in Fig. 10 . 

Figure 11 depicts the distributions of the differences in pseudorapidity η and azimuthal angle
� between the first and second jets, compared for e v ents obtained from Geant4, Delphes, and
CALPAGAN. 
8/13 
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Fig. 8. Comparison of the girth distributions obtained from Geant4, Delphes, and CALPAGAN for the 
first and second jets. 

Fig. 9. The comparison is presented for the distributions of transverse jet momentum (top) and jet mass 
(bottom) obtained from Geant4, Delphes, and CALPAGAN for the first and second jets. 
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Fig. 10. Comparison of the two-point moment distributions obtained from Geant4, Delphes, and CAL- 
PAGAN for the first and second jets. 

Fig. 11. Comparison of transverse jet pseudorapidity η and jet azimuthal angle � distributions obtained 

from Geant4, Delphes, and CALPAGAN for the first and second jets. 
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Fig. 12. The distributions of the differences in pseudorapidity η and azimuthal angle � between the first 
and second jets are compared for e v ents obtained from Geant4, Delphes, and CALPAGAN. 

Table 1. The χ2 distances between the distributions of various jet variables obtained from Geant4, 
Delphes, and CALPAGAN for W + Jet e v ents. 

χ2 distances 

Delphes-Geant4 Geant4-CALPAGAN Delphes-CALPAGAN 

Jet 1 Jet 2 Jet 1 Jet 2 Jet 1 Jet 2 

1-subjettiness 179.0 140.3 137.0 94.5 245.9 88.1 

2-subjettiness 431.0 400.3 158.4 242.2 342.6 147.5 

Jet girth 190.6 174.7 172.3 77.7 302.4 84.3 

2 point moment 245.6 207.4 132.5 85.1 310.5 86.2 

Jet p T 

75.4 54.4 62.8 44.4 207.3 89.3 

Jet mass 65.2 58.3 47.9 44.8 54.7 55.3 

Jet η 10.4 18.1 19.0 20.5 6.5 13.2 

Jet φ 3.4 5.5 3.0 7.4 1.2 4.1 

�η 12.0 10.5 13.7 

�φ 14.3 23.5 24.5 
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Figure 12 displays the distributions of the differences in pseudorapidity η and azimuthal angle
� between the first and second jets, compared for e v ents obtained from Geant4, Delphes, and
CALPAGAN. 

Table 1 displays the χ2 distances between the distributions of various jet variables obtained
from Geant4, Delphes, and CALPAGAN for W + Jet e v ents. 

Table 2 displays the χ2 distances between the distributions of various jet variables obtained
from Geant4, Delphes, and CALPAGAN for dijet e v ents. 

Evaluating the speed enhancement of CALPAGAN in comparison to Geant4 was one of our
primary objecti v es. Although gi v en similar acceler ation r ates in similar studies, to make this
comparison directly the proposed model should provide all the outputs offered by the Geant4
simulation. Ther efor e, instead of comparing the inference time required for an e v ent in the
model, it was obtained for different batch size values for CPU, single GPU, and dual GPU. For
the dual GPU setup, we used a model parallelism approach implemented in PyTorch. 
11/13 
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Table 2. The χ2 distances between the distributions of various jet variables obtained from Geant4, 
Delphes, and CALPAGAN for dijet e v ents. 

χ2 distances 

Delphes-Geant4 Geant4-CALPAGAN Delphes-CALPAGAN 

Jet 1 Jet 2 Jet 1 Jet 2 Jet 1 Jet 2 

1-subjettiness 179.0 140.3 118.0 99.3 83.1 71.5 

2-subjettiness 431.0 400.3 259.5 238.4 137.2 157.1 

Jet girth 190.6 174.7 80.7 89.0 93.7 77.7 

2 point moment 245.6 207.4 102.6 88.0 114.5 80.4 

Jet p T 

75.4 54.4 17.4 38.6 99.5 102.4 

Jet mass 65.2 58.3 62.5 52.4 73.0 86.9 

Jet η 10.4 18.1 11.7 17.8 5.3 2.3 

Jet φ 3.4 5.5 8.1 6.8 3.4 2.5 

�η 9.3 17.3 16.1 

�φ 24.8 15.7 11.5 

Fig. 13. The inference time per e v ent for CPU, single GPU, and dual GPU. 
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As it can be seen in Fig. 13 , GPU usage becomes more advantageous than CPU as the batch
size increases. Of course, it is also important to note that the upper limit of batch size is RAM
size (some may use swap memory with GPU, but in practice, this will increase inference time
e v en more). 

Moreover, as seen in Fig. 13 , the dual GPU usage becomes advantageous for batch sizes of 
128 and more. This effect is most probably due to the data transfer latency. When using multiple
GPUs, data needs to be transferred between them. For smaller batch sizes, the time taken to
transfer data can overshadow the benefits of parallel computation. According to the results,
the use of dual GPU makes the fastest inference per e v ent when the batch size value is 512. 

W hile evalua ting CALPAGAN’s performance in obtaining images, it has been promising to
observe that the distributions of generati v e networ k results for various jet variables are closer
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to those obtained from Geant4 compared to Delphes. Furthermore, these images have been
obtained much more rapidly compared to Geant4. Howe v er, this closeness applies only to a
specific physical process during the training The training performed with W + Jet e v ents has
yielded the desired results for the W + Jet test sample, while the training with dijet e v ents has
provided the desired results for the dijet test sample. 
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