
Citation: Yildirim, S.; Rana, Z.A.

Enhancing Aircraft Safety through

Advanced Engine Health Monitoring

with Long Short-Term Memory.

Sensors 2024, 24, 518. https://

doi.org/10.3390/s24020518

Academic Editor: Ruqiang Yan

Received: 7 December 2023

Revised: 8 January 2024

Accepted: 11 January 2024

Published: 14 January 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

Enhancing Aircraft Safety through Advanced Engine Health
Monitoring with Long Short-Term Memory
Suleyman Yildirim 1,* and Zeeshan A. Rana 2,*

1 Digital Aviation Research and Technology Centre (DARTeC), Cranfield University, Bedford MK43 0AL, UK
2 Centre for Aeronautics, Cranfield University, Bedford MK43 0AL, UK
* Correspondence: suleyman.yildirim@cranfield.ac.uk (S.Y.); zeeshan.rana@cranfield.ac.uk (Z.A.R.)

Abstract: Predictive maintenance holds a crucial role in various industries such as the automotive,
aviation and factory automation industries when it comes to expensive engine upkeep. Predicting
engine maintenance intervals is vital for devising effective business management strategies, enhancing
occupational safety and optimising efficiency. To achieve predictive maintenance, engine sensor
data are harnessed to assess the wear and tear of engines. In this research, a Long Short-Term
Memory (LSTM) architecture was employed to forecast the remaining lifespan of aircraft engines. The
LSTM model was evaluated using the NASA Turbofan Engine Corruption Simulation dataset and its
performance was benchmarked against alternative methodologies. The results of these applications
demonstrated exceptional outcomes, with the LSTM model achieving the highest classification
accuracy at 98.916% and the lowest mean average absolute error at 1.284%.

Keywords: remaining useful life; predictive maintenance; aircraft health monitoring

1. Introduction

Maintaining an aircraft engine is a complex, time-consuming and expensive process.
Direct engine maintenance costs make up approximately 30% of the total maintenance
cost of an aircraft [1]. Historically, aircraft engine maintenance was mostly performed at
fixed time intervals. However, with the advancement of the aviation industry, it has been
realised that this approach is not accurate. Today, engine maintenance is only conducted
when needed and efforts are made to reduce the number of fixed-time maintenance events.

In modern aircraft engines, a large number of sensors are installed to assess the
condition of the engine. Data from these sensors are evaluated to attempt to predict the
engine’s remaining useful life (RUL). The aim of predicting the useful life is to foresee
potential damage and malfunctions in the engine before any accidents occur and to carry
out preventive maintenance activities. These predictive maintenance activities based on
predictions are also known as prognostic maintenance [1].

Maintenance activities for aircraft engines can be divided into two main groups.
Maintenance activities that involve the replacement of parts with limited service life due to
effects like metal fatigue and microscopic damage are referred to as fixed-time maintenance
activities. In fixed-time maintenance, the relevant part is replaced without considering its
current condition. Condition-based activities, on the other hand, are preventive primary
maintenance processes. They require regular inspection or testing against a specific physical
standard to determine whether a device or component can continue to operate. Accurately
determining when this inspection and, if necessary, the repair process should be performed
plays a crucial role in reducing maintenance costs [1,2].

It is observed that maintenance predictions have been attempted using various meth-
ods. Xu et al. attempted to monitor the health of an aircraft engine using data from
twenty-one sensors from a hundred different engines [3]. After examining the collected
data, all data except the information obtained from seven sensors were eliminated due to

Sensors 2024, 24, 518. https://doi.org/10.3390/s24020518 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s24020518
https://doi.org/10.3390/s24020518
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0001-7094-2130
https://orcid.org/0000-0001-7839-3949
https://doi.org/10.3390/s24020518
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s24020518?type=check_update&version=2

Sensors 2024, 24, 518 2 of 22

insufficient information about the engine’s condition. The remaining data were predicted
using a combined system consisting of Dempster–Shafer regression (DSR), a support vector
machine (SVM), a recurrent neural network (RNN) and the Mean Squared Error (MSE)
was measured as 3.49. Malhotra et al. processed the data of 80 randomly selected engines
from the NASA Turbofan Engine Corruption Simulation dataset [4] using encoder–decoder
Long Short-Term Memory (LSTM-ED) without any supervision [5]. In the Prognostics and
Health Management 2008 Conference Proceedings, the results of the conference’s RUL
competition listed the top three performing methods as a hybrid approach based on the
similarity-based approach (SBA), an RNN, a Kalman filter and a multi-layer perceptron
(MLP) [6].

Zhang et al. predicted the health of the engine using non-linear adaptive predictors
on a subset selected from the Commercial Modular Aero-Propulsion System Simulation
(C-MAPSS) dataset [7]. Babu et al. processed the C-MAPSS and PHM08 datasets using
support vector regression (SVR), an MLP, relevance vector regression (RVR) and a convo-
lutional neural network (CNN) [8]. In this study, they attempted to monitor the health
of an engine using data obtained from the 21 sensors of 100 different engines. It was
determined that 14 of the sensors they used did not provide useful information about the
health of the engine. The assessment was carried out using the data from the remaining
7 sensors. In another study that used Deep Belief Networks (DBNs), two subsets selected
from the C-MAPSS dataset were evaluated [9]. The highest classification accuracy in this
study was slightly above 90% and achieved with a Multiobjective Deep Belief Network
Ensemble (MODBNE).

A recent study conducted by Peng et al. introduced a method for predicting RUL
by combining a 1-D CNN with a complete convolutional layer and LSTM [10]. This
approach aims to capture both spatial and temporal features in the FD001 and FD003
datasets. Researchers in RUL-related fields have shown considerable interest in CNN
applications [11]. The initial utilisation of the CNN methods for predicting RUL was pio-
neered by Babu et al. [8]. Their findings demonstrated the superior performance of CNNs
compared to SVM, MLP and SVR methods.The introduced CNN technique underwent
testing and assessment using the C-MAPSS dataset, yielding an Root Mean Square Error
(RMSE) of 18.45. Zhao et al. employed a two-channel hybrid model to predict the RUL of
engines and this model outperformed traditional prediction models [12].

Kong et al. [13] introduced a predictive approach for estimating the RUL. This method
involved employing an adaptive time series feature window in conjunction with a multi-
step forward technique. Zhuang et al. [14] utilised a confrontational online regression
strategy from multiple sources to predict RUL, specifically addressing online unknown
conditions. Yao et al. [15] presented a robust neural network while Yan et al. [16] introduced
an algorithm for diagnosing faults that considers the complete life cycle, spanning from
normal functioning to eventual failure. This life cycle was segmented into multiple degra-
dation stages and the prediction of these stages was accomplished using a combination of a
Hidden Markov Model and an SVM enhanced through particle swarm optimisation. Deep
learning with its intricate multilevel internal architecture and the benefits of relearning
training approaches can address the limitations associated with traditional manual feature
extraction. An aspect of RUL prediction involves temporal correlation. Despite this, the
conventional methods mentioned earlier lack the capability to harness the temporal correla-
tion characteristics present in time series data, hindering their ability to make more precise
and accurate predictions of RUL. To address this challenge, Han et al. [17] implemented
an approach that incorporated stacked auto-encoders and RNNs to forecast the RUL.
Liu et al. [18] introduced a method for predicting the RUL of lithium-ion battery capacity
using the Gated Recurrent Unit (GRU). Guo et al. [19] suggested employing LSTM for
forecasting time series associated with mechanical breakdown.

Ensarioglu et al. [20] offered a novel strategy for the prediction of RUL involving the
creation of features based on differences, labelling through change-point detection and
piecewise linear techniques and the utilisation of a hybrid 1D-CNN-LSTM neural network.

Sensors 2024, 24, 518 3 of 22

Li et al. [21] presented a data-driven approach employing a CNN with a time window
strategy for sample preparation, aiming to improve feature extraction. In a different ap-
proach, Yu et al. [22] suggested a two-step method which included a bidirectional RNN
autoencoder followed by similarity-based curve matching for RUL estimation. The au-
toencoder transformed high-dimensional sensor data into low-dimensional representation
embeddings to facilitate subsequent similarity matching. Peng et al. [23] designed a dual-
channel LSTM model that dynamically selects time features and conducts initial processing
on time-feature values. This involves using LSTM to extract time features and first-order
time-feature information. Wang et al. [24] proposed a bespoke multi-scale LSTM for ad-
dressing three distinct degradation stages of aircraft engines: the constant stage, transition
stage and linear degradation stage. In dealing with different data distributions during
training and testing, Lyu et al. [25] employed LSTM for sensor data feature extraction and
implemented multi-representation domain adaptation methods to provide effective feature
alignment between source and target domains. Deng et al. [26] introduced an innovative
multi-scale dilated CNN incorporating a new multi-scale dilation convolution fusion unit
to enhance the receptive field and operational efficiency when predicting the RUL of critical
components in mechanical systems.

When the current literature is examined, it is observed that a vast majority of recent
studies are data-driven whilst model-based studies have lost their relevance. Data-driven
studies can be categorised into two main groups. In the first group of studies, attempts are
made to determine the RUL. In such studies, historical data obtained from the engine are
treated as a time series and the problem is transformed into a regression problem [3,5,8]. In
the second group of studies, the condition of the engine is categorised into classes such as
healthy, slightly damaged and heavily damaged, reducing the problem to a classification
problem [7,9,27]. In this study, the condition of the engine has been categorised into two
groups based on the RUL as “healthy” and “needs maintenance”. The objective of this
study is to perform predictive maintenance assessment in aircraft health monitoring using
an LSTM-based solution. The success of deep learning is evaluated by comparing it with
regression and artificial neural network models. The dataset used in this study is the freely
distributed C-MAPSS dataset provided by NASA.

2. Methodology

The dataset commonly used in the literature for predictive maintenance in aircraft
health systems is the NASA Turbofan Engine Corruption Simulation dataset [4]. The dataset
was created by NASA engineers using commercial simulation software called C-MAPSS
version 2. The software simulates a turbofan engine capable of generating 90,000 pounds
of thrust at altitudes of 0–40,000 feet and speeds of 0–0.9 Mach with ambient temperatures
ranging from −60 to 103 degrees Fahrenheit. The software also includes various regulators
and limiters that prevent the engine from operating outside the manufacturer-specified
operating range.

The engine was operated in conjunction with the control system during dataset cre-
ation. The simulation was halted when the health index of the engine dropped to zero and
the acquired sensor data were recorded as a time series. The health index of the engine is
defined to be one under ideal conditions for each component of the engine and it becomes
zero when the specified operating conditions are exceeded. Training data were continued
until the health index of the engine reached zero whilst test and validation data were
terminated before the engine malfunction to measure RUL. The difference between the
cycle in which the engine health index drops to zero and the cycle in which it is currently
present provides the RUL value of the engine. The dataset includes four subsets prepared
for different operating conditions and scenarios. In the subset used in this study, data
from 21 sensors were collected from 100 engines. A total of 20,631 cycles were recorded
for training data and 13,096 cycles for testing. The data are labelled with two categories:
“needs maintenance” or “healthy”. Engines with an RUL value below 150 are considered to
require maintenance.

Sensors 2024, 24, 518 4 of 22

The LSTM was trained on the Hypercomputing Integrated Layer for Digital Aviation
High-performance Computing (HPC) at Cranfield University. This computational system
was fitted with 4 NVIDIA® A100 80 GB GPUs, 112 Intel® Xeon Gold 6258R CPU, 330 Tb
of storage capacity and 377 GB of DDR4-2933 RAM [28]. These dedicated computational
resources were specifically allocated for this study. The development environment was
established as a Python 3.7.0 environment with careful consideration of the installation of
specific versions of essential packages and dependencies. The environment was equipped
with TensorFlow 2.3.0, Keras 2.3.1, PyTorch 1.7.1+cu101, scikit-learn 0.24.0, pandas 1.1.5
and NumPy 1.21.6, each contributing to the execution of diverse computational tasks.
Furthermore, the system was optimised for GPU acceleration as demonstrated by the
inclusion of CUDA-related packages, cudatoolkit 10.1.243 and cudnn 7.6.5.

Long Short-Term Memory

Deep learning methods have gained popularity in recent years. Initially applied
more in image processing, these methods have gradually been successfully utilised in
health monitoring over time [29]. Processing meaningful features from raw data is one
of the crucial processing steps in a learning problem. The most significant advantage of
deep learning methods is their ability to work directly on raw data without the need for
predefined features during the learning phase. However, this advantage can also turn into a
disadvantage as it brings along a high computational cost. Figure 1 illustrates a comparison
between traditional data-driven approaches and deep-learning-based methods.

Figure 1. Traditional data-driven vs. deep-learning-based methods [30].

Health monitoring data are predominantly in time series or time-dependent functions.
Deep learning methods capable of processing such data are recurrent neural networks.
The LSTM has been utilised in this study to predict the health of the aircraft engine as
one of the recurrent deep learning methods. To facilitate the comprehension of the LSTM
architecture, the initial focus will be on the Gated Recurrent Unit as a simplified explanatory
structure followed by a comprehensive exploration of the LSTM. The GRU is essentially a
type of RNN architecture that is effective in capturing past information to explain current
information and predict future information. RNNs produce successful results in solving
problems defined as time series or time-dependent functions [31].

Figures 2 and 3 illustrate the architecture and the block diagram of an RNN respec-
tively. i⟨Ty⟩ represents the input value fed into the x layer at the corresponding time. The
weight values are expressed by W and the bias values are represented by b. ŷ⟨Ty⟩ is the
prediction calculated at the output of each neuron at the respective time and using the
predictions calculated at all time steps, the loss function L⟨Ty⟩ is computed.

Sensors 2024, 24, 518 5 of 22

Figure 2. Recurrent neural network architecture [32].

Figure 3. Recurrent neural network diagram [32].

At each time step t, the activation a<t> and the output y<t> can be described as follows:

a<t> = g1(Waaa<t−1> + Waxx<t> + ba) (1)

y<t> = g2(Wyaa<t> + by) (2)

where Wax,Waa,Wya, ba, by are coefficients shared across time and g1, g2 represent
activation functions.

The overall loss function is estimated using the results from all time steps. The loss
function can be calculated as shown in Equation (3).

L(ŷ, y) =
Ty

∑
t=1

L(ŷ<t>, y<t>) (3)

Backpropagation is performed at every time step to facilitate the learning process.
At time step T, the derivative of the loss L with respect to the weight matrix W can be
formulated as follows:

∂L(T)

∂W
=

T

∑
t=1

∂L(T)

∂W

∣∣∣∣∣
(t)

(4)

RNNs can be classified based on the activation functions in their x layers and the
manner in which temporal processes are handled. The connections and activation pro-
cesses within these internal units directly impact the memory characteristics of the model.
Processes such as update and reset are performed in these units. GRUs are among the
simplest basic units that can be used [31]. Figure 4 illustrates a GRU block diagram.

Sensors 2024, 24, 518 6 of 22

Figure 4. Gated Recurrent Unit diagram [32].

The value denoted as c⟨t⟩ is equal to a⟨t⟩ and represents the memory. The c̃(t) value
symbolises the candidate cell state for the memory. The hyperbolic tangent is used as the
activation function. The candidate cell state can be calculated using Equation (5):

tanh(Wc[Γr × a<t−1>, x<t>] + bc) (5)

Additionally, update and reset gate values are calculated in GRUs. The sigmoid func-
tion is used as the activation function for these values. While the update gate determines
how much of the previous memory content should be retained and how much of the new
candidate values should be added to the memory, the reset gate determines how much
of the previous state should be forgotten and how much of the new input should be used
to compute the new candidate state. The update gate Γu and reset gate Γr are computed
as follows:

Γu = σ
(
Wu

[
c̃(t−1), x(t)

]
+ bu

)
(6)

Γr = σ
(
Wr

[
c̃(t−1), x(t)

]
+ br

)
(7)

Using the value of Γu, the c(t) value can be calculated for the new time step even if
there is no new update with the help of previous information, as shown in Equation (8).

c⟨t⟩ = Γu × c̃⟨t⟩ + (1 − Γu)× c̃⟨t−1⟩ (8)

LSTM is a specialised version of the GRU structure. Features that comprehend past
and future information are recurrently carried in the LSTM structure. A simple LSTM
structure is displayed in Figure 5. Activation functions are employed at three distinct points
in LSTM. While the sigmoid function is always employed in the forget gate, the hyperbolic
tangent function is commonly used in the input and output layers. The most significant
difference of this structure from the GRU is that the reset gate in the LSTM structure is
specialised to obtain forget gate Γ f and output gate Γo with Equations (9) and (10). The
forget gate allows reducing the weights of information transferred from the past that may
not be necessary. With the combination of the update gate and forget gate, a more effective
output is generated [33].

Γ f = σ
(
W f

[
a⟨t−1⟩, x⟨t⟩

]
+ b f

)
(9)

Γo = σ
(
Wo

[
a⟨t−1⟩, x⟨t⟩

]
+ bo

)
(10)

Therefore, the new a⟨t⟩ value can be calculated as given in Equation (11).

c⟨t⟩ = Γu × c̃⟨t⟩ +
(

Γ f

)
× c̃⟨t−1⟩ (11)

c⟨t⟩ ∗ Γo = a⟨t⟩ (12)

Sensors 2024, 24, 518 7 of 22

Figure 5. LSTM diagram [32].

Attention mechanisms are a fundamental concept that allows LSTM to selectively
focus on specific parts of input sequences when making predictions as seen in Figure 6. This
mechanism enables the LSTM to weigh the importance of different elements dynamically,
enhancing its ability to capture relevant information. In the context of LSTM, attention
mechanisms are applied to address challenges related to handling sequential data with long-
range dependencies. LSTMs suffer from difficulties in capturing contextual information
across extended sequences. By integrating attention mechanisms, LSTMs learn to assign
varying degrees of significance to different parts of the input sequence. This allows the
LSTM to focus more on relevant information and improves its performance on tasks such
as time-series analysis and sequential prediction problems. This combination of attention
mechanisms with LSTMs has proven effective in various applications where understanding
contextual relationships in sequential data is crucial for accurate predictions [34].

In predicting RUL in the C-MAPSS dataset, the attention layer within the LSTM
architecture allows the LSTM to dynamically weigh the significance of individual sensor
readings across the entire sequence of engine health data. This adaptive focus ensures that
the LSTM places greater emphasis on time steps that are more indicative of impending
system degradation. By attending to relevant temporal patterns, the LSTM with attention
better captures subtle nuances in the data, leading to improved RUL predictions. The
advantages lie in its ability to handle sequences of varying lengths effectively and discern
patterns critical for predictive accuracy, making it particularly well suited for time-series
forecasting tasks like RUL prediction in the C-MAPSS dataset.

Figure 6. Conventional attention mechanisms [35].

Rather than implementing the traditional attention mechanism within an encoder–decoder
architecture, this study explores the potential application of an attention mechanism oper-
ating independently from an encoder–decoder architecture. When integrating attention
mechanisms with an LSTM architecture devoid of an encoder–decoder structure, the ap-
proach involves utilising the LSTM’s hidden states directly for computing attention scores

Sensors 2024, 24, 518 8 of 22

and generating context vectors. The sequence processing begins with an input sequence of
length T where each time step is represented by features Xt and the LSTM processes this
sequence to derive hidden states Ht for each time step. Key vectors Kt and value vectors Vt
are computed directly from the LSTM hidden states through learnable weight matrices Wk
and Wv. The query vector Q for the current step is derived from the current LSTM hidden
state using another learnable weight matrix Wq. Attention scores et are calculated using
a similarity measure such as the dot product between the query vector and key vectors.
The Adam algorithm is then applied to obtain attention weights at. The context vector
C is computed as the weighted sum of value vectors using these attention weights. This
context vector is concatenated with the LSTM hidden state at the current step, forming an
attention output. This concatenated vector can be further processed through additional
layers, leading to the generation of the final output. The entire process is repeated for each
step, allowing the LSTM to dynamically focus on different parts of the input sequence
based on the evolving context. This approach proves particularly effective in tasks re-
quiring the modelling of intricate temporal relationships such as time-series prediction or
sequence-to-sequence tasks without a distinct encoder–decoder architecture.

et = Dot(Q, Kt) (13)

at = Adam(et) (14)

C = ∑T
t=1 at · Vt (15)

Hyperparameter tuning in LSTM is essential to optimise the LSTM configuration,
ensuring it captures temporal dependencies effectively, prevents overfitting and adapts to
the specific characteristics of the dataset. It enhances LSTM performance, leading to more
accurate predictions and improved generalisation of new data. Therefore, hyperparameter
tuning is a critical process where hyperparameters are systematically adjusted to optimise
LSTM performance [36]. Instead of manually adjusting these settings, autotuning employs
optimisation algorithms to systematically explore the hyperparameter space and discover
the optimal configuration as seen in Algorithm 1. Autotuning in LSTM involves the system-
atic optimisation of configuration settings that are not learned during the training process
but are essential for defining the LSTM’s architecture and behaviour. This automated
approach helps save time and computational resources while uncovering fine combinations
that lead to improved LSTM performance. By adjusting hyperparameters such as the
learning rate, number of LSTM units, dropout rates and activation functions, the LSTM’s
ability to capture intricate temporal patterns and generalise to new data is significantly
improved. This process helps prevent issues like overfitting or underfitting, ensuring that
the LSTM adapts optimally to the unique characteristics of a given dataset. Moreover,
hyperparameter tuning allows for the exploration of the vast search space, identifying
configurations that lead to more efficient convergence during training and better overall
predictive accuracy.

Algorithm 1 Creating Tuner Object.

1: Initialise tuner
2: Input:
3: build_model—Function to define the model architecture
4: objective = ‘mse’—Optimisation objective
5: max_trials = 5—Maximum number of hyperparameter combinations to try
6: executions_per_trial = 3—Number of times to train the same architecture with

different initialisation
7: End Initialise

The provided pseudocode above utilises the initiation process for a RandomSearch
Tuner. The algorithm initialises the tuner at the outset, specifying essential parameters. The

Sensors 2024, 24, 518 9 of 22

build_model input signifies a function that defines the architecture of the LSTM subject to
tuning while the objective parameter sets the optimisation goal. The max_trials parameter
dictates the maximum number of hyperparameter combinations the tuner will explore and
executions_per_trial determines how many times the same architecture will be trained
with different initialisations. The “End Initialise” section marks the completion of the initial-
isation process. This pseudocode provides a concise representation of the key components
involved in configuring a RandomSearch Tuner for hyperparameter optimisation.

Algorithm 2 executes a hyperparameter tuning process for LSTM. The tuner.search()
function initiates the hyperparameter search, exploring different combinations of hyper-
parameter values to find the optimal configuration for the LSTM. The x = Xtrain and
y = Ytrain parameters specify the training data and corresponding labels used during the
search. The model is trained for 20 epochs with a batch size of 128. The validation of
the model is performed on a separate dataset—Xtest and Ytest—to assess its generalisation
performance. The overall goal of this hyperparameter tuning process is to identify the set
of hyperparameters that maximises the LSTM’s effectiveness. This search aims to discover
the configuration that yields the best validation performance among the explored options.

Algorithm 2 Hyperparameter Tuning with Algorithmic Search.

Input: Training data Xtrain, Ytrain, validation data Xtest, Ytest
2: Output: Optimal hyperparameters for LSTM

Initialise hyperparameter search space and define the search algorithm
4: while not reached maximum number of iterations do

Sample a set of hyperparameters from the search space
6: Build an LSTM with the sampled hyperparameters

Train the model on Xtrain and Ytrain for a fixed number of epochs using batch size 128
8: Evaluate the model on the validation set (Xtest, Ytest)

Update the search algorithm’s internal state based on the performance of the model
10: if current model’s performance is better than the best so far then

Update the best hyperparameters
12: end if

end while
14: Return: Best hyperparameters found during the search

The application of an attention mechanism without an encoder–decoder architecture
coupled with the autotuning LSTM hyperparameters constitutes a substantial advancement
particularly demonstrated in the enhanced prediction of RUL on the C-MAPSS dataset.
The exclusion of an explicit encoder–decoder structure signifies a departure from tradi-
tional attention mechanisms wherein direct utilisation of LSTM hidden states for attention
computation enables a more streamlined and context-aware information processing. The
incorporation of autotuning techniques further refines the LSTM’s predictive capacity by
systematically optimising hyperparameters, allowing the LSTM to adapt dynamically to
the dataset characteristics. This approach not only underscores the significance of attention
mechanisms in sequence modelling but also highlights the efficacy of autotuning in fine-
tuning LSTM architectures for improved prognostic accuracy in the predictive maintenance
domain and reliability engineering.

The advanced engine health monitoring employed in this study is outlined in
Figure 7, illustrating the sequential steps undertaken for prognostics using the C-MAPSS
dataset. To begin, the dataset is split into three subsets, designated for validation, training
and testing purposes. Feature selection and data normalisation are then applied. Fol-
lowing these preprocessing steps, LSTM hyperparameters are initialised and an LSTM
model incorporating an attention mechanism is constructed. The initial training of the
LSTM model takes place using the training data. In the event that the performance metrics
do not meet predefined criteria, an autotuning process is initiated to optimise the LSTM
hyperparameters, prompting the reinitialisation and reconstruction of the LSTM model

Sensors 2024, 24, 518 10 of 22

for additional training cycles. Conversely, if the metrics demonstrate satisfactory results,
the training concludes and the model undergoes evaluation using the test set. Should the
evaluation metrics meet the desired threshold, the training process is stopped. Contrarily,
if the metrics do not meet predefined criteria, the training process recommences, iterating
until the desired performance is achieved. This approach ensures a systematic and iterative
refinement of the LSTM model for optimal RUL prediction capabilities.

Figure 7. Advanced engine health monitoring flowchart.

Sensors 2024, 24, 518 11 of 22

3. Results
3.1. C-MAPSS Dataset

To generate realistic run-to-failure trajectories, it is crucial to have a suitable system
model that can accommodate variations in the health of sub-systems and simulate sensor
measurements. The C-MAPSS dynamical model is a highly accurate computer model
designed for simulating a large commercial turbofan engine realistically. Figure 8 depicts
an illustrative diagram of the engine, along with the associated station numbers as specified
in the C-MAPSS model documentation [37]. Alongside the thermodynamic model for the
engine, the dataset contains an atmospheric model that can function across altitudes ranging
from sea level to 40,000 feet, Mach numbers from 0 to 0.90 and sea-level temperatures
between −60 and 103 degrees Fahrenheit. Additionally, there is a power-management
system integrated, enabling the engine to operate across a broad spectrum of thrust levels
across all flight conditions.

Figure 8. C-MAPSS model representation [37].

The C-MAPSS system model takes the shape of an interconnected set of nonlinear equa-
tions. The inputs to this system model are categorised into two parts: scenario-description
operating conditions denoted as w and hidden model health parameters represented as
θ. The outputs produced by the system model consist of approximations for physically
measurable properties denoted as xs and unobservable properties xv that are not part of the
condition monitoring signals. This nonlinear system model is identified in Equation (16).
The unobservable model health parameters serve as adjusters within the model and belong
to the category known as quality parameters. These parameters encompass elements such
as component efficiencies, flow, input and output scalars and additional modifying factors.
They are instrumental in emulating the deteriorated behaviour of the system. Specifically,
all the rotating sub-components of the engine—the fan, low-pressure compressor (LPC),
high-pressure compressor (HPC), low-pressure turbine (LPT) and high-pressure turbine
(HPT)—can experience degradation in both flow and efficiency.

[x(t)s , x(t)v] = F
(

w(t), θ(t)
)

(16)

Table 1 provides an overview of the sensor data associated with turbofan engine. Each
row in the table corresponds to a specific sensor with columns detailing the sensor number,
a concise description of its function and the respective units of measurement. The data
encompass a range of parameters critical for monitoring the health and performance of
turbofan engines, including temperatures at various points in the engine (such as the fan
inlet, LPC outlet, HPC outlet and LPT outlet), pressures (fan inlet and bypass duct) and

Sensors 2024, 24, 518 12 of 22

speed related metrics (physical fan speed and physical core speed). The table also captures
information on engine pressure ratios, fuel–air ratios and various airflow parameters.

Table 1. Turbofan engine sensor description.

Number Description Units

1 Fan Inlet Temperature ◦R
2 LPC Outlet Temperature ◦R
3 HPC Outlet Temperature ◦R
4 LPT Outlet Temperature ◦R
5 Fan Inlet Pressure psia
6 Bypass Duct Pressure psia
7 HPC Outlet Pressure psia
8 Physical Fan Speed rpm
9 Physical Core Speed rpm
10 Engine Pressure Ratio (P50/P2) —
11 HPC Outlet Static Pressure psia
12 Ratio of Fuel Flow to Ps30 pps/psia
13 Corrected Fan Speed rpm
14 Corrected Core Speed rpm
15 Bypass Ratio —
16 Burner Fuel–Air Ratio —
17 Bleed Enthalpy —
18 Required Fan Speed rpm
19 Required Fan Conversion Speed rpm
20 High-Pressure Turbines Cool Airflow lb/s
21 Low-Pressure Turbines Cool Airflow lb/s

3.2. Experimental Analysis

This study proposes an aircraft health monitoring solution based on the prediction
of the RUL for aircraft engines. It was emphasised that the LSTM which is a type of
RNN, can provide a suitable solution to the problem defined above. The obtained results
have been compared with traditional methods. The sensor data from 100 engines selected
from the C-MAPSS dataset curated by NASA were employed in the training process.
A total of 20,631 randomly selected instances of data were allocated for training while
13,096 instances were reserved for testing. The test data were labelled to transform the
problem into a classification task. The labels indicate that engines with RUL values less
than 150 “needs maintenance” whilst others are considered “healthy”. A three-layer LSTM
structure was established in the model and a dropout layer was implemented. The first
two LSTM layers consist of 100 LSTM units each and the final layer comprises 75 units. A
dropout rate of 0.5 has been selected for the dropout operation. Binary cross-entropy has
been utilised for the loss function. Binary cross-entropy loss measures the performance of a
classification model with output probability values between 0 and 1. The cross-entropy
loss increases as the predicted probability diverges from the actual label. The binary cross-
entropy loss is calculated as in Equation (17). In the given formula, N is the number of
classes, yi is a binary indicator representing whether class i is the correct class and pi is the
predicted probability assigned to class i by the model.

Hi = −
N

∑
i=1

yi · log(pi) (17)

The Adam algorithm initialises two moving averages m and v representing the first
moment estimate (mean) and the second moment estimate (uncentred variance). Each
iteration involves calculating the gradient of the LSTM’s loss with respect to each parameter
through backpropagation. The first and second moment estimates are updated using decay
rates β1, β2 and bias correction is applied to account for initialisation biases. The bias-
corrected moment estimates guide the update of model parameters, confirming an adaptive

Sensors 2024, 24, 518 13 of 22

learning rate based on the historical gradients. This adaptive learning rate facilitates
efficient convergence and parameter adjustments, making the Adam algorithm particularly
effective in navigating the intricate patterns of engine degradation dynamics in RUL
prediction. The formulae for these parameters are shown in Equations (18)–(22).

The first moment estimate m is updated using the current gradient gt and the decay
rate β1:

mt = β1 · mt−1 + (1 − β1) · gt (18)

The second moment estimate v is updated similarly with the decay rate β2:

vt = β2 · vt−1 + (1 − β2) · (gt)
2 (19)

To account for the initialisation bias of m and v at the early training steps, bias-corrected
estimates m̂t and v̂t are calculated:

m̂t =
mt

1 − βt
1

(20)

ϑ̂t =
vt

1−βt
2

(21)

The parameters are updated using the bias-corrected moment estimates:

θt = θt−1 −
learning rate ·m̂t√

v̂t + ϵ
(22)

The designed model has 183,676 parameters and the optimal values for these parame-
ters have been determined using the Adam algorithm. Its adaptive learning rate mechanism
allows the Adam algorithm to adjust the learning rates for individual parameters based
on historical gradients which is advantageous when dealing with the diverse scales and
behaviours of LSTM parameters. LSTMs often encounter challenges such as vanishing
or exploding gradients and the Adam algorithm’s ability to handle sparse gradients is
particularly beneficial in such scenarios. The inclusion of a momentum term in the Adam
algorithm helps to accelerate the optimisation process, providing smoother convergence
and efficient navigation through flat regions in the loss landscape. The Adam algorithm
reduces the need for manual tuning of learning rates and its default hyperparameters are
known to work well across a variety of problems. While the choice of optimiser can depend
on specific problem characteristics, the Adam algorithm’s versatility and solid performance
make it a popular and effective option for training LSTMs [38]. The first layer is an LSTM
layer with 100 units. This layer has 50,400 parameters which include weights and biases.
The second layer is another LSTM layer with the same architecture as the first, featuring
100 units and a total of 80,400 parameters. The increased number of parameters in this layer
allows for the extraction of more complex temporal patterns in the data. The third layer is
yet another LSTM layer but with a reduced number of units of 75. This layer contributes
52,800 parameters. The choice of reducing the number of units is to extract more compact
features and to manage computational complexity. The fourth layer is a dropout layer with
75 units. The dropout layer is used to prevent overfitting by randomly deactivating half of
the units during training. The fifth and final layer is a dense layer with a single unit. This
layer has 76 parameters which include weights and biases. The combination of these layers,
each serving a specific purpose, forms the architecture of the LSTM network.

The accuracy, precision, recall and F1-score metrics have been calculated to evaluate
the obtained results. The importance of the F1-score lies in its ability to provide a balanced
assessment of the LSTM’s performance [39]. Where the identification of impending failures
is crucial, the F1-score addresses the challenge of class imbalance by simultaneously consid-
ering precision and recall. As false positives and false negatives can have varying degrees
of impact on decision-making in maintenance strategies, the F1-score serves as a holistic

Sensors 2024, 24, 518 14 of 22

metric that captures the trade-off between minimising misclassifications and maximising
the capture of true positive instances. Its quantifiable nature and the interpretability it offers
make the F1-score an important metric in guiding the development and refinement of LSTM
for accurate and reliable RUL predictions for the complex and dynamic C-MAPSS dataset.
The formulae for these metrics are presented in Equations (23)–(26). In these equations,
TP represents the number of examples correctly identified as “needs maintenance”, FP
denotes the number of examples incorrectly identified as “needs maintenance”, TN signifies
the number of examples correctly identified as “healthy” and FN indicates the number
of examples incorrectly identified as “healthy”. The obtained results are summarised in
Table 2. The MAE between the RUL values and the predictions has been calculated to
assess the regression performance of LSTM.

Accuracy =
True Positives + True Negatives

Total Samples
(23)

Precision =
True Positives

True Positives + False Positives
(24)

Recall =
True Positives

True Positives + False Negatives
(25)

F1-score =
2 × Precision × Recall

Precision + Recall
(26)

MAE =
1
N

N

∑
i=1

|yi − ŷi| (27)

Table 2. LSTM results.

Metric Result

MAE 1.284

Accuracy 98.916%

Precision 94.137%

Recall 100%

F1-score 97.33%

The same dataset has been utilised with different learning algorithms and the obtained
results are used for comparison to assess the success of the proposed solution. The RUL
value employed for classifying the data forms a time series, allowing the problem to be ini-
tially addressed as a regression problem. Afterwards, classification can be performed based
on the predicted RUL values. Linear Regression, Support Vector Regression, K-Nearest
Neighbours Regression, Gaussian Processes Regression and Random Forest Regression
were used for this comparison.

MSE =
1
N

N

∑
i=1

(yi − ŷi)
2 (28)

RAE =
∑N

i=1 |yi − ŷi|
∑N

i=1 |yi − ỹ|
(29)

RSE =
∑N

i=1(yi − ŷi)
2

∑N
i=1(yi − ỹ)2

(30)

Various evaluation criteria such as Mean Absolute Error (MAE), Mean Squared Error
(MSE), Relative Absolute Error (RAE) and Relative Squared Error (RSE) have been applied

Sensors 2024, 24, 518 15 of 22

to these methods. The formulae are shown in Equations (27)–(30). N represents the
number of samples, yi is the actual value, ŷi is the predicted value and ỹ is the mean of the
actual values.

It can be observed from Table 3 that the performance of methods other than Gaussian
Processes Regression and Random Forest Regression is quite low. A more detailed compar-
ison of the performances of Gaussian Processes Regression and Random Forest Regression
methods which produce relatively better results with LSTM is presented in Table 4.

Table 3. Results for different regression methods.

Method MAE MSE RAE RSE Accuracy

Linear Regression 20.72 28.581 0.577 0.487 74.45%

K-Nearest Neighbours Regression 21.29 29.678 0.593 0.516 76.37%

Support Vector Regression 23.33 29.991 0.646 0.547 78.13%

Gaussian Processes Regression 26.43 75.323 0.846 0.782 92.47%

Random Forest Regression 17.22 85.713 0.925 0.897 92.78%

Table 4. Results for Gaussian Processes Regression, Random Forest Regression and LSTM models.

Method Gaussian Processes Regression Random Forest Regression LSTM

MAE 26.43 17.22 1.284

Accuracy 92.47% 92.78% 98.916%

Precision 79.98% 90.13% 93.88%

Recall 89.46% 89.97% 100%

F1-score 84.36% 90.19% 96.8%

The target function can be seen in Figure 9 and is designed as a piece-wise function
to account for the inherent complexities in the degradation patterns of engines. It has
been established that the deterioration of an engine cannot manifest visibly until a certain
operational threshold has been surpassed, marking the onset of initial failure. To address
this subtle behaviour, the RUL target function is strategically formulated to reflect the
gradual degradation process. This modelling approach aligns with the understanding that
the RUL for each trajectory within the dataset is reasonably limited to within the range of
125 to 250 cycles, acknowledging that the predictive accuracy of the model should be most
robust within this specific temporal scope as engines with an RUL value below 150 are
considered to require maintenance. By adopting a piece-wise function, the predictive model
aims to capture the distinct phases of engine degradation, facilitating more accurate and
context-aware predictions of the RUL across diverse trajectories in the C-MAPSS dataset.

The results of the LSTM on the test set are visually represented in Figure 10 where the
prediction curve corresponds to the LSTM-generated predictions and the actual RUL curve
denotes the real RUL values as per FD001, FD002, FD003 and FD004 data in the C-MAPSS
dataset. A considerable consistency is observed across the entire cycle range, signifying
the LSTM’s capacity to maintain reliable predictions throughout various stages of engine
operation. Discrepancies in certain sections are attributed to the increased prominence of
fault signatures in the detection parameters when the RUL is low, emphasising the LSTM’s
heightened sensitivity to impending engine degradation. Contrarily, in instances of high
RUL, the LSTM exhibits enhanced accuracy, reflecting its proficiency in predicting the
relatively healthy state of the engine. The overall RUL prediction accuracy overlaps at
98.916% with the actual RUL values through all FD001, FD002, FD003, FD004 data and
establishes the effectiveness of the proposed method in delivering precise and reliable
prognostications, substantiating its applicability in predictive maintenance scenarios.

Sensors 2024, 24, 518 16 of 22

Figure 9. Remaining useful life function.

Figure 10. Prediction results.

4. Discussion

This study proposes a novel aircraft health monitoring solution based on predicting the
RUL of turbofan engines. The study employs sensor data from 100 engines in the C-MAPSS
dataset with 20,631 instances allocated for training and 13,096 for testing. By utilising
sensor data in the C-MAPSS dataset, the study explores a classification strategy, labelling
engines as “needs maintenance” or “healthy” based on RUL values. The LSTM architecture
is crafted with a three-layer structure and demonstrates the innovative application of
deep learning in the aviation domain. The study emphasises the benefits of the Adam
optimisation algorithm, demonstrating its adaptability to the diverse scales and behaviours
of LSTM parameters, overcoming challenges such as vanishing or exploding gradients. This
adaptability is particularly crucial in capturing the intricate patterns of engine degradation
dynamics, a characteristic not easily addressed by traditional methods. The piece-wise
formulation of the RUL target function adds an extra layer of sophistication to the model,
acknowledging the subtle degradation patterns inherent in engines. This unique approach
aligns with the understanding that the degradation becomes noticeable only after a certain

Sensors 2024, 24, 518 17 of 22

operational threshold, setting the foundation for a more context-aware predictive model.
The study showcases the LSTM’s performance, achieving an accuracy of 98.916% and
introduces the F1-score as a key metric in balancing precision and recall.

The obtained results highlight the effectiveness of LSTM in predicting the RUL of
aircraft engines based on health monitoring data. The LSTM demonstrated accuracy with
an overall precision of 93.88%, recall of 100% and an F1-score of 96.8%. This success is
superior to traditional regression methods such as Gaussian Processes Regression and
Random Forest Regression which demonstrated lower accuracy and precision. The high
precision and recall values emphasise the LSTM’s capability to accurately identify engines
in need of maintenance, crucial for proactive and cost-effective maintenance strategies.
The LSTM’s robust performance across diverse engine cycles underscores its adaptability
to varying operational conditions, providing reliable predictions throughout the entire
RUL range. The attention mechanism incorporated into the LSTM architecture further
enhances its ability to distinguish critical temporal patterns, making it particularly suitable
for time-series analysis and sequential prediction tasks.

The importance of these discoveries is significant for predictive maintenance. The
ability to accurately predict the RUL of critical components allows for optimised resource
allocation, reduced downtime and improved safety. The novel approach of integrating an
attention mechanism within the LSTM, combined with hyperparameter tuning through
autotuning techniques, represents a methodological advancement. This approach not
only underlines the importance of attention mechanisms in sequence modelling but also
stresses the efficacy of autotuning for fine-tuning LSTM architectures, addressing chal-
lenges such as overfitting and adapting to dataset characteristics. The divergence from
traditional encoder–decoder structures in applying attention mechanisms, coupled with
automated hyperparameter tuning, differentiates this approach. The study contributes to
the ongoing exploration of advanced machine learning techniques for prognostic tasks.
The obtained results have been compared with traditional machine learning algorithms.
It can be observed from Tables 3 and 4 that LSTM achieves the highest performance for
all metrics. A comparative analysis is presented in Table 5 presenting the outcomes of
studies conducted on LSTM and its derivatives. The table provides a comprehensive view
of the results obtained from these studies, offering insights into the performance metrics
and achievements of LSTM variants. Each method is associated with its respective P0,2(Pi),
providing an understanding of their effectiveness.

Table 5. Comparison of the state-of-the-art solutions.

Studies Method P0,2(Pi)

Wu et al. [40] Vanilla LSTM 90

Yuan et al. [41] LSTM 91.42

Zhao et al. [42] Deep LSTM 91.7

Malhotra et al. [43] Deep LSTM-ED 98.3

Ours LSTM 98.783

The proposed LSTM, equipped with attention mechanisms and fine-tuned through
autotuning techniques, emerges as a powerful and innovative instrument for predicting
the RUL of aircraft engines. The high accuracy, precision and recall values emphasise its
potential to revolutionise predictive maintenance practices, offering a more efficient and
proactive approach to asset management in the industry.

5. Conclusions

This study has delved into the domain of advancing aircraft safety through the integra-
tion of LSTM into engine health monitoring systems. The study underscores the potential
efficacy of LSTM in predicting and detecting engine anomalies, thereby contributing to the

Sensors 2024, 24, 518 18 of 22

main goal of enhancing aviation safety. This research lays the foundation for continued
exploration and innovation in critical aircraft safety, promoting a safer and more reliable
aviation industry. LSTM has revealed a transformative approach to handling the intricate
temporal dynamics of engine degradation. The significance of LSTM lies not only in its
capacity to directly process raw time-series data but also in its ability to adapt dynamically
to the evolving context of the dataset. The comprehensive exploration of LSTM architecture,
from the GRU to the specialised structure of LSTM itself, has underscored the power of
capturing past, present and future information crucial for predictive maintenance.

The integration of attention mechanisms with LSTM has proven to be a critical en-
hancement, allowing the LSTM to selectively focus on specific aspects of input sequences,
thereby improving its ability to discern critical information. The novel approach of applying
attention mechanisms independently from an encoder–decoder structure has demonstrated
promising results. The application of attention mechanisms without an explicit encoder–
decoder architecture offers several advantages:

1. Simplicity: The lack of dedicated encoder–decoder structure simplifies the model
architecture, making it more straightforward and computationally efficient. This
simplicity is advantageous in situations where a less complex model is desired when
computational resources are limited.

2. Reduced Model Complexity: Encoder–decoder architectures are relatively complex,
involving separate components for encoding and decoding. By avoiding this structure,
the LSTM becomes more streamlined and requires fewer parameters, reducing the
risk of overfitting and making it more interpretable.

3. Direct Interaction with Sequential Data: Direct interaction with hidden states from
an LSTM is more intuitive and aligned with the nature of the problem. This direct
interaction allows the attention mechanism to adapt dynamically to the evolving
context within the sequence.

4. Improved Performance: Where the relationships between different time steps in the
sequence are critical and straightforward, eliminating the encoder–decoder structure
leads to improved performance. The direct use of hidden states in attention computa-
tion allows the LSTM to focus on relevant information throughout the sequence.

5. Reduced Inference Time: With a simplified architecture, inference time is reduced
compared to more complex encoder–decoder designs. This is advantageous in real-
time applications where rapid deployment is essential.

It is important to note that the choice of using an attention mechanism without an
encoder–decoder structure depends on the nature of the task, the characteristics of the
data and the specific goals of the modelling approach. On the other hand, Malhotra et al.
have demonstrated the efficacy of the LSTM encoder-decoder-based restructuring model
for detecting anomalies in time series data as evidenced by their studies [5,43]. Similarly,
Gugulothu et al. [44] have asserted the suitability of the LSTM structure for predictive
maintenance. The adoption of autotuning techniques for LSTM hyperparameter optimi-
sation has further refined the LSTM’s performance, ensuring adaptability to the unique
characteristics of the dataset and preventing issues like overfitting or underfitting. Auto-
tuning the LSTM offers several advantages in the context of hyperparameter optimisation
and model fine-tuning:

1. Efficient Hyperparameter Search: Autotuning automates the process of hyperparame-
ter optimisation, efficiently exploring a wide range of hyperparameter configurations.
This eliminates the need for manual tuning which is time-consuming and requires
domain-specific expertise.

2. Improved Generalisation: Autotuning helps prevent overfitting by identifying hyper-
parameter settings that enhance the LSTM’s generalisation performance. It balances
model complexity and avoids fitting the training data too closely, leading to better
performance on unseen data.

Sensors 2024, 24, 518 19 of 22

3. Adaptability to Dataset Characteristics: LSTM performs differently based on the
characteristics of the dataset. Autotuning allows the model to adapt to the specific
properties of the data, optimising hyperparameters for tasks with varying input
sequences and time dependencies.

4. Reduced Risk of Underfitting: Autotuning aids in the discovery of hyperparameters
that prevent underfitting, ensuring that the LSTM is expressive enough to capture
complex temporal dependencies and patterns within the data.

5. Increased Robustness Across Dataset: By identifying hyperparameters that generalise
well, the LSTM becomes versatile and applicable to a broader range of scenarios.

6. Adaptive Learning Rates: Autotuning includes optimisation algorithms that adap-
tively adjust learning rates. Adaptive learning rates enhance the training process by
dynamically modifying the step sizes for weight updates based on the gradients.

Autotuning in LSTM facilitates the hyperparameter optimisation process and directs
the LSTM to generalise better to achieve improved performance without manual interven-
tion. The efficiency, adaptability and time savings provided by autotuning contribute to the
overall effectiveness of LSTM. The key advantage of the Adam algorithm is its adaptive
learning rate which allows it to adjust the learning rates for each parameter individually
based on their historical gradients. This adaptability makes the Adam algorithm well suited
for training the LSTM. The Adam optimiser offers several benefits:

1. Adaptive Learning Rates: The Adam algorithm dynamically adapts the learning rates
for each parameter based on their historical gradients. This adaptive learning rate
mechanism helps overcome challenges associated with manually tuning learning
rates, making it suitable for complex and dynamic datasets.

2. Efficient Memory Usage: The Adam algorithm maintains a moving average of both
gradients and their squared values which results in more efficient memory usage com-
pared to optimisations that require storing individual gradients for each parameter.

3. Combination of Momentum and RMSprop: The Adam algorithm combines the bene-
fits of both momentum and RMSprop optimisation techniques. The momentum helps
accelerate the optimisation process while the RMSprop adjusts the learning rates for
each parameter individually.

4. Bias Correction: The Adam algorithm incorporates bias correction and this is es-
pecially beneficial in the early training stages when the estimates of the first and
second moments are inaccurate. This correction helps stabilise and improve the
optimisation process.

5. Effective Handling of Varying Gradient Information: The adaptive learning rates in the
Adam algorithm make it resilient to varying gradient information. This adaptability
allows the Adam algorithm to perform well across the dataset.

The Adam algorithm’s adaptive learning rate mechanism, along with its ability to
handle sparse gradients and incorporate momentum, makes it a suitable choice for training
complex architectures. It helps mitigate issues related to vanishing or exploding gradients,
directing to more stable and efficient training processes. In conclusion, this study has
proposed a practical and effective state-of-the-art solution in RUL prediction and introduced
a novel approach to hyperparameter tuning and attention mechanism implementation. In
light of the results, it is evident that the results obtained in this study align with the existing
literature. When compared to previous studies, the results of this study stand out as being
more successful.

Author Contributions: Conceptualisation S.Y. and Z.A.R.; methodology S.Y.; software S.Y.; formal
analysis S.Y.; draft preparation S.Y.; review and editing S.Y. and Z.A.R.; supervision Z.A.R. All authors
have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Sensors 2024, 24, 518 20 of 22

Informed Consent Statement: Not applicable.

Data Availability Statement: The data presented in this study are available at: https://web.archive.
org/web/20190111164455/https://ti.arc.nasa.gov/m/project/prognostic-repository/CMAPSSData.
zip (accessed on 23 May 2023).

Conflicts of Interest: The authors declare no conflicts of interest.

Abbreviations
The following abbreviations are used in this manuscript:

C-MAPSS Commercial Modular Aero-Propulsion System Simulation
LSTM Long Short-Term Memory
RUL Remaining Useful Life
DSR Dempster–Shafer Regression
SVM Support Vector Machine
RNN Recurrent Neural Network
MSE Mean Squared Error
LSTM-ED Encoder–Decoder Long Short-Term Memory
SBA Similarity-Based Approach
MLP Multi-Layer Perceptron
SVR Support Vector Regression
RVR Relevance Vector Regression
CNN Convolutional Neural Network
GRU Gated Recurrent Unit
DBN Deep Belief Network
MODBNE Multiobjective Deep Belief Network Ensemble
HPC High-performance Computing
RMSE Root Mean Square Error
MAE Mean Absolute Error
MSE Mean Squared Error
RAE Relative Absolute Error
RSE Relative Squared Error

References
1. Fornlof, V. Improved Remaining Useful Life Estimations for On-Condition Parts in Aircraft Engines. Ph.D Thesis, University of

Skövde, Skövde, Sweden, 2016.
2. Kumar, A.; Shankar, R.; Thakur, L.S. A big data driven sustainable manufacturing framework for condition-based maintenance

prediction. J. Comput. Sci. 2018, 27, 428–439. [CrossRef]
3. Xu, J.; Wang, Y.; Xu, L. PHM-oriented integrated fusion prognostics for aircraft engines based on sensor data. IEEE Sens. J. 2013,

14, 1124–1132. [CrossRef]
4. Saxena, A.; Goebel, K. Turbofan Engine Degradation Simulation Data Set. NASA Ames Prognostics Data Repository. 2008.

Available online: https://phm-datasets.s3.amazonaws.com/NASA/6.+Turbofan+Engine+Degradation+Simulation+Data+Set.
zip (accessed on 6 December 2023).

5. Malhotra, P.; Ramakrishnan, A.; Anand, G.; Vig, L.; Agarwal, P.; Shroff, G. LSTM-based encoder-decoder for multi-sensor
anomaly detection. arXiv 2016, arXiv:1607.00148.

6. Ramasso, E.; Saxena, A. Performance Benchmarking and Analysis of Prognostic Methods for CMAPSS Datasets. Int. J. Progn.
Health Manag. 2014, 5, 1–15. [CrossRef]

7. Zhang, X.; Tang, L.; Decastro, J. Robust fault diagnosis of aircraft engines: A nonlinear adaptive estimation-based approach. IEEE
Trans. Control. Syst. Technol. 2012, 21, 861–868. [CrossRef]

8. Sateesh Babu, G.; Zhao, P.; Li, X.L. Deep convolutional neural network based regression approach for estimation of remaining
useful life. In Proceedings of the Database Systems for Advanced Applications: 21st International Conference, DASFAA 2016,
Dallas, TX, USA, 16–19 April 2016; Proceedings, Part I 21 ; Springer: Cham, Switzerland, 2016; pp. 214–228.

9. Zhang, C.; Sun, J.H.; Tan, K.C. Deep belief networks ensemble with multi-objective optimization for failure diagnosis. In
Proceedings of the 2015 IEEE International Conference on Systems, Man, and Cybernetics, Hong Kong, 9–12 October 2015;
pp. 32–37.

10. Peng, C.; Chen, Y.; Chen, Q.; Tang, Z.; Li, L.; Gui, W. A remaining useful life prognosis of turbofan engine using temporal and
spatial feature fusion. Sensors 2021, 21, 418. [CrossRef]

https://web.archive.org/web/20190111164455/https://ti.arc.nasa.gov/m/project/prognostic-repository/CMAPSSData.zip
https://web.archive.org/web/20190111164455/https://ti.arc.nasa.gov/m/project/prognostic-repository/CMAPSSData.zip
https://web.archive.org/web/20190111164455/https://ti.arc.nasa.gov/m/project/prognostic-repository/CMAPSSData.zip
http://doi.org/10.1016/j.jocs.2017.06.006
http://dx.doi.org/10.1109/JSEN.2013.2293517
https://phm-datasets.s3.amazonaws.com/NASA/6.+Turbofan+Engine+Degradation+Simulation+Data+Set.zip
https://phm-datasets.s3.amazonaws.com/NASA/6.+Turbofan+Engine+Degradation+Simulation+Data+Set.zip
http://dx.doi.org/10.36001/ijphm.2014.v5i2.2236
http://dx.doi.org/10.1109/TCST.2012.2187057
http://dx.doi.org/10.3390/s21020418

Sensors 2024, 24, 518 21 of 22

11. Wen, L.; Dong, Y.; Gao, L. A new ensemble residual convolutional neural network for remaining useful life estimation. Math.
Biosci. Eng. 2019, 16, 862–880. [CrossRef]

12. Zhao, C.; Huang, X.; Li, Y.; Yousaf Iqbal, M. A double-channel hybrid deep neural network based on CNN and BiLSTM for
remaining useful life prediction. Sensors 2020, 20, 7109. [CrossRef]

13. Kong, W.; Li, H. Remaining useful life prediction of rolling bearing under limited data based on adaptive time-series feature
window and multi-step ahead strategy. Appl. Soft Comput. 2022, 129, 109630. [CrossRef]

14. Zhuang, J.; Cao, Y.; Jia, M.; Zhao, X.; Peng, Q. Remaining useful life prediction of bearings using multi-source adversarial online
regression under online unknown conditions. Expert Syst. Appl. 2023, 227, 120276. [CrossRef]

15. Yao, D.; Liu, H.; Yang, J.; Li, X. A lightweight neural network with strong robustness for bearing fault diagnosis. Measurement
2020, 159, 107756. [CrossRef]

16. Yan, M.; Wang, X.; Wang, B.; Chang, M.; Muhammad, I. Bearing remaining useful life prediction using support vector machine
and hybrid degradation tracking model. ISA Trans. 2020, 98, 471–482. [CrossRef] [PubMed]

17. Luo, J.; Liu, Z.; Wang, J.; Chen, H.; Zhang, Z.; Qin, B.; Cui, S. Effects of different injection strategies on combustion and emission
characteristics of diesel engine fueled with dual fuel. Processes 2021, 9, 1300. [CrossRef]

18. Liu, H.; Li, Y.; Luo, L.; Zhang, C. A Lithium-Ion Battery Capacity and RUL Prediction Fusion Method Based on Decomposition
Strategy and GRU. Batteries 2023, 9, 323. [CrossRef]

19. Guo, J.; Lao, Z.; Hou, M.; Li, C.; Zhang, S. Mechanical fault time series prediction by using EFMSAE-LSTM neural network.
Measurement 2021, 173, 108566. [CrossRef]

20. Ensarioğlu, K.; İnkaya, T.; Emel, E. Remaining Useful Life Estimation of Turbofan Engines with Deep Learning Using Change-
Point Detection Based Labeling and Feature Engineering. Appl. Sci. 2023, 13, 11893. [CrossRef]

21. Li, X.; Ding, Q.; Sun, J.Q. Remaining useful life estimation in prognostics using deep convolution neural networks. Reliab. Eng.
Syst. Saf. 2018, 172, 1–11. [CrossRef]

22. Yu, W.; Kim, I.Y.; Mechefske, C. Remaining useful life estimation using a bidirectional recurrent neural network based autoencoder
scheme. Mech. Syst. Signal Process. 2019, 129, 764–780. [CrossRef]

23. Peng, C.; Wu, J.; Wang, Q.; Gui, W.; Tang, Z. Remaining Useful Life Prediction Using Dual-Channel LSTM with Time Feature and
Its Difference. Entropy 2022, 24, 1818. [CrossRef]

24. Wang, Y.; Zhao, Y. Multi-Scale Remaining Useful Life Prediction Using Long Short-Term Memory. Sustainability 2022, 14, 15667.
[CrossRef]

25. Lyu, Y.; Zhang, Q.; Wen, Z.; Chen, A. Remaining Useful Life Prediction Based on Multi-Representation Domain Adaptation.
Mathematics 2022, 10, 4647. [CrossRef]

26. Deng, F.; Bi, Y.; Liu, Y.; Yang, S. Deep-learning-based remaining useful life prediction based on a multi-scale dilated convolution
network. Mathematics 2021, 9, 3035. [CrossRef]

27. Lei, Y.; Li, N.; Guo, L.; Li, N.; Yan, T.; Lin, J. Machinery health prognostics: A systematic review from data acquisition to RUL
prediction. Mech. Syst. Signal Process. 2018, 104, 799–834. [CrossRef]

28. Woods, L.T.; Rana, Z.A. Constraints on Optimising Encoder-Only Transformers for Modelling Sign Language with Human Pose
Estimation Keypoint Data. J. Imaging 2023, 9, 238. [CrossRef] [PubMed]

29. Zhang, W.; Li, C.; Peng, G.; Chen, Y.; Zhang, Z. A deep convolutional neural network with new training methods for bearing
fault diagnosis under noisy environment and different working load. Mech. Syst. Signal Process. 2018, 100, 439–453. [CrossRef]

30. Kim, S.; Choi, J.H. Convolutional neural network for gear fault diagnosis based on signal segmentation approach. Struct. Health
Monit. 2019, 18, 1401–1415. [CrossRef]

31. Chung, J.; Gulcehre, C.; Cho, K.; Bengio, Y. Empirical evaluation of gated recurrent neural networks on sequence modeling.
arXiv 2014, arXiv:1412.3555.

32. Amidi, A.; Amidi, S. CS 230—Recurrent Neural Networks Cheatsheet; Stanford University: Stanford, CA, USA, 2019.
33. Hochreiter, S.; Schmidhuber, J. Long short-term memory. Neural Comput. 1997, 9, 1735–1780. [CrossRef]
34. Kang, Q.; Chen, E.J.; Li, Z.C.; Luo, H.B.; Liu, Y. Attention-based LSTM predictive model for the attitude and position of shield

machine in tunneling. Undergr. Space 2023, 13, 335–350. [CrossRef]
35. Pham, H.; Manning, C.D.; Luong, M.T. Effective approaches to attention-based neural machine translation. Comput. Ence 2015,

2015, 1–2.
36. Saluja, A.; Mitra, A.; Deshwal, A.; Madhu, K.; Chugh, U.; Lee, S.; Song, J. Autotuning LSTM for Accelerated Execution on Edge.

In Proceedings of the 2021 IEEE International Symposium on Circuits and Systems (ISCAS), Virtual, 22–28 May 2021; pp. 1–5.
37. Frederick, D.K.; DeCastro, J.A.; Litt, J.S. User’s Guide for the Commercial Modular Aero-Propulsion System Simulation (C-MAPSS);

Technical Report; NASA: Washington, DC, USA, 2007.
38. Diederik, K.; Jimmy, B. Adam: A method for stochastic optimization. arXiv 2014, arXiv:1412.6980.
39. Sasaki, Y.. The truth of the F-measure. Teach Tutor Mater. 2007, 1, 1–5.
40. Wu, Y.; Yuan, M.; Dong, S.; Lin, L.; Liu, Y. Remaining useful life estimation of engineered systems using vanilla LSTM neural

networks. Neurocomputing 2018, 275, 167–179. [CrossRef]
41. Yuan, M.; Wu, Y.; Lin, L. Fault diagnosis and remaining useful life estimation of aero engine using LSTM neural network. In

Proceedings of the 2016 IEEE international conference on aircraft utility systems (AUS), Beijing, China, 10–12 October 2016;
pp. 135–140.

http://dx.doi.org/10.3934/mbe.2019040
http://dx.doi.org/10.3390/s20247109
http://dx.doi.org/10.1016/j.asoc.2022.109630
http://dx.doi.org/10.1016/j.eswa.2023.120276
http://dx.doi.org/10.1016/j.measurement.2020.107756
http://dx.doi.org/10.1016/j.isatra.2019.08.058
http://www.ncbi.nlm.nih.gov/pubmed/31492470
http://dx.doi.org/10.3390/pr9081300
http://dx.doi.org/10.3390/batteries9060323
http://dx.doi.org/10.1016/j.measurement.2020.108566
http://dx.doi.org/10.3390/app132111893
http://dx.doi.org/10.1016/j.ress.2017.11.021
http://dx.doi.org/10.1016/j.ymssp.2019.05.005
http://dx.doi.org/10.3390/e24121818
http://dx.doi.org/10.3390/su142315667
http://dx.doi.org/10.3390/math10244647
http://dx.doi.org/10.3390/math9233035
http://dx.doi.org/10.1016/j.ymssp.2017.11.016
http://dx.doi.org/10.3390/jimaging9110238
http://www.ncbi.nlm.nih.gov/pubmed/37998085
http://dx.doi.org/10.1016/j.ymssp.2017.06.022
http://dx.doi.org/10.1177/1475921718805683
http://dx.doi.org/10.1162/neco.1997.9.8.1735
http://dx.doi.org/10.1016/j.undsp.2023.05.006
http://dx.doi.org/10.1016/j.neucom.2017.05.063

Sensors 2024, 24, 518 22 of 22

42. Zhao, R.; Wang, J.; Yan, R.; Mao, K. Machine health monitoring with LSTM networks. In Proceedings of the 2016 10th International
Conference on Sensing Technology (ICST), Nanjing, China, 11–13 November 2016; pp. 1–6.

43. Malhotra, P.; Tv, V.; Ramakrishnan, A.; Anand, G.; Vig, L.; Agarwal, P.; Shroff, G. Multi-sensor prognostics using an unsupervised
health index based on LSTM encoder-decoder. arXiv 2016, arXiv:1608.06154.

44. Gugulothu, N.; Tv, V.; Malhotra, P.; Vig, L.; Agarwal, P.; Shroff, G. Predicting remaining useful life using time series embeddings
based on recurrent neural networks. arXiv 2017, arXiv:1709.01073.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

	Introduction
	Methodology
	Results
	C-MAPSS Dataset
	Experimental Analysis

	Discussion
	Conclusions
	References

