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Signature :

v



vi



ABSTRACT

THE IMPACT OF DEPENDENCE BETWEEN CLAIM FREQUENCY AND
SEVERITY ON EXPECTED LOSS USING GLM: MTPL APPLICATION

ASLANÖZ, İLKYAZ
M.S., Department of Actuarial Sciences

Supervisor : Prof. Dr. A. Sevtap KESTEL

Co-Supervisor : Dr. Bükre YILDIRIM KÜLEKCİ

July 2024, 52 pages

In non-life insurance, the accurate estimation of total loss is extremely important for
companies’ asset-liability management. To estimate the total loss, insurance compa-
nies use generalized linear model (GLM) as it is compatible with insurance data and
hence makes considerably consistent predictions. The common practice is construct-
ing a GLM for frequency, usually using the Poisson distribution, and another GLM
for severity, usually using the Gamma distribution, and then multiplying the results of
these two models. However, this multiplication is only possible under the assumption
of independence of the claim frequency and severity. Although the independence as-
sumption simplifies the modeling, it also causes deviations from the real loss value.
In this thesis, constructing a GLM, which can incorporate the dependence between
claim frequency and severity, to predict the total loss is aimed. Two GLMs are built
and tested; dependent-GLM and copula-GLM, and they are compared with the regu-
lar independent-GLM. To examine these models, non-life motor third party liability
(MTPL) insurance data is used. In the first model, the dependency is provided by
taking the claim number as a covariate of marginal severity GLM. The second model
provides the dependence between the marginal frequency and severity GLMs by us-
ing a copula function. To compare these two dependent models and the independent
model, the Akaike Information Criterion (AIC) and the Bayesian Information Crite-
rion (BIC) are used, and also the means of the estimations of the models are compared
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to the means of the real observations. The findings show that the independent-GLM
deviates more from the real value compared to the other two. On the other hand, the
dependent-GLM model is quite close to the copula-GLM model but gives slightly
better results.

Keywords: Generalized Linear Model, Copula, Dependence, Claim Frequency, Claim
Severity.
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ÖZ

HASAR SIKLIĞI VE ŞİDDETİ ARASINDAKİ BAĞIMLILIĞIN GLM
KULLANILARAK TOPLAM HASAR ÜZERİNDEKİ ETKİSİ: MTPL

UYGULAMASI

ASLANÖZ, İLKYAZ
Yüksek Lisans, Aktüerya Bilimleri Bölümü

Tez Yöneticisi : Prof. Dr. A. Sevtap KESTEL

Ortak Tez Yöneticisi : Dr. Bükre YILDIRIM KÜLEKCİ

Temmuz 2024, 52 sayfa

Hayat dışı sigortalarda toplam hasarın doğru tahmin edilmesi şirketlerin aktif-pasif
yönetimi açısından son derece önemlidir. Sigorta şirketleri, toplam hasarı tahmin et-
mek için, sigorta verileriyle uyumlu olması ve dolayısıyla da oldukça tutarlı tahmin-
ler yapması sebebiyle genelleştirilmiş doğrusal model (GLM) kullanır. Yaygın uygu-
lama, Poisson dağılımını kullanarak hasar sıklığı için bir GLM ve Gamma dağılımını
kullanarak hasar şiddeti için bir başka GLM oluşturmak ve ardından bu iki mode-
lin sonuçlarını birbiriyle çarpmak şeklindedir. Fakat bu çarpma işlemi sadece hasar
sıklığı ve hasar şiddetinin bağımsızlığı varsayımı altında mümkündür. Bağımsızlık
varsayımı modellemeyi basitleştirse de tahminlerin gerçek hasar değerinden uzaklaş-
masına neden olur. Bu tezde, toplam hasarı tahmin etmek için hasar sıklığı ve şiddeti
arasındaki bağımlılığı da içeren bir GLM kurmak hedeflenmiştir. Bu amaçla bağımlı-
GLM ve kopula-GLM olmak üzere iki model kuruldu ve hem kendi aralarında kar-
şılaştırıldılar, hem de yaygın uygulama olan bağımsız-GLM ile kıyaslanmıştır. Kuru-
lan modellerin incelenmesi için üçüncü şahıs mali mesuliyet sigortası (MTPL) veri-
leri kullanılmıştır. Bağımlı-GLM’de bağımlılık, hasar sayısının marjinal hasar şiddeti
GLM’inde ortak değişken olarak alınması ile sağlanmaktadır. Kopula-GLM ise, mar-
jinal frekans ve şiddet GLM’leri arasındaki bağımlılığı bir kopula fonksiyonu kul-
lanarak sağlamaktadır. Bu üç modelin kıyaslanmasında Akaike Bilgi Ölçütü (AIC)
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ve Bayesçi Bilgi Ölçütü (BIC) kullanılmış olup, ayrıca model tahminlerinin ortala-
maları gerçek verinin ortalamalarıyla karşılaştırılmıştır. Üç model karşılaştırıldığında
bağımsız-GLM’in gerçek veriden diğer modellere göre daha çok saptığı belirlenmiş-
tir. Bağımlı-GLM sonuçları ise kopula-GLM ile oldukça yakın olmakla birlikte biraz
daha gerçeğe yakın değerler vermiştir.

Anahtar Kelimeler: Genelleştirilmiş Doğrusal Model, Kopula, Bağımlılık, Hasar Sık-
lığı, Hasar Şiddeti
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CHAPTER 1

INTRODUCTION

An insurance policy agreement, between an insurance company and a policyholder,

transfers the economic risk of unpredictable losses from the policyholder to the in-

surance company against a predefined premium fee. Non-life insurance comprises

damages to tangible assets such as car, house, or property damages due to fire, crash,

natural disaster, etc, or losses due to bodily injury of the insured or another per-

son (third party liability), or losses caused by interruption of a company or business,

health problems of the insured or employees, etc.

Determining the premium value of such a contract is important for an insurance com-

pany because if the company determines an excessive premium, the customer would

prefer another company with a fair price. On the other hand, if prices are underval-

ued, this can cause a loss in profitable policies and gaining underpriced ones. The

premium of non-life insurance is determined based on the expected loss of claims

and loadings like administration costs, cost of capital, and provision for future costs

of the company, etc. Therefore, to determine the most appropriate price, the expected

loss should be calculated fairly.

Expected loss varies between policies as each policy has unique properties. For in-

stance, each insured has different properties like age, health situation, educational

status, marital status, etc. On the other side, properties have different features, like

the value of a car or a house, the presence or absence of security measures like an

alarm, whether the property is old or new, whether there is any damage on it, etc.

These differences can be dealt with with statistical models that bring concrete ev-
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idence in calculating the expected loss, in other words, the pure premium. These

policy-specific features that affect the price of the policy are called rating factors, and

some of them are used as determining variables, in other words, covariates of the pre-

mium model [4].

As in [12] Kramer et. al. emphasize, modeling claim severity and frequency sep-

arately, and determining the total loss by multiplying the expected values of these

two is a prevalent approach to designating the pure premium of a policy. However,

this approach requires acceptance of independence between the claim frequency and

severity, and this is not the case most of the time. For instance, in [9] Garrido states

that, when the motor insurance claim data of the companies is examined, it is seen

that the drivers usually tend to have either a few minor accidents, or a single major

accident, which shows that the claim number and claim size generally have nega-

tive association in car insurance. On the other side, in the case of home insurance,

sewer backup or flooding causes both large and frequent claims in problematic ar-

eas, which means severity and frequency have a positive association. Therefore, the

independence assumption on claim frequency and severity may cause over or under-

estimation of the total loss of individual policies and eventually low accuracy in risk

calculation of the whole portfolio. Hence, while fitting a model to the frequency and

severity of individual claims to determine the premium of a policy, this dependency

should be first tested to see if it exists and then according to the results, an appropriate

model should be constructed.

GLM is the most preferred modeling method in the insurance industry because it

adapts well to insurance data that is non-normal, such as Poisson distributed positive

integer values of claim counts, and Gamma distributed, right-skewed, continuous, and

positive values of claim amounts. GLM is the generalized version of the linear model

(LM), and makes better predictions than LM due to its good adaptability [15].

There are two GLM approaches; modeling burning cost with a Tweedie distribution,

and modeling frequency with a Poisson distribution and the severity with a Gamma

distribution, separately. Although the Tweedie model is more handy because it has

one model and hence it is simpler than the Poisson-Gamma model, which has two
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different models for the frequency and the severity, Tweedie cannot catch the trends

as accurately as the Poisson-Gamma model because of this simplicity.

What both Tweedie and Possion-Gamma models have in common is that they model

frequency and severity assuming they are independent. To understand how depen-

dence should be handled, to see what the consequences might be if it is not taken into

account, and to try to create a more accurate model by taking dependency into ac-

count, dependent models should be established. There are two common approaches

to account for the dependence between frequency and severity. The first one is a

revised version of the independent Poisson-Gamma model and provides the depen-

dency by taking the frequency as a covariate of the severity model while modeling

the average claim amount distribution. The second approach uses a copula function

to link the marginal GLMs of frequency and severity. Copulas are functions that are

used to model the dependence between random variables.

When building a Poisson-Gamma GLM to estimate the total loss, severity and fre-

quency are separately expressed in terms of a linear combination of rating variables,

in other words, covariates, such as age, sex, brand, etc., via a link function. Then,

the expected average severity and expected frequency are multiplied to get loss cost,

namely the pure premium (See [17]).

Jorgensen & De Souzaa in [11] use the Tweedie distribution which parametrizes the

compound Poisson-Gamma distribution as a member of the exponential dispersion

family, and then fit a GLM to determine the claim rate. This model consists of three

parameters, namely, the mean claim rate, a dispersion parameter, and a shape param-

eter. The results of the study indicate that the Tweedie model is efficient due to its

simplicity.

In addition to these studies, Dimakos & Frigessi in [5] use a Bayesian approach,

again with independence assumption, to be able to consider all randomness in pre-

mium estimation. They calculate the premium by multiplying the expected claim

number and expected claim size. The expected claim number is based on a spatial

Poisson regression model, and the expected claim size is based on a spatial Gamma

3



regression model, and they use an improper Markov Random Field to model the spa-

tial structure. However, when they apply their model to a real car insurance data, they

do not detect any noticeable improvement.

On the other hand, there is a lot of work trying to take into account the dependency

between frequency and severity. For instance, in [10] Gschlößl & Czado furthered

the Bayesian approach study of Dimakos & Frigessi in [5], and modeled claim size

conditionally on the claim number using a car insurance dataset. In this manner, they

take account of dependency between frequency and severity; and as a result, they de-

tect that dependency has a remarkable effect.

Frees et al. study health care expenditures by considering the claim number as a

covariate of average claim size distribution, and find that their model fit better to data

and gives better results than the independent Poisson-Gamma model [6]. Garrido et

al. apply this approach to car insurance data and construct a GLM for conditional

severity, which takes marginal frequency as a covariate to consider the dependency

between severity and frequency, and find that their dependent model is better than the

independent Poisson-Gamma model [9].

As mentioned above, another method to determine dependency is using copulas.

Frees examines the copula concept theoretically to adapt it to actuarial issues and

uses copula to determine the loss and expense of an insurance company. In addition,

they study additional applications of copulas like stochastic ordering, fuzzy sets, in-

surance pricing, etc [7].

Song uses Gaussian copula to link univariate dispersion models (Gamma, Poisson,

etc.) and creates multivariate dispersion models [23]. With this idea, Czado et al.

construct a marginal Gamma GLM for claim size and a marginal Poisson GLM for

claims number and link them through a Gaussian copula using car insurance policies

[3].

Shi et al.compare Tweedie, two-part, and mixed copula models and find that the cop-

ula model performs better than the other two models in [19].
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When pricing policies in the insurance industry, it is crucial to estimate the total loss

as close to reality as possible. Therefore, companies want to build accurate models

to make total loss predictions. In this context, it is essential to know whether an in-

dependent model or a dependent model gives better results, and if it turns out that

the dependent model gives a better result, which dependence structure brings the pre-

diction closer to reality in terms of accurate total loss prediction. In this manner, this

thesis aims to compare the independent model, and the first and second dependent ap-

proaches mentioned above to determine which one gives the best results, and must be

preferred by the insurance companies. To this end, by using an MTPL dataset; firstly

an independent Poisson-Gamma model, secondly, by adding claim number to severity

GLM as a covariate, a dependent Poisson-Gamma model, and finally, using a copula

function to link the Poisson and Gamma models, a copula model is constructed. By

comparing their results, their accuracy is examined and tried to understand which one

is better to use for the insurance industry.

The rest of the thesis is organized as follows: In Chapter 2; LM, GLM, independent

and dependent cases of GLM, and the copula approach are overviewed. In Chapter

3; these models are applied to MTPL insurance data for comparison, and the results

are compared based on the reliability of the expected premium estimations. Finally,

Chapter 4 concludes the thesis study and its results.
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CHAPTER 2

PRELIMINARIES

In this chapter, the models and methodology that are used in this thesis will be in-

troduced. Firstly in Section 2.1, the exponential dispersion family (EDF), which is

one of the most important features of GLM, is introduced. In Section 2.2 LM, then

in Section 2.3 GLM and the main features that distinguish it from LM are explained.

Finally, the copula approach to consider the dependence between the claim frequency

and severity is discussed in Section 2.4.

2.1 Exponential Dispersion Family

The EDF consists of probability distributions whose probability density function has

a special form of:

fY (y; θ, ϕ) = exp

[
yθ − k(θ)

a(ϕ)
+ C(y, ϕ)

]
(2.1)

Here Y ∼ EDF(θ, ϕ) is the response variable, θ is the canonical parameter, ϕ > 0 is

the dispersion parameter, k(θ) is the cumulant function which is twice differentiable

with an invertible second derivative. In addition, every different choice of cumulant

function gives a different family of probability distribution.

Members of the exponential dispersion family can be either continuous distributions

like Gamma, or discrete distributions like Poisson.
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2.1.1 Mean and Variance of EDF

Let Y ∼ EDF, and ln fY (y; θ, ϕ) = l(y; θ, ϕ) =
[(
yθ − k(θ)

)
/a(ϕ)

]
+ C(y, ϕ) be the

log-likelihood function of Y.

Then, the mean of Y is found from the well-known relation:

E
[
∂

∂θ
l(y; θ, ϕ)

]
= 0. (2.2)

Since

∂

∂θ
l(y; θ, ϕ) =

∂

∂θ

(yθ − k(θ)

a(ϕ)
+ C(y, ϕ)

)
=

y − k′(θ)

a(ϕ)
,

(2.3)

then

E
[
∂

∂θ
l(y; θ, ϕ)

]
= E

[
Y − k′(θ)

a(ϕ)

]
=

E(Y )− k′(θ)

a(ϕ)

= 0.

(2.4)

This statement implies that the mean of Y is equal to the first derivative of the cumu-

lant function:

E(Y ) = k′(θ). (2.5)

Another well-known relation is:

E
[
∂2

∂θ2
l(y; θ, ϕ)

]
+ E

[
∂

∂θ
l(y; θ, ϕ)2

]
= 0. (2.6)

The second derivative of the likelihood function is

∂2

∂θ2
l(y; θ, ϕ) =

−k′′(θ)

a(ϕ)
, (2.7)

as
∂

∂θ
l(y; θ, ϕ) =

y − k′(θ)

a(ϕ)
. (2.8)
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Therefore,

E
[
−k′′(θ)

a(ϕ)

]
+ E

[(Y − k′(θ)

a(ϕ)

)2]
=

−k′′(θ)

a(ϕ)
+ E

[((Y − E(y)
)2

a(ϕ)2

)]
=

−k′′(θ)

a(ϕ)
+

Var(Y )

a(ϕ)2

= 0

(2.9)

is concluded as

Var(Y ) = a(ϕ)k′′(θ). (2.10)

2.1.2 Normal Distribution

Normal distribution is a continuous distribution which belongs to EDF. Although it

is the most common distribution in nature, it is barely seen in insurance since the

insurance data such as claim size, income, claim number, etc. naturally exhibit non-

negativity and high skewness. However, normal distribution is used while analyzing

the insurance data by applying a transformation to data to achieve normality. Normal

distribution is denoted by Y ∼ N(µ, σ2). Here µ indicates mean, and σ2 indicates

variance.

Probability density function of the normal distribution is;

fY (y;µ, σ
2) =

1√
2πσ2

exp

{
− (y − µ)2

2σ2

}
, −∞ < y < ∞. (2.11)

Then,

fY (y;µ, σ
2) = exp

[
ln

((
2πσ2

)− 1
2 exp

{
− (y − µ)2

2σ2

})]
,

= exp

[
−1

2
ln(2πσ2)− (y − µ)2

2σ2

]
,

= exp

[
−1

2
ln(2πσ2)− y2 − 2yµ+ µ2

2σ2

]
,

= exp

[
−1

2
ln(2πσ2)− y2

2σ2
+

yµ− 1
2
µ2

σ2

]
.

(2.12)
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The canonical parameter is µ, the dispersion parameter a(ϕ) is σ2, and the cumulant

function is k(θ) =
1

2
θ2. Finally, mean and variance are found as;

E(Y ) = k′(θ) = θ = µ, (2.13)

Var(Y ) = a(ϕ)k′′(θ) = σ21 = σ2. (2.14)

2.1.3 Poisson Distribution

Poisson is a distribution that belongs to EDF and is denoted by Y∼ Poisson(λ). Pois-

son as a discrete distribution is used to represent the probability of the number of

events. In this thesis, we use it to model the number of claims, in other words, fre-

quency. Both mean and variance are equal to λ and the probability density function

is

fY (y;λ) =
e−λλy

y!
. (2.15)

It can be written as

fY (y;λ) =
1

y!
exp{y ln(λ)− λ}

=
1

y!
exp{yθ − eθ}.

(2.16)

by taking ln(λ) = θ which shows that fY (y;λ) is a member of exponential fam-

ily. Here; the canonical parameter is ln(λ), the dispersion parameter ϕ is 1, and the

cumulant function is k(θ) = λ = eθ. Finally, mean and variance are found as;

E(Y ) = k′(θ) = eθ = λ, (2.17)

Var(Y ) = a(ϕ)k′′(θ) = 1eθ = λ. (2.18)

2.1.4 Gamma Distribution

Gamma is a continuous, right-skewed distribution that belongs to the exponential

family, defined only on positive numbers, and denoted by Y∼ Gamma (α, β). In

this thesis, we use it to model the claim amount, in other words, the severity. The
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probability density function is:

fY (y;α, β) =
βα

Γ(α)
yα−1e−βy

= exp
{
(α− 1) ln y − βy + α ln(β)− ln Γ(α)

}
, y > 0

(2.19)

After rearranging the equation as σ2 =
1

α
, and µ =

α

β
, the density function is:

fY
(
y;µ, σ2

)
= a(y;σ2) exp

{
− 1

σ2

(y
µ
− ln

y

µ
− 1
)}

, y > 0 (2.20)

where

a
(
y;σ2

)
= a(y; 1/λ) =

λλe−λ

yΓ(λ)
, y > 0. (2.21)

This shows that fY (y;µ, σ2) is a member of the exponential dispersion family. The

canonical parameter is − 1

µ
, the dispersion parameter ϕ is

1

α
, and the cumulant func-

tion is k(θ) = − ln
( 1
µ

)
= − ln(−θ). Finally, mean and variance are found as;

E(Y ) = k′(θ) = −1

θ
= µ =

α

β
, (2.22)

Var(Y ) = a(ϕ)k′′(θ) =
1

α

1

θ2
=

1

α
µ2 =

α

β2
. (2.23)

2.2 Linear Models

Both LM and GLM express the relationship between the mean response of an ob-

served variable Y , also called the response variable, and covariate matrix X via re-

gression parameters βis:

E[Y |X] = XTβ. (2.24)

Y is denoted by the matrix Y = {y1, y2, . . . , yn}T , and X is denoted by an n × p

matrix whose rows refer to different observations, and columns refer to different co-

variates. Lastly, β = {β1, β2, ..., βp}T is the matrix of regression parameters to be

estimated by the model, and µ = E[Y |X].

A LM is denoted by

Y = Xβ + ϵ. (2.25)
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Here, ϵ is the error term, normally distributed with zero mean and constant variance.

In addition to error term, Y also has normal distribution; Y ∼ N(µ, σ2).

The expected value of yi is expressed as;

yi = β0 + β1xi1 + ...+ βpxip = ηi. (2.26)

Here, η is the linear predictor and briefly expressed as η = XTβ. If we combine the

above-mentioned together;

µ = E[Y |X] = XTβ = η. (2.27)

2.3 Generalized Linear Model

GLM is a generalization of LM. Firstly, while LM describes the mean as a linear

function of covariates and regression parameters, GLM uses non-linear functions,

too. Secondly, unlike LM, the error term has not to be normally distributed in GLM.

Their distribution can be a member of the EDF. Also, LM can only model normally

distributed response variable Y , while GLM can model response variable which is

a member of the exponential dispersion family. This situation gives a more flexible

framework to insurance studies as most of the data in the insurance industry is not

normally distributed such as claim amount, claim number, etc.

While linear models are in the form of E[Y |X] = XTβ, GLMs are in the form of

g{E[Y |X]} = XTβ; g is a link function, which is monotonic and differentiable. It

determines the relation between η, the linear predictor, and µ, the expected value of

the response variable y.

g(E[Y |X]) = g(µ) = η = XTβ, (2.28)

which implies;

µ = g−1(η). (2.29)

Putting the above-mentioned together, we can show the structure of GLM as follows

[15];

µ = f(y) = exp
{yθ − k(θ)

a(ϕ)
+ c(y, ϕ)

}
, g(µ) = XTβ = η. (2.30)
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Table 2.1: Canonical Link Functions of Distributions
Distribution Link Function

Normal identity: η = µ

Poisson log: η = logµ

Gamma reciprocal: η = µ−1

2.3.1 Link Function

In LMs, the link function is always the identity function. However, in the case of

GLMs, it can be log, logit, inverse, reciprocal, or another function different from

identity. This relaxation in conditions of GLM has great benefits. For instance, Pois-

son distribution deals with counts, a positive data, implying that the mean µ is greater

than zero all the time. However, in the case of the identity function, as −∞ < η < ∞,

µ has to lie on the whole real line, as the identity link function implies that µ = η.

Therefore, the identity link function is not a convenient choice for Poisson distribu-

tion. On the other hand, the log-link function allows η to be less than zero while µ is

greater than zero since it is defined as η = logµ and implies that µ = eη. Therefore,

log-link is a more appropriate link function for Poisson distribution than the identity

function.

2.3.2 Canonical Link Function

If the link function is chosen as linear predictor η is equal to canonical parameter θ,

then it is called the canonical link. Canonical links for Normal, Poisson, and Gamma

distributions are given in Table 2.1. The canonical link function of the Normal distri-

bution is the identity function, that of the Poisson distribution is the log function, and

that of the Gamma distribution is the reciprocal function.

Although using canonical links for the model is generally intensely plausible in terms

of leading the desirable statistical properties, there may be cases in which non-canoni-

cal links are more suitable for the model, therefore the most suitable link should be

searched without using the canonical link directly.
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2.3.3 Maximum Likelihood Estimation

To determine the regression parameters βi of GLM, one of the most common methods

is maximum likelihood estimation (MLE). In this section how it works is explained.

As mentioned above, the density function of an EDF member is in the form;

fY (yi; θ, ϕ) = exp

[
yiθi − k(θi)

ai(ϕ)
+ C(yi, ϕ)

]
(2.31)

The likelihood is denoted by;

L(θ, ϕ; yi) =
n∏

i=1

fY (yi; θ, ϕ)

=
n∏

i=1

exp

[
yiθi − k(θi)

ai(ϕ)
+ C(yi, ϕ)

]
.

(2.32)

By taking the logarithm of likelihood, log-likelihood is obtained;

l(θ, ϕ; yi) = lnL(θ, ϕ; yi)

= ln
n∏

i=1

fY (yi; θ, ϕ)

=
n∑

i=1

ln fY (yi; θ, ϕ)

=
n∑

i=1

ln exp

[
yiθi − k(θi)

ai(ϕ)
+ C(yi, ϕ)

]
=

n∑
i=1

[
yiθi − k(θi)

ai(ϕ)
+ C(yi, ϕ)

]
.

(2.33)

Definition 1 (Invariance Property). If n× 1 vector v̂ = (v̂1, ..., v̂n) is the MLE of the

vector v = (v1, ..., vn), then f(v̂) is the MLE of f(v) for a function f.

We show that k′(θ) = µ. Let define a function t as t(θ) = k′(θ) = µ. By invariance

property, if we know MLE of θ, then we know MLE of t(θ) = k′(θ) = µ.

The relationship between µ, η, θ, and β is as follows;

µ = k′(θ) = t(θ) = g−1(η) = g−1{XTβ}. (2.34)
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Then,

θ = t−1(µ) = t−1[g−1(η)] = t−1[g−1(XTβ)]. (2.35)

From these equations, we conclude that;

k(θ) = k
(
t−1[g−1(XTβ)]

)
. (2.36)

According to the above equations, log-likelihood can be written as;

l(β; θ, y) =
n∑

i=1

[
yiθi − k(θi)

ai(ϕ)
+ C(yi, ϕ)

]

=
n∑

i=1

[
yit

−1[g−1(XTβ)]− k
(
t−1[g−1(XTβ)]

)
ai(ϕ)

+ C(yi, ϕ)

]
.

(2.37)

Since the points where the derivative of the function is equal to zero are the maximum

and minimum points, regression parameters βis are found by solving

∂2

∂β2
i

l(β; θ, y) = 0 (2.38)

equation system for all βis.

A function has its maximum at a point if the second derivative of the function is

less than zero at that point. Therefore, equation
∂2

∂θ2
l(β; θ, y) < 0 has to be satisfied

for all βis as we seek maximums.

2.3.4 Independent-GLM

Let Ni be the claim count, for a policy i = 1, 2, . . . , n, and Yij be the claim amounts

for j = 1, . . . , Ni. Then the aggregate loss is denoted by;

Si =

Ni∑
j=1

Yij, (2.39)

and mean claim size is denoted by;

Ȳi =
1

Ni

Ni∑
j=1

Yij. (2.40)

Equation 2.40 shows that average severity depends on Ni. Then the total loss is;

Si =

Ni∑
j=1

Yij = Ni
1

Ni

Ni∑
j=1

Yij = NiȲi. (2.41)

15



shows that loss cost is the multiplication of the claim severity and claim frequency.

The frequency and severity GLMs are constructed to estimate the expected total loss,

E[Si]. However, to simplify the GLM structure, common practice is assuming the

claim frequency, Ni, and mean claim severity, Ȳi, are independent. Under the as-

sumption of independence, the total severity is computed as [15];

E[Si] = E[Ni]E[Ȳi]. (2.42)

This assumption allows us to easily construct and combine frequency and severity

GLMs.

Let X = (x1, x2, . . . , xn) be the covariates, µ1 and µ2 be means, g1 and g2 be the

link functions, β1 and β2 be unknown regression parameter vectors for the frequency

and severity, respectively. Then, by the Equation 2.28, the marginal GLM for fre-

quency is:

gN(E[Ni|Xi]) = g1(µiN) = ηiN = XT
iNβN ⇒ µiN = g−1

N (XT
iNβN), (2.43)

and the marginal GLM for severity is:

gY (E[Ȳi|Xi]) = gY (µiY ) = ηiY = XT
iY βY ⇒ µiY = g−1

Y (XT
iY βY ). (2.44)

Then, the total claim cost is:

E[Si|Xi] = E[Ni]E[Ȳi]

= µiNµiY

= g−1
N (XT

iNβN)g
−1
Y (XT

iY βY ).

(2.45)

Taking g as a log-link, we have:

ln(E[Ni|Xi]) = ln(µiN) = ηiN = XT
iNβN ⇒ µiN = exp(XT

iNβN), (2.46)

and

ln(E[Ȳi|Xi]) = ln(µiY ) = ηiY = XT
iY βY ⇒ µiY = exp(XT

iY βY ). (2.47)

Then the total claim cost is:

E[Si|Xi] = µiNµiY

= exp(XT
iNβN) exp(X

T
iY βY )

= exp(XT
iNβN +XT

iY βY ).

(2.48)
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2.3.5 Dependent-GLM

As introduced earlier, there are different approaches to consider the dependency be-

tween claim frequency and claim severity. In this chapter, the approach of Garrido in,

[9] a conditional GLM is used. By taking claim count as a covariate in the severity

GLM, mean severity is assumed as a function of frequency. Conditional severity is

denoted by E[Ȳi|Xi, Ni], and the GLM is

g{E[Ȳi|Xi, Ni]} = g{µ̃iY }

= X̂T
iY β̂Y +NiβD.

(2.49)

Since covariate matrix XiY , mean µ and the regression parameters βis are different

for the dependent-GLM than the independent-GLM, we denote µ with a tilde and the

others with hats. Again, taking g as a log-link;

ln{E[Ȳi|Xi, Ni]} = ln{µ̃iY }

= X̂T
iY β̂Y +NiβD.

(2.50)

and the conditional mean severity is;

E[Ȳi|Xi, Ni] = exp{X̂T
iY β̂Y +NiβD}

= exp{X̂T
iY β̂Y } exp{NiβD}

= µ̂iY exp{NiβD}.

(2.51)

Then, the expected total claim is;

E[Si] = E[NiȲi]

= E
[
NiE[Ȳi|Ni]

]
= E

[
Niµ̂iY exp{NiβD}

]
= µ̂iYM

′
Ni
(βD).

(2.52)

Here, M ′
Ni
(βN) is the derivative of the moment generating function of Ni at the point

βN .

2.4 Copula

Copulas, firstly introduced by Sklar in [20], are multivariate distribution functions

that are used to couple or connect two marginal uniform distribution functions and
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are widely used in finance, statistics, economics, etc. to model the dependency be-

tween variables. Its first use in actuarial sciences was when Song used Gaussian

copula and Kramer et al. used it to link the marginal distributions of claim frequency

and claim severity, and construct a joint model [3, 12].

There are two main copula families; the Archimedean family such as Clayton, Gum-

bel, and Frank copulas, and the elliptical family such as Gaussian and t copulas.

Archimedean copulas are generally used for similar and large numbers of variables

and have only a single parameter. This parameter expresses the strength of the depen-

dence or the degree of the spread. Archimedean copulas can model only the data that

has a positive correlation, and the rotated versions of them can model the negatively

correlated data, too. Elliptical copulas are defined for elliptical distributions, and they

are radially symmetric [13].

Definition 2 (Copula). Let u = (u1, u2), and v = (v1, v2). Then C is bivariate copula

defined from [0, 1]× [0, 1] to [0, 1]. which satisfies:

(i) For every u, v in [0, 1]:

C(u, 0) = 0 = C(0, v) and

C(u, 1) = u and C(1, v) = v;

(ii) For every u1, u2, v1, v2 in [0, 1] such that u1 ≤ u2 and v1 ≤ v2:

C(u2, v2)− C(u2, v1)− C(u1, v2) + C(u1, v1) ≥ 0 is satisfied.

Copula can be interpreted as a bivariate cumulative distribution function that couples

two marginal functions in one distribution, and with the help of Sklar’s theorem, can

be defined by the distribution functions F and G instead of u and v.

Theorem 1 (Sklar’s Theorem). Let F and G be the marginal functions, and H be the

joint distribution function of them. Then there exists a copula C which satisfies

H(x, y) = C(F(x), G(y)),

with x ∈ F−1([0, 1]) and y ∈ G−1([0, 1]). Conversely, If F and G are distribution

functions and C is a copula function, then H is a joint distribution function of F and

G.
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Table 2.2: Functions of Copula Families
Copula Family Copula Function C(u, v|θ) Range of θ

Gaussian Φ2(Φ
−1(u),Φ−1(v)|θ) θ ∈ (−1, 1)

Frank −1

θ
log

(
1 +

(
e−θu − 1

) (
e−θv − 1

)
e−θ − 1

)
θ ∈ R\{0}

Gumbel exp
{
−
(
(−(logu)θ + (−logv)θ

) 1
θ

}
θ ∈ [1,∞)

Clayton
(
u−θ + v−θ − 1

)− 1
θ θ ∈ (0,∞)

In addition, the copula function C is unique if both F and G are continuous. If one or

two of them are not continuous, then it is unique in the range of F and G only.

According to the properties of the marginal distributions, different copula families

are used to combine them, like Gaussian, Gumbel, Clayton, and Frank. A brief infor-

mation about these copulas can be found in Table 2.2. Here, θ changes for each copula

family, and is related to Kendall’s τ of that family, which is an association measure.

To choose the most convenient copula family, the properties of data should be taken

into account. For instance the dependence structure, the tail behavior, etc.

2.4.1 The Joint Density Function

A copula function is used to link the marginal distributions of the claim number and

the mean claim amount, namely the results of the frequency GLM and the severity

GLM to get aggregate loss. Although the claim amount is a continuous variable, the

claim number is discrete. Therefore, the copula function is arranged to contain a dis-

crete random variable and a continuous random variable.

Let X1 be a continuous and X2 be a discrete random variable. The joint distribu-

tion FX1,X2|θ is expressed as;

FX1,X2|θ = C(FX1(x1), FX2(x2)|θ). (2.53)
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Here, C is the copula which depends on the parameter θ. The joint density function

of X1 and X2, denoted by f(x1, x2), is defined as
∂

∂x1

P (X1 ≤ x1, X2 = x2) and

satisfies;

∂

∂x1

P (X1 ≤ x1, X2 = x2) (2.54)

=
∂

∂x1

P (X1 ≤ x1, X2 ≤ x2)−
∂

∂x1

P (X1 ≤ x1, X2 ≤ x2 − 1) (2.55)

=
∂

∂x1

C(FX1(x1), FX2(x2)|θ)−
∂

∂x1

C(FX1(x1), FX2(x2 − 1)|θ) (2.56)

= fX1(x1)
[
(D1(FX1(x1), FX2(x2), θ))−D1(FX1(x1), (FX2(x2 − 1)|θ)

]
, (2.57)

where D1(u1, u2) =
∂

∂u1

C(u1, u2).

2.4.2 Copula-GLM

To connect the claim frequency and severity with a copula function, we propose that

their marginal distributions are first modeled via GLM, and then their joint distribu-

tion is obtained using a copula function. In Section 2.4.1, the construction of the

joint density function for two random variables is explained. To get the dependent

copula model for the claim severity and the frequency, continuous random variable

X1 is considered as the claim severity distribution obtained from severity GLM, and

discrete random variable X2 is regarded as the claim frequency distribution obtained

from the frequency GLM in Equation 2.53.

FY,N |θ = C(Gamma Severity GLM,ZTP Frequency GLM |θ) (2.58)

After finding the joint density function, the regression parameters are determined

using maximum likelihood estimation that is explained in Section 2.3.3. (See [8,

21]).
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CHAPTER 3

APPLICATION: MTPL INSURANCE

This chapter presents the application of the models described in the previous chapter

to MTPL the claim number and the claim severity insurance data. Firstly in Chapter

3.1, the data and its features are introduced. In 3.2 the independent-GLM is built,

and in 3.3 the dependent-GLM is constructed by adding the number of claims as a

covariate to independent GLM. Then, a copula function is applied to independent-

GLM and get the copula-GLM in 3.4. Finally, the results of these three models are

compared in 3.5 and the utilization of the models in premium calculation is discussed

in 3.6.

3.1 Data Description

An MTPL insurance data, dataCar, is used from the R package insuranceData [22],

which includes one-year vehicle insurance policies between 2004 and 2005, and due

to our best knowledge, there is no study in the literature that employs this dataset for

such comparative models.

Data originally consists of 67,856 policies, and all claims are independent of each

other. Duplicate rows and the rows whose vehicle value is 0 are removed as they are

thought to be input errors, and 67,358 rows are left. The variables that are evaluated

to build the independent and dependent GLMs are; vehicle value, exposure, number

of claims, total claim amount, vehicle body type, vehicle age, gender, area, and driver

age. In Table 3.1, these variables and their subcategories and intervals can be seen. A
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Table 3.1: Variables and Their Categories / Intervals
Variable Categories
Total Claim Amount 0 - 55,922.13
Claim Number 1, 2, 3, 4
Exposure (0, 1]
Driver Age 1, 2, 3, 4, 5, 6
Vehicle Age 1, 2, 3, 4
Gender Female, Male

Vehicle Body

BUS, CONVT, COUPE,
HBACK, HDTOP, MCARA,
MIBUS, PANVN, RDSTR,
SEDAN, STNWG, TRUCK,
UTE

Area A, B, C, D, E, F
Vehicle Value 0.18 - 10.360 in unit of 10,000

snapshot of the MTPL dataset is presented in Appendix A.

Exposure and vehicle value are continuous, vehicle body type, vehicle age, gender,

area, and driver age are factor covariates. By dividing the total claim amount by the

claim number, we calculate the mean claim amount of each policy. The total claim

amount varies between $0 and $55,922.13, while the claim number varies between 0

and 4. The average claim amount per policy varies between $0 and $55,922.13, and

exposure varies between 0 and 1. Driver age has six, vehicle age has four, gender has

two, and vehicle body has thirteen categories, as shown in Table 3.1. Vehicle body

types BUS, CONVT, HDTOP, MCARA, MIBUS, PANVN, and RDSTR are banded

as OTHER, and seven categories are left. In addition, A, B, E categories of area are

banded and named ABE; and C, D, F categories are banded and named CDF. Thus,

there are two categories left. These are made by grouping the variables that are too

few in number to give significant results in the model. As a result, the subcategories

of the data become large enough to give meaningful results in the model and become

significant in terms of modeling. When making these bandings, whether the variables

have similar characteristics should be taken into consideration. However, since this

data set does not disclose this information, we can only consider their numbers. Due

to these limitations of the data, our main goal in this study is not constructing the best

possible model, but determining the effect of dependency on independent GLM, and

the differences between constructing this dependency by only using GLMs, and by
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taking advantage of copulas.

(a) Vehicle Value (b) Vehicle Age

(c) Gender (d) Driver Age

Figure 3.1: Variable Distributions

Distributions and descriptive statistics of the variables are presented in the following

figures and tables. In Figure 3.1a, we see that the vehicle value distribution is right-

skewed, which indicates that most of the portfolio consists of mid-priced vehicles.

In Figure 3.1b, all four vehicle age categories contain similar amounts of vehicles.

Similarly, there is no striking difference between gender groups regarding number of

policies (Figure 3.1c). Finally in Figure 3.1d, we can see that there is a concentration

of middle-aged drivers.
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(a) Vehicle Body Type
Before Banding

(b) Vehicle Body Type
After Banding

(c) Area Before Banding (d) Area After Banding

Figure 3.2: Variable Distributions Before and After Banding

In Figure 3.2a, we can see the distribution of vehicle body types of the original data,

and in Figure 3.2b we can see the distribution of vehicle body types after we band

the data. In Figure 3.2c, there is the distribution of areas of the original data, while

Figure 3.2d has the distribution of areas after the banding procedure.

(a) Claim Number Including Zero Claims (b) Claim Number Zero Claims Truncated

Figure 3.3: Claim Number Distribution
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Figure 3.4: Mean Claim Amount per Claim Number

The distribution of claim numbers including the zero-claims can be seen in Figure

3.3a. After excluding the zero-claims, we can see there is an accumulation in claim

number 1 and a dramatic decline in the claim number from 1 to 4 (Figure 3.3b).

In Figure 3.4, mean claim amounts per claim number can be seen. We can say that,

there is a noticeable decrease in mean claim amount as the number of claims in-

creases. This situation can also be seen with numerical data in Table 3.6. The distri-

bution of the mean claim amount can be seen in Figure 3.5. The data is right-skewed,

which means low claim amounts outnumber high claim amounts.

Some descriptive statistics of the data including and excluding zero claims are given

in Table 3.2, and in Table 3.3 respectively. Since most of the data is stacked at zero,

the first quartile, median, and third quartile of both the claim number and mean claim

amount are zero, and means are very low; 0.0731 for the claim number, and $131.86

for the mean claim amount (Table 3.2). When zeros are excluded, the data is stacked

at one. In this case, the first quartile, median, and third quartile of the claim num-

ber are one, and the mean is 1.0673. For the mean claim amount, the values are

again higher compared to data including zero; the first quartile is $353.77, median is

$711.51, mean is $1913.259, and the third quartile is $1948.48 (Table 3.3).

The number of policies according to claim numbers and percentages to all data are
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Figure 3.5: Mean Claim Distribution

Table 3.2: Descriptive Statistics of Data Including Zero Claims
Variable Claim Number Mean Claim Amount ($)
Minimum 0 0

1st Quartile 0 0

Median 0 0

Mean 0.0731 131.86

3rd Quartile 0 0

Maximum 4 55,922.13

Variance 0.0778 1,053,308

Skewness 4.0534 18.39

Table 3.3: Descriptive Statistics of Data Excluding Zero Claims
Variable Claim Number Mean Claim Amount ($)
Minimum 1 200

1st Quartile 1 353.77

Median 1 711.51

Mean 1.0673 1913.26

3rd Quartile 1 1948.48

Maximum 4 55,922.13

Variance 0.0733 11,966,112

Skewness 4.342 5.33
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Table 3.4: Amounts of Policies per Claim Number
Claim Number Number of Policies Percentage

0 62743 93.15
1 4326 6.42
2 269 0.40
3 18 0.03
4 2 0.00

Table 3.5: Contingency Table
Mean Claim Number of Claims
Amount ($) 0 1 2 3 4

0 - 5000 62743 3919 254 18 2
5000 - 10000 0 274 14 0 0

10000 - 15000 0 74 1 0 0
15000 - 20000 0 27 0 0 0
20000 - 25000 0 15 0 0 0
25000 - 30000 0 8 0 0 0
30000 - 35000 0 5 0 0 0
35000 - 40000 0 1 0 0 0
40000 - 45000 0 0 0 0 0
45000 - 50000 0 2 0 0 0
50000 - 55000 0 0 0 0 0
55000 - 60000 0 1 0 0 0

given in the Table 3.4. 93.15% of policies resulted in no claim, and the vast majority

of the policies with claim has one claim only. The distribution of the number of

policies according to the number of claims and the amount of claim is shown in the

Table 3.5. It is clear from the table that majority of the policies have zero claim, and

most of the policies whose claim number is different from zero resulted in one claim.

Non-zero claim amounts are collected in the range of 0-25000 and concentrated in

the range of 0-5000.

Distribution of the mean of the policies claim amounts according to claim numbers

are given in Table 3.6. There are 4615 policies with claims, which is 6,85% of the

whole data, and as the number of claims increases, the mean amount of claims per

claim decreases.

Pearson’s and Spearman’s correlation coefficients between the claim frequency and

severity of the data containing zero claims and the data with zero claims removed are
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Table 3.6: Mean Claim Amounts per Claim Number
Claim Number Mean of Claim Amounts in $

0 0
1 1943.214
2 1475.758
3 1341.34
4 1109.745

Table 3.7: Correlation Coefficients of the Data
Pearson’s Spearman’s

Data with Zero Claims 0.4815 0.999
Data without Zero Claims -0.0331 0.045

given in Table 3.7. According to these correlation coefficients, frequency and severity

are highly positively correlated in the data with zero claims, and one of the main rea-

sons for this strong correlation is the accumulation of zeros. If we exclude the zeros

and consider only positive claim number amounts, correlation coefficients are quite

low compared to the ones belonging to data with zero claims. The negative value of

Pearson’s coefficient indicates that there is a negative correlation between the claim

number and the mean claim amount per policy.

Finally, data is randomly separated into two; 80% (53,887 policies) as train data to

construct models, and 20% (13,471 policies) as test data to test constructed models.

3.2 Independent-GLM

In the independent model, two GLMs are constructed under the assumption of the

independence of the claim frequency and severity; one for claim number Ni, in other

words, frequency, and the other one for mean claim amount Ȳi, in other words, sever-

ity. Models are constructed in R using function glm from the package stats [16].

Poisson distribution is used for modeling randomly occurring count data in a time

interval. That is why it is a convenient choice for the frequency model; it is the

number of claims during the period the policy is valid, which is generally one year.

Another requirement for applying Poisson distribution is the independence of obser-
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vations, which is correct for claim number data, too. Namely, the number of claims

caused by different and independent policies are independent of each other. Besides,

Poisson distribution has only one parameter to estimate, which makes it handy to ap-

ply. Due to all these features, Poisson distribution is widely used for claim frequency

modeling [4, 15].

As the accumulation at zero claims manipulates the data and affects the dependency

structure of the model (see Table 3.7), it becomes very difficult to analyze the prop-

erties of non-zero claims and construct a model compatible with non-zero claims.

Therefore, to better analyze the characteristics of the non-zero data and build a more

consistent model, the zero-truncated Poisson distribution that excludes zeros is used

for frequency GLM.

Gamma distribution is a skewed, always positive and continuous distribution. These

features are extremely suitable for the claim amount data which is highly skewed

and has continuous and positive values. Due to this suitability, the Gamma distribu-

tion is the most preferred distribution for the severity modeling [4, 15]. In addition,

goodness of fit test is made, and the p-value is 0.15 which is greater than 0.05, thus

indicates that the hypothesis is valid and the severity data is coherent with the Gamma

distribution.

Another common practice is using the log link function for both of the models, as

it is the link function that gives the best results, and we prefer it for both of the mod-

els [9]. Note that the log link is the canonical link of Poisson distribution, but not

Gamma distribution.

The data contains policies with a duration shorter than a policy year, for example,

6 months. This feature in the data set is given with an exposure variable, that repre-

sents the duration of the policy in terms of years. For instance; exposure is equal to

1 means that policy is in force for a year, while 0.25 means a quarter of a year, etc.

Since a policy with a shorter duration is less likely to cause damage, exposure has to

be adjusted while constructing a model for frequency. To make this adjustment, an

offset is used for the exposure variable in the frequency model by taking its regression
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coefficient 1, to consider it as a fixed effect. In this way, all observations are taken

into account in a congruent way. As the severity model is constructed for the mean

claim amount per occurrence, Ȳi, the exposure amount does not affect it in a fixed

proportion, that is adjusting severity GLM for the exposure by taking it as an offset is

not needed.

3.2.1 Frequency GLM

If we denote exposure as ei, ln(ei) is the offset term, and GLM for claim frequency

with zero-truncated Poisson is constructed as follows:

Ni ∼ ZTP(µiN) (3.1)

ln(
µiN

eN
) = XT

iNβN

⇒ ln(µiN) = ln(ei) +XT
iNβN

⇒µiN = ei × exp(XT
iNβN)

(3.2)

Firstly, we construct a model with all the covariates, called full model, as follows;

ln(E[Ni|Xi]) = ln(ei) + β∗
N,0 + β∗

N,1vehicle value

+ β∗
N,2vehicle body type+ β∗

N,3vehicle age

+ β∗
N,4gender + β∗

N,5area+ β∗
N,6driver age

(3.3)

As the gender, area, and vehicle age covariates have significance level above %10,

they are excluded from the model, and the final model for ln(E[Ni|Xi]) is;

ln(µiN) = ln(ei) + βN,0 + βN,1vehicle value

+ βN,2vehicle body type+ βN,3driver age
(3.4)

which implies that E[Ni|Xi] is equal to;

µiN = ei × exp{βN,0 + βN,1vehicle value+ βN,2vehicle body type

+ βN,3driver age}
(3.5)

For the regression parameters, significance levels of covariates and the other coef-

ficients of the full and main model see Appendix B.1, B.2. AIC of the full model
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(Equation 3.3) is 1834.914, and the main model (Equation 3.4) is 1827.184. Since

the AIC of the main model is less than the AIC of the full model, the main model

is more appropriate than the full model. Moreover, the mean frequency estimated by

this model is 1.05 while the real mean is 1.068. Detailed review on the results is made

in the Section 3.5.

3.2.2 Severity GLM

GLM for the claim severity with Gamma distribution is constructed as follows:

Ȳi ∼ Gamma(µiY,, v
2) (3.6)

ln(µiY ) = XT
iY βY

⇒µiY = exp(XT
iY βY )

(3.7)

As in the frequency GLM, we first construct a model with all the covariates, which

we refer to as the full model, and eliminate the non-significant covariates. The full

model is as follows;

ln(E[Ȳi|Xi]) = β∗
Y,0 + β∗

Y,1vehicle value+ β∗
Y,2vehicle body type

+ β∗
Y,3vehicle age+ β∗

Y,4gender + β∗
Y,5area

+ β∗
Y,6driver age.

(3.8)

After eliminating the covariates whose significance level is greater than 10%; vehicle

value, vehicle body type, and vehicle age, we have what we call the main model for

ln(µiY ) is equal to;

ln(µiY ) = βY,0 + βY,1gender + βY,2area+ βY,3driverage (3.9)

which implies that E[Ȳi|Xi] is equal to;

µiY = exp{βY,0 + βY,1gender + βY,2area+ βY,3driver age}. (3.10)

For the regression parameters, significance levels of covariates and the other coeffi-

cients of the full and main model see Appendix B.3, B.4. The AIC of the full model

is 63,712.24, and the main model is 63,717.26. Although the AIC of the full model is

slightly lower than the main model, we select the main model with fewer variables to
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Table 3.8: Correlation Coefficients for Residual Frequency and Severity
Spearman’s Pearson’s Kendall’s

-0.211 -0.077 -0.17

ease the computation process, since the difference in the AIC is very small. In addi-

tion, the mean severity estimated by this model is 133.05 while the real mean severity

is 124.46. The models are examined in detail in Section 3.5.

3.2.3 Compound Model

The AIC of the compound model is 65,544.44, found by summing the AICs of the

frequency and severity models. The total loss per policy is 141.86 while the real total

loss id 131.37. This informationis used to compare this model with dependent GLM

and copula models in Section 3.5.

3.2.4 Dependency Between Residuals of Independent-GLM

To investigate the dependence in the variables, we compute the GLM residual values

for the frequency and severity models. As can be seen in Table 3.8, there exists a

negative correlation between the claim number and the mean claim amount as in the

original data. It is clear from here that, after modeling the frequency and the severity

independently we still have a dependence on the residual which is not considered by

the model.

Since total claim estimates are essentially used for the premium estimates, which

directly affect the sustainability of the insurance company, ignoring this dependence

in the model may result in less accurate premium estimation. Therefore, this shows

that we need to incorporate the dependence in the GLM model and leads to the con-

struction of the dependent model in Section 3.3.
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3.3 Dependent-GLM

In this section, we include dependency into the independent-GLM by assuming the

claim mean is a function of the claim number. We will provide this by adding

the claim number into severity GLM as a covariate. For the same reasons as the

independent-GLM, and for ensuring the consistency between the independent-GLM

and dependent-GLM, the Poisson distribution is used for the frequency, and the Gam-

ma distribution is used for the severity again. As described in Section 2.3.5, depen-

dency is ensured by only the severity model, therefore, there is no change in the

frequency model.

3.3.1 Severity GLM

In this model, the claim number is added to severity GLM as a covariate to construct

dependency between frequency and severity.

Ȳi ∼ Gamma(µ̂iY , v
2) (3.11)

ln(µ̂iY ) = X̂T
iY β̂Y +NiβD

⇒µ̂iY = exp(X̂T
iY βY +NiβD)

(3.12)

As above, firstly the full model is built, and then significant covariates are chosen to

build the main model;

ln(E[Ȳi|Xi, Ni]) = β̂Y,0 + βDNi + β̂Y,1vehicle value

+ β̂Y,2vehicle body type+ β̂Y,3vehicle age

+ β̂Y,4gender + β̂Y,5area+ β̂Y,6driver age

(3.13)

The same covariates are found insignificant as independent-GLM; thus the final model

of ln(E[Ȳi|Xi, Ni]) is;

ln(µ̂iY ) = β̂Y,0 + βDNi + β̂Y,1gender + β̂Y,2area+ β̂Y,3driver age (3.14)

which implies that E[Ȳi|Xi, Ni] is equal to;

µ̂iY = exp{β̂Y,0 + β̂Y,1gender + β̂Y,2area+ β̂Y,3driver age+ βDNi}. (3.15)
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In this dependent model, the significance of the number of claims, Ni, is quite high,

showing that it is a highly significant covariate supporting the dependence. For the

regression parameters, the significance levels of covariates, and the other coefficients

of the full and main model see Appendix B.5,B.6. The AIC of the full model is

63,584.05, and the main model is 63,589.28. Although the AIC of the full model is

slightly lower than the main model, we can select the simple one as the differences

are very few, and using a simple model is more beneficial. The mean severity esti-

mated by this model is 127.67 while the real mean severity is 124.46. for detailed

comparison, see Section 3.5.

3.3.2 Compound Model

The AIC of the dependent-GLM is found by summing the AICs of the frequency

GLM and the severity GLM, and equal to 65,416.46. The estimated total loss per pol-

icy is 136.06 while the real total loss is 131.37. This information is used to compare

this model with dependent GLM and copula models in Section 3.5.

3.4 Copula Model

To build the copula-GLM, we use the independent frequency and severity GLMs

constructed in Section 2.3.4. To incorporate the copula to these GLMs, we use Cop-

ulaReg and VineCopula packages in R [2, 18].

As mentioned in Section 2.4, there are two different copula families; Archimedean

and elliptical. First we have to choose which copula family to use. To decide, the

dependence structure between the claim number and the mean claim amount is exam-

ined (Figure 3.4) and it is observed that there is a negative relationship between them;

as the number of claims per policy increases, the average claim amount decreases.

The Archimedean family, namely Gumbel, Frank and Clayton copulas cannot be used

with data that has a negative relationship, on the other hand, the elliptical family is

a quite convenient choice for this type of data, and Gaussian copula is widely used

in claim amount calculations to link claim frequency and severity [3]. In addition,
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R function BiCopSelect from the package VineCopula is used to suggest the most

appropriate copula function for the data. It fits 36 different copula functions to the

dataset, and the results based on both AIC and BIC shows that, the Gaussian copula

is the best fitting one. Therefore, the Gaussian copula is preferred to construct the

copula-GLM.

The AIC of the compound model is 65474.82, the mean frequency is 1.066, and the

mean severity is 127.72. Finally, the estimated claim per policy is 136.13. This infor-

mation is used to compare this model with the independent and dependent GLMs.

3.5 Model Evaluation

In this section, the results of the independent-GLM, the dependent-GLM, and the

copula-GLM are firstly compared both by AIC values and real data values. Secondly,

the means of the frequency model, the severity model, and the compuond model re-

sults are compared with the means of the real data, which are shown in Tables 3.10,

3.11, and 3.12. As mentioned in Section 3, we split the data into two parts as 80%

of it as train data to construct the models, and 20% of it as the test data to test the

accuracy of the model. In this section, we use this test data to apply the models, and

calculate the real data results.

Firstly, the AICs of the models are compared. As seen from the Table 3.9, the highest

AIC belongs to independent-GLM, which indicates that it is the model with the lowest

consistency among them. On the other hand, according to the AIC, dependent-GLM

is a slightly better choice compared to the copula-GLM as the AIC of the dependent-

GLM is less than the AIC of the copula-GLM (See [14, 1]. The same holds for BIC

too. According to BIC, the dependent-GLM is the most accurate model while the

second is copula-GLM and the least accurate one is the independent-GLM.

When we compare the mean frequency results, it is seen that the copula-GLM gives

the most real-like results, which is 0.19% less than the real data. The frequency esti-

mations for the independent-GLM and dependent-GLM are the same since they have

the same frequency GLM, and it is 1.69% less than the real average frequency.
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Table 3.9: AIC and BIC of Models
Model AIC BIC

Independent-GLM 65544.44 65681.35
Dependent-GLM 65416.46 65559.60

Copula-GLM 65474.82 65611.73

Table 3.10: Mean Estimations of Frequency Models
Frequency Model Value % of Deviation

Real Value 1.068 -
GLM 1.05 1.69%

Copula Model 1.066 0.19%

Table 3.11: Mean Estimations of Severity Models
Severity Model Value % of Deviation

Real Value 124.46 -
GLM of Independent Model 133.05 6.9%
GLM of Dependent Model 127.67 2.58%

Copula Model 127.72 2.61%

Table 3.12: Loss Estimation of Models
Compound Model Mean Loss Total Loss % of Deviation

Real Data 131.37 1,769,655 -
Independent-GLM 141.86 1,910,993 7.99%
Dependent-GLM 136.06 1,832,897 3.57%

Copula-GLM 136.14 1,833,887 3.63%
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If we look at the mean severity, the dependent-GLM and the copula-GLM give very

close results, however dependent-GLM is slightly better than the copula-GLM. The

dependent-GLM is 2.58% higher from the real data while the copula-GLM is 2.61%

higher. On the other hand, the prediction of the independent-GLM is much higher

than the actual data, which is 6.9%.

Finally, if we compare the estimated total claims of these models, again the dependent-

GLM and the copula-GLM give fairly close results compared to the independent-

GLM, while the dependent-GLM is slightly better than the copula-GLM. Independent-

GLM is 7.99%, dependent-GLM is 3.57%, and the copula-GLM is 3.63% higher than

the real data.

As all the covariates have different significance levels and coefficients in the three

models, the results of the models change. For significance levels and coefficients see

Appendix B. According to the results, it is remarkably obvious that the independent

model deviates from the real data much more than the other models. Therefore, a

dependent model should be preferred. However, as the dependent-GLM and copula-

GLM give quite close results, which one performs better would vary according to

the dependence structure inherent in the specific dataset to be modeled. Therefore,

examining both of them on the dataset to be modeled to see which one gives better

results and then proceeding with the more accurate one would be the most convenient

method.

3.6 Utilization of Models

In this section, premiums of all the three models are calculated according to the ex-

pected value principle and the standard deviation principle, and then the results are

compared.

Where P is the pure premium for a policy, the random variable X is the claim size,

E[X] is the expected claim, and θ is the safety loading which is always non-negative.
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Table 3.13: Premium Calculations
Expected Premium Standard Deviation

Principle Principle
Independent-GLM 141.86(1 + θ) 141.86 + 551.01θ

Dependent-GLM 136.06(1 + θ) 136.06 + 520.57θ

Copula-GLM 136.14(1 + θ) 136.14 + 331.28θ

The expected value principle for premium is expressed as:

PX = (1 + θ)E[X],

and the standard deviation principle for premium is denoted by:

PX = E[X] + θ
√
Var[X].

According to these information, the expected premiums calculated by the expected

value principle and the standard deviation principle for the independent-GLM, the

dependent-GLM and the copula-GLM is given in Table 3.13.

The ranking of the premiums does not change depending on θ in the expected value

principle, on the other hand, the ranking changes depending on theta in the standard

deviation principle. For instance, assuming θ = 0.01, the independent-GLM has the

highest price with 147.37, the second is the dependent-GLM with 141.27, and the

cheapest one is the copula-GLM with 139.45. On the other hand, assuming θ =

0.0001, the independent-GLM is the highest one again which is 141.92, however

in this case the second one is the copula-GLM which is 136.17, and the cheapest

one is the dependent-GLM with 136.11. Therefore, companies should choose the

best pricing model, premium principle and the safety loading combination for them

according to the features of their portfolio.
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CHAPTER 4

CONCLUSION

The common practice of the insurance industry on non-life insurance pricing is mod-

eling the claim frequency and severity separately using GLM. Assuming these two

are independent, the total loss is computed by simply multiplying the estimations of

severity and frequency models. Although the independence assumption simplifies

the model and enables it to run in a shorter time, it ignores the dependence-sensitive

features of the model and it may cause a deviation from an accurate prediction. To

prevent this disadvantage, models that take dependence between the claim frequency

and severity into account have been proposed. This is needed because determining

accurate premiums is becoming increasingly important both for the company’s re-

serve studies and for compliance with criteria such as Solvency and IFRS.

One of these dependent models, dependent-GLM, provides dependence by putting

the claim number variable to marginal severity GLM as a covariate of that model. In

other words, the amount of claims is a function that varies depending on the number

of claims. Furthermore, the significance of the number of claims is quite high in the

severity model showing that it is a highly significant covariate supporting the depen-

dence.

The second dependent model that is constructed in this thesis is the copula-GLM.

In this model, after constructing the marginal frequency and severity GLMs, they are

linked to each other with the help of a copula function, and the new regression coeffi-

cients that take into account the dependence for the frequency and severity GLMs are

obtained.
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By investigating the MTPL insurance data in the application section, zero-truncated

Poisson distribution for the frequency GLM, Gamma distribution for the severity

GLM, and Gaussian copula for the copula-GLM are used.

The two dependent models and the classic independent-GLM are compared by ap-

plying them to MTPL data. The results show that the dependent models are notice-

ably more accurate than the independent model, which overestimates the total loss.

On the other hand, although the dependent-GLM gives a slightly better result than

the copula-GLM, no significant difference is observed between these two dependent

models. In this case, it would be a more reasonable choice to use the dependent GLM

due to its efficiency. As the copula model uses numerical methods, it takes a lot of

time to process, on the other hand, application of the dependent GLM approach is

much simpler and hence quick.

Nevertheless, the selection and creation of the dependent model to be used depends

on the characteristics of the data. It should be taken into account that, insurance data

shows different characteristics depending on many variables, such as country, geo-

graphical features, customer profile of the insurance company, some features of the

insured property, etc. Even if all of these remain constant, the properties of the data

vary over time. For instance, the customer profile of the company, or some features

of the country like population may change over time. As the characteristics of these

variables change, the possible risk amounts also change. Therefore, the premiums of

the policies must be updated according to the changing risk amounts. The premiums

of policies that have become more risky should be increased, and the premiums of

policies that have become less risky should be reduced. Therefore, a pricing model

that is compatible with the data today may become incompatible in the future. That’s

why different pricing models should be provided for different datasets, and also, these

models should be tested and revised periodically to continue to fit data and give ac-

curate results.

In this regard, pricing models that revise themselves according to the characteris-

tics and evolutions of the data using machine learning and deep learning techniques
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may be further studies.
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APPENDIX A

SNAPSHOT OF THE DATA

A snapshot of the original data is presented below:

Figure A.1: Snapshot of the MTPL Dataset
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APPENDIX B

COEFFICIENTS OF GLMS

In this appendix, the coefficient values of GLMs that we construct are given via the

snapshots from R.

B.1 Frequency: Full Model

Table B.1: Coefficients of the Frequency GLM: Full Model

Although most of the variables are not significant in the 10% level or below, pricing

insurance policies, past industry knowledge and expert opinion are also quite impor-

tant. In light of general knowledge of the insurance industry and common pricing
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studies, we decide to exclude area, gender, and vehicle age from the full frequency

model. The AIC of the model is 1834.914 (Table B.1, Figure B.1).

Figure B.1: AIC of the Frequency GLM: Full Model

B.2 Frequency: Main Model

Table B.2: AIC of the Frequency GLM: Main Model

Figure B.2: AIC of the Frequency GLM: Main Model

What remains in the main frequency model is the vehicle value, vehicle body type

and driver age. The AIC of the model is 1827.184. (See Table B.2, Figure B.2).

B.3 Severity: Full Model

In the full severity model, two of the four vehicle age categories, vehicle value, and

all the vehicle body categories have more than 10% significance level, hence they are

excluded from the model. The AIC of the model is 63,712.24. (See Table B.3).
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Table B.3: Coefficients of the Severity GLM: Full Model

B.4 Severity: Main Model

In the main severity model, gender, area and driver age are remained, and all the

categories have significance levels between 0% and 10%. The AIC of the model is

63,717.26. (See Table B.4).

Table B.4: Coefficients of the Severity GLM: Main Model
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B.5 Conditional Severity: Full Model

In the full conditional severity model, one of the four vehicle age categories, vehicle

value, and all the vehicle body categories have more than 10% significance level,

hence they are excluded from the model. The AIC of the model is 63,584.05. (See

Table B.5).

Table B.5: Coefficients of the Conditional Severity GLM: Full Model
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B.6 Conditional Severity: Main Model

In the main conditional severity model, number of claims, area, gender and driver

age are remained, and all the categories have significance levels are between 0% and

10%. The AIC of the model is 63,589.28. (See Table B.6).

Table B.6: Coefficients of the Conditional Severity GLM: Main Model

B.7 Frequency after Copula Application

The regression coefficients for the frequency model obtained from the copula-GLM

model are shown in the Table B.7.

Table B.7: Coefficients of the Frequency Copula-GLM
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B.8 Severity after Copula Application

The regression coefficients for the severity model obtained from the copula-GLM

model are shown in the Table B.8.

Table B.8: Coefficients of the Severity Copula-GLM
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