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Actuarial Sciences, Ankara University

Date:



iv



I hereby declare that all information in this document has been obtained and presented
in accordance with academic rules and ethical conduct. I also declare that, as required
by these rules and conduct, I have fully cited and referenced all material and results that
are not original to this work.

Name, Last Name: TÜRKER AÇIKGÖZ

Signature :

v



vi



ABSTRACT

OPTIMAL PORTFOLIO ALLOCATION UNDER FRACTAL THEORY

AÇIKGÖZ, TÜRKER

M.S., Department of Financial Mathematics

Supervisor : Assist. Prof. Dr. Büşra Zeynep Temoçin

August 2024, 62 pages

The Efficient Market Hypothesis has been dominating the literature of finance for a long time.
Meanwhile, the problematic assumptions and inappropriateness of Efficient Market Hypoth-
esis in explaining real-life financial markets have dictated the significance of developing new
theories and approaches. Up to now, among the literature on finance, the Fractal Market
Hypothesis has developed as an alternative to the Efficient Market Hypothesis. The Frac-
tal Market Hypothesis is developed based on fractal geometry and fractal Brownian motions,
and their applications on financial markets. In essence, the hypothesis postulates that financial
markets are structured as fractals, they exhibit statistical self-similarity, and long-term mem-
ory in their time series. On the other hand, the various portfolio applications to this hypothesis
are quite limited in the literature. The present portfolio studies have a number of basic prob-
lems, including the definition of covariance, inability to propose a portfolio for more than two
assets, and detrending. In this thesis, a portfolio optimization approach based on Fractal Mar-
ket Hypothesis is developed which takes into account these problems of the existing models in
the literature. This thesis proposes a portfolio optimization method, the Mean-MFTWXDFA
(Mean-Multifractal Detrended Temporally Weighted Detrended Cross-Correlation Analysis)
which is based on multifractal temporally weighted cross-correlation analysis with detrend-
ing approach by geographically weighted regression. The suggested method is also compared
with those of classical portfolio applications such as the Mean-Variance, Mean-Value at Risk,
and Mean-Conditional Value at Risk methods. The portfolio analysis include cryptocurrency
market and three diversifying assets: oil, clean energy and equity. Applications of the fractal-
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based portfolio do reasonably well into out-of-sample analyses and outperform conventional
ones.

Keywords: Fractal Theory, Fractal Market Hypothesis, Multifractals, Portfolio Optimization,
Cryptocurrencies
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ÖZ

FRAKTAL TEORİ ÇERÇEVESİNDE OPTİMAL PORTFÖY SEÇİMİ

AÇIKGÖZ, TÜRKER

Yüksek Lisans, Finansal Matematik Bölümü

Tez Yöneticisi : Dr. Öğr. Üyesi Büşra Zeynep Temoçin

Ağustos 2024, 62 sayfa

Etkin piyasa hipotezi uzun zamandır finans literatürüne hakim olmuştur. Öte yandan hipote-
zin sorunlu varsayımlarını ve uygulama tarafında gerçek dünyadaki finans piyasalarını açık-
lamada yetersiz kalışı, yeni teorilerin ve yaklaşımların geliştirilmesini zorunlu kılmıştır. Bu
çerçevede Etkin Piyasa hipotezine eleştiri olarak geliştirilen Fraktal Piyasa Hipotezi, finans
literatüründe kabul görmüştür. Fraktal piyasa hipotezi, finansal piyasaların fraktal yapıda ol-
duğu, istatistiksel kendine-benzerlik özellikleri taşıdığı ve finansal zaman serilerinin uzun
dönem hafızaya sahip olduğu temeline dayanmaktadır. Öte yandan, fraktal geometri ve frak-
tal brownian hareketlere dayalı olarak geliştirilen Fraktal Piyasa Hipotezine dayalı portföy
uygulamaları literatürde oldukça kısıtlıdır. Halihazırda var olan portföy çalışmalarında ise
bazı temel sorunlar; örneğin kovaryans tanımlaması, ikiden fazla varlık için portföy önere-
meme, trendden arındırma gibi sorunlar yer almaktadır. Bu tez çalışmasında fraktal piyasa
hipotezine dayalı olarak ve literatürdeki mevcut modellerin bu sorunlarını çözen bir portföy
optimizasyonu yaklaşımı önerilmiştir. Bu tez çalışmasında coğrafi ağırlıklı regresyon yönte-
mine dayalı trendden arındırmayı temel alan Multifraktal Geçici Ağırlıklı Trendden Arındı-
rılmış Çapraz Korelasyon Analizi (MF-TWXDFA) baz alınarak varlıklar arasındaki doğru-
sal olmayan kovaryans ilişkisine dayalı bir portföy optimizasyonu yöntemi olan Ortalama-
MFTWXDFA yöntemi sunulmuştur. Önerilen yöntem klasik portföy uygulamalarından olan
Ortalama-Varyans, Ortalama-Riske Maruz Değer, Ortalama-Koşullu Riske Maruz Değer yön-
temleri ile karşılaştırılmıştır. Kripto para piyasası ve üç adet çeşitlendirme amaçlı varlık (pet-
rol, temiz enerji, hisse senedi) portföyü üzerine yapılan analizler sonucunda, fraktal temelli
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portföy uygulamalarının klasik yöntemlere kıyasla, örneklem dışı analizler neticesinde, üstün
performans gösterdiği bulgusuna ulaşılmıştır.

Anahtar Kelimeler: Fraktal Teori, Fraktal Piyasa Hipotezi, Multifraktallar, Portföy Optimi-
zasyonu, Kripto Paralar

x



To my family

xi



xii



ACKNOWLEDGMENTS

I would like to express the highest possible gratitude to my thesis advisor, Dr. Büşra Z.
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CHAPTER 1

INTRODUCTION

Portfolio allocation has been one of the main problems in finance literature. In his pioneer-
ing study, Markowitz [50] proposed the mean-variance (MV) optimization structure. He un-
derlined the importance of diversification and offered a framework based on return and risk
trade-off. The MV model addresses the selection of risky assets by their expected returns and
variances. The idea of this framework started a new era in finance, so called the Modern Port-
folio Theory (MPT). Today MV model is considered as the milestone for MPT and widely
accepted for portfolio selection problems, diversification, and wealth allocation [18, 45, 60].

Following the establishment of MPT, various portfolio allocation techniques have developed.
Markowitz [50] utilizes the covariance structure of assets as a risk measure. Further applica-
tions based on different risk measures are offered in the literature. For instance, researchers
proposed utilizing value-at-risk (VaR) as the risk measure in the MV setting [5, 24]. The
mean-VaR optimization focuses on minimizing portfolio’s VaR, which aims to minimize po-
tential loss in portfolio’s value considering a specified confidence interval. Rockafellar and
Uryasev [58] proposed using conditional value-at-risk (CvaR) as a risk measure in the portfo-
lio optimization problem. Such a model allows one to minimize the expected loss beyond the
portfolio’s VaR, and by doing so, mean-CvaR minimizes tail risk accordingly.

Another important application of MV is to modify risk measurement according to the het-
eroscedastic structures in financial markets. Engle [17] and Bollerslev [7]’s studies on autore-
gressive conditional heteroscedasticity (ARCH) and generalized autoregressive conditional
heteroscedasticity (GARCH) models pioneered the literature and revealed that financial time
series contain heteroscedastic structures, suggesting that variance of the return series are not
constant; instead, they vary over time. Since then, many multivariate GARCH models have
been developed for estimating variance and covariance structures. By utilizing these models,
Kroner and Ng [35] provided a framework for the portfolio optimization problem. The au-
thors suggested that stochastic volatility estimations obtained from GARCH family analysis
can be considered as risk measurement in the MV framework.

The aforementioned approaches in the literature of MPT are based on modifying risk mea-
surement in the MV model. Along with the MV framework with different risk measures,
various asset pricing models are also developed under MPT. Building on the framework of
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Markowitz, the Capital Asset Pricing Model (CAPM) was developed independently by Sharpe
[60], Lintner [39], and Mossin [53]. It is a one-factor model that considers the linear depen-
dency relationship between a risky asset and the general capital market, and offers portfolio
selection for investors. The main idea of CAPM is to consider the sensitivity of risky as-
sets against market movements as a risk measure and set the portfolio allocation accordingly.
Following the idea of CAPM, the literature of MPT has expanded the model and developed
multi-factor models. For instance, the Arbitrage Pricing Theory of Ross [59] sets a linear re-
lationship between asset prices and macroeconomic factors. The three-factor model of Fama
and French [19] expands CAPM by including two additional risk factors: firm size effect and
value premium. Carhart [11] included a momentum factor to the three-factor model of Fama
and French, expanding the model to a four-factor model. Fama and French [20] built upon the
previous study and proposed a five-factor model adding profitability and investment factors
to the three-factor model. In general, factor models are based on the CAPM framework and
relate investment decisions to the asset’s co-movement with the market, firm-specific factors,
and market dynamics.

As discussed above, MPT has various risk measures such as basic variance-covariance struc-
tures, VaR, CVaR, GARCH estimations, or market-based measures (i.e., CAPM-based factor
models). The estimation of risk is the crucial part of portfolio optimization studies. On the
other hand, models and approaches in the literature have undeniable deficiencies with real-
world data. This is because MPT relies on the Efficient Market Hypothesis (EMH) on the
theoretical foundations, so that risk measurement of financial return series is based on sample
variance-covariances and the fundamental research methods are linear approaches [13, 66].

To understand the deficiencies of the models in MPT, it is necessary to discuss the core theo-
retical problems that MPT relies on. The efficient market hypothesis of Fama [18] has dom-
inated the literature of finance for a long time. The hypothesis claims several questionable
features of financial markets, among others, for instance, market efficiency and random walk
assumption for asset prices. On the other hand, the literature shows that financial markets
are not efficient and most assets do not exhibit random walk behavior. The empirical studies
relying on EMH have also several non-realistic properties as well. The models based on the
hypothesis mostly measure linear relationships, assume Gaussian distribution of (log) asset
returns, consider stationarity, and no anomalies in the market. These are not satisfied in the
real world mostly for some reasons: (i) financial markets are complex systems that cannot be
explained fully by linear dependency approaches, (ii) log return series mostly have heavy-tail
distribution, and (iii) financial assets have long-memory and exhibit long-range correlations
[23, 40].

The Fractal Market Hypothesis (FMH) as an alternative to EMH has arisen considering the
aforementioned problems. The literature discusses that FMH can explain market dynamics
better than EMH [57, 56] because FMH evaluates financial markets as complex structures with
nonlinear and chaotic dynamics and thus it fits the real world better than EMH [49]. FMH is
based on the fractal theory and fractal Brownian motions of Mandelbrot [45] and Mandelbrot
and Van Ness [49]. Further, Peters’ studies [56, 57] applied the fractal theory of Mandelbrot
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to explain financial markets. He criticized the inefficiency of EMH and its assumptions of
normality and random walk to explain financial markets. Peters suggested that financial mar-
kets are chaotic systems and display fractal behaviors and he formulated FMH using fractal
theory. FMH assumes that financial markets do not behave as a random walk; instead, they are
shaped with self-similarity and follow certain patterns (fractals) across different scales. Since
then, various studies have approved FMH and have shown that financial markets do exhibit
fractality and EMH is not relevant (see Jiang et al. [30] for a comprehensive literature review
of over a thousand articles on the topic). The FMH has been drawing attention from academia
recently. However, most studies in the topic focus on the fractality of financial markets and
nonlinear relationships between financial assets. Only a few studies consider practical impli-
cations such as portfolio optimization under the fractal market hypothesis. This thesis fills the
gap and contributes to the literature in this way.

The Mean-Variance model of Markowitz aims to maximize return for a given portfolio risk
or minimize risk for a given expected return. The model uses an appropriate risk measure
σij . As discussed previously, various risk measures are defined in the literature of MPT. Here,
estimating the risk component is a bit problematic. The fundamental model uses standard
measures such as Pearson correlation coefficient (PCC) for such optimization and hence as-
sumes stationarity and linearity (i.e., stable PDFs of data over time). However, as the FMH
discusses, this is not a good fit for real-world cases, and financial return series are mostly
nonstationary, meaning that return series have long-range autocorrelations (either linear or
nonlinear) and fat-tail distributions. So it is necessary to define a well-fitted risk measurement
considering the fractal structures in financial markets.

Various methodologies have been recently developed to overcome such issues. These meth-
ods rely on statistical mechanics to estimate nonlinear correlation between two nonstationary
signals. Later on, these nonlinear correlation measures are utilized to model the risk mea-
sure in the MV model by a few studies. For instance, Zhou [73] developed the multifractal
detrended cross-correlation (MFDCCA) model to measure power-law cross-correlations be-
tween two nonstationary time series. Further, Jiang and Zhou [31] offered the multifractal
detrended moving average model (MFXDMA), which follows the original method of Zhou
[73] but instead of using polynomial fitting, it uses the moving average (MFXDMA) method
for eliminating local trends. These two methods are criticized by the literature due to their
approach on estimating detrended covariances. MFDCCA and MFXDMA methods can re-
sult in covariances with complex numbers. As a solution to this, Oswiecimka et al. [54] and
Kwapien et al. [36] proposed multifractal cross-correlation analysis (MF-CCA) for estimating
detrended cross-covariance while overcoming the sign issue.

Some portfolio applications are offered in the literature. For instance, Sun and Liu [62] mod-
ified the MV model and used the detrended covariance derived from MFDCCA instead of
classical covariance estimation and named the model as Mean-DCCA. Chun et al. [13] also
conducted a similar approach but only considered bivariate portfolios and could not provide
a general framework. Later, Zhang et al. [71] generalized Mean-DCCA to multiple assets.
These studies present portfolio alternatives but they only consider q = 2 (medium fluctua-
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tion) and ignore other moments. Tang and Zhu [69] and Zhu et al. [75] modified the MV
model and replaced covariance with the detrended cross-covariance function and offer the
Mean-MFDCCA model. However, they also modified the original method of Zhou [73] and
ignored the sign of detrended covariances by forcing them to be positive. While this approach
of detrended covariance estimation is a common application in the literature for studies ex-
amining only the fractal relationship in financial markets, it poses a problematic issue for
portfolio optimization. This is because it can lead to information loss and misinterpretation of
real co-movements. In addition, Wang et al. [66] used MFXDMA for portfolio optimization
and offered the Mean-MFXDMA model. Further, Madani and Ftiti [43] used the multifractal
cross-correlation (MF-CCA) model and offered the Mean-MF-CCA model for optimal port-
folio weights of two-asset portfolios. However, the Mean-MFCCA model lacks offering a
portfolio model with n-risky assets where n > 2.

In general, the portfolio optimization applications proposed under the fractal market hypoth-
esis consist of three main issues. The first problem is that when we consider the original
estimation method of local detrended cross-covariance such as [62], [13], and [71] did, the
final outcome possibly returns detrended cross-correlations with complex numbers. In such a
case, it is problematic to estimate optimal portfolio weights with complex nonlinear correla-
tion estimates because the closed-form solution to the MV problem may not yield an optimal
solution since it is possible that the covariance matrix (constructed by cross-covariances) may
not be positive-definite. On the other hand, taking the absolute value of local fluctuation func-
tions similar to [69] and [75] causes information loss on nonlinear dependency. Second, the
models mostly lack to offer a portfolio framework for several assets. Lastly, the current port-
folio models rely on detrending algorithms with global parameters and the approaces may not
detect local trends appropriately.

Considering the previous literature, we can offer a more developed and sophisticated model
that overcomes the current problems discussed above. Wei et al. [67] improved MF-CCA of
[54] and [36] and presented the multifractal temporally weighted detrended cross-correlation
analysis (MF-TWXDFA) model, which can be considered as a robust version of MF-CCA.
In the MF-TWXDFA model, detrended cross-covariance is estimated similarly to MF-CCA
but the model modifies the eliminating method of local trends. Instead of fitting m-order
polynomial to the series globally, the model offers using geographically weighted regression
(GWR) method. GWR is a weighted-regression algorithm that fits the detrending polynomial
regressions locally for each point in the series X(u) and Y (u) by using the geographically
nearby elements. In this way, it eliminates local trends significantly better than the previous
models, avoids spurious correlation relationships, and provides more robust results.

In this thesis, we use the MF-TWXDFA approach of detrended cross-correlation for risk
measurement in the MV model and construct optimal portfolios. We propose the Mean-MF-
TWXDFA for portfolio optimization. On the empirical side, this thesis studies cryptocurrency
portfolios. These assets have garnered significant attention recently and hold an important
place in financial markets for two main reasons. First, cryptocurrencies are technology-based
assets that the projects behind them present noticeable technological solutions such as AI
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projects, DeFi, Web 3.0, data processing, and so on. Second, cryptocurrencies have their
own market dynamics. Diverging from other assets, the crypto market has extreme returns
and significant bull/bear market cycles. On the other side, the crypto market is defined by its
high-risk profile and volatility. Thus, these assets should be diversified well.

This study constructs a portfolio of cryptocurrencies with three other diversifying assets; (i)
equities (S&P 500), (ii) crude oil (WTI), and (iii) clean energy (iShares Global Clean Energy
ETF). We choose equities because they are one of the most traded assets in the world and
generally offer a good performance and stabilize the return in high-volatility portfolios. We
also add two energy-based securities. Crude oil proxies energy prices while clean energy
stocks hold for clean energy investments. Despite its popularity, cryptocurrencies consume a
high level of energy and energy is the main input in the market. So we believe that energy
sources can perform well in diversifying crypto market assets. In addition to crude oil, clean
energy stocks are also added to measure both sides of the energy market (clean and dirty) and
see how they contribute to portfolio diversification.

The studies on crypto market has shown that crypto assets have multifractal characteristics. In
2018, da Silva Filho et al. [15] applied multifractal approach to Bitcoin prices. The authors,
based on data from September 2011 until November 2017, show that the price series of Bit-
coin has a high degree of multifractality, driven by both long-range correlations and fat-tailed
distributions. Stosic et al. [61] examines multifractality properties in daily price and volume
changes using a multifractal detrended fluctuation analysis (MF-DFA) in fifty cryptocurren-
cies. They observed that the prices could be behaviorally more complex and multifractal
behavior than the volumes series in large fluctuations. The study shows that the correlation
structure of price changes is largely uncorrelated, while the volume changes exhibit long-term
anti-persistent correlations. Cheng et al. [12] investigate the momentum effect in the cryp-
tocurrency market with mono-fractal and multi-fractal detrended fluctuation analysis based
on DFA and MF-DFA. In this study, four major cryptocurrencies are taken into considera-
tion at different time scales: Bitcoin (BTC), Ethereum (ETH), Ripple (XRP), and EOS. The
results indicate that for BTC and ETH, there is a strong momentum effect, especially in the
long term, meaning that price trends show persistence. In contrast, XRP and EOS have a
tendency for price reversion in the presence of large deviations. The evidence suggests that
such cryptocurrencies behave like nonlinear complex systems for which market responses to
events are very scale-dependent. It contributes to the literature about the dynamics of the
cryptocurrency market, underline different fractal characteristics and efficiency observed for
diverse digital assets. Mnif et al. [52] evaluated how cryptocurrency market has performed in
COVID-19 pandemic. The authors used MF-DFA approach on five crypto assets; BTC, ETH,
XRP, LTC, and BNB. They separated sample periods into pre- and post-COVID-19 periods.
The study compares how the generalized Hurst exponents have evolved between two periods.
The results showed that crypto market is not efficient. On the other hand, COVID-19 posi-
tively influenced on market efficiency. Kakinaka and Umeno [32] examine the asymmetrical
multifractality and market efficiency of the main cryptocurrencies during the COVID-19 pan-
demic by using the Asymmetric Multifractal Detrended Fluctuation Analysis (A-MF-DFA).
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The research work comes up with a differentiated impact of the pandemic on the short- and
long-term investment horizons. At the short-term horizon, multifractality increased and inef-
ficiency prevailed due to strong herding behavior. In contrast, at long-term horizons, multi-
fractality decreased, meaning improved market efficiency. The authors have further pointed
out a shift of asymmetric properties with dramatic changes in persistence and behavior of
investors against large fluctuations in the long term. In view of the above findings, the current
study presents evidence for intricate behaviors of cryptocurrency markets in crisis and thus
places more emphasis on investigating market efficiency and investor behavior by taking into
consideration multiple time scales. Aslam et al. [3] examine dynamic efficiency in major
cryptocurrencies using MF-DFA as a technique to probe the efficiency of markets over time.
This research concerns six major cryptocurrencies—BTC, ETH, XRP, LTC, ADA, and BNB,
during the COVID-19 pandemic. The authors find significant multifractality across all cryp-
tocurrencies, thus inefficiency in the market. The largest inefficiency was found in Bitcoin
and Litecoin, while the smallest was observed in ADA and BNB. According to the analysis
in a moving window, efficiency changed very fast in these markets and followed closely the
turmoil or crisis events on the market; for instance, the pandemic.

This thesis contributes to the literature in several ways. It offers a portfolio allocation frame-
work under FMH. As discussed previously, the assumptions of EMH are quite challenging and
mostly lack fitting real-world cases. The models in MPT are insufficient to measure nonlinear
and chaotic dynamics in financial markets. On the other hand, this thesis suggests using an ap-
propriate measure for risk considering FMH. The model proposed significantly outperforms
portfolio methods in classical finance such as MV, M-VaR, and M-CVaR. This thesis enriches
the literature on fractal structures in the cryptocurrency market as well. The findings show that
the cryptocurrency market does not show random walk behavior. In contrast, cryptocurren-
cies have scaling behavior, nonlinear dynamics, and long-range power-law autocorrelations
with significant Hurst exponents. Lastly, although various portfolio allocation techniques are
offered in the literature, our approach overcomes the deficiencies of the previous studies and
further provides a more robust approach for detecting detrended cross-correlations.

The study encompasses five chapters. The introduction part here enlightens the motivation
and contribution of the thesis. The second part of the study discusses theoretical background
and review of the previous literature. It contains evaluation of FMH with critics on EMH,
reviews the methods on estimating fractality and multifractal structures in financial markets,
and portfolio diversification literature in the cryptocurrency market. The third chapter of this
thesis contains research methodology applied in this study. The fourth part of the study pro-
vides empirical evidence and research results. The last chapter of the study is the conclusion
and evaluates the research findings and discusses practical implications as well as suggestions
for further studies.
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CHAPTER 2

THEORETICAL BACKGROUND

This part of the study consists three parts. First, the review of theoretical background of the
study is presented. In this part, fractal theory and Fractal Market Hypothesis are discussed.
Second, the methods for estimating fractality in financial markets are presented. Third, the
discussion on portfolio diversification applications in the literature is provided.

2.1 Fractals and Fractal Structures

Fractal geometry is a mathematical framework that has been developed for the invariable ex-
planation of the majority of natural structures manifesting different degrees of self-similarity
[1]. It is also applied in some artificial constructions. Generally, a fractal refers to any set of
self-similar objects showing repetition of the same pattern at different scales [21].

Mandelbrot [48] defines "fractal" as a geometric objects (probably with non-integer dimen-
sions) where each parts of the object are associated to share the similar characteristics of the
whole. Basically, a fractal is considered a geometric shape that, at different scales, it reflects
self-similar and has chaotic behavior. Mostly, fractals are found in nature and created by rep-
etition of a simple process over and over in some iterative way. Fractals are described by their
fractional dimensions, which exhibit their complexity and how they fill space in a non-integer
dimension.

Figure 2.1: Mandelbrot Set
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Figure 2.2: Sierpinski Set

Figure 2.1 and Figure 2.2 present two well-known examples of fractals. The figures exhibit
the most common features of fractals. Fractals have self-similarity regarding their space. It
reflects that smaller proportions of a fractal object share similar features of the entire structure.
The object presents similar structures across various scales. No matter how zoom-in or zoom-
out, fractals have similar shapes. Unlike Euclidean geometry, fractal geometrical shapes have
non-integer dimensions. Thus, fractals usually have infinite complexity and complexity of the
structure continues indefinitely.

Fractals can be observed both in nature and artificial structures. According to Mandelbrot
[48], many patterns in nature are so complex, fragmented and irregular that they cannot fit a
standard Euclidean Geometry. So, he calls these patterns or shapes as fractals. For instance,
mountain ranges and rocky landscapes are fractal-like in nature.

The irregular, jagged outlines of coastlines are self-similar and scale invariant. One of the
first studies on fractals was conducted by Mandelbrot [46] to understand the long of coast of
Britain. As of the date, it is impossible to measure the exact long of coastlines. The scientists
can only make an accurate approximation on the topic. Mandelbrot [46] discovered that
coastlines have fractal shapes and statistical self-similarity. If one looks at a small part of the
coastline, then basically the same type of complexity and details are found in it. Further, in his
book entitled "The Fractal Geometry of Nature", Mandelbrot [48] presents a comprehensive
examination on the fractality of natural objects.

Various examples of fractals are also observable in nature. Mountain ranges and rocky land-
scapes have fractal-like features; that is, they are self-similar in their features. They repeat
the same ruggedness over and over, from peaks to valleys. Even the structure of clouds, from
wispy cirrus clouds to large cumulus, forms fractals. It simply means that shapes and pat-
terns are related to each other in a self-similar way on all scales on which they are observed.
Fractals in nature include the geometry of the branching of trees and such plants as ferns,

8



with smaller and smaller copies of the shape of the whole plant repeated in the branches and
leaves. The river systems form fractal branching naturally. The tributaries branch into smaller
streams in a self-similar way; thus complex networks can be formed. Geometric forms of
snowflakes are also an example of symmetric, intricate fractals. Each arm of a snowflake is
self-similar; it consists of smaller structures which also demonstrate the same shape as the
whole. Due to the path it follows, with all its branchings and splitting to form a pattern, a
lightning bolt exhibits self-similarity at different scales and hence is a fractal. The human
circulatory system forms a fractal pattern with its networking of blood vessels and capillaries.
It ensures efficient transportation of blood throughout the body with this branching of veins
and arteries.

Though observing fractals is mostly trivial in nature, fractals are not limited to it. They are
also observable in artificial structures as well. Batty and Longley [6] studied fractal geometry
of urban growth and design. The authors discovered significant evidences on how human-
made structures like cities have fractal patterns. Frankhauser [22] utilized fractal approaches
for analyzing urban agglomerations and urban patterns and confirmed fractality in urbaniza-
tion. Fractals are also visible in arts. Taylor et al. [63] showed that the artists have fractal
patterns in their paintings. The historical records on criminal activities display that crime
patterns have fractal dynamics and chaotic behaviors, in both individual and society levels
[51, 4]. The social groups and networks of primates, both human and non-human species,
perform fractal structures [68].

Figure 2.3: Self-Similarity in Bitcoin Returns: Daily, Weakly and Monthly Return Series

Fractals are also observed in time series and it is one of the most important study topics
in fractal theory. While fractal shapes exhibit self-similarity regarding space, fractal time
series show statistical self-similarity concerning time [56]. Statistical properties of fractal
time series significantly differs from conventional time series. The main properties of fractal
time series can be considered as fat-tail probability distribution function, gradual decline in
autocorrelation function, global and local self-similarity behavior, having long-memory or
short-memory in the series [37]. Figure 2.3 presents a visual example on self-similarity in
Bitcoin prices. It displays twelve consecutive data from daily, weekly and monthly return
series. It is quite challenging to categorize the graphs without any scales on the axes of time
and return. This simple example presents self-similarity feature of fractal time series.
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2.2 Fractal Market Hypothesis versus Efficient Market Hypothesis

Fractal Market Hypothesis is an alternative perspective to Efficient Market Hypothesis (EMH),
claimed by Peters [56, 57] to describe capital markets more realistic than EMH. EMH is of-
fered by Fama [18] and since then, it has been dominated finance literature.

The fundamental idea of EMH is that it assumes available information set is fully reflected to
asset prices and the market is in the equilibrium state. The statement of current prices reflects
all available information implies that asset price changes are independent and identically dis-
tributed. Since all past information (such as firms’ fundamentals, macroeconomy, price action
etc.) is already priced in the market, it implies that making a future prediction is impossible.
Hence, asset prices are random walk and percentage change in price series are independently
and identically distributed. The only relevant information for asset prices, let say in time t+1

is the information that is expected to come to the market at time t+ 1. The market is consid-
ered to react only new upcoming information. To conclude, today’s price is only related with
today’s news and past information has no meaning for asset returns.

EMH considers markets are consisted by large number of rational investors. The assumption
leads to several consequences of the theorem. First as financial markets are of large number
of investors, the prices cannot be effected by individuals. None of the actors have capability
of effecting prices. Also, since the market is competitive and many market participants decide
investments based on the past information and their future expectations, they assure that it is a
"fair" game. Considering the rationality assumption, investors are considered to be smart. The
decision-making process of individuals gives the guarantee of fair prices since EMH suggests
that past information is obtained free and evaluated accurately. The only difference between
investors is assumed to be their risk appetite. According to Peters [56], EMH sees the market
as a community or a collective action that made up of too many people to be wrong.

Fama [18] states that EMH consists three levels of market efficiency according to relevant
information subsets. The first type of market efficiency is called weak-form efficiency. In this
stage of the market, current assets prices reflects only historical prices and although techni-
cal analysis cannot beat the market, with fundamental analysis or inside trading, it may be
possible to earn profit. The second type of market efficiency is called semi-strong efficiency.
Here, it is assumed that the market has already priced both historical price action and fun-
damentals. In a semi-strongly form, the only way to make profit is inside trading. The last
one is called strong-form efficiency of the market. In this stage of the market, all information
subsets, including historical prices, fundamentals about the economy and firm, and the special
information that have not been shared with the public, are discounted by the market. So, it
is certainly impossible, even for inside traders, to gain excess return in a strong-form market.
However, note that it is empirically impossible to empirically test strong-form efficiency due
to its reference information set [25, 34].

To summarize, the main assumptions of EMH can be grouped in two ideas: in theoretical side,
we have normal distribution of asset returns, random walk behavior of asset prices (as well as
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asset returns) assumptions. In the empirical side, these also implies linearity of relationships
in the market and stationarity (stable pdfs) of returns. Hence, the standard statistical analy-
sis of linear models can give misleading results if the market perform nonlinear dynamical
systems [56].

Now, we can turn our focus on FMH. Fractal Market Hypothesis relies on as well as inspired
from two areas: (i) Hurst’s study [29] and Mandelbrot’s fractal geometry [45] and fractal
Brownian motions (fbm) [49]. Inspired from Hurst [29]’s study, Peters [56, 57] declared that
it makes no sense of that future is independent from the past. According to Peters, every action
we took in the past is the reasons why we are here and will decide where will we be in the
future. A human’s present cannot be considered apart from his/her past. It is also observed in
natural phenomenon and societies. The perspective is called "memory", which is completely
refused in EMH.

Let us first start with Hurst’s study on Hurst exponents and R/S analysis which holds an
important place in fractal theory. Hurst [29] was a hydrologist and he worked on Nile River
Dam. He measured reservoir level of Nile River over 40 years and observed that natural
systems do not obey a random walk model and are not Gaussian. Instead, they follow a
biased random walk model. While the next step of a random walk is completely random,
biased random walk series have contains a trend with noise process. Hurst developed a robust
model, R/S analysis, to test his idea and it can be applied to different time series. The model
of Hurst can defined in 6 steps as follows.

Step 1: Consider a time series {xt : t = 1, 2, ...P} . We divide the series into B number of
subsequences with length G such that B ∗ G = P . Also consider that Cb(b = 1, 2, ...B) is
the b-th subsequence and xv,b is the k-th observation (k = 1, 2, ...G) of subsequence b. The
arithmetic average of Cb is denoted by x̄b.

Step 2: Calculate the cumulative deviation of subsequences Cb as given below.

Xv,b =

v∑
t=1

(xv,b − x̄b) (2.1)

Step 3: The range of cumulative deviation, RCb
and corresponding standard deviation SCb

for
each subsequence Cb is calculated as:

RCb
= max1≤k≤GXv,b −min1≤k≤GXv,b

SCb
=

√√√√(
1

G
)

v∑
t=1

(xv,b − x̄b)2
(2.2)

Step 4: R/S statistic for subsequent b can be obtained by (R/S)b = RCb
/SCb

.

Step 5: The mean R/S is calculate by (R/S) = 1
B

∑B
b=1(R/S)b.
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Step 6: For each G, there is a corresponding R/S value and following the power-law, we have
the equality (R/S)G = b ∗GH where a is a constant. The parameter H is obtained by taking
the logarithm of both sides and fit an ordinary least square (OLS) such that log((R/S)G) =

H log(G) + log(b).

The parameter H is called Hurst exponent. The method developed by Hurst [29] allows us
to examine behavior of time series and decide whether it is a random walk or not by using
Hurst exponent H . The series xt can have three behaviors; (i) random walk, (ii) persistent,
(iii) anti-persistent.

The statistical mechanics tells us that random walk series follow H = 0.5. In this case,
the cumulative deviations increments by square root of time G. If H ̸= 0.5, then the series
xt is not a random walk and xt have a memory. H is bounded by 0 ≤ H ≤ 1. While
0 ≤ H < 0.5, the series have short memory and anti-persistent behavior is observed. In
this case xt is mean-reverting, meaning that when xt shows a positive increments, it is highly
possible that xt+1 may have a negative increments and vice versa. The power of this anti-
persistency is characterized by how far H is from the random walk behavior H = 0.5. The
last behavior of a time series is long-term memory and it occurs when 0.5 < H ≤ 1. In this
case, the series have long-range dependency and persistent increments. For instance, if xt had
an upward movement, it is highly expected that xt+1 should also have a positive increment.
Since Hurst [29], H exponent has been widely used to measure long-range dependency in
time series.

The second inspiration for FMH is fractal geometry and fractal Brownian motions. While
empirical literature of FMH relies on Hurst’s study, theoretical part is based on Mandelbrot’s
studies. Mandelbrot defined fractal shapes and pioneered the fractal mathematics and geom-
etry. Fractal objects are related with shapes. On the other hand, as we discussed previously,
fractals are also exist in time series as well. Fractal time series have self-similarity in sta-
tistical measures. Mandelbrot and Van Ness [49] defined fractal time series by developing
theory of Fractal (or Fractional) Brownian Motion (fBm). While Fama [18] utilize random
walk model, Peters [56, 57] placed fBM at the center of FMH. Note that Brownian motion is
the continuous-time version of random walk model.

In 1968, Mandelbrot and Van Ness [49] developed the idea of fractal Brownian motion by gen-
eralizing Brownian motion and including fractals into Bm. Let us first consider the classical
Bm so that we can understand what Mandelbrot and Van Ness contributed to the literature and
how it is related with FMH. Consider standard Bm, a stochastic process {B(t) : t ∈ [0, T ]}.
It has four main characteristics. Firstly, the process has a starting point 0 such that B(0) = 0,
and secondly it is continuous almost surely. Third, B(t) has independent increments such that
B(t)−B(s) where t > s are independent. Lastly, the increments follow normal distribution
with zero mean and t− s variance such that B(t)−B(s) ∼ N (0, t− s). The fourth charac-
teristic of standard Bm (sBm) has crucial problems in terms of financial theory. Assume that
X(t1) = Bt2 −Bt1 and X(t2) = Bt3 −Bt2 are the increments of sBm. Then, if Xt1 and Xt2

have zero mean E[Xt1 ] = 0, E[Xt2 ] = 0, referring to the third feature of sBm, the claim on
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increments being independent equivalents to E[Xt1Xt2 ] = 0. Applying the idea to finance as
EMH does, we can consider W (t) as asset prices and Xtk as asset returns and we get the fol-
lowing implication: financial asset prices are unpredictable, random walk processes and asset
returns do not have autocovariance (or autocorrelation). Therefore, return series should not
have a memory, either short or long range, and it is impossible to find a pattern or repeating,
self-similar structures in the series. On the other hand, Mandelbrot and Van Ness [49] offered
fBm to characterize fractal time series. fBm is actually the generalized version of sBm. In
their study, Mandelbrot and Van Ness criticized sBm’s independent increments feature and
by referring Hurst’s study [29], they proposed Bm with memory or dependent increments.
The main contribution of fBm, for our topic, is that it can have three types of behavior in
financial time series: (i) random walk, (ii) short-term memory, or (iii) long-term memory.
A fBm {BH(t) : t ∈ [0, T ], H ∈ (0, 1)} is a continuous-time Gaussian process where the
increments of the process may not be independent. In fBm, autocovariance function of the
process is defined as E[BH(t)BH(s)] = 1

2(|t|
2H + |s|2H − |t − s|2H) for t, s ∈ [0, T ]. In a

similar fashion, the increments have the following covariance function. Consider two incre-
ments at time t1 and t2 as XH(t1) = BH(t2) − BH(t1) and XH(t2) = BH(t3) − BH(t2).
Then, we have E[XH(t1)XH(t2)] = E[(BH(t2) − BH(t1))(BH(t3) − BH(t2))] = E =
1
2(|t3 − t1|2H − |t3 − t2|2H − |t2 − t1|2H). As the dependence structure shows, parameter
H holds an important place in fractal time series. While H = 0.5, the model drops to be a
standard Brownian motion with no dependency in increments. While 0.5 < H < 1, the pro-
cess is said to have persistent (positively correlated) increments and long-range dependency.
Otherwise, 0 < H < 0.5 is attributed to anti-persistent behavior or short-term dependency
(negatively correlated) increments. The scaling parameter H is actually the Hurst exponent
previously defined by H. Edwin Hurst in 1951.

So, Hurst discovered that many natural phenomenon such as rainfalls, sunspots, weather, con-
sist of long-range dependency and memory and he developed the Hurst exponent H to test
such behaviors in time series. Later on, Mandelbrot’s studies established fractal geometry,
defining objects with non-integer dimensions and self-similar structures. Further, Mandel-
brot proposed fractional Brownian motions and defined fractal time series with self-similar
structures in statistical properties. Deriving his theory from Hurst on empirical side and Man-
delbrot on theoretical side, Peters [56, 57] offered fractal market hypothesis.

Peters claims the following arguments. Normal distribution assumption of EMH is mostly
irrelevant for financial return series. Instead, the series show fat-tail distribution most of the
time. The market frequently generates abnormal returns (positive or negative). While EMH
calls these abnormal events as anomalies in the market, FMH considers them as a part of the
market dynamic. EMH’s normality assumption allows and leads us to use linear statistical
measures. On the other side, according to FMH, financial markets are complex systems with
nonlinear interactions and therefore, linearity is not a good fit for the market and nonlinear
methods are better to explain the market dynamics. Just like natural phenomenon, financial
markets also have fractal structures, self-similar behavior in statistical measures. Thus, while
modelling financial markets, FMH suggests to consider this fact. Financial assets do not fol-
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low random walk; instead, they follow a biased random walk with memory. So, asset returns
are not independent increments, rather they exhibit long-range dependency. FMH criticizes
EMH in terms of these aspects and it provides an economic and mathematical perspective to
analyze the market with fractals and self-similar statistical properties.

2.3 Methods for Estimating Fractality in Financial Markets

In this part of the thesis, we propose and discuss the methods for estimating fractal structures
in time series. From now on, considering the aim of the study, we solely focus on fractals
in time series. As mentioned before, fractal systems are defined by their scaling exponents
(Hurst exponent) H . Further, statistical physics literature have extended the relevant theory.
Some series exhibit only one fractal pattern or self-similarity and these series are named as
"monofractals". For instance, Hurst’s study, discussed previously, is an example of monofrac-
tal methods. On the other hand, describing a fractal with only one self-similar behavior mostly
inadequate to define the characteristic of the series. Multifractals are type of fractals, gener-
alization of fractals into multiple dimensions [47]. In terms of time series, multifractal series
have multiple fractal dimensions or scaling behavior at various moments q. While monofrac-
tal series are characterized by only one scaling behavior H , now with multifractals, the series
have various H depends on moment q. So, multifractal time series are described by their
generalized scaling exponents H(q). To summarize, fractals are generalized into multifrac-
tals, allowing us to examine several self-similarity features at various moments. In addition,
multifractal analysis also provides us to examine nonlinear corrrelation/covariance structures,
scaling behavior, and analyzing nonstationary time series as well. By this way, multifractal
methods are perfect fit for financial series since they are generally known as their nonstation-
arity and nonlinearity.

The following subsections present and discuss most relevant methods for estimating multi-
fractals in the literature. Note that there are over twenty methods in the statistical physics
literature and it has been growing recently. See Jiang et al. [30] for further discussion on mul-
tifractal methods. We split the following subsections into two groups: methods for univariate
series and bivariate series.

2.3.1 Methods for Univariate Series

This subsection of the study discusses three multifractal methods for univariate series, namely
as multifractal detrended fluctuation analysis (MF-DFA), multifractal detrended moving av-
erage (MF-DMA), and multifractal temporally-weighted fluctuation analysis (MF-TWDFA).
These methods are used to describe multifractal behavior of univariate time series. For the
sake of convenience, we will keep the notations as similar as possible. These three meth-
ods are differentiated in terms of their approach for detrending the series. Let us begin with
defining a univariate non-stationary time series x(k) with length N such that {x(k) : k =
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1, 2, ...N} and x̄ is the arithmetic average of the series. Then continue with the methods
below.

2.3.1.1 MF-DFA Algorithm

In 1994, Peng et al. [55] published their pioneering work. They developed Detrended Fluctua-
tion Analysis (DFA) and examined long-range power-law correlation in nonstationary fractal
time series and tested it on DNA sequences. Though it pioneered the literature, DFA was
only capable of describing single fractal (monofractal) structures. Further, Kantelhardt et al.
[33] generalized DFA from monofractal to multifractal and offered MF-DFA to examine the
features in various moments. The model consists of six steps as follows:

Step 1: Cumulative Profile: Take the cumulative deviation X(t) of the series.

X(t) =
t∑

k=1

(xk − x̄), t = 1, 2, ...N (2.3)

Step 2: Segmentation: Divide the cumulative deviation X(t) into Ns number of nonoverlap-
ping segments with equal length s such that Ns ≡ int(N/s). Notice that N may not be the
multiple of s most of the time. So, in order to avoid losing the data, we repeat the procedure
from starting from the end of the series. Finally, we get 2 ∗ Ns number of segments with
length s.

Step 3: Detrending: Fit a polynomial of degree m to each segment v to get the local trends
X̃v(t).

X̃v(t) = β0 + β1t+ β2t
2 + ...+ βmtm (2.4)

Where t is a trend variable such that t = 1, 2, ..s.

Step 4: Local Variance: Local variance for each segment v is calcualted as follows. For
v = 1, 2, ...Ns, we have:

F 2(v, s) =
1

s

s∑
j=1

[(X(v − 1)s+ j)− X̃v(j)]
2 (2.5)

For v = Ns+1, Ns+2, ...2Ns, we have:

F 2(v, s) =
1

s

s∑
j=1

[(X(N − (v −Ns)s+ j)− X̃v(j)]
2 (2.6)

Step 5: q-th order Fluctuation: Take the average of local variances F 2(v, s) over all segments
v and calculate q-th order fluctuation function F (q, s).
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For q ̸= 0, we have F (q, s):

F (q, s) =
1

2Ns

2Ns∑
v=1

[[F 2(v, s)]
q
2 ]

1
q (2.7)

While q = 0, we get F (0, s):

F (0, s) = exp

{
1

4Ns

2Ns∑
v=1

ln
[
F 2(v, s)

]}
(2.8)

Where q ∈ R.

Step 6: Scaling Behavior: Determine the scaling behavior and multifractal characteristic of
the series. Multifractal series should exhibit scaling behavior as follows.

F (q, s) ∝ sh(q) (2.9)

By taking the logarithm of both sides, scaling exponent h(q) can be obtained via linear re-
gression.

log(F (q, s)) = a+ h(q)log(s) (2.10)

Now let us discuss the inferences of MF-DFA. The model estimates detrended fluctuation
function F (q, s) for various time scales s and moments q. MF-DFA allows us to examine
statistical self-similarity of a non-stationary series at any q value in R. The scaling parameter
h(q) is the generalized version of Hurst exponent. When h(2) = 0.5, it indicates random
walk behavior of the series. The moment parameter q has some implications. For q > 2,
h(q) exhibit behavior in large-fluctuations while q < 2, h(q) show small behavior in small-
fluctuations. The evaluation of generalized Hurst exponent h(q) is similar to the standard
h. A h(q) value larger than 0.5 implies persistent series and h(q) < 0.5 indicates anti-
persistent series in moment q, either in small fluctuations q < 2, medium fluctuations q = 2

or large fluctuations q > 2. While mono-fractal characteristic is determined by h(2), to be a
multifractal behavior, x(k) has to show multiple self-similarity. For this aim, the generalized
Hurst exponent h(q) is checked. A multifractal time series is supposed to have varying scaling
exponent. If h(q) is constant for each q, then we conclude that x(k) has only one self-
similar behavior and it is monofractal since its fluctuation function does not vary over different
moments q. Otherwise, x(k) has several self-similarity and it is multifractal. Another clue
for determining multifractality is to check the Renyi exponent τ(q). According to Zou and
Zhang [76], the Renyi exponent can be utilized to reveal multifractal properties. The Renyi
exponent is calculated as τ(q) = qh(q)−1 and for multifractal series, it should be a nonlinear
and increasing function of q.
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2.3.1.2 MF-DMA Algorithm

Multifractal Detrended Moving Average (MF-DMA) is an alternative approach to MF-DFA.
Multifractal time series are challenging data to handle with, since most series, especially fi-
nancial returns, have nonstationary dynamics. So, multifractal methods efficiently remove
any global or local trends in the series to ensure stationarity and avoid any spurious vari-
ance or correlation. For this purpose, Kantelhardt et al. [33] used polynomial fitting to each
segment v. Further, Guo and Zhou [26] offered using moving average algorithm instead
of polynomials for detecting local trends. MF-DMA algorithm consists of six steps. The
only difference of MF-DMA is the detrending procedure. Consider our previous example
{x(k) : k = 1, 2, ...N} again.

Step 1: Cumulative Profile: Guo and Zhou [26] defines cumulative deviance as:

X(t) =

t∑
k=1

x(k) (2.11)

Step 2: Moving Average Function: Estimate the moving average function X̃(t) as follows:

X̃(t) =
1

n

⌈(n−1)(1−θ)⌉∑
k=−⌊(n−1)θ⌋

X(t− k) (2.12)

Where n is the window size, θ ∈ [0, 1] is the position parameter, ⌊X⌋ and ⌈X⌉ are floor
and ceil functions. The function calculates moving average of the series using the window
−⌊(n − 1)θ⌋ to ⌈(n − 1)(1 − θ)⌉. Afterward, the moving average X̃(t) is considered as the
local trend and rest of the algorithm is similar to MF-DFA.

2.3.1.3 MF-TWDFA Algorithm

Multifractal Temporally Weighted Detrended Fluctuation Analysis (MF-TWDFA) is another
multifractal method proposed by Zhou and Leung [74]. It can be considered as a further
improvement of the previous methods. Detrending is a crucial step in multifractal methods
because if we cannot get the local trends correctly, then these local trends may appear to be
related in various scales and result in spurious correlation and multifractality.

In the MF-DFA algorithm of Kantelhardt et al. [33] uses a global regression for each segment
v to estimate local trends. MF-DMA method suggests moving means of data for detrending.
On the other hand, Zhou and Leung [74] offers using more robust approach for detrending
rather than moving means or globally defined regressions. It has been suggested, in geograph-
ical studies most especially [64], that points closer together in space tend to be more closely
related than those farther apart. In the same way, the principle applies to a time series dataset,
where it is expected that variables closer in time will all be more related, say by having sim-
ilar values, in comparison to those widely separated in time. In the context of MF-DFA, the
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points at beginnings or ends of a window of a time series will be more strongly correlated
with their close-by points, even though those nearby ones are actually part of the neighboring
window. More specifically, the farther-away within a given window can be less related com-
pared to those from a neighboring window. It thus looks as if the points should be weighted
by position in the time series.

MF-TWDFA uses Geographically Weighted Regression (GWR) method for detrending pro-
cedure. GWR is a type of varying-parameter regression model and it considers local effect in
time series better than fitting global regression parameters. Suppose that the i-th point falls
into the v-th local window with scale s. Then the local trend at the i-th point, denoted as x(i),
is decided by xv(i). But the value of xv(i) itself is decided only by points falling in its own
local window, not by points that might be closer but outside the window. So in order to take
into account these kinds of local effects more accurately, it’s best to denote xv(i) based on
nearby points. We estimate x(i) by fitting a polynomial (denoted as x̃(i)) in each of the local
windows comprising the points {j : |i − j| ≤ s}. Specifically, we obtain the respective x̃(i)

for x(i) through the moving window, MWi, defined as {j : |i− j| ≤ s}.

MF-TWDFA begins similar to the previous methods. Again, let us consider our previous
example {x(k) : k = 1, 2, ...N}.

Step 1: Cumulative Deviation: We take cumulative deviation of the series.

X(t) =
t∑

k=1

x(k) (2.13)

Step 2: Detrending with GWR: Obtain detrended series using GWR. In the MWi, the poly-
nomial fitting can be expressed as follows. The local trends X̃(i) are obtained for each points
i of {X(i) : i ∈ [0, T ]}

X̃(i) = θ0(i) + θ1(i)i+ ...+ θm(i)im + ϵ (2.14)

In the regression, θj(i), i = 1, 2, ...N, j = 1, 2, ...m stands for m order polynomial and they
are fitted for each point of X(k).

The parameter vector can be expressed as θ(m, i) = [θ0(i), θ1(i), ..., θm(i)]T . The closed-
form solution can be obtained as follows:

θ(m, i) = (T TW (i)T )−1TW (i)X (2.15)

T is a N × (m + 1) matrix where the first column is a vector of constant 1 and the rest are
trend polynomials such that:

18



T =


1 1 · · · 1

1 2 · · · 2m

...
...

. . .
...

1 N · · · Nm


N×(m+1)

(2.16)

And W (i) is a N ×N weight matrix for point i.

W (i) =


wi1 0 · · · 0

0 wi2 · · · 0
...

...
. . .

...
0 0 · · · wiN


N×N

(2.17)

The diagonal elements wij of W (i) represents the weight of point j to fit point i, according
to their distance to point i. We have the following weighting function.

wij =


[
1−

(
|i−j|
s

)2]2
, if |i− j| ≤ s,

0, otherwise.
(2.18)

The rest of the algorithm is similar to MF-DFA. As underlined before, the main difference
of three models is to detrend series x(k) appropriately. Also notice that MF-TWDFA is the
generalized version of MF-DMA. If we let m = 0, then the model only fits moving means for
detrending and model reduces to MF-DMA.

2.3.2 Methods for Bivariate Series

In this subsection, we turn our focus on bivariate sequences. The previous section discuss
multifractality in univariate series. We can obtain detrended variance from those methods.
But for covariance structures of two fractal time series, one needs to apply bivariate mod-
els. The following parts present and evaluate four models, namely as Multifractal Detrended
Cross-Correlation Analysis (MF-DCCA), Multifractal Detrending Moving-Average Cross-
Correlation Analysis (MFXDMA), Multifractal Cross-Correlation Analysis (MF-CCA) and
Multifractal Temporally Weighted Detrended Cross-Correlation Analysis (MF-TWXDFA).
These methods are the generalized version of methods in univariate cases. While univari-
ate models provide detrended variances, this chapter introduces methods for estimating de-
trended cross-covariances. In this way, we can obtain robust nonlinear correlations between
variables. For further usage, let us define two simultaneously recorded, non-stationary time
series {x(k) : k = 1, 2, ...N} and {y(k) : k = 1, 2, ...N} with means x̄ and ȳ.
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2.3.2.1 MF-DCCA Algorithm

In 2008, Zhou [73] developed Kantelhardt et al.’s method and introduced MF-DCCA for
bivariate series. It investigates multifractal, power-law cross-correlation behaviors between
two series. It consists of five steps.

Step 1: Cumulative Deviation: Determine the cumulative profile of the series x(k) and y(k).

X(t) =

t∑
k=1

(xk − x̄), t = 1, 2, ...N

Y (t) =
t∑

k=1

(yk − ȳ), t = 1, 2, ...N

(2.19)

Step 2: Segmentation Divide cumulative deviations X(t) and Y (t) into Ns nonoverlapping
segments of equal length s where Ns = int(N/s). Since N is not necessarily a multiple of s,
this procedure may not exhaust all data points. To avoid losing data, now repeat the procedure
starting from the end of the series. This gives a total of 2×Ns segments of length s.

Step 3: Detrending Estimate a polynomial of degree m for each segment v in 2Ns. Obtain
local trends X̃v(t) amd Ỹv(t).

X̃v(t) = α0 + α1t+ α2t
2 + ...+ αmtm

Ỹv(t) = β0 + β1t+ β2t
2 + ...+ βmtm

(2.20)

Where t is a trend variable such that t = 1, 2, ..s.

Step 4: Local Covariance: The detrended covariance of each segment box v is calculated as
follows: For v = 1, 2, ...Ns, F 2(v, s) is calculated by:

F 2(v, s) =
1

s

s∑
j=1

[X(v − 1)s+ j − X̃v(j)]× [Y (v − 1)s+ j − Ỹv(j)] (2.21)

For v = Ns + 1, Ns + 2...2Ns, F 2(v, s) takes the form:

F 2(v, s) =
1

s

s∑
j=1

[X(N − (v −Ns)s+ j)− X̃v(j)]× [Y (N − (v −Ns)s+ j)− Ỹv(j)]

(2.22)

Step 5: Detrended Covariance: q-th order detrended covariance between x(k) and y(k) is
calculated by averaging all local covariance functions at order q.

While q ̸= 0:

Fxy(q, s) =
1

2Ns

2Ns∑
v=1

[(F 2(v, s))
q
2 ]

1
q (2.23)
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While q = 0, Fxy(0, s) is defined as:

Fxy(0, s) = exp

(
1

2Ns

2Ns∑
v=1

lnF 2(v, s)

)
. (2.24)

Zhou’s method [73] allows us to determine cross-covariance of two nonstationary time series
Fxy(q, s) under various q moments. The detrended cross-covariance depends of q and s. So,
MF-DCCA can generate detrended covariance relationship between x(k) and y(k), under
different time scales s and fluctuations depending on q. For instance, in order to understand
how two series behave under small fluctuations, we can check how Fxy(q, s) behave where
q < 2. Similarly, cross-covariance behavior under large fluctuations can be examined by
letting q > 2.

The following relationship is expected Fxy(q, s) ∝ shxy(q). The generalized Hurst exponent
is obtained by taking the log of both side and fit a simple OLS such that log(Fxy(q, s)) =

log(C) + hxy(q) × log(s). The generalized scaling exponent hxy(q) now depends on x(k)

and y(k) and measures dynamics between two sequences. One should exhibit that cross-
correlation between two sequences is not random walk. For this aim, hxy(2) is evaluated. If
hxy(2) ̸= 0.5, then it is concluded that cross-correlation between series is not random walk.
While hxy(2) ∈ (0.5, 1], then cross-correlation is persistent and hxy(2) ∈ [0, 0.5] exhibit
anti-persistent cross-correlation. Of course, behavior of cross-correlations can be examined
under various q values for q ∈ R. While monofractal series have constant hxy(q) for each q,
scaling exponent varies over q for multifractal series. We can also check the Renyi exponent
τxy(q) for further evidence on multifractality of cross-correlation. Also note that, letting
x(k) = y(k) reduces MF-DCCA to MF-DFA, the univariate version of the model. Instead
of evaluating detrended cross-correlation (or cross-covariance), we get detrended variance of
x(k) or y(k).

MF-DCCA of Zhou [73] is the fundamental model for multifractal analysis. Further re-
searches developed their models upon Zhou’s framework. Notice that MF-DCCA can yield
complex values for detrended covariances Fxy(q, s). Some studies [28, 38] in the literature
modified Zhou’s method to get rid of this issue. They offered taking the modulus while
calculating local covariance function F 2(v, s) in Step 4. However, this procedure causes
information loss on the interaction between the series.

2.3.2.2 MFXDMA Algorithm

Multifractal Detrended Moving Average Cross-Correlation (MFXDMA) algorithm is offered
by Jiang and Zhou [31] as an improvement on MF-DCCA and bivariate generalization of
MF-DMA. The authors suggest that using moving mean of the series for detrending could
give better results for estimating detrended cross-correlation between series x(k) and y(k).
The method is similar to MF-DCCA. It only modifies detrending procedure in Step 3. The
algorithm has the following steps.
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Step 1: Cumulative Profile: Define cumulative summation of deviation as follows:

X(t) =
t∑

k=1

x(k)

Y (t) =
t∑

k=1

y(k)

(2.25)

Step 2: Moving Average Function: Calculate the moving average series X̃(t) and Ỹ (t).

X̃(t) =
1

n

⌈(n−1)(1−θ)⌉∑
k=−⌊(n−1)θ⌋

X(t− k)

Ỹ (t) =
1

n

⌈(n−1)(1−θ)⌉∑
k=−⌊(n−1)θ⌋

Y (t− k)

(2.26)

The rest of the algorithm is the same as MF-DCCA; segmentation of the series, calculating lo-
cal fluctuation function, and estimating detrended cross-covariance as well as relevant statis-
tics such as generalized Hurst exponents. Notice that the complex-valued cross-covariance
problem may also occur in MFXDMA algorithm as well. Also, as it is the generalized ver-
sion of MF-DMA, one can get MF-DMA algorithm for detrended variances of order q by
setting x(k) = y(k).

2.3.2.3 MF-CCA Algorithm

Up to this point, model improvements of multifractal methods have focused on offering var-
ious detrending procedures for better estimation of q-th order detrended cross-covariances.
Oscwiecimka et al. [54] and Kwaipen et al. [36] proposed MF-CCA method, an enhancement
on MF-DCCA method. They dealt with the sign issue estimating cross-covariance function
Fxy(q, s). The first four step of MF-CCA is identical to MF-DCCA. However, they defined
detrended covariance function as follows:

For q ̸= 0, we define Fxy(q, s) as follows:

Fxy(q, s) =
1

2Ns

2Ns∑
v=1

sgn(F 2(v, s))|F 2(v, s)|
q
2 (2.27)

While q = 0, Fxy(0, s) takes the form:

Fxy(0, s) =
1

Ns

2Ns∑
v=1

sgn(F 2(v, s)) ln |F 2(v, s)| (2.28)

Where sgn(F 2(v, s)) is the sign function, taking value 1 if F 2(v, s) is positive, and −1 if it
is negative. The definition of Fxy(q, s) in this way guarantees no imaginary part occurs in
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Fxy(q, s) and also no information is lost while taking the absolute values of local covariance
functions since we preserve sign of the F 2(v, s).

2.3.2.4 MF-TWXDFA Algorithm

Proposed by Wei et al. [67], MF-TWXDFA model is one of the most recent improvement on
multifractal cross-correlation methods. The authors [67] generalized MF-TWDFA to bivariate
series building upon the approach of MF-CCA of Oswiecimka et al. [54] and Kwaipen et
al. [36]. MF-TWXDFA preserves GWR perspective of MF-TWDFA while considering the
sign issue of MF-DCCA, and therefore chooses to follow MF-CCA’s definition on detrended
cross-covariance function Fxy(q, s). Since MF-TWXDFA is the generalized version of MF-
TWDFA, see the subsection 2.3.1.3 for using the advantages of GWR and notations.

MF-TWXDFA consists of six steps as follows:

Step 1: Cumulative Deviation: We start with taking the cumulative deviations of two non-
stationary time series x(k) and y(k):

X(t) =
t∑

k=1

x(k)

Y (t) =
t∑

k=1

y(k)

(2.29)

Step 2: Detrending with GWR: Obtain detrended series X̃(t) and Ỹ (t) by applying GWR
to X(t) and Y (t). Let S(t) be either X(t) and Y (t) respectively and apply the following
detrending procedure for both of the series. Fit m-th order polynomial to S(t) by using the
moving window MWi where MWi contains the points {j : |i− j| ≤ s

c} for c ≥ 1.

S̃(i) = γ0(i) + γ1(i)i+ ...+ γm(i)im + µ (2.30)

WhereS̃(i) is the fitted value at point i and γ(m, i) = [γ0(i), γ1(i), ..., γm(i)]T . The regres-
sion follows the closed-form solution given below:

γ(m, i) = (T TW (i)T )−1TW (i)S (2.31)

The matrix T has N × (m+ 1) dimension. Its first column holds for model constant and the
rest stands for trend polynomials such that:
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T =


1 1 · · · 1

1 2 · · · 2m

...
...

. . .
...

1 N · · · Nm


N×(m+1)

(2.32)

The weight matrix W (i) has N×N shape and it is estimated for each point {i : i = 1, 2, ...N}
in S(t).

W (i) =


wi1 0 · · · 0

0 wi2 · · · 0
...

...
. . .

...
0 0 · · · wiN


N×N

(2.33)

wij are the weights of each point j ∈ MWi and it weights each point j according to their
distance to i with some additional penalty c.

wij =


[
1−

(
c(i−j)

s

)2]2
, if |i− j| ≤

⌊
s
c

⌋
,

0, otherwise.
(2.34)

Apply the procedure by letting S(t) equals to X(t) and Y (t) respectively to obtain detrended
series X̃(t) and Ỹ (t).

Step 3: Segmentation: Divide the cumulative deviations, (X(t), Y (t)) and detrended series
(X̃(t), Ỹ (t)), in Ns nonoverlapping segments of an equal length s such that: Ns = int(Ns ).
Since N may not be multiple of s, repeat the procedure starting from the end of the series so
that we do not discard any data point. In total, we get 2×Ns segments of size s.

Step 4: Local Covariances: Detrended cross-covariance for each segment v is calculated as
follows:

F 2(v, s) =
1

s

s∑
j=1

[X(v − 1)s+ j − X̃v(j)]× [Y (v − 1)s+ j − Ỹv(j)] (2.35)

For v = 1, 2, ...Ns, F 2(v, s) and

F 2(v, s) =
1

s

s∑
j=1

[X(N − (v −Ns)s+ j)− X̃v(j)]× [Y (N − (v −Ns)s+ j)− Ỹv(j)]

(2.36)
For v = Ns + 1, Ns + 2...2Ns, F 2(v, s) takes the form:
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Step 5: q-th Order Covariances: Obtain q-th order fluctuation function

Fxy(q, s) =

∣∣∣∣∣ 1

2Ns

2Ns∑
v=1

sgn(F 2(v, s))|F 2(v, s)|q/2
∣∣∣∣∣
1/q

, for q ̸= 0 (2.37)

Fxy(q, s) = exp

[
1

4Ns

2Ns∑
v=1

sgn(F 2(v, s)) ln |F 2(v, s)|

]
, for q = 0. (2.38)

The interpretation on model results, Fxy(q, s), hxy(q), τxy(q) are similar to the previous
ones. The only difference is that Wei et al.[67] states the scaling exponent hxy(q) is valid
only for q > 0. Negative moments are not defined in MF-TWXDFA. Also notice that letting
x(k) = y(k) reduces model to univariate version MF-TWDFA.

2.4 Portfolio Diversification in Cryptocurrency Market

This section of the thesis discusses the literature on portfolio diversification with cryptocur-
rency assets. One of the first test on portfolio diversification is conducted by Brauneis and
Mestel [10]. The authors examined the risk–return profile of cryptocurrency portfolios within
a traditional Markowitz mean–variance setup. In the paper, several mean–variance opti-
mized portfolios are compared to single cryptocurrency investments and two benchmarks,
the equally weighted portfolio and the CRIX index—based on daily data from 2015 to 2017
for the 500 most capitalized cryptocurrencies. The authors find that diversified cryptocurrency
portfolios offer substantial risk reduction compared to individual cryptocurrencies. Quite to
the point, the naively diversified 1/N portfolio had already outperformed most of the opti-
mized portfolios in terms of Sharpe ratios and certainty equivalent returns. Their findings
show that even in such a highly volatile market as cryptocurrencies, the principles of diver-
sification can work very well at controlling risk, and simple strategies may work better than
more complex optimization methods.

Liu [41] investigates the investability and diversification benefits of cryptocurrencies by an-
alyzing the out-of-sample performance of various asset allocation models. The study used
daily data from 2015 to 2018 for ten large-cap crypto currencies and then applied the six clas-
sical portfolio models: equal-weighted, minimum variance, risk parity, Markowitz, maximum
Sharpe ratio, and maximum utility. The results show that diversification across cryptocurren-
cies significantly improve investment outcomes. It is only in the mean-utility model that the
highest return and utility among others. Otherwise, no complex model outperforms the naïve
1/N portfolio in terms of the Sharpe ratio, which suggests that estimation errors to means and
covariances might offset the benefits of optimal diversification.

Bouri et al. [9] examine the hedging and diversification potential of five large cryptocur-
rencies: BTC, ETH, XRP, LTC, and XLM, against extreme negative movements in equity
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markets, including indices from the USA, Europe, Asia-Pacific, and Japan. In their study,
using a DCC GARCH approach, it is revealed that these cryptocurrencies would have shown
different degrees of hedging and diversification capabilities. Particularly, Bitcoin acts as a
hedge to USA equities, Asia-Pacific, and Japan, while other cryptocurrencies do similar du-
ties, more so in both the Asia-Pacific and Japanese markets. Notably, the analysis indicates a
time-varying nature of these abilities, thus suggesting that the effectiveness of cryptocurrency
as a hedge or a diversifier may fluctuate over time. This paper concludes that, for risk man-
agement purposes, cryptocurrency assets are not homogeneous, with Bitcoin and Ethereum
being the most efficient hedges in Japan and Asia-Pacific.

Demiralay and Bayraci [16] investigate the conditional diversification benefits of cryptocur-
rencies in stock portfolios by means of a correlation-based measure that captures the time-
varying investment benefit. In this paper, data is taken on eight major cryptocurrencies and
developed and emerging equity markets from August 2015 to June 2019. The authors use the
DCC GARCH and DECO GARCH models to estimate conditional correlation among these
assets. Results are returned that, in general, cryptocurrencies can provide diversification ben-
efits to investors, as generally represented by low correlations with equity markets. These
benefits are, however, time-varying in nature and tend to get reduced at times of turbulence,
such as during the Brexit referendum and the Coincheck hack, thereby signaling an increase in
the integration of markets. Offsetting the potential promise of cryptocurrencies as a source of
portfolio diversification, the study concludes that their benefit is subject to exogenous shocks
and changed market conditions.

Akhtaruzzaman et al. [2] examine the role that Bitcoin could play in portfolio diversification
and risk management in a study of the dynamic conditional correlations of global industry
portfolios and a bond index with Bitcoin. In this work, the August 2011–November 2018
period is covered with a VARMA DCC-GARCH model, generally showing that low corre-
lations between Bitcoin with other assets make it potentially very useful for diversification.
This paper identifies the optimal weights and hedge ratios of including Bitcoin in the port-
folios, which show that Bitcoin can effectively hedge industry portfolios and bonds, mostly
during downturns.

Ma et al. [42] examine the diversification power that cryptocurrencies can add to traditional
asset portfolios. The research explores the eventual effects of adding the five most significant
cryptocurrencies—BTC, ETH, XRP, BCH, and LTC—into the portfolios of stocks, techno-
logical firms’ stocks, currencies, and commodities. The authors use data spanning the period
from November 2015 to November 2019 to test several portfolio optimization techniques,
including the Markowitz Mean-Variance analysis and Sharpe ratio optimization. The results
indicate that inclusions of cryptocurrencies actually bring substantial improvements in port-
folio returns and reductions in volatility across all classes, with the diversification benefits of
ETH much greater than those of BTC.

Yousaf and Yarovaya [70] consider return and volatility spillovers among Non-Fungible To-
kens, Decentralized Finance assets, and traditional assets consisting of oil, gold, Bitcoin, and
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the SP 500 by using a time-varying parameter vector autoregression model. From this study,
results show that those digital assets, mainly NFTs and DeFi assets, are relatively decoupled
from the traditional markets, displaying weak static spillovers. Offentlich, however, finds that
during the COVID-19 pandemic and the cryptocurrency bubble in 2021, the dynamic con-
nectedness among these asset classes increased, including potential contagion effects. The
authors further demonstrate how among NFTs and DeFi assets, there exist net transmitters
of return and volatility, while some are net receivers. These findings suggest that a portfolio
including NFT and DeFi assets would benefit from diversification, particularly during crisis
periods, due to generally low correlations with traditional assets.
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CHAPTER 3

RESEARCH METHODOLOGY

This part of the thesis proposes research methodology. Dataset and research variables are ex-
plained in the first subsection, followed by descriptive statistics on data. Further, we present
our model proposal Mean-MFTWXDFA portfolo optimization. We compare our model re-
sults with some well-known approaches based on EMH. Therefore, the methods from clas-
sical financial perspective; naive 1/N, Mean-Variance, Mean-VaR, Mean CVaR, are also de-
scribed in this part. Our study contributes to the literature by offering a portfolio optimiza-
tion approach based on FMH. The study also combines optimization techniques with two
approaches: equal risk contribution (ERC) and multiobjective optimization with three objec-
tive functions; maximizing return, minimizing risk, equal distribution of portfolio risk across
assets. These approaches are presented in the following subsections.

3.1 Dataset

The dataset consists of six variables, including three cryptocurrencies and three conventional
assets. For crypto asset side, we choose Bitcoin (BTC), Ethereum (ETH) and Ripple (XRP)
because these assets have the the largest market cap and longest available data. On the con-
ventional side, equity market and two energy-related assets, namely crude oil and clean en-
ergy are selected. Equity class is included because the literature on cryptocurrency portfolios
have exhibited several times that including equity in the portfolio enhances the performance.
Cryptocurrencies consume vast amount of energy in their mining and transaction processes
[14, 72]. Considering the fact that energy is the main input for cryptocurrency market, crude
oil and clean energy assets are taken into account for diversification. While crude oil holds
for dirty energy class, clean energy assets presents sustainable energy investments.

SP500 index data is used to represent equity market. For dirty energy asset, crude oil spot
prices are obtained. For clean energy investments, iShares Global Clean Energy ETFs are
used as these ETFs have the highest market cap amount other clean energy indices. Asset
prices and index values are downloaded from investing.com website. The sample space spans
from January 3, 2017 to December 29, 2023, including 1760 daily observations. The rest of
the study uses logarithmic return series, calculated as follows: ri,t = ln(Pi,t − Pi,t−1)× 100
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where ri,t is continuously compounded return of asset i at time t and Pi,t is the price or index
data.

3.2 Descriptive Statistics

This part of the study presents and examine descriptive and visual statistics on research vari-
ables. Below, a list of descriptive statistics are presented in Table 3.1. These statistics include;
basic measures on the first four moments (mean, variance, skewness, kurtosis), normality test
(Jarque-Bera Test), unit root tests (Augmented Dickey-Fuller, Phillip-Perron, KPSS), het-
eroscedasticity test (ARCH-LM Test), and GARCH parameters for standard GARCH(1,1)
model.

Table 3.1: Descriptive Statistics
btc eth xrp crude_oil clean_energy equity

Mean 0.2107 0.3106 0.2603 0.0174 0.0381 0.0425
Variance 21.71 40.13 61.81 9.26 3.22 1.49
Kurtosis 10.43 8.96 17.03 58.80 7.63 15.92
Skewness -0.7898 -0.1586 1.5303 -1.9407 -0.4281 -0.8521
Jarque-Bera 8108.6 5849.3 21824.0 253037.0 4294.4 18675.0
ADF -10.3 -9.9 -10.6 -11.9 -10.8 -11.6
PP -1971.6 -1974.2 -1965.2 -1566.5 -1842.9 -2123.8
KPSS 0.1929 0.3614 0.2975 0.0688 0.1032 0.0359
ARCH-LM Test 10.57 17.54 40.88 214.05 102.73 415.68
GARCH α 0.1259 0.1167 0.2172 0.2411 0.0829 0.2065
GARCH β 0.8052 0.8684 0.7287 0.7554 0.9119 0.7816

According to Table 3.1, cryptocurrencies, among all assets, have highest mean and variance.
Jarque-Bera test results rejects the null hypothesis of normality for all assets. Stationarity test
results indicate that return series are mean-stationary. ADF and PP tests reject the null hy-
pothesis of unit root while KPSS tests accept the null hypothesis of stationarity. ARCH-LM
test is applied to test whether the series have non-constant variance over time. The results on
ARCH-LM tests reject the null hypothesis of homoscedasticity and indicate heteroscedastic
behavior in return series. A standard GARCH (1,1) model with ARMA(1,1) order is fitted
to all series to exhibit volatility structures. BTC, ETH and clean energy volatility series dis-
play long-term persistency, while volatility of XRP, crude oil and equity are also moderately
influenced by short-term shocks. The results are tested at 1% confidence level.

The sample graphs are presented in Figures 3.1 to 3.6, covering level-return-volatility series
for each variable. Crypto returns display several extreme values, for instance, between 50%
to 60% negative returns in one day. These assets also exhibit high volatility and several
volatility clusters in the sample period. In contrast to this, conventional assets have relatively
stable volatilities compared with the cryptocurrencies, with fewer extreme values. On the
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other hand, one can observe volatility jumps and a few extreme returns, especially during the
period of the COVID-19 pandemic.

Figure 3.1: Level-Return-Volatility Series - BTC

Figure 3.2: Level-Return-Volatility Series - ETH

Figure 3.3: Level-Return-Volatility Series - XRP
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Figure 3.4: Level-Return-Volatility Series - Crude Oil

Figure 3.5: Level-Return-Volatility Series - Clean Energy

Figure 3.6: Level-Return-Volatility Series - Equity

3.3 Portfolio Construction Framework

This section propose a general framework for portfolio construction. In this study, portfolio
optimizations are presented with two enhancements to classical optimization problems. First,
optimization problems are solved under equal risk contribution (ERC). Developed by Mail-
lard et al. [44], ERC is an idea for portfolio construction that equalize the risk contribution of
each individual asset to portfolio’s total risk. The method is applicable for various risk mea-
sures, such as variance, VaR, CVaR. Second, optimization problems are modelled with three
objective functions, which are (i) minimizing risk, (ii) maximizing return, and (iii) distributing
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portfolio risk equally across assets. Following subsections presents the enhancements.

3.3.1 Equal Risk Contribution (ERC)

The optimal portfolios end up being very concentrated in only a small subset of the total pool
of available assets or securities. Besides, mean-variance is extraordinarily sensitive to input
parameters. Even slight changes in these parameters, especially in expected returns may cause
large shifts in the composition of the portfolio.

In this study, we use equal risk contribution for portfolio allocation. The idea is to equalize
the risk contributions of the various components of the portfolio. The contribution to risk
of a component i is the proportion of the total portfolio risk that can be attributed to this
component. It is calculated as a product of the allocation in subcomponent i and its marginal
risk contribution, which is the change in total portfolio risk caused by a small increase in
holdings of component i.

Manipulation of risk contributions has become standard practice for institutional investors,
and it is often referred to as "risk budgeting". By risk budgeting, one means nothing more
than looking at the portfolio from the perspective of risk contributions rather than portfolio
weights. ERC replicates diversification benefits of an equally-weighted portfolio, while it
considers the individual and combined risk contributions of the assets. That is to say, no asset
contributes disproportionately to the total risk of the portfolio.

ERC procedure requires defining marginal and total risk contributions. Let us consider portfo-
lio of n risky assets where w is the weight vector w = (w1, w2, ...wn)

T . Assets have defined
with variance σ2

i and covariance matrix Σ where components of Σ are the covariance σij be-
tween asset i and j. Then, portfolio risk can be defined as σ(w) =

√
wTΣw. Then, according

to Maillard et al. [44], marginal risk contribution of individual asset i is defined as follows:

∂wiσ(w) =
∂σ(w)

∂wi
=

wiσ
2
i +

∑
j ̸=iwjσij

σ(w)
(3.1)

where ∂wiσ(w) is the marginal risk contribution of asset i. The use of the term "marginal"
conveys that these values are changes in portfolio volatility for small increases in the weight
of one component. Note that total risk contribution of asset i is obtained as σi(w) = wi ×
∂xiσ(w). Accordingly, we have the following decomposition:

σ(w) =

n∑
i=1

σi(w) (3.2)

So, equation 3.2 provides the insight that a portfolio’s total risk can be attributed to sum of
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individual risk components. ERC portfolio optimization has the following form:

w⋆ = argmin

n∑
i=1

n∑
j=1

(wi(Σw)i − wj(Σw)j)
2

s.t.
n∑

i=1

wi = 1

0 ≤ wi ≤ 1

(3.3)

where (Σw)i is the ith row of Σw. The optimization algorithm basically aims to minimize the
variance of rescaled risk contributions. ERC framework is presented for variance-covariance
risk measure, however, it is also applicable for various risk measures [44]. The framework
remains the same, whereas, marginal risk contributions need to be redefined for other risk
measures.

Risk contribution for Value at Risk (VaR) measure is proposed by [27]. Consider portfolio
with return r̃p and VaR vp. Then, risk contribution of asset i is defined as follows.

∂σp
∂wi

=
Cov(r̃i, r̃p)

σp
= βi · σp

βi =
Cov(r̃i, r̃p)

Var(r̃p)

(3.4)

where σp is portfolio’s risk, r̃i is the return of asset i, and βi is the OLS coefficient between
returns of asset i and portfolio. Accordingly, marginal-VaR of asset i, vi is defined as follows:

vi = βi ∗ vp (3.5)

Note that βp =
∑

iwiβi = 1 and we have the relationship between vi and vp: vp =∑
i∈nwi(βi × vp) =

∑
i∈nwi × vi. So, VaR component of individual assets is called ṽi

where ṽi = wi × vi. So, marginal VaR is estimated by utilizing asset’s correlation with port-
folio. The contribution of each asset’s VaR to portfolio’s VaR is defined by ṽi and it sums up
to portfolio’s total VaR vp. One can plug this value into ERC framework easily.

For CVaR portfolios, Boudt et al. [8] presents how a portfolio’s CVaR can be differentiated
into each component’s CVaR. Consider a portfolio with return rp, VaR vp, and CVaR cvp.
Then, CVaR contribution of each asset c̃vi can be calculated as follows:

c̃vi = wi ×
∂cvp
∂wi

= −E[wiri|rp ≤ −vp] (3.6)

One can follow ERC framework of Maillard et al. [44] after defining CVaR contributions c̃vi.
The idea is the same as previous approaches, that is minimizing variance of risk contributions
of assets.
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3.3.2 Optimization with Several Objective Functions

The basic portfolio optimization application requires one objective function to optimize as-
set allocation according to the objective. The fundamental model proposed by Markowitz
[50] assumes that investors demand maximizing return and minimizing risk. Including ERC
objective, portfolio optimization framework can be presented as below.

min f1(w) =

n∑
i=1

n∑
j=1

wiwjσij

min f2(w) = −
n∑

i=1

riwi

min f3(w) =
n∑

i=1

(wiki −
1

n

n∑
j=1

wjkj)
2

s. to w1 + w2 + · · ·+ wn = 1

wi ≥ 0, i = 1, 2, . . . , n

(3.7)

where wi is portfolio weight, ri is asset return, ki is the risk contribution of asset i, σij is the
covariance between asset i and j. For VaR and CVaR risk measures, we have portfolio’s VaR
vp or CVaR cvp, rather than

∑n
i=1

∑n
j=1wiwjσij .

The model in equation 3.7 is a multi-objective optimization problem (MOOP). Optimiza-
tion with several objective functions can be solved using various techniques, such as graphic
method, classical methods, or meta-heuristic approaches [65]. This study uses Weighted Sum
Method (WSM), a classical approach with posteriori articulation of preference information
method. Türkşen [65] defines WSM approach as follows: consider n objective functions
{fi(x) : i = 1, 2, ...n} where x is a vector of decision variables and fi(x) are minimization
problems for all i. The MOOP can be formulated accordingly:

min

r∑
j=1

αjfj(x)

x ∈ S

(3.8)

WSM reduces MOOP into optimization of one objective function. In equation 3.8, αj ≥ 0

represents weight of objective function fj(x) and the sum of weights need to be one, for
instance

∑r
j=1 αj = 1. Hence, MOOP in equation 3.7 can be re-defined as below.
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min
3∑

j=1

αjfj(w) = α1

n∑
i=1

n∑
j=1

wiwjσij

+ α2

(
−

n∑
i=1

riwi

)

+ α3

 n∑
i=1

wiki −
1

n

n∑
j=1

wjkj

2
s. to w1 + w2 + · · ·+ wn = 1

wi ≥ 0, i = 1, 2, . . . , n

αj ∈ [0, 1]

(3.9)

In this study, αj is defined as 1/3 for the following optimization problems. All the objective
functions used have been given equal importance in the following optimization algorithms
adopted in the study.

3.4 Portfolio Models

This section presents portfolio models used in this thesis. The main contribution of this study
is to present a portfolio optimization framework under fractal theory. For this purpose, we
develop Mean-MFTWXDFA portfolio optimization. To test the performance, the results
of Mean-MFTWXDFA is compared with other classical models such as equally-weighted,
Mean-Variance, Mean-VaR, and Mean-CVaR portfolios. The distinction between these mod-
els lies in how they assess risk in different ways. The following subsections introduces port-
folio models. For simplicity, let us define notations similar to all portfolios. For the following
subsections, assume a portfolio with n risky asset; where {wi : i = 1, 2, ...n} is portfolio
weights, ri and rp is portfolio’s expected return.

3.4.1 Equally-Weighted Portfolio Model

Also known as Naive or 1/n, Equally-Weighted (EW) portfolio is the most basic approach for
asset allocation. EW assumes that investors allocate their wealth equally to all assets. Reject-
ing MPT, this approach ignores variance-covariance or any risk relationship between assets.
For instance, consider an investor with wealth W . Then, EW suggests portfolio allocation
between n risky asset as wi = 1/n for all i.
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3.4.2 Mean-Variance Portfolio Model

Mean-Variance (MV) model is proposed by Markowitz [50]. It is the first model proposed
in the literature, suggesting portfolio allocation scheme according to return-risk relationship
between risky assets. MV model takes the form in equation 3.7. This approach offers using
variance-covariance relationship as risk measure.

3.4.3 Mean-VaR Portfolio Model

VaR is a financial measure that indicates the potential loss in value of the investment portfolio
or individual security over a specified period under normal market conditions, within a set
confidence level. It provides a quantifiable measure of possible downside risk in a portfolio
by showing the maximum expected loss that could result. VaR is calculated as a threshold
value such that the probability of loss greater than this threshold be greater than some level,
represented by (1− c), where c represents the confidence level.

Among others, historical simulation, variance-covariance method, and Monte Carlo simula-
tion are some of the different techniques for calculating VaR. Historical simulation involves
simulating the possible losses from past data. Under the variance-covariance method, returns
are assumed to be normally distributed; therefore, some statistical measures like mean and
standard deviation are used. Monte Carlo simulation uses random sampling and statistical
modeling in its estimation of potential losses. VaR is applied broadly in risk management,
financial regulation, and investment strategy for the measure of potential losses that might
be incurred. However, it has its limitations in assuming normality conditions in markets,
probably too low for extreme risk estimation.

Mean-VaR portfolio considers VaR as the risk measure of portfolio and aims to minimize VaR.
Mean-VaR optimization starts by defining portfolio’s return-VaR. Recall that rp is portfolio
return and assume that it follows normal distribution with mean µp and varianca σ2

p . Then,
there is a c% chance that one should not experience a potential loss (return) larger than VaR
vp [27]:

vp = −µp + σp × ζ−1(c) (3.10)

where c is the confidence level and ζ−1(c) is the inverse of standard normal distribution.
Hence, modifying equation 3.9, Mean-VaR can be defined by the following optimization
model.
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min
3∑

j=1

αjfj(w) = α1 (vp) + α2

(
−

n∑
i=1

riwi

)
+ α3

 n∑
i=1

(wiṽi −
1

n

n∑
j=1

wj ṽj)
2


s. to w1 + w2 + · · ·+ wn = 1

wi ≥ 0, i = 1, 2, . . . , n

αj ∈ [0, 1]
(3.11)

3.4.4 Mean-CVaR Portfolio Model

Conditional Value at Risk (CVaR), also referred to as Expected Shortfall, is a measure of risk
quantifying the expected loss a portfolio or investment could realize in the worst cases beyond
a given confidence level. In particular, while VaR indicates a threshold value such that the
probability of losses exceeding this value lies at a given confidence level, CVaR goes one step
beyond VaR by considering an average of losses beyond this VaR threshold. Therefore, CVaR
is considered to be a more complete measure for tail risk because it considers extreme losses
with their size. CVaR is particularly convenient for risk management and financial analysis
because it makes a clear picture of potential extreme losses, hence helping investors and risk
managers understand and be better prepared for the worst-case scenario. CVaR is estimated
as follows according to [8]. Let rp,w,t be portfolio’s return at time t under portfolio allocation
vector w and assume that rp,t,w is normally distributed. Then, CVaR cvp is calculated by the
following conditional expectation, for a given VaR vp at a pre-defined confidence interval c.

cvp = −E[rp,t,w|rp,t,w ≤ −vp] (3.12)

cvp is basically the expected loss beyond VaR. The Mean-CVaR portfolio targets to minimize
this expected loss. Modifying equation 3.9 considering cvp as the risk measure, we have
following MOOP problem.

min
3∑

j=1

αjfj(w) = α1 (cvp) + α2

(
−

n∑
i=1

riwi

)
+ α3

 n∑
i=1

(wic̃vi −
1

n

n∑
j=1

wj c̃vj)
2


s. to w1 + w2 + · · ·+ wn = 1

wi ≥ 0, i = 1, 2, . . . , n

αj ∈ [0, 1]
(3.13)
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3.4.5 Mean-MFTWXDFA Portfolio Model

In this subsection, we propose our model Mean-MFTWXDFA. Recall the subsection presents
MF-TWXDFA (section 2.3.2.4). We defined detrended variance and detrended cross covari-
ance in equation 2.37 multifractal series at various q moments. Let us redefine detrended
covariance Fxy,MF−TWXDFA(q, s) for our portfolio measurement. Since we have n risky
asset with returns {ri : i = 1, 2, ...n}, we can define detrended cross-covariance between
assets as Fri,rj ,MF−TWXDFA(q, s) for i, j = 1, 2, ...n. Also note that when i = j, we get
detrended variance of return series ri.

We propose to use detrended cross-covariance for portfolio optimization of n risky asset.
Modifying Markowwitz’s classical mean variance framework, the fundamental model Mean-
MFTWXDFA takes the following form.

min
n∑

i=1

n∑
j=1

wiwjFri,rj ,MF−TWXDFA(q, s)

max
n∑

i=1

riwi

s. to w1 + w2 + · · ·+ wn = 1

wi ≥ 0, i = 1, 2, . . . , n

(3.14)

Now, let us discuss the advantages of Mean-MFTWXDFA portfolio optimization. Firstly,
the proposed model is robust under non-stationarity. While classical model of Markowitz
and other variants require stable pdf, risk measure under multifractality does not require
such an assumption. We propose a model under FMH. It is highly recommended to uti-
lize such a multifractal methodology when the series exhibit fractal properties. So, Mean-
MFTWXDFA is applicable for fractal series and one should previously check that the Hurst
exponent hri(2) ̸= 0.5 and the series is not a random walk and is fractal. FMH-based portfo-
lio optimization allows us to relax the main assumptions of EMH. For instance, a multifractal
risk measure such as Fri,rj ,MF−TWXDFA(q, s) does not require normality assumption of as-
set returns and is applicable for fat-tail distributions. With Mean-MFTWXDFA, we do not
only consider linear interdependence between returns, but also nonlinear intricate dynam-
ics as well. Thus, Fri,rj ,MF−TWXDFA(q, s) measures the hidden cross-covariance relation-
ship that linear dependency models cannot catch. Compared to the preivous models, Mean-
MFTWDFA is suitable for any moment {q : q ∈ R}. While q > 2, Fri,rj ,MF−TWXDFA(q, s)

display covariance relationship under large fluctuations where the market is highly volatile.
On the other hand, q < 2 is also preferable when the market exhibit small fluctuations. Thus,
especially for dynamic portfolios, Mean-MFTWDFA allows one to adjust the risk accord-
ing to the market dynamics. One of the great innovation of fractal portfolios is that they are
suitable for various time scales s, which can be considered as investment periods. While the
classical models consider investors with uniform investment horizons, one can easily adjust
Fri,rj ,MF−TWXDFA(q, s) for any s values (generally suggested 10 ≤ s ≤ N

4 ).
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Mean-MFTWXDFA has significant improvements on the previous fractal portfolio applica-
tions. Compared to Mean-MFDCCA and Mean-MFXDMA, our model does not ignore the
sign of detrended cross-covariances and does not results in covariances with complex num-
bers. Relative to the Mean-MFDCCA, Mean-MFXDMA, and Mean-MFCCA, our model uses
MF-TWXDFA which utilizes GWR method for detrending and therefore, it produces robust
detrended series while calculating detrended cross-covariance. In this way, we eliminate spu-
rious correlation relationships and more accurately estimate Fri,rj (q, s).

By substituting Fri,rj ,MF−TWXDFA(q, s) into equation 3.9, we get the following MOOP.

min
3∑

j=1

αjfj(w) = α1

 n∑
i=1

n∑
j=1

wiwjFri,rj ,MF−TWXDFA(q, s)


+ α2

(
−

n∑
i=1

riwi

)

+ α3

 n∑
i=1

(wiki −
1

n

n∑
j=1

wjkj)
2


s. to w1 + w2 + · · ·+ wn = 1

wi ≥ 0, i = 1, 2, . . . , n

αj ∈ [0, 1]

(3.15)
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CHAPTER 4

AN APPLICATION OF MEAN-MFTWXDFA PORTFOLIO
ALLOCATION

This chapter of thesis covers empirical analysis and portfolio applications. In the following
subsections, we first exhibit fractal behavior of six assets included in this study. Afterwards,
portfolio application of Mean-MFTWXDFA is conducted and the results are compared with
other classical methods; such as Equally-Weighted Portfolio, Mean-Variance, Mean-VaR, and
Mean-CVaR. The analysis of this thesis are conducted using Python programming language.

4.1 Multifractal Analysis of Assets

This subsection of the study presents multifractal analysis on portfolio assets. The analysis
of MF-TWXDFA is performed for individual asset to exhibit fractality of cryptos and other
assets. Multifractal methods requires some pre-defined parameters. We conduct our analysis
for time scales 10 ≤ s ≤ N

4 , q-power {q : q ∈ [1, 10], q ∈ N}, polynomial order m = 1,
and additional restriction on detrending c restriction for detrending c = 1. The results are
displayed in Figures from 4.1 to 4.6. Figures express the generalized Hurst exponents h(q)

and Renyi exponents τ(q) for each asset. In the case of multifractal series, the Renyi exponent
should increase nonlinearly with q. The variation of the generalized Hurst exponent with q

moments is evidence of multifractality. Moreover, when the Hurst exponent h(q) is equal to
0.5 where q = 2, it indicates a random walk; otherwise, it can be commented that the series
is not a random walk and has memory.

Based on the findings of the multifractal analysis of the assets, the following interpretations
can be made. The Hurst exponents can be observed where q = 2. According to the findings,
h(2) ̸= 0.5 for all assets, indicating that return series are not random walk and exhibit fractal
behavior. The second evidence on multifractality is that the generalized Hurst exponent h(q)
is not constant and varies for all q values, suggesting that asset returns are multifractal. For
further evidences, The Renyi exponent τ(q) can be assessed as well. τ(q) values display
increases nonlinearly as a function of q, indicating that the series have multifractal behavior.
Since fractality is confirmed for all assets, further analysis can be conducted. Based on asset-
based analyses, the following findings can be reached.
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Figure 4.1: Fractal Analysis - BTC

Figure 4.2: Fractal Analysis - ETH

Figure 4.3: Fractal Analysis - XRP
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Figure 4.4: Fractal Analysis - Crude Oil

Figure 4.5: Fractal Analysis - Clean Energy

Figure 4.6: Fractal Analysis- Equity

• BTC has Hurst exponent h(2) > 0.5, indicating that Bitcoin returns have long-range de-
pendency. So, positive (negative) returns are likely to be followed by positive (negative)
returns. On the other hand, q = 2 only display return behavior in medium fluctuations.
This behavior varies according to different fluctuations. For small fluctuations where
q < 2, the long-range dependency is highest. When Bitcoin market acts relatively sta-
ble, return series have strongest long-range memory compared to other moments. Nev-
erthless, the market turn out to have short memory and show mean-reverting behavior
in very large fluctuations. While long-range dependency of BTC returns continues for
1 ≤ q ≤ 6, the market dynamics transform into mean-reverting.

• ETH performs similar behavior to BTC. In particular, the exponent h(2) ≈ 0.55 sug-
gests slight long-range dependence; therefore, there exists some weaker persistence in
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Ethereum returns compared to Bitcoin. In the case of small fluctuations, q < 2, large
values of h(q) reflect a stronger long-range dependence. This means that during pe-
riods with relatively stable markets, ETH will hold more to the trends set in the past.
By increasing the moment order to medium-sized fluctuations, q = 2, returns persist;
though the effect is not so pronounced. For q > 2, this decrease in h(q) can further
suggest a shift in mean reverting behavior, for in such highly volatile conditions, the re-
turns of ETH are more likely to reverse and less persistent. This pattern of varying h(q)

values with increasing q thus illustrates the multifractal nature of the ETH market, from
persistent to more random mean-reverting behavior as volatility increases. Compared
with BTC, multifractality and long-range dependence are relatively weaker in ETH.

• XRP exhibits divergent behavior from other cryptocurrencies. From the obtained val-
ues of h(q), it can be deduced that there exists a anti-persistency in returns of XRP.
In particular, the value of exponent h(2) stays much below 0.5, which means that the
returns are more likely to reverse than to persist in trends. For small fluctuations, q < 2,
the Hurst exponent takes a value of 0.45, thus indicating anti-persistence in small fluc-
tuation periods. The general view on XRP is that h(q) decreases with increasing order
q, thus exhibiting a stronger anti-persistent tendency in large fluctuations especially
q > 2.

• Crude oil analysis results in h(2) are greater than 0.5, approximately 0.65, which in-
dicates strong long-range dependence and persistence in crude oil returns. This means
that positive or negative returns are likely to be followed by similar returns, a trend-
following behavior. In the case of small fluctuations, q < 2, it has a rather high value,
above 0.65, which means very strong persistence and trend-following behavior during
periods of stable markets. As one goes to larger moments q, the value of h(q) decreases,
indicating therefore a reduction in long-range dependence. This trend might indicate
that there is a transition from persistent to less persistent or even mean-reverting be-
havior with increasing fluctuations. In particular, for large fluctuations, q ≥ 4, the
generalized Hurst exponent drops below 0.5, indicating a shift towards mean-reverting
dynamics where the market shows a tendency to reverse trends rather than continue
them.

• Clean energy data exhibits the Hurst exponent value of h(2) = 0.53 which is only
slightly higher than 0.5, meaning that there is a long-range dependence in the returns.
This implies that there is slight persistence in the trends of returns—that is, positive
returns are slightly more likely to be followed by positive returns, and negative returns
by negative ones. For small fluctuations q < 2 the Hurst exponent maximizes itself
on a value around 0.55, which means that at small volatility periods the behavior of
the clean energy market would have a tendency for a more trend-following type be-
havior. For larger moment order increases, h(q) gradually decreases, which means
that the correlation exhibits a progressive decrease of long-range dependence with a
switch to anti-persistent (mean-reversion) behavior, characteristically evident for large
fluctuations especially q > 3. This may imply that, though there is a weak tendency
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for long-range persistency in the clean energy sector, these persistences become much
weaker in the face of larger market fluctuations.

• Equity returns has the Hurst exponent h(2) = 0.42, which is less than 0.5, meaning that
there is a predominance of anti-persistent behavior in equity returns. This means that
it’s likely for returns to reverse in direction rather than to persist in the same direction
and implies existence of short-term memory. For small fluctuations, q < 2, the Hurst
exponent comes as 0.47, already demonstrating some weak but existing anti-persistent
behavior during periods of market stability. However, when q increases, there is a major
drop in h(q) to values far below 0.5. This downturn indicates that with an increase in
market fluctuations, the equity market is much closer to mean reversion. Specifically,
for large fluctuations, q > 2, it keeps falling to very low values, close to 0.15 for q = 10,
thus indicating a strong tendency for the returns to behave anti-persistent.

4.2 Portfolio Applications

This subsection presents empirical findings on portfolio analysis. We apply; (i) Equally-
Weighted (EW), (ii) Mean-Variance (MV), (iii) Mean-Value-at-Risk (MVaR), (iv) Mean-
Conditional Value-at-Risk (MCVaR), and (v) Mean-MFTWXDFA portfolios. Portfolio op-
timization algorithms are performed dynamically by using rolling window (RW) approach.
RW method is a technique where dataset is updated by using a dynamic approach and pa-
rameters are re-estimated accordingly. Assume that dataset is divided into two parts, the
training set from 2017 to 2022 and test set containing data of 2023. The final year of the
dataset is separated as test set. By utilizing the data from beginning of 2017 to end of 2022,
the optimization algorithms estimate portfolio weights on the first trading day in 2023. We
can mathematically explain RW as follows. Let us define our beginning training set {rt} for
t = 1, 2, ...T , where T is defined as the last day of 2022. Portfolio optimizations are con-
ducted using {rt} to estimate portfolio weights for the next trading day wT+1. Following this
estimation, portfolio return for day T + 1 can be obtained. For instance, after calculating the
return for the first day of 2023, portfolios are updated. We modify training set by adding the
new observation rT+1, while removing the oldest data point r1. So, portfolio weights are re-
estimated according to this new training set for the next trading day which is the second day
of 2023. The procedure is repeated iteratively up to the last day of 2023. RW approach allows
us to estimate portfolio weights dynamically and construct adaptive portfolio strategies. At
the end, we come up with a total 250 daily portfolios and allocation scheme for each portfolio
optimization algorithm. Mean-VaR and Mean-CVaR optimizations are performed under 95%
confidence level. For Mean-MFTWXDFA, the results are presented for medium fluctuations
at q = 2 but note that q can take any values. Mean-MFTWXDFA portfolios can be performed
for various time scales, according to individuals’ investment periods. For this thesis, we se-
lect s = 20, 40, 60, 120, 240, roughly representing one month, two months, three months, six
months and twelve months investment horizons. Although s can take any values between
m + 1 ≤ s ≤ N , it is better to keep [ sc ≥ m + 1] for the sake of detrending polynomials
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fitting.

Table 4.1: Portfolio Results Comparison
EW MV VAR CVAR MF_s20 MF_s40 MF_s60 MF_s120 MF_s240

Return 33.7% 12.2% 13.3% 13.6% 17.1% 16.6% 16.7% 18.6% 18.5%
Risk 27.4% 15.2% 15.8% 16.5% 18.0% 18.0% 18.2% 17.3% 17.4%

Sharpe Ratio 1.038 0.459 0.509 0.505 0.660 0.633 0.628 0.775 0.762
Jensen Alpha 0.148 -0.084 -0.072 -0.071 -0.027 -0.033 -0.035 -0.012 -0.009
Treynor Ratio 0.342 0.075 0.087 0.089 0.134 0.128 0.126 0.151 0.154

Table 4.2: Portfolio Weights Summary
MV MVaR MCVaR MF_s20 MF_s40 MF_s60 MF_s120 MF_s240

w1 mean 6.4% 7.0% 7.6% 8.3% 8.7% 9.0% 9.5% 9.4%
w1 max 6.8% 7.3% 9.8% 11.7% 10.6% 11.2% 12.7% 11.2%
w1 min 6.0% 6.7% 5.7% 5.2% 6.1% 6.4% 7.6% 7.0%
w2 mean 2.6% 4.0% 4.7% 6.8% 7.2% 7.2% 6.6% 6.2%
w2 max 2.8% 4.2% 5.3% 10.9% 10.5% 11.0% 8.5% 7.4%
w2 min 2.4% 3.8% 0.0% 5.2% 5.1% 5.4% 5.4% 4.2%
w3 mean 3.0% 4.0% 4.9% 8.3% 8.0% 7.9% 7.2% 8.4%
w3 max 3.2% 4.2% 9.9% 12.4% 12.2% 11.8% 11.2% 15.1%
w3 min 2.9% 3.9% 4.2% 3.9% 4.6% 4.9% 4.3% 3.6%
w4 mean 15.5% 16.2% 14.4% 17.7% 16.6% 15.7% 14.7% 15.3%
w4 max 15.7% 16.4% 17.0% 23.2% 21.7% 20.9% 18.9% 21.9%
w4 min 15.3% 16.0% 12.4% 14.4% 13.4% 12.3% 11.6% 12.3%
w5 mean 23.8% 24.0% 27.2% 20.7% 20.4% 20.2% 20.6% 17.1%
w5 max 24.3% 24.5% 31.2% 28.7% 27.8% 26.0% 26.5% 24.7%
w5 min 23.0% 23.3% 23.3% 13.5% 11.9% 13.2% 11.7% 9.3%
w6 mean 48.6% 44.7% 41.1% 38.1% 39.1% 40.0% 41.3% 43.6%
w6 max 48.8% 44.9% 44.6% 47.4% 53.3% 51.6% 49.8% 50.0%
w6 min 48.4% 44.6% 37.7% 30.4% 31.3% 32.6% 33.4% 37.1%

Under the framework described above, portfolio model results are presented in Table 4.1. It
presents (i) return (annualized mean return), (ii) risk (standard deviation), (iii) Sharpe Ratio,
(iv) Jensen Alpha, and (v) Treynor Ratio. Figure 4.7 presents dynamic cumulative wealth
graphics for portfolio alternatives, calculated based on one-dollar investment. Lastly, asset-
based dynamic portfolio allocation schemes are displayed in Figure 4.8 and the summary of
the portfolio weights is given in Table 4.2. The following evaluations can be made according
to the results of the portfolio analysis:

• Return: According to the portfolio analysis, there exist wide spreads in returns among
the various strategies. Firstly, equally-weighted portfolio has the highest return among
all portfolios, with 33.69% annual return. Among eight optimized portfolios, Mean-
Variance performs the poorest in terms of returns, providing 12.2%. Mean-VaR and
Mean-CVaR portfolios have moderate returns of 13.25% and 13.56%, respectively, and
promise higher return potential than the MV portfolio. Evaluating our fractal-based
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Figure 4.7: Cumulative Wealth($)

portfolios, Mean-MFTWXDFA strategies significantly outperforms other optimization
algorithms. The returns of all fractal portfolios range from 16.65% to 18.62% at various
time scales. The maximum return is obtained by s = 120, which is 18.62%. Similarly,
s = 240 also performs the second-best portfolio return and follows this with a return of
18.49%, as the more extended time scale could capture long-term trends of the markets.
Compared with the risk-based strategies, time scale s = 20 with a return of 17.10%
is quite appealing. The returns from time scales s = 40 and s = 60 are 16.65%

and 16.68%, respectively, with pretty good performance but relatively lower than the
s = 120 and s = 240 strategies. In general, time scale strategies with longer-terms,
especially s = 120 and s = 240, or very short investment horizons like s = 20 have
competitive returns and outperform traditional risk-oriented strategies.

• Risk: The portfolio analysis results clearly display significant differences in risk lev-
els across strategies. The basic 1/n portfolio has the highest risk, exhibiting 27.43%

standard deviation that reflects how much this portfolio might stand to lose if the mar-
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Figure 4.8: Portfolio Weights (%)

ket conditions turn against it. Despite its ease of implementation, EW model lacks of
diversifying portfolios efficiently and therefore, it results in portfolios with high volatil-
ity. Mean-Variance portfolio has the least amount of risk, at 15.16%, which suggests a
risk-averse attitude. The Mean-VaR and Mean-CVaR portfolios consist of 15.75% and
16.47% standard deviations respectively, thus balancing moderate risk-return balance.
For fractal portfolios, investment risks increase from 17.3% to 18.2% for all the differ-
ent time-scale strategies. Among the models, time scale s = 120 has the lowest risk
at 17.3%, indicating that this approach is pretty efficient at managing the risks while
capturing the market trends. The 240−time scale, with a risk value of 17.40%, stays
very close, thus showing that the longer time scales handle risk quite effectively over
extended periods. The scale s = 20 has a standard deviation of 18%. Though this is
higher than the s = 120 and s = 240 strategies, it is still below the EW portfolio and
it can be considered a reliable option for short-term investors. The scale s = 40 and
s = 60 have risk levels of 18.02% and 18.22%, respectively, thus indicating a medium-
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risk profile. For the most part, these time-scale strategies, particularly s = 120 and
s = 240, remain competitive in terms of risk management relative to the high-risk EW
strategy, maintaining overall relatively moderate levels of risk. To conclude, among all
models, Mean-Variance exhibit the lowest risk while fractal portfolios perform moder-
ate to high level of risk.

• Sharpe Ratio: Sharpe Ratio (SR), calculated by dividing portfolio’s excess return to
standard deviation, is one of the most used portfolio metric in finance literature. SR
enables us to evaluate and compare different portfolio performances based on a risk-
adjusted perspective. The results pointed out remarkable differences in the SRs be-
tween variously selected strategies. According to the results, Equally-Weighted portfo-
lio has the highest SR score 1.038, thus portraying the best performance with respect
to risk-adjusted returns. On the other hand, among optimized portfolios, fractal-based
models outperform the classical approaches at all time scales. From the strategies that
incorporated fractal methods, time scale s = 120 represented the best the risk-adjusted
performance with a SR of 0.775. On the other hand, a minimum variance portfolio had
a remarkably low SR of 0.459, thus exhibiting less efficient risk-adjusted performance.
The MVAR and MCVaR portfolios also have slightly more elevated SR, with 0.509 and
0.505, respectively, bringing out a moderate balance between risk and return. From the
different time scales, the Sharpe ratio varied from 0.628 to 0.775. Further, time scale
s = 240, with a SR equal to 0.762, is very close and simply reflects the strong risk-
adjusted returns of the strategy over a longer period. Short-term investment horizon of
s = 20 performs SR of 0.660, higher than any of the traditional risk-focused strategies
(i.e. MV, M-VaR, M-CVaR), although lower than both s = 120 and s = 240. The
SRs for time scales s = 40 and s = 60 strategies yield SR of 0.633 and 0.628, respec-
tively, indicating good risk-adjusted performance but slightly inferior to s = 120 and
s = 240. To sum up, portfolio strategies based on fractal-theory show competitive SR
that surpass the traditional risk-focused strategies in delivering efficient risk-adjusted
performances.

• Jensen Alpha: Jensen’s Alpha (JA) is a portfolio evaluation technique that exhibits the
excess return of the portfolio against the expected market return. JA for the different
portfolio strategies differs significantly from one to another. EW portfolio returns a pos-
itive JA of 0.148, hence having outperformed the market and other portfolios. It means
that this most simple strategy of equal weighting has been successful in generating ex-
cess returns. In contrast, Mean-Variance, Mean-VaR, and Mean-CVaR yield a negative
Jensen’s Alpha value of −0.084, −0.072, and −0.071, respectively. This simply means
that these portfolios underperform the market. The fractal-based portfolio strategies at
all time scales s = 20, s = 40, s = 60, s = 120, s = 240, have negative values of
JA scores. Nevertheless, compared with Mean-Variance, Mean-VaR, and Mean-CVaR,
the extent of underperformance is smaller in these portfolios. Among all alternatives,
the s = 120 and s = 240 portfolios have the smallest negative alphas of −0.0012 and
−0.009, which may imply that adjustments over longer terms might reduce underper-
formance and stay closer to market returns. The negative JA scores may be resulted in
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due to the fact that that such risk minimization strategies come at the cost of returns.

• Treynor Ratio: Treynor Ratio (TR), estimated by dividing portfolio’s excess return to
systematic risk, exhibits a portfolio’s performance adjusted by its systematic risk. A
higher TR portrays better performance since it measures a return per unit of market
risk taken. TR score for EW portfolio is 0.342, which is the highest for all the port-
folios. It means that EW portfolio has the best risk-adjusted return. Whereas the TR
for the Mean-Variance portfolio at 0.075 underperforms relative to the EW portfolio.
TRs for Mean-VaR and Mean-CVaR portfolios come as 0.087 and 0.089, respectively,
marginally better than that of the MV, but still worse than the EW portfolio. Though
these strategies are trying to minimize possible losses, the modest TRs of those indicate
that the return they yield is not really compensatory of the market risk taken. The TR
scores for five fractal-based portfolios significantly outperform the classical optimiza-
tion approaches. Starting from a TR of 0.134 for time scale s = 20 portfolio, the value
improves progressively through the portfolios; s = 240 portfolio had the highest TR
score among the fractal strategies at 0.154. In general terms, the TR scores suggest that
EW strategy is the best one regarding risk-adjusted return. It significantly outperforms
other strategies. While the MV, MVaR, and MCVaR portfolios minimize risk efficiently,
they all offer lower risk-adjusted returns captured by their TR scores. Among optimized
portfolios, fractal-based approaches significantly yield improved risk-adjusted perfor-
mances.

• Wealth: The graphs of evolving wealth make clearer how the different portfolio strate-
gies perform against time. Equally Weighted portfolio is highest in wealth accumula-
tion, ending up a dollar investment to 1.3495$, finishing at a very high level compared
to the other strategies. This represents that the EW portfolio, though with high fluc-
tuations, finally provides the best performance in terms of final wealth. On the other
hand, MV portfolio display a very conservative growth pattern, with less fluctuation,
and having 1.1168$ wealth. On the other hand, M-VaR and M-CVaR portfolios exhibit
patterns similar to MV. They provide more volatile but also more aggressive wealth
growth, concluding at levels slightly higher compared to MV model. The MF strate-
gies, which come in different time scales such as s = 20, 40, 60, 120, 240 are biased
towards a more aggressive growth profile but with larger peaks and volatility. In partic-
ular, the strategies s = 120 and s = 240 have an ending at the highest levels among all
optimized portfolios. To sum up, EW portfolio is the leader in terms of wealth accu-
mulation, while the MF strategies, especially s = 120 and s = 240 for high investment
horizons and s = 20 for short-time scales, also portray very strong performances. The
MV, MVaR, and MCVaR strategies show steady growth for conservative investment,
hence moderating wealth accumulation.

• Portfolio Allocation: Portfolio allocation graphs provide us a perspective of invest-
ment strategies employed across different portfolio models. Mean-Variance and Mean-
VaR portfolios exhibit relatively stable weights of assets. On the other hand, Mean-
CVaR portfolio is also quite stable in a similar sense, but it is more adaptive compared
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to Mean-Variance and Mean-VaR. Mean-CVaR quickly responses to changes in the
market dynamics and takes the necessary adjustments for portfolio allocation. How-
ever, multifractal strategies do produce frequent and sharp changes in the asset weights.
These strategies are adaptive for fluctuating markets. The very dynamic nature of these
strategies in place stands for capturing the maximum market opportunities to optimize
performance rather than avoiding any possible risk sources, which makes them more re-
sponsive and aggressive in approach in opposition to the risk-focused and static strate-
gies. Broadly speaking, allocation patterns underline how different portfolio strategies
show varying degrees of intensity in risk management and market responsiveness. Ac-
cording to the results, multifractal approaches generate robust portfolio allocation and
capture market dynamics more successfully than classical methods. Table 4.2 presents
the summary of portfolio weights among the six assets; BTC (w1), ETH (w2), XRP
(w3), crude oil (w4), clean energy (w5) and equity (w6). Traditional portfolio opti-
mization models such as Mean-Variance, Mean-VaR, and Mean-CVaR focus on sta-
bility by adopting more conservative allocations with low level of risks. On the other
hand, fractal-based strategies hold more dynamic positions that build up over time with
growing exposition to cryptocurrencies in longer-term strategies. The fractal-based ap-
proaches adopt a more dynamic and flexible strategies, increasing the allocations to
cryptocurrencies in longer-term strategies while balancing out traditional assets like
crude oil and equity. Crude oil stays consistently important across both types of strate-
gies with its crucial role in portfolio diversification.
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CHAPTER 5

CONCLUSION

Wealth allocation and portfolio investment has been one of the fundamental problem in fi-
nance researches. Several models under Modern Portfolio Theory have proposed an approach
to the problem. However, the classical approaches lack to model and explain financial mar-
kets because the markets are complex systems with nonlinear dynamics. So, most of the
approaches under MPT are insufficient to capture these characteristics of financial markets.
The main disadvantage of classical portfolio models is that they rely on Efficient Market
Hypothesis (EMH). On the other hand, the hypothesis bases itself on several controversial as-
sumptions. For example, EMH assumes that (i) asset prices follow random walk, (ii) returns
series are independent and have no memory, (iii) distributions of asset returns are Gaussian,
(iv) all available information completely reflected to the prices, (v) stationarity in probability
distribution functions, and (vi) linearity of the relationships and the market. On the other
hand, these assumptions are mostly hypothetical and rarely fit the real world cases when it
comes to financial markets.

Considering the inefficiency of EMH to explain financial market dynamics, Fractal Market
Hypothesis (FMH) is proposed by Peters, founded on the studies of Mandelbrot on fractal ge-
ometry and fractal Brownian motions. FMH rejects EMH and its assumptions, and claims that
financial market exhibit fractal behavior. According to FMH, financial markets are chaotic
and fractal, meaning that the markets are not random walk, exhibit statistical self-similarity,
non-Gaussian distribution of returns and contain long-range dependency.

Recently, some portfolio approaches are proposed in the literature based on fractal theory and
multifractal structures of asset returns. These approaches utilizes multifractal methods, such
as MF-DCCA, MF-DMA, MF-CCA, and models risk parameter by using detrended cross-
covariance relationships. However, these studies, in general, lack in three aspects. First,
these models have problems defining the covariance relationships between assets. Fractal-
based portfolio models in the literature either ignore the sign of covariances and results in
covariances with complex numbers or forces local covariances to be positive. So, it causes
either problems in portfolio optimization or loss of information on the actual co-movements
between assets. Second, some of these studies define minimum variance portfolios for only
two assets. This approach restrict alternative objectives as well as multi-asset portfolios.
Third, fractal-based portfolio models estimates detrended covariances through multifractal
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approaches. However, the multifractal methods used for this purpose can be improved in
terms of detrending procedure. The current studies use global parameters for detrending
and mostly suffer from a lack of eliminating local trends. Considering the importance of
detrending in terms of estimating detrended covariances, using methods that more accurately
estimate local trends will provide an advantage in terms of portfolio diversification.

In this study, we proposed a portfolio optimization framework Mean-MFTWXDFA model
under fractal theory. By doing so, we offered a portfolio allocation scheme that consid-
ered fractal structures in financial market. Considering the unrealistic and problematic as-
sumptions of EMH, our model relied on FMH and its perspective on financial markets. We
modified Mean-Variance portfolio problem and offered using detrended cross-covariance ob-
tained from a novel multifractal method called Multifractal Temporally Weighted Detrended
Cross-Correlation Analysis (MF-TWXDFA). Recently proposed model by Wei et al. [67],
MF-TWXDFA suggests using point-wise regression with weighted least square regression
to eliminate local trends. The method is based on geographically weighted regression, sug-
gesting the use of nearby points for detrending, unlike other methods that rely on fitting a
global detrending algorithm. With this approach, local trends are eliminated better, leading to
more accurate covariance estimation by avoiding spurious correlation relationships and there-
fore, more robust results are achieved in portfolio optimization process. Besides its robust
detrending procedure, MF-TWXDFA also considers the sign issue of previous multifractal
approaches and deals with the sign of local covariance functions successfully. We utilized
this approach for portfolio optimization and solved three problems, aforementioned before,
in the current literature of fractal-based portfolios. Mean-MFTWXDFA, unlike most of the
previous models, offers a general framework for various assets. It robustly eliminates local
trends and deals with the sign issue of detrended covariances. Lastly, since our model is based
on FMH, we do not follow the strict constraints of EMH such as normality of asset returns,
random walk of prices, independent return series, linearity etc.

We test our Mean-MFTWXDFA model on cryptocurrency portfolios, diversified with energy
assets (crude oil and clean energy) and equity, and compared the results with other classical
portfolio models such as Mean-Variance, Mean-Value at Risk, Mean-Conditional Value at
Risk, and equally-weighted portfolios. We also include Equal Risk Contribution approach to
achieve well-diversified portfolios and formulate Multiobjective Optimization problem since
investors are generally have several objectives such as maximizing return, minimizing risk,
and diversifying well.

In this study, we have reached the following results. According to multifractal analysis, it is
found that research variables do not follow random walk. Instead, asset returns are fractal
and exhibit statistical self-similarity. While Bitcoin, Ethereum, crude oil and clean energy
assets show long-range dependency, Ripple and equity assets have short-term memory. The
fractal behavior of asset returns vary over different q-moments. Ripple and equity returns
exhibit anti-persistentcy in both small and large fluctuations in the market. On the other
side, Bitcoin, Ethereum, and crude oil returns display persistentcy for both small and large
fluctuations, but in the very-large fluctuations for large q-moments, the assets shift towards to
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anti-persistentcy. After showing that research variables are fractal, we continue with portfolio
optimization application.

In applying the model, we adopt a dynamic and adaptive portfolio optimization approach.
We use a six-year training dataset from 2017 to 2022 to estimate portfolio weights in each
optimization. After every optimization, the first observation in the training set is removed, the
tested observation from the test set is added, and the six-year observation set is maintained.
We use a rolling window approach, reiterating the training dataset up until the end of 2023, es-
timating portfolio weights every day, and obtain out-of-sample results. The procedure results
in 250 daily portfolios for every methodology.

According to the portfolio analysis results, none of the methods (Mean-Variance, Mean-
VaR, Mean-CVaR, Mean-MFTWXDFA) outperformed an equally weighted portfolio based
on the out-of-sample results. Excluding the equally-weighted portfolio, while analyzing the
optimization-based methods, it can be found that the Mean-MFTWXDFA approach proposed
in the study is offering the highest rate of return compared to the others. Contrarily, on a
risk basis, the results showed that Mean-MFTWXDFA results in high-risk profile portfolios
compared to other optimized portfolios. On the other hand, when risk-adjusted results are
considered, it can be seen that the best performance is obtained by fractal portfolios. We also
note that fractal-based portfolios have been assessed for different time scales. According to
the research findings, the best performances are obtained for the 20 − 120 − 240 days time
scales. Therefore, we suggest that investors with relatively long investment horizons should
consider 120−day investment periods while a 20−day periods would be more appropriate for
investors with short-term goals.

There are some practical implications of this thesis as well. We confirm the presence of
fractal structure within the crypto market and other assets, which investors can exploit in
making their investment decisions. For instance, we show the various persistent and anti-
persistent behavior in asset returns that financial market participants could use to help them
in making their investment decisions. Further, this thesis proposes a new methodology for
the optimization of portfolios, called Mean-MFTWXDFA, in the presence of fractality of
financial time series; it can be applied for financial decision-making. Finally, we propose a
way to diversify crypto assets with other financial assets. In addition, the optimized weights
proposed in this study will definitely turn out to be helpful to investors, though one should
consider that markets are dynamic and adaptive, and the dynamics of a portfolio will adjust
accordingly.

This study also has some limitations and suggestions for further studies. Our multifractal
portfolio analysis only considers medium fluctuations where q = 2. Our model is applicable
for other q moments. However, the current literature lacks to offer a portfolio optimization
where all q orders are considered at the same time. q > 2 exhibit large fluctuations while
q < 2 display the dynamics in small fluctuations. On the other hand, our model, as well as
the previous literature, can only present a decision based on one fluctuation. But it is known
that financial markets are too complex to consider only one fluctuation in the decision making

55



process. Developing an approach that consider all fluctuations, small and large at various q

moments, would be a great progress for the literature. Further, this study analyzed cryptocur-
rency market and three diversifying assets from conventional markets. Further studies can
examine other financial assets by using Mean-MFTXDFA. Lastly, we focus on portfolio stud-
ies in this thesis. Since fractality exists in financial markets, one can also consider utilizing
multifractal methods for hedging purposes. Further studies could focus on the abovemen-
tioned topics.
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