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ABSTRACT

DUCTILE FAILURE ANALYSIS DURING BACKWARD FLOW FORMING
PROCESSES

Vural, Hande
M.S., Department of Aerospace Engineering

Supervisor: Assoc. Prof. Dr. Tuncay Yalçınkaya

August 2024, 156 pages

Flow forming, also known as tube spinning, is an advanced metal forming process that

produces thin-walled, high-precision cylindrical components. This process involves

incrementally thinning the material using specially designed rollers and a mandrel,

ensuring high dimensional accuracy and structural integrity. Due to the complex

stress states and significant plastic deformation, accurate forming limit predictions

are crucial to optimize the manufacturing process and avoid defects. This study aims

to predict forming limits and fracture locations and assess the effects of process pa-

rameters on fracture in the flow forming process, focusing on IN718 and Al2024-O

materials. The plastic behavior of these materials is modeled using von Mises and

Bai-Wierzbicki yield functions with various hardening rules. The study evaluates

single and multi-parameter uncoupled damage models in predicting fracture loca-

tions and formability limits, calibrated through tensile tests on specimens with dif-

ferent stress-state values. Tensile tests and flow forming processes are modeled with

adiabatic heating and displacement-temperature coupled finite element simulations

using ABAQUS/Explicit software, respectively. Subroutines such as VUHARD, VU-

MAT, and VUSDFLD are used to implement the models. The accuracy of each model
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is assessed by comparing flow forming simulations with experimental trials at vari-

ous thickness reduction ratios. Critical process parameters like feed rate, revolution

speed, reduction ratio, and axial-radial offset are examined to evaluate their effects on

failure. By combining experimental data with extensive numerical simulations, this

research enhances the accurate prediction of ductile fracture in flow forming, poten-

tially improving manufacturing practices in the automotive, aerospace, and defense

industries.

Keywords: Ductile fracture, Flow forming process, Inconel 718, Al2024-O, Finite

element method
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ÖZ

GERİ YÖNLÜ AKITARAK SIVAMA SÜREÇLERİNDE SÜNEK KIRILMA
ANALİZİ

Vural, Hande
Yüksek Lisans, Havacılık ve Uzay Mühendisliği Bölümü

Tez Yöneticisi: Doç. Dr. Tuncay Yalçınkaya

Ağustos 2024 , 156 sayfa

Akıtarak sıvama, aynı zamanda boru döndürme olarak da bilinen, ince duvarlı, yüksek

hassasiyetli silindirik bileşenler üretmek için kullanılan gelişmiş bir metal şekillen-

dirme işlemidir. Bu işlem, özel olarak tasarlanmış merdaneler ve bir mandrel kullana-

rak malzemeyi kademeli olarak inceltmeyi içerir ve yüksek boyutsal doğruluk ve ya-

pısal bütünlük sağlar. Bu süreçte yer alan karmaşık gerilme durumları ve önemli plas-

tik deformasyonlar nedeniyle, doğru şekillendirme sınırlarının tahmin edilmesi, üre-

tim sürecini optimize etmek ve kusurlardan kaçınmak için kritik öneme sahiptir. Bu

çalışma, IN718 ve Al2024-O malzemelerine odaklanarak, akıtarak sıvama sürecinde

şekillendirme sınırlarını ve kırılma yerlerini tahmin etmeyi ve süreç parametreleri-

nin kırılma üzerindeki etkilerini değerlendirmeyi amaçlamaktadır. Bu malzemelerin

plastik davranışı, çeşitli sertleşme kurallarıyla birlikte von Mises ve Bai-Wierzbicki

akma fonksiyonları kullanılarak modellenmiştir. Çalışma, farklı stres durumu değer-

lerine sahip numuneler üzerinde yapılan çekme testleri ile kalibre edilen, kırılma yer-

lerini ve şekillendirme sınırlarını tahmin etmede tek ve çok parametreli bağımsız ha-

sar modellerini değerlendirmektedir. Çekme testleri ve akıtarak sıvama süreçleri, sıra-
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sıyla adyabatik ısıtma ve yer değiştirme-sıcaklık bağlı sonlu elemanlar simülasyonları

kullanılarak ABAQUS/Explicit yazılımında modellenmiştir. Modellerin uygulanması

için VUHARD, VUMAT ve VUSDFLD gibi alt programlar kullanılmıştır. Her mo-

delin doğruluğu, çeşitli kalınlık azaltma oranlarındaki deneysel denemelerle karşılaş-

tırılarak değerlendirilmiştir. Besleme hızı, devir hızı, azaltma oranı ve eksenel-radial

offset gibi kritik süreç parametreleri, hasar üzerindeki etkilerini değerlendirmek için

incelenmiştir. Yapılan deneysel verileri geniş kapsamlı sayısal simülasyonlarla bir-

leştirerek, bu araştırma, akıtarak sıvamada sünek kırılma için daha doğru ve verimli

tahmin etmede katkıda bulunmakta olup, otomotiv, havacılık ve savunma sanayile-

rinde üretim uygulamalarını iyileştirme potansiyeli sunmaktadır.

Anahtar Kelimeler: Sünek kırılma, Akıtarak sıvama süreci, Inconel 718, Al2024-O,

Sonlu eleman yöntemi
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CHAPTER 1

INTRODUCTION

Metal forming is a critical production process that involves shaping bulk or sheet

metal parts into desired geometries through various techniques, increasing their me-

chanical properties and dimensional accuracy. Among these techniques, spinning

stands out due to its ability to produce axisymmetric components. There are three

types: conventional spinning, shear spinning and flow forming. The common feature

of all of them is that one or more rollers shape the metal in one or several steps with

the help of a mandrel fixing the part [1, 2].

Flow forming, or tube spinning, is an incremental metal forming technique in which

axisymmetric tube-shaped parts are produced [3, 4, 5]. The tube-shaped preform is

prepared using various techniques, such as deep drawing or forging, and heat treat-

ment can be applied to the preform to relieve stress and control the microstructure

before shaping. This advanced forming technique involves placing the cylindrical

part on a mandrel and applying continuous, local plastic deformation through one or

more rollers moving axially and radially [6]. During this process, the material flows

along the mandrel with plastic deformation, causing the wall thickness to decrease

and the length to increase [7].

This process is called "backward" or "forward" flow forming, depending on whether

the roller movement differs from the material flow direction. In both modes, as shown

in Figure 1.1, the length of the tube is increased and its thickness is reduced, but the

material flow directions are different depending on the roller movement. In forward

flow forming, the roller movement and material flow are in the same direction, and

the workpiece remains fixed at the tailstock. However, in backward flow forming, the

roller moves against the material flow, and the workpiece is fixed at the headstock.
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In addition, forward flow forming offers higher dimensional accuracy as it provides

continuous contact with the mandrel but requires a long mandrel and machine and

poses a risk of cracks in low-ductility materials. Backward flow forming provides

high reduction and speed advantages but has lower dimensional accuracy due to the

material losing contact with the mandrel.

(a) (b)

Figure 1.1: Flow forming types: (a) forward, (b) backward [8]

This advanced metal forming method produces lightweight, high-performance parts

in the automotive, defense, and aerospace industries [9]. It has a high production

capacity, especially in axially symmetric metal parts such as wheels, shafts, rocket

bodies and launch tubes. The process can work on a wide range of materials, enabling

the production of parts from aluminum, steel, nickel-based steels, titanium, and their

alloys. For certain alloys, the thickness of the preform can be reduced by 70-80%, re-

sulting in high localized deformation. Materials that are difficult to cut and shape can

be formed with this technique. Moreover, formed parts possess improved mechanical

properties such as yield stress and tensile strength and changes in microstructure as

discussed in [10, 11, 3]. The formable dimensions of the tubes are extensive. The

diameter of the tubes is from 25 mm to 3 m, and its length can reach up to 3 m [12].

The process provides precise wall thickness control with high geometric accuracy, so

components with excellent surface quality can be produced without additional sur-

face finishing [13]. Due to the incremental nature of the process and the local forces

applied by the rollers, forming loads are low, reducing machine costs and energy con-
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sumption [6]. These features make flow forming a cost-effective and efficient process

to produce high-quality components with excellent precision and structural integrity.

During the flow-forming process, the material with reduced thickness undergoes high

plastic deformations. With the local forces of the rollers, the preform is subjected

to highly localized and complex stress states. These conditions lead to undesirable

cracks in the workpiece being thinned to a specific thickness. These cracks in tube

forming of metals can appear even at small thickness reductions and disappear at

moderate thinning ratios, indicating the complexity of the forging process and that

the exact formability limit of materials is unclear [14]. Various defects are commonly

observed during pipe forming. These defects mainly arise from the interaction be-

tween the material and the rollers. During forming, material accumulation ahead of

the roller occurs on the outer surface of the tube, increasing throughout the process.

This accumulation lifts the tube from the mandrel in front of the roller, creating a

wave. In backward tube forming, bell-mouth defects appear at the free end of the

tube, while flaring, seen during forward tube forming, represents the final stage of

material accumulation and axial swelling. Circumferential bulging, which causes the

tube’s diameter to increase and become oval, occurs behind the roller. Fish-scaling

results from the folding of material accumulated in front of the roller and roller mark-

ings are left on the tube’s outer surface by the roller. Along with these defects caused

by plastic flow instability, ductile failures such as tube wall fracture, inner surface

cracks, outer surface cracks, and microcracks can also be observed when forming

limits are exceeded [15, 16]. Additionally, tube wall fracture occurs at high reduction

rates, and inner surface cracks occur due to uneven deformation across the thickness.

Outer surface cracks are typically due to defects in the tube material, and microcracks

similarly arise from imperfections within the material.

Defects that can occur during the process significantly affect the final product’s qual-

ity [17, 18]. For example, excessive deformation in the process can accumulate un-

desiring internal stresses and microcracks in the material. Ductile fracture is one of

the primary defects in this process, and studies show that changes influence it in the

stress state. Predicting ductile fracture in a part subjected to multiaxial and complex

loading is not straightforward. In this context, understanding ductile fracture mecha-

nisms is crucial for optimizing material selection and process parameters. However,
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understanding these mechanisms through experimental testing may be quite costly.

Therefore, predicting forming limits and preventing defects through computational

approaches to reduce experimental costs is interesting. At this point, finite element

(FE) methods come into play. As noted by Music et al. [2], the FE method is widely

used to understand better forming loads and material behavior, and numerical simula-

tions combined with ductile fracture can be employed to predict damage and fracture

in metal forming.

Ductile fracture is the failure of materials under large plastic deformation. This

phenomenon is a critical study area in various industries, such as automotive and

aerospace. Such failures can be explained by two different mechanisms: void coa-

lescence or plastic instability. The first mechanism involves the nucleation, growth,

and coalescence of microvoids [19, 20, 21]. This mechanism has explained different

failure examples at different length scales [22, 23, 24, 25, 26]. In the other mecha-

nism, plastic instability causes the formation of one or more shear bands, leading to

material fracture along the shear band (see Figure 1.2).

Figure 1.2: The two mechanisms of ductile fracture: plastic instability and void coa-

lescence, respectively. [27]

Measurement and prediction of ductile fracture is quite complex and requires the for-
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mulation of the state from initiation to failure. Factors such as stress-strain state and

loading history affect this situation. In this context, dimensionless stress parameters

such as stress triaxiality and Lode parameter are critical. Stress triaxiality, which is

the ratio of mean stress to the von Mises equivalent stress, plays a crucial role in duc-

tile fracture [28, 29, 30, 21, 31]. In the case of high triaxiality, voids tend to grow

and coalesce rapidly. In contrast, low triaxiality can lead to shear band formation,

which can cause fracture by different mechanisms. The fracture mechanisms associ-

ated with varying stress triaxiality are illustrated for a representative ductile fracture

locus in Figure 1.3. The x-axis represents stress triaxiality in this figure, while the

y-axis shows the failure strain. Using this graph, specific ductile failure models can

be used to predict damage under different loading conditions. Studies have shown

that the Lode parameter, which is associated with the third invariant of the deviatoric

stress tensor, can make different fracture predictions even at the same stress triaxiality

value [32, 33, 34].

Figure 1.3: Equivalent strain to fracture versus average stress triaxiality, illustrating

different fracture modes under various loading conditions: compression, tension, and

shear. [35]

Various ductile fracture criteria have been developed through experimental and nu-
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merical studies (e.g. [32, 31, 36, 37, 38]). These criteria can be classified under

uncoupled and coupled damage models. In uncoupled models, plasticity analysis is

unaffected by damage changes in the material and plasticity and damage are calcu-

lated independently. The damage is evaluated with an empirical fracture criterion, and

when this criterion reaches the critical value, the failure occurs. These criteria gener-

ally depend on plastic strain, stress state, temperature, and strain rate (e.g. [39, 40]).

Cockcroft-Latham (CL, [39]) and OH [41] models are widely used in industrial ap-

plications due to their simplicity and ease of calibration for fracture estimation. It has

only one parameter that needs to be calibrated, but the effect of the Lode parameter

is not included. Johnson-Cook (JC, [40]) criterion, like single-parameter models, in-

cludes only the stress triaxiality effect, with temperature and strain effects. Recently,

the Modified Mohr-Coulomb (MMC, [32]), the Hosford-Coulomb model (HC, [42]),

and the DF2012 [43], DF2014 [44], DF2015 [45] proposed by Lou et al. are exam-

ples of models that include both triaxiality and the Lode parameter. Since they have

more than one damage parameter (multi-parameter), the calibration process is more

complex than models with single-parameter models. Various experimental compar-

isons are made with empirical models to compare their fracture prediction abilities

[35, 46, 47, 48]. In addition, McClintock [20] and Rice-Tracey (RT, [21]) were among

the first to model these micromechanics-based approaches, taking into account void

formation, growth and coalescence. This group can also include these two models, as

they do not incorporate constitutive relations.

Coupled models involve the interaction of plasticity analysis with changes in material

damage. In these models, damage evolution is included in the constitutive equa-

tions, causing the material to soften as damage accumulates. Compared to uncoupled

models, FE implementation is more challenging. Models based on continuum dam-

age mechanics (CDM) and micromechanics are examined within this group. CDM,

or phenomenological models, describe damage evolution from a macroscopic per-

spective within a thermodynamic framework. These models, initially developed by

Chaboche [49] and Lemaitre [50], offer a more comprehensive approach to capture

the gradual degradation of mechanical properties but require calibration of multiple

material parameters and simultaneous calibration of plasticity and damage, making

their implementation more complex. Another class of coupled ductile failure models
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is based on micromechanically motivated frameworks (e.g. [51, 52, 53]) where the

damage evolution is governed through void nucleation, growth and coalescence re-

lations. Gurson [51] systematically discussed the relationship between void growth

and material behavior by formulating a damage model that associates the void vol-

ume effect (porosity) with the yield function. In addition, micro-void is represented

using a representative volume element (RVE), and void and coalescence effects are

included in the Gurson-Tvergaard-Needleman (GTN, [52]) model. These models pro-

vide detailed information about fracture mechanisms and predict ductile fracture un-

der various stress states with high accuracy. However, micromechanical tests are

needed for calibration. The complexity and computational cost of the models limit

their widespread use in practical engineering applications.

Ductile fracture criteria (DFC) or forming limit diagram (FLD) in combination with

FE are commonly used in the literature to predict formability. FLDs are derived

from the plastic limit based on the onset of necking of the material under different

stress states, and they have been successfully used to capture failure mostly for sheet

metals subject to drawing [54, 55, 56]. However, it is not very successful in predicting

flow forming and cannot reasonably predict ductile fracture [57, 58, 59]. Compared

to traditional FLDs, FE analyses with DFCs can predict fractures occurring under

complex strain and stress histories. DFCs have been used in various applications,

from ballistic impacts [60, 61] to metal forming [62, 63, 64]. Previous studies on

flow-formed tubes have generally focused on plastic flow instability as the failure

mode [65, 66]. Although the use of DFCs for predicting ductile failure in this process

is still limited, it is increasingly being used to predict fracture.

Various studies have widely used the rather practical uncoupled criteria to predict

ductile fracture in the flow forming process. Basic models usually include one pa-

rameter to be calibrated, and several of them are studied comparatively in [67, 68, 69]

in the context of tube spinnability, and CL and McClintock criteria are found to be

the most accurate compared to experimental data. The advantage of these models

is that the parameter calibration can be done using a single tensile or compressive

failure test. In addition to these studies, the [70] study, which predicted fractures

during the production of thick-walled pipes made of Inconel 718, takes into account

cyclic loading and utilizes the Kolmogorov criterion [71] to estimate fracture loca-
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tions. However, the study demonstrates that the former needs to be improved for

accurately predicting fracture among the two deformation models used, rigid-plastic

flow rule and elastic-plastic. Zhan et al. [72] used the modified Oyane model to

predict fractures by incorporating the effect of temperature and strain rate into the

damage model for titanium alloy, highlighting the effects of temperature on damage

initiation and propagation. Mocellin et al. [73] analyze the effects of parameters such

as reduction ratio and number of passes on the backward flow forming of AA6061-

T6 aluminum alloy using CL, Oyane, and DF2013 criteria and say that although the

models can not make a good prediction, the CL criterion is the most accurate model.

Since ductile failure is affected by stress states [35, 74, 75], various damage models

have also been studied, including stress triaxiality and Lode angle parameter. Dam-

age estimation in flow forming is tried to be made for materials such as T6 temper of

Al6016 aluminum alloy [62] and AISI 4340 steel in HRC 16 hardness condition [63]

using the MMC damage model adapted from the literature and the effects of various

process parameters are examined. Parameter identification for JC and MMC models

usually requires experiments with several geometries to cover various stress triaxial-

ity and Lode parameter values (e.g.[74, 76]). For this reason, tensile tests are carried

out for IN718 in various geometries, and the fracture prediction capacities of these

models and the CL damage model are compared in [77, 78].

Coupled models, which are more complex in their implementation and application,

have recently been used to predict fractures in the flow forming process. Ductile

fracture frameworks motivated solely by the micro-void nucleation and growth are

insufficient for forming applications since the material fails due to shear fractures

that cannot be captured with these models, as discussed in [68]. In the study to eval-

uate the applicability of the GTN model, ductile fracture is predicted under various

conditions using the GTN model, and parameters such as void volume fraction, stress

triaxiality, and strain rates are compared with experimental data to assess the accuracy

of models [79]. In the backward spinning study of Ti-15-3 alloy, ductile fracture is

predicted using the GTN model, and parameters such as maximum void damage and

critical value of void coalescence are compared with experimental results. However,

they are insufficient for forming applications [80]. In addition, in a three-dimensional

finite element analysis study on this process of 2024 aluminum alloy, damage evo-
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lution, and cracking mechanisms are analyzed using the modified GTN model, and

the model’s accuracy is verified by comparing it with experimental results [81]. In

the flow forming study of titanium alloy, a shear-modified continuous damage model

(CDM) is used to understand the effects of different roller arrangements on forma-

bility [82]. Another coupled ductile failure framework is based on the continuum

damage approach proposed in [50]. It has been applied to determine forming limits

and study the effect of process parameters for splitting spinning [83] and flow form-

ing [84]. In [84], triple and single roller arrangements and the effect of feed rate

on failure are investigated with FE analysis. The incremental increase in damage in

these frameworks is calibrated based on the reduction of elastic modulus over a repet-

itive loading-unloading cycle in tensile tests. Zhan et al. ([85]) compare the CL and

Lemaitre models and find that Lemaître predicted the crack fracture position more

successfully.

Despite all these advances in numerical models, a comprehensive study is needed to

predict the forming limits and optimize the process parameters in the flow forming

process. As noted in the [69, 86] studies, ductile fracture models calibrated by tensile

or compression tests cannot accurately predict forming limits in applications with

complex loading histories, such as shear spinning and flow forming. Additionally,

finite element analyses and fracture models in the literature generally do not consider

the temperature changes that occur during the forming process. As highlighted by

[4], it has been argued that although flow forming is a cold forming process, thermal

softening should not be ignored.

This study aims to predict the forming limits and fracture locations in the flow form-

ing process and to optimize the process parameters. Tensile tests and flow forming

processes are numerically modeled in ABAQUS/Explicit software with displacement-

temperature coupled FE simulations. Various subroutines are used in the study:

VUHARD for the implementation of hardening rules; VUMAT for the application of

von Mises and Bai-Wierzbicki yield functions; and VUSDFLD for integrating frac-

ture models into the FE framework. The plasticity and damage models are calibrated

using tensile test data and then applied to the flow forming process to evaluate their

predictive capabilities.
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In this research, the flow forming process of IN718 material is examined through

experimental and numerical methods, while the analysis of Al2024-O is conducted

through numerical simulations. For IN718, cylindrical tubes are tested at various

thickness reduction ratios using a three-roll flow forming machine, and these results

are compared with computational predictions. In contrast, due to the lack of com-

parable experimental results for Al2024-O, only the effects of yield function are in-

vestigated by finite element (FE) simulations of flow forming. The stress and strain

distributions for Al2024-O are numerically compared through flow forming analyses

conducted at different reduction ratios.

This study applies various uncoupled single and multiple-parameter damage models

from the literature within the FE framework to predict forming limits and fracture lo-

cations. Tensile tests are conducted on various geometries with different stress triax-

iality and Lode parameter values to calibrate the plasticity and fracture criteria of the

two materials. These tests are carried out to obtain experimental force-displacement

curves with the Digital Image Correlation (DIC) method using four different spec-

imen geometries. The collected data are then used to model the plasticity of the

materials. For IN718, the extended Voce rule and von Mises yield function are em-

ployed, while for Al2024-O, the Bai-Wierzbicki yield function, incorporating stress

triaxiality and Lode parameters, is used due to its complex plastic behavior. The BW

yield function is implemented in the VUMAT subroutine and validated with literature

data.

Following the plasticity modeling, the parameter identification for single and multiple-

parameter uncoupled damage models is conducted for the calibrated materials. Multi-

ple parameter models account for the effects of stress triaxiality and Lode parameters

but require several parameters to be calibrated using various geometric tests. Single-

parameter models can be calibrated with a single test. Both groups of models are

implemented in the VUSDLFD subroutine. These calibrated models are applied in

the flow forming process. First, the damage models’ fracture prediction abilities are

compared using experimental flow forming trials. The effects of various process pa-

rameters, including feed rate, revolution speed, thickness reduction ratio, and roller

offsets, on forming limits are examined using the compared models. The effects of

these parameters have been analyzed extensively, with a particular focus on their ef-
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fects on plastic strain and damage.

The results indicated that the material reached high strain values due to complex load-

ing conditions. The strain value obtained from tensile tests is relatively low and lim-

ited compared to the strain occurring in the process. Therefore, the plastic behavior

beyond the strain value obtained experimentally must be modeled using various hard-

ening rules. Various hardening rules and combinations have been studied to model

plasticity accurately at higher strain values. The effects of these rules on tensile tests

and flow forming at various stress states are examined.

The organization of the thesis is as follows. In Chapter 2, the characterization of stress

states, as well as the formulation and numerical implementation of plastic and damage

models, will be discussed. In Chapter 3, focusing on the introduction of the materials

used in the thesis, tensile tests, identification and verification of plastic and damage

models, experimental data of tensile tests, and finite element modeling results will

be presented. In Chapter 4, process parameters and their effects on formability are

emphasized, covering flow forming experiments and finite element modeling. Section

5 discusses the results obtained by analyzing the effects of process parameters on

the formability of IN718 and the plasticity effects of these two materials. Finally,

Chapter 6 concludes the thesis with a summary of findings, contributions to the field,

and potential future research.
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CHAPTER 2

FORMULATION AND NUMERICAL IMPLEMENTATION OF

PLASTICITY AND DAMAGE MODELS

This chapter presents the theoretical foundations and numerical applications of the

plasticity and damage models used in the study to understand and predict the plas-

ticity and fracture behavior of materials. The formulation of the models involves

characterizing the stress state and employing invariants of stress tensor to describe

material responses accurately. Familiar concepts and definitions widely used in plas-

ticity theory are addressed within the discussion. Subsequently, the formulation of

both plasticity and damage models is presented, utilizing isotropic hardening rules

and employing two different yield functions: the Von Mises (VM) yield function

and the Bai-Wierbicki (BW, [87]) yield function. Various phenomenological damage

models are also discussed in this context. The chapter then moves on to the numer-

ical implementation of these models, emphasizing the computational methods and

algorithms employed to integrate them into finite element analysis.

2.1 Characterization of Stress State

Characterizing the stress state is fundamental to understanding and modeling material

behavior under various loading conditions. Stress space is a multi-dimensional rep-

resentation where each point corresponds to a unique state of stress within a material.

This section explores the fundamental concepts of stress state, including the definition

and significance of stress tensors, stress invariants, and principal stresses. The repre-

sentation of stress invariants, in particular, allows for a simplified yet comprehensive

description of the complex stress states encountered in engineering applications. This
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foundational understanding is crucial for formulating and numerically implementing

the models discussed in subsequent sections.

2.1.1 Stress States and Stress Tensors

The stress state at a point within a material is of two types, normal and shear stress,

and is represented by the stress tensor σ, which is a second-order symmetric tensor.

This tensor is formulated as follows:

σ =


σ11 σ12 σ13

σ12 σ22 σ23

σ13 σ23 σ33

 (2.1)

The stress tensor can be separated into the volumetric (hydrostatic) stress tensor and

the deviatoric stress tensor. The volumetric stress tensor can be defined by the trace

of stress tensor (tr(σ)), which is the sum of normal stresses or the sum of the prin-

ciple stresses (σ1, σ2 and σ3). The formula for σm, expressed as average stress, is as

follows:

σm =
1

3
tr(σ) =

σ1 + σ2 + σ3

3
(2.2)

The deviatoric stress tensor, σ′, represents the distortional component of the stress

tensor. In other words, it describes the change in the shape of the material. It is

obtained by subtracting the volumetric stress tensor from the total stress tensor:

σ′ = σ − σmI = σ − 1

3
tr(σ)I (2.3)

where I is the identity matrix.

Essentially, while the volumetric stress tensor accounts for a material’s uniform ex-

pansion or compression, the deviatoric stress tensor accounts for the distortional

changes. Many yield criteria and damage theories are based on the deviatoric stress

tensor, making it crucial to understand how materials flow and deform under differ-

ent loading conditions. The principal stresses of the deviatoric stress tensor, often

denoted as σ′
1, σ′

2, and σ′
3, can be found similarly to the principal stresses of the

original stress tensor, by solving the characteristic equation of the deviatoric stress

tensor.
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2.1.2 Stress Invariants

Stress invariants are scalar quantities derived from the stress tensor that remain un-

changed under coordinate transformations. They, crucial in characterizing the stress

state, are represented mathematically. They are extensively used in yield criteria and

failure theories. The first invariant I1, which represents the sum of the normal stresses,

is the trace of the stress tensor. It is worth noting that the first invariant of the devi-

atoric stress tensor, J1, is always zero. This is because the deviatoric stress tensor is

derived by subtracting the mean stress, thereby removing any volumetric component.

I1 can be expressed as:

I1 = σ1 + σ2 + σ3 (2.4)

The second invariant, I2, is related to the sum of the products of the principal stresses

taken two at a time and provides information about the deviatoric stress. In the context

of the deviatoric stress tensor, this invariant is often referred to as J2 and is defined

as:

J2 =
1

2
tr(σ′2) =

1

6

[
(σ1 − σ2)

2 + (σ2 − σ3)
2 + (σ3 − σ1)

2] (2.5)

The third invariant, I3, represents the determinant of the stress tensor, representing

the product of the principal stresses and indicating how the material behaves under

multi-axial stress conditions. For the deviatoric stress tensor, the third invariant is

denoted as J3 and is given by:

J3 = det (σ′) = σ′
1σ

′
2σ

′
3 (2.6)

2.1.3 Stress Triaxiality and Lode Parameter

The stress state of an isotropic material can be characterized by its principal stresses.

Alternatively, it can also be described geometrically within the Haigh–Westergaard

stress space, which utilizes cylindrical coordinates (µ, ρ, and θ) as depicted in Figure

2.1. These coordinates can be expressed in terms of stress invariants as follows:

µ = |OO′| = 1√
3
I1

ρ = |O′P | =
√

2J2

cos(3θ) =
27

2

J3
σ3
eq

(2.7)
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Figure 2.1: Illustration of the stress state in the deviatoric plane (π plane), showing

the relationship between the principal stresses (σ1, σ2 and σ3), the Lode angle (θ), and

the deviatoric stress components.

In the literature, two basic parameters affect ductility: stress triaxiality [88, 89, 90, 91]

and Lode parameters [92, 93, 94]. The stress state can be characterized with these two

dimensionless parameters and is used to understand material behavior under complex

loading conditions. The ratio of hydrostatic stress σm to the equivalent von Mises

stress (σeq) is called stress triaxiality (η) and indicates the degree of tensile or com-

pression loads acting on the material. Since it is associated with void formation and

coalescence, it provides information about the ductile fracture behavior of materials.

Stress triaxiality is expressed as:

η =
σm

σeq

=

√
2µ

3ρ
(2.8)

The von Mises equivalent stress (σeq) in the stress triaxiality formula is expressed

with stress invariant and principle stresses as follows:

q = σeq =
√

3J2 =

√
1

2

[
(σ1 − σ2)

2 + (σ2 − σ3)
2 + (σ3 − σ1)

2] (2.9)

For uniaxial tension, the stress triaxiality η is 0.33, indicating a moderate level of

tensile stress concentration. In equi-biaxial tension, η increases to 0.66, reflecting a

higher stress concentration due to the biaxial nature of the loading. The stress triaxial-

ity η is 0 for simple shear, signifying no volumetric change. In uniaxial compression,
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η is -0.33, denoting a moderate compressive stress concentration.

The Lode angle parameter, on the other hand, characterizes the deviatoric stress state

by describing the relative magnitudes of the principal stresses. This parameter is es-

sential for distinguishing between different types of shear stress states and influences

the yield and flow behavior of materials. By examining the Lode angle in conjunction

with stress triaxiality, a more comprehensive understanding of material response un-

der multiaxial loading conditions can be achieved. Various Lode dependency terms

are available in the literature. These include the normalized third invariant of the

deviatoric stress tensor (ξ), the Lode angle (θ), the Lode parameter (L), and the nor-

malized Lode angle (θ̄).

The first of the Lode dependency terms is the normalized third invariant of the devi-

atoric stress tensor. This term, shown as ξ, is related to the Lode angle shown on the

deviatoric plane in Figure 2.1. It is defined as:

ξ =
27

2

J3
σ3
eq

= cos(3θ) (2.10)

The 27
2

is included in the normalization to ensure that its range is −1 ≤ ξ ≤ 1.

The Lode angle, θ, quantifies the relative magnitudes of the principal stresses and

offers insights into the stress state within the deviatoric plane. It is typically defined

as 0 ≤ θ ≤ π
3
. The Lode angle is beneficial for distinguishing between different types

of shear stress states. The Lode angle (θ) can be calculated using the normalized third

invariant of the deviatoric stress tensor (ξ) as follows:

θ =
1

3
cos−1ξ (2.11)

The Lode parameter (L) is a dimensionless quantity that characterizes the deviatoric

stress state, providing insight into the relative magnitudes of the principal stresses.

It is particularly useful in distinguishing between shear stress states and predicting

material behavior under complex loading conditions. The Lode parameter can be

formulated by the normal stress in the maximum shear plane (σN ) and the maximum

shear stress (τ ).

L =
σ2 − σN

τ
(2.12)
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where σN and τ are defined as:

σN =
σ1 + σ3

2

τ =
σ1 − σ3

2

(2.13)

where σ1, σ2 and σ3 are the principle stresses from maximum to minimum. Com-

bining these expressions, the Lode parameter, which ranges from -1 to 1, can also be

defined as:

L =
2σ2 − σ1 − σ3

σ1 − σ3

(2.14)

The normalized Lode angle (θ̄), often known as the Lode angle parameter, is widely

utilized in stress analysis. This term is particularly useful in describing the effect of

the third invariant of the deviatoric stress tensor (J3) on the stress state. Mathemati-

cally, the normalized Lode angle (θ̄) can be expressed by the Lode angle (θ) and the

normalized third invariant of the deviatoric stress tensor(ξ). It varies between -1 and

1 and can be represented as:

θ̄ = 1− 6θ

π
= 1− 2

π
cos−1ξ (2.15)

In plasticity and damage models, the principal stresses (σ1, σ2 and σ3) can also be cal-

culated using the Lode angle or Lode angle parameter. These equations are included

in the plasticity and damage models discussed in this thesis and will be used in sub-

sequent sections. The principal stresses are obtained using the following equations,

which are dependent on the Lode angle parameter:

σ1 = σeq

[
η + f1

(
θ̄
)]

σ2 = σeq

[
η + fII

(
θ̄
)]

σ3 = σeq

[
η + fIII

(
θ̄
)] (2.16)

where fI
(
θ̄
)
, fII

(
θ̄
)

and fIII
(
θ̄
)

are deviator-dependent functions defined as:

fI
(
θ̄
)
=

2

3
cos
(π
6

(
1− θ̄

))
fII
(
θ̄
)
=

2

3
cos
(π
6

(
3− θ̄

))
fIII

(
θ̄
)
= −2

3
cos
(π
6

(
1 + θ̄

)) (2.17)
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2.2 Formulation and Implementation of Plasticity Models

Plasticity describes the capacity of solid materials to experience permanent defor-

mation under external forces. Materials undergo deformations in which shape and

size change under the influence of these conditions. This deformation is elastic if the

material returns to its original state when external loads are removed. Plastic defor-

mation occurs when the material exceeds its elastic limit and forms irreversible shape

changes when the stress is removed. Plastic deformation usually occurs due to the

movement of dislocations within the crystal lattice and can occur as crystal slip [95].

It occurs when dislocations move along certain planes in the crystal structure.

Figure 2.2: Elastic-plastic strain decomposition with strain hardening and perfect

plasticity.

The strain-strain behavior under tensile loading can be represented as shown in Figure

2.2. The total strain can be divided into elastic and plastic strain, with the transition

between these two regions known as yielding. The classical additive decomposition

of strain is formulated as follows:

ε = εe + εp (2.18)

The stress-strain relation is formulated using these strain expressions as follows:

σ = Eεe = E(ε− εp) (2.19)

where E is Young’s modulus, shown in Figure 2.2.

The point that indicates the limit of elastic behavior and the onset of plastic behavior

in materials is called yield stress (σy). In a material that has yielded, the stress remains
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constant at the yield stress level as strain increases during plastic deformation. This

condition is known as perfect plasticity in a material that does not undergo hardening.

However, if the stress increases along with strain after the yield point, the material is

considered to have undergone strain hardening.

Accurate modeling of plasticity and damage in materials is crucial for predicting their

behavior under various loading conditions. Plasticity is defined by flow theory, which

includes the yield criterion, flow rule and hardening law. While the yield criterion

specifies the stress state at which yielding begins, the flow rule describes how plastic

strain will increase following yielding. Additionally, the hardening law characterizes

the variation in flow stress as plastic deformation progresses. This section focuses on

the formulations of yield functions and isotropic hardening rules, as well as their FE

element implementations. In this study, different hardening criteria along with Von

Mises (VM) and Bai-Wierzbicki (BW) yield functions are used and integrated into

the ABAQUS/Explicit.

2.2.1 Yield Criterion and Flow Rule

Various yield surface models are employed to describe the flow behavior of mate-

rials, defining the onset of plastic deformation. As shown in Figure 2.3, the mate-

rial exhibits elastic properties within the yield surface, while on the surface itself, it

demonstrates plasticity behavior. The yield surface is represented by a yield function

(ϕ).

ϕ(σij, εij
p, η, L, κ) = 0 (2.20)

This yield function depends on the stress state, plastic strain state, stress triaxiality

(η), Lode parameter (L) and hardening constants. It is used to determine whether the

material is in the deformation region.

ϕ < 0, elastic

ϕ = 0, plastic
(2.21)

The material undergoes elastic deformation when ϕ is less than zero. If ϕ equals

zero, the material is within the plastic region. The stress state cannot exceed the yield
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Figure 2.3: Yield surface, showing the increment in plastic strain.

surface. The radial return mapping algorithm, which will be discussed later, is utilized

to ensure this.

In a material that has yielded, plastic flow occurs, and the direction of this flow must

be determined. The flow rule is used to establish the flow direction, as illustrated in

Figure 2.3. The associated flow rule is expressed by the following expression:

ε̇p = λ̇
∂ϕ

∂σ
(2.22)

The direction of the plastic strain increment (or equivalently, the plastic strain rate) is

given by ∂ϕ
∂σ

. In contrast, the magnitude of the plastic strain rate is determined by λ̇.

This quantity, known as the plastic multiplier, will be discussed in more detail later.

Yield criteria are functions used to model the plastic behavior of the material. While

some functions are included in the ABAQUS interface, functions that are not included

can be run in this environment by writing to the subroutine. This section examines

two different yield functions used in this study: the Von Mises (VM) yield function

and the Bai-Wierzbicki (BW, [87]) yield function. The VM yield function is known as

the J2 flow theory and controls plastic flow via the second invariant of the deviatoric

stress tensor. It neglects the effects of stress triaxiality and the Lode parameter and is

often used to describe the plastic response of metals. Nonetheless, in some materials,

these two parameters play an important role. The BW model is a flow function in

which the effects of stress triaxiality and the Lode parameter are included. In this

study, both models are coded with a subroutine and used in material modeling. Both
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yield functions can apply hardening rules. The subroutine of VM is validated against

the existing in ABAQUS, while the BW subroutine is compared with experimental

results for Al2024-T351 by [87, 96] in the literature. Comparisons have shown that

the implemented codes work correctly.

2.2.1.1 Von Mises Yield Criterion

The yield function of von Mises plasticity (ϕ) is based on the second invariant of the

deviatoric stress tensor. It is defined by the difference of the norm of the deviatoric

stress (σ′) and the yield stress function (σy):

ϕ =

√
3

2
∥σ′∥ − σy = q − σy (2.23)

where σy is the yield stress function used to model the hardening behavior of the ma-

terial. This function typically depends on the equivalent plastic strain, but it can also

incorporate the effects of temperature or equivalent plastic strain rate. q represents

the von Mises equivalent stress and is defined by Equation 2.9. This criterion states

that if the von Mises equivalent stress equals the value of the yield stress function, the

material yields.

The associated flow rule for the Von Mises yield criterion states that the plastic strain

rate tensor, ε̇p, is normal to the yield surface in stress space and can be expressed

using Equation 2.22:

ε̇p = λ̇

√
3

2

σ′

∥σ′∥
= λ̇

3σ′

2q
(2.24)

where σ′ is the deviatoric stress and λ̇ is the plastic multiplier.

2.2.1.2 Bai-Wierbicki Yield Criterion

The Bai-Wierzbicki (BW) yield function is a more complex model than von Mises,

including the effects of hydrostatic stress and the third invariant of the deviatoric stress

tensor. This flow function, which includes the stress triaxiality and Lode parameter

effects, is handy for materials that cannot be modeled with von Mises. The BW yield
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function can be expressed as:

ϕ = q − σy (1− cη(η − η0))

[
cs + (cax − cs)

(
γ − γm+1

m+ 1

)
m+ 1

m

]
(2.25)

where q is the von Mises equivalent stress, σy is yield stress function, cη is mate-

rial constant to be calibrated, η0 is the reference value of stress triaxiality, and η is

stress triaxiality. The parameters γ and cax in the Lode dependent part are defined as

follows:

γ =
cos(π/6)

1− cos(π/6)

[
1

cos(θ − π/6)
− 1

]
= 6.4641[sec(θ − π/6)− 1] (2.26)

cax =

ct forθ̄ ≥ 0

cc forθ̄ < 0
(2.27)

ct, cs, cc and m are material constants to be calibrated. The triaxiality and Lode

parameter-dependent functions are added as a multiplier. The triaxiality-dependent

function is linear, and the Lode-dependent function has a quadratic formula. The

distributions of triaxiality and Lode parameter functions are shown in Figure 2.4.
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Figure 2.4: Distribution of (a) triaxiality dependent function depending on T (b) Lode

parameter dependent function depending on L

The associated flow rule for the Bai-Wierzbicki is similar to that of the Von Mises but

incorporates additional terms to consider hydrostatic stress and the Lode parameter.

The plastic strain rate tensor in Equation 2.22 is used, but the stress derivative of the
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yield function is different from von Mises. The derivative ∂ϕ
∂σ

is as follow:

∂ϕ

∂σ
=

∂q

∂σ
+ σycη

[
cs + (cax − cs)

(
γ − γm+1

m+ 1

)
m+ 1

m

]
∂η

∂σ

−σy (1− cη(η − η0)) (cax − cs)(1− γm)
m+ 1

m

∂γ

∂σ

(2.28)

where ∂q
∂σ

, ∂η
∂σ

and ∂γ
∂σ

are expressed as follow:

∂q

∂σ
=

3σ′

2q
(2.29)

∂η

∂σ
=

1

3q
I − 3η

2q2
σ′ (2.30)

∂γ

∂σ
=

(
3
√
3

2−
√
3

)(
tan(θ − π/6)

cos(θ − π/6)

)
1

qsin3θ

m+ 1

m

(
I

3
+

cos3θ

2q
σ′ − 3

2q2
σ′2
)

(2.31)

The first term in Equation 2.30 should be neglected. Doing so satisfies the assumption

of plastic incompressibility, and the flow rule is applied with deviatoric associativity

in plasticity. Additionally, in the original Bai-Wierzbicki model [87], as illustrated

in Figure 2.5, the Lode parameter influences the yield function when its values are 1

and -1. However, the yield function should remain unaffected by Lode dependency.

For this reason, the term "(m+1)/m", which is more user-friendly and suggested by

Algarni et al. [97], has been added as a multiplier in the Lode dependency part. As

can be seen in Figure 2.5, this function used by Algarni gives the value 1 when the

lode parameter is 1 and -1 and does not affect the yield function.

Another important aspect is ensuring stability and uniqueness in numerical simula-

tions. In this study, since the convexity of the BW yield function depends on the pa-

rameters ct, cs, cc and m, it is sufficient to prove the convexity of the Lode-dependent

part. The condition for the BW yield function to be convex is as follows:

ρ2 + 2ρ′2 − ρρ′′ ≥ 0 (2.32)

where ρ = ρ(L) is the Lode parameter part of yield function, and its equation is :

ρ(L) =

[
cs + (cax − cs)

(
γ − γm+1

m+ 1

)
m+ 1

m

]
(2.33)

24



-1 -0.5 0 0.5 1

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

Figure 2.5: Comparison of Lode dependent functions of Bai and Algarni.

Then, Equation 2.32 becomes

[
cs + (cax − cs)

(
γ − γm+1

m+ 1

)
m+ 1

m

]2
+ 2 (cax − cs)

2 (1− γm)2
(
m+ 1

m

)2(
∂γ

∂θ

)2

−
[
cs + (cax − cs)

(
γ − γm+1

m+ 1

)
m+ 1

m

]
(cax − cs)

m+ 1

m

×

[
∂2γ

∂θ2
−mγm−1

(
∂γ

∂θ

)2

− γm∂2γ

∂θ2

]
≥ 0.

(2.34)

where γ is :

γ =

√
3

2−
√
3

[
1

cos(θ − π/6)
− 1

]
(2.35)

When this equation is solved, it is seen that the convexity is governed by cs/cax and

m [98]. Figure 2.6 shows the valid range in cs/cax and m space for the convexity of

the presented yield curve where the upper and lower limits of cs/cax are shown for

various values of m. The convexity condition can be summarized as follows:

√
3

2
≤ csθ

caxθ
≤ 1 ⇔

√
3

2
≤ csθ

ctθ
≤ 1, and

√
3

2
≤ csθ

ccθ
≤ 1 (23)

25



Figure 2.6: The upper and lower for the convexity of the BW yield function [98].

2.2.2 Hardening Rule

In plasticity, the stress that is required for further plastic deformation increases with

deformation, which means the material becomes more difficult to deform. This is

referred to as the hardening of the material. The hardening rule is utilized to model

the stress-strain behavior of a material after it has yielded. Isotropic, kinematic, or

combined hardening rules can characterize hardening behavior. Isotropic hardening

assumes that the yield surface uniformly expands in all directions, maintaining its

shape and center. In contrast, kinematic hardening involves translating the yield sur-

face in stress space without altering its size or shape, effectively capturing the cyclic

loading behavior and the Bauschinger effect. Combined hardening is a more com-

plex model that includes isotropic and kinematic hardening behaviors. In this study,

isotropic hardening is chosen due to its effectiveness in capturing the overall harden-

ing behavior of materials under monotonic loading conditions. Kinematic hardening

is often used under material cyclic loading conditions. Although not commonly used

in uniaxial tensile tests, repeated stress reversals can be applied in modeling materials.

For simple uniaxial tensile tests, isotropic hardening is usually sufficient. Yield stress

functions (σy(ε̄p)), dependent on equivalent plastic strain (ε̄p), are used for modeling
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the hardening in the isotropic hardening rule. These functions can also account for

temperature and equivalent plastic strain rate effects.

σy(ε̄p) = σ0 +R(ε̄p) (2.36)

where σ0 is initial yield stress and R(ε̄p) is the hardening rule. Isotropic hardening

describes a uniform expansion of the yield surface as plastic deformation occurs,

maintaining its shape and center as shown in Figure 2.7.

Figure 2.7: Representation of isotropic hardening: The initial yield surface and sub-

sequent loading surface in the stress space, along with the corresponding stress-strain

curve.

This section covers several isotropic hardening rules used to model this behavior, in-

cluding the Voce, Swift, power law, Johnson-Cook, and modulated hardening rules.

These hardening rules are essential for accurately capturing the evolution of mate-

rial strength during plastic deformation and play a vital role in the formulation of

plasticity models.

The power hardening rule [99] describes the hardening behavior using a simple power-

law relationship. This rule is expressed mathematically with strain hardening expo-

nent (n) and strength coefficient (K):

σy
power = σ0 +Kε̄np (2.37)

where σ0 is the initial yield stress and ε̄p is the equivalent plastic strain.
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The Swift hardening rule [100] characterizes the hardening behavior with a power-

law relationship, similar to the power rule, but includes an initial strain term (ε0):

σy
swift = σ0 +K(ε0 + ε̄p)

n (2.38)

Voce hardening rule [101] defines the hardening behavior by formulating the equiv-

alent plastic strain value as exponential. The Voce hardening law is mathematically

expressed as:

σy
voce = σ0 +

[
q1
(
1− e(−b1ε̄p)

)
+ q2

(
1− e(−b2ε̄p)

)]
(2.39)

where q1, q2, b1 and b2 are material constants.

The extended Voce hardening rule provides a more detailed description of hardening

behavior by incorporating additional parameters:

σy
exvoce = σ0 +

[
q1
(
1− c1e

(−b1ε̄p)
)
+ q2

(
1− c2e

(−b2ε̄p)
)]

(2.40)

where q1, q2, b1, b2, c1 and c2 are material constants.

The modulated hardening rule [102] combines the effects of multiple hardening rules

to offer a comprehensive characterization of hardening behavior, also known as the

weighted average method because two different hardening rules are used.

σy
modulated = α(σswift) + (1− α)(σexvoce) (2.41)

where α is a weighting factor.

The Johnson-Cook plasticity model [40] incorporates the effects of strain rate and

temperature on the hardening behavior. This rule is expressed as:

σy
JC = [A+B(ε̄p)

n]

[
1 + C ln

˙̄εp
ε̇0

] [
1− θ̂m

]
(2.42)

where: A,B,C,m,n and ε̇0 are material constants, ˙̄εp is the plastic strain rate, ε̇0 is the

reference strain rate, θ̂ is a temperature-dependent function defined as:

θ̂ =


0, if θ < θtrans

(θ − θtrans)/(θmelt − θroom), if θroom ≤ θ ≤ θmelt

1, if θ > θmelt

(2.43)
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where θ, θroom and θmelt are the current, room and melting temperature of the material,

respectively. By including the strain rate and temperature factors in this plastic rule

as multipliers in other models, other plasticity models can also become strain rate and

temperature-dependent.

2.2.3 Implementation and Comparison of Yield Functions

Accurate simulation of material behavior under various loading conditions is cru-

cial, and one of the commonly used methods for time integration of plasticity with

isotropic hardening is the radial return mapping algorithm. This algorithm employs

the Newton-Raphson method to solve for the plastic strain increment iteratively, up-

dating the stress state during plastic loading. This algorithm is implemented within

the VUMAT subroutine in Abaqus. The VUMAT subroutine in ABAQUS/Explicit is

a user-defined interface that enables the implementation of custom material models

not available in the standard ABAQUS. This capability is used to simulate complex

material behaviors, such as advanced yield functions and damage mechanics, which

standard models cannot capture. The subroutine allows for the utilization and updat-

ing of state variables during analysis.

This section explains the stress and strain relations required for implementation using

current and previous states in detail. While the general framework for von Mises

(VM) and Bai-Wierzbicki (BW) yield functions is similar, differences arise in the

computation of stress normal, incremental plastic strain, and stress updates. These

differences are crucial for accurately capturing the distinct behaviors predicted by

each yield function.

Rate-independent von Mises plasticity is expressed using the Cauchy stress tensor,

with fundamental stress and strain definitions applied in implementing the yield func-

tion and flow rule. The formulation of the Cauchy stress tensor is as follows:

σ = 2µ dev(εe) + κ tr(εe) (2.44)

where µ is shear modulus and it is formulated with Young’s modulus (E) and Pois-

son’s ratio (ν) as follow:

µ =
E

1 + ν
(2.45)
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and κ is Bulk modulus and it is formulated as follow:

κ =
E

1 + ν

ν

1− 2ν
(2.46)

Moreover, dev(εe) is the deviatoric part of the elastic strain tensor, and tr(εe) is the

trace of the elastic strain tensor. In von Mises plasticity, since the deviatoric part

describes the flow, the trace of the plastic strain is zero. The same applies to the BW

yield function, as the function has been made deviatoric by removing the volumetric

term from the stress triaxiality-dependent part. Therefore, the total strain equals the

elastic strain and is denoted by the trace of the strain ’e’. All in all, Cauchy’s stress

can be expressed as follows:

σ = 2µ (ε′ − εp) + κeI (2.47)

The implementation aims to find the current incremental plastic strain and update the

stress tensor using the plastic strain rate tensor in Equation 2.22. For this purpose, the

Euler scheme is used:

εpn+1 = εpn + γn+1nn+1 (2.48)

Here, nn+1 represents the direction of plastic strain, and its formulation and imple-

mentation differ for the two yield functions. The equations for the direction of plastic

strain for both yield functions are defined as follows:

nn+1V M
=

3σ′
n+1

2q
(2.49)

nn+1BW
=

3σ′
n+1

2q
+ σycη

[
cs + (cax − cs)

(
γ
γm+1

m+ 1

)
m+ 1

m

](
− 3η

2q2
σ′

n+1

)
− σy (1− cη(η − η0)) (cax − cs)(1− γm)

m+ 1

m

(
3
√
3

2−
√
3

)(
tan(θ − π/6)

cos(θ − π/6)

)
1

qsin3θ

(
In+1

3
+

cos3θ

2q
σ′

n+1 −
3

2q2
σ′2

n+1

)
(2.50)

The stress values are used to calculate the stress triaxiality and Lode parameter in

these formulas. These values are needed to calculate the current stress value (σn+1).

Therefore, these values are calculated with the previous stress values (σn).

Plug Equation 2.48 into Equation 2.47 to get the algorithmic stress expression,

σn+1 = κen+11+ 2µ
(
ε′n+1 − εpn

)
− 2µγn+1nn+1 (2.51)
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Since von Mises plasticity theory is driven by deviatoric stresses, the sole purpose of

this algorithm is to find the deviatoric part of the final stress. Therefore, deviatoric

stress and trial deviatoric stresses should be written as follows:

σ′
n+1 = 2µ

(
ε′n+1 − εpn

)︸ ︷︷ ︸
Elastic Predictor

−2µγn+1nn+1︸ ︷︷ ︸
Plastic Corrector

σ′
n+1 = σ′, trial

n+1 − 2µγn+1nn+1

(2.52)

The trial stress represents the stress considering it to be completely elastic, serving as

a predictor subsequently adjusted by the plastic correction component based on the

state of the yield function. This is represented as follows:∥∥σ′
n+1

∥∥ =
∥∥∥σ′,trial

n+1

∥∥∥− 2µγn+1

√
3

2
(2.53)

Now, plug Equation 2.53 into the Equations 2.23 write in algorithmic form of VM

yield function,

ϕn+1V M
=

√
3

2

∥∥∥σ′,trial
n+1

∥∥∥− 3µγn+1 − (σy) (2.54)

To calculate the trial stress in the BW yield function, two additional values are re-

quired. These are the function values of the stress triaxiality and Lode parameter.

Since these functions involve stress values and the stress has not yet been updated in

the current step, the stress values from the previous step are used to compute these

two functions. Their algorithmic forms are as follows,

fn(η) = (1− cηn(η − η0))

gn(L) =

[
cs + (cax − cs)

(
γn −

γm+1
n

m+ 1

)
m+ 1

m

] (2.55)

where γn is :

γn =

√
3

2−
√
3

[
1

cos(θn − π/6)
− 1

]
(2.56)

Thus, by incorporating these two functions, plug Equation 2.53 into the Equations

2.25 write in algorithmic form of BW yield function,

ϕn+1BW
=

√
3

2

∥∥∥σ′,trial
n+1

∥∥∥− 3µγn+1 − (σyfn(η)gn(L)) (2.57)

For an elastic step, ϕn+1 < 0 and for a plastic step ϕn+1 = 0. In the algorithm, a

trial yield function is introduced and checked whether the step is elastic
(
ϕtrial
n+1 < 0

)
or plastic

(
ϕtrial
n+1 > 0

)
.

ϕtrial
n+1V M

=

√
3

2

∥∥∥σ′,trial
n+1

∥∥∥− (σy) (2.58)
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ϕtrial
n+1BW

=

√
3

2

∥∥∥σ′,trial
n+1

∥∥∥− (σyfn(η)gn(L)) (2.59)

If the step is elastic (γn+1 = 0),

σ′
n+1 = σ′, trial

n+1

σn+1 = κen+11+ 2µ
(
ε′n+1 − εpn

) (2.60)

If the step is plastic then γn+1 needs to be calculated using the Newton-Raphson

method since the hardening function is non-linear. This method uses the yield func-

tion ϕn+1. The algorithm continues to do the following calculations until |ϕn+1| <
tolerance. For Newton-Raphson, a function, the first derivative of that function, and

an initial value are needed. Swift hardening rule is used as an example. Formulas in

this algorithm are as follows for VM:

fn+1 = ϕn+1V M

f ′
n+1 =

∂ϕn+1

∂γn+1

= −3µ− σ′
y

σ′
y = Kn(ε0 + αn+1)

n−1

γn+1 = γn+1 −
fn+1

f ′
n+1

(2.61)

and for BW:

fn+1 = ϕn+1BW

f ′
n+1 =

∂ϕn+1

∂γn+1

= −3µ− σ′
y

σ′
y = Kn(ε0 + αn+1)

n−1fn(η)gn(L)

γn+1 = γn+1 −
fn+1

f ′
n+1

(2.62)

Now γn+1 is found and Equations 2.47 and 2.48 can be updated.

2.2.3.1 Validation of VUMAT Implementation

The Von Mises (VM) and Bai-Wierzbicki (BW) yield functions are implemented in

the ABAQUS environment using a user-defined material subroutine (VUMAT). In

this part, a VUMAT subroutine is initially developed for the VM yield function and

validated by comparing the VM yield function available in ABAQUS. The Al2024-

T351 material is employed for this validation, as used by Bai et al. [87] and Bao
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[96]. Experimental data for standard round tensile specimens (ST) and round notched

specimens with radius of 4 mm (R4) and 12 mm (R12) are sourced from the thesis

in [96], while data for flat-grooved specimens (FG) are obtained from the article in

[87]. Details of the specimen geometries and parameters can be found in [103]. The

following hardening formula is utilized as described in [103]:

σy = A(ε0 + ε̄p)
n +K +Q

(
1− e(−Bε̄p)

)
(2.63)

All plasticity parameters are presented in Table 2.1. Only the parameters in the first

row of the table are used for the VM yield function.

Table 2.1: Plasticity model parameters for Al2024-T351 [103, 87].

A[MPa] ε0 n K [MPa] Q[MPa] B

320 0.0052 0.195 235 135 7.8

cη η0 ct cc cs m

0.09 0.333 1 1.02 0.92 6

In this section, the results for the VM yield function are presented, using both the

developed subroutine and ABAQUS in-built model. The following section will also

present comparisons with experimental data for both the VM and BW yield func-

tions. The equivalent plastic strain distribution and force-displacement curves of four

specimens are illustrated in Figures 2.8 and 2.9.

Comparison between ABAQUS and VUMAT simulations for different specimen ge-

ometries shows a high degree of consistency in both equivalent plastic strain (PEEQ)

distributions and force-displacement curves. For the ST, R4, R12, and FG geome-

tries, the strain distribution predicted by the developed VUMAT subroutine closely

matches the results from the in-built ABAQUS model, demonstrating the accuracy of

the VUMAT subroutine across various geometries. Force-displacement curves con-

firm this accuracy, with nearly identical results for both simulations. These results

show that the VUMAT subroutine reliably captures the material’s response under ten-

sile loading and complex stress-state conditions.
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ST R4

ABAQUS VUMAT ABAQUS VUMAT

R12 FG

ABAQUS VUMAT ABAQUS VUMAT

Figure 2.8: Comparison of equivalent plastic strain for different specimen geometries

in ABAQUS and VUMAT simulations.

2.2.3.2 Comparison of von Mises and Bai-Wierzbicki Yield Functions

This section compares von Mises (VM) and Bai-Wierzbicki (BW) yield functions.

The VUMAT subroutine running for the VM has been modified for the BW yield

function. The differences between the VM and BW subroutines are as follows. In

BW, the stress triaxiality and Lode parameter are calculated using the stresses men-

tioned in the previous step. The yield stress function depends on these two param-

eters, and plasticity is checked with this yield stress function. Plastic strain normal

differs from VM as its formula is given in the above section. Finally, the yield func-

tion of BW and its derivative according to plastic strain are used to find the incre-

mental plastic strain in the Newton-Raphson method of BW. The results obtained for

validating BW are compared with the experimental data provided in the literature.

The plasticity parameters for hardening and the Lode parameter, excluding the stress
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Figure 2.9: Force-displacement curves for different specimen geometries, comparing

VUMAT and ABAQUS.

triaxiality parameters, are taken from [103], which works with the AL2024-T351 ma-

terial used by [87] and [96]. The stress triaxiality formula used in this study differs

from the original; however, when comparing the function used here with the original,

similar results are obtained, leading to the decision to adhere to the original formulas.

The stress triaxiality parameters are taken from [87]. The hardening rule is shown in

Equation 2.63, and the yield function is presented in Equation 2.25. The accuracy of

the developed code has been demonstrated using the parameters shown in Table 2.1.

The force-displacement curves obtained using the VM and BW yield functions are

shown in Figure 2.10. The orange curves represent the results for VM plasticity with-

out any corrections, while the yellow curves correspond to BW with corrections ap-

plied for stress triaxiality and the Lode parameter. For the Al2024-T351 material, the

results indicate that the VM yield function aligns with the experimental data only for

the ST specimen but fails to predict the plastic behavior of the other three specimens

accurately. In contrast, the results obtained with the BW yield function show strong
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agreement with the experimental data across all specimens, demonstrating that the

applied corrections lead to a more accurate prediction of plasticity. This comparison

highlights the performance and accuracy differences between the two yield functions,

with the BW function proving to capture material behavior under various stress state

conditions more precisely.
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Figure 2.10: Force-displacement curves for different specimen geometries, compar-

ing experimental results with simulations using models without correction and with

correction. Exp-Bai is the experimental data in the article [87] written by Bai et al.

and Exp-Bao is the experimental data in the thesis [96] written by Bao.

Additionally, to assess the individual effect of stress triaxiality and the Lode pa-

rameter on each geometry, results are obtained where only stress triaxiality or only

the Lode parameter is active. Figure 2.11 illustrates the outcomes corresponding to

the stress triaxiality correction (T-Corr) and the Lode parameter correction (L-Corr).

While stress triaxiality and Lode parameter correction do not cause a change in the

ST specimen, it is seen that stress triaxiality causes a more significant change than the

Lode parameter in the R4 specimen. In the R12 specimen, the stress triaxiality and
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Figure 2.11: Force-displacement curves for different specimen geometries, compar-

ing experimental results with simulations using models without correction, stress tri-

axiality correction, and Lode parameter correction.

Lode parameters equally change the hardening of the material. As expected, since the

FG specimen has a shear stress state, the Lode parameter alone performs almost all

the correction, while the effect of stress triaxiality is slight.

2.3 Formulation and Implementation of Damage Models

Accurate prediction of material damage under different loading conditions requires

using various uncoupled damage models. Since these uncoupled damage models

work independently of plasticity, they do not cause a change in the stress state of the

material, and it is easy to calibrate the damage parameters. These models describe

fracture in the material in terms of mechanical variables such as stress, deformation,

temperature, and deformation rate. In all models presented in this study, the fracture
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model is a function dependent on these variables, and damage accumulation (D) is

calculated using this function. An integral rule calculates damage accumulation and

has a linear relationship with the equivalent plastic stain. This rule can be written

differently for models with single and multiple parameters. In single models, one

critical damage value (Dc) normalizes the damage accumulation rule. Consequently,

when the value of D reaches 1, the material fails. The integral is written as follows:

Dc =

∫ ε̄p

0

g(σij)dε̄p

D =
1

Dc

∫ ε̄p

0

g(σij)dε̄p

(2.64)

Models with multiple parameters are denoted by εf and can be defined as the integral

weighted by the inverse of εf of the equivalent plastic deformation ε̄p. This integral,

which shows the fracture state of the material, is shown as follows:

D =

∫ ε̄p

0

dε̄p
εf

(2.65)

Similarly, in multiple-parameter models, fracture is expected to occur in the mate-

rial when the D parameter reaches a critical value (D=1). In this section, we focus

on formulating and implementing uncoupled damage models in the ABAQUS soft-

ware environment. Emphasis is placed on the formulation of single-parameter dam-

age models, multiple-parameter damage models, and ABAQUS subroutines used for

damage modeling.

2.3.1 Single Parameter Damage Criteria

Single-parameter damage models simplify material parameter calibration by using a

single experiment to represent damage, making them easier to implement and com-

putationally efficient. Various models in the literature have a single parameter to

calibrate. These models calculate fracture directly based on changes in principal or

equivalent stress. In the thesis, ten different models with a single damage parameter

are used. Each of these models gives a different insight into the material behav-

ior. These models will be calibrated against experimental data to predict the onset of

damage under various stress-state. Table 2.2 gives all damage criteria and relevant

equations.
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Table 2.2: Brief summary of single parameter uncoupled damage criteria.

Criterion Damage Relation

Ayada [104] D = 1
C1

∫ ε̄p
0
⟨σm

σ̄
⟩dε̄p

Ayada-m [68] D = 1
C2

∫ ε̄p
0
⟨σm

σ̄
+ 1

3
⟩dε̄p

Brozzo [105] D = 1
C3

∫ ε̄p
0

2σ1

3(σ1−σm)
dε̄p

Ko-Huh (KH, [106]) D = 1
C4

∫ ε̄p
0

σ1

σ̄
⟨1 + 3σm

σ̄
⟩dε̄p

Le-Roy (LR, [107]) D = 1
C5

∫ ε̄p
0
(σ1 − σm)dε̄p

McClintock (MC, [20]) D = 1
C6

∫ ε̄p
0

[ √
3

2(1−n)
sinh

( √
3

2(1−n)
σ1+σ2

σ̄

)
+ 3

4
σ1−σ2

σ̄

]
dε̄p

OH [41] D = 1
C7

∫ ε̄p
0

⟨σ1⟩
σ̄
dε̄p

Rice-Tracey (RT, [21]) D = 1
C8

∫ ε̄p
0

exp
(
3σm

2σ̄

)
dε̄p

CL [39] D = 1
C9

∫ ε̄p
0

⟨σ1⟩dε̄p
Freudenthal [108] D = 1

C10

∫ ε̄p
0

σ̄dε̄p

σ1 and σ2 are the first and second principal stress, respectively. σm is the mean stress

(σm = (σ11 + σ22 + σ33)/3) and σ̄ is the von-Mises equivalent stress. Ci’ are the

critical value of damage to be calibrated from experiments and ⟨.⟩ is the Macaulay

bracket. Although the damage criteria do not have any temperature-related term,

they are indirectly related to temperature through the stress term. For all models, the

material is assumed to be initially defect-free (D = 0), and failure occurs when D

reaches 1.

The Ayada model describes void growth through a stress triaxiality parameter, while

the cut-off value 1/3 is supplemented in the Ayada-m model as a modification. Both

the effects of normalized maximum principal stress and stress triaxiality are combined

in the KH model. In the LR model, the nucleation, shape change, and coalescence

of voids are considered to incorporate the maximum principle and hydrostatic stress

difference. The Oh model normalizes the first principle stress with equivalent stress.

The RT model relies on an exponential function of stress triaxiality. McClintock’s

model considers the equivalent stress, transverse principal stresses, and an exponent

for strain hardening. In this criterion, the parameter n is determined using the harden-

ing rule, which is why this model is classified among single-parameter models. The

maximum principal stress is incorporated in the CL, while the von Mises equivalent
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stress is considered in the case of Freudenthal. Remarkably, all criteria include only

a single parameter to be calibrated from a single experiment.

2.3.2 Multiple Parameter Damage Criteria

Multi-parameter damage models combine multiple parameters, providing a more de-

tailed and accurate representation of material degradation. These models capture the

complex interactions between different damage mechanisms, such as microcrack ini-

tiation, growth, and coalescence. Multi-parameter models are beneficial for materials

and loading conditions where damage behavior is highly nonlinear and depends on

various factors such as stress triaxiality and the Lode parameter. However, since there

are multiple parameters to be calibrated, various experimental tests are needed, mak-

ing the criteria calibration procedure difficult.

This study utilizes various fracture models dependent on stress triaxiality and the

Lode parameter to calibrate damage parameters for both materials. Both stress triaxi-

ality dependent models such as Oyane-Sato [109] and Johnson-Cook [40] models, as

well as models from the Wierzbicki group, including Bai-Wierzbicki (BW, [87]) and

modified Mohr-Coulomb (MMC, [32]); along with the Lou damage family, including

DF2013 [110], DF2014 [44] and DF2015 [111]. The JC and MMC damage models

are studied in their temperature and strain rate-dependent forms, whereas the effects

of temperature and strain rate are not included in the other models. Damage param-

eters are denoted as Dij , where i represents the model and j denotes the number of

parameters associated with that model. For instance, the damage parameters for the

Oyane-Sato model are D11 and D12, while those for the JC model are D21, D22, D23,

D24, and D25. In the equations, η, L and θ̄ are the dimensionless parameters: stress

triaxiality, Lode parameter and Lode angle parameter, respectively.

Oyane and Sato is similar to the Ayada model, based on two damage parameters and

stress triaxiality. The formulation of the model is as follows:

D =
1

D11

∫ ε̄p

0

(η +D12)dε̄p (2.66)

In the JC model, the term in the first bracket represents the effect of stress triaxiality.

In contrast, the second and third brackets refer to the equivalent plastic strain rate and
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temperature effects. In particular, even if the effect of the Lode angle is ignored, this

model includes the effects of strain triaxiality and these two effects.

εJCf = [D21 +D22 exp(−D23η)]

[
1 +D24 ln

(
˙̄εp
ε̇0

)] [
1 +D25θ̂

]
(2.67)

ε̇0 is the reference strain rate, ˙̄εp is the rate of plastic strain and θ̂ is given by the

following relation.

θ̂ =


0, if θ < θtrans

(θ − θtrans)/(θmelt − θtrans), if θtrans ≤ θ ≤ θmelt

1, if θ > θmelt

(2.68)

where θ, θtrans and θmelt are the current, transition and melting temperature of the

material, respectively.

Two different damage models belonging to Wierzbicki’s group are used. In the BW

model, the failure model is formulated with two constants in the tension, shear and

compression parts, and six constants in total. In this model, where stress triaxiality

and Lode angle parameters are used, only the terms used for tension and shear cases

remain in the case where tension and compression are symmetrical to each other. In

this study, due to the lack of testing, the first one is considered symmetric, but all six

parameters are modeled with the iterative method.

εBW
f =

[
1

2

(
D31e

−D32η +D35e
−D36η

)
−D33e

−D34η

]
θ̄2

+
1

2

(
D31e

−D32η −D35e
−D36η

)
θ̄ −D33e

−D34η

(2.69)

The MMC model is a prevalent damage model that considers both stress triaxiality

and Lode parameter, commonly employed in finite element (FE) simulations to pre-

dict ductile failure in metals. This model has been further developed to incorporate

the effects of strain rate and temperature. The extended form of the failure criteria is

defined as follows:

εMMC
f =

[
A4

D42

[
D43 +

√
3

2−
√
3
(D44 −D43)

(
sec

(
θ̄π

6

)
− 1

)]]−1/n4

∗

[√
1 +D41

2

3
cos

(
θ̄π

6

)
+D41

(
η +

1

3
sin

(
θ̄π

6

))]−1/n4

∗
[
1 +D24 ln

(
˙̄εp
ε̇0

)] [
1 +D25θ̂

]
(2.70)
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In addition to Dij , the MMC model includes the material parameters A4 and n4.

Another group that has worked on models dependent on stress triaxiality and Lode

parameter is the group in which Lou is the author. The models proposed in this

group include the nucleation, growth and coalescence of the void, and the shear effect

is represented in the models with these two parameters. In the DF2013 model, the

model is proposed by assuming a cut-off value of -1/3 stress triaxiality, but subsequent

studies showed that the cut-off value may differ from this value. For this reason, the

DF2014 and DF2015 models introduced the C parameter, and a variable cut-off value

could be obtained. Additionally, the DF2015 model includes the D74 parameter to

further enhance the modeling capabilities.

εDF2013
f =

D53(
2√

L2+3

)D51
(

⟨1+3η⟩
2

)D52
(2.71)

εDF2014
f =

D63(
2√

L2+3

)D61
(〈

f(η,L,C)

f(η= 1
3
,L=−1,C)

〉)D62
(2.72)

where

f(η, L, C) = η +
3− L

3
√
L2 + 3

+ C6 (2.73)

εDF2015
f =

D73(
2√

L2+3

)D71
(〈

f(η,L,C)

f(η= 1
3
,L=−1,C)

〉)D72
(2.74)

where

f(η, L, C) = η +D74
3− L

3
√
L2 + 3

+ C7 (2.75)

2.3.3 Implementation and Comparison of ABAQUS subroutines

ABAQUS has various plasticity and damage models. Unfortunately, most of them

used in the thesis are unavailable in ABAQUS. Therefore, implementing damage

models with ABAQUS can be accomplished using various user-defined subroutines.

There are various types of subroutines for both implicit and explicit solvers, such as
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(V)UMAT, (V)UHARD, and (V)USDFLD. Subroutines starting with ’V’ are for the

explicit decoder, and their coding algorithms and functions differ in some aspects.

The VUMAT subroutine is thoroughly detailed and tested in previous sections. This

section focuses on the VUHARD and VUSDFLD subroutines. These are user-defined

subroutines in ABAQUS/Explicit that allow for the customization of material behav-

ior. The VUHARD subroutine is used to implement user-defined hardening models,

providing the ability to define custom hardening behaviors not available in the stan-

dard library. It is suitable for isotropic plasticity or combined hardening models and

is called at each material calculation point. It is commonly used to involve complex

stress-strain relationships or metals undergoing plastic deformation. On the other

hand, the VUSDFLD subroutine is used to define field variables that can influence

material behavior. It is crucial for integrating damage models into the finite element

framework during simulations. This subroutine allows for predicting damage devel-

opment and fracture in materials by identifying necessary information, such as stress

and strain, at the beginning of each increment. Both subroutines enhance the flex-

ibility of ABAQUS in simulating complex material behaviors and are essential for

advanced finite element analyses where standard models are insufficient.

In this thesis, the damage models used are implemented through the VUSDFLD sub-

routine, while the hardening model is incorporated using the VUHARD subroutine.

To demonstrate that these subroutines are working correctly, the Johnson-Cook plas-

ticity and damage models, which account for stress triaxiality, strain rate, and tem-

perature effects, are selected, as these models are also available in ABAQUS. For

comparison, the IN718 material is used. The definition of plasticity and damage pa-

rameters is detailed in Chapter 3. This section presents the plasticity and damage pa-

rameters obtained for the Johnson-Cook model and describes the geometry used dur-

ing code testing. A 1 mm cubic specimen is uniaxially stretched under displacement

control, with symmetry boundary conditions applied on three faces. The Johnson-

Cook plasticity parameters are determined using the experimental plastic data shown

in Equation 2.42 and Figure 3.18. Similarly, the Johnson-Cook damage model is

modeled using the average values (see Table 3.6) of the specimens shown in Figure

3.3 and Equation 2.67. The plasticity and damage models for IN718 are presented in

Table 2.3 and Table 2.4. Strain rate and temperature parameters are taken from the
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literature [112, 113].

Table 2.3: Johnson-Cook plasticity model parameters for IN718.

A [MPa] B [MPa] n C ε̇0

789 1470 0.53 0.01 0.1/0.01/0.001

θtrans (K) θmelt (K) m χ Cp (J/kg K)

293 1593 1.65 0.6 435

Table 2.4: Johnson-Cook damage model parameters for IN718.

D21 D22 D23 D24 D25

0.0989 1.142 2.039 0.04 0.89

The effects of strain rate and temperature on plasticity and damage are examined us-

ing different ε̇0 values (0.1 s−1, 0.01 s−1, and 0.0001 s−1) and initial temperatures

(25°C, 100°C, and 200°C). Figure 2.12 illustrates the force-displacement behavior

under various conditions for a material tested with both ABAQUS and the VUHARD

subroutine. The top graph demonstrates that the plasticity behavior is accurately cap-

tured by the VUHARD subroutine, showing good agreement with ABAQUS. The

middle graph presents the force-displacement curves for different reference strain

rates (ε̇0=0.001,0.01, 0.1), where both ABAQUS and VUHARD display consistent

results, indicating the effectiveness of VUHARD in modeling strain rate dependence.

The bottom graph compares the curves for different temperatures (25°C, 100°C,

200°C) and reference strain rate (ε̇0=0.1), with VUHARD closely matching ABAQUS

across all conditions. This comprehensive comparison highlights the reliability of

VUHARD in simulating material plasticity under varying strain rates and tempera-

tures, aligning well with ABAQUS simulations. Likewise, in Figure 2.13, the effects

of strain rate and temperature are compared using ABAQUS and VUSDFLD. The

results showed that VUSDFLD works correctly.
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Figure 2.12: Comparison of force-displacement curves for different plasticity scenar-

ios.
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CHAPTER 3

EXPERIMENTAL IDENTIFICATION AND VERIFICATION OF

PLASTICITY AND DAMAGE MODELS

Identification and validation of plasticity and damage models are essential for model-

ing the fracture behavior of materials under various loading conditions. Experimental

and numerical studies have been conducted to model flow stress and ductile fracture.

This chapter focuses on the materials, experimental tests, finite element (FE) model-

ing, and validation of both plasticity and damage models. In the thesis, aluminum

alloy 2024 annealed condition (AL2024-O) and Inconel 718 (IN718) are studied.

Uniaxial tensile tests are performed on these materials, with detailed explanations

provided for the test setup, post-processing procedures, and the different specimen

geometries used. The plastic behavior of the materials is modeled based on the exper-

imental force-displacement data, and damage models are calibrated using the same

experimental data. Also, multi-parameter models are calculated to calibrate stress tri-

axiality, Lode parameter, and equivalent plastic deformation at the fracture initiation

point.

3.1 Materials

The materials used in the flow forming process and tensile experiments are IN718 and

AL2024-O. These materials are selected due to their excellent mechanical properties

and wide industrial applications.

IN718 is first focused, as this material is a nickel-based precipitation hardenable su-

peralloy where γ′ and γ′′ precipitations are nucleated after the aging treatment to

have improved mechanical properties. It has good fatigue and creep strength with
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high corrosion resistance, and it has been widely used in the hot sections of gas tur-

bine engines such as turbine discs and blades. The chemical composition of the alloy

is given in Table 3.1. Figure 3.1 shows the specimens used for this material.

Table 3.1: Chemical composition of IN718 [mass fraction, %].

Element Ni Nb Mo Ti Al Cr Cu Si Fe Mn C

Content 54.35 4.96 2.77 0.95 0.56 18.59 0.04 0.32 16.68 0.28 0.5

(a) ST (b) NT (c) PST (d) ISS

Figure 3.1: Experimental specimens of Inconel 718 used for tensile tests.

The second material, AL2024-O, is an aluminum alloy known for its high strength-

to-weight ratio, good corrosion resistance, and excellent machinability. AL2024-O

is commonly used in aerospace applications, including structural components and

skin panels, due to its favorable mechanical properties and ease of fabrication. The

"O" condition indicates that the alloy is in an annealed state, providing a balance of

strength and ductility suitable for forming processes. The chemical composition of

Al2024-O is shown in Table 3.2, and the specimens used are shown in Figure 3.2.

Table 3.2: Chemical composition of Al2024-O [mass fraction, %].

Element Al Cu Mg Fe Si Mn

Content 92.5 4.7 1.3 0.2 0.3 0.7
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(a) ST (b) NT (c) PST (d) ISS

Figure 3.2: Experimental specimens of Al2024-O used for tensile tests.

These materials are chosen for their unique properties that make them suitable for

the flow forming process and subsequent analysis of plasticity and damage behaviors.

The experimental results obtained from these materials will be used to calibrate and

validate the plasticity and damage models discussed in this thesis.

3.2 Uniaxial Tension Tests

Uniaxial tensile tests are performed to obtain the materials’ stress-strain behavior and

calibrate the plasticity and damage models using these results. This section summa-

rizes the test procedures and results obtained from the experiments. Specimens with

various stress states in different geometries cut from sheet material are produced for

both materials. These tests consist of tension tests on smooth tension (ST), notched

tension (NT), plane strain tension (PST), and in-plane shear (ISS) specimens. Three

pieces of each specimen geometry are employed. All specimens have a thickness of

3 mm, with the geometric dimensions detailed in Figure 3.3.

Displacement measurements are obtained using 2D Digital Image Correlation (DIC),

a non-contact measurement technique that calculates the deformation of a speckle

pattern on the surface of the specimen. It is frequently used in tensile tests and metal

forming processes [114, 115, 116, 117]. The basic process in the DIC method is

comparing two images taken from the sample before and after loading. This tech-

nique enables full-field displacement measurements. The images are subjected to
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Figure 3.3: Dimensions of the Smooth Tension (ST), Notched Tension (NT), Plane

Strain Tension (PST), and In-plane Shear (ISS) specimens used in the tensile tests.

Dimensions are given in mm.

a correlation algorithm that tracks intensity patterns in small sections called subsets

and calculates local deformations and displacements by comparing these subsets. The

specimens must have a speckled structure for the subsets to calculate the change. The

specimens are sprayed with white paint and then patterned with black speckles to cre-

ate a speckle pattern, as shown in Figure 3.4. The speckle pattern size varies from 1

to 10 pixels (1 pixel is approximately 0.045 mm).

Figure 3.4: The speckle pattern of specimens

The tests are conducted using the MTS 100 kN Tensile–Bending Fatigue/Static testing
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machine, as shown in Figure 3.5. Additionally, additional lighting is used so the

lenses can see the sample more clearly. During the test, the specimens are clamped

at both ends using wedge grips with 5 MPa pressure at a distance of 20 mm from

the measurement section. The quasi-static tensile tests are displacement-controlled

and perform at a 1 mm/min displacement rate. GOM Aramis 4M (rev03) high-speed

camera and Titanar 100 mm lenses capture images at three frames per second (3 Hz).

These images are used to determine displacement changes with the DIC method. The

camera is positioned at 785 mm to take photos. The DIC setup provider gives this

distance in a table for the camera and lens we used.

Figure 3.5: Experimental setup: Uniaxial tension test system and optical equipment

for DIC measurement.

NCORR is an open-source MATLAB software for 2D digital image correlation (DIC)

and is used to measure surface deformations and stresses of materials [118]. NCORR

is run in the MATLAB environment, and they first load the reference and post-

deformation images. Next, they select the region of interest (ROI), usually the speci-

men geometry containing the points taken from displacement data, set the subset and

step sizes, and start to calculate the deformation between two images. NCORR visu-

alizes the results via the graphical user interface (GUI), and the obtained data can be

exported as data and used in subsequent calculations.
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The subset radius is selected as 30 pixels, and the step size is 2 pixels. Step size

is referred to as subset spacing in NCORR software. As suggested in the manual

of NCORR software, the subset radius is selected to include at least 2-3 black dots

in the speckle pattern. We ensured the displacement solution did not change with

different subset sizes and step size values (see Figure 3.6). Less than 0.5% difference

is observed between the cases shown below. In addition, DIC analysis calculates the

displacement in pixels, but the value in mm is used. Conversion from pixel to mm

is required, but this conversion may also change as the camera’s location changes

slightly for each geometry during the tests. For this, the width of the specimen is

used as the reference length to determine the pixel-to-mm conversion. It is measured

with a digital caliper, with a rated accuracy of 0.02 mm. Pixel to mm conversion is

calculated as 0.0452, 0.0456, 0.0451, and 0.0454 for ST, NT, PST, and ISS specimens,

respectively. Thus, the maximum difference is about 1% between measurements.

30-1 30-2

30-3 20-2

(a) Subset size variations

(b) Displacement curves for different subset and

step sizes across frame numbers

Figure 3.6: Change in displacement measurement from DIC with different subset size

and step size.

Displacements at all solution points are calculated using NCORR. The displacements

for the specimens are determined by the difference between two points positioned ver-

tically to the center of the specimen. Figure 3.7 and Figure 3.8 depict the dimensions

and displacement measurement points for different specimen geometries. In Figure
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3.7, the gauge lengths of IN718 for the ST, NT, PST, and ISS specimens are shown as

40 mm, 50 mm, 8.1 mm, and 28 mm, respectively. In Figure 3.8, the corresponding

gauge lengths of Al2024-O for the same specimen types are indicated as 39.8 mm,

48.66 mm, 7.6 mm, and 27.6 mm, respectively. The red dots on the specimens mark

the points between displacement measurements, providing critical data for evaluating

the material’s response to loading.

40 50

8.1

28

Figure 3.7: Gauge lengths and displacement measurement points for different speci-

men geometries (ST, NT, PST, ISS) for Inconel 718.

The force data from the testing machine and the displacement data set calculated by

DIC are synchronized. For this, it is essential to know the rate of high-speed cam-

eras and machines. The results are presented in force-displacement curves for each

specimen geometry, up to and slightly beyond the fracture point. Data could not be

obtained for one of the NT samples for Al2024-O and one of the ST samples for

IN718 due to some problems encountered during the tests. Multiple tests are per-

formed for each geometry, and some differences in the results are observed. These

differences may be due to differences in sample fabrication or differences in the in-

trinsic microstructure of the material.

Figure 3.9 presents the experimental force-displacement curves for IN718 specimens.

The graphs illustrate the performance of different specimen geometries under tensile

testing: (a) Specimens N1 and N2 (ST), (b) Specimens N6, N7, and N8 (NT), (c)
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39.8 48.66

7.6

27.6

Figure 3.8: Gauge lengths and displacement measurement points for different speci-

men geometries (ST, NT, PST, ISS) for Al2024-O.

Specimens N9, N10, and N11 (PST), and (d) Specimens N15, N16, and N17 (ISS).

Figure 3.10 shows the experimental force-displacement curves for Al2024-O spec-

imens. The graphs illustrate the behavior of different specimen geometries under

tensile testing: (a) Specimens A1, A2, and A3 for ST, (b) Specimens A5 and A6 for

NT, (c) Specimens A7, A8, and A9 for PST, and (d) Specimens A13, A14, and A15

for ISS. The curves depict the relationship between the applied force and the resulting

displacement, providing insights into the material’s mechanical behavior and fracture

characteristics for each specimen configuration.

3.3 Finite Element (FE) Modeling

Computational methods are employed in engineering evaluations to ensure efficiency

in terms of cost and time. One of these methods, the finite element method (FEM),

simplifies the analysis by dividing a component into smaller parts. It is crucial to

optimize the number of elements to obtain accurate results. Although using more el-

ements increases the details, it may lead to a loss of time and increase computational

cost. Displacement-controlled explicit finite element (FE) simulations are performed

to calibrate and validate plasticity and damage model parameters. This section em-
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(a) ST (b) NT

(c) PST (d) ISS

Figure 3.9: Experimental force-displacement curves for IN718.

ploys the von Mises yield function for IN718, utilizing the plasticity parameters pro-

vided in Table 3.3. The parameter set used in the results obtained in the FE modeling

section is given in detail in the following section.

In FE analysis, the upper and lower parts clamped in the testing machine are modeled

as rigid sections. The painted part from which the images are taken is modeled as

deformable, and these two parts are connected with tie constraint (shown in Figure

3.13). A quarter model reduces the computational cost since geometric symmetry ex-

ists in the ST, NT, and PST specimens. As shown in Figure 3.11, the results obtained

from the whole and quarter models are similar. However, the whole model is used

since the ISS specimen has no symmetry plane, like other specimen.

In the study, the codes are implemented for Abaqus/Explicit, and to ensure that the

55



(a) ST (b) NT

(c) PST (d) ISS

Figure 3.10: Experimental force-displacement curves for Al2024-O.

explicit finite element model of tensile tests is working correctly, Abaqus/Standard

analyses are also taken, and the explicit-implicit results are compared. For this pur-

pose, UHARD and VUHARD are employed and compared using the plasticity pa-

rameters for IN718. As shown in Figure 3.12, the results of implicit and explicit

solutions are similar. The analysis is continued with an explicit solver to apply the

element deletion method to represent material fracture. Although element deletion is

available in the implicit solver, it is not preferred due to its increased computational

time and complexity.

The boundary conditions are applied to simulate the experimental setup accurately,

ensuring that the constraints and load applications reflect real-world scenarios. A

displacement-controlled boundary condition is applied from the reference point on
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Figure 3.11: The experimental results are compared with simulations using different

part models: Half, Full, and Quarter.
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Figure 3.12: Force-displacement curve for ST specimen geometry. The experimental

results are compared with simulation results using implicit and explicit methods.
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the rigid part, as shown in Figure 3.13. Displacement values vary depending on the

species. Additionally, the amplitude value must be given in explicit analyses. The

analyses are modeled as smooth step functions throughout 1 second in quasi-static

conditions. Since the three specimens are modeled symmetrically, the symmetry

boundary condition is applied to the symmetry corrections. The rigid part at the

bottom of the ISS specimen is kept from the reference point. Rigid bodies are used to

represent the fixtures and grips, while deformable bodies model the actual specimens,

allowing for precise stress and strain analysis.

Figure 3.13: Detailed illustration of boundary conditions, rigid and deformable bodies

for different specimen geometries used in the study.

Since mesh and time dependency are present in the explicit model, mesh, and mass

scaling studies must be done. Since it is impractical to run a quasi-static analysis

on a real-time scale, methods such as increasing the loading rate and scaling the

material density can reduce the simulation’s running time. Density scaling is called

mass scaling and is generally preferred because it does not affect the strain rate. If

the ratio of kinetic energy to internal energy is below 10%, it can be concluded that

the dynamic effects in the model are negligible, and the solutions are stable. It is

studied with six different time increments for mass scaling, and the results are shown

in Figure 3.14.
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Figure 3.14: Force-displacement curves for different mass scaling factors, showing

the effects of various time increments (5e-6, 4e-6, 3e-6, 2e-6, 1e-6, and 5e-7) on the

results. The right panel zooms in on the final part of the curves to highlight differences

in behavior near the end of the displacement range.

The force-displacement curves are pretty consistent over most of the displacement

range; this indicates that mass scaling increases have a small impact on the overall re-

sponse. However, the deviation becomes more evident as the displacement increases

significantly above 9 mm. This result shows that smaller mass scaling time incre-

ments tend to give more accurate results in the higher displacement range. Consider-

ing these observations, a convergence is observed at the selected mass scaling values

of 1e-6 and 5e-7. Considering the computational time, the 1e-6 time increment value

is chosen as the appropriate mass scaling.

Similar to a mass scaling study, a mesh study must be conducted to optimize the

solution time and results. Generally, for the tensile test meshes, reduced integration

eight-node linear brick elements (C3D8R) are used, and the element deletion method

is applied to represent material fracture. The mesh is designed so that the elements

near the center of the sample have the same size in the in-plane directions and half the

size of the elements in the tension direction. The mesh configurations are detailed in

Figure 3.15, with refined mesh regions highlighted in the enlarged sections to capture

the critical stress and strain gradients accurately. Specimens are conducted with five

different mesh configurations using element sizes of 0.5, 0.4, 0.3, 0.2, and 0.1 in the

thickness direction, respectively.

Five different meshes are evaluated in the mesh study. The appropriate mesh is de-
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Figure 3.15: Mesh configurations for different specimen geometries used in the study.

cided based on the force-displacement response, relative elongation-equivalent plas-

tic strain, and computational time. Force-displacement curves for different specimen

geometries (ST, NT, PST, and ISS) show a strong correlation between experimental

results and simulations using varying mesh sizes (see Figure 3.16). For all sample

types, simulations with a mesh size of 0.1 to 0.3 generally best fit experimental data,

especially in critical regions where the material fails. For example, in the ST, mesh

sizes of 0.1 and 0.2 closely match the experimental data, especially in the post-yield

region. In contrast, in the NT, mesh sizes of 0.3 and 0.4 show slight deviations ini-

tially but converge well at higher displacements. The PST simulation with a mesh

size of 0.3 closely agrees with the experimental curve, especially when the force be-

gins to decrease. Similarly, for the ISS, mesh sizes of 0.3 and 0.4 effectively capture

the shear behavior. Finer meshes generally show increased accuracy but increased

computational cost. In particular, in the ST and NT, the differences between the 0.1

and 0.2 mesh sizes are minimal, and considering the computational time, the element

with 0.2 is chosen as the most suitable mesh layout.

For the ST, NT, and PST specimens, the element size in the gauge length is 0.2 mm,
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Figure 3.16: Mesh study for tensile test specimens (ST, NT, PST, ISS). MS is mesh

size.
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Figure 3.17: Energy-time plot showing the variation of internal and kinetic energy

during the simulation.
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and the element size of the edge of the tensile direction is 0.1 mm to ensure con-

trolled extension of elements. For the ISS specimen, the element size in the thickness

direction is 0.2 mm, and it is 0.1 mm in the gauge region. The selected meshes are

highlighted within a red box in Figure 3.15.

The analysis of the energy results obtained for the selected mass scaling and mesh

shows that it works quasi-statically and has no dynamic effect. A comparison of

internal and kinetic energy is made in Figure 3.17. The internal energy increases

steadily, indicating plastic deformation, while the kinetic energy remains negligible,

confirming the quasi-static nature of the simulation.

3.4 Identification and Verification of Plasticity Models

A trial-and-error method is used to model plasticity and damage. The main idea is to

model the material parameters by comparing the load-displacement response of ex-

periments and numerical simulations. Since this study uses an uncoupled approach to

model ductile fracture, hardening parameters can be calibrated with experimental data

independently of damage parameters. For plasticity modeling, experimental plastic-

ity data are initially required. This data is obtained by processing the experimental

force-displacement data to derive engineering and true stress-strain curves and then

taking the plasticity part of the true stress-strain data. Several formulas are used to

transition between these values. Engineering stress and strain are calculated from the

specimen dimensions and the load and displacement data from the experiments. The

formulas for engineering stress-strain are provided below:

ϵE =
∆l

l0

σE =
F

A0

(3.1)

where ∆l is the experimental displacement, lo is the length between two displacement

points (gauge length), F is the recorded load, and A0 is the initial area of the gauge

section.

Similarly, the transition from engineering stress-strain to true stress-strain can be
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made using the following formulas. The formulas are as follows:

εT = ln (1 + εE)

σT = σE (1 + εE)
(3.2)

where εT is the true stress, εE is the engineering stress, σT is the true strain, and εE

is the engineering strain.

The true strain-stress data obtained consists of two regions: elastic and plastic. The

plastic part required for hardening is the part from the yield stress to the ultimate

stress value in the data. This part is where the hardening rules are fitted. This process

is done for both materials. However, since the yield functions required for these two

materials differ, the plasticity modeling of each material is discussed separately.

3.4.1 IN718

The stress-strain curves are obtained from the ST specimen up to the necking point

using the experimental force-displacement data. The stress-strain curves used for

determining the hardening parameters of the material are shown in Figure 3.18.
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Figure 3.18: (a) True and engineering stress-strain curves for IN718. (b) Comparison

of experimental stress-strain data with the extended Voce rule.

Based on the obtained plastic data and the extended Voce rule given in Equation 2.40,

the hardening parameters are determined with the MATLAB curve fitting tool. The
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Voce rule extended with experimental data is fitted quite successfully with the deter-

mined hardening parameters. These parameters are vital for precise finite element

simulations and are listed in Table 3.3.

Table 3.3: Plasticity model parameters for IN718.

σ0[MPa] q1 [MPa] c1 b1 q2 [MPa] c2 b2

789 499.6 0.1731 106.7 499.6 1.761 4.351

C ε̇0 θtrans (K) θmelt (K) m χ Cp (J/kg K)

0.01 1 293 1593 1.65 0.6 435

It should be noted that only the yield stress and hardening parameters are calibrated

using tensile tests; the parameters for the strain rate and temperature-dependent parts

are taken from Hao et al. [112]. Although the inelastic heat fraction, χ, is generally

considered 0.9, this value has been found to cause excessive thermal softening in

quasi-static tensile simulations compared to tensile tests. As discussed in [119, 120],

χ = 0.9 is not representative of experimental results and varies between 0.55 and 0.8

for different metals. This study adopts the value χ = 0.6, which fits our experimental

results.

3.4.2 Al2024-O

The same procedure as in IN718 is performed to obtain plastic stress-strain data. Us-

ing Equations 3.1 and 3.2, the true and engineering stress-strain graph for Al2024-O,

as shown in Figure 3.19a, is obtained. Unlike IN718, hardening behavior is mod-

eled with the combination of the Voce (Equation 2.39) and Power (Equation 2.37)

rule. The stress-strain curves used for determining the hardening parameters of the

material are shown in Figure 3.19.

The plasticity model, initially modeled with the smooth tension specimen using the

von Mises yield function, could not fit the hardening behavior of the other three spec-

imens. According to the literature, stress triaxiality and Lode parameters are needed

to model the plastic behavior of some materials. For this reason, the Bai-Wierzbicki

(BW, [87]) yield function is used instead of von Mises for Al2024-O material. An
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Figure 3.19: (a) True and engineering stress-strain curves for Al2024-O. (b) Compar-

ison of experimental stress-strain data with the modulated hardening rule.

additional six parameters are added to the plasticity model using this yield function.

As shown in Equations 2.25, 2.26, and 2.27, the σy part is modeled with ST specimen

as shown in Figure 3.19b. The triaxiality terms η0 and cη are determined using the NT

and PST specimens; the Lode parameters cs and m are found using the PST and ISS

specimens. First, η0 is taken as 1/3, frequently used as the cut-off value in the litera-

ture. However, since the part that needs to be corrected in the NT and PST is larger

than the examples in the literature, η0 is tested with different values and determined to

be 0.22 to enhance the effect of the triaxiality correction. There are also studies in the

literature that use a reference triaxiality value different from 1/3. Having η0 at a value

different from 1/3 resulted in a minor triaxiality effect in the ST specimen. However,

this small difference is acceptable for better fitting the other three specimens as it

remained within the experimental data range. Among the other two parameters, ct is

taken as one because it is generally used as 1 in the literature, and cc is taken as one

because it does not have a compression test. The parameters found for the plasticity

model are given in Table 3.4.

Force-displacement curves for different geometries (ST, NT, PST, and ISS) show

the comparison between experimental results and simulations using both uncorrected

(wo-corr) and corrected (w-corr) models in the Figure 3.20. For all specimen types,

simulations with correction (w-corr) provide closer agreement with experimental data,
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Table 3.4: Plasticity model parameters for Al2024-O.

σ0[MPa] q1 [MPa] b1 q2 [MPa] b2 K[MPa] n

77 60.19 37.59 45.12 116 1613 0.3047

α cη η0 ct cc cs m

0.1 0.4 0.22 1 1 0.866 20
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Figure 3.20: Force-displacement curves for different specimen geometries, compar-

ing experimental results with simulations using models without correction (wo-corr)

and with correction (w-corr)

especially in the initial elastic region and the early stages of plastic deformation.

However, as displacement increases, uncorrected simulations (wo-corr) tend to over-

estimate the required force compared to experimental data, as shown by the red

curves above the experimental curves. Corrected models (w-corr), represented by

blue curves, show better agreement with experimental results in all geometries, em-

phasizing the importance of the BW yield function in models to capture material
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behavior in different stress states accurately. This effect is most evident in the PST

and ISS, where corrections significantly increase the accuracy of the simulations.
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Figure 3.21: Force-displacement curves of Al2024-O for different specimen geome-

tries (ST, NT, PST, and ISS), showing comparison of experimental results (Exp.)

alongside simulations using models without correction (wo-corr), with stress triax-

iality correction (T-corr), and with Lode parameter correction (L-corr).

In Figure 3.21, the effect of T and L corrections on hardening is shown with green

(L-correction) and blue (T-correction) curves. It is seen that the Lode parameter in

ST does not create any change in hardening because its value is 1. It is seen that

the NT specimen triaxiality has a more significant effect than the Lode parameter,

and in PST, the effect of both parameters is equal. Since stress triaxiality is close to

zero in the ISS specimen, triaxiality correction does not have much of an effect on

hardening, whereas, in this shear-dominant specimen, the Lode parameter alone can

make the entire correction.
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3.5 Identification and Verification of Damage Models

A hybrid experimental/numerical approach ensures accuracy and reliability in cal-

ibrating damage models (see [121]). The fracture point and, therefore, the failure

strain have been determined from experiments. However, the accumulation of dam-

age until fracture, average stress triaxiality, and Lode parameter are calculated using

finite element simulations.

3.5.1 Single Parameter Damage Criteria

Single-parameter damage parameters are calibrated using the ST specimen, similar to

the plasticity model. Running several explicit Finite Element (FE) analyses using the

ST specimen for each damage model is prescribed. The damage accumulation rule is

applied to all models using the user-defined subroutine (VUSDFLD). Subsequently,

the critical value is subtracted from the experimentally observed failure point derived

from the FE analysis results. After determining the critical damage parameters (Ci),

the damage accumulation rule is normalized, and its accuracy is checked using the

force-displacement curve of the ST specimen. In this step, the propagation of the

crack is also examined by opening the element in deletion. Since the failure point

is single, all models are broken at the same point, as seen in Figure 3.22. Table 3.5

presents the critical damage values determined for each criterion.

Table 3.5: Damage parameters of criteria for IN718.

Ayada (C1) Ayada-m (C2) Brozzo (C3) KH (C4) LR (C5)

0.240 0.449 0.657 3.1.421 615.327

MC (C6) OH (C7) RT (C9) CL (C9) Freudenthal (C10)

1.483 0.656 1.118 978.061 924.863

Specimens such as notched tensile (NT), plane strain tensile (PST), and in-plane shear

(ISS) are used along with the ST specimen to provide a comprehensive understand-

ing of the material’s behavior. The ability of both single- and multiple-parameter

models to predict fracture is evaluated over these four different specimen geometries.
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Figure 3.22: Comparison of force-displacement curves using different damage crite-

ria (Ayada, Ayada-m, Brozzo, KH, Le-Roy, McClintock (MC), Oh (OH), Rice-Trace

(RT), Cockcroft-Latham (CL), and Freudenthal) against experimental results for ST

specimen.

This comprehensive evaluation is crucial to ensure the models can accurately capture

material behavior in various stress states.

Since single-parameter models are calibrated only with ST, their ability to predict

fracture at different triaxiality ranges is tested using three other specimens. All these

single-parameter models predicted a break at the same point in the ST. However, there

are differences in the fracture estimates in the other three specimens. The obtained

force-displacement results are given as follows in Figures 3.23, 3.24 and 3.25. The

crack initiation points are presented zoomed in since the results are close to each

other, especially in NT and PST.

Since it is difficult to interpret the results in these graphs, bar charts compare them

relatively with the experimental results. Figure 3.26 shows experimental and numer-

ical fracture-initiation displacement comparisons for NT, PST, and ISS specimens.

Red bars represent experimental fracture displacements in these figures, while blue

bars show predictions from various damage models. In Fig. 3.27, the fracture predic-

tion performance based on the error analysis is illustrated, and the graph shows the

individual error values for each sample type (NT blue, PST yellow, and ISS green)

and the total error value (red line) for each damage model. The error is calculated
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Figure 3.23: Force-displacement curves for NT specimen geometry, displaying ex-

perimental results compared with multiple damage criteria models (MC, OH, Ayada,

RT, Brozzo, CL, KH, LR, Freund). The inset zooms into the region of significant

deviation.

Figure 3.24: Force-displacement curves for PST specimen geometry, displaying ex-

perimental results compared with multiple damage criteria models (MC, OH, Ayada,

RT, Brozzo, CL, KH, LR, Freund). The inset zooms into the region of significant

deviation.

by determining the difference between the average fracture displacements observed

in the experiments and those predicted by the damage models. This difference is then

expressed as a percentage. The error calculation is conducted separately for each

specimen. The total error represents the sum of the errors for all three specimens.
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Figure 3.25: Force-displacement curves for ISS specimen geometry, displaying ex-

perimental results compared with multiple damage criteria models (MC, OH, Ayada,

RT, Brozzo, CL, KH, LR, Freund). The inset zooms into the region of significant

deviation.

Figure 3.26: Experimental and numerical comparisons of displacement at failure for

single parameter damage models.
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Figure 3.27: Error values for NT, PST, and ISS specimens along with total error

values for single parameter damage models.

For the NT specimen, all models except LR and Freudenthal predict fracture dis-

placement values relatively close to the experimental value. In particular, the Ayada,

Ayada-m, KH, MC, and RT models successfully predict fracture under notch tensile

conditions, showing the closest agreement with experimental data. In the PST speci-

men, similar to the NT, the predictions of several models, including Ayada, Ayada-m,

KH, MC, and RT models, match the experimental fracture displacement more closely

than others. For the ISS specimen, the comparison reveals that the KH, RT, and, in-

terestingly, Freundenthal models most accurately predict fracture displacement. Con-

versely, the Ayada, Ayada-m and MC models, successful in the other two geometries,

are not as successful as the other three in their applicability in in-plane shear condi-

tions.

Overall, the analysis of Figure 3.27 reveals that different damage models’ ability

to predict fracture displacements under different stress states varies. The KH and

RT models stand out for their consistency and reliability. In contrast, the Ayada and

Ayada-m models may require further refinement to improve their accuracy, especially

for in-plane shear conditions. In contrast, the CL, OH, and LR models exhibit the

highest total error values, with significant errors observed, especially in the ISS sam-

ple estimates.
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3.5.2 Multiple Parameter Damage Criteria

While single-parameter models can be calibrated using a uniform tensile (ST) speci-

men, which provides a simple approach to parameter determination, multiple-parameter

models require additional specimens to capture the behavior of materials under differ-

ent stress states. Additionally, with additional parameters such as stress triaxiality and

Lode parameter in these models, a more complex method for calibration is needed.

First, these models are represented in 2D or 3D with the help of fracture locus. Av-

erage stress triaxiality and average Lode parameter are needed to create each model’s

fracture curve or surface. The average formulas of these two parameters are as fol-

lows:

ηave =
1

ε̄f

∫ ε̄f

0

η (ε̄P) dε̄P

Lave =
1

ε̄f

∫ ε̄f

0

L (ε̄P) dε̄P

(3.3)

First, FE analyses of the modeled material’s plastic behavior are simulated using only

the plasticity and averaging subroutine. Then, the average stress triaxiality and Lode

parameter values are subtracted up to the experimentally observed breaking point.

The place where there are sudden decreases in the force-displacement curves is taken

as the beginning of fracture, and the equivalent plastic strain value at this point is

chosen as failure strain. The average failure stress value obtained from four tests is

used for ST, NT, PST, and ISS. The failure strain and mean T , θ̄ values are taken

from a critical element determined by the maximum equivalent plastic strain. The

critical elements in ST, NT, and PST are located at the center of the specimens. In

contrast, the critical element of ISS is located at the center near the curved region in

the concentration region. When choosing the critical element, when looking at the

literature, it is seen that the equivalent plastic deformation is taken from the point

where it is highest. The failure strain, averaged T, and average θ̄ are given in Table

3.6.

The model’s function is adapted to the fracture location in 2D or 3D, depending on

the requirements of the model with values in the table below. This fitting process is

performed using MATLAB’s curve fitting tool, which helps model the fracture line

or surface. The parameter set that best fits this curve or surface is defined as the
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Table 3.6: Fracture strain, averaged T and θ̄ for all specimens.

Specimen Tave θ̄ave εf

ST 0.3852 0.9251 0.6240

NT 0.4861 0.7681 0.5151

PST 0.5608 0.5941 0.4691

ISS 0.0592 0.1416 0.5660

damage parameters of that model. The element deletion is opened and repeated with

the obtained plasticity and damage models to examine the post-breakage behavior of

the models. This iterative process ensured that the model could reliably predict the

onset and progression of damage under various loading conditions.

The parameters of the models with multiple parameters, whose formulas are given in

Chapter 2, are defined by following the above procedure. Oyane-Sato and JC models

are calibrated using ST, NT and PST results. Temperature and strain rate dependent

damage parameters D24 and D25 included in the JC and MMC model are taken from

[113]. Oyane-Sato and JC damage model parameters are given in Table 3.7. Figure

3.28 shows the fracture location for the Oyane-Sato and JC models, respectively. Each

point in the plots belongs to a specimen under a different stress state and is positioned

in 2D space according to the average stress triaxiality and failure strain value.

Table 3.7: Parameters of the Oyane-Sato and JC damage models for IN718.

D11 D12

2.417 7.487

D21 D22 D23 D24 D25

0.0989 1.142 2.039 0.04 0.89

Six parameters of BW and MMC are identified in the same way. These two models

have six parameters, and the number of tests is insufficient to model simultaneously.

Therefore, the parameters are calibrated iteratively. The parameters are defined using

the tabular data in Table 3.8, with D44 set to 1 for the MMC model. Fracture loci

with stress triaxiality, Lode angle parameter, and failure strain axes in the 3D space
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Figure 3.28: Calibrated fracture loci for the Oyane-Sato and JC models.

of these two models are shown in Figure 3.29. Likewise, the parameters and fracture

loci of the models belonging to the Lou family are shown in Table 3.9 and Figure

3.30.

Table 3.8: Parameters of the BW and MMC damage models for IN718.

D31 D32 D33 D34 D35 D36

1.468 2.194 0.479 0.004632 0.2968 0.1

A4 D41 D42 D43 D44 n4

1910 19.02 16630 2.405 1 2.158

Figure 3.31 compares the force-displacement curves for different specimen geome-

tries (ST, NT, PST, and ISS), showing the experimental results alongside multi-parameter

damage models, including Oyane, JC, BW, MMC, DF2013, DF2014, and DF2015.

For the ST, all of the models are consistent with the experimental results. Some mod-

els predict damage initiation a few steps before or after. In the case of NT, all models

show a good fit except DF2014 and DF2015, but these two models are observed to

reach the critical value earlier than the other models. PST curves agree well with

experimental data, especially in the initial elastic and early plastic regions. As in the

NT, except for the DF2014 and DF2015 models, other models made successful pre-

dictions in the PST. For the ISS, the failure initiation point of the MMC, DF2013 and
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(a) Fracture locus for the BW. (b) Fracture locus for the MMC.

Figure 3.29: Calibrated fracture loci for the BW and MMC models.

Table 3.9: Parameters of the DF2013, DF2014 and DF2015 damage models for

IN718.

D51 D52 D53

2.861 0.4314 0.6736

D61 D62 D63 C6

1.61 0.8312 0.5314 0.333

D71 D72 D73 D74 C7

0.9688 1.037 0.4672 1.488 0.333

DF2014 models is quite successful, while the JC and Oyane-Sato models overpredict

the initiation point. The BW model gives a result far from the experimental results,

even in the hardening part.

Figure 3.32 also shows the displacement at damage for different damage models (Oy-

ane, JC, BW, MMC, DF2013, DF2014 and DF2015) in comparison with experimen-

tal results for three specimen geometries. Displacement values predicted by different

models differ significantly. For the NT geometry, the JC and DF2013 models pre-

dict higher displacement values at failure compared to the experimental results. In

contrast, the Oyane, MMC, and BW models match the experimental values closer.

For PST and ISS geometries, the DF2013, DF2014, and MC models tend to pre-

dict displacement values that are consistent with the experimental results. In general,
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(a) Fracture locus for the DF2013. (b) Fracture locus for the DF2014.

(c) Fracture locus for the DF2015.

Figure 3.30: Calibrated fracture loci for the DF2013, DF2014 and DF2015 models.

displacement at failure varies between models, highlighting differences in predictive

capabilities.

Figure 3.33 compares the error values of different damage models with the total error

value for NT, PST and ISS geometries. The DF2015 model exhibits high error values

for all three geometries, indicating its low accuracy in predicting displacement at

the time of damage. While the JC model is successful in NT and PST specimens,

it made a very unsuccessful prediction in the ISS specimen in pure shear geometry.

The DF2013 and DF2014 models also show lower error values than the JC model

but vary between specimen geometries. The total error value represented by the red

line highlights the cumulative accuracy of each model across all geometries. The

Oyane and MMC models show lower total error values, indicating a better overall
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Figure 3.31: Experimental and numerical comparisons of displacement at failure for

different damage models.

performance predicting damage displacements in different geometries.

The calibrated plasticity and damage models will be applied to the flow forming pro-

cess in Chapter 5. These calibrated damage models will be compared with experimen-

tal results from the flow forming process to evaluate their ability to predict forming

limits and failure locations, similar to their application in ductile failure. Following

this, the effects of process parameters will be examined. The plasticity models for

IN718 will be extended to study the influence of hardening rules on the stress state

during flow forming. Finally, the flow forming results for Al204-O using the VM and

BW yield functions will be compared.
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Figure 3.32: Experimental and numerical comparisons of displacement at failure for

multiple parameter damage models.
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Figure 3.33: Error values for NT, PST, and ISS specimens along with total error

values for multiple parameter damage models.
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CHAPTER 4

FLOW FORMING TRIALS AND FINITE ELEMENT MODELLING

This chapter addresses the experimental trials and finite element (FE) modeling tech-

niques used in this study to conduct a parameter study of the flow forming process.

The experimental setup and geometries of parts used for flow forming experiments

will be explained in detail. Following this, the FE modeling approach is presented,

covering mesh and mass scaling studies to ensure accurate and efficient simulations.

The experimental data and the developed FE model will be used for experimental

comparison and parameter study. The results are presented in the subsequent chapter.

In the flow forming process, various terms and parameters significantly influence the

process’s efficiency and the product’s quality. For example, the feed rate represents

the roller’s axial speed, and its unit is mm/s. Revolution speed controls the rotation

speed of the mandrel, and its unit is rpm. Feed ratio, which has different definitions, is

defined in this study as the ratio of revolution speed to feed rate. Moreover, force com-

ponents such as circumferential, axial, and radial forces represent three perpendicular

components of roller forces. While formability (spinnability) defines the maximum

thickness ratio that can be reduced, the wall thickness of the part is decreased by a

certain percentage, called the thickness reduction ratio. Thickness reduction (TR) is

formulated as

TR =
ti − tf

ti
× 100. (4.1)

where ti and tf refer to the initial and final thickness of the part, respectively.

Figure 4.1 shows that the rollers have a specific radius and two angular values: at-

tack and exit angles. The rollers are modeled around the mandrel with a 120-degree

spacing between them. To achieve the desired reduction ratio, the positions of the

rollers in the coordinate system are determined by taking into account the mandrel
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diameter, roller diameters, and the formula provided above. The offsets of the rollers

define the staggered roller configuration. While these offsets shown in Figure 4.2 are

defined as axial and radial, the term stagger offset is often used for axial offset. As

illustrated in Figure 4.2, axial offset refers to the axial distance between the rollers.

While some trials utilize a zero axial offset, working with axial offsets of 5 mm or 7

mm in REPKON is common. The crucial point is that when the axial offset is zero,

all rollers begin forming the preform simultaneously. If a specific axial offset exists,

the rollers form the preform sequentially. On the other hand, radial offset refers to the

percentage difference in the reduction ratios of the rollers relative to each other. For

example, when the radial offset is zero, all rollers have the same reduction ratio and

apply equal force to the workpiece. In cases where the radial offset differs from zero,

the reduction ratios applied by the rollers vary. For instance, in a scenario using three

rollers to achieve a 50% reduction ratio in three steps, the first roller reduces by 30%,

the second by 40%, and the final roller by 50%, thereby gradually thinning the pre-

form with a specific radial offset. The term radial offset describes these differences

in the reduction ratio percentages among the rollers.

120
ᵒ

4.12 mm

𝛼𝛽

𝑥

𝑦

𝑧

𝑦

Figure 4.1: Geometry of the rollers. Roller attack angle α = 20 deg and exit angle

β = 6deg.
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Figure 4.2: Schematic of the roller axial and radial offsets.

4.1 Flow Forming Trials

This section will discuss the part geometries and the experimental setup used in flow

forming trials. The trials are conducted on cylindrical tubes made of Inconel 718

alloy using a 3-roller Repkon flow forming machine. The three rollers are placed

evenly, with 120° between them, and there is no axial and radial stagger. The detailed

geometries of the preform and the rollers are shown in Figures 4.1 and 4.2. The tube-

shaped preform has an inner diameter of 40 mm and a wall thickness of 4.12 mm.

The entry angle of the rollers is 20 degrees, while the exit angle is 6 degrees.

In the experimental work, axial and radial offsets are set to zero; thus, all rollers

contact the preform simultaneously at the start of the process and apply the same

reduction ratio. The preform is clamped at one end and pushed through the rollers

with a constant feed rate of 0.833 mm/s. The mandrel rotates at a speed of 125 RPM.

A lubricant is used on the outer surface of the preform during the process to reduce

friction and aid cooling. The preform is initially at room temperature. However, it is

observed that during the process, the temperature of the part increased, causing the

outer surface to redden due to the temperature rise.
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(a) (b)

Figure 4.3: Experimental flow forming results with 37.5% and 70% thickness reduc-

tion ratios.

Figure 4.4: The flow forming trial in the 50% thickness reduction ratio, and zoom

view of radial cracks.

Trials are conducted at 3 different reduction ratios: 37.5%, 50% and 70% to observe

their effects on material flow and defect formation. These trials demonstrate that the
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forming process can be completed at 37.5% and 50% TR ratios, but complete fracture

of the part occurs at a 70% reduction ratio. In the sample with a 50% TR ratio, cracks

are observed on the outer surface, as shown in Figure 4.4. Forming distinctly in

the radial direction throughout the formed portion, while the inner surface remained

defect-free.

4.2 Finite Element (FE) Modelling

The damage occurring during the trials is examined using finite element (FE) model-

ing using the dynamic explicit solver in Abaqus, applying the calibrated and validated

damage criteria in Chapter 3. The FE model of the flow forming process is demon-

strated in Figure 4.5. This model comprises a preform, a mandrel and three rollers. In

actual experiments, the mandrel rotates at a constant rotational speed and the rollers

move axially at a constant feed rate. In FE modeling, additional kinematic constraints

are required to move and rotate the deformable body, significantly increasing com-

putational time. All movements are applied to the rollers while keeping the mandrel

stationary to enhance efficiency. Consequently, in the FE model, the rollers possess

radial (revolution speed) and axial (feed rate) speeds. While the part flows by the

rollers moving this way, the preform moves radially along with the mandrel in the

actual process. The preform and mandrel are also constrained at endpoints on the

back surface in all directions to prevent rigid body motion. The back surfaces of the

mandrel and preform, as illustrated in Figure 4.6, are positioned opposite the flow

direction and on the side of the movement direction rollers.

The mandrel and rollers are modeled as rigid bodies, while the preform tube is mod-

eled as deformable. Positioning the rollers according to the mandrel controls the

reduction ratio and stagger offset. Rollers are placed around the mandrel with 120

degrees between them and a specific axial and radial offset. There is no offset value

in experimental trials, but offsets at various values are studied to examine the effect

of the stagger offset parameter.

There is surface-to-surface contact between the mandrel-preform and the preform-

roller. The model has tangential and normal contact features, with a friction coeffi-
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Roller

Mandrel

Preform

Figure 4.5: The finite element model of flow forming process.

End points of 
the preform 
and mandrel

Radial direction

Axial 
direction

Figure 4.6: Boundary conditions of flow forming process.

cient of 0.12 for the contact between the mandrel and the preform and 0.08 for the

contact between the rollers and the preform. Since no experimental friction values

are available, these values are selected based on an average estimation. A mesh con-

vergence study is conducted in the various configurations. Details will be mentioned

in the next section.

Two different models are created to study the effect of temperature in the FE sim-

ulations. The first model, labeled as model 1 in the following figures, does not in-

clude any temperature effects in the plasticity or damage model. Model 2 is a fully

displacement-temperature coupled model that includes heating up due to plastic de-
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formation and friction. Cooling is simulated with a constant heat constant applied

over the outer surface of the preform with a temperature of 293 K and film coeffi-

cient of 5.5. Heat conduction inside and between the preform, the mandrel, and the

rollers are also modeled. The hardening relation and JC, MMC damage model have

temperature-dependent parts while single-parameter criteria do not in model 2. How-

ever, since temperature dependency exists in the hardening relation, the temperature

effect and change can be indirectly observed in single-parameter models.

4.2.1 Mesh Study

While performing the mesh study, the preform tube is meshed using hexagonal ele-

ments with reduced integration (C3D8R and C3D8RT), and an improved hourglass

control is employed to prevent mesh distortion. Different meshes are tested to balance

computational efficiency and accuracy of results. The model’s mesh size sensitivity

is analyzed by comparing the predicted results with experimental data. The optimum

mesh density is determined based on the convergence of key parameters (e.g., strain

distribution and damage localization).

During the process, the elements shrink in thickness and lengthen in the axial direc-

tion. For this reason, working with a uniform mesh can cause significant dispropor-

tions in element sizes as the process progresses, potentially affecting the FE results.

Therefore, it is essential to investigate different mesh configurations to determine the

most efficient and accurate approach. Three different mesh configurations are initially

tested to evaluate their impact on calculation time and result accuracy. Elements with

three different configurations are studied, as shown in Figure 4.7, to observe the effect

of the ratio. The first is the uniform element with all sides equal, the second is the

non-uniform element with a certain ratio for the axial side, and the third is the non-

uniform element with specific ratios for both axial and radial sides. The analyses use

a feed rate of 2 mm/s and a revolution speed of 300 rpm, with mass scaling applied

as a time increment of 5e-6.

As shown in Figure 4.7, the first configuration uses a uniform mesh with an element

size of 0.587 mm. The analyses are conducted on a formed length of 26 mm, and

at the end of this forming process, the highest von Mises stress (VM) and equivalent
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VM=1667 MPa
PEEQ= 6.037
#Ele= 128.226
CPU Time= 16h 53m

VM=1633 MPa
PEEQ= 7.560
#Ele= 180.600
CPU Time= 23h 17m

VM=1633 MPa
PEEQ= 7.961
#Ele= 257.600
CPU Time= 33h 38m

(a) (b) (c)

Figure 4.7: Different configurations of mesh: (a) Uniform mesh, (b) Non-uniform

mesh refined in the axial direction, (c) Non-uniform mesh refined in both the axial

and radial directions.

plastic strain (PEEQ) values in the preform are compared. This configuration results

in 128,226 elements, a VM of 1667 MPa, and a PEEQ of 6.037. The computational

time for this configuration is 16 hours and 53 minutes. The second configuration

uses a finer mesh with an element size of 0.412 mm in the axial direction, resulting

in 180,600 elements. This configuration produces a VM of 1633 MPa and a PEEQ

of 7,560 with a computational time of 23 hours 17 minutes. The third configuration

also uses an element size of 0.412 mm but a different mesh size in radial and axial

directions, resulting in 257,600 elements. This configuration achieves a VM of 1633

MPa and a PEEQ of 7.961. The computational time for this setup is 33 hours 38

minutes.

Based on these initial experiments, reducing the element size increased the accuracy

of the results, as evidenced by the closer alignment of VM and PEEQ values. How-

ever, this also significantly increased the computational time. Therefore, a balance

between mesh density and computational efficiency is sought to optimize the mesh

configuration for flow-forming simulations.

The equivalent plastic strain (PEEQ) distributions for each configuration are shown

in Figure 4.8. It can be observed that the more refined meshes in configurations 2 and

3 have a higher strain distribution than configuration 1. However, a very high PEEQ

value is not preferred as it can lead to distortions and significantly alter the geome-
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(a) (c)(b)

Figure 4.8: The equivalent plastic strain (PEEQ) distributions are shown for the three

mesh configuration: (a) a uniform mesh, (b) a non-uniform mesh refined axially, and

(c) a non-uniform mesh refined both axially and radially.

try of the formed material. In addition to PEEQ, damage distributions according to

Ayada and KH criteria are shown in Figure 4.9. Finer mesh configurations again show

more detailed and localized damage patterns. Significantly, the damage distributions

for configuration 2 exhibit a more uniform distribution than the other configurations.

Based on these results, Configuration 2 is the optimal balance between computational

efficiency and result accuracy. It provides sufficiently detailed strain and damage

distributions without excessive computational time.

It has been observed that using a specific ratio for one edge instead of a uniform

mesh significantly affects the analysis. Therefore, to decide what the value of this

ratio should be, the axial edge is analyzed with values at different ratios. The ratio

used refers to the axial edge relative to the radial edge. In the analyses, the radial

edge is kept constant, while the dimensions of the axial edge are varied. Based on

different ratios of 1, 0.9, 0.8, 0.7, and 0.6, the equivalent plastic strain (PEEQ) distri-

bution shows significant differences in Figure 4.10 at the target forming distance of 26

mm. When the ratio is 1, the PEEQ distribution is more homogeneous but has lower

localized strain values. As this ratio increases, the PEEQ distribution shows more

localized strain concentrations. However, excessive can sometimes lead to unrealistic

deformation estimates and potential numerical instabilities.

The damage distributions for the Ayada and KH criteria across different element size

ratios are illustrated in Figure 4.11. Damage localization becomes more evident for

both damage criteria as the element ratio decreases from 0.8 to 0.6. The Ayada crite-
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(a) (c)(b)

AYADA

(a) (c)(b)

KH

Figure 4.9: Damage distributions for Ayada and KH criteria across the three mesh

configuration: (a) uniform mesh, (b) non-uniform mesh refined axially, and (c) non-

uniform mesh refined both axially and radially.

(a) (c)(b)

(e)(d)

Figure 4.10: Equivalent plastic strain (PEEQ) distribution for various element size

ratios: (a) 1, (b) 0.9, (c) 0.8, (d) 0.7, and (e) 0.6.
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rion (top row) consistently increases localized damage areas with finer meshes, high-

lighting more detailed damage regions. Similarly, the KH criterion (bottom row)

shows a similar trend, capturing higher damage densities with finer meshes. The

maximum damage values at 0.7 and 0.8 are pretty close, but the damage distribution

at 0.7 is less localized than at 0.8. These observations suggest that reducing the ele-

ment ratio increases the ability to capture localized damage events accurately but also

increases computational costs. From these findings, it is clear that the ratio of 0.7

provides a good balance between capturing localized deformations and maintaining

numerical stability without excessively increasing computational time.

(a) (c)(b)

AYADA

(a) (c)(b)

KH

Figure 4.11: Damage distributions for different element ratios using Ayada and KH

criteria: (a) 0.8, (b) 0.7, and (c) 0.6.

After selecting Configuration 2 (ratio = 0.7) as the most effective mesh configuration,

a detailed study is carried out to determine the number of elements in the thickness of

the preform. This study aimed to find a balance between computational efficiency and

the accuracy of results. The number of members tested through the thickness is 4, 5,

6, 7, 8 and 9. Equivalent plastic strain (PEEQ) distributions for each configuration are

shown in Figure 4.12. The results indicate that as the number of thickness elements

increases, the PEEQ distribution decreases and is localized. The cases with 6, 7, and

8 elements especially show that it is a suitable candidate when looking at the PEEQ
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values and distributions.

(a) (c)(b)

(d) (f)(e)

Figure 4.12: Equivalent plastic strain (PEEQ) distributions for Configuration 2 with

varying numbers of elements through the thickness: (a) 4 elements, (b) 5 elements,

(c) 6 elements, (d) 7 elements, (e) 8 elements, (f) 9 elements.

The damage distributions according to the Ayada and KH criteria are also examined

using these configurations. The damage distributions for these criteria with varying

numbers of elements through the thickness are shown in Figure 4.13. It can be ob-

served that the configurations with 6 and 7 elements provide a detailed and accurate

representation of the damage. However, considering the computational cost of finite

element simulations, using six elements through the thickness is considered the ap-

propriate choice, providing a good balance between computational time and accuracy.

These results show that for both damage criteria, the ratio 0.7 and the 6-element con-

figuration across the thickness provide the optimal balance regarding computational

time and accuracy. The mesh density in the right part of the model has been reduced

to reduce calculation time and has a total of 154,800 elements; the model, which has

six elements in the thickness direction, has elements sized of 0.589 mm in the radial

direction and 0.412 mm in the axial direction, as shown in Figure 4.14.

Unlike in tensile tests, the kinetic energy exceeds the internal energy at the beginning
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(a) (c)(b)

AYADA

(a) (c)(b)

KH

Figure 4.13: Damage distributions for Ayada and KH criteria with varying numbers

of elements through the thickness: (a) 6 elements, (b) 7 elements, (c) 8 elements.

App. Ele. Size = 0.412 App. Ele. Size = 10.25

Ele. N
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. = 6

App. Ele. Size = 0.589

Figure 4.14: Meshing details of the flow forming model.

of the analysis for a brief period (see Figure 4.15). However, after this initial phase,

the internal energy remains higher than the kinetic energy until the end of the analysis.

This situation occurs only during a small fraction (0.2 seconds) of the 15-second
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analysis, which is considered acceptable and indicates no significant dynamic effects.
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Figure 4.15: Energy-time plot showing the variation of internal and kinetic energy

during the simulation.

4.2.2 Mass Scaling Study

The mass scaling technique is used to reduce the computational time while main-

taining the accuracy of the simulations. Mass scaling is a method used in dynamic

explicit simulations to artificially increase the mass of elements to allow more signif-

icant time steps and thus reduce computational time. However, it is crucial to ensure

that the added mass does not significantly alter the physical response of the system.

The impact of different mass scaling factors on the simulation results is examined

to ensure that the dynamic effects do not change significantly. This study focused

on evaluating the balance between computational efficiency and model suitability in

capturing the failure prediction of the flow forming process.

This study examined five different mass scaling with 1e-6, 2e-6, 3e-6, 4e-6, and 5e-6

time increment values to observe their effect on the results. Equivalent plastic strain

(PEEQ) distributions for various mass scaling time increments are shown in Figure

4.16. Damage distributions with different time increments according to the Ayada

and KH criteria are shown in Figure 4.17. From the analysis, it can be seen that
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as time increment increases, PEEQ values and damage distributions change slightly.

Specifically, higher time increments tend to increase PEEQ and damage values. These

results are indicative of more localized plastic deformation and damage accumulation.

(a) (c)(b)

(e)(d)

Figure 4.16: PEEQ distributions for different mass scaling time increments: (a) 1e-6,

(b) 2e-6, (c) 3e-6, (d) 4e-6, (e) 5e-6.

DMASS, calculated by Abaqus/CAE, indicates the percentage change in the total

mass of the model as a result of mass scaling. As shown in Figure 4.18, the change of

DMASS value over time varies considerably depending on the time increment value.

As the time increment value increases, the material’s artificially changing density

value increases, resulting in more considerable mass changes.

Time increment changes over the simulation interval for different mass scaling val-

ues are shown in Figure 4.19. It can be seen that with increasing time increments,

the stability of the time increment decreases, causing fluctuations that may affect the

accuracy of the simulation results. In other words, at high time increment values, the

time increment value does not remain constant throughout the process and tends to

decrease to 3e-6. When comparing the computational times of the analyses, there

is a noticeable decrease in CPU time from 1e-6 to 5e-6. The average computational

times are approximately 137 hours, 69 hours, 46 hours, 35 hours, and 21 hours, re-
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(a) (c)(b)

AYADA

(a) (c)(b)

KH

Figure 4.17: Damage distributions for different mass scaling time increments for

Ayada and KH criteria: (a) 2e-6, (b) 3e-6, (c) 4e-6.
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Figure 4.18: The effect of different time increment values on the DMASS value over

time.

spectively. Consequently, while mass scaling can significantly reduce computation

time, choosing an appropriate time increment is crucial to maintain the accuracy and

stability of FE simulation results. This study balances computational efficiency and
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result accuracy using a time increment 3e-6.

0 100 200 300 400

Interval

0

1

2

3

4

5

T
im

e
 I

n
c
re

m
e

n
t

10
-6

(a)

0 100 200 300 400

Interval

0

1

2

3

4

5

T
im

e
 I

n
c
re

m
e

n
t

10
-6

(b)

0 100 200 300 400

Interval

0

1

2

3

4

5

T
im

e
 I

n
c
re

m
e

n
t

10
-6

(c)

0 100 200 300 400

Interval

0

1

2

3

4

5

T
im

e
 I

n
c
re

m
e

n
t

10
-6

(d)

0 100 200 300 400

Interval

0

1

2

3

4

5

T
im

e
 I

n
c
re

m
e

n
t

10
-6

(e)

Figure 4.19: Time increment variations over the simulation interval for different mass

scaling: (a) 1e-6, (b) 2e-6, (c) 3e-6, (d) 4e-6, and (e) 5e-6.
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CHAPTER 5

RESULTS AND DISCUSSION

This chapter examines the effects of process parameters, hardening rules, and yield

functions on the flow forming (FF) of IN718 and Al2024-O. The calibrated dam-

age models for IN718 are first assessed for their capability to predict fracture during

the flow forming process. Subsequently, the effects of process parameters such as

feed rate, rotational speed, thickness reduction ratio, and roller offsets on damage

and plastic strain in flow forming are analyzed for this material. Different hardening

rules, including Voce, Swift, and modulated hardening, are evaluated for accuracy in

predicting material response. For Al2024-O, the study compares the Bai-Wierzbicki

yield function with the von Mises yield function to assess flow forming performance.

5.1 Comparison of Experiments and FE Results of Flow Forming

This section compares the forming limit predictions and failure location estimations

of single and multiple parameter damage models for IN718 at three different reduc-

tion ratios. These comparisons have been conducted for a specific target forming

distance and are also compared to how long the models can form.

5.1.1 Comparison of Single Parameter Damage Models

In this part, ten different single-parameter models are compared. These models in-

clude the Ayada, Ayada-m, Brozzo, Ko-Huh (KH), Le-Roy (LR), McClintock (MC),

OH, Rice-Tracey (RT), Cockroft-Latham (CL), and Freudenthal criteria. Figure 5.1

and Figure 5.2 show the results of flow forming FE simulations with single-parameter
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damage models. Figure 5.1 shows the damage distribution in the preform after flow

forming at a 37.5% thickness reduction rate predicted by various damage models.

These results show that if the damage prediction of models at the thickness reduction

ratio exceeds one, these models cannot accurately predict the forming limits. Ayada,

Ayada-m, KH, and MC models correctly predict that the damage values remain be-

low one, and successful forming is achieved at this reduction ratio. Ayada, Ayada-m,

KH, and MC models do not predict failure with maximum damage values of approx-

imately 0.85, 0.879, 0.834, and 0.95, respectively. In contrast, the Brozzo, LR, OH,

RT, CL and Freudenthal models show damage values exceeding 1. While cracks oc-

cur on the inner surface in the Brozzo, OH and CL models; LR, RT and Freudenthal

also predict high damage accumulation throughout the entire part. Contrary to the

experimental results, Brozzo, OH, and CL models predict high damage accumulation

in certain areas on the inner surface, with damage values of 1.213, 1.070, and 1.113,

respectively.

CL

Ayada Ayada-m KH LR

MC OH RT Freudenthal

Brozzo

Damage

Figure 5.1: Numerical comparison of flow forming results of single parameter dam-

age models with 37.5% thickness reduction .
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Figure 5.2 shows the damage distribution of flow forming at 50% thickness reduction

for the calibrated models. Damage distributions are presented for Ayada, Ayada-

m, Brozzo, KH, MC, OH and CL models. However, this figure does not include

models that cannot predict correctly at lower reduction ratios, such as LR, RT and

Freudenthal. Although Brozzo, OH and CL models predict failure in the inner surface

at a low reduction ratio, they are shown in this figure to see their performance at 50%

reduction ratio where it should be observed that most of the part remains below the

critical damage limit. However, except for Ayada, all other models predicted damage

on both the outside and inside surfaces. Along with the Ayada model, the KH model

also demonstrated good performance; however, in the KH model, the damage value

slightly exceeded the critical value in a small area on the inner surface. Although the

Ayada-m and MC models initially indicate damage initiation on the outside during

the process, the damage subsequently exceeds the critical value on both the outside

and inside surfaces.

CL

Ayada Ayada-m KH

MC OH

Brozzo

Damage

Figure 5.2: Numerical comparison of flow forming results of single parameter dam-

age models with 50% thickness reduction.
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In the Ayada-m and MC models, damage accumulation reaches high values of 2.233

and 2.395, respectively. On the other hand, the damage prediction of the Ayada model

is consistent with experimental observations, showing damage on the outer surface of

the formed part. While Ayada ve KH models predict a damage value of around 1.3

on the outer surface, their distributions on the inner surface differ. Ayada and KH

models estimate damage values of 0.8 and 1.13 on the inner surface, respectively.

Nevertheless, the Ayada model exhibits a more uniform and conservative damage

distribution on the inner surface than the KH model. At 70% TR, fracture occurred at

the start of the forming process, as shown in Figure 5.3. Simulation with the Ayada

model shows a vast region with damage surpassing critical value inside and outside

the specimen. Also, the small formed region has taken an oval shape with a significant

increase in out-of-roundness.

AYADA

70%

Figure 5.3: Experimental and numerical comparison of flow forming results with 70%

thickness reduction.

In order to examine the damage evolution, equivalent plastic strain and damage pa-

rameter results are taken from 4 different elements shown in Figure 5.4. Elements 1

and 3 are on the outer surface (in contact with rollers), while elements 2 and 4 are on

the inner surface (in contact with mandrel). Element positions are selected based on

critical locations. Elements 1 and 2 are the outer and inner elements along the path

where the damage value first reaches the critical value. Elements 3 and 4 are the outer

and inner surface elements where the equivalent plastic strain is at its maximum and

where damage models typically predict failure on the inner surface.

102



Figure 5.4: The critical elements are shown with the red box for two different paths.

Figure 5.5 shows the relationship between damage (D) and equivalent plastic strain

(PEEQ) for single parameter damage models taken from inner and outer elements in

two different places. The comparison includes CL, Ayada, Ayada-m, Brozzo, KH,

MC and OH damage models. Other models with significantly high damage accumu-

lation are not included in the graph.

All elements exhibit a gradual increase in damage with increasing plastic strain. The

outer elements show a higher damage accumulation than the inner elements for all

models. In elements 1 and 2, especially in OH and MC models, the damage accu-

mulation is very high, while Ayada and KH models have a relatively lower damage

accumulation trend. This trend is more clearly seen in the inner element. Elements 3

and 4 also show a similar trend of increasing damage with plastic strain. The damage

accumulation rates of the models in these elements are higher than those in elements

1 and 2, especially for the inner element. This is because the equivalent plastic strain

value in elements 3 and 4 is higher than in the other two elements at the same solution

time.

5.1.2 Comparison of Multiple Parameter Damage Models

In this part, a comparison has been made for seven different multiple-parameter

models. Flow forming analyses have been conducted for the Oyane-Sato, Johnson-

Cook, Bai-Wierzbicki (BW), modified Mohr-Coulomb (MMC), DF2013, DF2014,

and DF2015 models. Results are presented for reduction ratios of 37.5% and 50%.

The results for 70% are not shown here, as none of the models in this section could

make successful predictions at the 50% reduction ratio. Figures 5.6 and 5.7 provide
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Figure 5.5: Damage (D) versus equivalent plastic strain (PEEQ) curves for single

parameter damage models.

a numerical comparison of flow forming results using multi-parameter damage mod-

els at different thickness reductions. Figure 5.6 illustrates the damage distribution

for 37.5% thickness reduction in various models: Oyane-Sato, JC (Johnson-Cook),

BW (Bai-Wierzbicki), MMC, DF2013, DF2014 and DF2015. While the Oyane-Sato

model shows moderate damage primarily near the inner surface and middle sections

with a value of 0.833, the JC model predicts localized damage accumulation near the

inner surface with a value of 1.054. The BW and MMC models predict severe dam-

age, indicating almost complete failure of the tube. While the damage accumulation

in the BW model is significantly higher than the critical value, the MMC model shows

damage accumulation around 1.67. Models DF2013, DF2014, and DF2015 display

varying degrees of damage; DF2014 and DF2015 show slightly higher damage accu-
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mulation than DF2013 but still predict more damage than the MMC model.

Oyane-Sato JC MMC

DF2013

BW

Damage

DF2014 DF2015

Figure 5.6: Numerical comparison of flow forming results of multiple parameters

damage models with 37.5% thickness reduction .

Oyane-Sato JC MMC
Damage

Figure 5.7: Numerical comparison of flow forming results of multiple parameters

damage models with 50% thickness reduction.
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Figure 5.7 shows the damage distribution for 50% thickness reduction comparing

Oyane-Sato, JC and MMC models. Oyane-Sato model again shows moderate dam-

age to the inner surface and near the middle sections. JC model shows more signif-

icant damage than the 37.5% reduction case, while the MMC model indicates very

high damage, similar to the previous reduction case, predicting extensive damage

and possible failure. These comparisons illustrate that different damage models pre-

dict varying degrees of damage accumulation during flow forming. BW and MMC

models show higher levels of damage, whereas the Oyane-Sato model predicts more

moderate levels of damage and provides an appropriate damage model based on the

specific forming process requirements and conditions.

Figure 5.8 illustrates the relationship between damage (D) and equivalent plastic

strain (PEEQ) for multi-parameter damage models taken from the inner and outer ele-

ments in two different places (see Figure 5.4). The comparison includes Oyane-Sato,

JC, MMC and DF2013 damage models. Since the damage accumulation in the other

models is very high, it is not included in the graph. As seen in this figure, the damage

accumulation rates of the damage models are quite different. In the multi-parameter

models, only Oyane-Sato could reach the experimental results. When comparing the

damage evolution in single-parameter models to that in multiple-parameter models,

the multiple-parameter damage models show higher damage accumulation. This can

be attributed to the significant increases in equivalent plastic strain and the fluctua-

tions in stress triaxiality and Lode parameter.

5.1.3 Comparison of Forming Distance

Figure 5.9 compares the forming distances achieved by different damage models at

a 37.5% thickness reduction ratio. The figure highlights the moments when each

model reaches its critical damage value, underlining the varying performance across

different modeling approaches. The target forming distance is 26 mm, but none of

the models reach this target except Ayada, Ayada-m, Oyane-Sato, MC and KH. The

Johnson-Cook (JC) and OH models achieve the highest forming distances of 20 mm

and 21 mm, respectively, coming closest to the target. The Brozzo and CL models

also perform reasonably well, forming 15 mm and 18 mm distances. Interestingly,
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Figure 5.8: Damage (D) versus equivalent plastic strain (PEEQ) curves for multiple

parameters damage models.

models like MMC and DF2013, which performed well in tensile tests, show poor

performance here, each achieving only 8 mm. The Freudenthal and LR models show

the worst performance, reaching only 0.5 mm and 1 mm, respectively. The models

in the top row show a relatively better ability to approach the target forming length,

while the others fall significantly short.

Figure 5.10 presents the forming distances achieved by different damage models at

a 50% thickness reduction ratio. Here, the damage distributions are depicted when

the first critical value is reached and when the initial fracture is observed on the inner

surface. The five models presented here achieved the target forming distance at a

37.5% reduction ratio. The Ayada model stands out by achieving the target forming
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Figure 5.9: Damage distribution of flow forming results of damage models with

37.5% thickness reduction for forming distance comparison.

length of 26 mm, with no significant damage accumulation on the inner surface. This

result indicates that the Ayada model effectively managed the damage throughout

the process. The KH and Oyane-Sato models performed moderately well, achieving

forming distances of 16 mm and 17 mm, respectively. However, they did not reach

the target length, and some damage accumulation is noted on the inner surfaces. In

contrast, the Ayada-m and MC models performed poorly, forming distances of only

7 mm and 6 mm, respectively. These models quickly concentrated damage on the

inner surface, leading to early failure. Despite reaching the first critical value nearly

simultaneously as the other models, their ability to manage the damage and achieve

longer forming distances is significantly different.

Single-parameter models have proven more effective in predicting failure locations

among all the models compared. Although multiple-parameter models performed

well in tensile tests, they are less successful in predicting failure during the flow form-

ing process. The MMC and similar failure criteria, calibrated with tensile experiments

using different geometries, have been shown to overpredict damage accumulation sig-

nificantly in shear forming [86] and single point incremental forming [122, 123] as

demonstrated here for flow forming as well. This issue has been discussed as related

to the change in loading history during incremental forming processes, which is rel-

108



(a) The first moment when the damage reaches a critical value.

(b) The moment when the damage value reaches the critical value on the inner surface.

Figure 5.10: Damage distribution of flow forming results of damage models with

50% thickness reduction for forming distance comparison.

atively constant in tensile experiments. Non-linear damage accumulation rules (e.g.

[124, 125]) have been proposed to solve this issue; however, calibrating the damage

accumulation rule requires additional experiments with non-proportional loading his-

tories. Furthermore, the calibration procedure is not as straightforward as done for the

linear damage accumulation rule, and an additional parameter is required to measure

the non-proportionality of the loading.

5.2 Process Parameter Effect on Flow Forming for IN718

In this section, the results from the flow forming tests and FE simulations of IN718

are presented and discussed in detail. FE analysis uses the same process parameters

in the flow forming experiments section. The results obtained in this section have

been compared with the experimental findings shown in Figures 4.3 and 4.4. It is
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observed that the forming process can be completed at 37.5 and 50% TR ratio while

complete fracture of the part occurs at 70% reduction. Cracks are observed at the

outer surface of the specimen at 50% TR, and they occur all over the formed portion,

and they occur distinctly in the radial direction while the inner surface is defect-free.

5.2.1 Effect of Increasing Feed Rate in Fixed Feed Ratio

Since a parametric study is aimed, solution time is critical, and in forming studies,

process speeds are often adjusted to shorten solution times. Figure 5.12 shows the

effect of different feed rates on the damage distribution at a constant revolution speed-

feed rate ratio for the Ayada, KH and Oyane-Sato criteria. The data are extracted

from the element integration points of two paths through the thickness where 0 mm

point refers to the outer surface, and 4.12 mm is the inner surface in contact with the

mandrel (see Figure 5.11). These two paths are specifically selected. The first path

is determined as the path where the damage value reaches the first critical value. The

second path is defined as the path where the equivalent plastic strain is maximum and

where damage models usually predict fracture on the inner surface.

Material flow 
direction

𝑙 = 80 𝑚𝑚
𝑡 = 4.12 𝑚𝑚

Roller movement 
directionCritical elements:

Path 1
Critical elements:

Path 2

Figure 5.11: The location of the element outputs are shown with the red box.

Changing the feed rate while keeping the rate constant does not significantly affect

the damage distribution. Data from the Ayada, KH, and Oyane-Sato models show

that damage accumulation decreases with increasing feed rate due to the increasing

plastic strain. When the critical analyses at 1 mm/s and 2 mm/s speeds are compared,

similar damage accumulation is observed on the inner surface at experimental speeds.

In contrast, a slightly lower damage accumulation is noted on the outer surface at 2

mm/s speed.
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Figure 5.12: The effect of different feed rates in same ratio on damage distribution

for Ayada (top), KH (middle) and Oyane-Sato (bottom) criteria.

There are changes in PEEQ, temperature, and damage location at different feed rates,

aside from von Mises stress in the overall distribution in the tube. First, in this com-

parison, the von Mises stress values are almost the same except when the feed rate is
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4 mm/s. For PEEQ, values significantly increase as the feed rate increases. The high

plastic strain has a negative effect on forming, so working between maximum val-

ues of 6-7 is vital for both damage values and formability. Therefore, 3 and 4 mm/s

feed rates are unsuitable for parametric studies due to the enormous plastic strain.

Compared to the other three feed rates, the feed rate of 2 mm/s is very advantageous

regarding solution time because the solution time is 3 times less than at experimental

speeds. Analyses take an average of 9 days at 0.833 feed rate, 6 days at 1 mm/s, and

3 days at 2 mm/s.
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Figure 5.13: Comparison of damage (D) with equivalent plastic strain (PEEQ) at

varying feed rates.

The graphs shown in Figure 5.13 demonstrate the damage evolution in the inner ele-

ment of Path 1 and Path 2 obtained at 0.833 mm/s and 2 mm/s feed rates. The damage

accumulation and equivalent plastic strain values in Path 2 are quite different between
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the two feed rates. However, when Path 1 is examined, it is seen that the two feed

rates have very close damage evolution. Since working at experimental speeds triples

the solution time and working at experimental speeds would be inefficient for doing

parametric work, the comparisons at the beginning of this section are made with the

results obtained at experimental speeds. In contrast, a feed rate of 2 mm/s and a rota-

tion speed of 300 rpm are used for the parametric work. In addition, all comparisons

are made with the results obtained from Path 1 to ensure consistency.

Finally, there are differences between feed rates in location estimates of damage accu-

mulation. While only the Ayada model matched the experimental results for damage

location prediction in the general distribution, the KH and Oyane-Sato models pre-

dicted regional cracks on the inner surface at the experimental speeds. Since the

damage values predicted by these two models are very close to the critical value, they

are promising in terms of damage prediction in this process.

5.2.2 Effect of Temperature Dependency

The effect of including temperature in FE analysis is depicted in Figure 5.14. In

model 1, no temperature dependency is considered in FE analysis, while in model

2, simulation is conducted using a fully temperature-displacement coupled approach

with the CL model, as explained before. Data are extracted from element integration

points in Path 1 shown in Figure 5.11. It can be observed that both models predict

higher damage accumulation on the outer surface of the formed part. The results also

show increased accumulated plastic strain throughout the thickness due to thermal

softening in the material. The damage increases slightly at the outer and inner sur-

faces while remaining unchanged inside the part. Modeling of thermal effect could be

essential to increase prediction accuracy with the simulation of flow forming utilizing

the FE method.

5.2.3 Effect of Feed Ratio

Figure 5.15 depicts the variation of damage with changing feed ratio, the ratio of rev-

olution speed to feed rate, at the inner and outer surfaces of the specimen predicted
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Figure 5.14: Comparison of model 1 and 2. Distribution of (a) damage and (b) plastic

strain through the thickness of the specimen.

by the Ayada and KH models. This ratio governs the roller’s helical path around

the preform and is an important design parameter for flow forming or spinning pro-

cesses. A 150 [rpm/mm/s] feed ratio corresponds to the value of the experimental

work. The Ayada model shows that damage to the outer element generally increases

with higher rotational speeds and feed rates, peaking at around 225 rpm/mm/s. In

contrast, the inner element exhibits relatively stable damage levels with a slight de-

crease of around 150 rpm/mm/s. Similarly, the KH model shows increased damage to

the outer element with increasing rotational speeds and feed rates, peaking at around

225 rpm/mm/s. However, the internal element provides a more consistent level of

damage at different speeds and rates, showing a slight reduction at 150 rpm/mm/s.

The Ayada and KH models predict very similar behavior with varying ratios. Only

the KH model calculates a higher damage value on the inner surface than Ayada, but

the trend is the same.

The plastic strain distribution in the tube shown in Figure 5.16 emphasizes the im-

portance of the ratio. The results show that higher ratios (75 to 112.5 rpm/mm/s)

lead to a significant plastic strain accumulation; higher PEEQ values are concentrated

around the outer surface of the tube, which causes severe deformation and indicates

an increased risk of material failure. Conversely, as the ratio increases from 150 rp-

m/mm/s to 300 rpm/mm/s, the PEEQ distribution becomes more uniform, and the
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Figure 5.15: Change of damage predicted by the Ayada and KH models with respect

to revolution speed/feed rate at inner and outer elements.

maximum PEEQ values decrease significantly. This result shows that greater ratios

result in a more controlled deformation process with a better strain distribution and

less possibility of local failure. Therefore, it is crucial to optimize the turnover rate in

the flow forming process to improve material performance and structural integrity.

5.2.4 Effect of Feed Rate and Revolution Speed

The effect of feed rate and revolution speed on formability and temperature can fur-

ther be investigated from Figure 5.17. The temperature and damage distributions of

the Ayada model are shown in this figure. Simulations are performed at a constant

revolution speed but increasing the feed rate. It can be seen that the temperature of
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Figure 5.16: PEEQ distribution for different revolution speeds/feed rate (rpm/mm/s).

the part can surpass 1000◦K in FE simulations in each case, and the temperatures

are increased with increasing feed rate. As the feed rate increases, we observe a

decrease and increase in accumulated damage while the maximum damaged region

changes from the outer to the inner surface. On the other hand, increasing the revolu-

tion speed has a negligible effect on temperature distribution but results in increased

damage. The highly damaged region is more dispersed as well.

Figure 5.18 shows how the equivalent plastic strain (PEEQ) varies through the thick-

ness at a constant feed rate and revolution speed. Since uncoupled damage models

are used in this study, the equivalent plastic strain is the same across all models. The

graphs on the left show the effect of constant feed rate (2 mm/s, 3 mm/s, and 4 m/s) at

different revolution speeds (300 rpm, 450 rpm, and 600 rpm). The graphs on the right

show the effect of different feed rates (2 mm/s, 3 mm/s, and 4 mm/s) at a constant

revolution speed (300 rpm, 450 rpm and 600 rpm). The analyses evaluate the effect

of revolution rates and feed rates on the equivalent plastic strain, both at constant feed
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Figure 5.17: Contour plots of temperature (K) and total damage with increasing feed

rate (constant revolution speed) and increasing revolution speed (constant feed rate).

rate and constant revolution rate. Significant differences are observed between equiv-

alent plastic strain values from the outer surface to the inner surface. At constant feed

rate (left graphs), plastic strain values are generally highest at a revolution speed of

300 rpm. These values decrease slightly at 450 and 600 rpm revolution speeds, except

for the second element from the outer surface. As the feed rate increases, the change

in plastic strain values at different revolution speed values is less than the low feed
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Figure 5.18: The variation of equivalent plastic strain along the thickness of the pre-

form under fixed feed rate and fixed revolution speed.

rate value. In other words, as the feed rate increases, the plastic strain distribution

throughout the thickness becomes more uniform.

At constant revolution speed (right graphs), a significant increase in equivalent plastic

strain values is observed with increasing feed rate. In particular, the 4 mm/s feed
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rate has higher plastic strain values than the 2 mm/s and 3 mm/s speeds, except for

the second element from the outer surface. This shows that higher feed rates cause

more deformation of the material. In both cases, when examining the distribution

of equivalent plastic strain along the thickness, it is observed that the plastic strain

distribution is generally equal on the inner and outer surfaces. However, as it moves

from the outer to the inner surface, there is some fluctuation in the plastic strain

values. Notably, the second element from the outer surface often reaches the highest

value. These results show that both revolution speed and feed rate significantly impact

the equivalent plastic strain, and these parameters need to be optimized.

5.2.5 Effect of Thickness Reduction Ratio

Figure 5.19 shows how damage (D) and equivalent plastic strain (PEEQ) vary through-

thickness for different thickness reduction ratios using the Ayada model. The upper

graph shows the damage distribution throughout the thickness, and the lower graph

shows the equivalent plastic strain distribution. As seen in the upper graph, as the

reduction ratio increases, it is observed that the damage generally accumulates on the

inner and outer surfaces. At 60% thickness reduction, damage values are quite high,

up to 2.0, especially on the inner surface. As the reduction ratio decreases (60%, 50%,

40%, 30%, and 20%), the damage values decrease significantly and are more evenly

distributed. Especially at 10% and 20% thickness reduction ratios, damage values are

pretty low on the interior and exterior surfaces.

The lower graph shows how the equivalent plastic strain values vary through thick-

ness. At 60% thickness reduction, plastic strain values increase to 7.0, which remain

almost constant throughout the thickness. As the thickness reduction ratio decreases,

plastic strain values generally decrease. At 10% and 20% reduction ratios, plastic

strain values show a lower and more balanced distribution on the inner and outer sur-

faces. The 70% results are not included in these graphs because there are significant

increases in damage and plastic strain values along with the 60% reduction. These

results show that the thickness reduction rate significantly impacts both damage ac-

cumulation and plastic strain distribution. As can be understood from the obtained

results, it can be said that the formability limit for this material, with the experimental
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Figure 5.19: The variation of damage and equivalent plastic strain along the thickness

for different thickness reduction ratios.

process parameters, is slightly below a reduction ratio of 50%. Therefore, selecting

appropriate thickness reduction ratios is critical to achieve optimum forming perfor-

mance.

In Figure 5.20, the comparison between the Ayada and KH models reveals that both

models show similar trends in damage and plastic strain predictions for inner and

outer elements. As the reduction ratio increases, an increase in damage and PEEQ

values is observed in both models. Notably, the damage and plastic strain values on

the outer surface are higher than those on the inner surface. This result shows that the

stress accumulation on the outer surface is more significant, and the risk of fracture

is higher in these areas. In the Ayada model, the damage values on the internal and

external surfaces are at similar levels and show lower damage accumulation than in

the KH model. These data demonstrate that damage and plastic strain distributions at
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different reduction rates are critical for understanding the mechanical behavior of the

modeled material and the usability of Ayada and KH models in such analyses.
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Figure 5.20: Comparison of various reduction ratios with Ayada and KH models.

Distribution of damage and plastic strain in the inner and outer elements of the tube.

5.2.6 Effect of Radial and Axial Offset

The flow forming process is usually performed with axial and radial roller offsets or

a multi-pass forming approach to increase formability (e.g. [81]). Another paramet-

ric study examines the effect of radial and axial offset values on plastic strain and

damage. In this context, twelve additional FE analyses are performed with rollers

with 1 mm, 3 mm, 5 mm, and 7 mm axial offsets and three radial offsets reaching

50% thickness reduction in three steps. The distribution of damage and plastic strain
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through the thickness is shown in Figures 5.21 and 5.22. These simulations examine

the effect of axial and radial offsets of the roller on the formability predicted by the

Ayada model. Results for the KH and Oyane models are not included as their trends

were similar.
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Figure 5.21: The variation of damage along the thickness of the preform under axial

offsets and fixed radial offsets for the Ayada model.

Figure 5.21 shows the variation in damage distribution along the thickness of the
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preform when axial and radial offsets are kept constant according to the Ayada model.

In the graphs on the left, the effect of different radial offsets (5 (40-45-50%), 10 (30-

40-50%), and 15 (20-35-50%)) on damage for fixed axial offset values (3 mm, 5

mm, and 7 mm) is examined. In the graphs on the right, different axial offsets (1

mm, 3 mm, 5 mm, and 7 mm) are shown for fixed radial offset values (40-45-50%,

30-40-50%, 20-35-50%). Graphs for 1 mm axial offset were not provided because,

in this case, the part experiences high plastic strains, causing interruptions in the

contact between the material and the mandrel in certain areas. Therefore, a graphical

comparison would not be accurate.

At fixed axial offset values, it is observed that as the radial offset increases, the dam-

age accumulation along the thickness generally significantly decreases. Particularly

for the 15 (20-35-50%) radial offset value, the damage is reduced significantly on the

outer surface for all axial offset values. Regarding the change in the inner surface,

it can be said that a 10 (30-40-50%) radial offset predicts less damage than other ra-

dial offsets. The most notable result from the fixed axial offset findings is that the

case with a 5 mm axial offset is almost independent of the radial offset values and is

minimally affected.

As the axial offset increases, differences are observed in the damage values on the

inner and outer surfaces at fixed radial offset values. There is an apparent decrease

in damage accumulation with increasing radial offset. As the percentage difference

between each roller’s forming amount increases, a reduction in damage accumulation

and an increase in formability are observed. Except for the 5 (40-45-50%) case,

it can be said that 3 mm and 5 mm axial offsets predict the lowest damage value.

This indicates that axial offsets significantly affect damage accumulation and that

exceeding a specific offset value may cause the material to experience more damage.

It can be seen that starting with a smaller TR and increasing the TR by equal amounts

(20-35-50%) reduces overall accumulated damage. It is also not beneficial to apply

a major part of the reduction at the start and the remaining amount in smaller steps

(40-45-50%). These data highlight that axial and radial offsets significantly affect the

damage distribution throughout the thickness of the preform and that these parameters

need to be optimized. Determining optimum offset values can improve the material’s

performance and reduce the failure risk.
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Figure 5.22: The variation of equivalent plastic strain along the thickness of the pre-

form under axial offsets and fixed radial offsets.

Figure 5.22 shows the change of equivalent plastic strain along the thickness of the

preform when axial and radial offsets are kept constant according to the Ayada model.

In the graphs on the left, for fixed axial offset values (1 mm, 3 mm, 5 mm, and 7 mm),

different radial offsets (5 (40-45-50%), 10 (30-40-50%), and 15 ( 20-35-50%)) on the

equivalent plastic strain are studied. In the graphs on the right, different axial offsets
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(1 mm, 3 mm, 5 mm, and 7 mm) are shown for fixed radial offset values (40-45-50%,

30-40-50%, 20-35-50%).

As the radial offset increases, a significant decrease in equivalent plastic strain values

is observed at fixed axial offset values. Mainly, in 3 mm and 7 mm axial offsets,

the strain values obtained with a radial offset value of 5 (40-45-50%) are higher than

other radial offsets. This indicates that lower radial offsets lead to greater plastic

deformation in the material. At fixed radial offset values, decreases in equivalent

plastic strain values are observed as the axial offset increases. The equivalent plastic

strain at higher levels at 1 mm axial offset value is lower at 7 mm axial offset value.

This suggests that higher axial offsets can reduce material deformation but could also

affect damage accumulation.

Overall, both axial and radial offsets significantly affect the distribution of equivalent

plastic strain along the thickness of the preform. Determining the optimal offset val-

ues can enhance the efficiency of the forming process by controlling material plastic

deformation and minimizing unwanted deformations.

5.3 Hardening Rule Effect on Flow Forming for IN718

The plastic behavior of the material is modeled using experimental plastic true stress-

strain data. However, strain data obtained from experiments are limited and insuffi-

cient to model plasticity behavior in processes such as flow forming involving high

plastic strain. Uniaxial tensile tests are a commonly used test type in both literature

and industry, and material modeling is performed using the data obtained from these

tests. Through these tests, various hardening rules such as Power, Swift, Voce, and

Johnson-Cook (JC) are used to model plastic behavior beyond experimental strain

values. In addition, higher plastic strain values can be achieved through various tests.

In the tests conducted for DP600, while a plastic strain is around 0.2 in the uniaxial

tensile test, values of 0.9 can be reached with the in-plane torsion test, 0.72 with the

plane strain compression test, and 0.65 with the hydraulic bulge test, levels not attain-

able with uniaxial tensile tests [126]. However, the use of the mentioned hardening

rules remains necessary to model the plastic behavior in processes like metal forming,
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where high amounts of plastic strain are reached.
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Figure 5.23: Stress-strain and force-displacement curves for three different hardening

rules (Voce, Swift and modulated), using various parameter sets.
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In complex processes such as flow forming, plasticity can be modeled with these

rules, but the stress values obtained from the rules modeled with the same plastic data

may be quite different. In other words, even if these models fit the same experimental

data, they exhibit different stress states, significantly affecting the process’s plastic

behavior and, therefore, the damage prediction. For example, using various parame-

ter sets, Figure 5.23 shows the stress-strain and force-displacement curves for three

hardening rules (Voce, Swift, and modulated). The comparison highlights how each

hardening rule predicts significantly different behavior under high-strain conditions

typical of flow forming while providing an excellent fit to the initial experimental

data. This discrepancy highlights the importance of choosing an appropriate harden-

ing rule to model plasticity and accurately predict damage in high-strain processes.

This section investigates the effects of different hardening rules on tensile tests and

flow-forming processes. By analyzing the performance of these hardening rules, the

aim is to determine which models best capture the material’s response under specific

flow forming conditions. Two distinct flow forming models are utilized. Model 1 is

temperature-independent and does not account for temperature effects in the plasticity

or damage model. Model 2 is a fully displacement-temperature dependent model used

for comparing process parameters. Model 1 is employed to provide a more precise

comparison of the effects of the hardening rules. However, due to the influence of

temperature on formability, the results are also compared with Model 2.

Four different cases are studied. In the first case, the experimental data is used as

tabulated data in the finite element program. The other three cases incorporate the

hardening rules into the finite element model using VUHARD. The extended Voce

rule, Swift rule, and modulated rule, a combination of these rules with an alpha value,

are examined. These four cases are first analyzed in tensile tests and then in two

different flow forming models. As shown in Figure 5.24, all models are fitted by the

experimental data.

The parameters are detailed in Tables 5.1 and 5.2. In particular, extended Voce rule

and Swift rule are used to model the plastic behavior of the material. The extended

Voce rule, characterized by parameters such as σ0, q1, c1, b1, q2, c2 and b2, provides

a comprehensive description of the hardening behavior under different conditions.
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Figure 5.24: sStress-strain and force-displacement and curves using different param-

eter sets (α = 1, α = 0.5, α = 0) with the modulated hardening rule and tabulated

data.

Similarly, the Swift rule with parameters K, ϵ0, and n offers another perspective on

the hardening behavior of the material. In the modulated rule, the parameters of these

two rules are combined with α = 0.5.

Table 5.1: Plasticity model parameters of the extended Voce rule.

σ0[MPa] q1 [MPa] c1 b1 q2 [MPa] c2 b2

789 1100 0.9691 3 118.3 0.9252 57.45

Figure 5.24 shows remarkable results obtained using these parameter sets and the

tabulated data. The tabulated data do not align with the smooth tension specimen
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Table 5.2: Plasticity model parameters of Swift rule.

K[MPa] ε0 n

2118 0.03962 0.28

experimental results. However, the other three cases perfectly match the experimental

force-displacement response. These three sets are specifically chosen to ensure that

the force-displacement response matches the experimental data. Although the stress-

strain responses of existing plastic parameter sets are different, they have the same

force-displacement results.

Single-parameter damage models are calibrated using the ST specimen. Specifi-

cally, the damage parameters of each model exhibit slight differences, which can

significantly affect the accuracy of damage predictions in flow-forming processes.

These calibrated parameters, detailed in Tables 5.3 to 5.6, provide a comprehensive

overview of how each hardening rule (Voce, Swift, and their combinations) affects

the response of the material behavior.

Table 5.3: Damage parameters of tabulated hardening.

Ayada (C1) Ayada-m (C2) Brozzo (C3) KH (C4) LR (C5)

0.074 0.148 0.221 0.443 179.477

MC (C6) OH (C7) RT (C9) CL (C9) Freudenthal (C10)

0.470 0.221 0.365 269.515 269.218

Table 5.4: Damage parameters of Voce rule (α = 0).

Ayada (C1) Ayada-m (C2) Brozzo (C3) KH (C4) LR (C5)

0.140 0.276 0.411 0.836 376.558

MC (C6) OH (C7) RT (C9) CL (C9) Freudenthal (C10)

0.884 0.411 0.682 571.765 564.953

Figure 5.25 shows the force-displacement curves obtained using different sample

types (ST, NT, PST, ISS). These curves are calculated using different hardening rules:

Voce, Swift, modulated, and tabulated data and compared with experimental data. In
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Table 5.5: Damage parameters of α = 0.5.

Ayada (C1) Ayada-m (C2) Brozzo (C3) KH (C4) LR (C5)

0.158 0.310 0.461 0.944 429.077

MC (C6) OH (C7) RT (C9) CL (C9) Freudenthal (C10)

0.997 0.461 0.767 655.805 643.860

Table 5.6: Damage parameters of Swift rule (α = 1).

Ayada (C1) Ayada-m (C2) Brozzo (C3) KH (C4) LR (C5)

0.180 0.349 0.517 1.070 489.766

MC (C6) OH (C7) RT (C9) CL (C9) Freudenthal (C10)

1.126 0.517 0.863 754.098 735.105
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Figure 5.25: Force-displacement curves for ST, NT, PST and ISS specimens using

different hardening rules (Voce, Swift, Modulated) compared with experimental data.
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this figure, the force-displacement curves obtained with hardening rules for different

specimens agree well with the experimental data. In particular, the Swift rule success-

fully predicts crack initiation, while the modulated and voce rule predicts the breaking

point earlier than experimental values. However, the curves obtained with tabulated

data show significant deviations compared to experimental data, especially at high

displacement values. These results show that tabulated data cannot fully capture the

plastic behavior in such specimens.

As shown in Figure 5.26 and Figure 5.27, the Von Mises stress and equivalent plastic

strain distributions obtained on the flow forming process using four different harden-

ing cases (Tabulated data, Voce, modulated, and Swift) are compared with Model 1.

Figure 5.26 shows the Von Mises stress distribution obtained using different harden-

ing rules. Although the stress distribution is homogeneous in the tabulated data case,

the stress values are significantly lower than in the other three cases. The stress is

more uniformly distributed across the material in the Voce rule case. The modulated

case shows a similar stress distribution to the Voce rule but with higher stresses ob-

served in certain regions. In the Swift rule case, the stress values are higher than in

the other models, leading to more significant stress accumulation in specific areas of

the material.

(a) (c)(b) (d)

Figure 5.26: Comparison of Von Mises stress distribution for different hardening rules

using Model 1: (a) Tabulated data, (b) Voce model, (c) Modulated model (α = 0.5),

and (d) Swift model.

Figure 5.27 shows the equivalent plastic strain (PEEQ) distributions obtained using

different hardening rules with Model 1. The plastic strain distribution shows high

values in the tabulated data case (a), especially in the upper regions. In the Voce rule
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case, the plastic strain distribution is more homogeneous, and the stress distribution

is concentrated on the inner surface. Higher plastic strain values are observed in the

modulated and Swift rule cases, and this causes more plastic deformation to accumu-

late in some areas of the material. The side view results are particularly interesting.

Plastic strain accumulation on the inner surface gradually increases from model (a)

to model (d). With increasing plastic strain, the material accumulation in front of the

roller increases, causing the part to become geometrically distorted. This material

accumulation is directly proportional to the reduction in the length extension of the

part.

(a) (c)(b) (d)

(a)

(c)

(b)

(d)

Figure 5.27: Comparison of equivalent plastic strain distribution for different hard-

ening rules using Model 1: (a) Tabulated data, (b) Voce model, (c) Modulated model

(α = 0.5), and (d) Swift model.

The Voce, Swift, and modulated cases are analyzed using Model 2, with the resulting

equivalent plastic strain distributions presented in Figure 5.28. When compared to

Model 1, several notable differences are observed. Firstly, in Model 2, plastic strain

accumulates more rapidly from case (b) to (d), and this is due to the temperature

effect. Upon examining the side view results, the strain distribution in Model 2 is

higher yet more homogeneous than in Model 1, and such homogeneity is advanta-
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geous for the forming process. Furthermore, the significant material accumulation

seen in Model 1 is less pronounced in Model 2, preserving the structural integrity

of the part. These findings indicate that considering temperature effects enhances the

forming process, and temperature-coupled models give more accurate results in terms

of plastic strain and shape of part.

Figure 5.28: Comparison of equivalent plastic strain distribution for different hard-

ening rules using Model 2: (b) Voce model, (c) Modulated model (α = 0.5), and (d)

Swift model.

In Figure 5.29, the axial and radial forces applied on the material by the roller are

compared. The comparison reveals that due to material accumulation in front of the

roller, the tabulated case shows lower force values, while there is an increase in force

values moving from the Voce rule to the Swift rule. With the influence of temperature,

the reduction in material accumulation in Model 2 results in lower forces for the same

hardening rule.

These results highlight the effects of different hardening rules on the flow-forming

process. In particular, while Voce and Modulated models give more homogeneous

and balanced results in stress and plastic strain distributions, Swift models cause
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Figure 5.29: Comparison of radial and axial forces are applied by rollers for different

hardening rules using Model 1 and Model 2.

higher stress and plastic strain accumulation in specific regions. Additionally, the re-

sults comparing the effects of temperature suggest that using a temperature-displacement

coupled model provides more realistic outcomes for forming simulations, particularly

in terms of plastic strain and formability. These findings underscore the importance

of careful selection of hardening rules and demonstrate that an appropriate harden-

ing model is critical for enhancing the efficiency of the flow-forming process and the

material’s performance.

Figures 5.30 to 5.33 present a comparison of damage distribution using different

hardening rules (Tabulated data, Voce model, Modulated model (α = 0.5), and Swift

model) for various damage criteria (Ayada, Ayada-m, KH, and OH). These figures il-

lustrate how each hardening rule affects the predicted damage distribution according

to different criteria. In Figure 5.30, the Ayada criterion shows significant differences

in the damage distribution between hardening rules. In the tabulated data, the damage

distribution is homogeneous, but it is concentrated on the outer surface in the other

three cases. The Voce rule case predicts relatively lower levels of damage distribution

on the inner surface. In contrast, the modulated and Swift rule cases show higher

damage accumulation, especially on the inner surface. In Figure 5.31, which also has

the same trend, the KH criterion highlights that tabulated data predicts lower damage

than the Voce, modulated, and Swift rules.
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(a) (c)(b) (d)

AYADA

Figure 5.30: Comparison of damage distribution using the Ayada criterion for dif-

ferent hardening rules: (a) Tabulated data, (b) Voce model, (c) Modulated model

(α = 0.5), and (d) Swift model.

(a) (c)(b) (d)

KH

Figure 5.31: Comparison of damage distribution using the KH criterion for different

hardening rules: (a) Tabulated data, (b) Voce model, (c) Modulated model (α = 0.5),

and (d) Swift model.

The Ayada-m criterion exhibits a similar trend to Ayada and KH. The damage distri-

bution in the modulated and Swift rule cases is more intense than that of the tabulated

data and the Voce rule. The tabulated data shows a more distinct damage distribution

than the other two models. Unlike the other two damage models, a more intense dam-

age distribution is observed on the inner surface in the modulated and Swift rule cases

in the Ayada-m model. Finally, using the OH criterion, Figure 5.33 demonstrates a

similar pattern where the modulated and Swift rule cases predict higher damage accu-

mulation than the tabulated data and Voce rule cases. This comparison also indicates

that regional damage concentration on the inner surface is observed in the tabulated

data and Voce rule.
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(a) (c)(b) (d)

AYADA-m

Figure 5.32: Comparison of damage distribution using the Ayada-m criterion for dif-

ferent hardening rules: (a) Tabulated data, (b) Voce model, (c) Modulated model

(α = 0.5), and (d) Swift model.

(a) (c)(b) (d)

OH

Figure 5.33: Comparison of damage distribution using the OH criterion for different

hardening rules: (a) Tabulated data, (b) Voce model, (c) Modulated model (α = 0.5),

and (d) Swift model.

These comparisons highlight the importance of choosing an appropriate hardening

rule for accurate damage prediction. The findings show that while the Voce and tab-

ulated data models provide moderate predictions, the Modulated and Swift models

tend to predict more severe damage, which could be critical for evaluating material

performance under different forming conditions. Furthermore, some damage models,

such as Ayada, are more affected by the hardening rule change, while such changes

less influence the OH damage model.
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5.4 Yield Function Effect on Flow Forming for Al2024-O

Finally, this section will compare the effects of the Von Mises (VM) and Bai-Wierzbicki

(BW) models on the flow forming process. Chapter 3 demonstrated that for Al2024-

O, the Von Mises model is insufficient for different specimens, as it does not account

for the influences of stress triaxiality and the Lode parameter. The BW model is

employed to address this, achieving a good agreement with experimental values in

tensile tests (see Figure 3.20). The effect observed in tensile tests may also be signifi-

cant in flow forming since the process involves forces such as compression and shear.

Therefore, comparing the influence of the stress states predicted by the VM and BW

models in the flow forming process is crucial.

Repkon Machine conducted various forming trials on this material. However, ex-

perimental failure comparisons are not made due to the material undergoing aging

processes. In this section, the effects of different yield functions are compared nu-

merically. The flow forming model for Al2024-O is used for this purpose. While all

boundary conditions and roller geometries are kept the same as for IN718, the man-

drel and preform geometries differ from those of IN718. The mandrel has a diameter

of 96.64 mm, and the wall thickness of the preform is 16 mm. For the numerical

comparison, studies are conducted at 20% and 30% reduction ratios.

Figure 5.34 compares stress distributions in a component subjected to different re-

duction ratios (20% and 30%) using two yield functions: Von Mises (VM) and Bai-

Wierzbicki (BW). The top row illustrates the results from the VM yield function,

while the bottom row shows the BW yield function outcomes. The left column rep-

resents the stress distribution at a 20% reduction ratio, and the right column displays

the stress distribution at a 30% reduction ratio.

The VM yield function exhibits lower stress concentrations compared to the BW yield

function. Particularly when the reduction ratio increases to 30%, higher stresses are

observed on the inner surfaces of the preform, with the maximum stress occurring at

the area of contact with the rollers. In both reduction ratios, the BW yield function

shows more intense stress in the regions where the rollers make contact than the VM

function. The BW yield function provides a more detailed and potentially more accu-
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RR 20 % RR 30 %

BW

VM

Figure 5.34: Stress distribution for two different reduction ratios (20% and 30%)

using VM (Von Mises) and BW (Bai-Wierzbicki) yield functions.

rate prediction of stress concentrations and failure risk, especially at higher reduction

ratios. In contrast, the more uniform stress distribution of the VM yield function may

not capture potential failure zones as effectively as the BW function.

Figure 5.35 compares the equivalent plastic strain (PEEQ) distribution in a component

subjected to 20% and 30% reduction ratios using two different yield functions. The

top row displays the results obtained from the VM yield function, while the bottom

row shows the results from the BW yield function. At a 20% reduction ratio, the VM

yield function predicts a moderate and more uniformly distributed strain across the

component, with the highest strain value concentrated in the contact area. In contrast,

the BW yield function reveals a much lower PEEQ distribution. When the reduction

ratio increases to 30%, the VM yield function shows a significant increase in PEEQ,

particularly in the regions where the rollers make contact. On the other hand, while

the BW yield function exhibits higher PEEQ in some localized elements, it shows

less concentration than the VM function. This comparison suggests that while the

VM function predicts a more uniform strain distribution, the BW function may pro-
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vide a more detailed prediction of potential failure locations by focusing on regions of

intense plastic deformation, especially at higher reduction ratios. These results high-

light the importance of the BW yield function in assessing failure in complex forming

processes.

RR 20 % RR 30 %

BW

VM

Figure 5.35: Distribution of equivalent plastic strain (PEEQ) for two different reduc-

tion ratios (20% and 30%) using VM (Von Mises) and BW (Bai-Wierzbicki) yield

functions.
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CHAPTER 6

CONCLUSIONS

The present study examines the analysis and prediction of ductile fracture and forma-

bility in the backward flow forming process through forming tests and finite element

(FE) analysis for IN718. It also focuses on the plasticity modeling of IN718 and

Al2024-O materials and investigates the effects of this modeling on the flow forming

process. Tensile tests are performed on various geometries of IN718 and Al2024-

O materials. For IN718, hardening could be modeled using the von Mises yield

function. However, for Al2024-O, plastic behavior could not be modeled with the

yield function dependent only on the plastic strain, and hardening is modeled by

implementing the Bai-Wierzbicki yield function, which is stress triaxiality and Lode-

dependent yield function. The study further investigates the effects of yield func-

tions and hardening rules on flow forming. The findings highlight the importance

of selecting the appropriate yield function and hardening rule for successful failure

predictions.

Flow forming is carried out at 37.5%, 50% and 70% thickness reduction ratios, 50%

is found to be just above the limit as cracks started to form on the outer surface of the

formed part. The process is then simulated using the FE integrated with several duc-

tile fracture models. Tensile tests are also conducted to calibrate the fracture models

for flow forming analysis. A total of ten different single-parameter and seven different

multi-parameter damage models are implemented and calibrated against experimental

tests. Among these models, the Ayada criterion closely matches experimental find-

ings regarding formability limits and crack initiation locations. At the same time, the

KH and Oyane-Sato models also show promise, although they cannot make success-

ful predictions. Other models primarily predict cracking on the outer surface, but as
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forming continues, the predicted damage values exceed the critical threshold on the

outer and inner surfaces. These findings suggest that these simple single-parameter

damage models can be useful for accurate damage prediction in incremental forming

processes like flow forming.

The effect of temperature-dependent softening is examined in flow forming analy-

ses, and this effect may be necessary in increasing the accuracy of the finite element

model for forming applications. Although flow forming is considered a cold forming

process, the parts heat up significantly due to excessive plastic deformation, caus-

ing softening. The feed rate and revolution speed are increased to a certain extent

by keeping the process speed ratio constant to speed up the analysis. The analyses

with different ratios show that at 150 rpm/mm/s and beyond, the equivalent plastic

strain values and damage values indicate consistent and optimal progression rates.

An attempt is made to estimate the formability limit by working at different reduction

ratios. It has been observed that the formability limit for IN718 is between 40% and

50%. Additionally, the effect of radial and axial offsets of the rollers is investigated

using the developed framework with the damage model. FE results demonstrate that

applying the total reduction in three steps can significantly reduce maximum damage

with a well-designed three-stage reduction. Furthermore, using a relatively simple

ductile fracture model with finite element analysis can be beneficial for designing

and optimizing incremental forming processes like flow forming. Selecting an appro-

priate ductile fracture model is significant in obtaining experimental observations and

achieving process optimization.

Several future research directions are identified. This study focuses on an uncoupled

damage framework. Future work could involve comparing the fracture prediction

capabilities of various coupled models in the flow forming process. Additionally, a

linear accumulation rule is used in this study, and a non-linear accumulation rule can

be developed to represent the complex loading history of the process, which will re-

quire round bar specimens and combined loading tensile tests. Furthermore, while

this study deals with macro modeling, the process inherently induces a material ori-

entation that significantly alters the microstructure. Future research could include

microscopic scale orientations to enhance fracture predictions in this process.
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