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ABSTRACT

SIMULATING AND AUGMENTING TURBULENT THERMAL IMAGES FOR DEEP
OBJECT DETECTION MODELS

Uzun, Engin

M.S., Department of Modeling and Simulation

Supervisor: Assoc. Prof. Dr. Erdem Akagündüz

September 2024, 48 pages

Atmospheric turbulence, caused by factors such as temperature, wind speed, and humidity, leads to
random fluctuations in the atmosphere’s refractive index. This phenomenon degrades the image qual-
ity of long-range observation systems through geometric distortions and spatial-temporal varying blur.
Turbulence can affect various imaging spectra, including visible and thermal bands. This thesis ad-
dresses the challenge of atmospheric turbulence in thermal imagery and its impact on object detection
models. To tackle this challenge, we propose a data augmentation method that enhances the perfor-
mance of object detectors by utilizing turbulent images with varying severity levels as training data.
We generate training samples using a geometric turbulence simulator and use Geometric, Zernike-
based, and P2S-based simulators to create the turbulent test sets, confirming the effectiveness of our
augmentation method across different types of simulated turbulence. Our results demonstrate that this
data augmentation approach significantly improves performance for both turbulent and non-turbulent
thermal test images.

Keywords: atmospheric turbulence, data augmentation, object detection, thermal imagery
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ÖZ

DERİN NESNE TESPİT MODELLERİ İÇİN TÜRBÜLANSLI TERMAL GÖRÜNTÜLERİN
SİMÜLASYONU VE ARTIRILMASI

Uzun, Engin

Yüksek Lisans, Modelleme ve Simülasyon Bölümü

Tez Yöneticisi: Doç. Dr. Erdem Akagündüz

Eylül 2024, 48 sayfa

Atmosferik türbülans, sıcaklık, rüzgar hızı ve nem gibi faktörlerden kaynaklanır ve atmosferin kırılma
indeksinde rastgele dalgalanmalara yol açar. Bu fenomen, uzun menzilli gözlem sistemlerinin görüntü
kalitesini geometrik bozulmalar ve mekansal-zamansal değişen bulanıklık ile düşürür. Türbülans, gö-
rünür ve termal bantlar da dahil olmak üzere çeşitli görüntüleme spektrumlarını etkileyebilir. Bu tez,
termal görüntülerdeki atmosferik türbülans sorununu ve bunun nesne tespit modellerine etkisini ele al-
maktadır. Bu zorluğun üstesinden gelmek için, değişen şiddet seviyelerine sahip türbülanslı görüntüleri
eğitim verisi olarak kullanarak nesne modellerinin performansını artıran bir veri artırma yöntemi öne-
riyoruz. Geometrik bir türbülans simülatörü kullanarak eğitim örnekleri üretiyor ve Geometrik, Zer-
nike tabanlı ve P2S tabanlı simülatörleri kullanarak türbülanslı test setlerini oluşturuyoruz. Bu sayede,
artırma yöntemimizin farklı türlerdeki simüle edilmiş türbülanslar arasında etkinliğini doğruluyoruz.
Sonuçlarımız, bu veri artırma yaklaşımının hem türbülanslı hem de türbülanssız termal test görüntüleri
için performansı önemli ölçüde artırdığını göstermektedir.

Anahtar Kelimeler: atmosferik türbülans, veri artırma, nesne tespiti, termal görüntüleme
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CHAPTER 1

INTRODUCTION

The increasing importance of thermal imagery in various pivotal applications such as surveillance,
defense, and environmental monitoring necessitates robust and accurate object detection systems. At-
mospheric distortions, including scattering, absorption, and refraction, significantly impact the quality
of thermal imagery by altering the path and intensity of the incoming light. Among these distortions,
atmospheric turbulence, driven by temperature changes, humidity, and wind, is particularly challeng-
ing as it disrupts light transmission through the atmosphere. Atmospheric turbulence leads to spatial
and temporal variations in the air’s refractive index, significantly impacting the propagation of light and
introducing distortions that are particularly evident in long-range imaging systems across various elec-
tromagnetic spectra [4]. Turbulence in long-range imaging systems is often treated as isoplanatic, with
spatially uniform distortions typically mitigated through adaptive optics [5, 6]. However, in ground-
to-ground imaging systems, the turbulence becomes anisoplanatic, resulting in non-uniform, non-rigid
distortions that blur images and present substantial challenges for computer vision algorithms [7, 8].
These challenges are exacerbated in the infrared (IR) spectrum, where the refractive index structure
parameter, Cn

2, and path length can greatly influence image quality [9]. Although the visible spec-
trum is more adversely affected by turbulence due to shorter wavelengths, significant effects are also
observed in the IR spectrum, complicating tasks such as thermal imagery object detection.

Thermal imagery object detection faces unique challenges due to the limited scale of IR image sets and
the distinct nature of IR data. Despite advancements in domain adaptation techniques using supervised
and adversarial-based unsupervised learning [10, 11, 12], the issue of atmospheric turbulence and its
effect on thermal images remains underexplored. Optical systems affected by atmospheric turbulence
experience noise, non-rigid distortions, and blurry images as light rays are bent and scattered due to
changes in the refractive index of the air. These effects result in fluctuations in the air’s temperature
and density, causing temporal variations in the electromagnetic radiation received by optical systems
[13].

Although several IR image and video sets are publicly available [14], to the best of our knowledge,
there is no public IR image set that includes turbulence effects, for object detection or any other com-
puter vision tasks. This is mainly because creating a set consisting of both turbulent and non-turbulent
images of a given scene is a very expensive and difficult task. A feasible option is to create synthetic
turbulence on existing image sets, using mathematical models of turbulence. The existing models in
the literature [15, 16, 17] generally represent the dynamics of atmospheric turbulence in 3D coordi-
nates and project synthetic 3D scenes to 2D images. However, creating a large corpus of images with
different 3D scene settings is also a very difficult task to achieve. Furthermore, in the thermal domain,
creating 3D models with realistic material properties is problematic as well. Another approach can
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be working on existing thermal object detection datasets that additionally include 3D objects models.
However, this case would require a reconstruction of the 3D scene with depth information, which is
not available for almost any image set.

1.1 Problem Definition

Atmospheric turbulence significantly impacts optical systems, causing noise, non-rigid distortions,
and blurry images. This occurs because turbulence changes the refractive index of the air, causing
light rays to bend and scatter in various directions, resulting in blurring and geometric distortions that
degrade image quality. Moreover, turbulence causes fluctuations in air temperature and density, lead-
ing to temporal variations in the electromagnetic radiation received by optical systems. For detailed
explanations about the effects of turbulence on optical imaging systems, readers may refer to [13].

Various techniques are being studied to counteract the effects of turbulence on computer vision tasks
[18, 19, 20, 21, 22]. Regardless of the problem, achieving generalization capability and robustness
in challenging computer vision tasks, such as detection in turbulent images, occluded images, and
adversarial samples, typically requires high-quality data.

This thesis specifically focuses on thermal-adapted deep object detection models, which are specialized
frameworks designed to detect and localize objects using thermal imaging data. By adapting deep
learning techniques to thermal imagery, these models offer enhanced detection capabilities in diverse
real-world scenarios. While there has been a recent increase in research on object detection using
thermal imagery [23, 24, 25, 26, 27], there are limited studies on the atmospheric effects on thermal
object detection systems [21, 1, 28, 29, 30].

To mitigate the effects of atmospheric turbulence, various algorithms [31, 32, 33, 34] aim to reduce
or eliminate these effects on images. However, estimating and correcting turbulence distortion is
computationally intensive and may not be feasible in real-time due to limited resources. An alterna-
tive approach, explored in this thesis, is to train models with turbulence-augmented samples, thereby
avoiding additional computational costs.

Employing turbulent image augmentation techniques enhances the accuracy and robustness of baseline
models in handling degradation effects induced by turbulence [1, 35]. Augmentation methods involv-
ing blurring and geometric distortions improve the generalization capability of detection models, even
when test images are undistorted.

1.2 Research Questions

In examining the impact of atmospheric turbulence on thermal imagery and the potential solutions
through data augmentation, several key research questions arise:

• How does atmospheric turbulence affect the performance of state-of-the-art object detection
models in thermal imagery?

• What data augmentation strategies can be developed to improve object detection performance
under turbulent conditions?
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• How do different levels of turbulence severity impact the robustness and accuracy of thermal-
adapted object detection models?

• Can synthetic turbulence models be effectively used to simulate real-world atmospheric condi-
tions for training object detection systems?

1.3 Objectives of the Thesis

This thesis aims to address the challenges posed by atmospheric turbulence in thermal imagery through
a series of targeted objectives:

• To analyze the effects of atmospheric turbulence on the performance of object detection models
in thermal imagery.

• To develop and evaluate data augmentation strategies that incorporate varying levels of synthetic
turbulence to enhance model robustness.

• To compare the effectiveness of different turbulence simulation models in generating training
data for object detection.

• To propose a comprehensive framework for improving object detection accuracy and reliability
in turbulent thermal imagery.

1.4 Contributions of the Study

In this thesis, we conduct a thorough analysis of turbulent image augmentation techniques for thermal
band images in the context of object detection. Our primary goal is to identify the most effective
augmentation method for improving accuracy. To achieve this, we generate turbulent images using
three different atmospheric turbulence simulation methods [1, 2, 3]. The state-of-the-art real-time
detection models evaluated in our study include VFNet [36], TOOD [37], YOLOR [38], RTMDet
[39], DINO [40], and YOLOv8 [41].

Previous research has mainly focused on generating synthetic atmospheric turbulence in the visible
spectrum, utilizing methods like generative adversarial networks (GANs) [42], neural network-based
geometric models [43], and physics-based models [44, 45]. Despite some recent studies investigating
atmospheric turbulence effects on long-range observation systems [46], there has been a lack of so-
lutions for turbulence-related issues in infrared (IR) computer vision problems. To address this gap,
we apply a geometric model to introduce turbulence distortions in IR images from the "FLIR ADAS
v2" dataset [47]. Both the generated turbulent images and the original non-turbulent images are used
to improve the performance of deep learning-based object detectors. Our experiments involve bench-
marking six different state-of-the-art deep object detectors, pretrained and fine-tuned for the thermal
domain. Additionally, we propose a data augmentation method to enhance detection performance for
both turbulent and non-turbulent thermal test images.
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1.5 Organization of the Thesis

This thesis is organized into several chapters, starting with an Introduction (Chapter 1) that outlines
the research problem, objectives, and significance, followed by a Literature Review (Chapter 2) that
contextualizes the study within existing research about the data augmentation methods. The Turbulent
Image Generation (Chapter 3) chapter explains the simulators and the process of simulating turbulence
effects on thermal images, while the Experimental Setup (Chapter 4) chapter describes the datasets,
object detection models, and experimental procedures employed. The Results (Chapter 5) chapter
presents the findings, and the Conclusion (Chapter 6) summarizes the key findings and offers recom-
mendations for future research.
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CHAPTER 2

DATA AUGMENTATION LITERATURE

In recent years, the field of deep learning has experienced significant advancements, driving a growing
demand for more labeled data. One notable development is the rise of vision transformer architectures,
which have enabled attention-based algorithms to dominate various vision benchmarks. These bench-
marks include image classification [48, 49, 50], object detection [40, 51, 50], and image generation
[52, 53]. However, these powerful algorithms come with a substantial appetite for labeled data. To
address this challenge, contemporary deep learning research has increasingly turned to self-supervised
[54] and semi-supervised learning [55, 56] methods. These approaches aim to reduce the dependency
on large labeled datasets by utilizing unlabeled data or combining a small amount of labeled data with
a larger pool of unlabeled data. Despite the advances in these learning strategies, the overall demand
for data to train deep neural networks continues to grow. Data augmentation remains one of the most
efficient and effective techniques to amplify the amount of both labeled and unlabeled data. By artifi-
cially increasing the diversity of training data, augmentation helps mitigate issues such as small-scale
datasets, class imbalance, and domain shift. This technique is crucial for enhancing the robustness and
generalization capabilities of deep learning models, ensuring they perform well across a wide range of
scenarios.

When augmenting data for a learning model, it is crucial to understand two fundamental dimensions:
the method used to generate the augmented data and the strategy used to train the model with this
augmented data. Mingle et al. [57] propose a novel augmentation taxonomy that integrates both
data generation methods and training strategies. Essentially, they categorize augmentation into three
groups: model-free, model-based, and optimization-based. The first two categories cover data gener-
ation methods, while the third pertains to augmentation strategies. Our augmentation classification,
partially inspired by their taxonomy, is depicted in Figure 1. Our approach to augmentation diverges
from that of [57] by first splitting the process into its two main dimensions: data generation methods
and augmentation strategies. We categorize data generation methods into model-based and model-free.
As the name suggests, model-free data augmentation refers to techniques that increase the diversity of
training data without the use of a model1. Model-free data augmentation can be broadly divided
into two subcategories: augmentation using a single sample or a fusion of multiple data samples.
Model-free single-sample augmentation involves diversifying the dataset by applying various basic
data processing techniques, such as rotation, scaling, and flipping [58, 59]. Previous work, such as
[60], demonstrates that combining these techniques and merging their outputs with the original sample
can lead to further improvements. These techniques are applied randomly, enabling the creation of a

1 Although many methods, such as flipping or rotating a signal, can be considered to involve a mathematical
model, they are termed model-free due to their simplicity.
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Figure 1: Taxonomy of Data Augmentation Methods and Strategies. This diagram categorizes the
data augmentation techniques into generation methods and augmentation strategies. The generation
methods are divided into model-free (single sample and multiple samples) and model-based (gen-
erative models, physics-based models, and approximation models). The augmentation strategies in-
clude vanilla augmentation, reinforcement learning-based, adversarial learning-based, and curriculum
learning-based approaches.

diverse set of augmented samples from a single original source. Despite their simplicity, model-free
augmentation techniques are widely used for various computer vision tasks [61, 62, 63, 64, 65, 66, 67].

Model-free multiple-sample augmentation methods aim to expand the training dataset distribution by
combining more than one sample. The most common approach to implementing these techniques in-
volves fusing two samples. The pioneering methods "Mix-up" [68] and "Cut-Mix" [69] have inspired
numerous subsequent augmentation techniques, such as [70, 71, 72, 73, 74]. Additionally, various
algorithms use more than two samples for augmentation, including "RICAP" [75] and mosaic aug-
mentation [76]. Some augmentation methods, like YOLOv4’s mosaic augmentation [76], use more
than two images, significantly reducing the need for large mini-batch sizes according to the authors.
Straightforward multiple-sample augmentation methods include Pairing Samples [77], which averages
two images pixel-wise. In Mixup [68], the authors not only fuse samples but also labels. BC Learn-
ing [78], originally proposed for sound recognition, was adapted for image classification by the same
group [79], treating images similarly to waveforms. While fusing multiple images may not visually
make sense to humans, it is effective for machines. The aforementioned methods fuse images lin-
early, whereas CutMix [69] spatially fuses images and linearly fuses labels based on the mixing ratio.
Recent works [71, 80, 81, 82] have followed the principles of CutMix and Mixup to tackle various
challenges. There are also instance-level augmentation approaches for multiple samples that require
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segmentation masks of object instances. "Cut, Paste and Learn" [83] involves a two-stage process:
cutting (cropping object instances) and pasting (fusing the cropped instances onto random background
images). Similarly, [84] uses geometric and semantic information to reduce blending artifacts. These
instance-level approaches are designed for object detection tasks. Different from these works, "Simple
Copy-Paste" [85] aims to enhance instance segmentation performance of strong baseline models. The
copy-paste concept is also applied to videos for multiple object tracking in [86]. The effectiveness of
using multiple images for augmentation is demonstrated across various computer vision tasks, such as
image classification [69], object detection [76], and instance segmentation [85].

Model-based data augmentation involves techniques that utilize complex mathematical models to gen-
erate new samples. These models can be categorized into three types: generative models, physics-
based models, and approximation models. Generative model-based augmentation methods primarily
use techniques such as Generative Adversarial Networks (GANs), Variational Autoencoders (VAEs),
and neural style transfer algorithms. According to [57], generative model-based approaches can be
further classified into three categories: unconditional, label-conditional, and sample-conditional. Un-
conditional sample generation creates new samples from a given input noise [87, 88] (also known
as the latent code in GAN literature), producing samples that resemble the training data distribution.
Label-conditional sample generation, on the other hand, involves conditioning the generator and dis-
criminator models on a label [89, 90, 91, 92], facilitating augmentation for supervised learning models.
Sample-conditional generation, the final category, conditions the sample generation process on other
existing samples. This can lead to either label-preserving [93, 94, 95, 96] or label-changing generation
processes [97, 98, 99, 100, 101]. Label-preserving approaches are particularly effective for addressing
domain shift problems [96], while augmentation with translated images can enhance the generalization
ability of the model by incorporating transferred styles [102]. Label-changing approaches are useful
for tackling class imbalance issues, where the label might be completely altered [103, 97] or fused as
proposed in [68] to eliminate style or content bias [104].

Physics-based data augmentation involves utilizing physical laws and principles to generate synthetic
samples that accurately reflect the underlying physics of the system creating the sample space. De-
pending on the model, the process to be physically simulated may vary, such as simulating different
lighting conditions, adding noise or blur, or applying realistic transformations caused by sensors or
the capturing environment. These physical transformations aim to represent phenomena that make the
augmented samples as realistic as originally captured images. For example, to simulate atmospheric
turbulence effects on an image, physics-based models use the principles of fluid mechanics govern-
ing turbulent atmospheric flows. Accurate simulations of turbulence effects on 2D images typically
require detailed 3D environmental information, such as temperature distribution and wind velocity
[105, 44]. Although these models can provide highly detailed and precise simulations, they demand
significant computational resources to solve the complex fluid mechanics equations [2]. In medical
imaging, physics-based augmentation methods are popular for enhancing generalization capability for
new patient data [106] or increasing MRI image denoising [107]. Yaman et al. [108] proposed a self-
supervision-based image reconstruction method that works without fully-sampled data used as train-
ing samples. Another example is VORTEX [109], which improves supervised baseline performance
in MRI augmentation by generating physics-driven augmented samples, increasing robustness to SNR
ratio changes and motion corruption for accelerated MRI reconstruction. Moreover, Wei et al. [110]
proposed a physics-based illumination augmentation scheme for generating realistic facial images un-
der different directional illumination conditions. Lou et al. [111] developed an image augmentation
method to address domain shifts caused by sensor characteristic variations, demonstrating its effec-
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tiveness in both sound and image domain adaptations. Miles et al. [112] introduced a 3D occluded
target augmentation method to improve target detection performance in 3D radar imagery. Deraining
is another challenging problem in computer vision. Various methods have been proposed to generate
rainy images based on the physical nature of rain [113, 114, 115, 116, 117, 118, 119]. These rainy
image generation techniques can be used for data augmentation to enhance the robustness and gener-
alization capability of deep learning models against rainy weather conditions. Similarly, atmospheric
turbulence can significantly affect image quality. Physics-based approaches have been developed to
generate turbulent images [2, 120, 3, 44] and to mitigate turbulence effects [121]. For instance, Yuxin
et al. [122] proposed an augmentation method considering governing equations, observable percep-
tion, and physical phenomena of seismic full-waveform inversion (SWI) to improve seismic image
quality and enhance small CO2 leak detection performance. In contrast to physics-based data aug-
mentation methods, approximation models are less computationally intensive and often do not require
detailed system models. These methods use simplified or empirical models to approximate the gener-
ative process. For instance, in simulating atmospheric turbulence, approximation models often bypass
the need for detailed 3D environmental data, thus reducing computational demands. Some of these
models utilize statistical data collected from various atmospheric conditions to simulate atmospheric
effects on samples [123, 124], while others apply physically motivated approximations to simplify the
calculation of turbulence effects on images. These simplified models aim to produce turbulent images
by modeling spatial-temporal geometric distortions at the pixel level [3, 1]. However, the distinction
between physics-based and approximation models can be blurred in practice. Some physics-based
models may incorporate simplified system models to reduce computational costs, while some approx-
imation models may still integrate physical principles or empirical data. This overlap illustrates that,
regardless of the generation domain, elements of both approaches can be present in a single model to
balance accuracy and computational efficiency.

In contrast to the classification proposed by [57], we consider the augmentation strategy as a distinct
dimension within our taxonomy. These strategies employ data generation methods detailed on the left
side of our taxonomy. The simplest way to incorporate augmented data into a training model is to treat
the augmented samples the same as the original ones, a method we call "Vanilla Augmentation," re-
flecting its widespread use in deep learning literature. Beyond this conventional approach, we identify
three key directions in augmentation strategies: curriculum-based, reinforcement learning-based, and
adversarial learning-based methods. Unlike vanilla augmentation, these methods aim to optimize the
augmentation policy. For instance, curriculum learning-based augmentation refines datasets according
to curriculum learning principles, ensuring a gradual and targeted enhancement process [125]. Re-
inforcement learning-based data augmentation strategies seek to optimize the augmentation process
based on the model’s learning performance [126]. This approach dynamically generates augmented
samples that are most informative to the model, enhancing its learning process. The augmentation
process is modeled as a Markov Decision Process (MDP), where the state represents the current train-
ing dataset, actions are the augmentation operations, and the reward signal indicates improvements in
model performance. The goal is to find an optimal policy that balances exploration and exploitation
to generate the most informative augmented samples [127]. Although reinforcement learning-based
augmentation can lead to better performance compared to vanilla augmentation, it is more complex to
implement and requires more computational resources. Adversarial-based data augmentation involves
generating samples similar to the original ones but designed to fool the model into making incorrect
predictions. This method generates new samples by seeking small transformations of the original sam-
ples that yield maximum loss [128]. The aim is to improve the model’s robustness by exposing it to
samples that are close to the original data but can cause the model to fail. Training the model on these
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adversarial samples helps it become more resistant to similar attacks [129, 130, 131]. Adversarial-
based data augmentation can be used alongside other methods and is especially useful in applications
where the data distribution is complex and non-linear, such as computer vision and speech recognition.
However, it can also be computationally expensive and may not always lead to significant performance
improvements.
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CHAPTER 3

TURBULENT IMAGE GENERATION

Simulating turbulence effects on sensory signals is a critical challenge due to the complex and dy-
namic nature of turbulence, which can significantly degrade the quality and accuracy of sensory data.
In surveillance, turbulence can distort thermal and visual images, complicating the identification and
tracking of objects [132]. In navigation, especially for aerial and maritime applications, turbulence can
affect the reliability of sensor data, leading to potential safety risks [133]. Addressing these challenges
requires sophisticated simulation techniques to accurately model and mitigate the impact of turbu-
lence on sensory signals. Various methodologies exist for simulating turbulence effects, each with its
own strengths and limitations [7]. Common models include optical flow-based methods, statistical
turbulence models, approximation, and physical simulation techniques. Optical flow-based methods
estimate the apparent motion of objects within an image sequence, which can be used to simulate the
distortions caused by turbulence. Statistical models use mathematical functions to describe the statis-
tical properties of turbulence, such as the power spectral density of the refractive index fluctuations.
Physical simulation techniques, on the other hand, directly model the physical processes underlying
turbulence, such as fluid dynamics and heat transfer. In this thesis, we utilize three specific approx-
imation models for generating turbulent images: a geometrical turbulence simulator (Section 3.1), a
Zernike-based simulator (Section 3.2), and a phase-to-space simulator (Section 3.3). These models
were chosen for their ability to represent different aspects of turbulence effects on thermal images.
For the Zernike-based and phase-to-space simulators, it is essential to use specific camera-related pa-
rameters to produce physically accurate turbulent images. In order to accomplish this, we use the
parameters of the FLIR Tao v2 640 x 512 13mm 45°HFoV - LWIR Thermal Imaging Camera since the
"FLIR-ADASv2" dataset is collected by using this optical system. The related parameters are listed in
Table 2 and Table 3. A detailed explanation of the "FLIR-ADASv2" dataset and the augmented images
are presented in Section 4.1.

3.1 Geometrical Turbulence Simulator

Approximation models [1, 35, 3] mimic the effect of atmospheric turbulence by combining blurring
and random distortions. Our geometric simulator [1], which operates in real-time, leverages a geomet-
rical turbulence approach. This model employs a Gaussian kernel for blurring and uses image warping
to introduce random distortions. For a detailed description of the physical approximations underlying
the geometric model, refer to Section 3.1.1. The model described in Equation 1 is used to generate
turbulent images from non-turbulent ones.

Fn(x, y) = D((GB(x, y)⊛ In(x, y)), d
u
n(x, y), d

v
n(x, y)) (1)
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In Equation 1, Fn(x, y) is the source image, D is the warping function, ⊛ is the convolution operation
and GB(x, y) is a Gaussian kernel with variance σ2

B , responsible for blurring. Note that warping
is applied to both horizontal and vertical directions using the random distortion fields, dun(x, y) and
dvn(x, y), respectively, which are defined as:

dun(x, y) = γ ∗ (GD(x, y)⊛ vun(x, y)) (2)

dvn(x, y) = γ ∗ (GD(x, y)⊛ vvn(x, y)) (3)

where γ is the amplitude of the random distortion and GD(x, y) is the Gaussian kernel with variance
σ2
D. vun(x, y) and vvn(x, y) are random vectors with zero-mean, unit-variance normal distributions.

Convolution operation with GD(x, y) provides spatial correlation of the random distortions over the
image. σ2

D is used to adjust the strength of the spatial correlation while γ is the amplitude of the
distortions in the model. σ2

B is used to adjust the amount of blurring. Table 1 denotes the parameter
values used for turbulent image generation.

Table 1: Simulation parameters for the proposed geometric simulator.

Distortion amplitude (γ) [25, 50, 100, 150]
Spatial correlation strength (σ2

D) 5
Blurring ratio (σ2

B) 0.5

3.1.1 Physical Approximation

In order to relate the proposed geometric turbulence model parameters with real-world turbulence con-
ditions, in this section, we formulate the relation between the magnitude of the pixel shift (distortion
vectors) and the model parameters, namely γ and σ2

D. Note that we do not utilize σ2
B for this approxi-

mation since it is unrelated to the distortion process. Let z(x, y) be the random distortion vector over
an arbitrary image region,

z(x, y) = [dun(x, y), d
v
n(x, y)]

T (4)

z(x, y) is a bivariate Gaussian distribution, where u and v components are independent of each other
and are zero-mean. Variance of u and v components depends on the values of both γ2 and σ2

D. In
Equations 2 and 3, the vertical and horizontal distortions are derived from zero-mean, unit-variance
Gaussian distributions. In the proposed model, these random variables, vun(x, y) and vvn(x, y), are
firstly filtered spatially by a 2D Gaussian kernel with σ2

D variance, then multiplied with the turbulence
severity level, γ. Spatial filtering operation on dun(x, y) and dvn(x, y) corresponds to the weighted linear
combination of zero-mean unit-variance uncorrelated Gaussian random variables, where the weights
are the parameters in GD(x, y). The equivalent variance of the spatially filtered random distortions is
the sum of the squared kernel parameters. For a sufficiently large kernel, this summation is equivalent
to integrating the corresponding squared continuous bivariate Gaussian function in 2D space. Then, γ
is simply a multiplier over the variance. The resultant variance of dun(x, y) and dvn(x, y), σ

2
z , can be

expressed as,

σ2
z = γ2

∫ ∫
G(p, µp,Σp)

2dp (5)
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Figure 2: The turbulence generation processes on an IR and a chessboard images are illustrated. t{}
is the turbulence operation and the vertical (dun(x, y) in red) and the horizontal (dvn(x, y) in green)
elements of the 2D distortion field are depicted in false color.

where µp is the mean and Σp is the covariance matrix of the bivariate Gaussian kernel. For our
case, the Gaussian kernel GD(x, y) is assumed to be zero-mean and have constant diagonal covariance
matrix Σp. Given these conditions, in explicit form 5 reduces to,

σ2
z = γ2

∫ ∫ (
1

2πσ2
D

e
−
(p20 + p21

2σ2
D

))2

dp0dp1 (6)

The resultant expression for σ2
z becomes,

σ2
z =

γ2

4σ2
Dπ

(7)

Let l(x, y) be the Euclidean norm of the random distortion vector z(x, y), which is given as,

l(x, y) =
√
dun(x, y)

2 + dvn(x, y)
2 (8)

l(x, y) is also a random variable, and because it is the Euclidean norm of a vector sampled from a
normal distribution with zero-mean and constant diagonal covariance matrix, l(x, y) is expected to
have a Rayleigh distribution, which can be written as,
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fl(x,y)(l(x, y)) =
l(x, y)

σ2
z

e−l(x,y)2(2σ2
z) (9)

where fl(x,y)(l(x, y)) is the probability density function of random variable l(x, y). Mean of the
l(x, y), namely µl, is the measure of how much the pixels are distorted on an image for the given
parameters γ and σ2

D, and given as,

µl = σz

√
π

2
=

γ

2
√
2σD

(10)

Note that µl is a measure in pixel dimensions. In order to relate the distortions in the pixel dimensions
to the real-world measurements, a pin-hole camera model can be utilized using internal parameters of
the thermal camera used in collecting the FLIR ADAS v2 dataset. Relation between pixel distortions
and the corresponding real-world distortion for both horizontal and vertical axes, ths and tvs respectively,
can be written as,

ths =
2µldstan(αh/2)

W
=

γdstan(αh/2)√
2σDW

(11)

tvs =
2µldstan(αv/2)

H
=

γdstan(αv/2)√
2σDH

(12)

where ds is the depth of the scene region, αh and αv are the horizontal and the vertical field of views,
respectively, W is the horizontal pixel count, and H is the vertical pixel count of the camera. In [47],
horizontal and vertical fields of views of the thermal camera are given as 45◦ and 37◦, and the image
resolution is given as 640x512. Then, 11 and 12 reduces to,

ths = 0.0004576
γds
σD

(13)

tvs = 0.0004621
γds
σD

(14)

3.2 Zernike-based Turbulence Simulator

The second model we employed in our experiments is a novel approximation-based approach as de-
tailed by Chimitt and Chan [2]. The authors aimed to strike a satisfactory balance between precision
and computational complexity for simulating turbulence effects. This model utilizes a propagation-
free simulation technique to sample spatially correlated Zernike coefficients. Zernike polynomials,
denoted as Zn

m(ρ, θ), are a set of orthogonal functions defined over a circular aperture, commonly
used to represent aberrations in optical systems [134]. These polynomials and their coefficients are
expressed mathematically as follows:
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W (ρ, θ) =

∞∑
n=0

n∑
m=−n

cmn Zm
n (ρ, θ) (15)

Here, Cn
m represents the Zernike coefficients, which are the weights associated with each Zernike

polynomial in the wavefront aberration. In their work, Chimitt and Chan employed these Zernike
coefficients to simulate atmospheric turbulence effects such as tilt and blur. The terms C1

1 and C1
−1

specifically correspond to horizontal and vertical tilts, respectively, introducing geometric distortions
across the input image. Higher-order coefficients are associated with the blur effect.

The simulation parameters utilized in our experiments are summarized in Table 2. These parameters
were chosen to closely mimic the physical characteristics of the imaging system.

Table 2: Simulation parameters used for Zernike-based Turbulence Simulator.

Image Dimensions [640, 640] pixels
Aperture Diameter 29 mm
Wavelength 10.5 µm
Refractive Index Structure Parameter (C2

n) 1× 10−15

Focal Length 13 mm
Propagation Length 2000 m

The approach hinges on the statistical properties of Zernike coefficients, derived from the equivalence
between the angle-of-arrival correlation and the multi-aperture correlation. By utilizing a covariance
matrix to define these correlations, the model compresses the wave propagation problem into a more
computationally efficient sampling problem. The Zernike coefficients are drawn according to this co-
variance matrix, ensuring that the spatial correlations inherent in real turbulence effects are accurately
represented. The model’s ability to decouple tilts from higher-order aberrations leverages the fact that
tilts occupy a majority of the turbulent energy, as shown [135, 134]. This decoupling allows for a
more efficient simulation, as it separates the computationally intensive task of describing distortions
per pixel into manageable components.

3.3 Phase-to-Space Simulator

The third method we utilize for generating turbulent images is called the Phase-to-Space (P2S) Trans-
form [3]. Table 3 denotes the simulation parameters used for this technique in our experiments. The
P2S Transform builds upon the second method [2] by reformulating the spatially varying convolution
as a set of spatially invariant convolutions by leveraging basis functions. The source image x and
the pupil image y are related through the linear operator H , which consists of spatially varying point
spread functions (PSFs). To make the problem computationally feasible, each PSF hn at pixel n is
expressed as a linear combination of basis functions {ϕm} and coefficients {βm,n}. This transforma-
tion turns the computationally expensive spatially varying convolutions into a set of spatially invariant
convolutions, significantly reducing the computational cost if the number of basis functions M is much
smaller than the number of pixels N . The basis functions are derived using a process that generates
zero-mean Gaussian vectors with a covariance matrix determined by the turbulence parameters, such
as the aperture diameter D and the Fried parameter r0, based on Fried’s statistical model [135]. Princi-
pal component analysis (PCA) is then employed to extract the spatial basis functions from a dataset of
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PSFs representing various turbulence levels [2]. Once the basis functions are obtained, they are com-
bined with the tilts and processed through a phase-to-space (P2S) transform, which is implemented
via a shallow neural network. This network converts the Zernike coefficients of the phase to the coef-
ficients of the basis functions in the spatial domain, eliminating the need to directly compute the PSFs
at every pixel.

Table 3: Simulation parameters used for Phase-to-Space Simulator.

Image Dimensions [640, 640] pixels
Aperture Diameter 29 mm
Wavelength 10.5 µm
Fried parameter 0.0145
Focal length 13 mm
Propagation Length 4000 m
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CHAPTER 4

EXPERIMENTAL SETUP

To evaluate the impact of data augmentation on turbulent images, we focused on six state-of-the-
art object detection models. These models were specifically chosen for their leading performance
in various benchmarks. A brief description of each model is provided in Section 4.2. To train the
models, we utilize the open-source frameworks MMDetection [136] and MMYOLO [137] except for
YOLOR detector. DINO [40], RTMDet [39], and YOLOv8 [41] were trained using four NVIDIA
Quadro RTX 8000 GPUs, while VfNet [36], TOOD [37], and YOLOR [38] were trained using four
NVIDIA GeForce RTX 2080Ti GPUs. During the training of all models, the backbone weights were
kept frozen. Table 4 provides the key specifications of the six selected models, detailing batch size,
number of epochs, augmentation techniques used, backbone architecture, and their Average Precision
(AP) scores on the COCO dataset.

Table 4: The configuration and runtime settings of the training processes, along with the published AP
results on the COCO dataset.

Batch Size Epochs Augmentations Backbone AP on COCO1

RTMDet-x 2 300

Random Flip
Random Resize
Random Crop
Mosaic
MixUp

CSPNeXt
with
P6 architecture

52.8

DINO-4scale 2 36
Random Resize
Random Flip
Random Crop

ResNet50 50.1

YOLOv8-x 2 500

Mosaic
MixUp
Random Flip
Albumentations

YOLOv8CSPDarknet 52.7

YOLOR-P6 2 100

Mosaic
MixUp
HSV Augmentation
Random Affine Transoformation

CSPDarkNet53 52.6

TOOD 2 100
Random Flip
Random resize

ResNet50 44.5

VFNet 2 100
Random Flip
Random Crop
CutOut

ResNet50 48.0

1The AP scores in the table are sourced from the MMDetection [136] and MMYOLO [137] framework benchmark
documentation, except for YOLOR-P6 [38], which sourced from its official publication.

17



4.1 The Dataset

The experiments in this thesis utilize the publicly available FLIR-ADAS v2 image set [47] to evaluate
the impact of augmented turbulent samples on the performance of state-of-the-art object detection
models adapted for thermal imagery. To this end, three different turbulence simulators were employed
to augment the images, as described in Chapter 3. Examples of original and augmented turbulent
images are displayed in Figure 3. FLIR-ADAS v2 is a medium-scale dataset annotated for object
detection in both thermal and visible bands, comprising 26,442 annotated frames from videos and
still images with 15 different object classes. The dataset includes 9,711 thermal and 9,233 RGB still
images. For this study, we focused on the 9,711 thermal images captured with a Teledyne FLIR Tau
2, each with a resolution of 640 × 512 pixels. Our experiments specifically target the car and person
classes due to the limited number of samples available for domain adaptation in other classes.

The original FLIR-ADAS v2 thermal still image set is split into 90% for training and 10% for valida-
tion. Following previous studies using this dataset [138, 139], we use the original 10% validation set
as our test set and create a new validation set for fine-tuning purposes by taking 10% of the training
set from the original FLIR-ADAS v2 thermal still image set.

To construct the turbulent augmentation for training, we use the approximation-based simulator [1] as
previously described. We generate different versions of this turbulent training set with γ levels of 25,
50, 100, and 150. These various turbulent training sets are referred to as the "turbulent augmentation
sets" and are used for training in experiments with turbulent image augmentation.

For the test sets, we employ all three turbulence simulators: geometric, Zernike-based, and P2S. Con-
sequently, we obtain four distinct test sets: the original test set and the turbulent sets generated by the
three simulators.

4.2 Object Detection Models

In recent years, there have been remarkable advancements in deep learning-based object detection
models, with innovations focusing on enhancing accuracy, efficiency, and versatility. For a survey
on the subject, readers may refer to [140, 141]. For our experiments, we selected six state-of-the-art
models, DINO [40], RTMDet [39], YOLOv8 [41], VfNet [36], TOOD [37], and YOLOR [38].

4.2.1 DINO: DETR with Improved DeNoising Anchor Boxes for End-to-End Object Detection

DINO [40] is an enhanced object detection model built upon the DETR [142] framework. It introduces
several innovations to improve performance and efficiency, including contrastive denoising training,
mixed query selection, and a look-forward twice scheme for box prediction. Contrastive denoising
training helps the model by adding both positive and negative samples of the same ground truth to
stabilize training and reduce duplicate outputs. Mixed query selection enhances the initialization of
anchor boxes as positional queries, while the look forward twice scheme refines box predictions by
utilizing gradients from later layers to optimize parameters of early layers.
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(a) Original Image (b) Geometric Sim. (c) Zernike Sim. (d) P2S Sim.

Figure 3: Original images (input) 3a alongside the outputs of three turbulence simulators: geometric
simulator with γ = 100 3b, Zernike-based simulator 3c, and P2S Simulator 3d.
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Figure 4: The leftmost image represents a patch from a sample image of the FLIR ADAS v2 dataset.
The middle and rightmost images are patches from the same image, created using the proposed geo-
metric turbulence model with γ values of 50 and 100, respectively. Annotations for the person and car
classes are indicated by colored rectangles.

The improvements DINO brings are validated through extensive experiments on the COCO dataset,
showing superior performance and faster convergence compared to previous DETR-like models. With
a ResNet-50 backbone and multi-scale features, DINO achieves 49.4 AP in 12 epochs and 51.3 AP in
24 epochs, significantly outperforming its predecessors. Additionally, DINO demonstrates excellent
scalability, achieving state-of-the-art results on COCO val2017 and test-dev benchmarks when pre-
trained on the Objects365 dataset with a SwinL backbone, reducing the model size and pre-training
data requirements while delivering better performance.

DINO’s architecture comprises a backbone, a multi-layer Transformer encoder, a multi-layer Trans-
former decoder, and multiple prediction heads. It adopts deformable attention for computational ef-
ficiency and includes a denoising branch for improved stability during training. The model’s query
formulation links it closely with classical anchor-based detectors, while its innovative techniques,
such as contrastive denoising and look forward twice, ensure high-quality anchor selection and ac-
curate box prediction. This positions DINO as a leading end-to-end object detection model, setting
new benchmarks in the field.

4.2.2 RTMDet: An Empirical Study of Designing Real-Time Object Detectors

RTMDet [39] presents an innovative macro architecture comprising a backbone, neck, and head,
specifically optimized for real-time object detection. The backbone, inspired by CSPDarkNet, inte-
grates large-kernel depth-wise convolutions to enhance context capture and improve model accuracy.
This approach increases the effective receptive fields, allowing the model to understand the global
context of images better. The neck, which uses the same building blocks as the backbone, is designed
to balance computational load, thereby optimizing the speed-accuracy trade-off.

A key feature of RTMDet is its dynamic soft label assignment strategy, which improves the quality
of matching predictions with ground truth boxes and reduces label assignment noise. This strategy
enhances the discrimination in the cost matrix, leading to more precise object detection. Additionally,
RTMDet employs advanced data augmentation techniques, such as cached Mosaic and MixUp, to
enrich the training data and improve model robustness. The two-stage training strategy starts with
strong augmentations and transitions to weaker ones, balancing augmentation strength and improving
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final model accuracy. These innovations make RTMDet highly effective for various tasks, including
real-time object detection, instance segmentation, and rotated object detection.

The architecture’s efficiency is further optimized by reducing the number of blocks in each backbone
stage while enlarging the block width to maintain capacity and enhance parallelization. This approach
ensures fast inference without sacrificing accuracy. RTMDet also incorporates a shared detection head
with separate Batch Normalization layers for different feature scales, reducing parameters while main-
taining performance. The training strategy leverages a combination of data augmentations, optimiza-
tion techniques, and pre-training on general object detection datasets to further boost performance.

4.2.3 YOLOv8

YOLOv8 [41] is a groundbreaking advancement in object detection, boasting numerous enhancements
over its predecessors. Key features include mosaic data augmentation, anchor-free detection, the C2f
module, a decoupled head, and an innovative loss function. Mosaic data augmentation, which provides
the model with better context information by mixing four images, is employed until the last ten training
epochs, improving the model’s final performance. This technique, inherited from YOLOv4, ensures
that the model adapts better to varied contexts throughout most of the training while focusing on
accuracy refinement towards the end.

Anchor-free detection marks a significant shift from predefined anchor boxes, which often slow down
learning on custom datasets. By predicting objects’ mid-points directly, YOLOv8 reduces the number
of bounding box predictions, thus accelerating the Non-max Suppression (NMS) process. The C2f
module, which replaces the C3 module in the backbone, concatenates outputs from all bottleneck
modules, as opposed to only the last one. This change enhances the gradient flow and speeds up the
training process, reducing computational costs.

A notable architectural enhancement in YOLOv8 is the decoupled head, which separates the classifi-
cation and regression tasks. This division improves the overall model performance by allowing more
specialized processing. However, this separation can lead to misalignment, where the model might
localize one object while classifying another. To address this, YOLOv8 introduces a task alignment
score, combining the classification score with the Intersection over Union (IoU) score to determine
positive and negative samples. This alignment ensures that the model accurately matches predicted
boxes with ground truth. The modified loss function in YOLOv8 further refines this process. By
utilizing Binary Cross-Entropy (BCE) for classification loss and Complete IoU (CIoU) along with
Distributional Focal Loss (DFL) for regression loss, the model achieves a more nuanced understand-
ing of object boundaries. CIoU accounts for the spatial relationship between the predicted and actual
boxes, considering factors like center point and aspect ratio. Meanwhile, DFL focuses on improving
the predictions of samples that the model tends to misclassify, particularly false negatives, ensuring
that bounding box boundaries are optimized effectively. This combination of advanced features and
innovative techniques makes YOLOv8 a powerful and versatile tool in the field of object detection.

4.2.4 VarifocalNet (VfNet)

VFNet[36] is a dense object detector based on the FCOS+ATSS architecture, designed for high de-
tection performance by accurately ranking candidate detections [143], [144]. A key component of
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VFNet is the IoU-aware Classification Score (IACS), which merges object presence confidence and
localization accuracy into a single score. This model includes three new components: Varifocal Loss,
a star-shaped bounding box feature representation, and a bounding box refinement module. The star-
shaped representation captures the geometry and context of bounding boxes using features at nine fixed
sampling points, while the refinement module improves localization accuracy by learning residuals for
bounding box adjustments.

VFNet employs Varifocal Loss, inspired by focal loss [145], to train the model for IACS predic-
tion. Unlike focal loss, Varifocal Loss asymmetrically weights positive and negative examples, down-
weighting only negative examples to address class imbalance while up-weighting high-quality positive
examples to focus on precise detections. The training process also incorporates a dynamic label assign-
ment strategy and advanced data augmentations like Mosaic and MixUp, which improve the robustness
and accuracy of the model. The bounding box refinement step further enhances object localization by
learning scaling factors for initial bounding box adjustments, ensuring the refined boxes are closer to
the ground truth.

4.2.5 Task-aligned One-stage Object Detection (TOOD)

TOOD [37] is designed to address the common issue in one-stage object detectors where the two
sub-tasks—object classification and localization—often suffer from spatial misalignment due to their
independent processing. TOOD introduces a novel Task-aligned Head (T-Head) and a Task Alignment
Learning (TAL) strategy to explicitly align these tasks during training. The T-Head balances learning
task-interactive and task-specific features through a task-aligned predictor, enhancing the collaboration
between classification and localization tasks. This is achieved by computing task-interactive features
and making predictions via the Task-Aligned Predictor (TAP), which adjusts spatial distributions of
predictions based on alignment signals from TAL.

The Task Alignment Learning (TAL) component further refines the model by dynamically aligning
the optimal anchors for both tasks using a designed sample assignment scheme and a task-aligned
loss. TAL assigns training samples based on a metric that evaluates the degree of task-alignment,
ensuring that the most aligned anchors contribute to the training process. This metric is a combination
of the classification score and IoU, allowing the network to focus on high-quality anchors that are
well-aligned for both tasks. The task-aligned loss further unifies the anchors for classification and
localization during training, resulting in a bounding box with the highest classification score and the
most precise localization being preserved during inference.

Extensive experiments on the MS-COCO dataset demonstrate the effectiveness of TOOD. It achieves
a remarkable 51.1 AP in single-model single-scale testing, significantly surpassing recent one-stage
detectors like ATSS, GFL, and PAA, with fewer parameters and FLOPs. Qualitative results show
TOOD’s superiority in aligning classification and localization tasks, resulting in more accurate and
consistent object detection. The design of T-Head and TAL collectively ensures high-quality predic-
tions and state-of-the-art performance, making TOOD a robust solution for real-time object detection
challenges
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4.2.6 You Only Learn One Representation (YOLOR)

YOLOR[38] is a unified network designed to perform multiple tasks simultaneously, leveraging both
explicit and implicit knowledge. The primary innovation of YOLOR lies in its ability to integrate these
two types of knowledge to create a general representation that can be effectively utilized across various
tasks. This approach mimics the human brain’s ability to learn from both conscious and subconscious
experiences.

The YOLOR model incorporates several key components to enhance its performance. It introduces
kernel space alignment, prediction refinement, and multi-task learning into the network architecture.
Kernel space alignment ensures that features from different tasks are harmonized, improving the net-
work’s overall effectiveness. Prediction refinement helps in fine-tuning the model’s outputs, leading
to more accurate results. Multi-task learning allows YOLOR to handle diverse tasks, such as object
detection, instance segmentation, and image classification, within a single framework.

The network architecture of YOLOR is based on compressive sensing and deep learning principles.
By combining these techniques, YOLOR constructs a unified network that can generate a general
representation suitable for multiple tasks. This unified network is achieved with minimal additional
computational cost, making it highly efficient. YOLOR’s innovative use of implicit knowledge enables
the model to capture the physical meaning of different tasks, leading to significant improvements in
performance. The effectiveness of YOLOR is demonstrated through extensive experiments, showing
its superior capability in handling various computer vision tasks with enhanced accuracy and effi-
ciency.
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CHAPTER 5

RESULTS

This chapter presents the experimental findings. Six state-of-the-art models were evaluated using both
turbulent and original images, focusing on their object detection performance under challenging at-
mospheric conditions. The experiments were divided into two main sections. The first section 5.1,
"Impact of Augmentation over Varying Gamma Levels," analyzes the effect of atmospheric distortion
levels on deep object detectors and the improvements achieved with turbulent thermal image aug-
mentation. The second section 5.2, "Impact of Augmentation over Different Turbulence Simulators,"
examines the impact of different atmospheric simulators and the enhancements provided by turbulent
thermal image augmentation.

5.1 Impact of Augmentation over Varying Gamma Levels

The results of all the experiments are presented as average precision (AP) values in Table 5. Each
row in this table represents a separate experiment. The first column, labeled Aug, indicates whether
turbulent data was augmented during training (w/) or not (w/o). The next two columns state the Model
and the Backbone used. The AP column shows the mean average precision calculated over the two
categories, while AP50 and AP75 represent the cases when IoU is set to 0.5 and 0.75, respectively. The
last three columns display the AP values for the test subsets, where the test samples are categorized
by their pixel size. APS is the performance score for the subset that includes test objects smaller than
32×32 pixels, whereas APL is calculated for test objects larger than 96×96 pixels. APM represents the
performance for test objects sized in between.

An in-depth analysis of Table 5 reveals several key implications. Firstly, augmenting turbulent images
with varying γ values during training consistently improves detection performance across all models
and turbulence levels. This finding underscores the generalizability of the proposed augmentation for
any thermal adaptation or model training experiment. Another vital observation is that as the turbu-
lence level of the test set increases, the positive impact of the augmentation also increases, indicating
the robustness of this approach.

Examining the individual behavior of the models, distinct characteristics emerge. While VfNet shows
slightly better performance for test sets with lower turbulence levels, YOLOR generally becomes the
top performer as turbulence levels rise. However, the performance difference between VfNet and
YOLOR is negligible. Conversely, TOOD consistently performs worse than the other two models,
aligning with its relative performance on RGB before thermal adaptation. The RGB performances are
presented in Table 4 A consistent pattern across all models is that, despite their varying performance
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Table 5: Mean Average Precision results obtained for different experiments with different models, with
or without turbulent image augmentation for varying levels of turbulence gain γ.

Aug Model Backbone AP AP50 AP75 APS APM APL

test set without turbulence
w/o VfNet ResNet -50 52.4 81.9 54.8 41.1 73.4 76.8
w/ VfNet ResNet -50 54.7 83.8 57.1 43.7 75.2 79.9
w/o TOOD ResNet -50 46.1 74.6 47.3 33.1 71.1 76.3
w/ TOOD ResNet -50 46.8 75.4 47.9 33.7 71.3 77.8
w/o YOLOR YOLOR-P6 53.1 80.5 56.2 40.6 77.3 82.9
w/ YOLOR YOLOR-P6 53.8 81.0 57.2 41.4 77.5 83.3

test set with turbulence γ = 25

w/o VfNet ResNet -50 51.0 80.4 53.1 39.2 73 77.0
w/ VfNet ResNet -50 53.9 83.1 56.1 42.7 74.7 79.4
w/o TOOD ResNet -50 45.3 74.0 45.7 31.9 70.9 76.8
w/ TOOD ResNet -50 46.2 75.0 46.7 33.2 71.1 77.0
w/o YOLOR YOLOR-P6 52.3 79.9 54.7 39.5 77.1 83.3
w/ YOLOR YOLOR-P6 53.1 80.5 56.0 40.6 77.2 83.8

test set with turbulence γ = 50

w/o VfNet ResNet -50 47.5 77.0 48.3 35.1 70.8 76.2
w/ VfNet ResNet -50 51.8 81.4 53.5 39.8 73.9 79.8
w/o TOOD ResNet -50 43.4 71.9 44.0 29.7 69.7 77.0
w/ TOOD ResNet -50 44.9 73.9 45.1 31.5 69.8 77.2
w/o YOLOR YOLOR-P6 50.0 77.8 51.8 36.5 75.7 82.8
w/ YOLOR YOLOR-P6 51.4 79.4 53.7 38.5 76.2 83.7

test set with turbulence γ = 100

w/o VfNet ResNet -50 36.7 64.4 36.1 23.4 61.3 72.5
w/ VfNet ResNet -50 45.6 76.0 45.1 32.3 69.9 78.1
w/o TOOD ResNet -50 35.7 62.8 34.4 21.3 62.8 73.3
w/ TOOD ResNet -50 40.4 69.7 39.0 26.4 66.2 75.3
w/o YOLOR YOLOR-P6 41.4 69.1 40.9 26.4 69.7 82.4
w/ YOLOR YOLOR-P6 45.9 74.5 46.3 31.8 72.5 82.6

test set with turbulence γ = 150

w/o VfNet ResNet -50 23.0 43.8 21.0 12.1 43.7 61.1
w/ VfNet ResNet -50 38.9 68.6 36.5 25.0 64.2 76.2
w/o TOOD ResNet -50 26.0 49.3 24.1 13.0 49.4 68.1
w/ TOOD ResNet -50 35.4 63.7 33.2 20.9 61.6 74.1
w/o YOLOR YOLOR-P6 31.1 55.8 29.9 16.2 58.2 78.6
w/ YOLOR YOLOR-P6 39.7 67.9 38.4 24.5 67.4 81.3
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(a) (b)

(c) (d)

Figure 5: “IoU vs Recall” curves for all models, with and without turbulent data augmentation, for
selected γ levels.

without turbulent data augmentation, our proposed augmentation improves their performance. This
is evident in the experiments with the highest turbulence levels, where VfNet’s performance becomes
comparable to YOLOR’s, with a significant increase in mean AP from 23.0 to 38.9.

The APS values in Table 5 indicate that detection performance for small objects significantly drops at
high turbulence levels. This is expected, as objects farther from the camera not only appear smaller
but are also more affected by turbulence. However, Table 5 clearly demonstrates that the proposed
augmentation is most effective for small objects at higher turbulence levels. It is important to note that
before adaptation, the benchmarked models were trained with various augmentation strategies, which
did not mitigate high-level turbulence effects. For medium and large objects, the positive impact of
the augmentation is minimal at low turbulence levels, yet it is never diminishing. The APM and APL

values are consistently higher for experiments utilizing turbulent image augmentation.

To evaluate the localization success of each experiment, AP50 and AP75 columns are presented in
Table 5. Additionally, “IoU vs Recall” graphs are given in Figure 5. In this figure, for different levels
of γ, recall curves with respect to varying IoU are depicted, for all models, with or without turbulent
data augmentation. Both the AP75 values in Table 5 and recall curves in Figure 5 show that YOLOR
model provides superior localization. In addition, we see from Figures 5a, 5b, 5c and 5d that as the
turbulence levels increase, the proposed augmentation becomes significantly more effective for any
level of localization (i.e., IoU).
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5.2 Impact of Augmentation over Different Turbulence Simulators

In this section, we present the results of our experiments for the second section. The evaluation metrics
are based on the COCO (Common Objects in Context) metrics [146], similar to the first section. The
evaluated scores of the metrics are presented as Tables 6, 7, 8, 9. The tables have identical layout.
The first column indicates whether turbulent image augmentation was applied during training (w/ for
"with" and w/o for "without"). The second column lists the model names. The next six columns present
various Average Precision (AP) metrics: AP , AP50, AP75, APS , APM , and APL. These (AP ) values
are calculated by determining the area under the precision-recall curve for IoU thresholds ranging from
0.50 to 0.95. Similarly, mean AP values are computed specifically at IoU thresholds of 0.50 and 0.75
by averaging the AP values from the precision-recall curve at these thresholds. Each row represents
a specific experiment, showing the performance metrics of the corresponding model under the given
condition. Horizontal lines separate different sections of the table, providing clarity in distinguishing
between experiments conducted with different models. Tables 6, 7, 8, and 9 respectively present the
results obtained using the original (i.e. clean) test dataset, geometric turbulence simulator, Zernike-
based turbulence simulator, and P2S turbulence simulator applied to the test dataset.

Table 6: Mean Average Precision results for different experiments using each detection model, with
or without turbulent image augmentation during training at varying levels of turbulence gain γ. These
experiments use only the original test dataset.

Clean Test Set.

Aug Model AP AP50 AP75 APS APM APL

w/o RTMDet-x 56.8 84.3 60.5 45.3 78.3 81.8
w/ RTMDet-x 58.2 85.2 63.1 47.2 79.1 82.3

w/o DINO-4scale 56.3 85.9 59.9 45.7 75.5 81.1
w/ DINO-4scale 57.8 87.7 61.8 47.5 77.1 81.8

w/o YOLOv8-x 57.8 85.0 62.4 47.0 78.9 80.0
w/ YOLOv8-x 58.4 85.6 62.9 47.6 79.2 81.5

Table 7: Mean Average Precision results for different experiments using each detection model, trained
with and without the turbulent augmentation set, and for varying levels of turbulence gain γ. In this
experiment, the test set is constructed using the geometric simulator [1].

Test set with turbulence γ = 100

Aug Model AP AP50 AP75 APS APM APL

w/o RTMDet-x 41.8 69.9 41.9 27.8 67.7 78.2
w/ RTMDet-x 47.1 76.4 47.9 33.3 72.7 81.7

w/o DINO-4scale 35.9 65.9 34.1 23.0 59.4 75.2
w/ DINO-4scale 44.6 77.2 43.9 32.0 67.7 78.5

w/o YOLOv8-x 43.1 72.5 42.8 29.5 68.8 77.4
w/ YOLOv8-x 47.8 77.6 48.6 34.6 73.1 79.1
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Table 8: Mean Average Precision results for different experiments using each detection model, trained
with and without the turbulent augmentation set, and for varying levels of turbulence gain γ. In this
experiment, the test set is constructed using the Zernike-based simulator [2].

Test set Zernike-method.

Aug Model AP AP50 AP75 APS APM APL

w/o RTMDet-x 36.2 63.5 34.9 20.7 65.9 76.0
w/ RTMDet-x 40.8 67.0 37.2 24.8 67.7 79.9
w/o DINO-4scale 31.7 60.3 28.7 17.4 57.2 72.0
w/ DINO-4scale 34.9 64.3 32.1 20.3 61.7 75.1
w/o YOLOv8-x 36.6 64.9 35.1 21.5 66.5 77.3
w/ YOLOv8-x 41.2 68.2 37.5 24.9 68.8 79.7

Table 9: Mean Average Precision results for different experiments using each detection model, trained
with and without the turbulent augmentation set, and for varying levels of turbulence gain γ. In this
experiment, the test set is constructed using the P2S-based simulator[3].

Test set with turbulence based-on P2S-method

Aug Model AP AP50 AP75 APS APM APL

w/o RTMDet-x 19.7 38.3 17.5 6.4 42.2 67.5
w/ RTMDet-x 24.5 49.1 21.2 9.6 49.8 74.5
w/o DINO-4scale 17.1 35.9 14.4 5.3 37.0 64.7
w/ DINO-4scale 19.5 42.5 16.6 7.5 39.6 66.9
w/o YOLOv8-x 23.0 46.7 19.5 7.6 47.7 69.2
w/ YOLOv8-x 24.8 49.9 21.4 9.8 49.9 73.0

The experimental results reported in Tables 6, 7, 8, and 9 provide valuable insights into the effective-
ness of turbulence image augmentation for enhancing object detection performance under challenging
atmospheric turbulence conditions. The following are key observations based on these results.

Firstly, as shown in Table 6, using turbulence image augmentation during training improves detection
performance across all evaluated models, even when tested on the clean test set. This enhancement
indicates that augmenting with turbulent samples helps the models generalize better and become more
robust to various image degradations caused by atmospheric turbulence.

Furthermore, the results presented in Tables 7, 8, and 9 clearly demonstrate the critical importance
of turbulence augmentation when dealing with images degraded by atmospheric turbulence. For all
three turbulence simulators used, models trained with turbulence augmentation consistently outper-
form those trained without it. This pattern highlights the necessity of incorporating turbulence-specific
augmentations to enhance detection accuracy in real-world scenarios affected by atmospheric distor-
tions.
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We observe a noticeable performance improvement with turbulence augmentation for smaller objects
(see APS in tables) compared to larger objects (see APL in tables). This observation aligns with the
expected impact of atmospheric turbulence, as clearly illustrated in Fig 3. Atmospheric turbulence
tends to have a more significant disruptive effect on the visibility and detection of smaller objects due
to their limited spatial area and lower contrast.

While all evaluated models benefit from turbulence augmentation, the degree of improvement varies
across different architectures. For example, the RTMDet-x and YOLOv8-x models exhibit more sig-
nificant performance enhancements compared to DINO-4scale, as evidenced by the larger differences
in AP scores between their augmented and non-augmented versions shown in the Tables 7, 8, and 9.

Table 9 illustrates the most pronounced performance degradation compared to the other two simulators.
The P2S-simulated tests exhibit more significant performance drops. This observation, along with
Figure 3, suggests that the P2S simulator may produce more challenging turbulent images due to the
harsh parameter settings employed in this study, as detailed in Table 3.
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CHAPTER 6

CONCLUSIONS

This study explores the effectiveness of turbulence image augmentation for enhancing thermal-adapted
object detection models under atmospheric turbulence. By employing three distinct turbulence simu-
lators (geometric, Zernike-based, and P2S-based) and evaluating on corresponding turbulent test sets,
the research demonstrates significant improvements in detection accuracy and robustness. These aug-
mentations benefit all evaluated models (VfNet, TOOD, YOLOR-P6, RTMDet-x, DINO-4scale, and
YOLOv8-x), although the degree of improvement varies, indicating that the specific design and char-
acteristics of each model influence the augmentation’s effectiveness.

Notably, turbulence augmentation proves particularly effective in improving the detection of smaller
objects, which are more affected by atmospheric turbulence due to their limited spatial area and lower
contrast. This finding underscores the importance of addressing the challenges posed by atmospheric
turbulence for the detection of small-scale objects. Additionally, augmenting turbulent images of
different severity levels always increases detection performance across all models, especially at high
turbulence levels, bringing different model performances to a similar satisfactory level.

In summary, this research provides valuable insights for developing robust computer vision systems
capable of operating in challenging atmospheric conditions. The findings underscore the importance
of turbulence-specific augmentations to improve detection accuracy and robustness, contributing to the
advancement of reliable computer vision solutions for real-world applications affected by atmospheric
turbulence.

6.1 Future Directions

The study primarily focuses on thermal-adapted object detection, but the insights gained are likely
applicable to other computer vision tasks affected by atmospheric turbulence, such as visible-light
object detection, tracking, or segmentation. Future research could explore the generalization of these
findings to different domains and applications.

The geometric distortions caused by atmospheric turbulence pose unique challenges that conventional
augmentation methods, like affine transformations, cannot adequately simulate, especially for long-
range vision problems and small objects. The proposed turbulence image augmentation strategy shows
promise for becoming a standard practice for both visible and thermal vision systems utilizing deep
learning models. Expanding this approach to other deep learning-based solutions for various IR vision
problems could be highly beneficial. Additionally, employing sophisticated augmentation strategies
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like curriculum learning or reinforcement learning, could further optimize the augmentation process.
Moreover, while the geometric turbulence model used in this study is computation-friendly and practi-
cal for online learning systems, incorporating physics-based models and collecting data from calibrated
scenes would yield more realistic turbulent images, thereby enhancing the proposed augmentation
strategy’s impact.
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APPENDIX A

ADDITIONAL VISUAL RESULTS

The following figures are presented to provide additional insights and visual support for the findings
discussed in the main chapters. These illustrations serve to clarify and expand upon key aspects of
the research, offering detailed results. Figure 6 presents the visual results from experiments using
YOLOv8 on turbulent images generated by the Geometric Simulator, with the γ value set to 100.
Figure 6a shows the ground truth image generated with the Geometric Simulator at γ = 100, while

(a) Ground Truth (b) YOLOv8-aug (c) YOLOv8-w/o aug

Figure 6: YOLOv8 models (augmented and non-augmented) result over random selected turbulent test
image.

Figures 6b and 6c present the detection results obtained using the YOLOv8 model trained with both
clean and turbulent augmented images, and only clean images, respectively.

(a) Ground Truth (b) DINO-aug (c) DINO- w/o aug

Figure 7: DINO models (augmented and non-augmented) result over random selected turbulent test
image.
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Figure 7 presents another visual result, similar to Figure 6. Figure 7a is ground truth image generated
with the Geometric Simulator at γ = 150, while Figures 7b and 7c present the detection results
obtained using the DINO model trained with both clean and turbulent augmented images, and only
clean images, respectively.

(a) Ground Truth (b) RTMDet-aug (c) RTMDet-w/o aug

Figure 8: RTMDet models (augmented and non-augmented) result over random selected turbulent test
image.

Figure 8 is ground truth image generated with P2S(Phase-to-Space) Simulator at given parameters in
Table 3, while Figures 8b and 8c present the detection results obtained using the DINO model trained
with both clean and turbulent augmented images, and only clean images, respectively.

Figures 9 and 10 present comprehensive visual results. In both figures, the first column displays the
ground truth images, which consist of a clean image, followed by images generated by the Geometric
Simulator at γ = 25, γ = 50, γ = 100, and γ = 150, as well as images from the Zernike Simulator and
the P2S Simulator, respectively, from top to bottom. The second, third, and fourth columns of Figure 9
represent the detection inference results from YOLOv8, RTMDet, and DINO models trained with
only clean images, respectively. In contrast, Figure 10 presents the corresponding detection inference
results from the same models trained with both clean and turbulent augmented images.
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Ground Truth YOLOv8 RTMDet DINO

Figure 9: The results were obtained from models without turbulence augmentation over all test sets.
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Ground Truth YOLOv8 RTMDet DINO

Figure 10: The results were obtained from models with turbulence augmentation over all test sets.
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