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ABSTRACT

EFFICIENT PRETRAINING OF VISION TRANSFORMERS: A LAYER-FREEZING
APPROACH WITH LOCAL MASKED IMAGE MODELING

Topçuoğlu, Utku Mert

M.S., Department of Multimedia Informatics

Supervisor: Assoc. Prof. Dr. Erdem Akagündüz

September 2024, 47 pages

This thesis explores the acceleration of pre-training Vision Transformers (ViTs) for self-supervised
learning by integrating progressive layer freezing with local masked image modeling. The study aims
to address the significant computational demands and lengthy training times inherent in training ViTs
when employing self-supervised methods like masked image modeling. The core contribution of this
research lies in integrating the FreezeOut [1] method into the LocalMIM architecture, enhancing train-
ing efficiency by systematically freezing specific layers at strategic points during training.

We evaluate whether the FreezeOut method is as effective as proposed in the original paper across
different optimizers, acknowledging that learning rate scheduling is optimizer-dependent. Our exper-
imental results demonstrate that the proposed approach can reduce training time by approximately
12.5% with a minimal drop in top-1 accuracy (0.6%). Furthermore, we introduce and validate a novel
learning rate scheduling method tailored for ViTs, which achieves an even more negligible accuracy
drop of 0.1% with an 83.1% top-1 accuracy. We demonstrate that the number of training epochs and
dataset complexity are critical factors for the effectiveness of the FreezeOut method and show that it
performs even better with longer training epochs or simpler datasets. Our specially designed learning
rate scheduling method showed greater robustness to fewer training epochs and more complex datasets,
explaining its superior results in the 100 epoch IN-1K training setup.

This research offers a solution for enhancing the efficiency of ViT pre-training, making self-supervised
learning more accessible in environments with constrained computational resources. The findings con-
tribute to the broader field of computer vision by highlighting the potential of progressive layer freezing
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and adaptive learning rate scheduling in optimizing training processes for ViTs. The implementation
of our approach is accessible here: https://github.com/utkutpcgl/ViTFreeze.

Keywords: Vision Transformers, Self-Supervised Learning, Local Masked Image Modeling, Progres-
sive Layer Freezing, Computational Efficiency, Multi-Scale Reconstruction, Adaptive Learning Rate
Scheduling, FreezeOut Learning Rate Scheduling, Training Time Reduction
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ÖZ

GÖRSEL DÖNÜŞTÜRÜCÜLERİN VERİMLİ ÖN EĞİTİMİ: YEREL MASKELİ GÖRÜNTÜ
MODELLEME İLE KATMAN DONDURMA YAKLAŞIMI

Topçuoğlu, Utku Mert

Yüksek Lisans, Çoklu Ortam Bilişimi Bölümü

Tez Yöneticisi: Doç. Dr. Erdem Akagündüz

Eylül 2024, 47 sayfa

Bu tez, yerel maskeli görüntü modelleme ile aşamalı katman dondurmanın entegrasyonu yoluyla kendi
kendine denetimli öğrenme için Görüntü Dönüştürücülerin (ViT’ler) ön eğitimini hızlandırmayı araş-
tırmaktadır. Çalışma, özellikle maskeli görüntü modelleme gibi kendi kendine denetimli yöntemler
kullanıldığında, ViT’lerin eğitiminde mevcut olan önemli hesaplama gereksinimlerini ve uzun eğitim
sürelerini ele almayı amaçlamaktadır. Bu araştırmanın ana katkısı, eğitim sırasında belirli katmanları
stratejik noktalarda sistematik olarak dondurarak eğitim verimliliğini artıran FreezeOut [1] yönteminin
LocalMIM mimarisine uygulanmasında yatmaktadır.

FreezeOut yönteminin, öğrenme oranı planlamasının optimize ediciye bağımlı olduğunu kabul ederek,
farklı optimize edicilerde, orijinal makalede önerildiği kadar etkili olup olmadığını değerlendiriyoruz.
Deneysel sonuçlarımız, önerilen yaklaşımın eğitim süresini yaklaşık %12,5 oranında azaltabileceğini
ve top-1 doğrulukta yalnızca %0,6’lık bir düşüşle minimal bir kayba yol açtığını göstermektedir. Ay-
rıca, ViT’ler için uyarlanmış yeni bir öğrenme oranı planlama yöntemini tanıtıyor ve doğruluyoruz;
bu yöntem, %0,1’lik daha önemsiz bir doğruluk düşüşü ile %83,1 top-1 doğruluğa ulaşmaktadır. Eği-
tim dönemlerinin sayısının ve veri kümesi karmaşıklığının FreezeOut yönteminin etkinliği için önemli
faktörler olduğunu gösteriyor ve bu yöntemin daha uzun eğitim dönemlerinde veya daha basit veri
kümelerinde daha iyi performans gösterdiğini kanıtlıyoruz. Özel olarak tasarlanmış öğrenme oranı
planlama yöntemimiz, daha az sayıda eğitim dönemi ve daha karmaşık veri kümelerine karşı daha bü-
yük bir dayanıklılık göstermiş ve bu da 100 dönemlik IN-1K eğitim kurulumundaki üstün sonuçlarını
açıklamaktadır.
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Bu araştırma, ViT ön eğitimini hızlandırmak için bir çözüm sunarak, kendi kendine denetimli öğren-
meyi sınırlı hesaplama kaynaklarına sahip ortamlarda daha erişilebilir hale getirmektedir. Bulgular,
aşamalı katman dondurma ve uyarlamalı öğrenme oranı planlamasının ViT eğitim süreçlerini optimize
etmedeki potansiyelini vurgulayarak bilgisayarla görü alanına katkılar sağlamaktadır. Projenin kaynak
koduna buradan ulaşabilirsiniz: https://github.com/utkutpcgl/ViTFreeze.

Anahtar Kelimeler: Görsel Dönüştürücüler, Özdenetimli Öğrenme, Yerel Maskeli Görüntü Model-
lemesi, İlerlemeli Katman Dondurma, Hesaplama Verimliliği, Çok Ölçekli Yeniden Yapılandırma,
Uyarlamalı Öğrenme Oranı Zamanlaması, Dondurma Öğrenme Oranı Zamanlaması, Eğitim Süresi
Azaltma
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CHAPTER 1

INTRODUCTION

In this study, the recently popularized, one of the most capable and data-hungry architectures, Vision
Transformers (ViTs) [2], are taken into consideration in an even more demanding training setup in the
pursuit of more efficient model training a layer freezing technique. This chapter focuses on the advan-
tages and challenges of Vision Transformers (ViTs), self-supervised learning (SSL), and layer-freezing
techniques. We highlight the efficiency issues in SSL training for ViTs, which require substantial com-
putational resources and time.

1.1 The Need for Efficient Models

More data is being stored, better sensors are being produced as the world becomes more digitalized at
a fast pace. This enables deep learning models to benefit from larger scales. Even though the model
performance tends to increase logarithmically as the data increases exponentially [3], the benefits of
model scaling remain the most simple and effective way to improve model performance.

As a result, reducing the compute requirement of a model allows it to consume less energy and possibly
achieve better results by compressing larger models. Hence, efficient models not only enable faster and
smaller models but also pave the way for better-performing models in a compute or energy-constrained
environment.

An important factor in this has been hardware innovations. Thanks to model optimizations in this
field, deep learning models’ energy consumption has not increased exponentially, while the compute
requirements have increased exponentially [4]. Even if the pace of hardware innovations slows down,
methods that increase model efficiency will allow for larger models to outperform when trained on
larger datasets, by enabling them to run larger models on compute-restricted settings.

Moreover, in developing countries, like Turkey, it is hard or even impossible to access HPC (high-
performance computing) to train large SOTA models. Likewise, low-budget individuals lack the op-
portunity to train or contribute to the field. Energy/Cost/Time efficient models can remove this barrier
and democratize deep learning.

These efficient models can perform faster, are less energy-consuming, and less memory requiring
inference and training. Learning rate and layer convergence are fundamental in these methods, as in
model convergence. A simple yet effective method is layer freezing, however, the interaction between
layer convergence and layer freezing has not been understood clearly, though highly used.
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1.2 Related Approaches and Challanges

It is important to understand the methods at hand with the challenges they face before describing the
specific problem we tackle. Here we focus on these issues in the context of ViT, SSL, and layer
freezing.

1.2.1 Vision Transformer

The transformer architecture, successful in NLP [5], has also excelled in computer vision, often out-
performing or matching traditional CNNs [6] in various tasks. A key advantage of transformers is
their ability to process multiple data modalities, enabling flexible and comprehensive analysis. Fur-
thermore, vision transformers effectively capture long-range dependencies within images, leading to
more accurate and detailed representations, making them ideal for complex vision tasks that demand a
deep understanding of spatial relationships.

However, unlike convolutions, the MHA layer lacks inductive bias, leading to increased capacity and
associated challenges [2]. These challenges include the need for more data, complex initialization
techniques, and pre-training to mitigate overfitting. Additionally, global attention introduces quadratic
computational complexity, where increasing the pixel count linearly results in a quadratic rise in com-
putational demands. Consequently, ViTs require significantly more training time.

1.2.2 Self Supervised Learning and Masked Image Modeling

Another vision method that requires a lot of data and training is self-supervised learning, such as
contrastive learning and masked image modeling. It removes the need for labeled data and allows
models to learn robust and generalizable features from the data itself. This has significantly benefited
Vision Transformers (ViTs), which thrive on diverse learning signals to mitigate their tendency to
overfit.

Contrastive learning uses data augmentation to learn invariant, robust feature representations by con-
trasting augmented views of the same image [7]. Masked image modeling, inspired by masked lan-
guage modeling in NLP, has also become a powerful approach to vision. It requires the model to
predict the original content of masked image regions, thus fostering an understanding of contextual
relationships [8].

Despite all its advantages, self-supervised learning techniques mostly require large datasets and lengthy
training for the pre-trained model to surpass regular pre-trained models on popular datasets. They ex-
cel on large, diverse datasets and extended training iterations. For example, the pre-trained ResNet50
on ImageNet-1K already improves the performance of ResNet50 on most downstream tasks [2]. To
surpass this, it is mostly required to train longer on datasets where many different views of an image
are aided with complex augmentations. This is also true for masked image modeling, where it is hard
to find the model converging even in long training iterations. This is why it is common to see 1600
epochs of training durations for the MIM task [8].
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1.3 A Solution: Layer Freezing

A simple and effective method for increasing model training speed is layer freezing. Although mostly
used in transfer learning, it has been also explored to train models efficiently from scratch. As early
layers mostly learn simpler features [9] and later features build up on early activation outputs, mostly
initial layers are preferably frozen earlier during this setup. Convergence of layers is particularly
sensitive to the Learning rate, hence layer-wise learning rates have been proposed [1].

However, it is important to understand when a layer has converged, and freeze it if there is no harm to
the learning process or the performance. Yet, it is not clear when a layer has converged, as even smaller
gradients do not guarantee convergence [10] or that freezing a particular layer with a lower gradient
does not harm the model performance. Even though there are studies that freeze layers to speed model
training with minimal to no accuracy drop, the optimal timing and method to freeze remain unclear.
Also, most layers are considered as a whole, as freezing a layer is much more beneficial than unit
freezing due to the parallel structure of deep models.

1.4 Problem Statement

Considering the hunger for data and the requirement for long training epochs of these methods, MIM
and ViT combined, need and benefit from even longer epochs and larger datasets. This enhances the
importance of efficient and faster training methods utilized while training ViTs with SSL. Considering
larger models and ViT variations are introduced gradually, this issue seems to remain and will continue
to grow.

Therefore, the primary issue addressed in this thesis is the inefficiency of Mased Image Modeling train-
ing for Vision Transformers. Although ViTs have shown significant promise in handling diverse data
modalities and achieving superior results in various vision tasks, their training processes are plagued
by extensive computational requirements and long training times. The high-capacity nature of ViTs,
combined with the absence of inductive biases, necessitates large datasets and complex pre-training
techniques to prevent overfitting. Furthermore, the global attention mechanism used in ViTs intro-
duces quadratic computational costs as image size increases [2]. As the model size increases, the slow
training speed and data hunger problems increase further.

SSL methods benefit ViTs by removing the need for labeled data and helping the models learn robust
features from the data itself. However, these methods also demand significant compute and time. For
instance, training a ViT-L model using masked autoencoding on 128 TPU-v3 cores can take 31 hours
for 1600 epochs, while another SSL method, MoCo v3, requires 36 hours for 300 epochs [8]. Such
prolonged training times are impractical for many users and applications without access to large-scale
compute.

Furthermore, applying layer freezing techniques to this complex setup has not been investigated to our
knowledge. Apart from the efficiency gains, there are insight to be gained in this pursuit.
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1.5 Aim and Scope of the Research

Primary Objective:

Accordingly, the primary objective of this research is to accelerate the pre-training process of Vision
Transformers (ViTs) with minimal drop in accuracy by using a special layer freezing technique aided
with a layer-wise learning rate method. Making SSL ViT training more accessible.

Scope:

This research focuses on self-supervised learning (SSL), particularly masked image modeling. The
study is centered around the ViT-B model, examining its performance over 100 training epochs. This
focused approach allows for a detailed and controlled examination of the proposed methodologies.

In addition, the research aims to explore and validate strategies such as progressive layer freezing and
adaptive learning rate scheduling. By systematically freezing specific layers at strategic points during
training, the study seeks to reduce the computational burden while maintaining model performance.
The adaptive learning rate scheduling is intended to optimize the training process further, potentially
improving the performance of ViTs.

1.6 Research Questions

The research questions guiding this thesis are designed to explore the effectiveness and applicability of
progressive layer freezing and adaptive learning rate scheduling in the context of self-supervised learn-
ing for Vision Transformers. Specifically, the questions aim to address the efficiency, performance, and
adaptability of these techniques:

• Question 1: Does FreezeOut effectively speed up model training without significantly reducing
performance, and can it maintain accuracy while decreasing training time?

• Question 2: How does the FreezeOut learning rate schedule, which increases early layer learn-
ing rates, impact the performance? While originally tested with SGD, does this method work
with other optimizers like AdamW [11]?

• Question 3: Can the FreezeOut technique be applied to the Vision Transformer architecture
LocalMIM to accelerate the masked image modeling pre-training task? Does it enhance training
efficiency for this specific architecture?

• Question 4: Does the learning rate scaling of FreezeOut improve the layer freezing method out
of the box, or does it require adjustments for LocalMIM to achieve optimal results?

• Question 5: Considering that the original FreezeOut method was tested on CIFAR-10 and
CIFAR-100 datasets, how do dataset size, complexity, and training epoch count affect the re-
sults when applied to IN-1K with LocalMIM?
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1.7 Contributions of the Study

This thesis makes several contributions to Vision Transformers (ViTs) and self-supervised learning
(SSL). The key contributions are as follows:

Novel Application of Methodology: We introduce an innovative approach that combines local mask-
ing with progressive layer freezing to enhance the efficiency of ViT training. To our knowledge, this
is the first method that applies layer freezing to ViT in the SSL training setting.

New Dynamic Learning Rate Scaling Method: We propose a new dynamic learning rate scaling
method to enhance FreezeOut’s integration to LocalMIM, specific to the multi-stage structure and
large gradients of initial layers.

Efficiency Gains: The study provides a detailed quantification of the training time reductions achieved
through the proposed methodology. It systematically analyzes the impact of these efficiency gains on
the model’s accuracy, demonstrating that reductions in training time can be achieved with minimal
performance drop.

Theoretical Findings and Implications:

• Better upstream task performance might not translate to downstream tasks directly.

• The FreezeOut method benefits from easy-to-converge training configurations, such as extended
training epochs and simpler datasets.

• Multi-stage architectures might increase the early layer gradients too much when their losses
contribute linearly to the total loss. This should be taken into consideration with special learning
rate scaling methods.

• FreezeOut’s learning rate scaling method might not drastically improve the performance (as
stated in the paper). It might require case-specific modification for different architectures.

• Our results support that FreezeOut can also be used for other architectures. The original Freeze-
Out paper claims that skip-connections availability is required for the method to work, and our
results support this.

• We show that LocalMIM converges much faster than regular MAE training and even a low
number of epochs achieve competitive results on the classification downstream task. However,
its contribution to FreezeOut is not apparent.

1.8 Organization of the Thesis

This thesis is structured into five chapters, each addressing different aspects of the research.

• Chapter 1: Introduction - Provides an overview of the research background, problem state-
ment, objectives, research questions, and contributions.
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• Chapter 2: Related Work - A review of the existing literature is presented in this chapter,
situating the research within the current state-of-the-art in Vision Transformers (ViTs) and self-
supervised learning (SSL).

• Chapter 3: Methodology - This chapter details the proposed methods, including the architec-
ture of Vision Transformers, the principles of FreezeOut, and the specifics of Local Masked
Image Modeling (LocalMIM), ViTFreeze, and learning rate scaling techniques.

• Chapter 4: Experiments and Results - Describes the experimental setup—datasets, training
configurations, and evaluation metrics. Presents and analyzes the findings, providing a frame-
work for replicating and assessing the proposed methods.

• Chapter 5: Discussion - Analyzes the results and discusses their implications.

• Chapter 6: Conclusion - Summarizes the research findings and their contributions and suggests
future research directions.
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CHAPTER 2

RELATED WORK

Rapid advancements in computer vision and deep learning have led to the development of numerous
innovative architectures and methods. This chapter delves into these contributions. We will explore
various strategies to enhance model efficiency and accelerate training.

2.1 Architectures

CNNs Since AlexNet [12], which demonstrated the power of deep learning in large-scale image clas-
sification, convolutional neural networks have been the gold standard for vision tasks. As a follow-up
to AlexNet, VGG [13] introduced a simpler architecture with deeper layers using only 3x3 convolu-
tions. This was further advanced by GoogleNet [14], adding inception modules with varying filter
sizes combined. With ResNet [15], residual connections mitigated the problem of vanishing gradients,
allowing for much deeper networks. DenseNet [16] improved gradient flow and parameter efficiency
by ensuring direct connections between all layers, concatenating initial layer outputs to later layers.
EfficientNet [17] optimizes the network’s depth, width, and resolution in a balanced manner, main-
taining high-resolution representations throughout the network. Additionally, depthwise separable
convolutions, as seen in MobileNets [18], have made CNNs more efficient for mobile applications.
In contrast, deformable convolutions [19] attend to more important locations in images, focusing on
necessary parts of an image.

Vision Transfomers The Vision Transformer (ViT) represents a significant shift in vision backbones,
directly applying Transformer architectures to non-overlapping image patches for image classification
[2]. ViT achieves an impressive accuracy compared to traditional convolutional networks, though
it initially required large-scale datasets like JFT-300M for optimal performance. DeiT introduced
training strategies that enabled effective performance on smaller datasets, such as ImageNet-1K [20].
Despite these advancements, the original ViT architecture struggled with high-resolution inputs due to
quadratic complexity with image size.

Some studies applied transformer techniques to dense vision tasks. One extended the CNN architec-
ture with transformers for dense vision tasks, object detection, and semantic segmentation[21]. The
other has used it for image super-resolution and denoising [22]. Concurrently, other research efforts
have modified the ViT architecture to enhance image classification capabilities [23, 24]. The Swin
Transformer notably achieves superior accuracy by processing shifted hierarchical windows to in-
crease its field of view and patch diversity [23]. The Swin Transformer’s localized operation and linear
complexity have proven advantageous in modeling the high correlation in visual signals, achieving
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state-of-the-art accuracy on tasks like COCO object detection and ADE20K semantic segmentation.
Another line of work explores building feature maps of multi-resolution (scale) patches on Transform-
ers, diversifying the field of view and granularity of the extracted features, and applying a special
transformer architecture used in NLP named LongFormer to the vision domain [25].

2.2 Self supervised learning

Unsupervised learning and autoencoders Unsupervised learning, a fundamental approach in ma-
chine learning, aims to learn patterns in data without using explicit labels. One of the most notable
methods in this domain is the autoencoder, which learns efficient codings of input data. Autoencoders
consist of an encoder that compresses the input into a latent-space representation and a decoder that
reconstructs the input from this representation. This architecture benefits dimensionality reduction,
feature learning, and data denoising.

Key developments in autoencoders include the introduction of the Variational Autoencoder (VAE),
which integrates probabilistic graphical models and allows for more structured latent space representa-
tions [26]. Another important method is the Denoising Autoencoder, designed to reconstruct corrupted
input, thereby learning robust features [27]. Additionally, the Sparse Autoencoder enforces sparsity in
the latent representation, encouraging the model to learn useful features for downstream tasks [28].

Self-supervised learning in NLP

Self-supervised learning (SSL) in natural language processing (NLP) has revolutionized the field. One
of the pioneering works in this domain is the development of word embeddings, such as Word2Vec [29]
and GloVe [30]. These models leveraged context to predict word associations, laying the groundwork
for more advanced methods.

The advent of transformers marked a significant advancement in SSL for NLP. The introduction of
the BERT model showcased the effectiveness of bidirectional training by predicting masked words
in a sentence, thus capturing deeper semantic relationships [31]. Subsequent models like RoBERTa
improved on BERT by optimizing the pretraining process [32]. GPT-3 extended this paradigm by
demonstrating the power of autoregressive models in generating coherent text and performing a wide
range of NLP tasks with minimal fine-tuning [33].

Self-supervised learning in Vision. Self-supervised learning has become a significant trend in com-
puter vision as well. Key methodologies include generative techniques like denoising autoencoders
[27], image inpainting [34], and colorization [35], which reconstruct data from partial inputs. Con-
trastive learning, a form of discriminative approach, is notable for creating varied image views and
ensuring consistent representations [36, 37], sometimes without contrasting negative pairs [7, 38]. Re-
cent approaches in contrastive learning also incorporate pixel level granularity [39].

Masked image modeling Inspired by Masked Language Modeling (MLM) in NLP, Masked image
modeling (MIM) involves predicting occluded or masked regions within images. Foundational meth-
ods such as [40] and [8] paved the way, with recent innovations [41] reducing the need for large de-
coders in the pre-training task, and [42] reconstructing HOG features instead of pixel values to improve
the performance and efficiency. These MIM approaches, which use different target signals like normal-
ized pixels [8], discrete tokens from a visual CodeBook like BERT [43], and handcrafted HOG features
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[42], have addressed initial challenges related to computational demands and pre-training time. [44]
further optimizes the encoding process utilizing only visible tokens, while ConvMAE combines ViTs
with CNNs [45] enhancing hierarchical feature understanding.

"MixMAE" by Liu et al. [46] mixes two images and conducts dual reconstruction to improve effi-
ciency. The work of Wang et al. [47], "Masked Image Modeling with Local Multi-Scale Reconstruc-
tion," introduces LocalMIM, the baseline model which is used in this thesis, applies local multi-scale
and multi-stage reconstruction approach, enriching the representations learned for intermediate en-
coder stages. "FastMIM" [48], used again HOG features instead of pixels to reconstruct as [42] did,
but additionally, they reduced the input resolution, making use of HOGs robustness to lower resolu-
tions and loss of texture. Particularly notable is "Stare at What You See" by Xue et al. [49], which
uses non-reconstruction-based image modeling by aligning features extracted from student and teacher
models, further increasing efficiency. Furthermore, [50] decides what to mask for the student by using
the attention maps generated by a teacher network, increasing the final performance and convergence
speed.

2.3 Methods To Improve Speed

Pruning and quantization techniques. While quantization and pruning are mostly designed for in-
ference, these methods also aim to increase training speeds. Quantization reduces the precision of
the numbers used to represent model parameters to decrease computational requirements and memory
usage. Techniques such as Mixed Precision Training and methods described in [51, 52] demonstrate
how reducing numerical precision can accelerate training processes without substantial loss in model
accuracy. On the other hand, pruning techniques focus on removing redundant or less significant
parameters within neural networks to reduce their size and complexity. The efficacy of pruning in
accelerating training is shown in [53, 54, 55]. Also, [56] shows dynamic approaches to pruning that
adapt during training, further enhancing efficiency.

Speeding up Training with Layer Freezing and Dropping. Bengio et al. (2006) pioneered this field
with their work on layer-wise training, which highlighted the complexity of training deep architec-
tures [57]. Building on this, Brock et al. (2017) introduced FreezeOut, a method for progressively
freezing layers, which showed time savings in training with minimal accuracy loss for WideResNets
and architectures with skip connections in general [1]. Xiao et al. (2019) furthered this approach by
proposing an intelligent layer freezing method based on normalized gradient differences [58], freezing
layers by assigning a freezing rate per layer given the magnitude of the gradient of that layer. Zhang
and He (2020) extended these concepts to Transformer-based language models, achieving substantial
reductions in training time (achieving the same accuracy 2.5x faster) and computational costs (24%
less per sample) through progressive layer dropping by using a gating mechanism to skip certain lay-
ers during training [59]. Chen et al. (2022) contributed by identifying a Layer Convergence Bias,
indicating faster convergence in shallower layers of DNNs, which supports the idea of selective layer
training [9]. This paper shows that early layers converge faster than deeper ones (even with smaller
gradients), suggesting that early layers are more robust to larger learning rates as they are usually
optimized on a flatter landscape. This also explains why FreezeOut’s learning rate scaling method
works well. The high-frequency content of the image (signal) is more repetitive and easier to learn by
early layers (simpler features) and vice versa for low-frequency complex features. Wang et al. (2022)
introduced a knowledge-guided layer freezing technique, using semantic knowledge from a reference
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model to freeze layers during training without sacrificing accuracy [60]. Liu et al. (2021) developed
AutoFreeze, an adaptive system for accelerating model fine-tuning by selectively training layers (rather
than freezing layers in order) and efficiently caching intermediate activations [61].

2.4 Model Convergence

Simulated Annealing and Learning Rates Effect on Model Convergence. Simulated annealing
(SA) is a probabilistic optimization technique inspired by the annealing process in metallurgy, where
controlled cooling of material reduces defects, achieving a more stable structure. SA has optimized
learning rates in deep learning, enhancing training efficiency and convergence stability. The foun-
dational work [62] highlights the applicability of SA in finding optimal weights in neural networks,
demonstrating its effectiveness over traditional methods by escaping local minima and exploring a
broader solution space. This is similar to trying to fit a key into a lock. One needs to jiggle the key
with larger movements first, smoother, and smaller in the end to place it.

Learning rates are an important determiner of the size of this movement while trying to find the op-
timal point. The concept of super-convergence, as discussed in [63], demonstrates that training with
a cyclical learning rate schedule that includes very high learning rates can drastically reduce training
times while maintaining or improving model performance. This method exploits the ability of high
learning rates to accelerate learning and subsequently uses lower rates to fine-tune the model, leading
to efficient convergence, just as in simulated annealing. Large learning rates act like regularization,
similar to simulated annealing in escaping local minima with larger oscillations.

Subsequent research has expanded, incorporating cyclical patterns and warm restarts to refine learning
rate schedules further. For instance, [64] introduced a method to vary learning rates within a range,
preventing premature convergence and improving model performance. Warm restarts, as detailed in
[65], utilize SA principles to periodically reset the learning rate.

Moreover, optimization algorithms like Adam, described in [66], adapt the learning rate for each pa-
rameter individually, combining the advantages of two other popular methods: AdaGrad and RM-
SProp. By maintaining a moving average of the gradient and its square, Adam provides an effective
and reliable means to adjust learning rates dynamically, contributing to stable and faster convergence.
Unlike simulated annealing, momentum is lagging, hence warm-ups are necessary to move in the cor-
rect direction before applying large learning rates. Momentum enables escaping local minima, but the
estimates of the first and second moment of the gradients need to be reliable before taking too large
steps, showing the importance of warm-up epochs.

In addition, [67] explores the impact of learning rates on the model’s ability to generalize versus
memorizing the training data. The study suggests that appropriately tuned learning rates can help
balance this trade-off, ensuring the model converges to a solution that generalizes well to unseen data.
Increasing the learning rate can introduce regularization and enhance model generalization.
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CHAPTER 3

METHODOLOGY

Here, we start with an in-depth examination of the Vision Transformer (ViT) architecture [2], empha-
sizing its adaptation for image classification and masked image modeling. Subsequently, we explore
FreezeOut [1], a technique designed to speed up the training process through layer-wise learning rate
scheduling and freezing. We then introduce LocalMIM [47], an enhancement over traditional masked
image modeling that leverages multi-scale and multi-stage supervision to improve semantic under-
standing. Finally, we present ViTFreeze, our novel approach that integrates FreezeOut with LocalMIM
to optimize training efficiency and performance with our proposed learning rate adjustment technique.

3.1 Vision Transformer (ViT)

The Vision Transformer (ViT) adapts the Transformer architecture [5] for image classification tasks by
converting input images into a sequence of patches. Specifically, an image x ∈ RH×W×C is reshaped
into N patches {xpi

}Ni=1, where N = HW/P 2 and P is the patch size. Each patch xpi
∈ RP×P×C is

then flattened and projected into a D-dimensional embedding space using a trainable linear projection,
resulting in a set of patch embeddings.

3.1.1 Patch Embeddings

Patch embeddings are generated by applying a linear projection E to the flattened patches, producing
the initial sequence of embeddings z0:

z0 = [xclass;xp1
E;xp2

E; · · · ;xpN
E] + Epos (1)

Here, xclass is a learnable class token prepended to the sequence. Each flattened patch xpi ∈ RP 2·C is
projected using E ∈ R(P 2·C)×D. The positional embeddings Epos ∈ R(N+1)×D are added to maintain
spatial information, resulting in the sequence z0 ∈ R(N+1)×D.

11



3.1.2 Transformer Encoder

The Transformer encoder processes the patch embeddings using alternating layers of multi-headed
self-attention (MSA) and MLP blocks, with Layernorm (LN) and residual connections:

z′ℓ = MSA(LN(zℓ−1)) + zℓ−1, ℓ = 1 . . . L (2)

zℓ = MLP (LN(z′ℓ)) + z′ℓ, ℓ = 1 . . . L (3)

Here, zℓ−1 is the input to the ℓ-th layer, z′ℓ is the output after the MSA layer and residual connection,
and zℓ is the output after the MLP block and residual connection. The total number of layers is denoted
by L, with each MLP block containing two layers with GELU non-linearity.

3.1.3 Classification Head

The output state corresponding to the class token z0L from the final Transformer encoder layer is used
for classification. A multi-layer perceptron (MLP) with one hidden layer is employed during pre-
training, while fine-tuning uses a single linear layer:

y = LN(z0L) (4)

where z0L ∈ RD represents the state of the class token after the final layer L, and y ∈ RK is the output
logits for K classes.

3.1.4 Inductive Bias

Unlike Convolutional Neural Networks (CNNs), ViT has significantly less image-specific inductive
bias. CNNs inherently capture locality and translational equivariance, while ViT relies on MLP lay-
ers for locality and self-attention mechanisms for global context. The 2D neighborhood structure is
minimally used, mainly during the initial patch division and positional embedding adjustment during
fine-tuning.

3.2 FreezeOut

FreezeOut modifies the backpropagation and Stochastic Gradient Descent (SGD) process to decrease
training time [1]. This method uses a layer-wise cosine annealing schedule, gradually reducing each
layer Li’s learning rate to zero. The learning rate αi(t) for layer i at iteration t is given by:

αi(t) = 0.5× αi(0)× (1 + cos(
πt

ti
)) (5)

where αi(0) is the initial learning rate for layer i, and ti is the iteration at which its learning rate
reaches zero. Layer freezing begins at a predefined iteration t0, with subsequent layers freezing at
later iterations. Once a layer’s learning rate becomes zero, it switches to inference mode. It is excluded
from further backward passes, resulting in per-iteration speedup proportional to the computational cost
of the frozen layer. FreezeOut also allows varying the initial layer-wise learning rates and the relation
of t0 to other layers’ freezing times, providing flexibility in training prioritization.
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In FreezeOut, two aspects of the training strategy are varied experimentally. Firstly, the initial layer-
wise learning rate αi(0) is scaled relative to the base learning rate α and the time ti at which the layer’s
learning rate reaches zero, defined as:

αi(0) =
α

ti
(6)

where α is the base learning rate used for the final layer, and ti ranges between 0 and 1 (with 1 repre-
senting the entire training duration). This scaling ensures that each layer’s learning curve integrates to
the same value, enabling equivalent distance traversal in weight space despite fewer training steps.

Secondly, the relationship between the initial freezing time t0 and the freezing times ti for other layers
is adjusted. A linear scheduling rule is modified by cubing the ti values, denoted as ti,cubed = t3i,linear.
This approach prioritizes training for later layers compared to a linear schedule. Both unscaled and
scaled variants are explored, where the αi values are either identical or scaled based on the cubed ti
values. For example, a user-selected t0 = 0.5 would result in t0,cubed = 0.125. These modifications
introduce flexibility in the training process, potentially reducing the need for extensive hyperparameter
tuning [1].

3.3 LocalMIM

Masked Image Modeling. Masked image modeling is a self-supervised learning method that entails
randomly masking portions of input data and training a model to predict the missing segments [8, 40].
Formally, given an input image x ∈ RH×W×C , it is segmented into patches {xi

p}Ni=1, where N =

HW/P 2 represents the number of patches with patch size P . A subset of these patches {xm
p }Mm=1,

where M < N , is masked. The objective is to predict the masked patches x̂m
p using the information

from the unmasked patches. This technique is similar to masked language modeling in NLP, as used in
BERT [68], and allows the model to learn detailed, contextual representations of the input data without
needing labeled examples. This method is especially effective in vision transformers [2], where the
transformer’s ability to capture global context helps to reconstruct the masked patches.

Vision Transformers in Masked Image Modeling In Vision Transformers (ViT) for masked image
modeling, an image x ∈ RH×W×C is converted into a sequence of N 2D patches xp ∈ RN×(P 2·C),
where N = HW/P 2 and P is the patch size. These patches are then projected to D dimensions, creat-
ing patch embeddings. A learnable class token is added to the sequence, and 1D positional embeddings
are included to preserve spatial information. The Transformer encoder processes the sequence using
multi-headed self-attention (MSA) and linear blocks with layer normalization (LN) and residual con-
nections. For masked image modeling, some patches are randomly masked, and the model is trained
to reconstruct these masked patches, learning contextualized representations in the process. Inspired
by masked language modeling, this approach enables the ViT to capture complex visual patterns and
long-range dependencies in image data.

Local Masked Image Modeling. In Masked Image Modeling (MIM), the lower encoder layers are
essential for pre-training, as they convey significant semantic knowledge to the upper layers. However,
these initial layers often struggle to learn inter-patch semantic relationships [47], particularly with
global reconstruction loss. This shows that the early layers lack image representation by focusing on
feeding valuable features for the later layers, which might overwhelm the later layers and utilize the
initial layers ineffectively. A multi-scale method has been proposed to improve the learning of these
relationships in the initial layers, diversifying and spreading the learning task throughout the model.
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Local Masked Image Modeling (LocalMIM) [47] enhances the learning of initial layers in vision
transformers by using multi-scale reconstruction to guide multiple layers in the model. This approach
provides a nuanced understanding of the input at various scales. They the input image into non-
overlapping regions, each offering supervision signals for the reconstruction task at different scales.
Figure ?? illustrates this proposed approach.

In Local multi-scale reconstruction for Masked Image Modeling (MIM), an image x ∈ RH×W×C is
divided into regions {xi ∈ Rp×p×C}HW/p2

i=1 . Supervision signals yi = π(xi) are obtained using the
HOG feature descriptor π, providing fine-scale supervisions that capture low-level details and coarse-
scale supervisions that encapsulate high-level semantics [47].

The lower layers of the model focus on reconstructing fine-scale supervision, while the upper layers
handle coarse-scale supervision. It has been observed that applying the coarse-scale reconstruction task
alone does not improve model performance, but combining fine-scale with coarse-scale supervision
yields the best results [47]. The decoder, consisting of Transformer blocks and Deconvolution/Pool
layers, adjusts the predictions to match the supervision scale across four levels.

The training loss is defined as:

LLocalMIM = −
∑
l∈I

wl ·
Nl∑
i=1

ml
i · lnP (yli|ŷli),

where I denotes the chosen layers, wl represents the weight of each local loss, and ml is the mask. In
LocalMIM, the losses are weighted equally. This method effectively utilizes multi-scale supervision,
improving the learning process and semantic understanding at different scales.

3.4 ViTFreeze: Applying FreezeOut to LocalMIM

Our approach aims to improve the learning efficiency and speed of the initial layers in Vision Trans-
former (ViT) based masked image modeling. By incorporating local reconstruction tasks, these layers
achieve a deeper understanding of the input data more quickly. This strategy facilitates the earlier
freezing of layers while minimizing any loss in model accuracy. The combination of advanced lo-
cal masked image modeling and progressive layer freezing is designed to enhance both the learning
quality and computational efficiency of ViTs.

In our model, we utilize a transformer block design suitable for freezing. Specifically, in the ViT
encoder model, each layer, starting from the patch embedding layer, is progressively frozen during
training. For instance, the ViT-B model has 13 layers, including 12 transformer blocks and one patch
embedding layer. When a layer is frozen, all its parameters, including weights and biases, are set to
a non-trainable state. The unused stage decoder heads are removed after the prior encoder layers are
frozen, as shown in 1

We selected a t0 value of 0.8, followed by cubic scheduling and learning rate scaling, as our default
strategy proposed in FreezeOut to be the lowest value with minimal accuracy drop. We use the cubed
t0 value of 0.512 (derived from the original t0 = 0.8) as suggested in the FreezeOut paper.
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Figure 1: The proposed method involves progressively freezing layers (or stages) and eliminating
decoders and reconstruction tasks when they’re no longer needed. Each layer from the encoder stages
is frozen individually. Once an encoder stage is frozen, the associated reconstruction task (including
the decoder and hog layer) is completely removed.

The application of FreezeOut logic to ViT-B is illustrated in Figure 2. The learnable patch embedding
layer is considered the first layer. There are 13 blocks, with the remaining 12 transformer encoder
blocks.

Our method linearly warms up the learning rate of layers to their initial learning rate, as shown in
Figure 3. Using the Adam optimizer, the learning rate gradually increases from a low value to the
target rate, enhancing initial training stability. This approach initially prevents large, destabilizing
weight updates, allowing for smoother and more effective convergence during the early optimization
steps.

Pruning Decoders Our method further improves speed by dynamically removing intermediate de-
coders from the calculation once the encoder feeding them is frozen. By selectively removing these
decoders, unnecessary computations are avoided, further enhancing the efficiency of the training pro-
cess.

3.5 Improving LR schedule in ViTFreeze

The original FreezeOut method has a single-stage loss function, while ViTFreeze has 4 stages where
the gradients can get larger for the initial stages. We speculate that the increase in gradients might be
too much and can benefit from slightly adjusted learning rates.

To mitigate the potential problem of too-large gradients, we analyze the effects of different learning
rate scaling methods in LocalMIM’s multi-stage training approach. We hypothesize that the multi-
stage approach increases the gradients too much in the initial layers. Therefore, reducing the learning
rates more for early stages might enhance the performance of FreezeOut’s layer-wise learning rate
method.

The primary focus is on two aspects: 1. Finding the optimal base learning rate for IN-100, a smaller
variation of IN-1K [69]. 2. Evaluating the performance of stage-wise learning rate reduction methods.
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Figure 2: 13-layer cubic learning rate scheduling with t0 = 0.8.

We have modified this method to better suit the multi-stage training of LocalMIM by trying two dif-
ferent methods.

3.5.1 Stage-wise Reduction of Learning Rate (SR-LR)

The initial learning rate is updated based on the number of output stages a layer contributes in the
forward pass. This reduces the learning rate of the layers of the initial stages.

Let s ∈ Z+ denote the stage to which a layer belongs, where S ∈ Z+ is the total number of stages.
Let p ∈ Q be the power hyperparameter. The optimal value of p has to be found, with larger values
indicating a greater reduction in the learning rate for the initial layers. When p = 0, SR-LR has no
impact.

The modified initial learning rate for each layer, αi(0), is computed as:

f(s, S, p) =

(
1

S − s+ 1

)p

α̂i(0) = αi(0)× f(s, S, p)

Where the modified FreezeOut learning rate per iteration becomes (ti is the iteration at which its
learning rate reaches zero):

αi(t) = 0.5× αi(0)× f(s, S, p)×
(
1 + cos

(
πt

ti

))
(7)
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Figure 3: 13-layer cubic learning rate scheduling for t0 = 0.8 with 10% warm-up.

The method calculates learning rate multipliers for each layer, denoted as L, consisting of N layers
divided into S stages. p == 0 is equal to not applying the method.

3.5.2 Layer-wise Reduction of Learning Rate (LR-LR)

In this approach, the learning rates of the initial layers are reduced independently of the stage they
belong to. The modified initial learning rate for each layer is given by:

α̂i(0) =
αi(0)

tpi

Where p == 1 is equal to not applying the method.

3.6 Analyzing Dataset Size and Training Epochs Effect

The original FreezeOut paper demonstrates its achievements on CIFAR 10 and 100 with the WideRes-
Net model for 100 epochs. We speculate that it might be easier for this model to converge due to these
reasons:

• Unlike regular classification tasks, masked image modeling can generate different supervision
signals for a single image by creating different randomly masked versions of images. This might
allow more prosperous learning signals to occur, which can benefit from longer training times
than tasks with constant learning signals like classification.
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Dataset Training Set

IN-1K (ImageNet-1K) 1,281,167
IN-100 (ImageNet-100) 128,000
CIFAR-10 50,000
CIFAR-100 50,000

Table 1: Number of images in various datasets

• CIFAR 10/100 is more straightforward than IN-1K, which has 100/10 times more classes than
CIFAR. If we neglect the number of iterations necessary to train for one epoch, it might be possi-
ble that training LocalMIM with the FreezeOut method might require more epochs to converge.
However, increasing the number of iterations can also mitigate this problem.

Model Number of Parameters

ViT Base (Vision Transformer Base) 86 million
WideResNet-50 68.9 million

Table 2: Number of parameters in ViT Base and WideResNet-50 models

• ViT architecture does not have an intrinsic inductive bias as the CNN-based WideResNet model
has. Also, it has more parameters, which might require longer training time compared to
WideResNet given similar setups.

To verify these assumptions and the impact of training epochs and dataset size on the performance of
FreezeOut in LocalMIM, we conducted a series of experiments using the ViTFreeze model. The train-
ing setup involved variations of the ImageNet-100 dataset, with the dataset size and training duration
being the primary variables.

As the requirement of better convergence was the primary investigation, the individual correctness of
each argument above was not verified. Still, we analyzed whether easier convergence led to better
performance. Limited compute availability and time limitations were factors in this decision.

18



CHAPTER 4

EXPERIMENTS

This chapter presents the experiments conducted to evaluate the effectiveness of layer freezing in ac-
celerating the pretraining of Vision Transformers (ViTs) [2] for masked image modeling. Our primary
goal is to investigate the impact of layer freezing on training efficiency and model performance. The
experiments are structured to validate the benefits of layer freezing, compare different learning rate
schedules, and assess the scalability of our approach across different datasets and training settings.
Through these investigations, we aim to offer valuable insights into optimizing the pretraining process
of ViTs.

4.1 Experimental Setup

4.1.1 Datasets

The transformer-based LocalMIM model was initially trained on the ImageNet-1K (IN-1K) [69] and
the ImageNet-100 (IN-100) datasets and on variations of IN-100 that included only selected classes.
To ensure comparability with the original LocalMIM paper, IN-1K was used for baseline results. Due
to time and computational constraints, smaller subsets of IN-100 were utilized for extensive hyperpa-
rameter tuning in some experiments. Each class has 1300 images, and the dataset can be determined
by multiplying this with the number of classes. IN-X notation is utilized here, where X represents the
number of classes, where the classes have been chosen randomly.

Experiments involving the original FreezeOut method with WideResNets were conducted exclusively
on the CIFAR-100 dataset.

Table 3: Class Codes for ImageNet 1K Variations

Dataset Class Codes
IN-5 n01443537, n01496331, n01773157, n01978455, n01984695
IN-10 n01498041, n01644900, n01664065, n01695060, n01729977, n01770081,

n01798484, n01847000, n01883070, n02002556
IN-25 n01498041, n01514668, n01592084, n01632458, n01632777, n01667778,

n01687978, n01698640, n01728572, n01729322, n01735189, n01742172,
n01756291, n01775062, n01796340, n01798484, n01818515, n01824575,
n01828970, n01843383, n01847000, n01944390, n01950731, n01968897,
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Table 3: (continued)

Dataset Class Codes
n02028035

IN-100 n01440764, n01443537, n01484850, n01491361, n01494475, n01496331,
n01498041, n01514668, n01514859, n01531178, n01537544, n01560419,
n01582220, n01592084, n01601694, n01608432, n01614925, n01622779,
n01630670, n01632458, n01632777, n01644900, n01664065, n01665541,
n01667114, n01667778, n01675722, n01677366, n01685808, n01687978,
n01693334, n01695060, n01698640, n01728572, n01729322, n01729977,
n01734418, n01735189, n01739381, n01740131, n01742172, n01749939,
n01751748, n01753488, n01755581, n01756291, n01770081, n01770393,
n01773157, n01773549, n01773797, n01774384, n01774750, n01775062,
n01776313, n01795545, n01796340, n01798484, n01806143, n01818515,
n01819313, n01820546, n01824575, n01828970, n01829413, n01833805,
n01843383, n01847000, n01855672, n01860187, n01877812, n01883070,
n01910747, n01914609, n01924916, n01930112, n01943899, n01944390,
n01950731, n01955084, n01968897, n01978287, n01978455, n01984695,
n01985128, n01986214, n02002556, n02006656, n02007558, n02011460,
n02012849, n02013706, n02018207, n02018795, n02027492, n02028035,
n02037110, n02051845, n02058221, n02077923

4.1.2 Evaluation Metrics

For the CIFAR-100 dataset, the validation error metric was employed to enable direct comparison with
results from the original paper. For the IN-1K dataset, both Top-1 accuracy and Top-5 accuracy metrics
were used.

Top-1 accuracy, also known as accuracy, refers to the percentage of times the model’s highest-confidence
prediction matches the true label. It is a stringent metric indicating how often the model predicts the
correct class in a single guess. Top-5 accuracy, on the other hand, measures the percentage of times
the true label is among the model’s top five predictions. This metric is useful for evaluating model
performance in scenarios with multiple similar classes, providing a more lenient measure of model
accuracy.

4.1.3 Experimental Settings

All experiments were implemented in Python using PyTorch on NVIDIA A100 GPUs (unless stated
otherwise), each with 64 GB of RAM. The experiments were conducted using CUDA Version 12.1
and PyTorch Version 1.13.1.
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4.2 Validating FreezeOut Method

Here, we investigate the effectiveness of the original FreezeOut method by comparing the performance
of a ResNet [15] model trained with and without FreezeOut. The training procedure for both scenarios
is the same as the original FreezeOut paper as follows:

• Model: ResNet

• Optimizer: SGD

• Weight Decay: 0.0001

• Learning Rate: 0.1

• Epochs: 100

We aim to determine whether FreezeOut can reduce training time while maintaining or improving
model performance.

The experiments involve training the ResNet model under three different configurations for each op-
timizer (six experiments in total). Here we only consider SGD training without learning rate scaling
alterations and leave those experiments to the following sections:

Model Optimizer Method FreezeOut t0 Epochs Scale Learning Rate
ResNet SGD FreezeOut 0.8 100 No
ResNet AdamW FreezeOut 0.8 100 No
ResNet SGD FreezeOut 0.8 100 Yes
ResNet AdamW FreezeOut 0.8 100 Yes
ResNet SGD No FreezeOut 1.0 100 -
ResNet AdamW No FreezeOut 1.0 100 -

Table 4: Summary of Experiments Involving ResNet, Different Optimizers, and FreezeOut Method

The models’ performance is evaluated based on the validation error at different epochs, focusing
mainly on 100 epochs to see if FreezeOut allows the model to achieve similar performance in fewer
epochs.

The following results in 5 were obtained from the experiments (AdamW experiments are left for the
following subsection to compare them).

4.2.1 Brief Analysis

The results demonstrate that the FreezeOut method can effectively reduce the training time while
achieving comparable or better performance. Specifically, the model trained with FreezeOut achieves
its best validation error earlier than the one trained without. This suggests that FreezeOut can be
a viable technique for accelerating the training process of deep neural networks without sacrificing
performance.

21



Model Optimizer Method Epoch Validation Error (%)
ResNet SGD FreezeOut (t0 = 0.8) 100 21.72
ResNet SGD FreezeOut (t0 = 0.8) 96 21.46
ResNet SGD FreezeOut (t0 = 0.8) 80 22.30
ResNet SGD No FreezeOut (t0 = 1.0) 100 21.98
ResNet SGD No FreezeOut (t0 = 1.0) 80 23.58

Table 5: Validation errors at different epochs for ResNet models trained with SGD under different
methods.

By comparing the difference between 80 and 100 epoch-trained models with and without FreezeOut,
it is visible that the model trained with FreezeOut converges earlier. This suggests that further training
time reduction is possible with early stopping.

4.3 Analyzing FreezeOut LR Schedule for SGD and AdamW

4.3.1 Experiment Goal

The primary objective of this study is to evaluate the effectiveness of FreezeOut’s learning rate schedul-
ing compared to regular learning rate scheduling. The learning rate scheduling in FreezeOut may not
be effective, as the improvements shown in the FreezeOut paper are subtle. The effectiveness might
also change for different optimizers, where SGD is used in the FreezeOut paper, and AdamW is used
in LocalMIM.

4.3.2 Experiment Setup

We implemented both FreezeOut and regular learning rate scheduling for the original FreezeOut pa-
per using ResNet to test this. The experiments were conducted with SGD and AdamW optimizers to
compare their performance under different learning rate scheduling methods. As the default hyperpa-
rameters were optimized for SGD, a grid search was undertaken to find AdamW-optimized hyperpa-
rameters. To see how FreezeOut affects the model under suboptimal learning rate and weight decay,
the AdamW-optimized setup was also applied to SGD model training.

Given that the recommended learning rate (LR) for AdamW is 0.001, we adopted this value for our
experiments. The optimal weight decay (WD) was determined through preliminary trials in 6.

Based on these results, we used WD = 0.001 for AdamW experiments. The experiments conducted for
both optimizers are analyzed below.

4.3.3 AdamW Experiments

Experiments conducted with the AdamW optimizer are shown in 7.
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Optimizer Learning Rate (LR) Weight Decay (WD) Validation Error (%)
AdamW 0.001 0.1 Did not converge
AdamW 0.001 0.05 Did not converge
AdamW 0.001 0.01 Did not converge
AdamW 0.001 0.0005 31.82
AdamW 0.001 0.005 50.84
AdamW 0.001 0.001 30.60

Table 6: Preliminary trials to determine the optimal weight decay (WD) for AdamW optimizer with a
fixed learning rate (LR) of 0.001.

Table 7: Validation Errors for Different Experiments with AdamW Optimizer

Experiment Epoch 80 Epoch 100 Best Validation Error

No FreezeOut 34.04 31.42 31.26 (Epoch 99)
FreezeOut t0=0.8 31.08 30.7 30.58 (Epoch 85)
No scale LR, FreezeOut t0=0.8 34.14 33.12 32.94 (Epoch 95)

4.3.4 SGD Experiments with SGD Optimized LR (0.1) and WD (0.0001)

Experiments conducted with the SGD optimizer using the original FreezeOut weight decay and learn-
ing rate are shown in 8.

Table 8: Validation errors for different experiments with SGD optimizer. The original hyperparameters
from the FreezeOut method was used (optimized for ResNet).

Experiment Epoch 80 Epoch 100 Best Validation Error

No FreezeOut 23.58 21.98 21.98 (Epoch 100)
FreezeOut t0=0.8 22.3 21.72 21.46 (Epoch 96)
No scale LR, FreezeOut t0=0.8 21.94 21.16 21.10 (Epoch 87)

4.3.5 SGD Experiments with AdamW Optimized LR and WD

In 9 the experimental results indicate that FreezeOut learning rate scheduling is somewhat inferior to
regular learning rate scheduling when using the SGD optimizer. It only works without the learning
rate scheduling. However, FreezeOut appears to be slightly more effective for the AdamW optimizer.

4.3.6 Brief Analysis

The observations from these experiments suggest that the effectiveness of FreezeOut learning rate
scheduling depends on the optimizer used. For SGD, regular learning rate scheduling appears to be
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Table 9: Validation errors for different experiments with SGD optimizer. The parameters optimized
for AdamW were used.

Experiment Epoch 80 Epoch 100 Best Validation Error

No FreezeOut 34.12 23.04 22.8 (Epoch 99)
FreezeOut t0=0.8 28.12 24.08 23.38 (Epoch 91)
No scale LR, FreezeOut t0=0.8 25.32 22.76 22.76 (Epoch 91)

Table 10: Lowest validation errors achieved by different optimizers and FreezeOut configurations.
SGD* uses AdamW-optimized hyperparameters, while SGD uses the original SGD-optimized hyper-
parameters.

Configuration Lowest Validation Error Epoch

SGD + no FreezeOut (t0=1) 21.98 100
SGD + FreezeOut (t0=0.8) 21.46 96
SGD + FreezeOut (t0=0.8) (no scale LR) 21.10 87
SGD* + no FreezeOut (t0=1) 22.8 99
SGD* + FreezeOut (t0=0.8) 23.38 91
SGD* + FreezeOut (t0=0.8) (no scale LR) 22.76 98
AdamW + no FreezeOut (t0=1) 31.26 99
AdamW + FreezeOut (t0=0.8) 30.58 85
AdamW + FreezeOut (t0=0.8) (no scale LR) 32.94 95

more effective. However, for AdamW, FreezeOut demonstrates a slight improvement in validation
error.

These results are consistent with the findings reported in the original FreezeOut paper, which indicated
insignificant to no improvement from using cubic and linear learning rate scaling methods compared to
no scaling for both WideResNets and DenseNets while using SGD [1]. Thus, the benefits of learning
rate scaling methods remain ambiguous and may vary based on different experimental setups and
configurations.

Repeating the experiments with the original SGD setup without FreezeOut learning rate scaling further
supports the argument that FreezeOut can be inferior under certain conditions.

Intriguingly, AdamW achieves its top performance in earlier epochs than SGD, mostly. This shows
that AdamW is converging faster than SGD in most setups as suggested in the paper [11].

4.4 ViTFreeze: Applying FreezeOut to LocalMIM

Here, we explore the impact of FreezeOut on local masked image modeling (LocalMIM) pre-training
for Vision Transformers (ViTs). We hypothesize that FreezeOut accelerates the pre-training process
without significant performance degradation. As stated before, the learning rate scheduling might not
be superior for ViTFreeze either.
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Table 11: Comparing 100 epoch fine-tuning accuracy on ImageNet-1K with LocalMIM ViT-B with
50, 70, 90, and 100 epoch pre-training. Bold indicates faster or better. All setups’ training time were
measured on the same device (a single V100 GPU).

Model PT Epoch Hours/Ep. Total Hours Top-1 Top-5
LocalMIM-HOG 50 0.48 24 83.09 96.45
LocalMIM-HOG 70 0.48 33.6 83.17 96.45
LocalMIM-HOG 90 0.48 43.2 83.38 96.45
LocalMIM-HOG 100 0.48 48 83.2 96.6
ViTFreeze 100 0.42 42 82.66 96.18
ViTFreeze w/o LR scaling 100 0.42 42 82.94 96.36

Table 12: Comparing 100 epoch fine-tuning accuracy and different pre-training epoch losses on
ImageNet-1K with LocalMIM ViT-B. Bold indicates better. Even though the 100-epoch pre-trained
model has lower reconstruction error, it has worse Top-1 accuracy than the 90-epoch pre-trained model.

Model PT Epoch Top-1 Top-5 Pre-training loss
LocalMIM-HOG 50 83.09 96.45 0.1111
LocalMIM-HOG 70 83.17 96.45 0.1093
LocalMIM-HOG 90 83.38 96.45 0.1080
LocalMIM-HOG 100 83.2 96.6 0.1078

To evaluate the effectiveness of FreezeOut, we conducted the following experiments:

• Baseline Experiment: Pre-training a ViT model with standard local masked image modeling
for 100 epochs without any FreezeOut or layer-wise learning rate scheduling.

• FreezeOut Experiment: Pre-training a ViT model with FreezeOut applied at t0 = 0 for 100
epochs.

• Epoch Reduction Experiment: Pre-training the ViT model for fewer epochs (50, 60, 70, etc.)
without FreezeOut to compare the results against the FreezeOut model.

The preliminary results of our experiments are summarized as follows:

FreezeOut Experiment Results:

• Applying FreezeOut at t0 = 0 for 100 epochs reduced pre-training time by 12.5%.

• Without layer-wise learning rate scheduling, the accuracy drop was minimal (0.2%).

4.4.1 Brief Analysis

Our experiments demonstrate that FreezeOut can accelerate the pre-training process for LocalMIM in
ViTs without significant performance degradation. The preliminary results show a 12.5% reduction in
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pre-training time with only a minor drop in accuracy (0.26% without using LR-scaling). This suggests
that FreezeOut is an effective technique for speeding up pre-training.

The impact of layer-wise learning rate scheduling on accuracy is still under evaluation. Initial observa-
tions suggest that it might harm accuracy, aligning with our hypothesis. However, more comprehensive
experiments are needed to draw definitive conclusions.

Since model pertaining benefits not only from model convergence but from the model learning weights
that will translate well to downstream tasks (a generalization of the model), longer pre-training might
not always produce the optimal results in downstream tasks, as the model might overfit to the pre-
training task instead of learning generalizable features.

Likewise, the upstream task loss shows no clear correlation between how well the model converges
during pre-training and how well it performs in the downstream classification task. Even though
the 90-epoch pre-training loss is slightly more than the model trained with 100 epochs for the 100-
epoch LocalMIM training setup, the results of the 90-epoch pre-trained model in the classification
downstream task are superior. This might be unique to the downstream task or LocalMIM’s fast
converging architecture, which should be considered a separate study.

4.5 Improving LR schedule in ViTFreeze

Due to the extensive nature of the IN1K dataset, experiments were conducted on IN-100 to evaluate
different learning rate scaling methods.

After finding suitable values for the proposed method, the experiment was repeated once for the origi-
nal IN-1K setup.

4.5.1 Finding Optimal Base Learning Rate

Previous results for FreezeOut with AdamW on the CIFAR dataset showed that FreezeOut can be
sensitive to learning rate. A grid search was performed to identify the optimal base learning rate, as
the default rate of 0.0002 for IN1K was suboptimal for IN-100. A base learning rate of 0.0001 was
found to be better, achieving an accuracy of 86.56%. This value has been used for the rest of the
experiments with IN-100.

4.5.2 Analyzing Learning Rate Scaling Methods

Using the optimal learning rate, the following values for SR-LR were tested. First SR-LR 14, then
LR-LR 15 and then their combination 16 were tested. The optimal values for SR-LR were kept while
the LR-LR hyperparameter was tuned in the combined setup.

The experiments showed that SR-LR with a power parameter of 0.8 yielded the most promising results
14. LR-LR also yielded better results than regular ViTFreeze training 15. When combining stage layer
LR scaling and LR power-based reduction, the results were not as good as expected 16.
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Table 13: Testing different base learning rates for top-1 accuracy with cubic learning rate scaling using
AdamW on ViT-B on IN-100.

t0 Base Learning Rate Top-1 Accuracy (%)

1.0 1.0e-4 86.56
1.0 1.2e-4 85.32
1.0 1.4e-4 72.94
1.0 2e-4 80.62
1.0 2.2e-4 75.78
1.0 2.4e-4 75.82
1.0 2.6e-4 50.54

Table 14: Testing different SR-LR values with t0= 0.8 for top-1 accuracy with cubic learning rate
scaling using AdamW on ViT-B with base learning rate 1.0e-4 on 1N-100.

SR-LR Multiplier Top-1 Accuracy (%)

0.2 83.36
0.4 83.96
0.6 85.70
0.8 86.44
0.9 86.12

0.75 86.14
0.85 86.30
1.0 85.74
1.2 85.60

4.5.3 Applying SR-LR to ViTFreeze on IN1K

The effectiveness of SR-LR was tested on the original IN1K training setup. Its superiority is reflected
in the results in 17.

4.5.4 Brief Analysis

As demonstrated in the results in 14, the hypothesis that reducing the learning rates more for early
stages improves the performance of the FreezeOut layer-wise learning rate method was verified. The
stage-dependent layer learning rate scaling method, particularly with a power parameter of 0.8, showed
improved performance.

The LR-LR method improved the results individually in 15, but slightly less than SR-LR. This makes
sense, as the gradient increase should be stage-wise in the multi-stage architecture. The combination
of SR-LR and LR-LR did not provide a further performance boost, showing that the reduction from
SR-LR was sufficient.

27



Table 15: Testing different Layer-wise Reduction of Learning Rate (LR-LR) values for top-1 accuracy
with cubic learning rate scaling using AdamW on ViT-B with base learning rate 1.0e-4 on IN-100.

LR-LR Multiplier Top-1 Accuracy (%)

0.2 85.40
0.3 85.68
0.4 82.98
0.5 83.90
0.6 85.60
0.7 85.82

Table 16: Testing different Layer-wise Reduction of Learning Rate (LR-LR) values where SR-LR is
0.8 on IN-100. Reporting top-1 accuracy with cubic learning rate scaling using AdamW on ViT-B with
base learning rate 1.0e-4.

LR-LR Multiplier Top-1 Accuracy (%)

0.2 85.78
0.3 85.78
0.4 85.92
0.5 85.88
0.6 86.10

The superior results of SR-LR for the IN-100 dataset translated well to the IN-1K dataset as demon-
strated in 17. There is an 82% reduction in top-1 accuracy drop compared to the bare FreezeOut
method applied to LocalMIM (ViTFreeze) and 62% reduction in top-1 accuracy drop compared to the
FreezeOut method without LR Scaling applied to LocalMIM (ViTFreeze without LR Scaling).

Unlike 12, the results for 100 epoch pre-training in 18 show a correlation between the upstream task
loss and the downstream task performance. This behavior aligns with theoretical expectations and
makes it easier to conclude in this study. This was not the case for the early epoch success of Lo-
calMIM. Hence, its incoherent nature requires further investigation.

The findings from these experiments contribute to our understanding of effective learning rate schedul-
ing in multi-stage training setups and provide a foundation for further improvements in the training of
multi-stage Vision Transformers with layer-freezing techniques.

4.6 Analyzing Dataset Size and Training Epochs Effect

4.6.1 Dataset Creation

The ImageNet-100 dataset was subsetted into minor variations containing 5, 10, 25, and 100 classes.
This was done to simulate varying levels of complexity, assuming that as the number of classes in-
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Table 17: Comparing 100-epoch pre-training followed by fine-tuning accuracy on ImageNet-1K with
LocalMIM and ViTFreeze for ViT-B. Bold indicates faster or better. Total GPU hours can be found by
multiplying GPU Hours/ep. by 100.

Model GPU Hours/Ep. Top-1 Top-5 Top-1 Drop
LocalMIM-HOG 0.48 83.2 96.6 0
ViTFreeze 0.42 82.66 96.18 0.54
ViTFreeze w/o LR scaling 0.42 82.94 96.36 0.26
ViTFreeze w/ SR-LR 0.42 83.10 96.33 0.1

Table 18: Comparing 100 epoch fine-tuning accuracy and 100-epoch pre-training epoch losses on
ImageNet-1K with LocalMIM ViT-B. Bold indicates better. The correlation between pre-training
losses and fine-tuning accuracies is not apparent.

Model PT Epoch Top-1 Top-5 Top-1 Drop Pre-training loss
LocalMIM-HOG 0.48 83.2 96.6 0 0.0083
ViTFreeze 0.42 82.66 96.18 0.54 0.0087
ViTFreeze w/o LR scaling 0.42 82.94 96.36 0.26 0.0085
ViTFreeze w/ SR-LR 0.42 83.10 96.33 0.1 0.0085

creases, the complexity and difficulty of achieving convergence also increase. The selected classes
were sampled without considering intra-class complexity.

4.6.2 Training Setup

The ViTFreeze model was trained for different durations for each dataset, specifically chosen to rep-
resent close-to-edge cases to reduce the number of experiments. Training durations were selected to
be either five times longer or five times shorter than a baseline epoch duration. The iteration count and
batch size were kept constant for each training set-up to ensure consistency.

4.6.3 Hyperparameters

The following hyperparameters were used during training:

Table 19: Hyperparameters Used During Training

Hyperparameter Value

t0 0.8,1.0
LR-SR value 0.0, 0.8

The experiments were structured to analyze the effect of varying dataset sizes and training epochs on
the performance of FreezeOut. The main variables were the dataset size and the number of training
epochs. As the quality of the transferred representation from the pre-training task can not be solely
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evaluated by a strict number of fine-tuning iterations, different numbers of epochs for fine-tuning were
used for evaluation.

4.6.4 Dataset Variations

The dataset variations used in the experiments included subsets of ImageNet-1K [69] with 5, 10, 25,
and 100 classes.

4.6.5 Training Durations

The training durations were set to 5 times longer or five times shorter than a baseline duration, ensuring
a range of training epochs to observe the effects on FreezeOut.

4.6.6 Performance Metrics

The performance of the ViTFreeze model was evaluated using accuracy metrics at various stages of
training. The results were recorded for each combination of dataset size and training duration.

The following tables summarize the performance results of the ViTFreeze model across different
dataset sizes and training durations. Each entry represents the accuracy of the model at various training
stages.

Figure 4: Dataset Size
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Figure 5: Finetune Epoch Graphs

Figure 6: Pretrain Epoch Graphs
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Figure 7: Ratio (SR-LR, t0=0.8)
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Figure 8: Ratio (SR-LR, t0=1.0)
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Figure 9: Ratio (t0=0.8, t0=1.0)
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4.6.7 Brief Analysis:

The results indicate that the performance of FreezeOut is significantly influenced by both the dataset
size and the number of training epochs. Key observations include:

• Dataset complexity negatively affects the performance of all models regardless of the setup (4)).

• As the dataset complexity increases from IN5 to IN100, the models’ performance with layer
freezing degrades faster than regular training. This shows that when keeping the number of
iterations constant, FreezeOut can worsen the performance of more complex datasets (4).

• All experiments benefited from longer pertaining and training epochs (5 and 6).

• The models trained with FreezeOut require longer pre-training or fine-tuning to match the per-
formance of regular training (5 and 6).

• The SR-LR method helps FreezeOut maintain performance, especially for lower fine-tuning or
pre-training epochs. This becomes more noticeable in complex datasets (7).

• FreezeOut with SR-LR can still be inferior to regular training in more complex datasets, espe-
cially for lower pre-training and fine-tuning epochs (8).

These show that FreezeOut combined with SR-LR is more robust to more complex datasets and lower
pre-training or fine-tuning epochs than FreezeOut. However, each variation of FreezeOut seems to
benefit from longer training epochs. This suggests the possibility of ViTFreeze with SR-LR achieving
better results for longer pre-training or fine-tuning epochs.

Indeed, training ViTFreeze with SR-LR on IN-1K with the original setup yielded superior performance
compared to regular ViTFreeze 17. There is a small difference of 0.1% accuracy drop compared to the
initial 0.54% drop of the original ViTFreeze.
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Dataset Pre. Ep. Fine. Ep. Acc (t0 = 0.8) Acc (t0 and SR-LR= 0.8) Acc (t0=1.0)
IN100 500 500 88.62 88.56 89.36
IN100 500 100 88.4 88.64 88.94
IN100 500 20 82.04 82.72 84.0
IN100 100 500 87.16 88.76 88.26
IN100 100 100 85.74 86.44 86.56
IN100 100 20 60.32 66.86 72.8
IN100 20 500 87.4 87.88 87.84
IN100 20 100 77.68 80.62 81.1
IN100 20 20 45.28 47.0 53.98
IN25 2000 2000 95.76 96.0 96.16
IN25 2000 400 95.76 95.76 96.24
IN25 2000 80 93.76 93.92 94.56
IN25 400 2000 94.56 95.52 95.44
IN25 400 400 91.44 93.68 94.56
IN25 400 80 81.36 83.44 87.84
IN25 80 2000 94.24 94.88 94.88
IN25 80 400 87.68 90.4 91.76
IN25 80 80 66.56 71.84 73.92
IN10 5000 5000 97.8 97.2 97.8
IN10 5000 1000 97.6 97.6 97.8
IN10 5000 200 96.8 96.6 96.2
IN10 1000 5000 96.4 96.8 96.8
IN10 1000 1000 94.8 94.8 96.6
IN10 1000 200 88.0 91.6 92.8
IN10 200 5000 95.2 96.2 95.6
IN10 200 1000 92.4 93.0 93.2
IN10 200 200 78.8 83.2 83.2
IN5 10000 10000 97.2 97.6 97.2
IN5 10000 2000 96.8 97.2 97.2
IN5 10000 400 96.4 96.4 96.4
IN5 2000 10000 97.2 96.8 97.2
IN5 2000 2000 95.6 96.0 97.2
IN5 2000 400 94.8 95.6 96.4
IN5 400 10000 96.8 96.8 96.8
IN5 400 2000 95.2 94.4 96.8
IN5 400 400 88.0 90.4 90.0

Table 20: Performance results of ViTFreeze model on various dataset sizes and training durations.
t0=1.0 means there is no FreezeOut. Top-1 accuracy is demonstrated. "Pre. Ep." stands for pretrain
epochs, while "Fine. Ep." stands for finetune epochs.
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CHAPTER 5

DISCUSSION

Here we discuss the theoretical findings and implications of the experimental results in more depth.
Each experiment is evaluated separately by linking interpretations across them.

5.1 Validating FreezeOut Method

The method works in the original WideResNet-based FreezeOut setup, achieving slightly better results
than the typically trained model. It is also visible that the model trained with FreezeOut converges
earlier than the customarily trained model, possibly due to the learning rate increment in FreezeOut.

5.2 Analyzing FreezeOut LR Schedule

The FreezeOut LR Schedule does not improve performance in general, and it might even reduce it.
This has been observed mainly for SGD, even though it was the optimizer used in the FreezeOut
paper.

5.3 ViTFreeze: Applying FreezeOut to LocalMIM

The model without FreezeOut learning rate scaling achieves results close to the original training setup.
The ability of LocalMIM to achieve better results with fewer epochs shadows the effectiveness of
FreezeOut for LocalMIM for the 100-epoch pretraining setup. However, we consider the early conver-
gence behavior of LocalMIM a subject of another research based on these possible explanations:

• The goal of model pre-training is not model convergence only; the aim is also to achieve a
model initialization that has more potential (more generalizable) on downstream tasks. Hence,
evaluating the FreezeOut method’s impact on the pre-training task performance might be better.
This has been supported by "Exploring the Limits of Large Scale Pre-training" (Abnar et al.),
where it has been shown that better upstream task performance might not translate to better
downstream task performance.
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• 100 epochs might be insufficient for FreezeOut to work fine as the method benefits from further
convergence and longer training epochs. Hence, for longer pre-training epochs, it might be more
difficult for early training epochs to surpass the fully trained ViTFreeze model.

• The classification task might favor features produced with fewer training epochs, while other
downstream tasks might behave differently. Other downstream tasks might prefer more conver-
gence in the upstream task.

As the results from the lower pre-training epoch are unexpected, they need further investigation on
more downstream tasks and further training epoch setups. The superior early epoch might be mis-
leading due to the points made above. Hence, in the given isolated setup for 100-epoch pre-training,
ViTFreeze shows promising results with minimal performance degradation and a decent speed-up.

Even if the early epoch weight of the pre-training task has superior performance in general, the ViT-
Freeze method removes the need to search for the optimal pre-training epoch for the pre-training task.
This advantage can also apply to other downstream tasks and datasets.

5.4 Improving LR schedule in ViTFreeze

The SR-LR method improved ViTFreeze’s performance further, achieving very close results to the
original 100-epoch pre-trained LocalMIM. It reduced the accuracy drop by 82% and 62% for bare
ViTFreeze and ViTFreeze w/o LR Scaling. Regarding upstream task performance, ViTFreeze with
SR-LR achieves slightly better results than without applying learning rate scaling. As mentioned, we
keep the complex interpretation of better early epoch pre-training results out of our scope.

5.5 Analyzing Dataset Size and Training Epochs Effect

Several conclusions can be made in this study:

• The FreezeOut method benefits from easy convergence. Hence, this method can shine in longer
pre-training or fine-tuning epochs and simpler datasets.

• SR-LR mainly compensates FreezeOut’s performance drop in the difficult-to-converge cases
(lower training and complex datasets). Making it more robust in diverse and challenging training
setups.

5.6 Limitations

We had limited time and GPU for the experiments. Hence, the dataset size, the model, and the number
of training epoch parameters had to be kept within acceptable constraints.
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CHAPTER 6

CONCLUSION

This research aimed to speed up Vision Transformers (ViTs) pre-training for masked image modeling
by progressively freezing layers. Our goal was to achieve this acceleration with minimal performance
drop. To this end, we developed and validated the FreezeOut method using local masked image mod-
eling (LocalMIM) and explored different learning rate scaling methods.

6.1 Achievements of the Study

6.1.1 Methodology and Implementation

• We employed the FreezeOut method with LocalMIM, progressively freezing layers to reduce
computational demands.

• Various learning rate scaling methods were tested to find the most effective approach for our
experiments.

• Both SGD and AdamW optimizers were used to validate the effectiveness of FreezeOut.

6.1.2 Validation and Results

• FreezeOut demonstrated significant efficiency, achieving a notable reduction in training time by
approximately 12.5% with minimal performance drop.

• The results showed that FreezeOut performed better with AdamW than with SGD. Most proba-
bly due faster convergence of AdamW.

• By using Stage-wise Reduction of Learning Rate (SR-LR), further improvements in training
performance were achieved.

• Fine-tuning early epoch weights for the pre-training tasks achieved considerable results (for
50-70-90 epochs). Still, it was kept out of the scope of this work due to a lack of data and
incoherent results, as the 90 epoch pretrained LocalMIM even surpassed the performance of
100 epoch pretrained LocalMIM in the downstream classification task, without having superior
performance (lower loss) in the upstream reconstruction task.w
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6.1.3 Implications and Insights

• FreezeOut can be effectively applied to ViTs or other architectures with internal skip connec-
tions.

• The method offers potential performance boosts with minimal degradation, especially with
longer training epochs and simpler datasets.

• SR-LR works better than bare FreezeOut when training for fewer epochs and improves training
performance in diverse settings.

6.2 Questions for Future Research

Further questions have arisen from the observations in this work. These related questions here show
potential directions:

• Does FreezeOut achieve superior results with larger datasets, training durations, and models?

• Would it be better to apply FreezeOut solely to model fine-tuning rather than pre-training, as it
is more common to freeze initial layers for fine-tuning?

• Why and how does LocalMIM converge this much faster than regular ViT MAE training?

• How does FreezeOut affect self-supervised learning performance on other downstream tasks?

• How does regular ViT MAE training perform when FreezeOut is applied? Do early epoch
checkpoints of pre-trained weights still achieve good results?

• Could curriculum learning be applied to FreezeOut LocalMIM training by focusing more on the
initial stage reconstruction task and progressively giving more weight to the final reconstruction
task to increase the convergence speed and model performance?

6.3 Concluding Remarks

This thesis presents an innovative approach to enhancing the efficiency of Vision Transformers in self-
supervised learning. We addressed the challenge of lengthy training times and high computational
demands by integrating local masked image modeling with progressive layer freezing. Our findings
underscore the potential of FreezeOut as a viable method for speeding up pre-training with minimal
performance loss, paving the way for more efficient and accessible self-supervised learning models in
computer vision.
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CHAPTER 7

INSTRUMENTS AND ETHICAL CLEARANCE

Use of AI Tools: In the preparation of this thesis, the AI language model ChatGPT, developed by
OpenAI, was utilized to assist with drafting and refining certain sections of the document.

All information generated by the AI was critically reviewed and edited by the author to ensure accuracy
and alignment with the thesis’s research objectives. Additionally, the author remains fully responsible
for the content and conclusions presented in this thesis.

47


	ABSTRACT
	ÖZ
	DEDICATION
	ACKNOWLEDGMENTS
	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	LIST OF ABBREVIATIONS
	Introduction
	The Need for Efficient Models
	Related Approaches and Challanges
	Vision Transformer
	Self Supervised Learning and Masked Image Modeling

	A Solution: Layer Freezing
	Problem Statement
	Aim and Scope of the Research
	Research Questions
	Contributions of the Study
	Organization of the Thesis

	related work
	Architectures
	Self supervised learning
	Methods To Improve Speed
	Model Convergence

	Methodology
	Vision Transformer (ViT)
	Patch Embeddings
	Transformer Encoder
	Classification Head
	Inductive Bias

	FreezeOut
	LocalMIM
	ViTFreeze: Applying FreezeOut to LocalMIM
	Improving LR schedule in ViTFreeze
	Stage-wise Reduction of Learning Rate (SR-LR)
	Layer-wise Reduction of Learning Rate (LR-LR)

	Analyzing Dataset Size and Training Epochs Effect 

	Experiments
	Experimental Setup
	Datasets
	Evaluation Metrics
	Experimental Settings

	Validating FreezeOut Method
	Brief Analysis

	Analyzing FreezeOut LR Schedule for SGD and AdamW
	Experiment Goal
	Experiment Setup
	AdamW Experiments
	SGD Experiments with SGD Optimized LR (0.1) and WD (0.0001)
	SGD Experiments with AdamW Optimized LR and WD
	Brief Analysis

	ViTFreeze: Applying FreezeOut to LocalMIM
	Brief Analysis

	Improving LR schedule in ViTFreeze
	Finding Optimal Base Learning Rate
	Analyzing Learning Rate Scaling Methods
	Applying SR-LR to ViTFreeze on IN1K
	Brief Analysis

	Analyzing Dataset Size and Training Epochs Effect
	Dataset Creation
	Training Setup
	Hyperparameters
	Dataset Variations
	Training Durations
	Performance Metrics
	Brief Analysis:


	Discussion
	Validating FreezeOut Method
	Analyzing FreezeOut LR Schedule
	ViTFreeze: Applying FreezeOut to LocalMIM
	Improving LR schedule in ViTFreeze
	Analyzing Dataset Size and Training Epochs Effect
	Limitations

	Conclusion
	Achievements of the Study
	Methodology and Implementation
	Validation and Results
	Implications and Insights

	Questions for Future Research
	Concluding Remarks

	REFERENCES
	Instruments and Ethical Clearance

