
ADAPTIVE MESH REFINEMENT FOR ONE DIMENSIONAL SCALAR
CONSERVATION LAWS

A THESIS SUBMITTED TO
THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES

OF
MIDDLE EAST TECHNICAL UNIVERSITY

BY

KADIR ÇAR

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR

THE DEGREE OF MASTER OF SCIENCE
IN

MATHEMATICS

SEPTEMBER 2024

Approval of the thesis:

ADAPTIVE MESH REFINEMENT FOR ONE DIMENSIONAL SCALAR
CONSERVATION LAWS

submitted by KADIR ÇAR in partial fulfillment of the requirements for the degree
of Master of Science in Mathematics Department, Middle East Technical Uni-
versity by,

Prof. Dr. Naci Emre Altun
Dean, Graduate School of Natural and Applied Sciences

Prof. Dr. Hasan Taşeli
Head of Department, Mathematics

Assoc. Prof. Dr. Baver Okutmuştur
Supervisor, Mathematics, METU

Examining Committee Members:

Prof. Dr. Fikriye Nuray Yılmaz
Mathematics, Gazi University

Assoc. Prof. Dr. Baver Okutmuştur
Mathematics, METU

Assoc. Prof. Dr. Kostyantyn Zheltukhin
Mathematics, METU

Date:06.09.2024

I hereby declare that all information in this document has been obtained and
presented in accordance with academic rules and ethical conduct. I also declare
that, as required by these rules and conduct, I have fully cited and referenced all
material and results that are not original to this work.

Name, Surname: Kadir Çar

Signature :

iv

ABSTRACT

ADAPTIVE MESH REFINEMENT FOR ONE DIMENSIONAL SCALAR
CONSERVATION LAWS

Çar, Kadir

M.S., Department of Mathematics

Supervisor: Assoc. Prof. Dr. Baver Okutmuştur

September 2024, 69 pages

This thesis examines the numerical solutions of one dimensional scalar conserva-

tion laws on non-uniform grids by considering an Adaptive Mesh Refinement (AMR)

based on an algorithm proposed by Berger and Colella. Finite volume method is used

for discretization of the test equations with the CLAWPACK software. Three basic

equations in one dimension are of particular interest; linear advection equation, in-

viscid Burgers equation, and Buckley-Leverett equation. Propagation of shock and

rarefaction waves are investigated and compared for both standard uniform mesh and

AMR at different time levels with smooth and piecewise smooth initially given func-

tions. The findings demonstrate that results by AMR offer superior efficiency by

focusing computational resources where needed, reducing overall costs while pre-

serving accuracy. This comparison underscores the advantages of adaptive strategies

in managing sharp gradients and complex wave propagation in one dimensional scalar

conservation laws.

Keywords: Scalar Conservation law, linear advection equation, inviscid Burgers equa-

v

tion, Buckley-Leverett equation, Adaptive Mesh Refinement

vi

ÖZ

TEK BOYUTLU SKALER KORUNUM YASALARI İÇİN UYARLANABİLİR
ÖRGÜ İYİLEŞTİRME

Çar, Kadir

Yüksek Lisans, Matematik Bölümü

Tez Yöneticisi: Doç. Dr. Baver Okutmuştur

Eylül 2024 , 69 sayfa

Bu tez algoritması Berger ve Colella tarafından tasarlanan Uyarlanabilir Örgü İyi-

leştirme yöntemini dikkate alarak tek boyutlu skaler korunum yasalarının düzensiz

ağlar üzerindeki sayısal çözümlerini incelemektedir. Test denklemlerinin ayrıklaştı-

rılması için sonlu hacim yöntemi ile birlikte CLAWPACK yazılımı kullanılmıştır.

Doğrusal taşıma, viskozitesiz Burgers ve Buckley-Leverett denklemleri tek boyutlu

üç temel denklem olarak ele alınmış ve bu denklemler üzerine odaklanılmıştır. Şok ve

seyrelme dalgalarının yayılımını incelemek için yapılan sayısal hesaplamalarda stan-

dart düzgün ızgara ile Uyarlanabilir Örgü İyileştirme yöntemleri karşılaştırılmıştır.

Bu incelemeler farklı zaman seviyelerinde başlangıç koşulu olarak düzgün ve parçalı

düzgün verilen fonksiyonlar için yapılmıştır. Uyarlanabilir Örgü İyileştirme yöntemi-

nin hesaplama kaynaklarını gerektiği yerde yoğunlaştırarak maliyetleri düşürdüğü ve

doğruluğu koruduğu sonuçlar tarafından gösterilmektedir. Ayrıca, bu bulgular tek bo-

yutlu skaler korunum yasalarındaki keskin gradyanlar ve karmaşık dalga yayılımını

yönetmede adaptif stratejilerin sağladığı avantajları da ortaya koymaktadır.

vii

Anahtar Kelimeler: Skaler korunum yasası, doğrusal ilerleme denklemi, viskozitesiz

Burgers denklemi, Buckley-Leverett Denklemi, Uyarlanmış Örgü İyileştirme

viii

To my family

ix

ACKNOWLEDGMENTS

First and foremost, I express my deepest gratitude to my supervisor, Baver Okutmuş-

tur, for his guidance and support throughout the thesis period.

I would like to extend my sincere thanks to the committee members, Prof. Dr. Fikriye

Nuray Yılmaz and Assoc. Prof. Kostyantyn Zheltukhin, for their helpful comments

and patience.

My heartfelt appreciation goes to Şakire Solmaz Acar and Fatma Sevim Aygar for

their unwavering support and encouragement which was greatly appreciated during

this journey.

I am deeply grateful to my brother and mother for their constant love, support and

understanding.

I am also thankful to Prof. Dr. İsmail Uğur Tiryaki for his support, ideas, and direc-

tion throughout both my undergraduate and graduate studies.

Additionally, I would like to thank Öznur Özcan for her continuous support and love.

Lastly, I am grateful to TÜBİTAK for awarding me the scholarship 2210-A, which

significantly supported my study.

x

TABLE OF CONTENTS

ABSTRACT . v

ÖZ . vii

ACKNOWLEDGMENTS . x

TABLE OF CONTENTS . xi

LIST OF FIGURES . xiii

LIST OF ABBREVIATIONS . xv

CHAPTERS

1 INTRODUCTION . 1

1.1 Thesis Overview . 5

2 FINITE VOLUME METHOD FOR SCALAR CONSERVATION LAWS . . 7

2.1 Conservation Laws . 7

2.1.1 Scalar Conservation Laws . 8

2.1.2 Examples of 1D Scalar Conservation Laws 9

2.2 Finite Volume Method . 10

2.2.1 Finite Volume Method for 1D Scalar Conservation Laws . . . 11

2.3 Riemann Problem . 14

2.4 CFL Condition . 15

2.5 Some Examples of Numerical Flux Functions 15

xi

3 ADAPTIVE MESH REFINEMENT . 17

3.1 Introduction to AMR . 17

3.2 Description of the Algorithm of AMR 21

3.3 Description of the Grid . 24

3.4 Algorithm of Integration . 29

3.5 Estimation of Error . 30

3.6 Conditions of Interface . 31

3.7 Structures of Data . 33

4 NUMERICAL IMPLEMENTATION OF SCALAR CONSERVATION LAWS
BY AMR . 35

4.1 Numerical Results of Scalar Conservation Laws 35

4.1.1 Test Equation 1: Linear advection equation 36

4.1.2 Test Equation 2: Inviscid Burgers Equation 40

4.1.3 Test Equation 3: Buckley-Leverett equation 55

5 CONCLUSION . 63

REFERENCES . 65

xii

LIST OF FIGURES

FIGURES

Figure 2.1 Grid Scheme of the Finite Volume 11

Figure 2.2 Finite volume method for updating the cell averages by fluxes in

1D . 14

Figure 3.1 Evolution of the step function over time 21

Figure 3.2 Evolution of the solution from a smooth initial condition to an

N-wave structure . 22

Figure 3.3 Comparison between uniform mesh and adaptive mesh 23

Figure 3.4 Coarse grid with a refined subgrid 25

Figure 3.5 Illusturation of 1D coarse and refined grids 25

Figure 3.6 Levels of refinement in a 1D grid 26

Figure 3.7 Separate identical level refinements 28

Figure 3.8 Merged Identical Level Refinement 28

Figure 3.9 Nested grids example with different levels of refinement 30

Figure 3.10 One dimensional regridding procedure 33

Figure 3.11 Structure of data for 1D . 34

Figure 4.1 Numerical solution of linear advection with uniform mesh for

N = 20 and N = 60. Initial condition (4.1) and CFL = 0.9. 37

xiii

Figure 4.2 Comparison of uniform mesh and AMR for linear advection

equation. Initial condition (4.1) with N = 60 and CFL= 0.9. 39

Figure 4.3 Numerical solution of inviscid Burgers equation with uniform

mesh for N = 20 and N = 60. Initial condition (4.2) and CFL= 0.9 . . 41

Figure 4.4 Comparison of uniform mesh and AMR for inviscid Burgers

equation. Initial condition (4.2) with N = 20 and CFL= 0.9. 44

Figure 4.5 Comparison of uniform mesh and AMR for inviscid Burgers

equation. Initial condition (4.2) with N = 60 and CFL= 0.9. 45

Figure 4.6 Numerical solution of inviscid Burgers equation with uniform

mesh for N = 20 and N = 60. Initial condition (4.3) and CFL= 0.9. . . 46

Figure 4.7 Comparison of uniform mesh and AMR for inviscid Burgers

equation. Initial condition (4.3) with N = 60 and CFL= 0.9. 48

Figure 4.8 Numerical solution of inviscid Burgers equation with uniform

mesh for N = 20 and N = 60. Initial condition (4.4) and CFL= 0.9. . . 51

Figure 4.9 Comparison of uniform mesh and AMR for inviscid Burgers

equation. Initial condition (4.4) with N = 60 and CFL= 0.9. 53

Figure 4.10 Evolution of numerical solutions by AMR for inviscid Burgers

equation with N = 60. Initial condition (4.4) and CFL= 0.9. 54

Figure 4.11 Numerical solution of Buckley-Leverett equation with uniform

mesh for N = 20 and N = 60. Initial condition (4.5) and CFL= 0.9. . . 56

Figure 4.12 Comparison of uniform mesh and AMR for Buckley-Leverett

equation. Initial condition (4.5) with N = 60 and CFL= 0.9. 58

Figure 4.13 Evolution of numerical solutions by AMR for Buckley-Leverett

equation with N = 60. Initial condition (4.5) and CFL= 0.9. 59

xiv

LIST OF ABBREVIATIONS

1D 1 Dimensional

AMR Adaptive Mesh Refinement

AMM Adaptive Mesh Method

MMM Moving Mesh Method

FDM Finite Difference Method

FEM Finite Element Method

FVM Finite Volume Method

CMAM Coarse Mesh Approximation Method

PDE Partial Differential Equation

xv

xvi

CHAPTER 1

INTRODUCTION

Partial differential equations (PDEs) are utilized in various parts of daily life con-

tributing to the understanding modelling and optimization of numerous processes and

systems. They are applied on many areas as like physics, engineering, mathematics

and their applications on the daily life [30, 41]. These equations are vital for describ-

ing fluid flow phenomena and are applied in areas like water flow in pipes, aerody-

namics of vehicles and aircraft, and simulations of heat transfer processes including

heating, cooling, and insulation systems that engineers handle [41, 18].

These equations are classified into three main types: elliptic, parabolic and hyperbolic

PDEs. This classification is based on the nature of the characteristics of the equations

and the behavior of their solutions [13].

Elliptic types are equations where the characteristic curves are complex, and they

do not propagate waves or signals. These equations often describe steady-state or

equilibrium situations, where the solution is smooth if the boundary conditions are

smooth.

Parabolic PDEs describe processes that evolve over time and tend to a steady state.

They have one real characteristic direction and typically model diffusion-like pro-

cesses where the solution smooths out over time.

Hyperbolic PDEs are characterized by real and distinct characteristic curves, model-

ing wave propagation and other phenomena where features such as saturation fronts,

shock fronts, and discontinuities are transferred along these characteristics. Hyper-

bolic equations can develop discontinuities such as shock waves even if the initial

conditions are smooth. To explore these phenomena in detail, we examine how such

1

discontinuities arise and evolve in different scenarios. In this thesis, we work on three

examples of hyperbolic PDEs in 1D:

• Advection equation which describes the transport of a substance or quantity by

a fluid flow.

• Inviscid Burgers equation which is a fundamental model for shock waves and

turbulence

• Buckley-Leverett equation which models two-phase flow in porous media.

Although all types of PDEs are crucial for modeling various physical and engineering

phenomena, solving them can be quite challenging. Their complexity with multiple

variables and partial derivatives makes finding exact solutions very difficult. As a re-

sult achieving these problems’ exact solutions isn’t always possible. As the problem

gets more complex or involves more dimensions, finding a precise answer becomes

even harder. To address these challenges, numerical methods approximate solutions

by breaking the problem into smaller, manageable pieces. This process turns the con-

tinuous PDE into a set of discrete equations. These equations can then be solved

using computational techniques, making it possible to find practical solutions even

when exact answers are not feasible. Several numerical methods such a Finite Ele-

ment Method (FEM), Finite Difference Method (FDM) and Finite Volume Method

(FVM) are utilized.

FEM works by dividing the problem domain into smaller pieces called elements.

Each element is represented by simple shapes as triangles or rectangles. The method

approximates the solution within each element using piecewise functions. This ap-

proach is typically applied to solve elliptic types of PDEs.

FDM divides the problem domain into a grid of points and approximates the deriva-

tives using differences between the function values at these points. This method re-

places the continuous derivatives with discrete approximations based on the spacing

of the grid points. By applying these approximations across the grid, FDM trans-

forms the equation into a system of algebraic equations which are then solved to find

the approximate solution.

2

FVM which is carried out in this thesis, approaches solving partial differential equa-

tions by dividing the whole domain of the problem into discrete cells or control vol-

umes. The method ensures that conserved quantities such as energy and mass are

preserved in each control volume by integrating the PDE. The conservation laws are

applied within each control volume [48, 47]. Integration over the volume ensures that

the total conserved quantity remains constant. This integration process converts the

equation into a flux balance across the boundaries of each control volume. By approx-

imating these fluxes using values from neighboring control volumes, FVM produces

a set of algebraic equations. Solving these equations provides a numerical approx-

imation of the solution [46]. FVM is highly efficient for hyperbolic type of PDEs.

The method handles sharp gradients and shock formations well due to its ability to

manage these features effectively [48, 47, 26].

Despite these advantages, FEM, FDM, and FVM typically rely on grids to discretize

the entire computational domain. For problems involving sudden changes in the solu-

tion, finer grids are required to accurately capture the solution features. This necessity

increases both computational cost and time. This problem arises with high demand of

memory and computational power which we avoid. To address this challenge, AMR

is used with these stated methods. AMR adapts the grid resolution dynamically, mak-

ing it finer where needed and coarser where possible. AMR can be used with the

FEM, FDM or FVM to provide more efficient solutions by dynamically adjusting the

mesh to capture important features with higher resolution where needed.

In response to this approach, adaptive mesh methods have gained increasing signifi-

cance in recent decade years. These techniques adjust the mesh structure during com-

putation, strategically concentrating mesh points where they are most needed. These

approaches optimize computational resources and improves solution accuracy, which

are particularly beneficial for complex problems like phase change, blow-up problems

as studied by Russell, Huang and Budd for moving mesh methods [8]. For hyperbolic

conservation laws, significant contributions have been made by Marsha Berger [5] as

well as Huazhong Tang and Tao Tang [22]. Thus, all these methods including adap-

tive mesh techniques have proven to be highly efficient, yielding better performance

and accuracy in solving PDEs. Adaptive mesh methods have been widely applied

in solving these equations, addressing various challenges through specialized mesh

3

methods. These methods are generally categorized into three types [44], each de-

signed to improve the accuracy and efficiency of the numerical solutions.

The first type is known as h-refinement which improves accuracy by subdividing

elements to refine the mesh, allowing for the addition or removal of mesh points to

adapt to varying solution needs. This method dynamically adjusts based on error

estimates by adding points in regions with high variation or error and removing them

where the solution is smooth, enhancing spatial resolution. Barrett [3], Sun [42],

Li [29], Shengtai Li and Mac Hyman [28], Shen and Qui [39] have successfully

applied this method to FEM and FVM. Berger-Oliger [5] AMR technique is one of

the pioneering h-method application.

The second one is p-refinement involves adaptively varying the polynomial order

based on local error estimates or indicators. This technique improves accuracy by ad-

justing the polynomial degree in different regions to better capture solution smooth-

ness. Babuška and Suri [2] have applied this approach.

The last one is r-refinement which is also known as the moving mesh method. This

technique adjusts grid points within a fixed-node mesh to ensure nodes are concen-

trated in regions with rapid solution variation. This approach maintains a constant

number of nodes while adjusting their positions to improve resolution where needed.

Miller [32] developed the moving FEM, and Tao Tang [44] applied r-refinement in

computational fluid dynamics.

Additionally, some works combine both r and h, or h and p refinements. For instance

Babushka [2] has explored the integration of h-p refinement versions in FEM, provid-

ing insights into how these techniques can be used together. Similarly the h-r moving

mesh method has been studied by Ong, Russell, and Ruuth for 1D time-dependent

PDEs [34]. Additionally Piggott has worked on h-r adaptivity in numerical ocean

modeling [36].

In this thesis, we focus on one-dimensional scalar conservation laws. These equations

are typically solved using FVM. FVM is particularly well-suited for these type of

equations as it conserves quantities at the control volume level and effectively handles

discontinuities and sharp gradients through its flux-based approach.

4

In order to explore the effectiveness of FVM along with AMR, we examine three fun-

damental one-dimensional hyperbolic equations: advection equation, inviscid Burg-

ers equation, and Buckley-Leverett equation. To solve these equations, we utilize

both classical fixed uniform meshes and AMR using the FVM. The comparison of

solutions obtained by using fewer and increased numbers of uniform meshes and the

results of AMR obtained with the increased number of uniform meshes is performed

using CLAWPACK .

Adaptive mesh techniques facilitate a more targeted allocation of computational re-

sources, which is particularly beneficial for regions with rapid changes, such as shock

waves. This comparison aims to highlight how adaptive meshing improves the cap-

ture of sharp gradients and discontinuities while optimizing overall computational

efficiency.

1.1 Thesis Overview

This thesis consists of five chapters, including the introduction. In Chapter 2, we start

with an overview of conservation laws and proceed to a detailed discussion of scalar

conservation laws in one dimension, addressing both their integral and differential

forms. In this chapter, we present 1D scalar conservation laws and focus on three

fundamental test equations for these laws: the linear advection equation, the inviscid

Burgers equation, and the Buckley-Leverett equation.

In Chapter 2 we present the FVM and outline the necessary conditions for its effec-

tive application. Moving to Chapter 3, we provide a comprehensive background on

AMR and analyze the applications and detailed descriptions of the AMR algorithm

implemented in the CLAWPACK tool, with a focus on the Berger-Oliger method. In

Chapter 4, we compare the numerical results of the uniform and AMR for 1D-scalar

test equations, using the FVM with the Godunov type numerical flux functions. Fi-

nally the Chapter 5 provides a summary of the thesis.

5

6

CHAPTER 2

FINITE VOLUME METHOD FOR SCALAR CONSERVATION LAWS

In this chapter, our primary focus is on the FVM as applied to scalar conservation

laws. We start by providing a comprehensive introduction to the concept of conserva-

tion laws, including their fundamental principles and significance. Following this, we

delve into the general form of scalar conservation laws, setting the stage for a deeper

understanding. We then proceed to give three specific examples of scalar conserva-

tion laws that are especially relevant to our study. Following this, we introduce the

general form of the finite volume scheme, detailing its methodology and how it ad-

dresses these laws. Finally, we introduce the three types of well known flux functions

that is mostly used within FVM.

2.1 Conservation Laws

Conservation laws are foundational principles in physics and engineering that govern

the preservation and redistribution of physical quantities within closed systems [13].

These laws assert that certain quantities such as mass, energy and momentum, remain

constant over time within isolated systems, reflecting fundamental symmetries and

invariances in nature [26, 18]. Conservation laws are typically expressed as PDEs,

representing the balance between the rate of change of a conserved quantity and the

flux of that quantity through the boundaries of a spatial region.

A general form of a conservation law is given by

∂u

∂t
+∇f = 0 (2.1)

where the f : U −→ R is the known flux function which prescribes the rate of flow

7

for each conserved variable and xi and t are the spatial and time coordinates respec-

tively and U is the open subset of Rn where u : R × R −→ Rn is the n-dimensional

vector of conserved quantities. The mathematical equation of the following form

formulating variation of the conserved quantity over time.

∇f =
∂f1
∂x1

+
∂f2
∂x2

+
∂f3
∂x3

+ ...+
∂fn
∂xn

In one spatial dimension the flux function simplifies to the form:

∇f =
∂f

∂x
(2.2)

The conservation law in one spatial dimension then becomes

∂u

∂t
+

∂f

∂x
= 0

2.1.1 Scalar Conservation Laws

Scalar conservation laws are a simplified subset of conservation laws describing the

evolution of a single conserved quantity as like u(x, t). These equations are funda-

mental to understanding wave phenomena, including propagation and shock forma-

tion. Their simplified structure compared to systems with multiple conserved vari-

ables enables focused analysis and the development of effective numerical solution

techniques.

In this thesis we are dealing with 1D hyperbolic PDEs. In 1D space scalar conserva-

tion laws are of the form

ut + f(u)x = 0 (2.3)

where u(x, t) is the conserved quantity, t represents time which is called temporal

coordinate, x is the spatial coordinate and f(u) is the flux function that represents the

rate of displacement of the conserved quantity. Equation 2.3 represents the differen-

tial form of the scalar conservation law [14, 48, 33].

In 1D case for any interval (x1, x2), the change of the conserved quantity u(x, t) with

respect to x equals to the displaced conserved quantity which is the flux. As the

integral form arises by

d

dt

∫ x2

x1

u(x, t)dx =

∫ x2

x1

d

dt
u(x, t)dx =

∫ x2

x1

ut(x, t)dx, (2.4)

8

from the equation (2.3) it can easily be observed that

ut = −f(u(x, t))x.

Using the above expression of ut and switching it by the flux in the equation (2.4), it

follows that
d

dt

∫ x2

x1

u(x, t)dx =

∫ x2

x1

ut(x, t) dx

=

∫ x2

x1

−f(u(x, t))x dx

= −
∫ x2

x1

f(u(x, t))x dx

= f(u(x1, t))− f(u(x2, t))

= [Inflow at the point x1]− [Outflow at the point x2]

(2.5)

Here u(x, t) represents the quantity that is conserved in the interval, either trans-

formed or balanced but neither produced nor destroyed [25].

2.1.2 Examples of 1D Scalar Conservation Laws

The general form of 1D conservation laws is detailed in the previous subsection. In

this subsection, we provide the examples of scalar conservation laws that are analyzed

in this thesis. These equations express the conservation of u(x, t) over time t and

space in one dimension x. The examples that are considered include :

• Linear advection equation : It is described by

∂u

∂t
+

∂

∂x
(cu) = 0 (2.6)

which is a simpler form of the Burgers’ equation without the nonlinear term.

u(x, t) is the quantity being advected, c is the advection speed,
∂u

∂t
represents

the rate of change of u with respect to time,
∂

∂x
(cu) represents the flux of u

denoted as f(u) in the x direction [26].

• Inviscid Burgers equation : Introduced by J.M. Burgers [9], the inviscid Burgers

equation described by
∂u

∂t
+

∂

∂x

(
u2

2

)
= 0 (2.7)

9

which serves as a fundamental model for understanding the behavior of non-

linear waves, particularly in 1D fluid flows and nonlinear acoustics [33].
∂u

∂t
represents the rate of change of scalar quantity u with respect to time. The term

f(u) =
u2

2
is the flux of the scalar quantity u and the term

∂

∂x

(
u2

2

)
= u

∂u

∂x
represents how the flux changes in spatial x direction [26].

• Buckley-Leverett equation : Buckley-Leverett equation is introduced in 1942

by Buckley and Leverett [7] and described by

∂u

∂t
+

∂

∂x

(
u2

u2 + a(1− u)2

)
= 0, a < 1 (2.8)

This equation serves as a fundamental model for describing one-dimensional

immiscible fluid displacement in porous media, particularly in the context of

oil recovery processes [35]. It describes the displacement of one fluid by an-

other like water displacing oil in a porous medium where u(x, t) denotes the

saturation of one of the fluids, such as the water saturation, which represents

the fraction of the pore volume occupied by that fluid. The term

f(u) =

(
u2

u2 + a(1− u)2

)
is the flux function, a nonlinear function of u, which describes the proportion

of the total fluid flow that is the particular fluid of interest like water. The term
∂u

∂t
represents the rate of change of fluid saturation with respect to time t. The

second term,
∂f(u)

∂x
represents the flux of the fluid saturation in the spatial

direction x. This term describes how the fluid saturation is transported along

the spatial dimension due to the flow dynamics within the porous medium. The

a is referred as mobility ratio parameter.

2.2 Finite Volume Method

Finite Volume Method (FVM) is a numerical technique for discretizing partial dif-

ferential equations by partitioning the computational domain into a series of con-

trol volumes[26, 46]. It calculates fluxes across the boundaries of these volumes to

approximate the integral representation of the equations. Particularly advantageous

10

for hyperbolic PDEs due to its ability to preserve local conservation properties [26],

FVM is commonly utilized in scenarios involving scalar hyperbolic PDEs. While this

method can be extended to higher dimensions, for this thesis, we specifically restrict

its application to 1D scalar PDEs.

2.2.1 Finite Volume Method for 1D Scalar Conservation Laws

In 1D space FVM is constructed by dividing the spatial domain x into smaller seg-

ments referred to as finite volumes [26]. The spatial domain is divided into arbitrary

grids and the discretized points denoted as xi, i ∈ Z and bounded by some posi-

tive integer m such that xi : i = 1, 2, . . . ,m as the spatial domain is divided into m

subintervals.

∆x = sup
xi∈C∆x

|xi − xi−1|

Without loss of generality, we assume that the grids are uniform for ease,

∆x = xi − xi−1, then ith grid cell are denoted by

Ci =
(
xi− 1

2
, xi+ 1

2

)
=

(
xi −

xi − xi−1

2
, xi +

xi+1 − xi

2

)

and can be seen as displayed in the Figure 2.1

xi−1 xi− 1
2

xi xi+ 1
2

xi+1

Ci

Figure 2.1: Grid Scheme of the Finite Volume

From the equation 2.3, it follows that the integral form of the conservation law on

each cell Ci = (xi−1/2, xi+1/2) takes the form

11

1

dt

∫ xi+1/2

xi−1/2

u(x, t) dx =
1

dt

∫
Ci
u(x, t) dx = f(u(xi−1/2, t))− f(u(xi+1/2, t)) (2.9)

Integrating (2.9) with respect to time from t = tn to the upper bound t = tn+1, it

follows that∫
Ci

u(x, tn+1) dx−
∫
Ci

u(x, tn) dx

=

∫ tn+1

tn
f(u(xi− 1

2
, t)) dt−

∫ tn+1

tn
f(u(xi+ 1

2
, t)) dt

(2.10)

Next, dividing each component by ∆x = xi − xi−1 represents the distances between

each consecutive nodes of the spatial domain x, and re-arranging the equation, we

achieve average change on the spatial domain x

1

∆x

∫
Ci

u(x, tn+1) dx =
1

∆x

∫
Ci

u(x, tn) dx

− 1

∆x

(∫ tn+1

tn
f(u(xi+ 1

2
, t)) dt−

∫ tn+1

tn
f(u(xi− 1

2
, t)) dt

)
(2.11)

This explains precisely how to update the cell average of u(x, t) in a single time

step over the cell [24]. This approach involves maintaining an approximation to the

integral of the unknown function u over each of these intervals, ensuring that the

conservation laws are satisfied within each volume. To explain more simply, this

method breaks the space into small sections and calculates the average value of u in

each section. This helps ensure that the overall behavior of u follows the conservation

law in each grid cell. Each time step involves updating these values by estimating the

flux passing through the endpoints of the intervals. In other words this helps us keep

track of how this quantity changes over time in each section of space which is divided

by the grid cells. A problem arises when we try to integrate with respect to time on

the right side of the equation (2.11). Since u(xi ± 1
2
, t) undergoes changes over time

along the cell boundary, we lack an exact solution to precisely calculate its evolution.

To address this problem, we use numerical methods. By denoting the approximation

of the fluxes with a numerical method at x = xi− 1
2

and x = xi+ 1
2

on the right side

of the equations, and by denoting the integral of the approximate values that include

12

u(x, t), the numerical value U serves as an approximation of the average value within

the i-th interval at time tn, since we want to approximate to the value of Un+1
i after a

time step ∆t = tn+1 − tn, thus it is given by

Un
i ≈ 1

∆x

∫ x
i+1

2

x
i− 1

2

u(x, tn) dx =
1

∆x

∫
Ci

u(x, tn) dx.

Approximate flux values Fi+ 1
2

and Fi− 1
2

are introduced respectively by

Fn
i+1/2 ≈

1

∆t

∫ tn+1

tn
f(u(xi+1/2, t)) dt , Fn

i−1/2 ≈
1

∆t

∫ tn+1

tn
f(u(xi−1/2, t)) dt.

(2.12)

After plugging the approximate values of the fluxes and the values of the unknown

function, we have

Un+1
i = Un

i − ∆t

∆x

(
Fn

i+1/2 −Fn
i−1/2

)
(2.13)

As the values that describe the state of the system in a hyperbolic problem propa-

gate at a finite speed, it makes sense to initially assume that Fn
i−1/2 can be achieved

only from the cell values of Un
i−1 and Un

i on the average values on both sides of the

boundary xi−1/2. We can use the form

Fn
i−1/2 = F (Un

i−1,Un
i) (2.14)

where F is the numerical flux function. Notable 3 different numerical flux functions

are given in detail in the subsequent section. Then, numerical scheme in 2.13 reads

Un+1
i = Un

i − ∆t

∆x

(
F (Un

i ,Un+1
i)− F (Un

i−1,Un
i)
)

(2.15)

In Figure 2.2, we illustrate the Finite Volume Method (FVM) approach for updat-

ing the average values Un
i−1, Un

i , and Un
i+1 within each cell using fluxes at the cell

boundaries. This figure, presented in x-t space, shows the transition from time tn to

tn+1. It includes the fluxes Fn
i−3/2, Fn

i−1/2, and Fn
i+1/2 applied at the cell interfaces.

The figure illustrates how the flow of conserved quantities is handled across the cell

boundaries.

13

Un+1
iUn+1

i−1 Un+1
i+1

tn+1

tn

↷↷
Fn

i−1/2 ↷
Fn

i+1/2Fn
i−3/2Fn
i−3/2

Un
i−1 Un

i Un
i+1

x

t

Figure 2.2: Finite volume method for updating the cell averages by fluxes in 1D

2.3 Riemann Problem

The Riemann problem is an initial value problem related to conservation laws, where

a single discontinuity separates constant values at the boundaries. This problem is

typically examined over a short time period surrounding the discontinuity, making

it especially useful in multiphase flow studies involving two immiscible fluids with

varying densities. The Riemann problem is instrumental in understanding conserva-

tion laws as it illustrates the formation of shock waves and rarefaction waves, which

are key characteristics in such contexts. In the development of finite volume methods,

solving the Riemann problem with defined initial conditions is a crucial technique.

These initial conditions are piecewise constant with a single jump discontinuity at a

point

u0(x) =

uL if x < 0,

uR if x > 0

where uL, uR ∈ U are given constants. In the context of FVM, if Ui−1 and Ui are

the cell averages in two neighboring grid cells, solving the Riemann problem with

uL = Ui−1 and uR = Ui provides crucial information for computing numerical fluxes

and updating cell averages over time.

In any numerical method as like FVM, convergence is crucial for ensuring that the

14

numerical solution matches the true solution of the differential equation as the grid is

refined. Convergence requires satisfying two essential conditions. First the method

must be consistent with the differential equation and ensure an accurate local approx-

imation of the true solution. Second the method must be stable which ensures that

errors introduced at each time step are controlled and do not increase uncontrollably

[26].

2.4 CFL Condition

For an explicit FVM to ensure stability and accuracy it must satisfy the CFL condition

which was introduced by Courant, Friedrichs and Lewy [12]. A numerical finite

volume scheme of the form (2.13) is called stable if the CFL condition described by

max
j

∣∣f ′(Un
j)
∣∣ ∆t

∆x
≤ 1

is satisfied where
∣∣f ′(Un

j)
∣∣ is the upper bound on the wave speeds that can occur in

the Riemann problem.

2.5 Some Examples of Numerical Flux Functions

Numerical flux functions are essential in the FVM to compute the fluxes at the bound-

aries of each control volume. These fluxes approximate the flow of conserved quan-

tities across the interfaces between neighboring control volumes. Some of the well-

known numerical flux functions are as follows:

• Godunov Flux:

FGodunov(uL, uR) =


min

uL<u<uR

f(u), if uL ≤ uR,

max
uR<u<uL

f(u), if uL > uR.

This flux function ensures conservation and is particularly effective in capturing

shock waves and discontinuities [49].

• Lax-Friedrichs Flux:

FLax-Friedrichs(uL, uR) =
1

2

(
f(uL) + f(uR)−

∆x

∆t
(uR − uL)

)
.

15

It is diffusive and helps in maintaining stability in the numerical scheme.

• Lax-Wendroff Flux:

FLax-Wendroff(uL, uR) =
f(uL) + f(uR)

2
− ∆t

2∆x

[
f ′(

uR + uL

2
)

]
(uR − uL).

It incorporates a Taylor series expansion to improve accuracy and stability, es-

pecially for problems with smooth solutions.

In order to ensure that the numerical flux is consistent, it should accurately approx-

imate the integral in 2.12. When u(x, t) ≡ ū is constant in the spatial dimen-

sion x, u does not vary over time and the integral simplifies to f(ū). Therefore if

Un
i−1 = Un

i = ū, the numerical flux function F of 2.14 should be equal to f(ū). This

ensures that the numerical flux function F correctly represents the physical flux f(ū)

when both Un
i−1 and Un

i are ū.

In general, continuity is also required. This means that as Un
i−1 and Un

i approach

ū, the numerical flux F should approach f(ū). Additionally, Lipschitz continuity is

typically necessary. This implies that there exists a constant M such that

|F (Un
i−1,Un

i)− f(ū)| ≤ M max
(
|Un

i − ū|, |Un
i−1 − ū|

)
. (2.16)

After stability and consistency are addressed, the numerical method is said to be

convergent. In FVM, convergence ensures that as the grid is refined and the time

step is decreased, the numerical solution approximates the true solution of the PDE

with increasing accuracy. This means that the method provides reliable results as long

as the conditions of consistency and stability are met. Additionally, convergence is

crucial for validating the effectiveness of the FVM in practical applications, ensuring

that the numerical results reflect the behavior of the physical system being modeled.

16

CHAPTER 3

ADAPTIVE MESH REFINEMENT

In this chapter we delve into the intricacies of AMR. The discussion begins with

a broad overview of adaptive mesh techniques exploring their history and the vari-

ous ways they can be classified. In 1D problems we introduce AMR, focusing on

the Berger-Oliger type and its implementation in the CLAWPACK. This includes a

discussion on the algorithm’s key components and how it enhances computational ef-

ficiency and accuracy. Finally the grid structures used in this method are broken down

detailing how grids are created refined and managed within the AMR framework to

tackle problems effectively.

3.1 Introduction to AMR

In numerical solutions of PDEs , selecting the right mesh is crucial for obtaining

accurate and efficient results. Finite Element, Finite Difference, and Finite Volume

Methods often require extensive mesh adjustments to solve the problem accurately.

Although these methods utilize meshes for their simplicity and straightforward imple-

mentation, this approach can become computationally intensive, time consuming and

hard to store especially in multidimensional problems where the required number of

mesh points can be large. Uniform meshes which distribute grid points evenly across

the entire domain can be less efficient in terms of computational cost and memory.

However adaptive meshes dynamically adjust the placement of grid points based on

the complexity of the solution. This adaptability allows for greater resolution and

efficiency as it concentrates computational resources where they are needed most to

achieve accurate solutions [22].

17

AMM is particularly beneficial for problems involving sharp changes, discontinuities

such as phase change phenomena, blow-up problems, and hyperbolic conservation

laws [6, 22]. Berger and Colella implemented a class of AMM called AMR for

shock hydrodynamics [6]. Building on this foundational work, Skamarock, Oliger,

and Street later extended the application of AMR to numerical weather prediction us-

ing the Berger–Oliger technique [40]. This progression underscores the adaptability

of AMM in tackling a wide range of complex problems. In recent decade years AMM

have proven highly effective for addressing PDEs with substantial solution variations,

including those involving shock waves, boundaries, and other complex features [19].

The effectiveness of AMM in its early uses led to more research and development,

expanding its application to a wider variety of partial differential equations. This

interest shows how adaptable AMM is and how it remains important for improving

numerical simulations across various types of problems [37]. In addition to these,

AMR is a distinct technique within the wider field of AMM designed to increase both

the precision and efficiency of numerical simulations. While AMM covers a range of

strategies for modifying the mesh based on the solution’s behavior, AMR is particu-

larly focused on hierarchical mesh refinement. Instead of relying on a uniform grid

throughout the entire computational domain, AMR adjusts the mesh dynamically. It

overlays finer grids on top of coarser ones specifically in areas where the solution

shows sharp gradients, discontinuities or complex features. This method ensures that

the computational resources are allocated more effectively, improving the accuracy of

simulations in critical regions while maintaining overall efficiency. AMR technique

has been developed by many researchers over the years. The approach initially de-

veloped by Berger, Oliger, and Colella was improved and expanded by others into

different forms [38, 50]. The Berger-Oliger AMR was developed for Cartesian grids.

After the researcher wanted to implement AMR to work with complex geometries

by using finite volume method, they adapted the original approach by developing

specialized grid structures to address diverse surface challenges. Chungang Chen,

Feng Xiao, and Xingliang Li developed an adaptive global shallow-water model on a

cubed-sphere grid by combining the finite volume scheme [10]. All in all in a broad

classification, AMM can be categorized into three different types as follows:

h-Method: The h-method, named after the notation h = ∆x , is commonly used

18

in AMR. Method typically begins with a uniform mesh and adaptively refines or

coarsens the mesh by adding or removing mesh points based on error estimates or

indicators. This allows for improved local resolution by dynamically adjusting the

spatial mesh. Notable examples include McCormick’s work [31] which explores mul-

tiLevel adaptive methods, and Berger-Oliger-Corella’s works [6] and [5], which detail

based work in AMR. These references highlight the method’s successful application

across various problems and its significant impact on advancing adaptive mesh tech-

niques.

p-method: The p-method involves the adaptive enrichment of the polynomial order.

This method, which takes its name from polynomials, also means polynomial im-

provement. Finite element discretization of PDEs with p-methods is implemented

with local polynomials of some degree. The degree of polynomials is usually mea-

sured by error estimates, increased or decreased to adapt the method according to the

smoothness of the solutions. Numerous studies have implemented the p-method, in-

cluding notable examples such as [17], [16], and [15], which provide a comprehensive

analysis of p-version, h-version, and h-p version finite element methods, focusing on

their application to problems with singularities and their effectiveness in improving

accuracy through adaptive techniques. Additionally, [1] investigated the application

of adaptive refinement techniques in solving parabolic PDEs, focusing on mesh re-

finement and polynomial degree adjustment to improve accuracy.

r-method: The r-method, also known as the moving mesh method, stands for relo-

cation. It relocates grid points adaptively in a mesh with a fixed number of nodes

to concentrate in regions with rapid solution variation. The mesh moves, allowing

improvement and coarsening automatically without adding or removing grid points

just by changing the position of existing meshes but keeping their number constant.

This makes the r-method more economical and less computationally intensive com-

pared to methods that add or remove grid points. Various implementations of the

r-method include the work of Huang, Ren and Russell who explored the r-method for

moving mesh PDEs using mesh relocation and equidistribution principles, develop-

ing efficient moving mesh algorithms for hyperbolic conservation laws and enhancing

accuracy and efficiency for problems with shock discontinuities [21]. Additionally,

Tang and Tao presented numerical methods for solutions with sharp transitions, fo-

19

cusing on Burgers’ equation, demonstrating that nodes can effectively concentrate

and move with shocks [43]. Furthermore, Miller also contributed by presenting nu-

merical methods for solutions with sharp transitions, particularly focusing on Burgers

equation, and showing that nodes can effectively concentrate and move with shocks

[32].

In addition to this broad classification, combination of the mentioned methods as like

r-h has been worked on by researchers. The r-h method is an adaptive technique

that combines mesh movement with mesh refinement to enhance the accuracy and

efficiency of numerical simulations. In this approach, the grid points are relocated

to areas requiring higher resolution, while the mesh itself is refined or coarsened to

better capture solution features. This dual strategy allows for a more targeted and

effective use of computational resources, improving the representation of complex

phenomena without unnecessary refinement in regions of lesser importance. Ong,

Russell, and Ruuth have studied the r-h moving mesh method for one-dimensional

time-dependent partial differential equations [34]. In a different area, Piggott has

worked on applying h-r adaptivity within numerical ocean modeling [36]. Similarly,

the h-p method combines h-refinement and p-refinement, applying both mesh refine-

ment and increased polynomial order to adaptively improve solution accuracy. This

approach is particularly effective in addressing regions with varying solution behav-

ior, balancing computational effort with accuracy. Babushka has explored the inte-

gration of h-p refinement techniques within the FEM for various partial differential

equations [2]. This work demonstrates how h-p methods can enhance solution ac-

curacy and computational efficiency. In a related area, Paul Houston and Endre Süli

have applied h-p adaptivity in Discontinuous Galerkin FEM for first-order hyperbolic

problems [20].

In this thesis, we use CLAWPACK software to solve 1D scalar conservation laws

numerically. We take three example of test equations. Test equation 1 is linear advec-

tion equation (2.6), test equation 2 is inviscid Burgers equation (2.7), and lastly test

equation3 is Buckley-Leverett equation (2.8).

The details of the algorithm following by [6] is given in the next section.

20

3.2 Description of the Algorithm of AMR

In numerical simulations solving PDEs with sharp transitions or significant changes

like discontinuities or oscillations presents a considerable challenge. Classical grid

methods often struggle when dealing with solutions that have single jump disconti-

nuities or rapid variations, affecting both accuracy and computational efficiency. In

every computational task, there is a goal to design a grid that minimizes discretiza-

tion errors while enhancing the efficiency of the solution approach. However, in 1D

simulations, even the finest grids often fall short in providing adequate resolution for

certain features of the solution. This places considerable pressure on computing re-

sources, both in terms of memory and processing time. To overcome this issue, it is

crucial to implement a method that intelligently allocates grid points to regions where

they are most required.

In some problems, such as the step function example for the test equation 2 (2.7), the

initial data is considered with the given initial condition,

u(x, 0) =

1 if x < 0.5,

0 if x > 0.5

the solution consists of a single jump, and the location of the discontinuity is known

in advance. The discontinuity propagates to the right along the line where x = 0.5.

(a) Shockwave when t = 0 (b) Shockwave when t = 0.5

Figure 3.1: Evolution of the step function over time

21

Apart from the discontinuous point, the sides of the step function remain constant.

This predictable behavior makes it relatively easy to handle with uniform grid meth-

ods, as can be observed in Figure 3.1.

However, this is not always the case. For example, by considering the same test equa-

tion (2.7) with the following initial condition with the initial data and the boundary

conditions

u(x, 0) = sin(2πx), u

(
1

4
, 0

)
= 1 u

(
3

4
, 0

)
= −1.

In this case, despite having smooth initial conditions, the solution to the PDE develops

into an N-wave structure and eventually reaches a steady state characterized by a

single jump discontinuity as depicted in Figure 3.2 below.

(a) sin(2πx) when t = 0 (b) sin(2πx) when t = 0.5

Figure 3.2: Evolution of the solution from a smooth initial condition to an N-wave

structure

This illustrates how uniform grids may struggle with problems where the discontinu-

ities and critical features are not known in advance, highlighting the need for adaptive

techniques like AMR to effectively manage and resolve such dynamic features. We

are dealing with 1D hyperbolic PDEs which are characterized by waves that propa-

gate at finite speeds. This allows for frequent adjustments to the grid, ensuring that

regions requiring refinement are properly covered. This approach is effective even in

steady-state solutions.

22

In problems where it’s predetermined that grid refinement is needed, it’s more effi-

cient and cost friendly to incorporate it directly into the uniformly mesh rather than

using adaptive techniques. As can be thought guessing the locations of grid refine-

ment is not always possible and challenging, adaptive mesh techniques are preferred

at that point. The method is called AMR. In the most general way, algorithm can be

defined as follows:

In the 1D AMR algorithm, the computational domain begins with a coarse grid cov-

ering the interval [a, b]. To identify which intervals require increased resolution,

refinement criteria based on error estimation techniques such as ’flag2refine’ and

Richardson extrapolation are used. These intervals are subdivided into smaller inter-

vals recursively until a desired level of accuracy is achieved. Time steps are adjusted

proportionally to grid refinement levels to maintain stability with explicit difference

schemes. Boundary conditions are enforced using ghost cells, extending the domain

with additional cells beyond [a, b] to handle inflow, outflow, or reflective conditions

as needed. Cell averages are updated using flux-differencing algorithms, integrating

solutions sequentially by grid level to ensure consistency across refined and coarse

grid interfaces. This approach optimizes computational efficiency by focusing grid

updates on refined regions while maintaining continuity and accuracy throughout the

simulation [4].

(a) Uniform Mesh

(b) Adaptive Mesh

Figure 3.3: Comparison between uniform mesh and adaptive mesh

23

3.3 Description of the Grid

In 1D simulations, component grids are an important technique used to handle com-

plex geometries and different physical components. This approach involves divid-

ing the computational domain into smaller, independently defined grids ,subgrids or

subintervals, optimizing each grid according to specific characteristics. For example,

in order to more accurately model sudden changes in the properties of a medium,

such as shock waves, higher resolution and more refined calculations can be per-

formed in these regions [6]. Component grids can also be thought of as subintervals,

with each subinterval adjusted to better capture the local behavior of the solution,

thus increasing overall accuracy and efficiency. Using separate grids for each com-

ponent simplifies the grid generation process, but managing the interfaces of these

grids presents an additional challenge; smooth transitions and accurate communica-

tion must be ensured. Marsha Berger’s work provides a framework to understand

and manage the computational effort required for using component grids and intro-

duces a specific data structure to effectively handle and manage different components

and their interfaces. With this method, 1-dimensional computational simulations can

achieve greater accuracy and efficiency, especially in regions with complex geome-

tries or varying physical properties .

In this context, the term grid refers to the interval that encompasses the entire set of

points defining the grid, rather than the individual points themselves. Specifically, a

grid is identified as the smallest interval that includes all the defining points. Over-

lapping grids imply that there is a non-empty intersection between the intervals of

the grids. The computation process starts with an initial base grid, denoted as G0,

which is set up by the user before starting the analysis. This base grid is composed

of several component grids, labeled as G0,j where j is a natural number. Each com-

ponent grid is required to maintain local uniformity, ensuring consistent spacing and

organization within its segment of the domain. This consistent arrangement within

each component grid is crucial for achieving precise results and effectively managing

the analysis. The grids can vary in mesh width, allowing for finer discretization in

areas of interest, such as boundary layers, compared to coarser grids in other parts of

the domain. Within each grid, the mesh spacing along coordinate x direction does not

24

have to be uniform. However, we assume that G0 maintains a uniform mesh spacing

hx = h0 across all its component grids G0,j . During the computation, adaptive re-

finement occurs, generating additional subgrids in response to specific features in the

transient solution, such as estimated solution errors or the presence of shock fronts.

The Figure 3.4 displays a grid structure comprising two component grids at the coars-

est level. Within one of these component grids, there exists a refined subgrid. The

shaded area within the subgrid indicates the segment of the coarse grid that requires

refinement, as described in [5].

Figure 3.4: Coarse grid with a refined subgrid

In the following example, it illustrates the use of adaptive subintervals in a 1D.

The highlighted region in gray within the coarse grid represents an area requiring

more detail around a specific feature in the solution. Around features like a shock

front, for instance, a refined subgrid is drawn with higher resolution within the coarse

grid, ensuring a more precise representation of that region in the solution.

Shock Front

Coarse Grid Refined Subgrid

Figure 3.5: Illusturation of 1D coarse and refined grids

25

It’s important to understand that smaller grids, also known as subgrids, are not in-

tegrated into the coarse grid. Instead, each grid, whether it is coarse or refined, is

defined independently with its own solution vector and storage. This allows each

subgrid to be processed nearly independently from the others, which simplifies the

use of moving subgrids even if the primary grid remains stationary.

Each grid in the AMR system operates independently, allowing effective domain par-

titioning that supports multi-processor systems. Subgrids can be nested within larger

grids, and points are categorized based on their position relative to these grids either

within, on the boundary, or contained by other grids.

The level of a grid is defined by its nesting depth, which indicates the number of

coarser grids it resides within. The base grid G0 represents level 0 in this hierarchy.

Subgrids of G0 are referred to as level 1 refinement, denoted G1. Further refinement

within G1 leads to level 2 grids, or G2, and this process continues for additional

levels. This hierarchical nesting establishes a sequence of grids with increasingly

finer discretizations across both spatial and temporal domains. For a visual example

of these refined grids, see Figure 3.9.

Level 0, G0

Level 1, G1

Level 2, G2

Level 3, G3

Figure 3.6: Levels of refinement in a 1D grid

In this manner, a hierarchical sequence of grids can be established to progressively

refine the discretization within a specific segment of the spatial domain. Each grid,

denoted as Gl, represents a level l in this hierarchy and is characterized by a mesh

width hl. Thus, a point within the problem domain may be included in multiple grids.

The approximate solution at such a point is determined by interpolating from the

finest grid that contains the point.

26

The set of mesh discretizations {h0, h1, h2, . . . , hmax} is defined in advance, where

each mesh width hl is an integral multiple of hl+1, often using a factor of four. For

different regions within the domain, the choice of the optimal refinement ratio de-

pends on specific needs. For instance, if a finer grid is required in a certain area,

where hfiner =
h0

r
and h0 is the initial mesh width, applying a single refinement level

with h1 = h0

r
is generally more effective than using two levels with a ratio of

√
r.

Smaller values of the refinement ratio r are often preferred since not all regions need

the same degree of refinement. Specifically, suggested a preference for a refinement

ratio of 4 over the more common ratio of 2 found in multi-grid methods, especially

for 1D grids [5]

In the context of 1D grids, preference for a refinement ratio of 4 rather than the usual

ratio of 2 found in multi-grid methods means that each refined grid segment is divided

into four smaller segments rather than just two.

Refinement Ratio of 2: Each interval on the base grid G0 is subdivided into two

smaller intervals. An example can be given as, we start with an interval [a, b], it is

divided into [
a,

a+ b

2

]
,

[
a+ b

2
, b

]

Refinement Ratio of 4: Each interval on the base grid G0 is subdivided into four

smaller intervals. An example for this can be given as if we start with an interval

[a, b], it would be divided into four equal segments:

[
a, a+ b−a

4

]
,
[
a+ b−a

4
, a+ b−a

2

]
,
[
a+ b−a

2
, a+ 3(b−a)

4

]
,
[
a+ 3(b−a)

4
, b
]

By preferring a refinement ratio of 4, it is aimed to achieve a higher resolution in the

refined grids, which helps to capture finer details of the solution. This approach, how-

ever, increases the computational workload, as there are more grid points to handle

and more computations to perform at each refinement level. In particular scenarios

where all regions requiring refinement are expected to need a significant amount of

it, higher values of r can be implemented efficiently in need. In this thesis with the

CLAWPACK environment in some examples we have chosen refinement ratios of 2

27

and 4 in various examples for computational efficiency and cost considerations based

on the specific problem requirements.

In the 1D case addressed in this thesis, each grid represents a simple interval, elimi-

nating the complexities of overlapping and nesting found in higher dimensions. Level

nesting in one dimension is identical to straightforward grid nesting, and overlapping

of fine grids does not occur. Each finer grid is entirely contained within a coarser grid

at the next level of refinement.

Each level of refinement in a 1D grid system divides a line segment, such as from a to

b where a, b ∈ R, into smaller intervals. Each segment represents a different level of

detail or refinement. Unlike higher dimensions where grid overlaps can occur, such

situations are avoided in one dimension.

If two grids with the same mesh width are at the same refinement level, they either do

not intersect at all or merge into a single, larger grid spanning the combined interval.

Figure 3.7: Separate identical level refinements

Figure 3.8: Merged Identical Level Refinement

In the first Figure 3.7, two grids of the same width are shown at different refinement

levels. The second Figure 3.8 illustrates how these two grids combine to form a

coarser grid, maintaining the overall width while integrating the finer details from the

individual grids. This process demonstrates the hierarchical nature of grid refinement

28

and coarsening in AMR, where finer grids can be merged into coarser representations

to optimize computational efficiency.

Using the concepts of independent intervals and recursive refinement, we create a

hierarchy of grids. The entire grid structure is denoted by

G =
⋃
l

Gl

where each Gl represents an interval at refinement level l.

3.4 Algorithm of Integration

In this section, we describe the integration algorithm used to solve a hyperbolic partial

differential equation using mesh refinement in one dimension. The algorithm com-

prises three main components: (i) time integration using finite differences on each

grid, (ii) error estimation and subsequent grid generation, and (iii) special grid-to-

grid operations necessitated by mesh refinement. Each grid is treated as an indepen-

dent computational entity with its own solution vector, allowing for independent time

integration except for determining boundary values. The integration order is deter-

mined by ensuring that mesh widths hl at level l are related by a refinement factor r

relative to hl−1, with time steps kl = kl−1/r set accordingly to maintain a constant

CFL condition λ = c∆t/∆x across all grids that can also be decided by the user in

the setrun.py file as desired CFL in CLAWPACK which has a maximum limit of 1.

This approach ensures efficient integration across different scales without requiring

globally restrictive time steps. The algorithm advances subgrids to the same time

level before progressing the parent grid, forming a coarse grid cycle as the primary

unit of computation in one dimension. By advancing subgrids to the same time level

before their parent grid, the algorithm synchronizes computations on finer grids with

those on coarser grids. This method maintains consistency and accuracy in the nu-

merical solution by coordinating the advancement of various grid levels within each

computational cycle.

29

x

t

k1

k2

G2,1

G0,0 G1,1

k0

Figure 3.9: Nested grids example with different levels of refinement

In the figure above which is from Berger’s thesis [5], The illustration highlights 1D

space and time, showcasing a coarse grid labeled G0,1, a fine grid at level 1 G1,1

compared to G0,1, and an even finer grid G2,1 at level 2, with a refinement ratio of

r = 2 at level 1 and r2 = 4 at level 2. This hierarchical refinement structure allows

for adaptive resolution across the domain, focusing computational resources where

finer detail is needed, such as around features like shocks in the solution. The AMR

approach ensures that computational effort is optimized, providing accurate solutions

while minimizing computational costs where detailed resolution is less critical.

3.5 Estimation of Error

The CLAWPACK algorithm refines grids by estimating local truncation errors [5].

This involves assessing errors at all grid points to create new finer grids or remove

unnecessary ones, optimizing computational resources. For hyperbolic problems, re-

gridding frequency is crucial, often every 3−4 steps, to account for predictable prop-

agation speeds.

An alternative approach in CLAWPACK is the ‘flag2refine‘ method. This flags cells

for refinement based on the maximum undivided difference in the solution with a de-

cided buffer zone of 3− 4 neighboring cells , compared to a specified error tolerance

ϵ. This gradient-based approach detects solution discontinuities, differing from trun-

30

cation error methods that rely on convergence results for hyperbolic systems. Both

methods aim to balance computational efficiency and accuracy by refining regions

with high error, but ‘flag2refine‘ uses simpler, more direct criteria. We prefer to use

this criteria in our numerical results.

3.6 Conditions of Interface

An interface condition in numerical methods and simulations refers to the rules or

equations that ensure continuity and consistency across discretized interfaces within

a computational domain [27]. In 1D simulations , the Coarse Mesh Approximation

Method (CMAM) [11] addresses the interface between a coarse grid and a finer grid.

Here, the finer grid, refined by a factor n, features smaller spatial (∆xfiner) and tem-

poral (∆tfiner) intervals compared to the coarse grid (∆xcoarser and ∆tcoarser). To

determine values at the boundary of the finer grid (u0,i for 0 < i ≤ n), the CMAM

utilizes values from the coarse grid while applying the same numerical method, but

with a reduced time step on the finer grid. This approach ensures stability, particularly

when the mesh ratio

λ =
∆tcoarser
∆xcoarser

of the coarse grid meets specified criteria [5]. Subsequent steps in the mesh re-

finement algorithm involve updating procedures between coarse and finer grids. In

1D AMR, updating is vital for preserving the accuracy and consistency of solutions

across different grid levels. This involves adjusting values on coarser grids by incor-

porating information from finer grids, either by interpolation or direct injection. Such

updating ensures that finer details captured on the finer grids are accurately reflected

in the coarser grid solution, preventing accuracy loss. Additionally, this updating pro-

cess mitigates error propagation: by correcting values on the coarse grid, it prevents

inaccuracies from spreading to adjacent regions, including finer grids, thus maintain-

ing the overall integrity and reliability of the solution throughout the simulation.

In CLAWPACK implementation, the mesh refinement algorithm operates recursively

to enhance the accuracy of numerical simulations. Initially, the solution is integrated

on the coarsest grid level. This process is repeated iteratively, with the number of iter-

ations determined by the ratio of finer to coarser grid spacing. CLAWPACK employs

31

Richardson extrapolation to estimate errors and compare them against a specified tol-

erance ϵ. If the estimated errors exceed ϵ, indicating the need for further refinement,

new grids with finer mesh widths are created to capture more detailed features of the

solution.

Although the grid generation process is efficient, it incurs higher computational costs

when integrating finer grids due to their increased area. The goal is to minimize the

total area occupied by the refined grids while ensuring that the grid coordinates are

closely aligned with the solution, thereby achieving optimal simulation accuracy.

During the regridding process, the algorithm may introduce new grid levels, modify

existing ones, or eliminate unnecessary levels. When adjusting a fine grid in a 1D

simulation, the process generally involves creating a new grid instance. This new grid

is initialized with solution values obtained from the previous refinement before the old

grid is removed. This systematic approach ensures that continuity and accuracy are

preserved throughout the refinement process, allowing the refined grids to accurately

reflect the evolving dynamics of the solution.

The algorithm identifies grid points at level l that need to be refined at a finer level

l + 1. It then clusters these flagged points and generates new grids based on these

clusters. This procedure is essential for adapting the grid structure to capture and

refine regions where the solution dynamics require increased resolution.

The algorithm begins by identifying grid points at level l that need refinement into

finer grids at level l + 1. Subsequently, it clusters these flagged points and generates

new grids based on these clusters. In 1D grids, this clustering process is straight-

forward, as each grid corresponds to an interval. The boundaries of new subgrids

are defined by the leftmost and rightmost flagged points on the coarse grid, encom-

passing all flagged points between them. If there are gaps of unflagged points of

sufficient size, multiple separate subgrids may be created instead. The buffer zone

around flagged points determines how frequently grids are evaluated and the spac-

ing between them, ensuring efficient refinement. Points closer than twice the buffer

zone size are grouped together within the same grid refinement to maintain effective

resolution.

32

G2

G1

G0

OLD GRID STRUCTURE NEW GRID STRUCTURE

X= FLAGGED POINT

XXX

X X X X XX

X X X

Figure 3.10: One dimensional regridding procedure

The Figure 3.10 [6] illustrates the grid configuration before and after regridding. It

emphasizes specific grid points marked with ’X’, which represent areas with signifi-

cant error estimates. Instead of overlaying the grids, each grid is shown separately to

provide a clear view of the refined grid structure.

3.7 Structures of Data

The AMR strategy that CLAWPACK uses, applies remarkably direct data structures

that are crucial for its feasibility. Especially for 1D problems CLAWPACK utilizes

a tree data structure based on [6] where each node represents a grid. The nesting

requirement for 1D mesh refinement dictates that each fine grid must be entirely

contained within a coarser grid at the next level. This relationship defines the tree

structure: a parent node corresponds to a coarser grid, while its descendants represent

subgrids. Siblings are subgrids within the same parent grid, and neighbors are fine

grids at the same refinement level but with different parents.

An ordered tree data structure is used where each node can have multiple descendants,

reflecting that a coarse grid can contain several fine grids. Nodes are ordered using

the coordinate value of the left-most grid point in the associated grid. Grid-to-grid

operations, such as updating coarse grids and setting internal boundary values for

fine grids, follow the tree’s path links. An additional non-standard link, indicated by

33

a dashed line, represents the neighbor pointer, facilitating operations across grids at

the same refinement level.

Dynamic storage allocation is essential as the tree structure grows or shrinks dynami-

cally. Regridding operations often involve moving only the finest level grids, leaving

the coarser level grids fixed and connecting a new bottom half to the existing top half

of the tree. Each node in the tree contains a fixed amount of information: grid loca-

tion, number of grid points, level in the tree, offspring pointer, sibling pointer, parent

pointer, a pointer to the next grid at the same level, the time integrated to, and an index

into the main storage array for approximate solution values. This structured approach

ensures efficient and organized management of grid information and solution storage,

supporting the dynamic and hierarchical nature of AMR in 1D contexts. Figure 3.11

illustrates the data structure for 1D for Berger-Oliger AMR.

G0,1

G1,1 G1,3G1,2

G2,1 G2,2
G1,1

G2,2

G1,2 G1,3

G0,1

G2,1

Figure 3.11: Structure of data for 1D

34

CHAPTER 4

NUMERICAL IMPLEMENTATION OF SCALAR CONSERVATION LAWS

BY AMR

In this chapter we focus on approximating the solutions to several 1D scalar conser-

vation laws. Our test equations are linear advection (2.6) , inviscid Burgers (2.7), and

Buckley-Leverett (2.8) equations. We apply FVM approximations to these equations

and obtain numerical solutions using both uniform and adaptive refined meshes with

a predetermined buffer zone of 3 neighbouring cells. Our numerical simulations uti-

lize Godunov type numerical flux which is known for its accuracy in handling shock

waves. We pay particular attention to the initial data, as it plays a crucial role in

determining how these waves evolve and behave in time.

4.1 Numerical Results of Scalar Conservation Laws

This section presents the numerical investigation of three test equations: Test Equa-

tion 1: linear advection equation (2.6), Test Equation 2: inviscid Burgers equation

(2.7) and Test Equation 3: Buckley-Leverett equation (2.8). Each equation is ana-

lyzed with different initial and boundary conditions. Our investigation includes two

groups of figures for each equation. First, the numerical solutions are compared using

N = 20 and N = 60 uniform grids with a valid CFL=0.9. Then, the solution achieved

with N = 60 uniform grids is compared to the results obtained using AMR for each

equation and each initial condition. Firstly we begin with test equation 1 (2.6) with

the initial condition (4.1). Then we move on investigating test equation 2 (2.7) with

the initial condition 1 (4.2). Following to this we investigate the initial conditions 2

(4.3) and 3 (4.4) for the same test equation. Lastly we investigate 3rd test equation

35

(2.8) with the initial condition (4.5). The details of the initial conditions are stated in

the related subsections for each equation.

4.1.1 Test Equation 1: Linear advection equation

In this part we present the Test Equation 1 (2.6) with initial condition

u(x, 0) = e−β(x−x0)2 = e−200(x−0.3)2 (4.1)

where the Gaussian pressure pulse is centered at x = x0 = 0.3 with width determined

by β = 200 and advection velocity c = 1.

Figure 4.1 shows the solution of (2.6) under periodic boundary conditions. The true

solution is represented by the red line, while the numerical solutions are computed

using two different grid resolutions. The results are displayed at t = 0, t = 0.5, and

t = 1.0 with a fixed CFL = 0.9.

For N = 20 uniform grids, the grid spacing is ∆x ≈ 0.0526 and the time step is

∆t ≈ 0.0474. In contrast, with N = 60 uniform grids, the grid spacing is reduced to

∆x ≈ 0.0169 and the time step to ∆t ≈ 0.0152. The results underscore the effect of

grid resolution on the accuracy of the numerical solution.

The comparison reveals that with fewer grid points with N = 20, the accuracy of the

numerical solution relative to the true solution decreases. This is because the lower

resolution grid struggles to capture finer details and evolving features of the solution

as the simulation progresses. Conversely, as the number of uniform grid points in-

creases when N = 60 in the spatial domain x = [0, 1], the resolution improves and

the accuracy of the solution becomes significantly better. This demonstrates the criti-

cal role of grid resolution in numerical simulations. Higher resolution grids provide a

more precise representation of the solution, making them essential for achieving accu-

rate results. The results highlight how increasing the number of grid points can effec-

tively enhance the accuracy of the numerical solution, underscoring the importance

of selecting an appropriate grid resolution to accurately model and solve equations

like (2.6).

36

(a) Uniform N = 20, t = 0.0 (b) Uniform N = 60, t = 0.0

(c) Uniform N = 20, t = 0.5 (d) Uniform N = 60, t = 0.5

(e) Uniform N = 20, t = 1.0 (f) Uniform N = 60, t = 1.0

Figure 4.1: Numerical solution of linear advection with uniform mesh for N = 20

and N = 60. Initial condition (4.1) and CFL = 0.9.

37

Figure 4.2 offers a comparison of the accuracy between N = 60 uniform grids and

AMR results at t = 0, t = 0.5, and t = 1.0 of the equation 2.6.The right side of

the figure offers the AMR results where the left side of the figure offers the N = 60

uniform grid results. In the AMR solution, the error bound is set to ϵ = 0.2 using the

’flag2refine’ criteria with a refinement ratio r = 2. In the Figure, level 1 corresponds

to the grid resolution of 60 uniform grids, represented by the green triangle. Level

2 highlights the areas around the Gaussian pulse that were refined with a refinement

ratio of r = 2, indicated by the blue squares. Refinement to level 3 was not necessary.

Refining only to level 2 provided an efficient solution compared to uniform solution,

making further refinement unnecessary as the solution did not form any additional

sharp gradients or shocks that would lead to further refinement. It is observed that the

grids around Gaussian pulse is refined rather than other grids to increase the effect

of the solution. Although using N = 60 uniform grids gives us a more accurate

solution compared to N = 20 uniform grids, the accuracy tends to lessen over time

when compared to the true solution. This happens because the uniform grid’s constant

resolution struggles to keep up with the changing details of the solution feature as the

wave propagates. At t = 0, the compared solutions look quite similar, but t = 1.0,

the differences become more noticeable. AMR solution provides a highly efficient

solution even with a refinement ratio of r = 2 . AMR dynamically adjusts the grid

resolution around the Gaussian pulse while avoiding unnecessary refinement in the

other parts of spatial domain x. By setting a smaller error bound the solution can

achieve even higher accuracy, as it refines the grid more precisely in areas with larger

errors. Additionally due to the refinement ratio r = 2 it can be observed that the

AMR solution achieves an accuracy of what would be obtained by using N = 120

grids uniformly spread across the entire domain with a more efficient use of grids.

By focusing refinement only around the Gaussian pulse and avoiding unnecessary

refinement in other areas, the AMR approach achieves higher accuracy with fewer

grids. This approach provides a more accurate solution with less computational effort.

38

(a) Uniform N = 60 , t = 0.0 (b) AMR N = 60 , t = 0.0

(c) Uniform N = 60 , t = 0.0 (d) AMR N = 60 , t = 0.5

(e) Uniform N = 60 , t = 1.0 (f) AMR N = 60 , t = 1.0

Figure 4.2: Comparison of uniform mesh and AMR for linear advection equation.

Initial condition (4.1) with N = 60 and CFL= 0.9.

39

4.1.2 Test Equation 2: Inviscid Burgers Equation

In this subsection we present the 2nd test equation (2.7) with three different initial

conditions. The first initial condition is

1. The first initial condition is

u(x, 0) =

1 if x < 0,

0 if x > 0.
(4.2)

which results shock wave.

2. The second initial condition is

u(x, 0) =

0 if x < 0,

1 if x > 0.
(4.3)

results rarefaction wave

3. The third one is a sinusoidal initial condition

u(x, 0) = sin(2πx) + 0.5 (4.4)

gives also shock propagation [23].

We proceed by analyzing the test equation (2.7) with the first initial condition (4.2).

In Figure 4.3 reference solution is indicated by the light blue line where the domain

is divided by the uniform grids. The figure illustrates the results of the evolution of

shock wave at t = 0, t = 0.5 and t = 1.0 for the number of the uniform grids

N = 20 and N = 60. For both of the uniform solutions CFL = 0.9 is fixed and

implemented on the solutions.

For N = 20 grids, the spatial step size is calculated as ∆x ≈ 0.0632, and the time

step size is ∆t ≈ 0.1138, within the spatial domain x = [−0.2, 1.0]. In contrast, with

N = 60 grids, the spatial step size is reduced to ∆x ≈ 0.0203, and the time step

size becomes ∆t ≈ 0.0365. The increased resolution provided by a higher number of

grids allows for a more detailed representation of the solution.

Figure 4.3 illustrates the solutions at t = 0.0, t = 0.5, and t = 1.0 for both N = 20

and N = 60 uniform grids. The differences in the evolution of the solution can be

40

even realized at t = 0 unlike with the results observed for the equation (2.6). The

initial condition that leads to the formation of a shock wave, highlights the impact of

grid resolution on the solution’s accuracy.

With N = 60 grids, the solution captures the shock wave’s details and sharp features

more effectively compared to N = 20. The increased number of uniform grids allow

for a more precise representation of the shock wave by closely approaching with the

reference solution indicated by the light blue line in the figure.

In contrast, the less uniform grids struggles to accurately capture the evolving shock

wave resulting in a significant increase in error compared to the reference solution.

The larger spatial and time step sizes lead to a less detailed representation, causing the

solution to diverge more from the reference. This differences becomes more feasible

over time as the shock wave propagates.

Overall, the comparison shows that fewer grids, with larger step sizes, are less ca-

pable of capturing the dynamic features of the shock wave. This results in a larger

error between the computed solution and the reference. Increasing the number of

grid points provides a finer resolution that more accurately follows the shock wave’s

evolution and reducing the error and improving the solution’s accuracy.

(a) Uniform N = 20, t = 0.0 (b) Uniform N = 60, t = 0.0

Figure 4.3: Numerical solution of inviscid Burgers equation with uniform mesh for

N = 20 and N = 60. Initial condition (4.2) and CFL= 0.9

41

(c) Uniform N = 20, t = 0.5 (d) Uniform N = 60, t = 0.5

(e) Uniform N = 20, t = 1.0 (f) Uniform N = 60, t = 1.0

Figure 4.3: Continued.

The figures 4.4 and 4.5 illustrate the comparison of N = 20 and N = 60 uni-

form grids on the left side of the figure along with the AMR results implemented

on N = 20 and N = 60 results at time t = 0.0, t = 0.5 and t = 1.0 of the

equation (2.7) with shock wave formation. In the combined solution of uniform grids

with AMR, the error bound ϵ = 0.4 is set and a buffer zone width is set to be 3 neigh-

bouring cells. Level 1 as illustrated as green triangles represents the N = 20 and

N = 60 uniform grids in the spatial domain x = [−0.2, 1.0] where level 2 is marked

as blue squares with level 3 stated with red circles. A refinement ratio of r = 2 and

r = 4 is decided for level 2 and level 3 refinements respectively. Unlike the scenario

for the equation (2.6), where higher levels of refinement were not necessary, level

3 refinement is crucial for accurately capturing the shock wave in the (2.7) Equa-

tion. This higher level of refinement addresses the sharp discontinuities and evolving

42

features of the shock wave, which are not as effectively captured by lower levels of

refinement. As observed in the comparison between N = 20 and N = 60 uniform

grids, increasing the number of grids improves the accuracy of the solution. Similarly

with the AMR approach by dynamically adjusting the grid resolution achieves higher

accuracy by focusing refinement where it is most needed compared to N = 20 and

N = 60 uniform grids. Even though N = 60 uniform grids captures the solution way

much better than N = 20 uniform grids, by the time steps Figure 4.5 indicates near

the shock formation, the solution with N = 60 uniform grids struggles to capture the

reference solution at t = 0.5 and t = 1.0. The AMR with level 3 is focused around the

sharp discontinuity while level 2 refinement captures broader neighboring grids. As

the refinement ratios are set to be 2 and 4, the solution with AMR offers an accuracy

of a solution that could be achieved with N = 480 uniform grids all together which

means instead of increasing the number of the uniform grids all over the spatial do-

main x = [−0.2, 1.0], the AMR solution refined and achieved the same resolution by

refining the grids around the discontinuity in Figure 4.5. With N = 20 grids the level

of resolution in Figure 4.4 is significantly lower compared to that in Figure 4.5 where

a higher number of grids provides a more detailed capture of the shock structure. In

Figure 4.4 the effects of AMR refinement are clearly visible as the adaptive approach

selectively increases the grid density in regions near the shock enhancing accuracy

without unnecessary refinement in smoother areas. The buffer zone and error bound

ϵ are the same for both Figures 4.4 and 4.5. Readers can observe the differences be-

tween the uniform and AMR solution more clearly in Figure 4.4 because the lower

grid resolution makes the adaptive refinement more apparent, highlighting how AMR

effectively concentrates computational effort in regions where it’s most needed.

43

(a) Uniform N = 20, t = 0.0 (b) AMR N = 20 , t = 0.0

(c) Uniform N = 20, t = 0.5 (d) AMR N = 20 , t = 0.5

(e) Uniform N = 20, t = 1.0 (f) AMR N = 20 , t = 1.0

Figure 4.4: Comparison of uniform mesh and AMR for inviscid Burgers equation.

Initial condition (4.2) with N = 20 and CFL= 0.9.

44

(a) Uniform N = 60, t = 0.0 (b) AMR N = 60 , t = 0.0

(c) Uniform N = 60, t = 0.5 (d) AMR N = 60 , t = 0.5

(e) Uniform N = 60, t = 1.0 (f) AMR N = 60 , t = 1.0

Figure 4.5: Comparison of uniform mesh and AMR for inviscid Burgers equation.

Initial condition (4.2) with N = 60 and CFL= 0.9.

45

The second initial condition (4.3) of the test equation 2 (2.7) is resulting as rarefaction

wave of the equation . Initial data is set as uL = 0 and uR = 1. In the Figure (4.6),

the simulation results illustrate the propagation of wave using uniform grids with a

light blue labelled reference solution. The figure presents the solution of the initial

data obtained with N = 20 and N = 60 uniform grids with a fixed CFL = 0.9 in the

spatial interval [−0.2, 1.2] at t = 0, t = 0.5 and t = 1.0.

For N = 20 uniform grids, the spatial step size ∆x ≈ 0.0737 with ∆t ≈ 0.0663.

Even at the initial time t = 0, the resolution is relatively coarse, which results in a

less accurate depiction of the wave propagation compared to the reference solution.

As the solution evolves over time, it becomes evident that the less uniform grid fails

to capture the reference solution accurately compared to N = 60 uniform grids.

For N = 60 uniform grids, the spatial step size ∆x ≈ 0.0237 with ∆t ≈ 0.0213. The

increased number of uniform grids significantly improves the resolution, capturing

the reference solution with greater accuracy. The increased number of uniform grids

allows for a more detailed representation of the rarefaction wave, accurately reflecting

the values near the initially given values of u = 1 and u = 0, which N = 20 fails to

represent. The results demonstrate that the higher grid resolution better approximates

the rarefaction wave and its characteristics as it evolves over time.

(a) Uniform N = 20 , t = 0.0 (b) Uniform N = 60, t = 0.0

Figure 4.6: Numerical solution of inviscid Burgers equation with uniform mesh for

N = 20 and N = 60. Initial condition (4.3) and CFL= 0.9.

46

(c) Uniform N = 20 , t = 0.5 (d) Uniform N = 60 , t = 0.5

(e) Uniform N = 20 , t = 1.0 (f) Uniform N = 60 , t = 1.0

Figure 4.6: Continued.

47

The Figure 4.7 indicates a comparison of N = 60 uniform grid together with the

AMR implemented solution with it at time t = 0.0, t = 0.5 and t = 1.0 of the

rarefaction wave of the test equation (2.7). An error bound ϵ = 0.4 is implemented

for the ’flag2refine’ criteria with a buffer zone width of 3 neighboring meshes on the

AMR solution. N = 60 uniform grids are indicated in the figure with green stars for

level 1, blue circles for level 2, and red triangles for level 3. It can be observed that

the AMR solution of the rarefaction wave is efficient within the stated error bound

for the initial condition. The reason behind this is that at the initial time t = 0, there

exists a discontinuity. The AMR solution immediately refines the area around the

discontinuous point with a refinement ratio r = 2 for level 2 and r = 4 for level 3. At

t = 0, the accuracy achieved by the AMR method could be obtained with a uniform

grid of 4×60 grids. As the time evolution of the solution progresses, the discontinuity

evolves more smoothly. At time t = 0.5 and t = 1.0, the values of the uniform grids

are accurate and get closer to each other, which leads to no need for additional mesh

refinement within the predefined error bound ϵ.

Overall, it can be said that with the error bound ϵ = 0.4, the N = 60 grids are suf-

ficient to capture the solution accurately, meeting the predefined error bound without

requiring further mesh refinement.

(a) Uniform N = 60, t = 0.0 (b) AMR N = 60 , t = 0.0

Figure 4.7: Comparison of uniform mesh and AMR for inviscid Burgers equation.

Initial condition (4.3) with N = 60 and CFL= 0.9.

48

(c) Uniform N = 60, t = 0.5 (d) AMR N = 60 , t = 0.5

(e) Uniform N = 60, t = 1.0 (f) AMR N = 60 , t = 1.0

Figure 4.7: Continued.

49

The third initial condition (4.4) for the test equation 2 (2.7) involves a sinusoidal

function. Although the initial conditions are smooth, the solution evolves into an

N-wave structure over time and eventually reaches a steady state characterized by a

single jump discontinuity. The spatial domain [0, 1] is used for this initial condition.

To assess and compare the accuracy of the solutions, we use two different uniform

grid resolutions: N = 20 and N = 60.

For N = 20 uniform grids, the grid spacing is ∆x ≈ 0.0526 and the time step is ∆t ≈
0.0316. With N = 60 uniform grids, the grid spacing is reduced to ∆x ≈ 0.0169 and

the time step to ∆t ≈ 0.0102. Simulations are simulated at t = 0, t = 0.25, and

t = 0.5 with a valid CFL = 0.9 for each both number of uniform grids.

Figure 4.8 highlights the impact of increasing the number of uniform grids from N =

20 to N = 60 on solution accuracy. The reference solution is shown with a black line

for comparison.

With N = 60 uniform grids, the solution provides a much clearer results of the

sinusoidal wave by capturing finer details and reducing numerical diffusion compared

to the N = 20 grid solution. This increased number of uniform grids allow for a

more accurate representation of the wave’s behavior and the sharp transitions resulting

from the N-wave. Although the initial condition is captured accurately with N = 20

uniform grids, the accuracy of the solution decreases over time. This decrease in

accuracy becomes evident at t = 0.25 and t = 0.5, as the finer details of the solution

are not well represented with the lower resolution grid unlike N = 60 uniform grids.

In summary, comparing N = 20 and N = 60 uniform grids shows how crucial grid

resolution is for accuracy. While N = 20 captures the initial condition, it struggles

with the finer details and sharp transitions of the N-wave as time goes on. On the

other hand, N = 60 grids provide a much clearer and more accurate picture of the

wave’s behavior. This underscores the importance of using higher resolution grids to

achieve precise and dependable results in simulations.

50

(a) Uniform N = 20, t = 0.0 (b) Uniform N = 60, t = 0.0

(c) Uniform N = 20, t = 0.25 (d) Uniform N = 60, t = 0.25

(e) Uniform N = 20, t = 0.5 (f) Uniform N = 60, t = 0.5

Figure 4.8: Numerical solution of inviscid Burgers equation with uniform mesh for

N = 20 and N = 60. Initial condition (4.4) and CFL= 0.9.

51

The Figure 4.9 demonstrates the comparison of N = 60 uniform grid on the left

and adaptively refined version of 60 uniform mesh at time t = 0.0, t = 0.25 and

t = 0.5. An error bound of ϵ = 0.4 is set for the ’flag2refine’ criteria with a buffer

zone of 3 neighboring grids. On the left side of Figure 4.9, the uniform solution

with N = 60 grids is shown alongside the reference solution. On the right side, the

AMR-implemented solution is displayed.

In this figure, level 1 represented by green triangles corresponds to the uniform grid

solution with N = 60. Level 2 indicated by blue squares with a refinement ratio

r = 2 and level 3 shown with red circles with a refinement ratio r = 4. At the initial

condition t = 0.0, the error bound ϵ is not exceeded by the divided differences of

any of the 3 neighboring uniform grids. Therefore, no refinement is performed at

t = 0. By t = 0.25 and t = 0.5, the equation evolves into an N -wave structure with

a single jump discontinuity forming a shock. The neighboring uniform grids around

the discontinuity have divided differences that exceed the error bound, resulting in

refinements at levels 2 and 3.

This adaptive refinement allows for a more detailed representation of the solution’s

critical features without unnecessarily increasing the computational cost. By selec-

tively refining the grid only around the single jump discontinuity, the AMR signifi-

cantly improves accuracy while maintaining efficiency.

The accuracy achieved by AMR around the jump discontinuity could be matched

by using a uniform grid with N = 480 cells across the entire spatial domain. In

contrast, AMR selectively refines only the areas near the jump discontinuity, offering

comparable accuracy while significantly reducing the total number of cells.

52

(a) Uniform N = 60, t = 0.0 (b) AMR N = 60 , t = 0.0

(c) Uniform N = 60, t = 0.25 (d) AMR N = 60 , t = 0.25

(e) Uniform N = 60, t = 0.5 (f) AMR N = 60 , t = 0.5

Figure 4.9: Comparison of uniform mesh and AMR for inviscid Burgers equation.

Initial condition (4.4) with N = 60 and CFL= 0.9.

53

(a) AMR N = 60 , t = 0.0 (b) AMR N = 60 , t = 0.1

(c) AMR N = 60 , t = 0.2 (d) AMR N = 60 , t = 0.3

(e) AMR N = 60 , t = 0.4 (f) AMR N = 60 , t = 0.5

Figure 4.10: Evolution of numerical solutions by AMR for inviscid Burgers equation

with N = 60. Initial condition (4.4) and CFL= 0.9.

54

For details on the evolution of the AMR solution for the test equation (2.7) with the

sinusoidal initial condition, we present the evolution from t = 0.0 to t = 0.5 in 6

figures in Figure 4.10. At t = 0.1, the solution is refined to level 2 as no further

refinement is required and the grids satisfy the error bounds. However, after t = 0.1,

the formation of an N -wave begins, necessitating level 3 refinement to accurately

capture the evolving features. Details beyond this are left for the readers to observe.

4.1.3 Test Equation 3: Buckley-Leverett equation

The last test equation is Buckley-Leverett equation (2.8). We consider the following

initial condition

u(x, 0) =

1 if x < 0,

0 if x > 0,
(4.5)

Figure 4.11 compares the evolution of the solution to the test equation 3 (2.8) at times

t = 0.0, t = 0.5, and t = 1.0 over the spatial domain x = [−0.2, 1.5] by using

N = 20 and N = 60 uniform grids with a fixed CFL number of 0.9. The reference

solution is provided at the same time steps in the same figure.

For N = 20 uniform grids, the spatial step size is ∆x ≈ 0.089, resulting in a time step

size of ∆t ≈ 0.0387. In contrast, with N = 60 grids, the spatial step size is reduced

to ∆x ≈ 0.0288, and the time step size becomes ∆t ≈ 0.0125. The reference solution

is given in Figure 4.11 as black indicated line.

The accuracy of the numerical solution significantly improves with an increase in the

number of uniform grids from N = 20 to N = 60. This improvement in accuracy

becomes particularly noticeable with the higher resolution in comparison to the refer-

ence solution. While the N = 60 grid effectively captures both the initial shape and

the evolved structure of the equation, including the formation of shocks, the N = 20

grid fails to accurately capture these details. As a result, the N = 60 grid solution

maintains accuracy that is much closer to the reference solution, demonstrating the

benefit of higher grid resolution in representing the dynamic features of the solution

more accurately.

55

(a) Uniform N = 20, t = 0.0 (b) Uniform N = 60, t = 0.0

(c) Uniform N = 20, t = 0.5 (d) Uniform N = 60, t = 0.5

(e) Uniform N = 20, t = 1.0 (f) Uniform N = 60, t = 1.0

Figure 4.11: Numerical solution of Buckley-Leverett equation with uniform mesh for

N = 20 and N = 60. Initial condition (4.5) and CFL= 0.9.

56

Figure 4.12 illustrates the application of the AMR method with the ‘flag2refine‘ cri-

teria. An error bound of ϵ = 0.4 is used with a buffer zone containing 3 neighboring

grids to determine refinement levels.

In the figure, level 1 represents the N = 60 uniform grids with green triangles, level

2 is indicated by blue squares with a refinement ratio of r = 2, and level 3 is shown

with red circles with a refinement ratio of r = 4.

Although the N = 60 uniform grids offer greater efficiency compared to N = 20

uniform grids as shown in Figure 4.11, the solution achieved with N = 60 uniform

grids still falls short in accurately capturing the shock formations during the evolution.

Even at t = 0, AMR is implemented at x = 0 to capture the discontinuity resulting

from the initial conditions uL = 1.0 and uR = 0.0.

As the solution evolves, the equation (2.8) first develops rarefaction waves where the

solution changes gradually. We can see at time step t = 0.5, the solution transi-

tions to form sharp shock waves where the solution experiences a sharp gradient. At

this stage AMR refines the neighboring grids around the shock . The method dy-

namically adjusts the grid resolution based on the formation of shocks, ensuring that

areas with sharp gradients receive higher resolution. By t = 1.0, AMR process has

precisely captured the shock wave structure. The AMR provides a resolution compa-

rable to that of N = 480 uniform grids but with a more efficient use of computational

resources. By focusing refinement around the shock regions, the AMR method im-

proves accuracy while avoiding the high computational cost associated with uniform

grids across the entire domain.

57

(a) Uniform N = 60, t = 0.0 (b) AMR N = 60 , t = 0.0

(c) Uniform N = 60, t = 0.5 (d) AMR N = 60 , t = 0.5

(e) Uniform N = 60, t = 1.0 (f) AMR N = 60 , t = 1.0

Figure 4.12: Comparison of uniform mesh and AMR for Buckley-Leverett equation.

Initial condition (4.5) with N = 60 and CFL= 0.9.

58

For details on the evolution of the AMR solution for the last test equation (2.8) with

the initial condition (4.5) we present the evolution from t = 0.0 to t = 1.0 in 6 figures

in Figure 4.13. Even from the initial condition levels 2 and 3 are used to capture the

discontinuity at x = 0. As the solution evolves shock waves develop necessitating

the continued use of level 3 refinement to accurately capture these features. Details

beyond this are left for the readers to observe.

(a) AMR N = 60 , t = 0.0 (b) AMR N = 60 , t = 0.2

(c) AMR N = 60 , t = 0.4 (d) AMR N = 60 , t = 0.6

Figure 4.13: Evolution of numerical solutions by AMR for Buckley-Leverett equation

with N = 60. Initial condition (4.5) and CFL= 0.9.

59

(e) AMR N = 60 , t = 0.8 (f) AMR N = 60 , t = 1.0

Figure 4.13: Continued.

In summary, the figures presented provide a detailed comparison across the three one

dimensional scalar conservation laws: linear advection, inviscid Burgers equation,

and Buckley-Leverett equation.

For the test equation 1 (2.6), the comparison between uniform grids with N = 20

and N = 60 highlights how increasing grid resolution improves the accuracy of cap-

turing the solution. The increased number of uniform grids (N = 60) more closely

approximates the reference solution, demonstrating an increased ability to resolve the

Gaussian pulse and represent the wave with greater accuracy. Additionally, AMR

solution achieves a resolution comparable to that of N = 240 uniform grids but with

significantly fewer total grid points. AMR refines the grids specifically around the

pulse, allowing for accurate capture of solution while maintaining computational ef-

ficiency.

In the case of inviscid Burgers equation (2.7) the impact of grid resolution on accuracy

is particularly notable. With N = 20 uniform grids the solution diverges from the

reference solution over time. With increased number of uniform grids, (N = 60)

captures the shock wave and the evolving N-wave pattern with greater accuracy. It

matches the reference solution more closely and effectively compared to the solution

from N = 20 uniform grids.

For each of the three initial conditions increasing the number of uniform grids pro-

60

vides better resolution. AMR is particularly effective in capturing shock wave forma-

tions as the solution evolves. However for initial conditions that lead to rarefaction

waves, AMR performs well at the beginning but faces difficulties as the solution

evolves into a rarefaction wave. Even with N = 60 uniform grids the solution can be

captured within an acceptable error bound.

Overall except for rarefaction scenarios AMR offers a computationally efficient so-

lution that approximates the resolution achievable with around N = 480 uniform

grids. AMR achieves this high level of resolution by refining only the necessary areas

around sharp gradients balancing accuracy with computational cost.

For the test equation 3 (2.8), the figures reveal how grid resolution affects the depic-

tion of the displacement front. Increased number of uniform grid (N = 60) provides

a more accurate representation of the front’s movement and structure, closely match-

ing the reference solution, compared to the less number of uniform grid (N = 20).

The equation initially forms rarefaction waves. As the wave speed reaches its maxi-

mum at each time step, shock waves develop and discontinuities arise at these points.

AMR efficiently captures these discontinuities by focusing refinement specifically on

the regions where shocks occur. This allows AMR to achieve accuracy comparable

to that of N = 480 uniform grids while avoiding the need to refine unnecessary grids

throughout the entire spatial domain.

Overall, the comparisons between N = 20 and N = 60 uniform grids illustrate that

increasing the number of grids improves accuracy in numerical simulations. While

increased number of uniform grids such as N = 60 provide a more precise repre-

sentation of the solution, the comparison with AMR offers a more efficient approach.

AMR selectively refines grids around discontinuities to achieve highly accurate re-

sults while optimizing computational cost. By focusing refinement on regions with

sharp gradients or discontinuities, AMR balances accuracy and efficiency effectively.

AMR achieves a resolution comparable to nearly 8 to 10 times that of N = 60 uni-

form grids without the extensive computational expense.

61

62

CHAPTER 5

CONCLUSION

In this study, we explored the effectiveness of AMR for solving 1D scalar conserva-

tion laws focusing on the following test equations 1: linear advection (2.6), 2: inviscid

Burgers (2.7), and 3: Buckley-Leverett equations (2.8). We compared AMR to stan-

dard uniform mesh methods to see how well it performs.

AMR is implemented on uniform grid solutions using the FVM with a Godunov-type

numerical flux. Our implementation of AMR with FVM in CLAWPACK, display

promising results. This approach significantly increased accuracy in regions with

sharp gradients or discontinuities by dynamically adjusting the grid. As a result, we

capture detailed solution features with far fewer grid points compared to uniform

meshes.

The comparison between AMR and uniform meshes demonstrates that AMR achieves

the same level of accuracy as a uniform mesh with an increased number of grid points

by refining only the necessary areas according to the refinement ratios related to the

levels. As refinement levels increase, accuracy improves in line with these refine-

ment ratios. Matching the accuracy achieved with AMR would require a significantly

larger number of uniform grids. Additionally, the numerical results strongly sup-

port the theoretical framework, confirming that AMR efficiently avoids unnecessary

refinement in smooth regions, focusing resources on areas with significant features

such as discontinuities. This targeted approach makes AMR more efficient by direct-

ing computational effort where it is most needed.

In summary, this study highlights that AMR is a powerful and efficient tool for solving

1D hyperbolic PDEs. Its adaptivity on mesh refinement provides high accuracy and

63

improved computational efficiency, achieving results comparable to uniform meshes

with significantly fewer grid points. This makes AMR a cost-effective and efficient

approach for handling complex problems.

The numerical results presented in this thesis were based on FVM techniques as im-

plemented in CLAWPACK, which efficiently handles scalar conservation laws and

AMR. For a comprehensive understanding of CLAWPACK and its algorithms, fur-

ther details can be found in LeVeque’s work [45].

64

REFERENCES

[1] S. Adjerid, J.E. Flaherty, P.K. Moore, and Y.J. Wang. High-order adaptive meth-

ods for parabolic systems. Physica D: Nonlinear Phenomena, 60(1):94–111,

1992.

[2] I. Babuska and M. Suri. The p and h-p versions of the finite element method,

basic principles and properties. SIAM Review, 36(4):578–632, 1994.

[3] J. Barrett, J. Blowey, and H. Garcke. Finite element approximation of a fourth

order nonlinear degenerate parabolic equation. Numerische Mathematik, 80, 08

1997.

[4] M. Berger and R. Leveque. Adaptive mesh refinement using wave-propagation

algorithms for hyperbolic systems. SIAM Journal on Numerical Analysis, 35,

12 1997.

[5] M. J. Berger and J. Oliger. Adaptive mesh refinement for hyperbolic partial

differential equations. Journal of Computational Physics, 53(3):484–512, 1984.

[6] M.J. Berger and P. Colella. Local adaptive mesh refinement for shock hydrody-

namics. Journal of Computational Physics, 82(1):64–84, 1989.

[7] S. Buckley and M. Leverett. Mechanism of fluid displacement in sands. Trans-

actions of the AIME, 146, 04 2013.

[8] C. J. Budd, W. Huang, and R. D. Russell. Moving mesh methods for problems

with blow-up. SIAM Journal on Scientific Computing, 17(2):305–327, 1996.

[9] J.M. Burgers. A mathematical model illustrating the theory of turbulence. vol-

ume 1 of Advances in Applied Mechanics, pages 171–199. Elsevier, 1948.

[10] C. Chen, F. Xiao, and X. Li. An adaptive multimoment global model on a cubed

sphere. Monthly Weather Review, 139(2):523 – 548, 2011.

65

[11] M. Ciment. Stable difference schemes with uneven mesh spacings. Mathemat-

ics of Computation, 25(114):219–227, 1971.

[12] R. Courant, K. Friedrichs, and H. Lewy. Über die partiellen differenzengle-

ichungen der mathematischen physik. Mathematische annalen, 100(1):32–74,

1928.

[13] L.C. Evans. Partial Differential Equations. Graduate studies in mathematics.

American Mathematical Society, 2010.

[14] E. Godlewski and P. A. Raviart. Numerical approximation of hyperbolic sys-

tems of conservation laws. Applied Mathematical Sciences, 1996.

[15] W. Gui and I. Babuška. The h, p and h-p versions of the finite element method

in 1 dimension - part ii. the error analysis of the h-and h-p versions. Numerische

Mathematik, 49(6):613 – 657, 1986. Cited by: 128.

[16] W. Gui and I. Babuška. The h, p and h-p versions of the finite element method

in 1 dimension - part iii. the adaptive h-p version. Numerische Mathematik,

49(6):659 – 683, 1986.

[17] W. Gui and I. Babuška. The h,p and h-p versions of the finite element method

in 1 dimension - part i. the error analysis of the p-version. Numerische Mathe-

matik, 49(6):577 – 612, 1986. Cited by: 220.

[18] R. Haberman. Applied Partial Differential Equations: With Fourier Series and

Boundary Value Problems. Featured Titles for Partial Differential Equations.

Pearson, 2013.

[19] D.F. Hawken, J.J. Gottlieb, and J.S. Hansen. Review of some adaptive node-

movement techniques in finite-element and finite-difference solutions of partial

differential equations. Journal of Computational Physics, 95(2):254–302, 1991.

[20] P. Houston and E. Süli. hp-adaptive discontinuous galerkin finite element meth-

ods for first-order hyperbolic problems. SIAM Journal on Scientific Computing,

23(4):1226–1252, 2001.

66

[21] W. Huang, Y. Ren, and R. D. Russell. Moving mesh partial differential equa-

tions (mmpdes) based on the equidistribution principle. SIAM Journal on Nu-

merical Analysis, 31(3):709–730, 1994.

[22] W. Huang and R. D. Russell. Adaptive Moving Mesh Methods, volume 174. 01

2011.

[23] A. Kurganov and E. Tadmor. New high-resolution central schemes for nonlin-

ear conservation laws and convection–diffusion equations. Journal of Compu-

tational Physics, 160:241–282, 05 2000.

[24] R. J. LeVeque. Wave propagation algorithms for multidimensional hyperbolic

systems. Journal of Computational Physics, 131(2):327–353, 1997.

[25] R. J. Leveque. Nonlinear Conservation Laws and Finite Volume Methods. In

Saas-Fee Advanced Course 27: Computational Methods for Astrophysical Fluid

Flow., page 1, January 1998.

[26] R. J. LeVeque. Finite Volume Methods for Hyperbolic Problems. Cambridge

Texts in Applied Mathematics. Cambridge University Press, 2002.

[27] R. J. LeVeque. Finite Difference Methods for Ordinary and Partial Differential

Equations. Society for Industrial and Applied Mathematics, 2007.

[28] S. Li and J.M. Hyman. Adaptive mesh refinement for finite difference weno

schemes. Los Alamos Report LA-UR-03, 89272003, 2003.

[29] Y. Li, D. Jeong, and J. Kim. Adaptive mesh refinement for simulation of thin

film flows. Meccanica, 49, 01 2014.

[30] J. D. Logan. Applied partial differential equations. Springer, 2014.

[31] S. F. McCormick. Multilevel adaptive methods for partial differential equations.

In Frontiers in applied mathematics, 1989.

[32] K. Miller and R. N. Miller. Moving finite elements. i. SIAM Journal on Numer-

ical Analysis, 18(6):1019–1032, 1981.

[33] B. Okutmuştur. Scalar conservation laws. In Advanced Computational Fluid

Dynamics for Emerging Engineering Processes, chapter 4. IntechOpen, Rijeka,

2019.

67

[34] B. Ong, R. Russell, S. Ruuth, and Jean-Christophe Weill. An h-r moving

mesh method for one-dimensional time-dependent pdes. In Proceedings of the

21st International Meshing Roundtable, pages 39–54, Berlin, Heidelberg, 2013.

Springer Berlin Heidelberg.

[35] J. R. Philip. Dynamics of fluids in porous media. elsevier, 1972. 764 pp. dfk

94.00. fundamentals of transport phenomena in porous media. elsevier, 1972.

392 pp. dfl 65.00 differential equations of hydraulic transients, dispersion, and

ground water flow. by wen-hsiung li. prentice-hall, 1972. 316 pp. Journal of

Fluid Mechanics, 61(1):206–208, 1973.

[36] M.D. Piggott, C.C. Pain, G.J. Gorman, P.W. Power, and A.J.H. Goddard. h,

r, and hr adaptivity with applications in numerical ocean modelling. Ocean

Modelling, 10(1):95–113, 2005. The Second International Workshop on Un-

structured Mesh Numerical Modelling of Coastal, Shelf and Ocean Flows.

[37] T. Plewa, T. Linde, and V.G. Weirs. Adaptive Mesh Refinement - Theory and

Applications: Proceedings of the Chicago Workshop on Adaptive Mesh Refine-

ment Methods, Sept. 3-5, 2003. Lecture Notes in Computational Science and

Engineering. Springer Berlin Heidelberg, 2005.

[38] A. Schwing, I. Nompelis, and G. Candler. Implementation of adaptive mesh

refinement in an implicit unstructured finite-volume flow solver. 06 2013.

[39] C. Shen, J.Qiu, and A. Christlieb. Adaptive mesh refinement based on high or-

der finite difference weno scheme for multi-scale simulations. Journal of Com-

putational Physics, 230(10):3780–3802, 2011.

[40] W. Skamarock, J. Oliger, and R. L. Street. Adaptive grid refinement for nu-

merical weather prediction. Journal of Computational Physics, 80(1):27–60,

1989.

[41] W.A. Strauss. Partial differential equations: An introduction. John Wiley &

Sons, 2007.

[42] P. Sun, R. D. Russell, and J. Xu. A new adaptive local mesh refinement al-

gorithm and its application on fourth order thin film flow problem. Journal of

Computational Physics, 224(2):1021–1048, 2007.

68

[43] H. Tang and T. Tang. Adaptive mesh methods for one- and two-dimensional hy-

perbolic conservation laws. SIAM Journal on Numerical Analysis, 41(2):487–

515, 2003.

[44] T. Tang. Moving mesh methods for computational fluid dynamics. Contemp.

Math., 383, 01 2005.

[45] Clawpack Development Team. Clawpack Software, Version 5.9.2. http://

www.clawpack.org, 2024.

[46] E.F. Toro. Riemann Solvers and Numerical Methods for Fluid Dynamics: A

Practical Introduction. Springer Berlin Heidelberg, 2009.

[47] H.K. Versteeg and W. Malalasekera. An Introduction to Computational Fluid

Dynamics: The Finite Volume Method. Pearson Education Limited, 2007.

[48] E. Vázquez-Cendón. Solving Hyperbolic Equations with Finite Volume Meth-

ods, volume 90. 01 2015.

[49] L. Wan-Lung and Z. Tan. Moving mesh methods for boussinesq equation. In-

ternational Journal for Numerical Methods in Fluids, 61, 2009.

[50] Y. Zeng, A. Xuan, J. Blaschke, and L. Shen. A parallel cell-centered adaptive

level set framework for efficient simulation of two-phase flows with subcycling

and non-subcycling. Journal of Computational Physics, 448:110740, 2022.

69

http://www.clawpack.org
http://www.clawpack.org

	ABSTRACT
	ÖZ
	ACKNOWLEDGMENTS
	TABLE OF CONTENTS
	LIST OF FIGURES
	LIST OF ABBREVIATIONS
	Introduction
	Thesis Overview

	Finite Volume Method for Scalar Conservation Laws
	Conservation Laws
	Scalar Conservation Laws
	Examples of 1D Scalar Conservation Laws

	Finite Volume Method
	Finite Volume Method for 1D Scalar Conservation Laws

	Riemann Problem
	CFL Condition
	Some Examples of Numerical Flux Functions

	Adaptive Mesh Refinement
	Introduction to AMR
	Description of the Algorithm of AMR
	Description of the Grid
	Algorithm of Integration
	Estimation of Error
	Conditions of Interface
	Structures of Data

	Numerical Implementation of Scalar Conservation Laws by AMR
	Numerical Results of Scalar Conservation Laws
	Test Equation 1: Linear advection equation
	Test Equation 2: Inviscid Burgers Equation
	Test Equation 3: Buckley-Leverett equation

	Conclusion
	REFERENCES

