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ABSTRACT

JOINT DIRECTION OF ARRIVAL ESTIMATION AND SOURCE
ENUMERATION USING TRANSFORMER FOR SPARSE LINEAR ARRAYS

WITH ROBUSTNESS TO SENSOR MALFUNCTIONS

Muslu, Burak Hayati

M.S., Department of Electrical and Electronics Engineering

Supervisor: Prof. Dr. Tolga Çiloğlu

August 2024, 184 pages

Direction of arrival (DOA) estimation and source enumeration are crucial tasks in

modern array processing with a wide range of applications. For applying these tasks,

sparse linear arrays have been of great interest in the recent years due to their advan-

tages over other array types. However, these arrays are more vulnerable to sensor

malfunctions because of their coarray configuration. Sensor malfunctions in these

arrays may cause performance degradation in the mentioned tasks if the failures are

not handled. Handling the failures by repairing/replacing the sensors is challenging

in practice. Therefore, there arises a need of an estimation method that is robust to

sensor malfunctions.

A transformer-based DOA estimation and source enumeration method is proposed to

handle the sensor number/configuration variations occurring due to sensor malfunc-

tions. Existing data-driven solutions cannot generalize to such variations due their

input formulation and structural design. The proposed method exploits coarray-based

input formulation and positional encoding and attention blocks for learning spatial

arrangement of the sensors along with the nonlinear relationship between the mea-
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surements and source direction. Experimental results demonstrate that it achieves

error reduction in DOA estimation performed for intact array especially for low SNR

levels and snapshot numbers. It shows comparable performance to the state-of-the-

art methods for high SNR and snapshot regime. Introduction of sensor malfunctions

causes less degradation in the performance of the proposed method compared to oth-

ers which have reasonable processing time. The robustness to sensor malfunctions is

complemented by performance improvement in source enumeration particularly for

low SNR and snapshot regions.

Keywords: Direction of Arrival Estimation, Source Enumeration, Sparse Array, Sen-

sor Malfunction, Deep Learning
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ÖZ

SEYREK DOĞRUSAL DİZİLER İÇİN SENSÖR BOZULMALARINA
DAYANIKLI DÖNÜŞTÜRÜCÜ TABANLI ORTAK GELİŞ AÇISI VE

KAYNAK SAYISI KESTİRİMİ

Muslu, Burak Hayati

Yüksek Lisans, Elektrik ve Elektronik Mühendisliği Bölümü

Tez Yöneticisi: Prof. Dr. Tolga Çiloğlu

Ağustos 2024 , 184 sayfa

Geliş açısı ve kaynak sayısı kestirimi modern dizi işleme içerisinde çeşitli sayıda

uygulamaları bulunan önemli işlemlerdir. Diğer dizi çeşitlerine göre avantajları sebe-

biyle seyrek doğrusal diziler son yıllarda bu işlemleri uygulamak için büyük ilgi gör-

mektedir. Fakat bu diziler "coarray" konfigürasyonları sebebiyle sensör bozulmala-

rına karşı daha hassastırlar. Bu dizilerde sensör bozulmaları eğer düzeltilmezse bahsi

geçen işlemlerde performans düşmelerine sebep olabilmektedir. Bozulmaları sensör-

leri tamir ederek veya değiştirerek düzeltmek uygulamada zorlayıcıdır. Bu yüzden

sensör bozulmalarına karşı dayanıklı kestirim yöntemlerine ihtiyaç oluşmuştur.

Sensör bozulmaları sebebiyle ortaya çıkan sensör sayısı/konfigürasyonu farklılıkları-

nın üstesinden gelmek için dönüştürücü tabanlı bir geliş açısı ve kaynak sayısı kes-

tirimi yöntemi önerilmiştir. Mevcut veri güdümlü çözümler girdi formülasyonları ve

yapısal tasarımları sebebiyle bu tarz farklılıklar için genellenebilir performans gös-

terememektedir. Önerilen yöntem, sensörlerin konumsal düzenlerini ve ölçümler ile

kaynak açısı arasındaki doğrusal olmayan ilişkiyi öğrenmek için "coarray" tabanlı
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girdi formülasyonundan ve konumsal kodlama ve dikkat bloklarından faydalanmak-

tadır. Deneysel sonuçlar, özellikle düşük SNR seviyeleri ve ölçüm sayıları için sağlam

dizide gerçekleştirilen geliş açısı kestiriminde hata azaltımına ulaşıldığını göstermek-

tedir. Yüksek SNR ve ölçüm sayısı rejimi için en gelişkin yöntemlerle benzer perfor-

mans gösterilmektedir. Sensör bozulmalarının ortaya çıkması, makul işlem süresine

sahip diğer yöntemlere kıyasla önerilen yöntemin performansında daha az bozulmaya

neden olmuştur. Sensör arızalarına karşı dayanıklılık, özellikle düşük SNR ve ölçüm

sayısı seviyelerinde kaynak sayısı kestirimindeki performans iyileştirmesi ile destek-

lenmektedir.

Anahtar Kelimeler: Geliş Açısı Kestirimi, Kaynak Sayısı Kestirimi, Seyrek Dizi, Sen-

sör Bozulması, Derin Öğrenme
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CHAPTER 1

INTRODUCTION

Sensor array signal processing is an important area of study which takes place in ap-

plications such as radar, sonar, direction finding, communications, seismology, radio

astronomy, and medical diagnosis [1]. It exploits the data collected using several sen-

sors for performing specific tasks [2]. Sensors may form various geometries in an

array, among which sparse arrays are of great interest in the past two decades [3].

Sparse arrays are constructed by placing the sensors in a non-uniform manner. The

ability to localize more sources than the number of sensors made these array types

the focus of lots of studies [4].

Direction of arrival (DOA) estimation is one of the forefront tasks belonging to sensor

array signal processing due to its numerous application areas [5]. It involves estima-

tion of the direction of impinging source signals by utilizing temporally and spatially

sampled sensor data. DOA estimation methods operate on the received signals or

their second order statistics. The angle estimates generated by these methods might

be based on predefined grid angles, which is called as on-grid approach; might be

refined estimate of predefined grid angles, which is called as off-grid approach; or

might be direct angle, which is called as gridless approach. These methods can be

grouped into three primary categories; model-based, data-driven and hybrid. In the

recent years, data-driven methods achieved great success due to the advancements in

deep learning field [6].

Deep learning methods are comprised of neural networks which can approximate non-

linear functions. They apply nonlinear mapping between the input and target variable

and this nonlinear mapping is learned using vast amount of data. According to uni-

versal approximation theorem, a deep network with sufficient number of neurons can
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approximate any nonlinear function [7]. In the domain of DOA estimation, the non-

linear relationship between the received signals (or their second order statistics) and

source direction is learned using deep learning. Multilayer perceptron (MLP), convo-

lutional neural network (CNN), recurrent neural network (RNN) and long short-term

memory (LSTM) [8] are some of the preferred deep networks for DOA estimation

task [6].

Similar to DOA estimation, source enumeration has also an important place in sensor

array signal processing due to the fact that the number of existing sources is generally

unknown a priori. An inaccurate source number estimation degrades the performance

in DOA estimation as well [9]. Existing source enumeration techniques exploit in-

formation theoretic criteria or eigenvalues of the covariance matrix of the received

signals. As in DOA estimation, data-driven methods are employed for source enu-

meration too and deep learning models are preferred in some of the studies [10], [11].

In practice, sensor malfunctions may occur which lead to performance degradation in

DOA estimation and source enumeration if the failures are not handled. Sparse arrays

are vulnerable against such malfunctions due to their coarray configuration. Sensor

malfunctions may lead to changes in the sensor number/configuration of physical

array as well as difference coarray. Handling the failures by repairing/replacing the

sensors is challenging in practice [12], [13]. For this reason, there arises a need for

development of estimation methods which are not affected by malfunctions or which

mitigates the effect of malfunctions.

Most of the existing data-driven solutions cannot generalize in case of sensor mal-

functions due to their input formulation and network structure. Therefore, these meth-

ods need retraining using data collected from array with missing sensors. The ones

that are able to generalize are not designed to handle unknown number of sources.

In this thesis, we propose a transformer-based deep learning network for DOA esti-

mation and source enumeration which can function in case of sensor malfunctions.

The reason for employing transformer is that it can process sequential data with vary-

ing length and embed the positional information of each sequence step. This ability is

utilized by formulating the input in sequential form based on difference coarray. The

performance of this method is investigated for different types of sparse linear arrays
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in the presence of sensor malfunctions and unknown number of sources.

Contributions of this thesis can be summarized as follows:

• For the first time, a transformer-based DOA estimation method with coarray

formulated input is proposed. This input formulation and positional encoding

ability of transformer model enable the network to generalize for arrays with

different sensor numbers/configurations without the requirement of retraining.

• Covariance reconstruction network, which is the first stage of the proposed

method, is developed to refine the noisy covariance matrix of the received sen-

sor signals. The reconstruction ability of this network is illustrated with exam-

ples and demonstrated with numerical comparisons.

• DOA estimation network, which is the second stage of the proposed method, is

developed to generate on-grid DOA angle estimates. Performance comparisons

are done for different sparse array types and in the presence of sensor malfunc-

tions. Performance improvement especially for low SNR levels and snapshot

numbers is demonstrated. Robustness of the proposed method against sensor

malfunctions is shown along with its feasible processing time.

• Source enumeration network, which is the third stage of the proposed method,

is developed to perform source number estimation for the joint case of sen-

sor malfunctions and unknown number of sources. The increase in the source

number estimation accuracy that is achieved by the proposed method is demon-

strated through simulations.

The outline of the thesis is as follows:

• In Chapter 2, the mathematical model for array signals is derived and related as-

sumptions are stated. Information about sparse arrays is provided. The existing

DOA estimation and source enumeration methods are presented and described.

Sensor malfunctions and their effects are explained and existing studies regard-

ing it are summarized. The scope of thesis in terms of sensor malfunctions is

stated.
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• In Chapter 3, background information about deep learning is provided. The

proposed method is explained with details.

• In Chapter 4, the performance analysis of the proposed method is carried out

for different types of sparse arrays.

• In Chapter 5, the performance analysis of the proposed method is executed for

the cases of sensor malfunctions.

• In Chapter 6, the performance analysis of the proposed method is realized for

the joint presence of sensor malfunctions and unknown number of sources.

• In Chapter 7, concluding remarks and future research directions are stated.

The following notation is adopted in this thesis: x denotes a scalar. x is a vector. X

is a matrix. X denotes a set. The transpose operation is (.)T , conjugate operation is

(.)∗, Hermitian conjugate operation is (.)H and orthogonal complement operation is

(.)⊥.

The following conventions are accepted in this thesis: Azimuth θ is defined as the

angle from positive x axis. Elevation ϕ is defined as the angle from positive y axis.

4



CHAPTER 2

SIGNAL MODEL AND PROCESSING METHODS

In this chapter, the mathematical model for array signals is derived and assumptions

are stated. Sparse arrays, which are the main focus of this study, are introduced

and theoretical background and analysis of these array types are provided. Direction

of arrival estimation and source enumeration methods existing in the literature are

described. Sensor malfunctions and their possible effects on the array are explained.

Lastly, a brief summary about the studies on sensor malfunctions is provided and the

scope of this study in terms of sensor malfunctions is set.

2.1 Array Signal Model

Consider a uniform linear array (ULA) with M sensors. There exist N narrow-

band sources in the far-field and their DOA angles are represented by Θ1,Θ2, ...,ΘN

where Θn = [θn, ϕn] is the vector containing azimuth and elevation angle of the nth

source respectively.

The plane wave corresponding to nth source which propagates in a certain direction

has the direction vector

gn =


cos θn cosϕn

sin θn cosϕn

sinϕn

 (2.1)

This signal arrives at the sensor m with a time delay
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τn,m = −gn
Tpm

c
(2.2)

where pm = [xm, ym, zm]
T is the position vector of mth sensor and c is speed of the

wave.

Assuming that the first sensor is at the origin, array is placed over x-axis with an

inter-element distance of d and elevation of all sources is 0◦. A system diagram for

the array and sources is given in Figure 2.1.

Figure 2.1: System diagram for the array and sources

Array steering vector for nth source is

a(θn, ϕn) =


ejωτn,1

ejωτn,2

...

ejωτn,M

 =


e−j 2π

λ
gnTp1

e−j 2π
λ
gnTp2

...

e−j 2π
λ
gnTpM

 =



1

e−j 2π
λ
d cos θn

e−j 2π
λ
2d cos θn

...

e−j 2π
λ
(M−1)d cos θn


(2.3)

where λ is the wavelength and ω is the center frequency of the source signal and

ω = 2π
λ
c. Steering vector denotes the spatial response of an array to a plane wave

arriving from a specific direction and it encodes phase shifts occurring on the signal

while traversing the array elements.
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Array steering matrix A(Θ), which contains steering vectors for all N sources as

columns, can be written as

A(Θ) =



1 1 . . . 1

e−j 2π
λ
d cos θ1 e−j 2π

λ
d cos θ2 · · · e−j 2π

λ
d cos θN

e−j 2π
λ
2d cos θ1 e−j 2π

λ
2d cos θ2 · · · e−j 2π

λ
2d cos θN

...
... . . . ...

e−j 2π
λ
(M−1)d cos θ1 e−j 2π

λ
(M−1)d cos θ2 · · · e−j 2π

λ
(M−1)d cos θN


(2.4)

Then, the received signals by the sensors at snapshot t can be formulated as

y(t) = A(Θ)s(t) + e(t) (2.5)

where s(t) = [s1(t), s2(t), ..., sN(t)]
T is the source signals and e(t) = [e1(t), e2(t), ..., eM(t)]T

represents the noise at each sensor.

The received signal formula (2.5) can be extended to cover T snapshots by

Y = A(Θ)S +E (2.6)

where Y is M×T matrix, S is N×T matrix and E is M×T matrix whose columns

carrying per-snapshot values as

Y = [y(1),y(2), ...,y(T )] (2.7)

S = [s(1), s(2), ..., s(T )] (2.8)

E = [e(1), e(2), ..., e(T )] (2.9)

Equation (2.6) models the sampling of sensor array both in temporal and spatial do-

main. Both domains may experience aliasing effects. For preventing time aliasing,

Nyquist theorem [14] must be followed which states

fs ≥ 2fc (2.10)

7



where fs is the sampling frequency and fc is the carrier frequency. Analogously, a

similar criterion is valid for spatial domain in which spatial Nyquist theorem must be

obeyed to have no spatial aliasing. Spatial aliasing is encountered when A(Θ) is not

unique for different Θ values. For having a unique A(Θ), it is required to have

2π

λ
d cos θ ≤ π (2.11)

in which max(|cos θ|) = 1. Then, Equation (2.11) reduces to

d ≤ λ

2
(2.12)

In the remainder of the thesis, the following assumptions are made regarding the

signals:

• The elevation of the source signals is 0◦.

• Source signals are narrowband and in the far-field.

• Source signals are uncorrelated.

• Noise signals are independent and identically distributed, zero-mean, tempo-

rally and spatially white, complex Gaussian and uncorrelated with source sig-

nals.

2.2 Sparse Arrays

Uniform linear arrays (ULA) are commonly adopted array types due to spatial Nyquist

theorem which introduces restrictions on the inter-element distances [15]. However,

a primary drawback of ULA is that the number of sources that can be resolved is

limited by the number of sensors [4]. This limitation is related to degree of freedom

that the array provides.

Before explaining degree of freedom, it is more appropriate to define difference coar-

ray concept. Difference coarray is the set
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D = {pi − pj} ∀i, j ∈ [1, 2, ...,M ] (2.13)

where M is the number of sensors and pi indicates sensor position. Each difference

value in D is called as lag. The weight of a lag refers to how frequently it appeared in

D. Redundancy of an array is identified by the amount of weights that are larger than

1 except that of zero lag. The lags with weights of 0 are called as holes and degree of

freedom is defined as the number of unique lags with non-zero weights [1].

An example difference coarray for a ULA with M = 8 is illustrated in Figure 2.2. No

hole is observed in the coarray, therefore the degree of freedom is equal to the number

of sensors M . However, most of the weights are larger than 1 and this introduces

redundancy in the coarray.

Figure 2.2: Physical array and difference coarray of ULA with 8 elements. (Rectangle

represents presence of the element while cross indicates its absence. The number of

dashes in the dashed lines represent the weights for each lag)

There arises a question whether the same degree of freedom can be achieved using

less number of sensor. Sparse arrays are the answer of this question with their abil-

ity to provide a degree of freedom of O(M2) where ULA’s degree of freedom is

O(M) [3]. Figure 2.3 depicts a sparse array with its coarray which can provide the

same degree of freedom with less number of sensors compared to ULA in Figure 2.2.

Therefore, sparse arrays are able to resolve more sources than the number of sensors

unlike ULA.

Another advantage of the sparse arrays over ULA is the larger aperture with the same
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Figure 2.3: Physical array and difference coarray of sparse linear array with 5 ele-

ments. (Rectangle represents presence of the element while cross indicates its ab-

sence. The number of dashes in the dashed lines represent the weights for each lag)

number of sensors [15]. This advantage can be observed when sparse array in Figure

2.3 is compared with its ULA counterpart with the same number of sensors. The

aperture of the sparse array is 7 while that of ULA with 5 elements is 4. Having

larger aperture provides better resolution to sparse array compared to ULA [16].

Achieving the same aperture and degree of freedom with less number of sensors pro-

vides sparse array another benefit. The hardware complexity and cost are reduced

compared to ULA.

There are various sparse array geometries such as minimum redundant array (MRA)

[17], minimum hole array [18], nested array (NA) [19] and coprime array (CA) [20].

Sections 2.2.1, 2.2.2 and 2.2.3 gives information about minimum redundant array,

nested array and coprime array respectively.

2.2.1 Minimum Redundant Array

Minimum redundant array is designed such that the weights of spatial lags in the

difference coarray is minimized [1]. They contain no holes in the coarray and obtain

the largest aperture compared to other linear arrays [17,21]. A drawback of minimum

redundant array is that they do not have closed-form formulation and they cannot be

systemically generated and analyzed [15].

An example minimum redundant array and corresponding difference coarray are shown
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in Figure 2.4.

Figure 2.4: Physical array and difference coarray of a minimum redundant array.

(Rectangle represents presence of the element while cross indicates its absence. The

number of dashes in the dashed lines represent the weights for each lag)

For observing the pros and cons of minimum redundant array, its performance is

compared with ULA with the same number of sensor and with the same aperture

separately which are shown in Figure 2.5. MUSIC [22], a well-known and successful

example of subspace-based DOA estimation methods, is used in these comparisons.

Capon beamforming spectrums are utilized for enriching the comparisons further.

Figure 2.5: ULAs with the same aperture and number of sensors as minimum redun-

dant array. (Rectangle represents presence of the element while cross indicates its

absence)

Firstly, RMSE values obtained by minimum redundant array and above-referred ULAs

in DOA estimation of single source are compared for different SNR levels in Figure

2.6. It can be observed that the minimum errors are achieved by ULA with the same

aperture as MRA. This is due to additional sensors in ULA. However, minimum re-

dundant array show better performance than ULA with the same number of sensors

owing its larger aperture. An example Capon spectrum generated by these arrays

are given in Figure 2.7. The highest peak is obtained by ULA with the same aper-

ture as MRA owing to more sensors that it possesses. Minimum redundant array has

narrower peak compared to ULA with the same number of sensors due to its larger
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aperture. However, it has higher sidelobes.

Figure 2.6: RMSE obtained by minimum redundant array and ULAs with the same

aperture and number of sensors for different SNR levels in single source case

Figure 2.7: An example Capon spectrum for single source obtained by minimum

redundant array and ULAs with the same aperture and number of sensors as minimum

redundant array

For comparing the performance in underdetermined case, RMSE comparisons are

done with 7 sources between minimum redundant array and ULA with the same
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number of sensors. RMSE values for different SNR levels are given in Figure 2.8.

It can be seen that minimum redundant array doesn’t encounter as much performance

degradation as ULA with the same number of sensors. This is due to additional de-

gree of freedom provided by sparse array compared to ULA. An instance of Capon

spectrum is illustrated in Figure 2.9. Spectrums indicate that minimum redundant ar-

ray is able to generate peaks around ground truth directions while ULA cannot since

it is restricted with its number of sensors.

Figure 2.8: RMSE obtained by minimum redundant array and ULA with the same

number of sensors for different SNR levels in underdetermined case

Resolution ability of the minimum redundant array and ULAs are compared as in

Figure 2.10 for different separation angles. For closely spaced sources, minimum re-

dundant array and ULA with the same aperture obtain similar RMSE values although

ULA has more sensors. Also, it can be observed that minimum redundant array has

slightly better resolution probability compared to ULA for different separation angles.

This demonstrates the resolution improvement provided by sparse arrays.

2.2.2 Nested Array

Nested array is designed by combining ULAs which have increasing distances be-

tween the sensors. It can remarkably increase the degree of freedom compared to
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Figure 2.9: An example Capon spectrum for underdetermined case obtained by mini-

mum redundant array and ULA with the same number of sensors as minimum redun-

dant array

Figure 2.10: Resolving ability of minimum redundant array and ULAs with the same

aperture and number of sensors for different angle separations

14



ULA and obtain O(M2) degree of freedom [19]. Unlike minimum redundant array,

there is closed form expression for its design for a given number of sensors M . A

drawback of nested array is its sensitivity to mutual coupling due to the closeness of

some sensors [15]. There are variants such as super nested array [23] and augmented

nested array [24] proposed for decreasing mutual coupling effect.

An example nested array and corresponding difference coarray are given in Figure

2.11.

Figure 2.11: Physical array and difference coarray of a nested array. (Rectangle

represents presence of the element while cross indicates its absence. The number of

dashes in the dashed lines represent the weights for each lag)

The comparisons made for minimum redundant array are conducted for nested array

as well. Nested array is compared with ULAs having the same aperture and the same

number of sensors for which the array configurations are given in Figure 2.12.

Figure 2.12: ULAs with the same aperture and number of sensors as nested array.

(Rectangle represents presence of the element while cross indicates its absence)

They are compared in terms of RMSE obtained for different SNR levels as depicted

in Figure 2.13. As in the case of minimum redundant array, the best performance is

achieved by ULA with the same aperture as nested array. Nested array outperforms

ULA with same number of sensors due to its larger aperture. Figure 2.14 illustrates

example Capon spectrums generated by these arrays. Similar to the case in minimum

redundant array, ULA with the same aperture as NE has higher peak due to more
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sensors that it possesses. Nested array has narrower peak compared to ULA with

the same number of sensors owing to its larger aperture with the expense of higher

sidelobes.

Figure 2.13: RMSE obtained by nested array and ULAs with the same aperture and

number of sensors for different SNR levels in single source case

Figure 2.14: An example Capon spectrum for single source obtained by nested array

and ULAs with the same aperture and number of sensors as nested array

For underdetermined case, nested array doesn’t experience performance decrease as
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much as ULA with the same number of sensors as shown in Figure 2.15. This is

attributed to additional degree of freedom provided by sparse array compared to ULA.

An example of Capon spectrum is illustrated in Figure 2.16. Similar to minimum

redundant array, nested array has more apparent peaks around ground truth source

directions where ULA with the same number of sensors doesn’t achieve this since the

number of sources is larger than its degree of freedom.

Figure 2.15: RMSE obtained by nested array and ULA with the same number of

sensors for different SNR levels in underdetermined case

In terms of closely-spaced sources, ULA with the same aperture provides generally

lower error while nested array has slightly better resolution probability as depicted in

Figure 2.17 for different separation angles. This demonstrates the resolution ability

of sparse arrays with less sensors.

2.2.3 Coprime Array

Coprime array is designed by combining two ULAs where the first one has M1 ele-

ments with a spacing of M2λ/2 and the second one has M2 elements with a spacing

of M1λ/2. M1 and M2 are coprime integers and the first elements of the both arrays

are aligned. Its degree of freedom is O(M1M2) which is higher than ULA and lower

than nested array. Nested array can generate more unique self differences in its sub-
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Figure 2.16: An example Capon spectrum for underdetermined case obtained by

nested array and ULA with the same number of sensors as nested array

Figure 2.17: Resolving ability of nested array and ULAs with the same aperture and

number of sensors for different angle separations

arrays which are not contained in cross differences and this leads to more degree of

freedom. However, coprime array is more robust than nested array against mutual

coupling since its inter-element spacing is larger [20].
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An example coprime array and corresponding difference coarray are illustrated in

Figure 2.18.

Figure 2.18: Physical array and difference coarray of a coprime array. (Rectangle

represents presence of the element while cross indicates its absence. The number of

dashes in the dashed lines represent the weights for each lag)

Coprime array is compared with ULAs having the same aperture and the same number

of sensors which are shown in Figure 2.19.

Figure 2.19: ULAs with the same aperture and number of sensors as coprime array.

(Rectangle represents presence of the element while cross indicates its absence)

These arrays are compared in terms of RMSE as depicted in Figure 2.20. As in

the cases of minimum redundant and nested arrays, the lowest error is obtained by

ULA with the same aperture. Coprime array generally outperforms ULA with same

number of sensors due to its larger aperture. Capon spectrums generated by these

methods are illustrated in Figure 2.21. Similar to other sparse array types, ULA

with the same aperture as CA has the highest peak. Coprime array has narrower

peak compared to ULA with same number of sensors thanks to its larger aperture.

However, its sidelobes are higher.

For underdetermined case, ULA encounters more performance degradation than co-

prime array which is also observed for other sparse array types. RMSE values for

undetermined case is given in Figure 2.22. An example of Capon spectrum is shown
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Figure 2.20: RMSE obtained by coprime array and ULAs with the same aperture and

number of sensors for different SNR levels in single source case

Figure 2.21: An example Capon spectrum for single source obtained by coprime array

and ULAs with the same aperture and number of sensors as coprime array

in Figure 2.23. As in the case of other sparse array, coprime array can generate

observable peaks at the source directions while ULA with same number of sensors

cannot since ULA has lower degree of freedom than the number of sources.
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Figure 2.22: RMSE obtained by coprime array and ULA with the same number of

sensors for different SNR levels in underdetermined case

Figure 2.23: An example Capon spectrum for underdetermined case obtained by co-

prime array and ULA with the same number of sensors as coprime array

As in the case of other sparse arrays, coprime array provides slightly better resolution

than ULA with the same aperture despite having less sensors. RMSE and resolving

probability for different separation angles are depicted in Figure 2.24.
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Figure 2.24: Resolving ability of coprime array and ULAs with the same aperture

and number of sensors for different angle separations

2.3 Direction of Arrival Estimation Methods

Direction of arrival estimation is an important task in sensor array signal processing.

There are numerous methods proposed for this task. These methods can be grouped

under the following headings:

• Model-Based Methods

• Data-Driven Methods

• Hybrid Methods

Figure 2.25 illustrates the categorization of the methods and some examples for each

of category.

2.3.1 Model-Based Methods

Model-based methods exploit the mathematical models relating the source directions

into received signals for generating angle estimations [25]. These methods are cate-
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Figure 2.25: Categorization of DOA estimation methods and some examples for each

category.

gorized further as below:

• Beamforming Methods

• Subspace-Based Methods

• Maximum Likelihood Methods

• Sparsity-Inducing Methods

2.3.1.1 Beamforming Methods

Beamformers are spatial filters which linearly combines the sensor signals with weights.

They change the spatial response such that signals arriving from specific directions

are not disturbed while others are suppressed. The weights in beamforming are usu-

ally a function of DOA angles. The output of beamforming gives power spectrum
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which gets maximized at the direction of the sources. Beamforming methods utilize

this relationship to provide DOA angle estimates [26].

Some examples of beamforming methods are delay-and-sum beamforming [2] and

Capon beamforming [27]. More information about these methods is given in the

following headings.

Delay-and-Sum Beamforming

Delay-and-sum beamforming is one of the earliest DOA estimation methods [2]. As

the name implies, it applies delays and then combines the received signals as

yb(t) =
1

M

M∑
m=1

ejωτmym(t) =
1

M
aH(θ)y(t) (2.14)

where a(θ) is the steering vector corresponding to direction θ and M is the number

of sensors. This operation corresponds to steering the beam into the direction θ in the

array. For each direction θ, output power is calculated by

P (θ) =
1

T

T∑
t=1

|yb(t)|2 (2.15)

where T is the number of snapshots. Then, DOA angle estimate is found by

θ̂ = argmax
θ

P (θ) (2.16)

A major drawback of delay-and-sum beamformer is that it cannot resolve sources

closer than Rayleigh limit which degrades its resolution performance [6].

Capon Beamforming

Capon beamformer minimizes the signal power in all directions except for the de-

sired one [27]. It has sharp peaks at the source direction in its beampattern and the

resolution it provides is beyond Rayleigh limit which was one of the drawbacks of

delay-and-sum beamformer [26].

It is formulated using the optimization problem of
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minwHRyw subject to wHa(θ) = 1 (2.17)

for which the optimal solution is

wCapon =
Ry

−1a(θ)

aH(θ)Ry
−1a(θ)

(2.18)

Power spectrum of a beamformer is formulated as [26]

P (θ) = wHRy
−1w (2.19)

Substituting Equation (2.18) into (2.19), power spectrum of Capon beamformer is

obtained as

P (θ) =
1

aH(θ)Ry
−1a(θ)

(2.20)

Then, DOA angle estimate is found by

θ̂ = argmax
θ

P (θ) (2.21)

A drawback of Capon beamformer is that it encounters performance degradation in

the presence of coherent or strongly correlated interferences. Additionally, it is not

robust against errors in the array response [26].

2.3.1.2 Subspace-Based Methods

Subspace-based methods utilize the orthogonality of signal and noise subspaces to

estimate source angles [28]. By leveraging this orthogonality, these methods are

able to resolve sources closer than traditional Rayleigh limit, thus achieve super-

resolution compared to beamforming methods [6]. Multiple Signal Classification

(MUSIC) [22], Estimation of Signal Parameters via Rotational Invariance Techniques

(ESPRIT) [29], Minimum-Norm Method (Min-Norm) [30], Propagator Method [31]

25



and Matrix Pencil Method [32] are examples of these methods. MUSIC and ESPRIT

are the most promising subspace-based methods and detailed information about them

is provided in the following headings [6].

MUSIC

MUSIC operates on sample covariance matrix

R̂y =
1

T

T∑
t=1

y(t)yH(t) (2.22)

where y is the received signals at the sensors and T is the number of snapshots.

Eigenvalue decomposition is applied on R̂y for separating R̂ into addition of

R̂y = U sΛsU
H
s +U eΛeU

H
e (2.23)

where U s and U e hold signal and noise eigenvectors as columns and Λs and Λe

contain signal and noise eigenvalues at their diagonals respectively.

Then, MUSIC spectrum is generated by

PMUSIC(θ) =
1

aH(θ)U eU
H
e a(θ)

(2.24)

where a(θ) is the steering vector corresponding to direction θ. By utilizing the or-

thogonality of signal and noise subspaces, peaks of the MUSIC spectrum are declared

as DOA angle estimates [22].

There are variants of MUSIC algorithm and one of which is Root-MUSIC [33].

Rather than calculating the spectrum PMUSIC(θ), it finds the roots of

zM−1Proot-MUSIC(z) (2.25)

where
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Proot-MUSIC(z) = aH(z)U eU
H
e a(z) (2.26)

and M is the number of sensors and z = ej2πd sin θ. Once a root ẑ is found, DOA angle

estimate can be obtained by

θ̂ = sin−1(angle(ẑ)/(2πd)) (2.27)

where d is the inter-element spacing in the array.

ESPRIT

ESPRIT benefits from the displacement invariance property of subarrays, which im-

plies that sensors pairs at subarrays match with the same displacement vector. It

doesn’t require spectral search like MUSIC and this property leads to smaller compu-

tational complexity compared to MUSIC. Furthermore, it doesn’t use array manifold,

which introduces storage cost for MUSIC. However, rotational invariance of subar-

rays limits the array geometries on which ESPRIT can be applied.

It separates the array having M elements into two overlapping subarrays each with

M − 1 elements where the received signals of these subarrays can be written as

y1(t) = A1(θ)s(t) + e1(t) (2.28)

y2(t) = A2(θ)s(t) + e2(t) (2.29)

where A1(θ) and A2(θ) are the steering matrices of two subarrays.

Using the received signals of the whole array, sample covariance matrix is calculated

by

R̂y =
1

T

T∑
t=1

y(t)yH(t) (2.30)

where y is the received signals at the sensors and T is the number of snapshots. Eigen-

value decomposition is applied on R̂y for partitioning into components belonging to
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signal and noise subspaces which results in

R̂y = U sΛsU
H
s +U eΛeU

H
e (2.31)

where U s and U e hold signal and noise eigenvectors as columns and Λs and Λe

contain signal and noise eigenvalues at their diagonals respectively.

Signal subspace gets partitioned into two parts

U1 = Us(1 : M − 1, :) (2.32)

U2 = Us(2 : M, :) (2.33)

Using singular value decomposition (SVD) or least squares, rotational invariance ma-

trix Ψ in

U1Ψ = U2 (2.34)

is estimated. Eigenvalue decomposition is performed on Ψ to obtain

Ψ = V ΛV H (2.35)

Then, DOA angle estimates are found from the eigenvalues λ in Λ by

θk = arcsin

(
arg(λk)

2πd

)
(2.36)

where d is the inter-element spacing.

2.3.1.3 Maximum Likelihood Methods

Beamforming and subspace-based DOA estimation methods experience performance

degradation in case of correlated source signals. Maximum likelihood methods do

not encounter any difficulty for such cases with the price of increased computational
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load due to multidimensional search over parameter space [2]. They maximize the

likelihood function over DOA angle parameter to obtain the estimates [26].

There are mainly two types of maximum likelihood methods; stochastic and deter-

ministic maximum likelihood. Information about these methods are provided in the

following headings.

Deterministic Maximum Likelihood

In deterministic maximum likelihood, noise signals are generated by Gaussian ran-

dom process while source signal is deterministic and known. It determines the pa-

rameters which maximizes the likelihood of given measurements.

Maximum likelihood estimate of the source direction θ can be determined by

θ̂DML = argmin
θ
−L(θ) (2.37)

where

L(θ) = − log Tr
{
P⊥(θ)R̂y

}
(2.38)

and R̂y is the sample covariance matrix and P (θ) = a(θ)a(θ)H/M is the projection

matrix.

Stochastic Maximum Likelihood

Stochastic maximum likelihood assumes source signal to be Gaussian random process

along with noise signal.

Maximum likelihood estimate of the source directions θ is found by

θ̂SML = argmin
θ
−L(θ) (2.39)

where log-likelihood is given by
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L(θ) = − log det

[
P (θ)R̂yP (θ) +

1

M −N
Tr

{
P⊥(θ)R̂y

}
P⊥(θ)

]
(2.40)

and M is the number of sensors and N is the number of sources.

2.3.1.4 Sparsity-Inducing Methods

The performance of subspace-based and beamforming methods is affected adversely

when the covariance matrix of the received signals is inaccurately estimated. Small

number of snapshots is one of the causes which leads to inaccurate covariance estima-

tions. Sparsity-inducing methods are more robust against small number of snapshots

since they leverage compressed sensing [34] principles [35]. Compressed sensing

formulates DOA estimation problem as a sparse matrix reconstruction problem [6].

Sparse characteristics of the source signals are the main attribute which enables the

usage of these methods [28, 36].

A drawback of these methods is that they require sensitive parameter tuning for dif-

ferent SNR and snapshot levels which has important impact on DOA estimation per-

formance [28]. Moreover, they have long and iterative process which is impractical

in real-time applications [37].

Sparsity-inducing methods can be grouped into three categories: on-grid, off-grid

and gridless methods [38]. Orthogonal Matching Pursuit (OMP) [39], Least Absolute

Shrinkage and Selection Operator (LASSO) [40] and L1-SVD [37] are examples of

on-grid methods. Sparse Bayesian Learning [41] has extensions which can be consid-

ered as off-grid method. Atomic Norm Minimization [42] is the example for gridless

methods. The following headings give information about L1-SVD and OMP.

L1-SVD

Assuming N signals are impinging into the array, then the received signals are

y(t) = A(θ)s(t) + e(t) (2.41)

An overcomplete representation θo = θo,1, ..., θo,G which contains all the possible
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source directions is introduced. The number of possible source directions G is usually

bigger than the actual number of the sources N . This indicates the sparsity nature of

DOA estimation problem.

Array steering matrix corresponding to overcomplete representation is generated as

A(θo) = [a(θo,1), ...,a(θo,G)] (2.42)

and Equation (2.41) can be reformulated as

y(t) = A(θo)so(t) + e(t) (2.43)

where so(t) is the extended version of s(t) providing that so,i(t) = sj(t) if there exist

a source at direction θo,i (equally θj), and so,i(t) = 0 otherwise.

Then, DOA estimation problem is reduced to sparse reconstruction problem in which

the optimization problem

min
so(t)
∥so(t)∥1 s.t. y(t) = A(θo)so(t) (2.44)

is obtained. For multiple snapshot case, Equation (2.43) can be rewritten as

Y = A(θo)So +E (2.45)

where T is the number of snapshots, Y = [y(0), ...,y(T )], So = [so(0), ..., so(T )]

and E = [e(0), ..., e(T )].

Singular value decomposition (SVD) is applied on Y to obtain

Y = UΛV H (2.46)

and the first N columns of U is used to obtain
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Y SV = UΛDN = Y V DN (2.47)

where DN = [IN ,0]
T . Similarly, SSV = SV DN and ESV = EV DN are obtained

and optimization problem

min
SSV

∥s̃∥1 s.t. ∥Y SV −A(θo)SSV ∥2f ≤ β2 (2.48)

where s̃ is the spatial spectrum estimate whose entries are 2-norm of the rows of

SSV and β is the regularization parameter. After this convex optimization problem is

solved, DOA angle estimates are found from s̃ by applying thresholding [37].

OMP

For received signal Y , the number of sources N and overcomplete dictionary A(θo)

where θo = [θo,1, ..., θo,G], OMP algorithm iteratively computes the correlation of a

residual matrix R with the columns of A(θo).

R is initialized with Y and the column of A(θo) which has the largest correlation

with R is found by

argmax
i=1,...,G

∥∥RHa(θo,i)
∥∥
p

p ≥ 1 (2.49)

and the index i is included in a set π. Then, the optimization problem of

argmin
P

∥Y −Aπ(θo)P ∥22 (2.50)

is obtained where P is the sparse matrix containing information about DOA angles,

Aπ(θo) is columns of A(θo) with indexes in π.

The solution of Equation (2.50) is

P = [AH
π (θo)Aπ(θo)]

−1AH
π (θo)Y (2.51)

32



Once P is updated, R is also updated by

R = Y −Aπ(θo)P (2.52)

and Equations (2.49-2.52) are repeated for N times.

After iterations are completed, angles in the overcomplete dictionary θo correspond-

ing to the indexes in π are declared as the DOA angle estimates.

2.3.2 Data-Driven Methods

Model-based approaches heavily rely on mathematical models which relate the re-

ceived signals with the source directions. This aspect of these methods leads to per-

formance degradation in case of non-ideal conditions such as multipath interference

and array imperfections [25]. Nonideal sensor design and production, mutual inter-

ference between sensors, phase and gain inconsistencies, mutual coupling and sensor

position errors are some problems which can be given under array imperfections [43].

Autocalibration techniques which are proposed for these imperfections cannot cover

all of the types of imperfections since joint optimization is challenging [44].

Other non-ideal conditions which adversely affect the performance of model-based

methods are low SNR, correlated sources and non-Gaussian noise [45–47]. Data-

driven methods can learn the relationship between received signals and source angle

without any assumptions and reliance on mathematical model or mentioned non-ideal

conditions and they show robustness to these conditions [25, 48].

Another important advantage of data-driven methods over model-based ones is that

they have faster inference time and lower computational complexity [28, 49]. For in-

stance, MUSIC realizes SVD and a computationally heavy optimization is performed

for maximum likelihood estimation methods. Data-driven methods generally use ma-

trix multiplication/additions in inference and this introduces a computational advan-

tage. A drawback of data-driven methods is that they require a massive amount of

training data and training process is computationally heavy. Moreover, they are not

as interpretable as model-based approaches [50].
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Data-driven methods can be categorized into two groups: machine-learning based

methods and deep learning based methods. Machine learning based methods use

models such as SVM while deep learning based methods deploy MLP, CNN, RNN,

autoencoder and transformer [51].

Randazzo et al. [52] propose support vector regression (SVR) method for DOA esti-

mation. As input, normalized upper-triangular covariance matrix is given and grid-

less angle estimates are generated. Dehghanpour et al. [53] propose multiple kernel

SVR for DOA estimation in the presence of mutual coupling. Similar to [52], upper-

triangular covaraince matrix is utilized and gridless angle estimates are obtained. An-

other SVR-based method is implemented in [54] which uses the relative magnitude

and phase of the received signals to a reference sensor as input.

Papageorgiou et al. [28] employ CNN for which the input is the real, imaginary and

phase components of the sample covariance matrix. They formulate DOA estimation

problem as a multi-label classification task and follow on-grid approach. They report

performance improvement in low SNR levels. Chen et al. [44] utilize CNN for the

aim of robustness to array imperfections. It takes the received signals by each sensor

as input, applies 1-dimensional convolutional filters and generates a complex vector

which can be used in both spectrum construction and angle estimation. During train-

ing, it aims to minimize the difference between a reference (true) spatial spectrum and

the output spectrum using data which contains various imperfect effects on the array.

Wu et al. [25] deploy CNN for spatial spectrum recovery in which the sparsity of the

source signals is assumed and utilized. The received sensor signals are converted to

a spectrum proxy using overcomplete steering matrix. The network is trained such

that the sparse spectrum is obtained. The contribution of this study is that it can func-

tion in real-time on the contrary to traditional sparsity-inducing methods and provides

performance improvement in low SNR. Elbir [55] employs multiple CNNs for gen-

erating MUSIC spectrum for different angle subregions. Real, imaginary and phase

components of the sample covariance matrix are used as input and performance im-

provement is observed for correlated large number of sources. Akter et al. [56] use a

CNN-based network in which 3 specialized subnetworks are employed for enriching

the extracted features. Received sensor signals are used as input and a single on-

grid angle estimate is generated. They report performance improvement for all SNR
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levels and their method is computationally less demanding than the compared ones.

Yuan et al. [57] follow a different strategy in which unsupervised learning is applied

on a CNN. Sample covariance matrix is used as input and sparse power spectrum is

generated at the output of the network. They formulate the loss function such that

the norm of the power spectrum and the difference between the received signals and

steered power spectrum is minimized. In a way, they utilize CNN for performing the

optimization done by sparsity-inducing methods. The proposed method is advanta-

geous since it doesn’t require labeled data and it can function for underdetermined

case in which the number of sources is larger than sensors. Yu et al. [58] focus on the

existence of multipath signals and propose a CNN-based network which consists of

three stages aiming to estimate multipath number, DOA angles of line-of-sight sig-

nals and non-line-of-sight signals. The input of the all stages is the sample covariance

matrix. The results indicate performance improvement in terms of multipath number

and DOA estimation. Lie et al. [59] use CNN for DOA estimation in the presence of

non-uniform noise. They deploy attention mechanism between the convolutional lay-

ers for supressing the non-uniform noise and on-grid angle estimates are generated at

the output of the network. The proposed method shows superiority over the compared

methods in the presence of this noise.

Pavel et al. [4] proposes a MLP model for distributed arrays. The sample covariance

matrices of each subarray are combined and upper-triangular part of the combined

covariance matrix is fed into MLP. On-grid approach is followed and network can

output multiple source angle estimates. It can resolve more sources compared to con-

ventional methods while having robustness to array imperfections. Chen et al. [60]

deploy a MLP consisting of two stages. The first stage divides the angular space into

subregions and a MLP is used to detect the presence of source in each subregion.

Then, multiple parallel MLPs are employed for each subregion to estimate on-grid

DOA angle(s). The input of the network is real and imaginary components of the

upper-triangular covariance matrix. The proposed method is computationally less de-

manding than conventional methods and requires less training data than the compared

data-driven solutions.

Autoencoder based methods are generally utilized for robustness to nonideal condi-

tions such as array imperfections, low SNR and small number of snapshots. Chen et
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al. [45] utilize denoising autoencoder for reconstruction of the corrupted covariance

matrix and division of the angle space into subregions. Multiple MLPs are used to

refine the angle estimate in each subregion. A similar approach is proposed by [61] in

which a multitask autoencoder with multiple decoders is deployed for covariance ma-

trix reconstruction and multiple MLPs for refined angle estimation with the ultimate

goal of robustness to array imperfections.

Sequential models are used for learning the patterns in received sensor signals and re-

late them with DOA angles. Guo et al. [62] employ a vision transformer which takes

real, imaginary and phase components of covariance matrix and generated on-grid an-

gle estimates. The proposed method has lower computational complexity compared

to CNN and provides better results especially in low SNR and small number of snap-

shots. Wang et al. [63] utilize star transformer model which has attention connections

between only adjacent sequential steps. It generates on-grid angle estimates by using

real, imaginary and phase components of covariance matrix as input. Lan et al. [64]

proposes a network containing two subnetworks for SNR classification and DOA es-

timation. A MLP is used for classifying the SNR into two levels and based on SNR

level, a multi-head attention network is activated for DOA estimation. Eigenvalues

are used as input of SNR classification network while DOA estimation network uses

upper triangular covariance matrix. The proposed network can output gridless angles

for multiple sources. Usage of attention mechanism enables more expressive feature

to be extracted.

2.3.3 Hybrid Methods

The lack of interpretability in data-driven methods arise the need of methods which

are robust against non-ideal conditions while having interpretability [50]. Hybrid

methods are proposed for such purpose and they are combinations of data-driven and

model-based approaches. In this methods, data-driven methods are generally used in

initial stages for mitigating the effects of non-ideal conditions while DOA estimation

is performed by model-based techniques for having interpretability.

Barhelme et al. [65] propose a hybrid method for the arrays which perform subarray

sampling. It is composed of a MLP and MUSIC where MLP is used to reconstruct

36



the full array covariance matrix using that of subarrays and MUSIC performs DOA

estimation on the reconstructed matrix. It provides ability to estimate more sources

than the number of subarray sensors. Xiang et al. [48] employs an LSTM based hy-

brid method for achieving robustness against array imperfections. LSTM performs

phase enhancement on the sequential noisy covariance matrices. The reconstructed

covariance matrix is used by a model-based method to obtain angle estimates. Pa-

pageorgiou et al. [46] use a denoising autoencoder (DAE) for denoising the sample

covariance matrix. A sparse array configuration is selected and real and imaginary

parts of covariance matrix is used as input to DAE. Its denoised version correspond-

ing to ULA is generated. Spatial smoothing is applied on reconstructed covariance

matrix for rank recovery and used by MUSIC to obtain angle estimates. Shmuel et

al. [50] deploy a CNN based denoising autoencoder for reconstructing the sample

covariance matrix. Reconstructed matrix is converted to Hermitian positive definite

and root-MUSIC is utilized to obtain gridless angle estimates. The constructed archi-

tecture can be trained end-to-end since operations in root-MUSIC is differentiable.

Wu et al. [66] propose a CNN for reconstructing the covariance matrix belonging to

ULA from that of a sparse linear array. Input of the network is real and imaginary

parts of sample covariance matrix of sparse array and a column of covariance matrix

of ULA is generated as the output. Through Toeplitz matrix reconstruction process,

noise-free covariance matrix is recovered. Another CNN is used to estimate the num-

ber of sources and different parameters are loaded for reconstruction network based

on source number estimate for increasing generalization ability. Root-MUSIC is em-

ployed to obtain gridless angle estimates. Markofer et al. [67] employ GRU and MLP

models that mimick the operations performed in MUSIC. GRU is used to learn the

correlations between the received sensor signals. The resultant vector from GRU is

converted into a covariance matrix and eigenvalue decomposition is applied to obtain

eigenvalues and eigenvectors. A MLP is applied on eigenvalues to generate weights

for each eigenvector for selecting those belonging to noise subspace. An additional

MLP estimates the number of sources using eigenvalues. Then, MUSIC spectrum is

found using the weighted eigenvectors and another MLP is used for peak detection

purpose on the spectrum and obtains gridless angle estimates. Ji et al. [68] employs

a transformer for noise subspace estimation where the input is the received sensor

signals. The estimated noise subspace eigenvectors are used by a MLP for source
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enumeration. Furthermore, MUSIC spectrum is generated using these eigenvectors

and another MLP is used as peak detector to estimate gridless DOA angles(s).

2.4 Source Enumeration Methods

In practice, the number of sources that are present in the environment is mostly un-

known. Therefore, source enumeration is another essential task in array signal pro-

cessing.

Source enumeration methods can be categorized into the following groups:

• Information-Theory Based Methods

• Eigenvalue Based Methods

• Data-Driven Methods

Figure 2.26 presents the categorization of the methods and some examples for each

category.

Figure 2.26: Categorization of source enumeration methods and some examples for

each category.
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2.4.1 Information-Theory Based Methods

Information-theory based methods estimate the number of sources by calculating a

selected criterion and finding the number of sources which minimizes it [69]. A

drawback of these methods is that they encounter performance degradation for small

number of snapshots [70].

There are different criteria which can be employed in these methods. Some examples

of these criteria are Akaike Information Criterion (AIC) [71], Minimum Description

Length (MDL) [72], and Bayesian Information Criterion (BIC) [73]. AIC and MDL,

which are the most famous information-theory based methods, are explained in the

following headings.

AIC

AIC is determined using the eigenvalues of the covariance matrix of the received

signals. For a candidate number of sources k, AIC is calculated by

IAIC(k) = −2L(Λ) + 2k(2M − k) (2.53)

and

L(Λ) = log

 ∏M
i=k+1 λ

1
M−k

i

1
M−k

∏M
i=k+1 λi

(M−k)T

(2.54)

where M is the number of sensors (hence the number of eigenvalues), T is the number

of snapshots and λi is the ith eigenvalue of the covariance matrix. The number of

sources k which minimizes IAIC(k) is selected as the source number estimate. AIC

has a good performance in low SNR levels while it cannot reach the accuracy level of

MDL for high SNR region [74].

MDL

As in the case of AIC, MDL is also determined using the eigenvalues of the covariance

matrix of the received signals. For a candidate number of sources k, MDL is found
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by

IMDL(k) = −L(Λ) +
1

2
k(2M − k) log(T ) (2.55)

where L(Λ) is given in Equation (2.54) and M is the number of sensors. The number

of sources k which minimizes IMDL(k) is selected as the source number estimate.

MDL is considerably successful for high SNR levels, however, its performance for

noisy signals is extremely decreased [74].

2.4.2 Eigenvalue Based Methods

These methods exploit eigenvalues of the covariance matrix of received signals and

estimate the number of sources by considering the magnitude, difference or ratio

of the eigenvalues. Example methods which fall in this category are Second Or-

der Statistic of the Eigenvalues (SORTE) [75], predicted eigen-threshold [76], eigen-

increment threshold [77] and Accumulated Ratio of Eigenvalues Gaps (AREG) [74].

Information about these methods is provided in the following headings.

SORTE

SORTE utilizes the variances of the difference of eigenvalues and generates a source

number estimate by considering the ratio of difference sets.

Firstly, differences between the consecutive eigenvalues are found by

∇λi = λi − λi+1 i = 1, ...,M − 1 (2.56)

where M is the number of sensors, hence the number of eigenvalues. The variance of

set {∇ λi}M−1
i=k is calculated by

σ2
k =

1

M − k

M−1∑
i=k

[∇ λi −
1

M − k

M−1∑
j=k

∇ λj]
2 (2.57)

Then, SORTE is defined as
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SORTE(k) =


σ2
k+1

σ2
k

, σ2
k > 0

∞, σ2
k = 0

(2.58)

Source number estimate is determined by

N̂ = argmin
k=1,...,M−3

SORTE(k) (2.59)

SORTE generally outperforms AIC and MDL in terms of accuracy however, it cannot

detect as many sources as them since it uses the ratio of the difference set variances

in the estimation [74].

Predicted Eigen-Threshold

Hypothesis testing procedure is employed in which the thresholding is applied on

eigenvalues of covariance matrix. For all candidate number of sources k, average of

noise-subspace eigenvalues is calculated by

lk =
1

M − k + 1

M∑
j=k

λj (2.60)

where M is the number of sensors. This average value is used to calculate a threshold

for λM−k by

λ̄M−k = ((k + 1)
1 + t(T (k + 1))−0.5

1− t(Tk)−0.5
− k)lM−k+1 (2.61)

where T is the number of snapshots and t is a threshold which should follow t/
√
N <

1.

Then, hypothesis testing procedure is applied. Two binary hypotheses are formed:

• H0: N < M − k

• H1: N = M − k
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where N is the true number of sources. H1 is validated if λM−k > λ̄M−k. H0 is

validated if λM−k < λ̄M−k.

Starting from k = 1, threshold is calculated and comparison is made. If H1 is vali-

dated, then source number estimate is declared as N̂ = M − k. Else, k is increased

by one and testing continues until H1 gets validated or k = M .

Eigen-Increment Threshold

In the absence of source signals, noise eigenvalues would have similar values. Based

on this fact, the difference between consecutive eigenvalues is compared with a thresh-

old to estimate the number of sources. The difference of eigenvalues is named as

eigen-increment.

Threshold for eigen-increment values is calculated by

∇̄λ = ρ(M,T )
Ps

(1 +
√
Ps/λM)

(2.62)

where M is the number of sensors, T is the number of snapshots, ρ(M,T ) is a coef-

ficient selected depending on M and T and Ps is signal power which is estimated by

Ps = (λ1 − λM)/M .

Starting from i = M − 1 down to i = 1, eigen-increment values λi − λi+1 are

calculated and compared with threshold ∇̄λ. Source number estimate is declared as

N̂ = i if λi − λi+1 > ∇̄λ.

AREG

Eigenvalues belonging source subspace are larger than the ones belonging to noise

space in magnitude. AREG utilizes this fact and compares the changes between con-

secutive eigenvalues to detect the number of sources.

AREG is calculated by

AREG(k) = lim
δ→+0

∆λk+1

1
k

∑k
i=1 ∆λi + δ

k = 1, ...,M − 2 (2.63)
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where

∆λk+1 = λk+1 − λk (2.64)

and source number estimate is determined by

N̂ = M − 1− argmax
k=1,...,M−2

AREG(k) (2.65)

2.4.3 Data-Driven Methods

Methods utilizing the data for source enumeration are considered in this category.

The utilization of the data occurs with respect to different aspects such as distribution

approximation and nonlinear mapping for different methods. These methods can be a

part of another data-driven method proposed for DOA estimation. These methods can

achieve high performance since they do not rely on signal models but learn the non-

linear relationships from data. However, one drawback of these methods is that they

require large amount of data which may not be possible to collect in all applications.

There are machine learning and deep learning based methods proposed for nonlin-

ear mapping. Lee et al. [74] proposes Threshold for Gap of Normalized Eigenvalues

(T-GANE) method which employs Gaussian mixture models for learning the distri-

bution of eigenvalue gaps for noise-signal subspace and noise-noise subspaces. After

learning distributions, an optimal threshold is selected and used in source enumera-

tion. Yun et al. [78] uses a support vector machines (SVM) for source enumeration

along with a MLP for SNR estimation. Rogers et al. [10] deploys MLP for the first

time in the literature which takes the spatially smoothed covariance matrix entries and

its eigenvalues as input and estimated number of sources as output. Yang et al. [11]

proposed two MLP, as regression and classification networks that can be used inde-

pendently, which uses eigenvalues as input and estimates the number of sources on

their outputs. Papageorgiou et al. [28] proposed CNN for DOA estimation where a

thresholding is applied on the output probabilities to infer the number of sources. Wu

et al. [66] embeds a CNN into their hybrid method for source enumeration which
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outputs the source number estimate up to M − 1 where M is the number of sensors.

Merkofer et al. [67] utilize a MLP in their augmented MUSIC approach which uses

eigenvalues to estimate the number of sources up to M − 1. Feintuch et al. [47]

proposes a fully-connected network for DOA estimation which outputs on-grid angle

estimates. Source enumeration is performed by applying thresholding at the output

neurons. Yu et al. [58] utilize a CNN for multipath number estimation which takes

sample covariance matrix as input. They realize multipath enumeration with a sepa-

rate network where there are other network for multipath and source DOA estimation.

Wang et al. [63] changes the last fully connected layer of their star-transformer based

architecture for source enumeration such that the last layer has dimension of maxi-

mum number of sources. Ji et al. [68] employ a MLP for source enumeration which

takes the eigenvectors generated by transformer as input and generates source number

estimate up to M − 1.

2.5 Sensor Malfunctions

Sensor arrays may encounter sensor malfunctions which leads to performance degra-

dation in DOA estimation and source enumeration tasks. In the literature, the effect

of the failure of a sensor on the difference coarray is used to categorize sensors. A

sensor is called as essential if its removal from the array introduces hole(s) in the

difference coarray. For multiple sensor malfunctions, the influence on the differ-

ence coarray gets more complex. For analyzing the multiple case, the concept of

k-essentialness, which is the generalization of essentialness, is introduced. A set of

sensors S = {S1, S2, ..., Sk} is called k-essential if the removal of this set from the

array leads to hole(s) in difference coarray [13].

Sparse arrays are sensitive to sensor failures due to their difference coarray structures

[13]. They have more essential elements compared to a ULA with the same number

of sensors and removal of these elements may decrease the degree of freedom and

lead to performance degradation [79].

Sensor failures can be separated into the following two groups in terms of awareness

of the failure:
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• Known Sensor Failures: The sensors which face malfunction are known.

• Unknown Sensor Failures: The sensors which face malfunction are unknown.

For identifying the faulty sensors, array diagnosis methods are used.

In terms of the comprehensiveness of the failures, the following categories can be

considered:

• Partial Sensor Failures: Malfunctioning occurs for a part of the all collected

snapshots.

• Complete Sensor Failures: Malfunctioning occurs for the all collected snap-

shots.

Various studies are conducted for sensor malfunctions regarding DOA estimation.

These studies can be separated into the following groups based on the type of the

method that they propose. Some of these studies also contain approaches for array

diagnosis.

• Matrix completion based methods

• Compressed sensing based methods

• Data-driven methods

• Maximum likelihood estimation methods

Sun et al. [79] consider unknown-complete sensor malfunctions and propose an array

diagnosis method in which the absolute sum of the rows/columns of covariance ma-

trix is compared with a threshold calculated from the average of other rows/columns.

Array element for which the absolute sum doesn’t exceed the threshold is declared

as faulty element. If the faulty element is essential and leads to hole(s) in difference

coarray, then matrix completion approach is followed and singular value thresholding

(SVT) is applied to fill the covariance matrix. Otherwise, the corresponding entries

in the covariance matrix is filled by the average of the entries corresponding to the

same lag in the difference coarray. Sun et al. [80] develop array diagnosis and matrix
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completion methods for unknown-complete sensor failures. Array diagnosis method

is the same as described for [79] and matrix completion is achieved by first extending

the covariance matrix of faulty array into Toeplitz form of intact array. Then, matrix

completion theory is applied by an optimization problem involving trace norm and

mapping matrix which select non-faulty sensors. Then, reconstructed matrix is used

with root-MUSIC to obtain DOA angle estimates. Setayesh et al. [81] study differ-

ent matrix completion techniques such as SVT, low-rank matrix fitting (LMaFit) and

OptSpace for the case of complete-known failures. MUSIC is employed for DOA

angle estimation after matrix completion. Jalal et al. [82] consider unknown-partial

sensor failures and propose a diagnosis method in which the absolute value of the

received signals are compared with the weighted mean of remaining sensor signals at

that snapshot and declared as faulty in case it is smaller than the threshold. Received

signal recovery is applied by low rank matrix completion. The rank of the recovered

signal matrix is minimized such that the recovered matrix is as similar as possible

to the observed matrix. Since it is non-convex, it is reformulated as frobenius norm

minimization and non-convex relaxation is used. Recursive least squares with nulling

antenna array is applied for DOA estimation where nulls occur at the direction of re-

ceived signals. Zhu et al. [83] focuses on unknown-complete sensor malfunctions and

their proposed method relies on difference coarray. Array diagnosis is conducted by

comparing frequency and amplitude of coarray elements. The impaired sensor data

is replaced by the intact sensors’ data which belong to the same lag in the difference

coarray. After replacement, the resulting matrix might be of rank 1, therefore spatial

smoothing is applied. Then, MUSIC is used for DOA estimation. Yerriswamy et

al. [84] consider unkown-partial sensor malfunctions and propose methods regarding

array diagnosis and matrix completion. For array diagnosis, the difference between

successive data from a sensor is observed and in case it is larger than a threshold, this

sensor is labeled as malfunctioning. SVT is used for matrix completion. Input is the

received data matrix. The problem is formulated as rank minimization. Since rank

minimization is NP-hard, convex relaxation is applied by which the problem is turned

into nuclear norm minimization. Matrix pencil method is applied on completed ma-

trix to obtain DOA estimates.

Chen et al. [85] focus on known-complete failures and propose joint missing data
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recovery and DOA estimation framework. They apply singular value decomposition

(SVD) on received signal matrix for dimension reduction and robustness improve-

ment against noise. Missing data recovery is incorporated into sparse signal recon-

struction with a reweighted l2,1 norm penalty. After solving this optimization prob-

lem, sparse signal matrix is obtained where the angles corresponding to rows with

minimum norm are declared as source angle estimates. Hamid et al. [86] propose

modified version of OMP for unknown-complete sensor failures. Sensor failures are

identified by comparing variance of each sensor’s received energy with median vari-

ance. A modified stopping criteria is used in OMP which incorporate the effect of

faulty sensor using raised sidelobe levels.

Vigneshwaran et al. [87] work on unknown-partial sensor malfunctions for which

a data-driven method is employed. A radial basis function (RBF) based minimum

resource allocation network is proposed for which the number of hidden neurons

change based on input data. Off-diagonal entries of covariance matrix are used as

input. Ahmed et al. [88] propose two data-driven methods for known-complete sen-

sor failures. The first one compensate the missing entries in the covariance matrix

obtained from fault array using MLP. MLP is applied after spatial smoothing on the

vectorized covariance matrix. The second approach emulates spatial smoothing pro-

cess as well and directly applied on vectorized covariance matrix of faulty array.

Therefore, the output of the network is spatially smoothed and hole-filled vectorized

covariance matrix. MUSIC is applied on this matrix to obtain angle estimates. Zheng

et al. [35] propose a data-driven approach for known-complete failure case where

only a single snapshot is available. A sparse augmentation model is proposed which

is comprised of an augmentation layer where a random mask is applied on input to

simulate different sparse array configurations. Augmentation layer masks randomly

selected sensors where the number is limited by a parameter. A normalization layer

is used for different number of sensor cases. Then, a fully connected layer (FCL) is

applied. Sparse signal frequency embedding and active antenna position encoding is

applied to obtain hand-crafted features. These features are concatenated with FCL’s

output. MLP is applied to obtain DOA estimates. He et al. [89] employs a MLP for

known-complete sensor malfunctions for which meta-learning is utilized during train-

ing. The constructed network takes off-diagonal entries of sample covariance matrix
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and trained with different sensor failure scenarios which are considered as distinct

tasks. The proposed method can learn the inherent relationship between these tasks

and finds a global optimum parameter vector. The output of the proposed network is

on-grid angle estimates.

Wang et al. [90] consider known-partial sensor failures in which different sensors may

fail when collecting a bunch of snapshots. They focus on sparse arrays and propose

maximum likelihood estimation with which partial measurements from different sen-

sors can be used for obtaining Toeplitz parametrization of ULA covariance matrix.

Then, the obtained matrix is used by MUSIC to generate angle estimates. Larsson et

al. [91] focus on known-partial sensor malfunctions and propose maximum likelihood

estimation which utilizes Cholesky factorization of covariance matrix. Estimated co-

variance matrix is used by MUSIC or covariance matching techniques (COMET) for

generating angle estimates.

In this thesis, sensor failures are restricted to known-complete failures and the robust-

ness of the proposed method is evaluated for such kind of failures. The reason for

such a restriction is that the proposed method doesn’t apply array diagnosis and it

processes sample covariance matrix from which it is not possible to utilize the data

collected during non-failure moments.
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CHAPTER 3

TRANSFORMER-BASED DIRECTION OF ARRIVAL ESTIMATION AND

SOURCE ENUMERATION

In this chapter, the proposed method for DOA estimation and source enumeration is

explained with details. It falls under the category of data-driven methods and utilizes

deep learning models. Section 3.1 gives background information about deep learning

related concepts and Section 3.2 describes the architectures for the proposed method.

3.1 Background Information

In Section 2.1, array signal model is derived as

Y = A(θ)S +E (3.1)

where Y , S and E contain received signals, source signals and noise respectively.

A(θ) is the array steering matrix corresponding to source directions θ. DOA es-

timation aims to find θ and this problem can be considered as an inverse problem.

Equation (3.1) can be rewritten as

Y = f(θ) +E (3.2)

where f is the function which represents the physical theory governing the phase

changes in the received source signals depending on the source directions.

Deep learning methods can be interpreted as the solvers of such inverse problems

since they operate on some kind of observed measurements and generate estimations
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about a desired quantity, which is the unknown state of the system [92]. For DOA

estimation problem, it generates

θ̂ = g(Y ;Ψ) (3.3)

where θ̂ is the DOA angle estimate, g represents the operations performed in the

network and Ψ contains the network parameters.

3.1.1 Model Architectures

There are several deep learning architectures such as MLP, CNN, RNN, LSTM [8],

transformer [51], autoencoders, GAN and GNN. In the context of DOA estimation,

the most commonly used deep learning models are MLP and CNN [6]. This section

gives information about the topologies of MLP and transformer which are the base

models of the proposed approach.

3.1.1.1 MLP

MLP is a neural network structure which contains input, hidden and output layers

composed of artificial neurons. The neurons belonging to the same layer are not con-

nected to each other while there are connections between all neurons at the adjacent

layers. The structure of a three-layer MLP is depicted in Figure 3.1.

The connections between the neurons are feedforward and no feedback connection

is allowed. Therefore, the information flow is only permitted from input to output

direction [93]. These connections represent nonlinear functions which have the form

of

Xd = f(Zd) (3.4)

where

Zd = W dXd−1 +Bd (3.5)
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Figure 3.1: Architecture of a 3-layer MLP.

are pre-activation outputs for dth layer, f is the nonlinear activation function, Xd

represent the neuron outputs at dth layer, W d contain the weights between (d− 1)th

and dth layer and Bd are the bias values for dth layer.

3.1.1.2 The Transformer

The Transformer is composed of encoder and decoder structures in which encoder

maps the input sequence into a sequence of representations and decoder uses these

representations to generate output sequences. Encoder contains a stack of layers each

of which is comprised of multi-head self attention mechanism and fully-connected

feedforward network as sublayers. Similarly, decoder also consists of a stack of

layers containing the sublayers of encoder with the addition of multi-head attention

mechanism applied on the outputs of encoder stack [51]. Figure 3.2 illustrates the

architecture of the Transformer model with N encoder and decoder layers.

An input sequence x0,x1, ...xt is fed into encoder structure after applying input em-

bedding and positional encoding. The resultant sequence of representations z0, z1, ...zt

are given to the decoder structure along with the output sequence y0,y1, ...yt−1 which
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Figure 3.2: Architecture of the Transformer.

contains the outputs of decoder up to sequence index of t − 1. In the end, decoder

generates yt which is the estimation of the Transformer model for tth index of the

output sequence [51].
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Input/Output Embedding

The input of the encoder/decoder structure is a sequence which might be discrete or

continuous valued. For discrete valued sequences, which are also called as tokens,

learned embedding can be applied to convert them into vectors with desired dimen-

sion dembed [51]. A similar approach can also be followed for continuous valued se-

quences for which a neural network is trained to obtain embedding vector with desired

dimension dembed. After applying embedding, input sequence element xt ∈ Rdinput is

converted into x̂t ∈ Rdembed .

Positional Encoding

Since the Transformer model has not a recurrent nature, input and output sequences

are fed to the network in parallel. This parallelism reveals the need of information

about the absolute or relative position of the sequence elements. For this purpose, po-

sitional encoding is applied on input/output sequences after input/output embedding.

There are learned and fixed positional encoding techniques [51].

Learned positional encoding uses an embedding matrix D ∈ RTmax×dembed where

Tmax is the maximum sequence length. For a sequence element x̂t, wt ∈ Rdembed

which is tth column of D is selected and

x̄t = x̂t +wt (3.6)

is obtained after applying positional encoding. Similar operation is done for decoder

part as well. The columns in D are learned jointly during training of the network [94].

Fixed positional encoding uses functions which outputs fixed vectors for each abso-

lute or relative positions in the sequence. An example application is the usage of

cosine and sine functions of different frequencies and the encoding is achieved by

x̄(t,2i) = x̂(t,2i) + sin

(
t

10000
2i

dembed

)
(3.7)

and

x̄(t,2i+1) = x̂(t,2i+1) + sin

(
t

10000
2i+1

dembed

)
(3.8)
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where i represents the dimension in x̄t and x̂t [51]. An illustration of embedding

vectors used in fixed positional encoding with cosine and sine functions is provided

in Figure 3.3.

Figure 3.3: Illustration of fixed positional encoding with cosine and sine functions.

Attention Mechanism

Attention mechanism enables the Transformer to model relationships in input and

output sequences without any dependency on the distance. It makes use of vectors

called as query, key and value and the output of attention mechanism is the weighted

sum of value vectors where weights are calculated using the compatibility function

calculated for query and key vectors [51].

Additive attention [95] and dot-product attention are the most commonly used atten-

tion functions [51]. Additive attention calculates the weights by using a feed-forward

network for which the inputs are query and key vectors. Query and key vectors are

assigned as x̄t for each sequence step and calculation of weights can be formulated

as

βij = b(qi,kj) (3.9)

and

wij =
eβij∑T
k=1 e

βik

(3.10)

where qi is the ith query, kj is the jth key, wij is the weight for ith query and jth key

pair, b represents the non-linear functions applied in the feed-forward network and T

is the length of input sequence [95].
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Scaled dot-product attention firstly finds the query, key and value vectors by

qt = WQx̄t (3.11)

kt = WKx̄t (3.12)

vt = W V x̄t (3.13)

where WQ ∈ Rdatt×dembed is the weight matrix for query, WK ∈ Rdatt×dembed is

the weight matrix for key, W V ∈ Rdatt×dembed is the weight matrix for value vectors

and datt is the dimension of each query, key and value vector. These matrices are

optimized during training of the network.

After finding these vectors, the weights are calculated by

βij =
qi

Tkj√
datt

(3.14)

and

wij =
eβij∑T
k=1 e

βik

(3.15)

where where qi is the ith query, kj is the jth key and wij is the weight for ith query

and jth key pair [51].

After computing the weights, attention output is found by

ai =
T∑

j=1

wijvj (3.16)

Multi-head Attention

Rather than using single attention mechanism, projecting the query, key and value

vectors h times with linear projections into lower dimensions with size of datt =

dembed/h and applying attention functions in these projected subspaces in parallel

allows model to jointly gather information from different representation subspaces

[51]. Figure 3.4 shows multi-head attention structure with its components.
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Figure 3.4: Structure of multi-head attention.

For multi-head attention, weight matrices WQ, WK and W V are different for each

head. Furthermore, scaled dot-product attention is applied independently in parallel

for each head. After applying attention, the outputs are concatenated and linearly

projected by

ai = WOConcat(a1
i ,a

2
i , ...a

h
i ) (3.17)

where Concat() represents the concatenation function , ak
i is the attention output for

ith sequence element and kth head and WO is the weight matrix for linear projection

of the concatenated attention outputs [51].

Multi-head attention is applied in three different parts of transformer model:

• Encoder self-attention: The inputs of the multi-head attention are x̄0, x̄1, ...x̄t

and query, key and value vectors are calculated using these inputs. There is no

masking applied, hence all of the instances in the sequence attend each other’s

output [51].

• Decoder self-attention: The inputs of the multi-head attention are ȳ0, ȳ1, ...ȳt−1

and query, key and value vectors are calculated using these inputs. Masking is

applied such that the instance cannot attend to the output of an instance coming
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before. For applying masking, the weight in the scaled dot-product attention is

set to −∞ for the corresponding query-key pair [51].

• Encoder-decoder attention: Keys and value vectors are calculated using the en-

coder output z0, z1, ...zt while query vectors are obtained using ā0, ā1, ...āt−1

which are the output of residual connection unit after decoder self-attention.

Having attention between encoder and decoder enables all the positions in the

decoder to attend all the positions in the sequence of representation [51].

Residual Connections

After every multi-head attention and feed-forward network sublayers, a residual con-

nection with layer normalization is applied. Residual connections ease the opti-

mization in deep networks and provides accuracy gains compared to plain connec-

tions [96]. An example application of this connection on the output of encoder’s

multi-head attention can be formulated as

ât = at + x̄t (3.18)

where at is the output of multi-head attention and x̄t is the output of positional en-

coding for tth instance of the input sequence [51].

Layer normalization is applied following residual connections. It decreases train-

ing time compared to using batch normalization [97]. Mean and variance values

along embedding dimension are calculated for each sequence step and normalization

is applied. An example application of this normalization on the output of encoder’s

multi-head attention can be written as

µt =
1

dembed

dembed∑
k=1

ât,k (3.19)

σt =

√√√√ 1

dembed

dembed∑
k=1

(ât,k − µt)2 (3.20)
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āt =
ât − µt

σt

(3.21)

where µt is mean and σt is variance for tth sequence step and āt is the output of layer

normalization [98].

Feed-forward Networks

2-layered fully-connected feed-forward networks are used in encoder and decoder

structures as well as a final network generating the output sequence instances. It is

applied independently on the all sequence instances. The network parameters are

shared for different sequence instances while feed-forward networks at different lay-

ers have different parameters. Input and output layer of feed-forward network has

dimension of dembed while hidden layer can have different dimension represented by

df . An example application of this network on the output of the encoder’s first layer

normalization block can be formulated as

f t = W 2
ff(W

1
f āt + b1f ) + b2f (3.22)

where f is the nonlinear activation function, W 1
f and W 2

f are the weight matrix

of hidden and output layers respectively, b1f and b2f are the bias vectors of hidden

and output layers respectively and f t is the output of feed-forward network for tth

sequence step [51].

3.1.2 Activation Functions

There are several activation functions such as sigmoid, softmax, tanh, ReLU [99]

and ELU [100] which can be used to introduce non-linearity into artificial neurons.

In DOA estimation domain; sigmoid, tanh and ReLU are the most commonly used

activation functions in deep learning based methods [6]. Information about these

functions is provided in the below list along with softmax which is utilized by the

proposed method.

• Sigmoid: It produces an output in the interval of [0, 1] using
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fsigmoid(x) =
1

1 + e−x
(3.23)

Sigmoid function suffers from vanishing gradient caused by small gradient mul-

tiplications, bias in the gradients introduced by non-zero centered output, gra-

dient saturation for pre-activations near 0 and 1 and slow convergence due to

exponential function [101].

• Tanh: The outputs of this function lie in [−1, 1] and calculated using

ftanh(x) =
ex − e−x

ex + e−x
(3.24)

Tanh function solves the bias problem encountered in sigmoid function since

outputs are zero-centered, however, it suffers from vanishing gradient and slow

convergence problems [101].

• ReLU: It is a widely used activation function recently due to its ability to de-

crease the number of active neurons and reduce training time [102–104]. It

sets all the negative pre-activation outputs to zero and passes through positive

pre-activations as

fReLU(x) = max(0, x) (3.25)

There are variants of ReLU, such as leaky ReLU, which is proposed for pre-

venting dead neuron problem encountered during training. It achieves this by

setting negative pre-activation not to zero but a small positive value for intro-

ducing non-zero gradient [105].

• Softmax: It is used to calculate probability distribution over a vector. Therefore,

the output of a neuron is affected by other neurons in the layer. Softmax is

mostly used on the output neurons especially for classification tasks and it can

be formulated as

fsoftmax(xi) =
exi∑K
k=1 e

xk

(3.26)

where K is the number of neurons in the corresponding layer [93].
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3.1.3 Learning Methodologies

Deep learning models are trained for solving specific tasks and these tasks require dif-

ferent types of learning methodologies. These learning methodologies can be broadly

categorized as supervised and unsupervised learning. There is also another class of

algorithms called as reinforcement learning [93].

• Supervised Learning: Algorithms experience a dataset which contains samples

where each sample is associated with a target/label. It is aimed to learn pre-

diction of the target/label by observing the sample. Some example tasks are

classification and regression [93, 106].

• Unsupervised Learning: Algorithms experience a dataset containing samples

by which probability distribution or important properties about this distribution

is learned. There is no target/label assigned for samples in the data. Some

examples tasks are synthesis, denoising and clustering [93].

• Reinforcement Learning: Algorithms do not experience a dataset but rather in-

teract with an environment such that learning is performed utilizing the feed-

backs generated by the environment [93]. It is applied for the tasks involving

decision-making processes [107].

3.1.4 Optimization Algorithms

Deep learning models are trained such that the network parameters are optimized

to minimize a specified loss function over training dataset. For this purpose, a pro-

cess called backpropagation is applied to compute the gradients of the loss function,

which is calculated between the network output and desired output, for each sample

with respect to the network parameters [108]. The calculated gradients are used in op-

timization algorithms such as SGD, AdaGrad [109], RMSProp [110] and Adam [111]

to optimize the network parameters for minimum loss.

• SGD: It is the most commonly used optimization algorithm in deep learning

[93]. A minibatch of samples are selected from training set and parameter

update is applied by
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Ψ← Ψ− ηg (3.27)

g ← 1

m
∇Ψ

m∑
i=1

L(f(x(i);Ψ),y(i)) (3.28)

where Ψ represents the network parameters, η is the learning rate, m is the size

of minibatch, L is the loss function, f represents the network inference, x(i) is

the ith sample in the minibatch and y(i) is the corresponding label.

SGD can be used with a fixed learning rate however, there is a need for learning

rate decay in practice due to noise generated by random sampling of minibatch

which doesn’t disappear when loss is decreased around minimum level [93].

• AdaGrad: Learning rate is scaled depending on the cumulative gradient calcu-

lated for each network parameter. The parameter updates can be formulated

as

Ψ← Ψ− η

δ +
√
r
⊙ g (3.29)

where accumulated squared gradient is updated by

r ← r + g ⊙ g (3.30)

and gradient is calculated by

g ← 1

m
∇Ψ

m∑
i=1

L(f(x(i);Ψ),y(i)) (3.31)

In equation 3.29, η is the global learning rate and δ is the small constant for

numerical stability [109].

For AdaGrad, it is observed that accumulating all the gradients starting from the

beginning of training causes resultant learning rate to decrease excessively [93].

• RMSProp: It modifies AdaGrad algorithm by using a decaying average in the

calculation of accumulated gradients. The modification is applied on

r ← ρr + (1− ρ)g ⊙ g (3.32)
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where ρ is the decay rate. Using weighted average enables discarding the gra-

dients from initial stages of training and prevents excessive decrease in learning

rate [110].

• Adam: It combines the advantages of AdaGrad and RMSProp by utilizing first

and second order moment of gradients and keeping exponentially decaying av-

erage of these moments. In addition, it applies bias correction to the estimates

of the moments for enabling their initialization at the origin [111]. It applies

the updates using

Ψ← Ψ− η
ŝ

δ +
√
r̂

(3.33)

where first moment estimate s, second moment estimate r and their bias cor-

rected versions ŝ and r̂ are found using

s← β1s+ (1− β1)g (3.34)

r ← β2r + (1− β2)g ⊙ g (3.35)

ŝ← s

1− βt
1

(3.36)

r̂ ← r

1− βt
2

(3.37)

where β1 and β2 are decay rates for first and second order moments respectively

and t is the time step in the optimization process. Gradients are calculated

similar to SGD, AdaGrad and RMSProp using

g ← 1

m
∇Ψ

m∑
i=1

L(f(x(i);Ψ),y(i)) (3.38)

3.1.5 Regularization Techniques

Regularization techniques are used for deep learning models to prevent overfitting

and reduce the generalization error [93]. Dropout [112] and parameter norm penalties

such as L1 regularization [40] and L2 regularization [113] are some examples of these

techniques.
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• Dropout: It is applied by disabling neurons and their incoming/outgoing con-

nections randomly in a network. It provides a way to combine different network

structures efficiently since at each iteration different neurons can be removed.

The probability of removal for each neuron is p. Removal process is only ap-

plied during training while the output of each neuron is scaled by p during

testing phase [112].

• Parameter Norm Penalties: Penalty terms are added into loss function such that

the regularized loss function is

L̄(X,Y ;Ψ) = L(X,Y ;Ψ) + λΩ(Ψ) (3.39)

where L is the loss function without regularization, X and Y represents inputs

and desired outputs, Ψ represents the network parameters, λ is the regulariza-

tion coefficient and Ω is the penalty term.

L1 and L2 regularization are two types of norm penalties. For L1 regularization,

penalty term is

Ω(Ψ) = ∥Ψ∥1 =
∑
i

|Ψi| (3.40)

while L2 regularization applies

Ω(Ψ) = ∥Ψ∥22 =
∑
i

Ψ2
i (3.41)

as the penalty term [40, 113].

3.2 Proposed Architecture

A data-driven method is proposed for the tasks of DOA estimation and source enu-

meration. DOA estimation problem is formulated as multi-label classification task

where on-grid approach is followed. Therefore, the proposed method outputs on-grid

DOA angle estimates for source signals.
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The input for the proposed method is selected to be sample covariance matrix for

achieving generalization since training data-driven methods using raw sensor signals

might lead to performance degradation in case of unseen types of source signals.

Sample covariance matrix carries correlation of received sensor signals and it is inde-

pendent of the source signal types.

The proposed method is primarily composed of three stages:

1. Covariance Reconstruction Network

2. DOA Estimation Network

3. Source Enumeration Network

The networks that form these stages are based on deep learning models. Covariance

reconstruction network and DOA estimation network are built upon transformer while

source enumeration network consists of MLP. An overview of the proposed method

is depicted in Figure 3.5. As an initial step, input conversion is applied on the sample

covariance matrix. Covariance reconstruction network and DOA estimation network

operate sequentially while there is a feedback connection between DOA estimation

network and source enumeration network.

Figure 3.5: Overview of the proposed method.

3.2.1 Input Conversion

Sample covariance matrix, which is the input of the proposed method, is not directly

fed into covariance reconstruction network. A conversion is applied so that it can

be considered as a sequential data. In this conversion, coarray structure of the array
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is exploited and the mean of covariance matrix entries corresponding to the same

lag in the coarray is calculated. This conversion process is explained with details in

Algorithm 1.

Algorithm 1 Input (sample covariance matrix) conversion algorithm
Require: Aperture of the array A

Require: The number of sensors in the array M

Require: Sensor position coefficients (in terms of 0.5λ) p ∈ RM

Require: Sample covariance matrix R̂ ∈ CM×M

Initialize sample covariance coarray ĉ = 0, ĉ ∈ CA

Initialize counter for sample covariance coarray n = 0,n ∈ RA

for i← 1 to M do

for j ← 1 to M do

Find the lag between sensors: k ← p(i)− p(j)

if k > 0 then

Add the entry to covariance coarray: ĉ(k)← n(k)ĉ(k)+R̂(i,j)
n(k)+1

else

Add conj. of the entry to covariance coarray: ĉ(|k|)← n(|k|)ĉ(|k|)+R̂
∗
(i,j)

n(|k|)+1

end if

Increment counter: n(|k|)← n(|k|) + 1

end for

end for

The reasons of applying such a conversion are as follows:

• Covariance matrix entries corresponding to the same coarray lag are ideally

identical since the same phase difference is observed in the received signals of

sensors which have the same location difference. Calculating mean of these

entries reduces the approximation error that is present in the sample covariance

matrix.

• The resultant covariance coarray ĉ can be considered as a sequential data which

exhibits unique sequential patterns depending on the DOA angle of the source.

Example illustrations for these patterns are given in Appendix A.

• Formulating the input of subsequent networks as sequential data bring the pro-
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posed method the ability of functioning without any need of retraining in case

of sensor malfunctions. This ability is clarified in Section 3.2.2.

3.2.2 Stage 1: Covariance Reconstruction Network

Sample covariance matrix is unbiased estimate of true covariance matrix and approxi-

mation error depends on the number of samples and the level of noise in the data with

which sample covariance matrix is calculated. Applying input conversion algorithm,

see Algorithm 1, decreases the approximation error for a certain level however, there

is still a need for improvement especially for low SNR levels. The primary function

of covariance reconstruction network is to reduce the approximation error further.

The input of the covariance reconstruction network is

• real components of sample covariance coarray ĉ

• imaginary components of sample covariance coarray ĉ

and the output is its reconstructed version ŷ. Transformer model is employed in

the network. The reason for selecting transformer rather than other models such as

MLP, CNN and LSTM is its ability of functioning without retraining in case of sensor

malfunctions. Sensor malfunctions in essential elements introduces holes in the coar-

ray [13] and the performance of recurrent models severely degrades since there will

be no data for the lags corresponding to new holes. Moreover, MLP and CNN cannot

function anymore since the input size becomes different from what they are trained

with. Therefore, they need to be retrained for re-functioning and obtaining their usual

performance. However, transformer model can apply masking in its multi-head atten-

tion unit for the lags corresponding to the holes as described in Section 3.1.1.2. Also,

it can embed the lag positions into the inputs owing to positional encoding and learn

the spatial arrangements of the hole-free lags. This helps the network to function

without any need of retraining.

The architecture of the network is shown in Figure 3.6. It consists of transformer

encoder followed by a 2-layer feedforward network. The reason of using only encoder
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structure in transformer is to reduce the computational complexity. This is a viable

approach since the input and output sequences have the same length. Feedforward

network is applied on the instances of encoder output sequence separately.

Figure 3.6: Architecture of covariance reconstruction network.

Covariance reconstruction network can be mathematically represented by

(r̂0, r̂1, ...r̂t) = fenc(ĉ0, ĉ1, ...ĉt;ΨCRN) (3.42)

and

ŷi = fffn(r̂i;ΨCRN) ∀i ∈ [0, ..., t] (3.43)

where fenc and fffn represent the operations done by transformer encoder and feedfor-
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ward network as described in Section 3.1.1.2, ΨCRN represents the parameters of the

network, (r̂0, r̂1, ...r̂t) is the sequence of representation produced by encoder, ŷi is

ith instance of the reconstructed covariance coarray.

Table 3.1 provides additional information about the architecture of the network. The

output dimension of last feedforward network is 2 which represents the real and imag-

inary components of a single instance of reconstructed covariance coarray. As posi-

tional encoding, fixed embedding with cosine and sine functions is preferred to have

lower computational complexity since fixed and learned embedding produce simi-

lar results [51]. Scaled dot-product attention is selected for attention units because

dot-product attention is faster and space-efficient compared to additive attention [51].

ReLU is used as activation function both in encoder and last feedforward network.

The reason for selecting ReLU is that it doesn’t experience slow convergence and

vanishing gradient problems [101].

Table 3.1: Information about architecture of covariance reconstruction network

Transformer

Encoder

Embedding Type
Learned embedding using

2-layer NN

Embedding Dimension 128

Positional Encoding Type
Fixed embedding using

cosine and sine functions

Number of Layers (N ) 12

Number of Heads (h) 8

Attention Type Scaled dot-product attention

Feedforward Network

Hidden Dimension
128

Feedforward Network

Activation Function
ReLU

Regularization Dropout with p = 0.1

Feedforward

Network

Hidden Dimension 64

Hidden Activation Function ReLU

Output Dimension 2

Output Activation Function Linear
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3.2.3 Stage 2: Direction of Arrival Estimation Network

Covariance coarrays exhibit different patterns for different DOA angles. For attaining

the mapping between coarrays and angles, DOA estimation network is proposed.

The input of DOA estimation network is

• real components of the reconstructed covariance coarray ŷ

• imaginary components of the reconstructed covariance coarray ŷ

• sine of the phase components of the reconstructed covariance coarray ŷ

• cosine of the phase components of the reconstructed covariance coarray ŷ

The reason for using sine and cosine of the phase component rather than direct usage

of it is that the phase component presents discontinuities and these discontinuities

might introduce additional bias into the learning process. By mapping the phase into

two dimensions using sine and cosine functions, these continuities are prevented. The

output of the network is the estimated spatial spectrum over a grid. The network is

constructed to be based on transformer model due to the same reasons stated for

covariance reconstruction network in Section 3.2.2.

The architecture of the network is depicted in Figure 3.7. It contains transformer en-

coder, global average pooling and a 2-layer feedforward network. Since the problem

is formulated as multi-label classification task, there is no need for the usage of de-

coder of transformer. Global average pooling is performed on the output sequence of

encoder over sequence length dimension and the resultant vector is fed into feedfor-

ward network to obtain spatial spectrum estimate.

DOA estimation network can be mathematically expressed by

(r̂0, r̂1, ...r̂t) = fenc(ŷ0, ŷ1, ...ŷt;ΨDAEN) (3.44)

r̂ =
1

t+ 1

t∑
i=0

r̂i (3.45)

ẑ = fffn(r̂;ΨDAEN) (3.46)
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Figure 3.7: Architecture of DOA estimation network.

where fenc and fffn represent the operations done by transformer encoder and feedfor-

ward network as described in Section 3.1.1.2, ΨDAEN represents the parameters of the

network, (r̂0, r̂1, ...r̂t) is the sequence of representation produced by encoder and ẑ

is the estimated spatial spectrum.

Table 3.2 contains further information about the network architecture. Embedding

type, positional encoding type, attention type and activation function are selected

due to the same reasons as covariance reconstruction network that are mentioned in

Section 3.2.2. At the last feedforward network, output activation function is chosen

to be sigmoid since the problem is formulated as multi-label classification task.
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Table 3.2: Information about architecture of DOA estimation network

Transformer

Encoder

Embedding Type
Learned embedding using

2-layer NN

Embedding Dimension 32

Positional Encoding Type
Fixed embedding using

cosine and sine functions

Number of Layers (N ) 6

Number of Heads (h) 4

Attention Type Scaled dot-product attention

Feedforward Network

Hidden Dimension
64

Feedforward Network

Activation Function
ReLU

Regularization Dropout with p = 0.1

Feedforward

Network
Hidden Dimension 256

Hidden Activation Function ReLU

Output Dimension (G) 121

Output Activation Function Sigmoid

DOA estimation network generates DOA angle estimates over the estimated spatial

spectrum over two scenarios:

• Known Number of Sources: The number of sources N is known beforehand.

The highest N local maxima points are found from the spatial spectrum and

corresponding grid angle(s) are declared as source DOA angle estimates.

• Unknown Number of Sources: The number of sources N is unknown. Source

enumeration network produces source number estimate N̂ . The highest N̂ lo-

cal maxima points are found from the spatial spectrum and corresponding grid

angle(s) are declared as source DOA angle estimates.
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3.2.4 Stage 3: Source Enumeration Network

In practice, the number of sources in an environment is mostly unknown and there

arises a need for estimating the number of sources. For this purpose, source enumer-

ation network is constructed in the proposed method.

The architecture of the network is given along with DOA estimation network in Fig-

ure 3.8. The input of the network is the output of global average pooling block in

DOA estimation network. DOA estimation network uses this feature vector for ob-

taining spatial spectrum estimate which indicates that this vector contains information

about the number of sources as well. Therefore, it can be processed by a feedforward

network for obtaining source number estimates as output.

Source enumeration network can be mathematically modeled by

ô = fffn(p;ΨSEN) (3.47)

and

N̂ = argmax ô (3.48)

where fffn represent the operations done by feedforward network as described in Sec-

tion 3.1.1.1, ΨSEN represents the parameters of the network, p is the output of global

average pooling block in DOA estimation network, ô carries the output probabilities

for each number of sources and N̂ is the source number estimate.

Table 3.3 shows more information about the architecture of the network. ReLU is

used as activation function of hidden layer due to the reasons explained for previ-

ous networks in Section 3.2.2. Output activation function is softmax since a single

estimation is to be made for the number of sources.
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Figure 3.8: Architecture of source enumeration network.
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Table 3.3: Information about architecture of source enumeration network

Feedforward

Network

Hidden Dimension 256

Hidden Activation Function ReLU

Output Dimension (Nmax) 4

Output Activation Function Softmax
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CHAPTER 4

PERFORMANCE ANALYSIS: SPARSE ARRAYS

In this chapter, extensive simulation results are provided for transformer-based DOA

estimation method where its performance is evaluated for different types of sparse

arrays such as minimum redundant array, nested array, and coprime array. The per-

formance comparison is made with the following methods:

1. MUSIC [22]

2. Capon Beamformer [27]

3. L1-SVD [37]

4. CNN [28]

5. MLP [4]

6. DAE + SS + MUSIC [46]

7. CNN + Root-MUSIC [66]

MUSIC [22] is selected as a representative of subspace-based methods since it is a

widely used method with super-resolution ability. ESPRIT [29], another successful

example of subspace-based methods, is not used in the comparison since the con-

straint that it imposes on the structure of the array cannot always be established for

the aforementioned sparse array types. Capon Beamformer [27] is used for repre-

senting beamforming methods since it is a well-known method with its capability of

providing good performance in the presence of noise. As an example for sparsity-

inducing methods, L1-SVD [37] is chosen for its effectiveness in case of limited data.
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As recent data-driven approaches, CNN [28] and MLP [4] are used in the compari-

son. These methods are the mostly used deep learning architectures in DOA estima-

tion task and this explains the usage of them in the comparison [6]. Lastly, DAE +

SS + MUSIC [46] and CNN + Root-MUSIC [66] are used as the representatives of

the hybrid methods. DAE + SS + MUSIC [46] utilizes DAE for the purpose of co-

variance matrix reconstruction which is also a stage in the proposed method and this

makes it a potential candidate to make comparison with. CNN + Root-MUSIC [66]

utilizes one of the most commonly used deep learning networks along with a variant

of MUSIC [22] with gridless output. Since the proposed method is on-grid method,

including CNN + Root-MUSIC [66] in the comparison provides an opportunity to

observe the differences between on-grid and gridless methods.

For performing the comparisons, a single instance is selected for each of the above-

stated sparse array classes. Figures 4.1, 4.2, and 4.3 illustrate the array configurations

and corresponding difference coarrays for the selected instances of these sparse array

types. It can be observed that the minimum redundant array and nested array are hole-

free while coprime array has holes which degrades the degree of freedom. However,

coprime array possesses larger aperture compared to others.

Figure 4.1: Minimum redundant array configuration that is used in the performance

comparisons (top) and its coarray (bottom). Rectangle represents presence of the

element while cross indicates its absence. The number of dashes in the dashed lines

represent the weights for each lag.
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Figure 4.2: Nested array configuration that is used in the performance comparisons

(top) and its coarray (bottom). Rectangle represents presence of the element while

cross indicates its absence. The number of dashes in the dashed lines represent the

weights for each lag.

Figure 4.3: Coprime array configuration that is used in the performance comparisons

(top) and its coarray (bottom). Rectangle represents presence of the element while

cross indicates its absence. The number of dashes in the dashed lines represent the

weights for each lag.

4.1 Simulation Details

For each of the provided array configurations, data-driven methods are trained with

the synthetic data that is generated with the specifications given in Table 4.1. The

number of samples is selected such that there are sufficient number of samples to rep-

resent the distribution which relates sample covariance matrices with corresponding

DOA angles. Multiple sources are generated since it is more possible to experience

in the practice compared to single source case. Source separations are selected to

be not too close since the main focus of this study is not resolution ability of the

proposed method. Separations are varying for obtaining a data distribution closer to

the true distribution experienced in DOA estimation task. Azimuth direction range
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is selected considering the standards that are followed in the existing research for

obtaining consistent results [4, 28, 46, 66]. Elevation is chosen as 0◦ since linear ar-

rays allow direction finding only in a single dimension. SNR and snapshot levels are

determined to have low values since the network would generalize to less noisy and

data-sparse conditions after training. Noise signals are chosen to be complex random

Gaussian as indicated in the assumptions specified in Section 2.1.

Table 4.1: The specifications of training set

The number of samples (D) 2000000

The number of sources at each sample (N ) 4

Source separations >10◦

Source direction (azimuth, θ) 30◦ - 150◦*

Source direction (elevation, ϕ) 0◦

The number of snapshots (T ) 100 - 1000*

SNR -20 dB - 0 dB*

Source signal type Complex random Gaussian

Noise signal type Complex random Gaussian

Sampling rate 10 kHz
* Uniformly selected between the given interval

The proposed transformer-based network is trained in two steps. In both steps, the

network is implemented in PyTorch framework and training is performed using Tesla

T4 GPU. The first step consists of training the covariance reconstruction network

which forms the first stage of the overall network. During training, true covariance

coarray is used as ground truth such that denoising can be achieved after training.

Hold-out cross-validation is applied with a validation ratio of 0.1. Training is ap-

plied offline in a supervised manner such that mean square error between the re-

constructed and true covariance coarray over validation dataset is minimized. The

trainable parameters ΨCRN of the network are optimized by the updates conducted by

back-propagation and this optimization process can be formulized as

Ψ∗
CRN = argmin

ΨCRN

1

D

D∑
d=1

∥yd − ŷd∥2 (4.1)

where yd represents the ground truth and ŷd indicates the network output for dth
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sample in the validation set. Other training hyperparameters for the covariance recon-

struction network are summarized in Table 4.2. Adam [111] is chosen as optimizer

due to the advantages it provides over other optimization algorithms as described in

Section 3.1.4. The hyperparameters of Adam [111], learning rate, learning rate decay

and batch size are selected by hyperparameter tuning.

Table 4.2: Training hyperparameters

Optimizer Adam [111] with β1 = 0.9 and β2 = 0.999

Learning rate Initially 0.001

Learning rate decay 0.7 once validation loss reaches plateau with a patience of 10 epochs

Batch size 512

The second step of the training process comprises of training DOA estimation net-

work. Since the problem is formulated as multi-label classification task, ground truths

in training set are formed of binary vectors in which the entries corresponding to a

source direction grid are 1 and others are 0. The output layer of the network is con-

structed to have G = 121 neurons such that 1◦ of resolution is obtained because DOA

angle range is set as [30, 150]◦ in training set. Similar to covariance reconstruction

network, offline and supervised learning are applied. The parameters ΨDAEN of the

network is optimized by minimizing the error

Ψ∗
DAEN = argmin

ΨDAEN

1

D

D∑
d=1

L(zd, ẑd) (4.2)

where

L(zd, ẑd) = −
1

G

G∑
g=1

[zd(g) log(ẑd(g)) + (1− zd(g)) log(1− ẑd(g))] (4.3)

represents binary cross-entropy loss, zd is the ground truth and ẑd shows the network

output for dth sample in the validation set. Other training hyperparameters are the

same as in the case of covariance reconstruction network which are summarized in

Table 4.2.

For training the data-driven and hybrid methods that are used in the comparison, the
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same training set is used for a fair evaluation. Training processes of these methods are

applied by following the procedures and using the hyperparameters that are provided

in the corresponding articles [4, 28, 46, 66].

For performance evaluation, various test sets are generated which exhibit different

SNR levels and snapshot numbers. Signal types, sampling rate, source elevation and

the number of sources are the same as in training set. Other details about these sets

can be found in Table 4.3.

Table 4.3: The specifications of test sets

Test set # Number of samples

(D)

Source separations Source direction

(θ)

SNR Number of snapshots

(T )
1 10000 >10◦ 30◦ - 150◦* -20 dB 1000

2 10000 >10◦ 30◦ - 150◦* -15 dB 1000

3 10000 >10◦ 30◦ - 150◦* -10 dB 1000

4 10000 >10◦ 30◦ - 150◦* -5 dB 1000

5 10000 >10◦ 30◦ - 150◦* 0 dB 1000

6 10000 >10◦ 30◦ - 150◦* 5 dB 1000

7 10000 >10◦ 30◦ - 150◦* 10 dB 1000

8 10000 >10◦ 30◦ - 150◦* 15 dB 1000

9 10000 >10◦ 30◦ - 150◦* 20 dB 1000

10 10000 >10◦ 30◦ - 150◦* 25 dB 1000

11 10000 >10◦ 30◦ - 150◦* 30 dB 1000

12 10000 >10◦ 30◦ - 150◦* -10 dB 100

13 10000 >10◦ 30◦ - 150◦* -10 dB 200

14 10000 >10◦ 30◦ - 150◦* -10 dB 500

15 10000 >10◦ 30◦ - 150◦* -10 dB 1000

16 10000 >10◦ 30◦ - 150◦* -10 dB 2000

17 10000 >10◦ 30◦ - 150◦* -10 dB 5000

18 10000 >10◦ 30◦ - 150◦* -10 dB 10000
* Uniformly selected between the given interval

For evaluating and comparing the results on the test sets, root mean square error

(RMSE) metric is utilized which can be formulized as

RMSE =

√√√√ 1

D

D∑
d=1

∥θd − θ̂d∥2 (4.4)

where θd is the ground truth DOA angles and θ̂d is the estimated DOA angles.
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Regularization parameter that is used for L1-SVD [37] is set to 0.1 during experiment.

4.2 Results and Discussion

Simulation results for each sparse array type are provided in the following subsec-

tions.

4.2.1 Minimum Redundant Array

The loss curves obtained for covariance reconstruction network are shown in Figure

4.4. Training lasted for 53 epochs where validation loss converges during the last

epochs. It can be observed that validation loss is lower throughout training which

stems from the dropout layer in the network that is activated during training. A similar

case happens during training CNN as illustrated in the corresponding article [28].

Figure 4.4: Loss curves for covariance reconstruction network.

For illustrating the performance of covariance reconstruction network, random sam-

ples are selected from the test sets. Figure 4.5 illustrates the phase component of the

measured covariance matrices belonging to these samples, true versions which do not

contain any noise and reconstructed versions after applying covariance reconstruc-
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tion network. It can be observed that the reconstructed covariance matrices are more

similar to true covariance matrices compared to the measured ones especially for low

SNR and small number of snapshots. This observation is validated by calculating

MSE between the phase components of the true covariance matrices and measured

and reconstructed covariance matrices as given in Figures 4.6 and 4.7. Having lower

difference with the true covariance matrix demonstrates the denoising capability of

the proposed reconstruction network. In addition, being able to reconstruct for SNR

levels between 0 and 30 dB proves the generalization ability of the network since

these SNR levels are not present in training set.

For direction of arrival estimation network, the loss curves that are presented in Figure

4.8 are obtained during training process. Training is applied for 52 epochs and the

parameters ΨDAEN are selected for which the lowest validation loss is obtained during

this process.

After training the first two stages of the proposed method, performance comparisons

are made on test sets with other methods. Figure 4.9 and 4.10 show the RMSE values

for different SNR levels and snapshot numbers. Results indicate that the proposed

method leads to lower RMSE for low SNR regime and small number of snapshots.

This demonstrates the resilience of the proposed method to the presence of noise

and relatively small amount of data collected from the sensors. As SNR and snap-

shot number increases, RMSE values converge to a level due to grid mismatch. This

flooring effect is less for CNN + Root-MUSIC [66] since it provides gridless esti-

mates. Therefore, the best performance in the high SNR and snapshot number re-

gion is achieved by CNN + Root-MUSIC [66]. Among on-grid methods, data-driven

and hybrid methods (the proposed method, CNN [28], MLP [4], DAE + SS + MU-

SIC [46]) provide similar performance in the bound of 0.05◦ of RMSE. MUSIC [22]

and L1-SVD [37] show relatively poor performance compared to other methods. We

observe an increase in RMSE for SNR values larger than 10 dB for Capon Beam-

former [27]. The reason of this observation might be that it produces spatial spectrum

with sharper peaks for larger SNR values even though angle grid is too coarse to

capture these sharp peaks accurately.

Figures 4.11 and 4.12 depict the difference between RMSE obtained by the proposed
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Figure 4.5: The effect of covariance reconstruction network on the covariance matri-

ces.

method and the lowest RMSE among other on-grid methods. It can be observed

that the proposed method provide significant improvement for low SNR levels and

small snapshot numbers while having similar performance with the best performing

methods for high SNR and snapshot regions.

The proposed method is also compared with other methods in terms of processing

time. Table 4.4 contains the average processing time of each method which is calcu-
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Figure 4.6: Difference of measured and reconstructed covariance matrices with true

version for different SNR levels.

Figure 4.7: Difference of measured and reconstructed covariance matrices with true

version for different snapshot numbers.

lated using 1000 Monte Carlo runs on Intel Xeon CPU. The lowest processing time is

achieved by Capon Beamformer [27] which is followed by MUSIC [22] and the pro-

posed method. Therefore, the proposed method provides performance improvement
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Figure 4.8: Loss curves for direction of arrival estimation network.

Figure 4.9: RMSE comparison for different SNR levels.

without too much computational burden. It has the lowest processing time among

data-driven and hybrid methods.

The errors made by each method are illustrated in Appendix B for different SNR and

snapshot levels.
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Figure 4.10: RMSE comparison for different snapshot numbers.

Figure 4.11: RMSE improvement by the proposed method for different SNR levels.

The proposed method is also evaluated in terms of its spatial spectrum recovery per-

formance. Since the last layer of direction of arrival estimation network has sigmoid

activation function, each output node produces a probability of source existence in the

corresponding grid. Therefore, the probability values produced by each output node

can be considered as a spatial spectrum. The other data-driven methods also use sig-

moid activation function at their output layer, therefore the same spectrum generation
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Figure 4.12: RMSE improvement by the proposed method for different snapshot

numbers.

Table 4.4: Processing time for each method

Method Processing Time (ms)

Proposed Method 14.803

MUSIC [22] 10.473

Capon Beamformer [27] 4.811

L1-SVD [37] 3070.515

CNN [28] 1455.647

MLP [4] 81.060

DAE + SS + MUSIC [46] 17.500

CNN + Root-MUSIC [66] 44.652

process is valid for them as well. Figure 4.13 shows the comparison of the spatial

spectrums generated by each method for a randomly selected sample in a test set.

In this graph, spectrum for only CNN + Root-MUSIC [66] is not given since Root-

MUSIC utilizes polynomial root-finding instead of peak search from a spectrum [33].

From the graph, it can be observed that the proposed method has higher peaks for

the true source angles compared to subspace-based methods, beamforming methods,

and sparsity-inducing methods. However, the peaks for other data-driven methods are

higher than the proposed method which describes a shortage of the proposed method

compared to other data-driven methods.
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Figure 4.13: Spatial spectrum generated by each method.

4.2.2 Nested Array

The loss curves obtained for covariance reconstruction network are given in Figure

4.14. Training is performed for 80 epochs and the network parameters ΨCRN are set

with the values obtained for the lowest validation loss.

Figure 4.14: Loss curves for covariance reconstruction network.
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Reconstruction performance of the trained network is illustrated by examples in Fig-

ure 4.15. As it is the case for minimum redundant array, reconstruction network

enhances the measured covariance matrix such that it is more similar to true version

especially in low SNR and small number of snapshots. Figures 4.16 and 4.17 show

the difference between true covariance matrix and reconstructed and measured covari-

ance matrices where reconstructed version has lower MSE compared to the measured

one. It can also be observed that reconstruction process is still applicable for unseen

SNR level and snapshot numbers which demonstrates the generalization ability of the

trained network.

Figure 4.15: The effect of covariance reconstruction network on the covariance ma-

trices.

For direction of arrival estimation network, the loss curves that are shown in Figure

4.18. are obtained during training process. Training is performed for 39 epochs and
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Figure 4.16: Difference of measured and reconstructed covariance matrices with true

version for different SNR levels.

Figure 4.17: Difference of measured and reconstructed covariance matrices with true

version for different snapshot numbers.

the network parameters ΨDAEN are set to the values obtained for lowest validation

loss.
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Figure 4.18: Loss curves for direction of arrival estimation network.

Performance evaluation is done on test sets for which RMSE values are illustrated

in Figures 4.19 and 4.20 for different SNR levels and snapshot numbers respectively.

Similar to the case in minimum redundant array, the best performance for low SNR

and small number of snapshot is achieved by the proposed method. For high SNR

and snapshot number, CNN + Root-MUSIC [66] has lower RMSE due to its gridless

estimates. Data-driven and hybrid methods which make on-grid estimations have

similar performance for this region where their RMSE values lie in the interval of

0.05◦ of RMSE. Unlike the case for minimum redundant array, the performance of

MUSIC [22] is better for nested array. However, relatively poor performance of L1-

SVD [37] is applicable for nested array as well.

Figures 4.21 and 4.22 shows the difference between RMSE obtained by the proposed

method and the lowest RMSE among other on-grid methods. Similar to the case in

minimum redundant array, the proposed method provide performance improvement

especially in low SNR and snapshot regime while having similar RMSE with the best

performing methods for higher SNR and snapshot levels.

The processing times for this part is not given for brevity since the same algorithms

are applied.
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Figure 4.19: RMSE comparison for different SNR levels.

Figure 4.20: RMSE comparison for different snapshot numbers.

In Appendix C, the errors made by each method are illustrated for different SNR and

snapshot levels.

Figure 4.23 shows the comparison of the spatial spectrums generated by each method

for a randomly selected sample in a test set. As in the case of minimum redundant

array, the proposed method has higher peaks for the true source angles compared to
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Figure 4.21: RMSE improvement by the proposed method for different SNR levels.

Figure 4.22: RMSE improvement by the proposed method for different snapshot

numbers.

conventional methods. However, the peaks for other data-driven methods are slightly

higher than the proposed method. The difference between the peaks of the proposed

method and other data-driven methods is lower compared to the case for minimum

redundant array.
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Figure 4.23: Spatial spectrum generated by each method.

4.2.3 Coprime Array

During training of covariance reconstruction network, the loss curves given in Figure

4.24 are obtained. The network is trained for 90 epochs and parameters ΨCRN are set

with the values obtained for the lowest validation loss.

Figure 4.24: Loss curves for covariance reconstruction network.
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Examples of the reconstructions applied by the trained network are illustrated in Fig-

ure 4.25. Similar to the cases for minimum redundant array and nested array, covari-

ance reconstruction network presents denoising effect on the measured covariance

matrix. The difference between reconstructed and measured covariance matrices with

true covariance matrix is shown in Figures 4.26 and 4.27 for different SNR levels and

snapshot numbers. It can be observed that the reconstructed version has lower MSE

compared to measured one. Further, it doesn’t cause any distortion for unseen SNR

levels and snapshot numbers which indicates the generalization ability of the network.

Figure 4.25: The effect of covariance reconstruction network on the covariance ma-

trices.

Figure 4.28 shows the loss curves for direction of arrival estimation network obtained

during training process. Training lasted 74 epochs and the network parameters ΨDAEN

are set to the values obtained for lowest validation loss.

95



Figure 4.26: Difference of measured and reconstructed covariance matrices with true

version for different SNR levels.

Figure 4.27: Difference of measured and reconstructed covariance matrices with true

version for different snapshot numbers.

For performing the comparisons with other methods, trained networks are applied

on test sets. Figures 4.29 and 4.30 show RMSE values for different SNR levels and

snapshot numbers. As in the case of minimum redundant array and nested array, the
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Figure 4.28: Loss curves for direction of arrival estimation network.

proposed method leads to the lowest RMSE for low SNR levels and snapshot num-

bers in the coprime array as well. This indicates that the proposed method is more

robust against noise and small number of sensor measurements independent of the

configuration and type of sparse array. For high SNR levels and snapshot numbers,

the best performance is achieved by CNN + Root-MUSIC [66] which differs from

the proposed and other methods in that it is a gridless method. RMSE values for the

proposed method and other data-driven methods lie in 0.05◦ for this region. DAE +

SS + MUSIC [46] shows the worst performance for coprime array which is not the

case for minimum redundant array and nested array. Furthermore, the conventional

methods like MUSIC [22] and Capon Beamformer [27] results in higher RMSE com-

pared to data-driven methods which is observed for other sparse array types as well.

This demonstrates the effectiveness of learning the nonlinear relationships in the sen-

sor measurements over utilizing only signal model for direction of arrival estimation.

The proposed method improves the performance of data-driven methods especially in

low SNR and snapshot numbers without considerable performance loss in high SNR

and snapshot numbers.

Figures 4.31 and 4.32 depict the difference between RMSE obtained by the proposed

method and the lowest RMSE among other on-grid methods. Similar to the case
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Figure 4.29: RMSE comparison for different SNR levels.

Figure 4.30: RMSE comparison for different snapshot numbers.

in minimum redundant and nested array, the proposed method improves the perfor-

mance in low SNR and snapshot regime while having similar error rate with the best

performing methods for higher SNR and snapshot levels.

The processing times are not given for brevity since there is no change in the methods

that are applied.
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Figure 4.31: RMSE improvement by the proposed method for different SNR levels.

Figure 4.32: RMSE improvement by the proposed method for different snapshot

numbers.

Appendix D shows the errors made by each method for different SNR and snapshot

levels.

For a randomly selected sample from test sets, spatial spectrums are generated for

each method and illustrated in Figure 4.33. Similar to the case in minimum redundant

array and nested array, the proposed method leads to higher peaks for true source
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angles compared to conventional methods, however, other data-driven methods have

higher peaks than the proposed one which was the case for other sparse array types

as well.
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Figure 4.33: Spatial spectrum generated by each method.
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CHAPTER 5

PERFORMANCE ANALYSIS: ROBUSTNESS TO SENSOR

MALFUNCTIONS

In this chapter, the performance of transformer-based DOA estimation method is eval-

uated for the cases of sensor malfunctions. Similar to Chapter 4, sparse arrays are the

main focus and the effects of possible failures in these arrays are to be investigated.

For this purpose, a sparse array configuration is selected which is illustrated with its

difference coarray in Figure 5.1.

Figure 5.1: Intact sparse array configuration (top) and its coarray (bottom). Rectangle

represents presence of the element while cross indicates its absence. The number of

dashes in the dashed lines represent the weights for each lag.

As described in Section 2.5, the scope of this thesis is restricted with complete failures

at the known sensors. Therefore, it is assumed that there is no source signal received

by the faulty sensor(s) and other noise-related signals observed in these sensors are

ignored. Hence, the experiments are done by only utilizing the signals from fully-

functional sensors.

The performance of the proposed method is compared with the following methods:

1. MUSIC [22]
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2. Capon Beamformer [27]

3. L1-SVD [37]

4. SVT + MUSIC [79]

5. MLP + MUSIC [88]

6. OMP [86]

MUSIC [22], Capon Beamformer [27] and L1-SVD [37] are the representatives of

subspace-based methods, beamforming methods and sparsity-inducing methods re-

spectively as in Chapter 4. SVT + MUSIC [79] is an example of matrix comple-

tion methods proposed for sensor malfunctions. SVT is known for its ability to re-

cover low-rank matrices from incomplete measurements and applying it with MU-

SIC [22] which is a super-resolution method provides a strong baseline to compare

with. MLP + MUSIC [88] is used for representing the data-driven methods. MLP

enables compensating the missing information by learning from data and since the

proposed method is also data-driven, MLP + MUSIC [88] is a good candidate to use

in the evaluation. As a representative of compressed sensing-based methods which

are introduced for sensor malfunctions, OMP [86] is chosen since it is a well-known

method in sparse signal recovery which can also be used for handling incomplete

data.

Application of MUSIC [22], Capon Beamformer [27] and L1-SVD [37] are not de-

pendent on sensor number/configuration in the array, so they can be used in case of

sensor malfunctions as well. However, data-driven and hybrid methods in Chapter 4

couldn’t be applied in this chapter since they can only be used on the array config-

uration with which they are trained. CNN [28] and CNN + Root-MUSIC [66] take

the sample covariance matrix as input whose dimension is dependent on the number

of sensors. Therefore, the trained network cannot be used in case of sensor malfunc-

tions since the input dimension changes in such a case. Similarly, MLP [4] and DAE

+ Spatial Smoothing + MUSIC [46] takes the vectorized version of the sample covari-

ance matrix and hence, they cannot be applied when the number of sensors changes.

There arises a need of retraining for these methods when sensor failure occurs while
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the proposed method does not have such a requirement owing to its input formulation

and positional encoding ability.

For performing the experiments, sensor malfunctions are simulated on the selected

array and performance comparisons are made with the mentioned methods. More

details about these experiments are given in Section 5.1.

5.1 Simulation Details

Sensor failures can be encountered in any of the sensor(s) of the array, therefore it

is essential for data-driven methods to be able to make estimations for arrays which

possess the subset of the intact array sensors. For this purpose, a training set which

contains samples from the constructed sparse array and its subarrays is generated.

The details of training set is given in Table 5.1. For each sample, randomly selected

sensors are considered as faulty and the received signals are generated for the other

intact sensors. The number of faulty sensors is limited considering the number of

sources since subspace-based methods cannot function for undetermined case. Other

parameters are selected for the same reasons that are explained in Section 4.1.

Table 5.1: The specifications of training set

The number of samples (D) 2000000

The number of sources at each sample (N ) 4

The number of sensors at each sample (M ) 4 - 8*

Source separations >10◦

Source direction (azimuth, θ) 30◦ - 150◦*

Source direction (elevation, ϕ) 0◦

The number of snapshots (T ) 100 - 1000*

SNR -20 dB - 0 dB*

Source signal type Complex random Gaussian

Noise signal type Complex random Gaussian

Sampling rate 10 kHz
* Uniformly selected between the given interval

As in Chapter 4, the proposed transformer-based network is trained in two steps.
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In both steps, the network is implemented using PyTorch framework and training is

performed on Tesla T4 GPU. Firstly, covariance reconstruction network is trained for

learning the mapping between measured covariance coarray and the corresponding

true versions. Both measured and true covariance matrices have the size of fully-

functional sensor number in the array. Hold-out cross-validation is applied where the

ratio of the validation set is 0.1. Supervised learning is applied offline where mean

square error between the reconstructed and true covariance coarray is minimized over

validation set. The optimization process in which the trainable parameters ΨCRN of

the network are updated can be formulized as

Ψ∗
CRN = argmin

ΨCRN

1

D

D∑
d=1

∥yd − ŷd∥2 (5.1)

where yd represents the ground truth and ŷd indicates the network output for dth

sample in the validation set. Other training hyperparameters for the covariance re-

construction network are given in Table 5.2 which are the same as that are used in

Chapter 4. These hyperparameters are selected by hyperparameter tuning process.

Table 5.2: Training hyperparameters

Optimizer Adam [111] with β1 = 0.9 and β2 = 0.999

Learning rate Initially 0.001

Learning rate decay 0.7 once validation loss reaches plateau with a patience of 10 epochs

Batch size 512

In the second step, direction of arrival estimation network is trained for learning the

relationship between the reconstructed covariance coarray and DOA angle. As in

Chapter 4, the problem is formulated as multi-label classification task and output

layer of the network is constructed to have G = 121 neurons such that 1◦ of reso-

lution is achieved. As ground truths in training set, binary vectors are used for each

sample where true source angles are labeled as 1 and others as 0. Supervised learn-

ing is applied offline where the parameters ΨDAEN of the network is optimized by

minimizing the error
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Ψ∗
DAEN = argmin

ΨDAEN

1

D

D∑
d=1

L(zd, ẑd) (5.2)

where

L(zd, ẑd) = −
1

G

G∑
g=1

[zd(g) log(ẑd(g)) + (1− zd(g)) log(1− ẑd(g))] (5.3)

is binary cross-entropy loss, zd represents the ground truth and ẑd shows the network

output for dth sample in validation set. Other training hyperparameters are the same

as that are used for covariance reconstruction network and they are summarized in

Table 5.2.

For training data-driven method that is used in the comparison, the same training set

is used for a fair comparison. Training process of this method is applied by following

the procedures and using the hyperparameters that are provided in the corresponding

article [88].

For evaluating the performance of the proposed method and compare with others,

two different scenarios are built. In the first scenario, a test set is generated which

contains samples from the intact array specified in Figure 5.1. In the second scenario,

it is assumed that sensor malfunctions occur on randomly selected elements of the

array. Test sets for these two scenarios are generated for different SNR levels and

snapshot numbers whose details are summarized in Tables 5.3 and 5.4. Signal types,

sampling rate and source elevation are the same as in training set.

As in Chapter 4, RMSE is used as the evaluation metric which can be formulized as

RMSE =

√√√√ 1

D

D∑
d=1

∥θd − θ̂d∥2 (5.4)

where θd is the ground truth DOA angles and θ̂d is the estimated DOA angles.

Regularization parameter that is used for L1-SVD [37] is set to 0.1 during experiment.
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Table 5.3: The specifications of test sets for intact array

Test

set #

Number of

samples

(D)

Number of

sensors

(M )

Number of

sources

(N )

Source

separations

Source

direction

(θ)

SNR Number of

snapshots

(T )
1 10000 8 4 >10◦ 30◦ - 150◦* -20 dB 1000

2 10000 8 4 >10◦ 30◦ - 150◦* -15 dB 1000

3 10000 8 4 >10◦ 30◦ - 150◦* -10 dB 1000

4 10000 8 4 >10◦ 30◦ - 150◦* -5 dB 1000

5 10000 8 4 >10◦ 30◦ - 150◦* 0 dB 1000

6 10000 8 4 >10◦ 30◦ - 150◦* 5 dB 1000

7 10000 8 4 >10◦ 30◦ - 150◦* 10 dB 1000

8 10000 8 4 >10◦ 30◦ - 150◦* 15 dB 1000

9 10000 8 4 >10◦ 30◦ - 150◦* 20 dB 1000

10 10000 8 4 >10◦ 30◦ - 150◦* 25 dB 1000

11 10000 8 4 >10◦ 30◦ - 150◦* 30 dB 1000

12 10000 8 4 >10◦ 30◦ - 150◦* -10 dB 100

13 10000 8 4 >10◦ 30◦ - 150◦* -10 dB 200

14 10000 8 4 >10◦ 30◦ - 150◦* -10 dB 500

15 10000 8 4 >10◦ 30◦ - 150◦* -10 dB 1000

16 10000 8 4 >10◦ 30◦ - 150◦* -10 dB 2000

17 10000 8 4 >10◦ 30◦ - 150◦* -10 dB 5000

18 10000 8 4 >10◦ 30◦ - 150◦* -10 dB 10000
* Uniformly selected between the given interval

5.2 Results and Discussion

The loss curves obtained during training of covariance reconstruction network are

shown in Figure 5.2. Training is performed for 106 epochs and the network parame-

ters ΨCRN are determined by considering the lowest validation loss.

Example reconstructions done by the trained network on test set are illustrated in Fig-

ure 5.3. As it can be observed, the network is able to operate on data collected from

arrays with different number/configuration of sensors and apply denoising effect es-

pecially for low SNR levels. This effect is numerically more observable in Figures

5.4 and 5.5 where MSE of the difference between true covariance matrix and recon-

structed and measured covariance matrices are plotted for different SNR and snapshot

values.
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Table 5.4: The specifications of test sets for faulty array

Test

set #

Number of

samples

(D)

Number of

intact

sensors

(M )

Number of

sources

(N )

Source

separations

Source

direction

(θ)

SNR Number of

snapshots

(T )

1 10000 4 - 7* 4 >10◦ 30◦ - 150◦* -20 dB 1000

2 10000 4 - 7* 4 >10◦ 30◦ - 150◦* -15 dB 1000

3 10000 4 - 7* 4 >10◦ 30◦ - 150◦* -10 dB 1000

4 10000 4 - 7* 4 >10◦ 30◦ - 150◦* -5 dB 1000

5 10000 4 - 7* 4 >10◦ 30◦ - 150◦* 0 dB 1000

6 10000 4 - 7* 4 >10◦ 30◦ - 150◦* 5 dB 1000

7 10000 4 - 7* 4 >10◦ 30◦ - 150◦* 10 dB 1000

8 10000 4 - 7* 4 >10◦ 30◦ - 150◦* 15 dB 1000

9 10000 4 - 7* 4 >10◦ 30◦ - 150◦* 20 dB 1000

10 10000 4 - 7* 4 >10◦ 30◦ - 150◦* 25 dB 1000

11 10000 4 - 7* 4 >10◦ 30◦ - 150◦* 30 dB 1000

12 10000 4 - 7* 4 >10◦ 30◦ - 150◦* -10 dB 100

14 10000 4 - 7* 4 >10◦ 30◦ - 150◦* -10 dB 500

15 10000 4 - 7* 4 >10◦ 30◦ - 150◦* -10 dB 1000

16 10000 4 - 7* 4 >10◦ 30◦ - 150◦* -10 dB 2000

17 10000 4 - 7* 4 >10◦ 30◦ - 150◦* -10 dB 5000

18 10000 4 - 7* 4 >10◦ 30◦ - 150◦* -10 dB 10000
* Uniformly selected between the given interval

During training of direction of arrival estimation network, the loss curves in Figure

5.6 are obtained. Training process lasted 129 epochs and the network parameters

ΨDAEN are set with values obtained when the the validation loss is minimum.

After training process is completed, the proposed method and others are compared

based on two scenarios for which the results are given in Sections 5.2.1 and 5.2.2.

5.2.1 Intact Array

In this section, test set containing samples from intact array is used make perfor-

mance evaluation. Figures 5.7 and 5.8 provide the comparison of RMSE values for

different SNR levels and snapshot numbers. Although it may seem that the pro-

posed method doesn’t provide performance improvement over other methods, it is
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Figure 5.2: Loss curves for covariance reconstruction network.

important to consider the performance of individual methods for the whole SNR and

snapshot regions. For instance, OMP [86], L1-SVD [37], MUSIC [22] and Capon

Beamformer [27] cannot perform as successful as the proposed method for low SNR

levels and snapshot numbers. The error difference between MLP + MUSIC [88] and

the proposed method can be observed for high SNR and snapshot levels in which

the proposed method has slightly better performance. SVT + MUSIC [79] shows

mostly similar performance to the proposed method except snapshot number of 100

for which RMSE of the proposed method is 14.723◦ lower than it. Therefore, the

proposed method provides a consistent performance for all SNR and snapshot regime

while other methods may experience deterioration.

Figures 5.9 and 5.10 show the difference between RMSE obtained by the proposed

method and the lowest RMSE among other methods. It can be observed that the

proposed method provides similar performance to the best performing methods for

all SNR levels and large number of snapshots while achieving a considerable perfor-

mance improvement for small snapshot number.

A comparison is conducted in terms of processing times as well. Table 5.5 contains

the average processing time of each method which is calculated over 1000 Monte

Carlo runs on Intel Xeon CPU. The lowest processing time is achieved by MLP +
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Figure 5.3: The effect of covariance reconstruction network on the covariance matri-

ces.

MUSIC [88] which is followed by the proposed method. Therefore, the proposed

method doesn’t introduce too much computational burden. It has lower processing

time than most of the other methods.

The errors made by each method are illustrated in Appendix E for different SNR and

snapshot levels.

Figure 5.11 shows the spatial spectrums generated by each method for a a randomly

selected sample in test set. It can be observed that the highest peaks for the source

angles are obtained by the proposed method. In Chapter 4, there were other data-

driven methods which have higher peaks compared to the proposed method however,

these methods couldn’t be applied for sensor malfunction case due to the limitation
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Figure 5.4: Difference of measured and reconstructed covariance matrices with true

version for different SNR levels.

Figure 5.5: Difference of measured and reconstructed covariance matrices with true

version for different snapshot numbers.

of their input formulation.

112



Figure 5.6: Loss curves for direction of arrival estimation network.

Figure 5.7: RMSE comparison for different SNR levels.

5.2.2 Faulty Array

This section covers performance evaluation for test set comprising of samples from

faulty array. For different SNR levels and snapshot numbers, RMSE values obtained

by each method are given in Figures 5.12 and 5.13. For SNR of -20 dB, the best
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Figure 5.8: RMSE comparison for different snapshot numbers.

Figure 5.9: RMSE improvement by the proposed method for different SNR levels.

performance is achieved by MLP + MUSIC [88] which is followed by the proposed

method. For SNR values between -15 and -5 dB, the proposed method leads to the

lowest error. SVT + MUSIC [79] achieves the best performance for SNR levels higher

than 0 dB. For these values, the proposed method has the second lowest RMSE except

for between 10 and 30 dB where L1-SVD [37] has slightly lower error. Therefore,

SVT + MUSIC [79] and L1-SVD [37] have better performance than the proposed
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Figure 5.10: RMSE improvement by the proposed method for different snapshot

numbers.

Table 5.5: Processing time for each method

Method Processing Time (ms)

Proposed Method 4.082

MUSIC [22] 5.087

Capon Beamformer [27] 10.565

L1-SVD [37] 788.223

SVT + MUSIC [79] 642.672

MLP + MUSIC [88] 1.398

OMP [86] 4.814

method for high SNR region. However, it should be noted that SVT + MUSIC [79]

and L1-SVD [37] are computationally much more demanding compared to the pro-

posed method. Processing time of the proposed method is 157.44 times lower than

SVT + MUSIC [79] and 193.09 times lower than L1-SVD [37] as given in Table 5.5.

SVT + MUSIC [79] and L1-SVD [37] are methods which have iterative nature and

this leads to massive processing times. Therefore, the proposed method is much more

practical compared to them and it achieves the lowest RMSE among other practical

methods which have feasible processing times. Furthermore, the proposed method

outperforms other methods for all the snapshot numbers.
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Figure 5.11: Spatial spectrum generated by each method.

Figure 5.12: RMSE comparison for different SNR levels.

Figures 5.14 and 5.15 illustrate the difference between RMSE obtained by the pro-

posed method and the lowest RMSE among other methods. Since MLP + MU-

SIC [88] has lower RMSE for SNR of -20 dB, the proposed method doesn’t provide

improvement. For SNR levels higher than 0 dB, there is not any improvement due to

SVT + MUSIC [79] and L1-SVD [37] which are considered impracticle. For other

SNR regime and all of the snapshot numbers, the proposed method provides error

116



Figure 5.13: RMSE comparison for different snapshot numbers.

improvement.

Figure 5.14: RMSE improvement by the proposed method for different SNR levels.

The errors made by each method are illustrated in Appendix F for different SNR and

snapshot levels.

Spatial spectrums generated by the methods are shown in Figure 5.16. As in the case

of intact array, the highest peaks are achieved by the proposed method. Therefore,
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Figure 5.15: RMSE improvement by the proposed method for different snapshot

numbers.

encountering sensor failure doesn’t affect the spectrum of the proposed method and

this shows the robustness of it to sensor malfunctions in terms of spectrum generation.

Figure 5.16: Spatial spectrum generated by each method.

For evaluating the robustness of these methods against sensor malfunctions, RMSE

values obtained for the cases of intact and faulty array in different SNR levels are

plotted on the same graph. The methods are separated into two groups for better visu-
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alization as shown in Figures 5.17 and 5.18. For low SNR levels, it can be observed

that the lowest RMSE values are obtained by the proposed method for both intact and

faulty array cases. Also, it provides the lowest RMSE increase in low SNR region and

this indicates the robustness of the proposed method. SVT + MUSIC [79] achieves

the lowest RMSE values for SNR levels larger than 0 dB. The proposed method fol-

lows SVT + MUSIC [79] in the RMSE values except for SNR values between 10 and

15 dB where L1-SVD [37] seems to be slightly better than it. However, it should be

recalled that SVT + MUSIC [79] and L1-SVD [37] requires much more processing

time compared to the proposed method and this is an important limitation in practice.

Figure 5.17: RMSE values obtained by intact and faulty arrays for different SNR

levels (Part 1).

A similar comparison is conducted for different snapshot numbers as well. Figures

5.19 and 5.20 show RMSE values of the methods for both intact and faulty cases.

For all number of snapshots, the proposed method leads to the lowest RMSE change

between intact and faulty arrays while providing low error for both cases.

Overall, among the methods which have reasonable processing time, the results in-
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Figure 5.18: RMSE values obtained by intact and faulty arrays for different SNR

levels (Part 2).

dicate that the proposed method is the most robust one against sensor malfunctions

while providing low error for both intact and faulty arrays.
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Figure 5.19: RMSE values obtained by intact and faulty arrays for different snapshot

levels (Part 1).
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Figure 5.20: RMSE values obtained by intact and faulty arrays for different snapshot

levels (Part 2).
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CHAPTER 6

PERFORMANCE ANALYSIS: UNKNOWN NUMBER OF SOURCES

In this chapter, performance evaluation of transformer-based DOA estimation method

is made for the joint presence of sensor malfunctions and unknown number of sources.

In Chapters 4 and 5, it was assumed that the number of sources is known beforehand,

therefore there was no need to use the source enumeration network which is the third

stage of the proposed method. This chapter is mainly devoted to the performance of

source enumeration network and comparison with other enumeration methods. As in

Chapters 4 and 5, sparse arrays are the main interest and the same array configuration

in Chapter 5 is chosen for the experiments. The physical positions and corresponding

difference coarray of this sparse array is illustrated in Figure 6.1.

Figure 6.1: Intact sparse array configuration (top) and its coarray (bottom). Rectangle

represents presence of the element while cross indicates its absence. The number of

dashes in the dashed lines represent the weights for each lag.

The performance comparisons are made with the following methods:

1. AIC [71]

2. MDL [72]

3. SORTE [75]
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4. Predicted Eigen-Threshold [76]

5. Eigen-Increment Threshold [77]

6. AREG [74]

7. T-GANE [74]

AIC [71] and MDL [72] are representatives of the information-theoretic based ap-

proaches and chosen since they are well-known methods used for source enumer-

ation. As examples of eigenvalue based methods, SORTE [75], AREG [74], Pre-

dicted Eigen-Threshold [76] and Eigen-Increment Threshold [77] are selected. T-

GANE [74] is the method chosen from the class of data-driven methods. All these

methods utilize eigenvalues of the sample covariance matrix, therefore MUSIC [22] is

applied with these methods for obtaining DOA estimation results in the experiments.

The other methods which are applied in Chapters 4 and 5 couldn’t be applied in this

part since they cannot generalize in case of sensor malfunctions or they are not able

to estimate the number of sources.

6.1 Simulation Details

For training the proposed method, a training set is generated for which the details

are given in Table 6.1. It contains samples from aforementioned intact array and its

subarrays. The faulty sensor elements are assumed to be known and received signals

are generated for remaining sensors. The number of sources for each sample is varied

such that source enumeration network can be trained for different number of sources.

The number of sources is limited by the minimum number of intact sensors since

subspace-based methods cannot function for undetermined case. Other parameters

are selected for the same reasons that are explained in Section 4.1.

Covariance reconstruction network and direction of arrival estimation network, which

comprise the first two stages of the proposed method, are trained following the same

procedure that is described in Chapter 5. Therefore, training details of these networks

are not repeated in this chapter for the sake of brevity.

124



Table 6.1: The specifications of training set

The number of samples (D) 2000000

The number of sources at each sample (N ) 1 - 4*

The number of sensors at each sample (M ) 4 - 8*

Source separations >10◦

Source direction (azimuth, θ) 30◦ - 150◦*

Source direction (elevation, ϕ) 0◦

The number of snapshots (T ) 100 - 1000*

SNR -20 dB - 0 dB*

Source signal type Complex random Gaussian

Noise signal type Complex random Gaussian

Sampling rate 10 kHz
* Uniformly selected between the given interval

The third stage of the proposed method, which is introduced as source enumeration

network, is trained for learning the mapping between number of sources and the fea-

ture vector that is extracted from the global average pooling block of direction of

arrival estimation network. Training is performed on Tesla T4 GPU and the network

is implemented using PyTorch framework. Hold-out cross-validation is applied with

a validation ratio of 0.1. The output layer of source enumeration network is con-

structed to have maximum number of sources (Nmax) that is present in training set

which is 4. The ground truths in training set are binary vectors in which the entry

corresponding to the number of sources is 1 and others are 0. Supervised learning is

applied offline where cross-entropy loss is minimized between the ground truth and

network output by optimizing the parameters ΨSEN of the network. Cross-entropy

loss can be formulated as

Ψ∗
SEN = argmin

ΨSEN

1

D

D∑
d=1

L(od, ôd) (6.1)

where

L(od, ôd) = −
1

Nmax

Nmax∑
n=1

[od(n) log(ôd(n))] (6.2)

is cross-entropy loss, od is the ground truth and ôd represents the network output for
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dth sample in validation set. Other training hyperparameters are shown in Table 6.2.

Hyperparameter tuning is applied in the selection of these parameters.

Table 6.2: Training hyperparameters

Optimizer Adam [111] with β1 = 0.9 and β2 = 0.999

Learning rate Initially 0.001

Learning rate decay 0.7 once validation loss reaches plateau with a patience of 10 epochs

Batch size 512

For a fair comparison, the data-driven method that is used in the comparison is trained

with the same training set. Training process of this method is applied by following

the procedures and using the hyperparameters that are given in the corresponding

article [74].

For evaluating the trained network and make comparisons with other methods, dif-

ferent test sets are generated containing samples for various SNR levels, snapshot

numbers, sensor numbers/configurations and the number of sources. The details of

these test sets are described in Table 6.3. Signal types, sampling rate and source

elevation are the same as in training set.

As the evaluation metric, average Hausdorff distance is used since RMSE is not an

appropriate metric in case the number of sources that is predicted by the network is not

equal to the true number of sources. Average Hausdorff distance can be formulated

as

dh,avg =
1

D

D∑
d=1

dh(Zd, Ẑd) (6.3)

where

dh(P d, P̂ d) = max {d(P d, P̂ d), d(P̂ d,P d)} (6.4)

is the Hausdorff distance between the predicted angle set P̂ d and true angle set P d

and

d(P d, P̂ d) = sup {d(pd, P̂ d) | pd ∈ P d} (6.5)

126



Table 6.3: The specifications of test sets

Test

set #

Number of

samples

(D)

Number of

intact

sensors

(M )

Number of

sources

(N )

Source

separations

Source

direction

(θ)

SNR Number of

snapshots

(T )

1 10000 4 - 8* 1 - 4* >10◦ 30◦ - 150◦* -20 dB 1000

2 10000 4 - 8* 1 - 4* >10◦ 30◦ - 150◦* -15 dB 1000

3 10000 4 - 8* 1 - 4* >10◦ 30◦ - 150◦* -10 dB 1000

4 10000 4 - 8* 1 - 4* >10◦ 30◦ - 150◦* -5 dB 1000

5 10000 4 - 8* 1 - 4* >10◦ 30◦ - 150◦* 0 dB 1000

6 10000 4 - 8* 1 - 4* >10◦ 30◦ - 150◦* 5 dB 1000

7 10000 4 - 8* 1 - 4* >10◦ 30◦ - 150◦* 10 dB 1000

8 10000 4 - 8* 1 - 4* >10◦ 30◦ - 150◦* 15 dB 1000

9 10000 4 - 8* 1 - 4* >10◦ 30◦ - 150◦* 20 dB 1000

10 10000 4 - 8* 1 - 4* >10◦ 30◦ - 150◦* 25 dB 1000

11 10000 4 - 8* 1 - 4* >10◦ 30◦ - 150◦* 30 dB 1000

12 10000 4 - 8* 1 - 4* >10◦ 30◦ - 150◦* -10 dB 100

14 10000 4 - 8* 1 - 4* >10◦ 30◦ - 150◦* -10 dB 500

15 10000 4 - 8* 1 - 4* >10◦ 30◦ - 150◦* -10 dB 1000

16 10000 4 - 8* 1 - 4* >10◦ 30◦ - 150◦* -10 dB 2000

17 10000 4 - 8* 1 - 4* >10◦ 30◦ - 150◦* -10 dB 5000

18 10000 4 - 8* 1 - 4* >10◦ 30◦ - 150◦* -10 dB 10000
* Uniformly selected between the given interval

is the directed Hausdorff distance where

d(pd, P̂ d) = inf {d(pd, p̂d) | p̂d ∈ P̂ d} (6.6)

and

d(pd, p̂d) = |pd − p̂d| (6.7)

Hausdorff distance measures the how far two subsets of a metric space are from each

other. It indicates the longest distance from a point that is selected from one subset

to the closest point in the other set. Its applicability for two sets which do not share

the same cardinality enables the usage for the evaluation of the experiments in this

chapter. The unit for Hausdorff distance is degree.
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In addition to Hausdorff distance, source number estimation accuracy is utilized for

evaluating source enumeration network. It is calculated by

Accuracy =
1

D

D∑
d=1

1Nd
(N̂d) (6.8)

where Nd is the true number of sources and N̂d is the estimated number of sources for

dth sample of test set, 1Nd
is indicator function and gets value of 1 if Nd = N̂d and 0

otherwise.

6.2 Results and Discussion

The loss curves obtained during training source enumeration network are shown in

Figure 6.2. The network is trained for 134 epochs and parameters ΨSEN are set when

the validation loss is minimized.

Figure 6.2: Loss curves for source enumeration network.

After training source enumeration network, its performance is evaluated on test set

and source enumeration accuracy is compared with other methods for various SNR

levels and snapshot numbers as shown in Figures 6.3 and 6.4. It can be observed

that the proposed method achieves the highest accuracy especially for low SNR. For
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higher SNR regions, it shows comparable performance to MDL [72], Eigen Thresh-

old [76] and T-GANE [74] where the accuracy values fall in the interval of 1.2%.

Furthermore, the proposed method outperforms the others for all of the snapshot num-

bers.

Figure 6.3: The comparison of source enumeration accuracy for different SNR levels.

Figure 6.4: The comparison of source enumeration accuracy for different snapshot

numbers.
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Accuracy improvement achieved by the proposed method over the highest accuracy

levels among other methods is illustrated in Figures 6.5 and 6.6 for various SNR and

snapshot levels respectively. As it can be observed, the proposed method improves

accuracy for low SNR levels and the whole snapshot region. For high SNR regime, it

shows comparable performance to the best performing method.

Figure 6.5: Accuracy improvement by the proposed method for different SNR levels.

Figure 6.6: Accuracy improvement by the proposed method for different snapshot

numbers.

Confusion matrices which indicate the percentage for the actual and estimated num-
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ber of sources by the proposed method are given in Figure 6.7. For SNR of -20

dB, accuracy for any number of sources doesn’t exceed 60% while at least 96% is

achieved for SNR larger than -10 dB. A flooring effect is observed for SNR levels

higher than 10 dB which can also be seen in Figure 6.3. Similar observations can be

made for snapshot numbers as well. For snapshot number of 100, accuracy levels are

relatively low while it gets better as the snapshot number increases to some extent

after which flooring effect appears.

Figures 6.8 and 6.9 show Hausdorff distance values obtained by each method for

different SNR levels and snapshot numbers respectively. In these graphs, the perfor-

mance of the proposed method and MUSIC [22] for known number of sources are

also included. The proposed method leads to the lowest Hausdorff distance in case of

unknown number of sources for low SNR. MUSIC + MDL [72] achieves the lowest

Hausdorff distance in the high SNR region while MUSIC + T-GANE [74] and the

proposed method have the lowest distance values after it within the interval of 0.2. In

addition, it can be observed that the proposed method has lower Hausdorff distance

when the number of sources known compared to the case where source enumeration

network is used to estimate the number of sources. This is expected since prior in-

formation about the number of sources prevents estimated and true angle sets to have

different cardinalities which in turn decreases the possibility of higher distance cal-

culations. On the other hand, it can be seen that the proposed method with source

enumeration network yields lower distance values for some SNR levels compared to

MUSIC [22] with known number of sources. A similar observation can be made for

different snapshot values as well where the proposed method has higher performance

compared to both MUSIC [22] with known number of sources and other methods

with unknown number of sources.

The improvement provided by the proposed method in Hausdorff distance is shown

in Figures 6.10 and 6.11 for different SNR and snapshot levels. A significant decrease

in Hausdorff distance can be observed especially for low SNR and snapshot regions.

For large snapshot numbers, there is still improvement while similar performance to

the best performing method is achieved in high SNR levels.
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Figure 6.7: Confusion matrices of the proposed method for different SNR levels and

snapshot numbers.
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Figure 6.8: Hausdorff distance comparison for different SNR levels.
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Figure 6.9: Hausdorff distance comparison for different snapshot numbers.

Figure 6.10: Hausdorff distance improvement by the proposed method for different

SNR levels.
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Figure 6.11: Hausdorff distance improvement by the proposed method for different

snapshot numbers.
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CHAPTER 7

CONCLUSION

7.1 Conclusion

In this thesis, a transformer-based DOA estimation and source enumeration method

is proposed. It is developed with purpose of generalization and robustness in the

joint presence of sensor malfunctions and unknown number of sources. Sparse linear

arrays are the main array type that this method is proposed for due to their advantages

over ULA [4].

For evaluating the proposed method, three experiments are conducted for which the

scenarios are ordered from general to specific.

In the first experiment, performance of the proposed method is evaluated for different

types of sparse arrays such as minimum redundant array, nested array and coprime

array. A single array configuration is selected for each type and performance evalua-

tions and comparisons are made for them.

It is shown that covariance reconstruction network, which is the first stage of the pro-

posed method, is able to enhance the noisy covariance matrix for different SNR levels

and snapshot numbers. This observation is valid for all the mentioned sparse array

types. Another noteworthy aspect is that the enhancement level gets larger as SNR

level and snapshot number decreases. This indicates that covariance reconstruction

network can mitigate the distorting effects of high level of noise and small amount of

sampled data.

The proposed method, with the first two stages are activated, is compared with other

subspace-based, beamforming, sparsity-inducing and data-driven methods in terms
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of RMSE values obtained in DOA estimation task. It is observed that it achieves the

lowest RMSE for low SNR levels and small number of snapshots for all the speci-

fied sparse array types. This demonstrates the resilience of the proposed method into

the presence of noise and relatively small amount of data collected by array indepen-

dent of the sparse array type. For high SNR levels and large number of snapshots, it

doesn’t exhibit the best performance but provides a similar performance to the best

performing method by obtaining an RMSE value which is 0.03 ◦ larger than the low-

est achieved. In these experiments, the best performing methods are generally data-

driven methods and the proposed method outperforms conventional methods such

as MUSIC, Capon beamformer and L1-SVD. This demonstrates the effectiveness of

learning the nonlinear relationships in the sensor measurements over utilizing only

signal model for DOA estimation. The proposed method improves the performance

of data-driven methods especially in low SNR levels and snapshot numbers without

considerable performance loss in high SNR levels and snapshot numbers. In terms

of spatial spectrum generation, it generates higher peaks in the source direction com-

pared to conventional methods. A drawback of the proposed method is that other

data-driven methods can achieve higher peaks however, it should be noted that other

data-driven methods cannot be used in case of sensor malfunctions which limits their

applicability in practice. From the point of processing times, the proposed method

is the least demanding method among data-driven and hybrid methods and has the

lowest time after Capon Beamformer [27] and MUSIC [22] among all the compared

methods. Therefore, it provides performance improvement without too much compu-

tational burden.

In the second experiment, a sparse array configuration is selected and two scenarios

are employed for performance evaluation and comparison. The first scenario consists

of intact array while in the second one, random sensor malfunctions are introduced in

the array. In this experiment, data-driven methods that are employed in the first ex-

periment couldn’t be used because their input formulations are not suitable to handle

sensor malfunctions which lead to different sensor number/configurations.

As in the case of the first experiment, it is observed that covariance reconstruction

network is able to enhance the noisy covariance matrix in case of sensor malfunctions

as well. Mitigating effect is larger for low SNR levels and snapshot numbers.
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In terms of DOA estimation, the proposed network is compared with subspace-based,

beamforming, sparsity-inducing methods and other methods which are proposed specif-

ically for sensor malfunctions. In the first scenario, it has consistent performance and

achieves the best results for a range of SNR and snapshot values. For the second sce-

nario, it achieves lowest RMSE for all snapshot numbers and low SNR levels. SVT

+ MUSIC [79] and L1-SVD [37] have better performance for high SNR levels, how-

ever they are computationally much more demanding which makes them impractical.

When RMSE change between two scenarios are compared, the proposed method is

the most robust one against sensor malfunctions for most of the SNR and snapshot

levels while providing low error for both scenarios and having feasible processing

time. In terms of spatial spectrum, the proposed method have the highest peaks for

the source directions and these height of the peaks are not affected by sensor mal-

functions. This indicates that the spatial spectrum generated by the proposed method

is robust against sensor failures. Furthermore, it has the one of the lowest processing

times which shows its practicality.

In the third experiment, the same array configuration is used as in the second exper-

iment. There are sensor malfunctions which occur randomly in the array. Addition-

ally, the number of sources is unknown. Data-driven methods that are proposed in

the second experiment specifically for sensor malfunctions couldn’t be used in this

experiment since they cannot estimate the number of sources.

Source enumeration network, which composes the third stage of the proposed method,

is evaluated in terms of source number estimation accuracy. It is shown that the pro-

posed method shows the highest accuracy for low SNR levels and the whole snapshot

numbers. It doesn’t have the highest accuracy for high SNR but shows comparable

performance to the best performing method by having an accuracy 1.2% lower than

the highest achieved. Furthermore, it is observed that the error made by the proposed

method for the case of unknown number of sources is lower than that of MUSIC [22]

with known number of sources. This demonstrates the effectiveness of the proposed

method.

Overall, experiments indicate that the proposed method provides

• denoising effect in the covariance matrix through reconstruction network
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• lower error for low SNR and snapshot region

• similar error to the best performing method for high SNR and snapshot region

• more robust performance to sensor malfunctions which lead to array configu-

ration/size variations

• lower processing time compared to the most of the data-driven and hybrid tech-

niques

• higher source enumeration accuracy especially for low SNR and snapshot num-

bers

• similar source enumeration accuracy to the best performing method for high

SNR and snapshot region

7.2 Future Work

In this thesis, sensor malfunctions are inspected by limiting the scope into complete

failures in the known sensors. In practice, other classes of malfunction can also be

encountered. For instance, it is possible that a faulty sensor is not recognized by the

operator or system. For these kinds of situations, enriching the ability of the proposed

method by array diagnosis may increase its practical applicability. Array diagnosis

can be a part of covariance reconstruction network since reconstruction operation

includes detection of distortions in the data.

Another important research direction would be to reformulate the proposed method

such that it can function for sparse planar arrays as well. Planar arrays have a plenty of

application areas in practice and adapting the proposed method for these arrays may

increase its potential application fields. In such a problem, difference coarray would

be considered as 2-dimensional sequential data and separate transformer models can

be applied on each dimension.

The proposed method is constructed to have on-grid angle estimates. On-grid ap-

proach limits the performance of DOA estimation methods because of flooring effect

which is observed in Chapter 4 while comparing the results with a gridless method.
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An improvement to this study might be to develop an additional block over the output

layer of the proposed network such that it produces off-grid angle estimates. This

block can be based upon conventional or recent data-driven interpolation methods.

141



142



REFERENCES

[1] H. L. Van Trees, Optimum array processing: Part IV of detection, estimation,

and modulation theory. John Wiley & Sons, 2002.

[2] H. Krim and M. Viberg, “Two decades of array signal processing research:

the parametric approach,” IEEE Signal Processing Magazine, vol. 13, no. 4,

pp. 67–94, 1996.

[3] Z. Yang, X. Chen, and X. Wu, “A robust and statistically efficient maximum-

likelihood method for DOA estimation using sparse linear arrays,” IEEE Trans-

actions on Aerospace and Electronic Systems, vol. 59, no. 5, pp. 6798–6812,

2023.

[4] S. R. Pavel, M. W. T. Chowdhury, Y. D. Zhang, D. Shen, and G. Chen,

“Machine learning-based direction-of-arrival estimation exploiting distributed

sparse arrays,” in 2021 55th Asilomar Conference on Signals, Systems, and

Computers, pp. 241–245, IEEE, 2021.

[5] R. Chellappa and S. Theodoridis, “Academic press library in signal processing

volume 3: Array and statistical signal processing,” 2013.

[6] S. Ge, K. Li, and S. N. B. M. Rum, “Deep learning approach in DOA estima-

tion: A systematic literature review,” Mobile Information Systems, vol. 2021,

no. 1, p. 6392875, 2021.

[7] K. Hornik, M. Stinchcombe, and H. White, “Multilayer feedforward networks

are universal approximators,” Neural Networks, vol. 2, no. 5, pp. 359–366,

1989.

[8] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural Com-

putation, vol. 9, no. 8, pp. 1735–1780, 1997.

[9] Q. Pan, C. Mei, N. Tian, B. W.-K. Ling, and E. X. Wang, “Source enumeration

143



based on a uniform circular array in a determined case,” IEEE Transactions on

Vehicular Technology, vol. 68, no. 1, pp. 700–712, 2018.

[10] J. Rogers, J. E. Ball, and A. C. Gurbuz, “Estimating the number of sources via

deep learning,” in 2019 IEEE Radar Conference (RadarConf), pp. 1–5, IEEE,

2019.

[11] Y. Yang, F. Gao, C. Qian, and G. Liao, “Model-aided deep neural network for

source number detection,” IEEE Signal Processing Letters, vol. 27, pp. 91–95,

2019.

[12] G. C. Lee, A. S. Rawat, and G. W. Wornell, “Robust direction of arrival esti-

mation in the presence of array faults using snapshot diversity,” in 2019 IEEE

Global Conference on Signal and Information Processing (GlobalSIP), pp. 1–

5, IEEE, 2019.

[13] C.-L. Liu and P. P. Vaidyanathan, “Robustness of difference coarrays of sparse

arrays to sensor failures—part i: A theory motivated by coarray MUSIC,” IEEE

Transactions on Signal Processing, vol. 67, no. 12, pp. 3213–3226, 2019.

[14] A. V. Oppenheim, Discrete-time signal processing. Pearson Education India,

1999.

[15] S. Zhang, A. Ahmed, Y. D. Zhang, and S. Sun, “Enhanced DOA estimation

exploiting multi-frequency sparse array,” IEEE Transactions on Signal Pro-

cessing, vol. 69, pp. 5935–5946, 2021.

[16] D. H. Johnson, “Array signal processing,” Concepts and Techniques, 1993.

[17] A. Moffet, “Minimum-redundancy linear arrays,” IEEE Transactions on An-

tennas and Propagation, vol. 16, no. 2, pp. 172–175, 1968.

[18] E. Vertatschitsch and S. Haykin, “Nonredundant arrays,” Proceedings of the

IEEE, vol. 74, no. 1, pp. 217–217, 1986.

[19] P. Pal and P. P. Vaidyanathan, “Nested arrays: A novel approach to array pro-

cessing with enhanced degrees of freedom,” IEEE Transactions on Signal Pro-

cessing, vol. 58, no. 8, pp. 4167–4181, 2010.

144



[20] P. P. Vaidyanathan and P. Pal, “Sparse sensing with co-prime samplers and

arrays,” IEEE Transactions on Signal Processing, vol. 59, no. 2, pp. 573–586,

2010.

[21] T. E. Tuncer and B. Friedlander, Classical and modern direction-of-arrival

estimation. Academic Press, 2009.

[22] R. Schmidt, “Multiple emitter location and signal parameter estimation,” IEEE

Transactions on Antennas and Propagation, vol. 34, no. 3, pp. 276–280, 1986.

[23] C.-L. Liu and P. Vaidyanathan, “Super nested arrays: Linear sparse arrays with

reduced mutual coupling—part i: Fundamentals,” IEEE Transactions on Sig-

nal Processing, vol. 64, no. 15, pp. 3997–4012, 2016.

[24] J. Liu, Y. Zhang, Y. Lu, S. Ren, and S. Cao, “Augmented nested arrays with

enhanced DOF and reduced mutual coupling,” IEEE Transactions on Signal

Processing, vol. 65, no. 21, pp. 5549–5563, 2017.

[25] L. Wu, Z.-M. Liu, and Z.-T. Huang, “Deep convolution network for direction of

arrival estimation with sparse prior,” IEEE Signal Processing Letters, vol. 26,

no. 11, pp. 1688–1692, 2019.

[26] P.-J. Chung, M. Viberg, and J. Yu, “DOA estimation methods and algorithms,”

in Academic Press Library in Signal Processing, vol. 3, pp. 599–650, Elsevier,

2014.

[27] J. Capon, “High-resolution frequency-wavenumber spectrum analysis,” Pro-

ceedings of the IEEE, vol. 57, no. 8, pp. 1408–1418, 1969.

[28] G. K. Papageorgiou, M. Sellathurai, and Y. C. Eldar, “Deep networks for

direction-of-arrival estimation in low SNR,” IEEE Transactions on Signal Pro-

cessing, vol. 69, pp. 3714–3729, 2021.

[29] R. Roy and T. Kailath, “ESPRIT-estimation of signal parameters via rotational

invariance techniques,” IEEE Transactions on Acoustics, Speech, and Signal

Processing, vol. 37, no. 7, pp. 984–995, 1989.

[30] S. Reddi, “Multiple source location-a digital approach,” IEEE Transactions on

Aerospace and Electronic Systems, no. 1, pp. 95–105, 1979.

145



[31] S. Marcos, A. Marsal, and M. Benidir, “The propagator method for source

bearing estimation,” Signal Processing, vol. 42, no. 2, pp. 121–138, 1995.

[32] T. K. Sarkar and O. Pereira, “Using the matrix pencil method to estimate the

parameters of a sum of complex exponentials,” IEEE Antennas and Propaga-

tion Magazine, vol. 37, no. 1, pp. 48–55, 1995.

[33] A. Barabell, “Improving the resolution performance of eigenstructure-based

direction-finding algorithms,” in ICASSP’83. IEEE International Conference

on Acoustics, Speech, and Signal Processing, vol. 8, pp. 336–339, IEEE, 1983.

[34] D. L. Donoho, “Compressed sensing,” IEEE Transactions on Information The-

ory, vol. 52, no. 4, pp. 1289–1306, 2006.

[35] R. Zheng, S. Sun, H. Liu, H. Chen, M. Soltanalian, and J. Li, “Antenna failure

resilience: Deep learning-enabled robust DOA estimation with single snapshot

sparse arrays,” arXiv preprint arXiv:2405.02788, 2024.

[36] D. L. Donoho and M. Elad, “Optimally sparse representation in general

(nonorthogonal) dictionaries via 1 minimization,” Proceedings of the National

Academy of Sciences, vol. 100, no. 5, pp. 2197–2202, 2003.

[37] D. Malioutov, M. Cetin, and A. S. Willsky, “A sparse signal reconstruction

perspective for source localization with sensor arrays,” IEEE Transactions on

Signal Processing, vol. 53, no. 8, pp. 3010–3022, 2005.

[38] Z. Yang, J. Li, P. Stoica, and L. Xie, “Sparse methods for direction-of-

arrival estimation,” in Academic Press Library in Signal Processing, Volume

7, pp. 509–581, Elsevier, 2018.

[39] S. F. Cotter, B. D. Rao, K. Engan, and K. Kreutz-Delgado, “Sparse solutions

to linear inverse problems with multiple measurement vectors,” IEEE Transac-

tions on Signal Processing, vol. 53, no. 7, pp. 2477–2488, 2005.

[40] R. Tibshirani, “Regression shrinkage and selection via the lasso,” Journal of

the Royal Statistical Society Series B: Statistical Methodology, vol. 58, no. 1,

pp. 267–288, 1996.

146



[41] Z. Zhang and B. D. Rao, “Sparse signal recovery with temporally correlated

source vectors using sparse Bayesian learning,” IEEE Journal of Selected Top-

ics in Signal Processing, vol. 5, no. 5, pp. 912–926, 2011.

[42] G. Tang, B. N. Bhaskar, P. Shah, and B. Recht, “Compressed sensing off the

grid,” IEEE Transactions on Information Theory, vol. 59, no. 11, pp. 7465–

7490, 2013.

[43] B. Allen and M. Ghavami, Adaptive array systems: fundamentals and appli-

cations. John Wiley & Sons, 2005.

[44] P. Chen, Z. Chen, L. Liu, Y. Chen, and X. Wang, “SDOA-net: An efficient deep

learning-based DOA estimation network for imperfect array,” IEEE Transac-

tions on Instrumentation and Measurement, 2024.

[45] D. Chen, S. Shi, X. Gu, and B. Shim, “Robust DOA estimation using denoising

autoencoder and deep neural networks,” IEEE Access, vol. 10, pp. 52551–

52564, 2022.

[46] G. K. Papageorgiou and M. Sellathurai, “Fast direction-of-arrival estimation of

multiple targets using deep learning and sparse arrays,” in ICASSP 2020-2020

IEEE International Conference on Acoustics, Speech and Signal Processing

(ICASSP), pp. 4632–4636, IEEE, 2020.

[47] S. Feintuch, J. Tabrikian, I. Bilik, and H. Permuter, “Neural-network-based

DOA estimation in the presence of non-gaussian interference,” IEEE Transac-

tions on Aerospace and Electronic Systems, vol. 60, no. 1, pp. 119–132, 2023.

[48] H. Xiang, B. Chen, M. Yang, S. Xu, and Z. Li, “Improved direction-of-arrival

estimation method based on LSTM neural networks with robustness to array

imperfections,” Applied Intelligence, vol. 51, pp. 4420–4433, 2021.

[49] Y. Yang, M. Zhang, S. Peng, M. Ye, and Y. Zhang, “Direction-of-arrival es-

timation for a random sparse linear array based on a graph neural network,”

Sensors, vol. 24, no. 1, p. 91, 2023.

[50] D. H. Shmuel, J. P. Merkofer, G. Revach, R. J. Van Sloun, and N. Shlezinger,

“Deep root MUSIC algorithm for data-driven DOA estimation,” in ICASSP

147



2023-2023 IEEE International Conference on Acoustics, Speech and Signal

Processing (ICASSP), pp. 1–5, IEEE, 2023.

[51] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,

Ł. Kaiser, and I. Polosukhin, “Attention is all you need,” Advances in Neu-

ral Information Processing Systems, vol. 30, 2017.

[52] A. Randazzo, M. A. Abou-Khousa, M. Pastorino, and R. Zoughi, “Direction

of arrival estimation based on support vector regression: Experimental valida-

tion and comparison with MUSIC,” IEEE Antennas and Wireless Propagation

Letters, vol. 6, pp. 379–382, 2007.

[53] M. Dehghanpour, V. T. Vakili, and A. Farrokhi, “DOA estimation using mul-

tiple kernel learning SVM considering mutual coupling,” in 2012 Fourth In-

ternational Conference on Intelligent Networking and Collaborative Systems,

pp. 55–61, IEEE, 2012.

[54] R. Wang, B. Wen, and W. Huang, “A support vector regression-based method

for target direction of arrival estimation from HF radar data,” IEEE Geoscience

and Remote Sensing Letters, vol. 15, no. 5, pp. 674–678, 2018.

[55] A. M. Elbir, “DeepMUSIC: Multiple signal classification via deep learning,”

IEEE Sensors Letters, vol. 4, no. 4, pp. 1–4, 2020.

[56] R. Akter, V.-S. Doan, T. Huynh-The, and D.-S. Kim, “RFDOA-net: An ef-

ficient convnet for RF-based DOA estimation in UAV surveillance systems,”

IEEE Transactions on Vehicular Technology, vol. 70, no. 11, pp. 12209–12214,

2021.

[57] Y. Yuan, S. Wu, M. Wu, and N. Yuan, “Unsupervised learning strategy

for direction-of-arrival estimation network,” IEEE Signal Processing Letters,

vol. 28, pp. 1450–1454, 2021.

[58] J. Yu and Y. Wang, “Deep learning-based multipath DOAs estimation method

for mmwave massive mimo systems in low SNR,” IEEE Transactions on Ve-

hicular Technology, vol. 72, no. 6, pp. 7480–7490, 2023.

148



[59] K. Liu, X. Wang, J. Yu, and J. Ma, “Attention based DOA estimation in

the presence of unknown nonuniform noise,” Applied Acoustics, vol. 211,

p. 109506, 2023.

[60] M. Chen, Y. Gong, and X. Mao, “Deep neural network for estimation of direc-

tion of arrival with antenna array,” IEEE Access, vol. 8, pp. 140688–140698,

2020.

[61] Z.-M. Liu, C. Zhang, and S. Y. Philip, “Direction-of-arrival estimation based

on deep neural networks with robustness to array imperfections,” IEEE Trans-

actions on Antennas and Propagation, vol. 66, no. 12, pp. 7315–7327, 2018.

[62] Y. Guo, Z. Zhang, and Y. Huang, “Dual class token vision transformer for

direction of arrival estimation in low SNR,” IEEE Signal Processing Letters,

2023.

[63] W. Wang, L. Zhou, K. Ye, H. Sun, and S. Hong, “A DOA estimation method

based on an improved transformer model for uniform linear arrays with low

SNR,” IET Signal Processing, vol. 2024, no. 1, p. 6666395, 2024.

[64] X. Lan, H. Zhai, and Y. Wang, “A novel DOA estimation of closely spaced

sources using attention mechanism with conformal arrays,” IEEE Access,

vol. 11, pp. 44010–44018, 2023.

[65] A. Barthelme and W. Utschick, “DOA estimation using neural network-based

covariance matrix reconstruction,” IEEE Signal Processing Letters, vol. 28,

pp. 783–787, 2021.

[66] X. Wu, X. Yang, X. Jia, and F. Tian, “A gridless DOA estimation method based

on convolutional neural network with Toeplitz prior,” IEEE Signal Processing

Letters, vol. 29, pp. 1247–1251, 2022.

[67] J. P. Merkofer, G. Revach, N. Shlezinger, T. Routtenberg, and R. J. Van Sloun,

“DA-MUSIC: Data-driven DOA estimation via deep augmented MUSIC algo-

rithm,” IEEE Transactions on Vehicular Technology, 2023.

[68] J. Ji, W. Mao, F. Xi, and S. Chen, “TransMUSIC: A transformer-aided sub-

space method for DOA estimation with low-resolution adcs,” in ICASSP 2024-

149



2024 IEEE International Conference on Acoustics, Speech and Signal Process-

ing (ICASSP), pp. 8576–8580, IEEE, 2024.

[69] M. Wax and T. Kailath, “Detection of signals by information theoretic criteria,”

IEEE Transactions on Acoustics, Speech, and Signal Processing, vol. 33, no. 2,

pp. 387–392, 1985.

[70] F. Izedi, M. Karimi, and M. Derakhtian, “Joint DOA estimation and source

number detection for arrays with arbitrary geometry,” Signal Processing,

vol. 140, pp. 149–160, 2017.

[71] H. Akaike, “A new look at the statistical model identification,” IEEE Transac-

tions on Automatic Control, vol. 19, no. 6, pp. 716–723, 1974.

[72] M. Wax and I. Ziskind, “Detection of the number of coherent signals by the

MDL principle,” IEEE Transactions on Acoustics, Speech, and Signal Pro-

cessing, vol. 37, no. 8, pp. 1190–1196, 1989.

[73] G. Schwarz, “Estimating the dimension of a model,” The Annals of Statistics,

pp. 461–464, 1978.

[74] Y. Lee, C. Park, T. Kim, Y. Choi, K. Kim, D. Kim, M.-S. Lee, and D. Lee,

“Source enumeration approaches using eigenvalue gaps and machine learning

based threshold for direction-of-arrival estimation,” Applied Sciences, vol. 11,

no. 4, p. 1942, 2021.

[75] Z. He, A. Cichocki, S. Xie, and K. Choi, “Detecting the number of clusters

in n-way probabilistic clustering,” IEEE Transactions on Pattern Analysis and

Machine Intelligence, vol. 32, no. 11, pp. 2006–2021, 2010.

[76] W. Chen, K. M. Wong, and J. P. Reilly, “Detection of the number of signals: A

predicted eigen-threshold approach,” IEEE Transactions on Signal Processing,

vol. 39, no. 5, pp. 1088–1098, 1991.

[77] O. Hu, F. Zheng, and M. Faulkner, “Detecting the number of signals using an-

tenna array: a single threshold solution,” in ISSPA’99. Proceedings of the Fifth

International Symposium on Signal Processing and its Applications (IEEE Cat.

No. 99EX359), vol. 2, pp. 905–908, IEEE, 1999.

150



[78] W. Yun, L. Xiukun, C. Zhimin, H. Jian, M. Haiwei, and W. Zhentao, “Joint

signal-to-noise ratio and source number estimation based on hierarchical arti-

ficial intelligence units,” Measurement Science and Technology, vol. 29, no. 9,

p. 095104, 2018.

[79] B. Sun, C. Wu, and H. Ruan, “Array diagnosis and DOA estimation for coprime

array under sensor failures,” Sensors, vol. 20, no. 9, p. 2735, 2020.

[80] B. Sun, C. Wu, J. Shi, H.-L. Ruan, and W.-Q. Ye, “Direction-of-arrival estima-

tion under array sensor failures with ULA,” IEEE Access, vol. 8, pp. 26445–

26456, 2019.

[81] A. Setayesh, E. Yazdian, and M. Malek-Mohammadi, “Direction of arrival

estimation with missing data via matrix completion,” Signal, Image and Video

Processing, vol. 13, no. 7, pp. 1451–1459, 2019.

[82] B. Jalal, O. Elnahas, and Z. Quan, “Efficient DOA estimation under partially

impaired antenna array elements,” IEEE Transactions on Vehicular Technol-

ogy, vol. 71, no. 7, pp. 7991–7996, 2022.

[83] C. Zhu, W.-Q. Wang, H. Chen, and H. C. So, “Impaired sensor diagnosis,

beamforming, and DOA estimation with difference co-array processing,” IEEE

Sensors Journal, vol. 15, no. 7, pp. 3773–3780, 2015.

[84] T. Yerriswamy and S. Jagadeesha, “Fault tolerant matrix pencil method for

direction of arrival estimation,” arXiv preprint arXiv:1110.1627, 2011.

[85] J. Chen, C. Zhang, S. Fu, and J. Li, “Robust reweighted 2, 1-norm based

approach for DOA estimation in mimo radar under array sensor failures,” IEEE

Sensors Journal, vol. 21, no. 24, pp. 27858–27867, 2021.

[86] U. Hamid, S. Wyne, and N. R. Butt, “Joint model-order and robust DOA esti-

mation for underwater sensor arrays,” Sensors, vol. 23, no. 12, p. 5731, 2023.

[87] S. Vigneshwaran, N. Sundararajan, and P. Saratchandran, “Direction of ar-

rival (DOA) estimation under array sensor failures using a minimal resource

allocation neural network,” IEEE Transactions on Antennas and Propagation,

vol. 55, no. 2, pp. 334–343, 2007.

151



[88] A. M. Ahmed, U. S. M. Thanthrige, A. Sezgin, and F. Gini, “Resilient sparse

array radar with the aid of deep learning,” in 2023 IEEE 97th Vehicular Tech-

nology Conference (VTC2023-Spring), pp. 1–5, IEEE, 2023.

[89] C. He, H. Zheng, B. Li, C. Zhou, and Z. Shi, “DOA estimation via meta-

learning under array sensor failures,” in 2023 IEEE International Radar Con-

ference (RADAR), pp. 1–5, IEEE, 2023.

[90] M. Wang, Z. Zhang, and A. Nehorai, “Direction finding using sparse linear ar-

rays with missing data,” in 2017 IEEE International Conference on Acoustics,

Speech and Signal Processing (ICASSP), pp. 3066–3070, IEEE, 2017.

[91] E. G. Larsson and P. Stoica, “High-resolution direction finding: the missing

data case,” IEEE Transactions on Signal Processing, vol. 49, no. 5, pp. 950–

958, 2001.

[92] S. Kamyab, Z. Azimifar, R. Sabzi, and P. Fieguth, “Deep learning methods for

inverse problems,” PeerJ Computer Science, vol. 8, p. e951, 2022.

[93] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. MIT Press, 2016.

http://www.deeplearningbook.org.

[94] J. Gehring, M. Auli, D. Grangier, D. Yarats, and Y. N. Dauphin, “Convolu-

tional sequence to sequence learning,” in International Conference on Machine

Learning, pp. 1243–1252, PMLR, 2017.

[95] D. Bahdanau, K. Cho, and Y. Bengio, “Neural machine translation by jointly

learning to align and translate,” arXiv preprint arXiv:1409.0473, 2014.

[96] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recog-

nition,” in Proceedings of the IEEE Conference on Computer Vision and Pat-

tern Recognition, pp. 770–778, 2016.

[97] S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep network

training by reducing internal covariate shift,” in International Conference on

Machine Learning, pp. 448–456, pmlr, 2015.

[98] J. L. Ba, J. R. Kiros, and G. E. Hinton, “Layer normalization,” arXiv preprint

arXiv:1607.06450, 2016.

152

http://www.deeplearningbook.org


[99] V. Nair and G. E. Hinton, “Rectified linear units improve restricted Boltzmann

machines,” in Proceedings of the 27th International Conference on Machine

Learning (ICML-10), pp. 807–814, 2010.

[100] D.-A. Clevert, T. Unterthiner, and S. Hochreiter, “Fast and accurate

deep network learning by exponential linear units (elus),” arXiv preprint

arXiv:1511.07289, 2015.

[101] C. Nwankpa, W. Ijomah, A. Gachagan, and S. Marshall, “Activation func-

tions: Comparison of trends in practice and research for deep learning,” arXiv

preprint arXiv:1811.03378, 2018.

[102] R. Parhi and R. D. Nowak, “The role of neural network activation functions,”

IEEE Signal Processing Letters, vol. 27, pp. 1779–1783, 2020.

[103] X. Glorot, A. Bordes, and Y. Bengio, “Deep sparse rectifier neural networks,”

in Proceedings of the Fourteenth International Conference on Artificial Intelli-

gence and Statistics, pp. 315–323, JMLR Workshop and Conference Proceed-

ings, 2011.

[104] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” Nature, vol. 521,

no. 7553, pp. 436–444, 2015.

[105] A. L. Maas, A. Y. Hannun, A. Y. Ng, et al., “Rectifier nonlinearities improve

neural network acoustic models,” in Proc. ICML, vol. 30, p. 3, Atlanta, GA,

2013.

[106] A. Shrestha and A. Mahmood, “Review of deep learning algorithms and archi-

tectures,” IEEE Access, vol. 7, pp. 53040–53065, 2019.

[107] R. S. Sutton and A. G. Barto, Reinforcement learning: An introduction. MIT

Press, 2018.

[108] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning representations

by back-propagating errors,” Nature, vol. 323, no. 6088, pp. 533–536, 1986.

[109] J. Duchi, E. Hazan, and Y. Singer, “Adaptive subgradient methods for online

learning and stochastic optimization.,” Journal of Machine Learning Research,

vol. 12, no. 7, 2011.

153



[110] G. Hinton, N. Srivastava, and K. Swersky, “Neural networks for machine learn-

ing,” Coursera, video lectures, vol. 264, no. 1, pp. 2146–2153, 2012.

[111] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,” arXiv

preprint arXiv:1412.6980, 2014.

[112] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov,

“Dropout: a simple way to prevent neural networks from overfitting,” The Jour-

nal of Machine Learning Research, vol. 15, no. 1, pp. 1929–1958, 2014.

[113] A. E. Hoerl and R. W. Kennard, “Ridge regression: Biased estimation for

nonorthogonal problems,” Technometrics, vol. 12, no. 1, pp. 55–67, 1970.

154



APPENDICES

A Network Input Visualizations

For visualizing the patterns in the covariance coarray ĉ, Algorithm 1 is applied on

true covariance matrices generated from the received signals of a uniform linear array

with 64 sensors. Sine and cosine of the phase component and real and imaginary com-

ponents of the covariance coarray for different DOA angles are illustrated in Figures

A.1, A.2, A.3 and A.4 respectively.
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Figure A.1: Sine of the phase component of covariance coarray.
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Figure A.2: Cosine of the phase component of covariance coarray.
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Figure A.3: Real component of covariance coarray.
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Figure A.4: Imaginary component of covariance coarray.
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B Error Illustrations of Each Method for Minimum Redundant Array

Randomly 200 samples are selected from test sets which contain different SNR lev-

els and snapshot numbers. The errors made by each method for these samples are

illustrated in Figures B.1, B.2, B.3 and B.4.
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Figure B.1: Errors made by each method for different SNR levels.
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Figure B.2: Errors made by each method for different SNR levels (cont’d).
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Figure B.3: Errors made by each method for different snapshot numbers.
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Figure B.4: Errors made by each method for different snapshot numbers (cont’d).
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C Error Illustrations of Each Method for Nested Array

For different SNR levels and snapshot number, 200 samples are selected from test

sets randomly. The error values for these samples are given in Figures C.1, C.2, C.3

and C.4.
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Figure C.1: Errors made by each method for different SNR levels.
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Figure C.2: Errors made by each method for different SNR levels (cont’d).
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Figure C.3: Errors made by each method for different snapshot numbers.
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Figure C.4: Errors made by each method for different snapshot numbers (cont’d).
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D Error Illustrations of Each Method for Coprime Array

Figure D.1, D.2, D.3 and D.4 show the errors of randomly selected 200 samples from

test sets for different SNR levels and snapshot numbers respectively.
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Figure D.1: Errors made by each method for different SNR levels.
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Figure D.2: Errors made by each method for different SNR levels (cont’d).
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Figure D.3: Errors made by each method for different snapshot numbers.
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Figure D.4: Errors made by each method for different snapshot numbers (cont’d).
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E Error Illustrations of Each Method for Intact Array

For randomly selected 200 samples from test set, the errors illustrated in Figures E.1,

E.2, E.3 and E.4 are obtained.
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Figure E.1: Errors made by each method for different SNR levels.
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Figure E.2: Errors made by each method for different SNR levels (cont’d).
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Figure E.3: Errors made by each method for different snapshot numbers.
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Figure E.4: Errors made by each method for different snapshot numbers (cont’d).
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F Error Illustrations of Each Method for Faulty Array

Figures F.1, F.2, F.3 and F.4 illustrate the errors for randomly selected 200 samples

from test set.

180



Figure F.1: Errors made by each method for different SNR levels.
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Figure F.2: Errors made by each method for different SNR levels (cont’d).
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Figure F.3: Errors made by each method for different snapshot numbers.
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Figure F.4: Errors made by each method for different snapshot numbers (cont’d).
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