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ABSTRACT

INVESTIGATION AND ANALYSIS OF STATISTICAL ATTENTION
MECHANISMS IN CLICK-THROUGH-RATE PREDICTION: THE IMPACT

OF LAYER NORMALIZATION AND INTERACTION COMPONENT
INTEGRATION

Büyükbaş, Ege Berk

M.S., Department of Computer Engineering

Supervisor: Prof. Dr. Pınar Karagöz

Co-Supervisor: Prof. Dr. Cem İyigün

September 2024, 76 pages

The accurate prediction of Click-Through Rate (CTR) is a key metric for enhancing

user experience and optimizing revenue in online shopping and e-commerce busi-

nesses. This study explores the suitability of various statistical attention mecha-

nisms—mean attention, max attention, mean-max, mean-std attention, and bitwise

attention—under different hyper-parameter candidate sets within the most common

and conventional CTR prediction algorithms. By conducting extensive experiments

across the most commonly used open-source datasets for CTR prediction, this em-

pirical study examines whether these attention mechanisms can effectively boost the

informational utility of each field’s low-dimensional feature embedding, potentially

leading to improved prediction accuracy.

Our findings show that each attention mechanism behaves uniquely across different

algorithms and datasets. The application of these attention mechanisms to traditional

CTR prediction models may demonstrate significant improvements in prediction per-
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formance by implicitly focusing on relevant features and their interactions. This re-

search aims to contribute to the field of CTR prediction by providing a comprehensive

analysis of how different attention mechanisms can enhance the predictive ability of

well-known conventional CTR prediction algorithms and offer insights for the future

development of more sophisticated and accurate CTR prediction systems.

Keywords: Click-Through Rate (CTR), Statistical Attention Mechanisms, Interaction

Component, Deep Learning, Feature Embedding
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ÖZ

TIKLAMA ORANI TAHMİNİNDE İSTATİSTİKSEL DİKKAT
MEKANİZMALARININ İNCELENMESİ VE ANALİZİ: KATMAN

NORMALLEŞTİRMENİN VE ETKİLEŞİM BİLEŞENİ
ENTEGRASYONUNUN ETKİSİ

Büyükbaş, Ege Berk

Yüksek Lisans, Bilgisayar Mühendisliği Bölümü

Tez Yöneticisi: Prof. Dr. Pınar Karagöz

Ortak Tez Yöneticisi: Prof. Dr. Cem İyigün

Eylül 2024 , 76 sayfa

Tıklama Oranı (CTR) tahmininin doğru yapılması, çevrimiçi alışveriş ve e-ticaret iş-

letmelerinde kullanıcı deneyimini artırmak ve gelirleri optimize etmek için önemli

bir ölçüttür. Bu çalışma, en yaygın ve geleneksel CTR tahmin algoritmalarında farklı

hiper-parametre aday setleri altında çeşitli istatistiksel dikkat mekanizmalarının (at-

tention mechanisms)—ortalama dikkat (mean attention), maksimum dikkat (max at-

tention), ortalama-maksimum (mean-max attention), ortalama-standart sapma dikkat

(mean-std attention) ve bitwise dikkat (bitwise attention)—uygunluğunu araştırmak-

tadır. CTR tahmini için en yaygın kullanılan açık kaynaklı veri kümeleri üzerinde

kapsamlı deneyler yaparak, bu dikkat mekanizmalarının her alanın düşük boyutlu

özellik gömme işleminin bilgi faydasını etkili bir şekilde artırıp artırmadığını ve bu-

nun da tahmin doğruluğunu iyileştirmeye yol açıp açmayacağını inceleyen ampirik

bir çalışmadır.

Bulgularımız, her bir dikkat mekanizmasının farklı algoritmalar ve veri kümeleri üze-
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rinde benzersiz davrandığını göstermektedir. Bu dikkat mekanizmalarının geleneksel

CTR tahmin modellerine uygulanması, ilgili özelliklere ve bunların etkileşimlerine

dolaylı olarak odaklanarak tahmin performansında önemli iyileştirmeler gösterebilir.

Bu araştırma, çeşitli dikkat mekanizmalarının tanınmış geleneksel CTR tahmin algo-

ritmalarının tahmin yeteneğini nasıl artırabileceğini kapsamlı bir şekilde analiz ede-

rek CTR tahmini alanına katkıda bulunmayı ve daha sofistike ve doğru CTR tahmin

sistemlerinin gelecekteki geliştirilmesine yönelik içgörüler sunmayı amaçlamaktadır.

Anahtar Kelimeler: Tıklama Oranı, İstatistiksel Dikkat Mekanizmaları, Etkileşim Bi-

leşeni, Derin Öğrenme, Özellik Gömme
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Prof. Dr. Cem İyigün for their guidance, encouragement and criticisms.

I would like to thank my colleagues at Trendyol for always pushing me to be better.

I would like to thank to my fiancee Cansu Arslan for bringing joy to my life and

always supporting me.

Lastly, I would like to thank my family. I could not have achieved this degree without

their support and the love they gave me.

x



TABLE OF CONTENTS

ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

ÖZ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

ACKNOWLEDGMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x

TABLE OF CONTENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiv

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xvi

LIST OF ABBREVIATIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . xviii

CHAPTERS

1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Problem Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Contributions and Novelties . . . . . . . . . . . . . . . . . . . . . . 3

1.3 The Outline of the Thesis . . . . . . . . . . . . . . . . . . . . . . . . 4

2 LITERATURE REVIEW . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1 Click-Through Rate Prediction . . . . . . . . . . . . . . . . . . . . . 5

2.1.1 Early Linear Models . . . . . . . . . . . . . . . . . . . . . . . 5

2.1.2 Low Order Interaction Models . . . . . . . . . . . . . . . . . 6

2.1.3 Transition to High Order Interactions . . . . . . . . . . . . . . 6

2.2 Attention Networks in CTR Prediction . . . . . . . . . . . . . . . . . 9

xi



3 PRELIMINARIES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.1 Feature Embedding . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.2 Base Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.2.1 DNN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.2.2 DeepFM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.2.3 DCN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.3 Comparison of Base Models . . . . . . . . . . . . . . . . . . . . . . 20

3.4 Squeeze and Excitation Networks . . . . . . . . . . . . . . . . . . . 22

3.4.1 Squeeze . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.4.2 Excitation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.4.3 Re-weight . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

4 STUDIED ANALYSIS APPROACH . . . . . . . . . . . . . . . . . . . . . 27

4.1 Studied Attention Mechanisms . . . . . . . . . . . . . . . . . . . . . 27

4.1.1 Mean Attention . . . . . . . . . . . . . . . . . . . . . . . . . 29

4.1.2 Max Attention . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4.1.3 Mean-Max Concatenation Attention . . . . . . . . . . . . . . 30

4.1.4 Mean-Max Summation Attention . . . . . . . . . . . . . . . . 30

4.1.5 Mean-Std Concatenation Attention . . . . . . . . . . . . . . . 31

4.1.6 Mean-Std Summation Attention . . . . . . . . . . . . . . . . 32

4.1.7 Bitwise Attention . . . . . . . . . . . . . . . . . . . . . . . . 32

4.2 Studied Architectural Designs . . . . . . . . . . . . . . . . . . . . . 34

4.2.1 Layer Normalization . . . . . . . . . . . . . . . . . . . . . . 34

4.2.2 No Feeding on Interaction Component . . . . . . . . . . . . . 35

xii



4.2.3 Experimental Choices for Architectural Desing . . . . . . . . 35

5 EXPERIMENTAL RESULTS . . . . . . . . . . . . . . . . . . . . . . . . . 39

5.1 Experiment Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

5.1.1 Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

5.1.2 Evaluation Metric . . . . . . . . . . . . . . . . . . . . . . . . 40

5.1.3 Architecture Comparison . . . . . . . . . . . . . . . . . . . . 41

5.1.4 Implementation Details . . . . . . . . . . . . . . . . . . . . . 42

5.2 Results and Discussions . . . . . . . . . . . . . . . . . . . . . . . . 43

5.2.1 Performances of Attention Mechanisms On Conventional Mod-
els (RQ1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

5.2.2 Comparison of Attention Mechanisms (RQ2) . . . . . . . . . 48

5.2.3 Impact of Layer Normalization on Attention-Based Models
(RQ3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

5.2.4 Impact of Not Feeding Attention Mechanisms Outputs on In-
teraction Component (RQ4) . . . . . . . . . . . . . . . . . . . 59

5.2.5 Key Findings . . . . . . . . . . . . . . . . . . . . . . . . . . 63

6 CONCLUSION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

APPENDICES

A ATTENTION MECHANISM EXPERIMENTS . . . . . . . . . . . . . . . 75

xiii



LIST OF TABLES

TABLES

Table 2.1 Evolution of CTR Prediction Models and their Key Contributions.

SE-based means SENet-wise Attention Mechanism is applied. . . . . . . . 12

Table 5.1 Summary Statistics of Datasets . . . . . . . . . . . . . . . . . . . . 40

Table 5.2 Best performer attention mechanisms for each dataset and model

pair. LN refers to Layer Normalization and ICF refers to Interaction Com-

ponent Feeding. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

Table 5.3 Comparison of Different Attention Mechanisms Based on Median

Percentage Change, Wilcoxon p-value, and Sign Test p-value . . . . . . . 46

Table 5.4 Comparison of Different Attention Mechanisms Based on Median

Percentage Change, Wilcoxon p-value, and Sign Test p-value on across

datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

Table 5.5 Impact of Layer Norm across different datasets . . . . . . . . . . . 56

Table 5.6 Layer Norm effects for Median Changes on across Datasets . . . . . 57

Table 5.7 Impact of Layer Norm across different Datasets and Base Models . . 58

Table 5.8 Impact of Layer Norm across Attention Mechanisms. LNPI refers

to Layer Normalization Positive Impact . . . . . . . . . . . . . . . . . . . 59

Table 5.9 Impact of Not Feeding Attention Mechanisms Outputs on Inter-

action Component across different datasets. ICFPI refers to Interaction

Component Feeding Positive Impact . . . . . . . . . . . . . . . . . . . . 60

xiv



Table 5.10 Not Feeding Attention Mechanisms Outputs on Interaction Compo-

nent effects for Median Changes on across Datasets . . . . . . . . . . . . 61

Table 5.11 Impact of Not Feeding Updated Features with Attention Mecha-

nisms on Interaction Component across different Datasets and Base Mod-

els. ICFPI refers to Interaction Component Feeding Positive Impact . . . . 62

Table 5.12 Impact of Not Feeding Updated Features with Attention Mecha-

nisms on Interaction Component across Attention Mechanisms. ICFPI

refers to Interaction Component Feeding Positive Impact . . . . . . . . . . 63

Table A.1 Experiment vs Base Values for Option 1 Settings . . . . . . . . . . 75

Table A.2 Table 1 (continued) . . . . . . . . . . . . . . . . . . . . . . . . . . 76

xv



LIST OF FIGURES

FIGURES

Figure 3.1 An example transformation from field vectors to feature em-

beddings is shown, where the embedding dimension is set to 5 in this

example. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

Figure 3.2 Example architecture of DNN model . . . . . . . . . . . . . . . 15

Figure 3.3 Overall architecture of FM model . . . . . . . . . . . . . . . . . 17

Figure 3.4 Overall architecture of DCN model . . . . . . . . . . . . . . . . 19

Figure 3.5 Visualization of a cross layer formulation for layer l + 1 . . . . 20

Figure 3.6 Generalized architectures of base models . . . . . . . . . . . . . 21

Figure 3.7 Overall architecture of SENet layer . . . . . . . . . . . . . . . . 23

Figure 4.1 Overall structures of experimentation settings . . . . . . . . . . 37

Figure 5.1 Overall Conover posthoc test sign plot of attention mechanisms . 49

Figure 5.2 Overall Conover posthoc test Critical Difference diagram of at-

tention mechanisms . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

Figure 5.3 Conover posthoc test sign plot of attention mechanisms for Avazu

Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

Figure 5.4 Conover posthoc test Critical Difference diagram of attention

mechanisms for Avazu Dataset . . . . . . . . . . . . . . . . . . . . . . 51

xvi



Figure 5.5 Conover posthoc test sign plot of attention mechanisms for Criteo

Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

Figure 5.6 Conover posthoc test Critical Difference diagram of attention

mechanisms for Criteo Dataset . . . . . . . . . . . . . . . . . . . . . . 52

Figure 5.7 Conover posthoc test sign plot of attention mechanisms for Frappe

Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

Figure 5.8 Conover posthoc test Critical Difference diagram of attention

mechanisms for Frappe Dataset . . . . . . . . . . . . . . . . . . . . . . 53

Figure 5.9 Conover posthoc test sign plot of attention mechanisms for Movie-

Lens Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

Figure 5.10 Conover posthoc test Critical Difference diagram of attention

mechanisms for MovieLens Dataset . . . . . . . . . . . . . . . . . . . 55

Figure 5.11 Radar Chart of Attention Mechanisms across the Datasets . . . . 65

Figure 5.12 Data Matrix of Attention Mechanisms across the Datasets . . . . 66

xvii



LIST OF ABBREVIATIONS

ABBREVIATIONS

DNN Deep Neural Network

MLP Multi Layer Perceptron

CTR Click-Through Rate

LR Logistic Regression

FM Factorization Machines

DCN Deep & Cross Network

CIN Compressed Interaction Network

SENET Squeeze and Excitation Network

NFM Neural Factorization Machines

AFM Attentional Factorization Machines

DIN Deep Interest Network

DSIN Deep Session Interest Network

FFM Field-aware Factorization Machines

MMBAttn Mean-Max and Bitwise Attention Network

RNN Recurrent Neural Networks

xviii



CHAPTER 1

INTRODUCTION

The accurate prediction of Click-Through Rate (CTR) is one of the most important

objectives in the fast-paced environment of online shopping and e-commerce. CTR

serves as a critical metric for enhancing user experience and optimizing revenue, mak-

ing it a key objective for businesses aiming to maximize their online engagement and

profitability. Although there have been significant advances in CTR prediction algo-

rithms, there remains substantial potential for improvement and analysis, particularly

through the application of sophisticated attention mechanisms.

A minor uplift in CTR prediction can lead to significant improvements in the revenue

for the industry [1, 2, 3, 4]. Accurate CTR prediction not only helps to increase the

personalized user experience but also increases revenue in the e-commerce advertise-

ments [5]. As a result, online shopping and e-commerce businesses heavily invest in

implementing advanced models and algorithms to achieve more accurate CTR pre-

dictions, as even small gains can lead to significant financial impacts. In addition to

financial concerns, in the literature, from the simplest models (e.g. Logistic Regres-

sion) to the current state-of-the-art (SOTA) deep learning models (e.g. FinalMLP), the

AUC values in some datasets (e.g., Avazu) increased from 75.16 to 76.66, indicating

that the percentage uplift was only about 2% [6].

This thesis aims to explore the suitability and effectiveness of various statistical atten-

tion mechanisms on the most common and robust CTR prediction algorithms. These

attention mechanisms have shown promise in other domains, such as computer vi-

sion and natural language processing, yet their application in CTR prediction remains

under-explored. Although there are several models that implement attention mecha-

nisms in their approach to CTR prediction, most studies with attention mechanisms
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focus on achieving an uplift rather than understanding the underlying reasons why

they work. By systematically analyzing these mechanisms under different hyperpa-

rameter candidate sets, this thesis seeks to uncover and investigate the potential to

improve the informational utility of each field’s low-dimensional feature embeddings

and to understand why these attention mechanisms work or do not work in different

contexts.

To this end, a sufficient number of extensive experiments were conducted using a

diverse set of four widely-used open-source online datasets for CTR prediction. This

empirical experiment design provides a robust framework for evaluating how each

attention mechanism interacts with various algorithms and datasets. To maximize the

benefits of attention mechanisms in CTR prediction, we observed that each attention

mechanism application strategy exhibits unique behaviors in different contexts.

The findings of this study show that while not all of the considered attention mech-

anisms significantly enhance traditional CTR prediction models, some do in specific

contexts. By updating the feature embeddings and focusing on the most relevant fea-

tures and their interactions, these mechanisms can contribute to improved prediction

performance. This research not only highlights the potential of attention mechanisms

in improving CTR prediction accuracy but also aims to provide valuable insights for

future developments in this field.

1.1 Problem Definition

The CTR prediction task involves extracting relevant feature interactions, with fea-

tures represented using low-dimensional feature embeddings. While interactions can

be manually specified, this approach is challenging to implement across all domains

and requires substantial domain knowledge. Therefore, it is crucial to have models

that can automatically capture relevant feature interactions. Several methods exist to

extract these feature interactions and to enhance their performance. Attention mech-

anisms are one such method that can be used for both extracting feature interactions

and improving the performance of the extracted feature interactions.

There are a few attention mechanisms in the literature that update feature embeddings

2



to capture relevant feature interactions. However, most studies report only perfor-

mance uplift without determining which attention mechanism is superior to others in

different contexts. The aim of this thesis is to examine how the attention mechanisms

known in the literature (Mean Attention, Max Attention, and their joint versions) and

the ones we proposed (Mean-Standard Attention) behave with different architectures,

models, and datasets, and to investigate whether generalizations about their perfor-

mance can be made.

We aim to determine whether the attention mechanisms we experimented with pro-

vide improvements over the most conventional models and how layer normalization

affects models with attention mechanisms through experimentation. Additionally,

we investigate the performance of attention mechanisms that do not feed the inter-

action layer and explore whether a superior attention mechanism architecture can be

generalized for all datasets and models. This investigation necessitates extensive ex-

perimentation for effective generalization.

1.2 Contributions and Novelties

The contributions of this thesis can be summarized as follows:

• A comprehensive examination of the performance of well-known attention mech-

anisms, as well as additional ones introduced in this study, across various ar-

chitecture, model, and dataset selections.

• A detailed analysis of the performance of the attention mechanisms we exper-

imented with, focusing on their ability to provide improvements over the most

conventional models.

• An investigation into the impact of attention mechanisms with layer normaliza-

tion on conventional models.

• An analysis of the performance of attention mechanisms that are not integrated

into the interaction layer.

• An exploration of the potential for generalizing an optimal attention mechanism

architecture for all datasets and models.
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• A summary of the potential drawbacks and advantages of attention mechanisms

across different types of datasets and models.

1.3 The Outline of the Thesis

In this thesis, the chapters are organized as follows:

Chapter 1 provides an introduction, including the problem definition and contribu-

tions of this study. It also contains a comprehensive literature review of CTR predic-

tion models and known attention mechanisms in this field, highlighting the research

gaps in the literature regarding attention mechanisms.

Chapter 3 presents the required theoretical background. It details feature embedding,

the most common CTR prediction algorithms, and statistical attention mechanisms.

Chapter 4 describes the proposed attention mechanisms and different architecture sets

that we experimented with. The attention mechanisms can use different summary

statistic methods, may include a layer normalization step, or may have outputs that

do not feed into the interaction layer. The details of these variations are explained in

this chapter.

Chapter 5 outlines the experimental setups and presents the results, accompanied by a

detailed discussion section to support or refute our hypotheses about the performance

of the proposed methods.

Finally, Chapter 6 concludes the thesis with a summary of the findings. It also dis-

cusses future work and potential improvements that could be made to the proposed

methods.
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CHAPTER 2

LITERATURE REVIEW

2.1 Click-Through Rate Prediction

This section reviews the key methods and models in the historical evolution of CTR

prediction, with a particular focus on feature interaction methods. This evolution can

be categorized into three main subsections: traditional linear models, shallow inter-

action models, and deep learning-based models. The growing complexity of user

behavior and data sizes and the corresponding need for more sophisticated models to

learn complex feature interactions led to new developments and approaches in the his-

tory of CTR prediction field. The timeline of the CTR models and their corresponding

categories can be seen in Table 2.1.

2.1.1 Early Linear Models

The earliest approaches heavily relied on tradition linear models, particularly Logistic

Regression (LR) [7, 8]. Because of its simplicity, ease of deployment in the industry

and interpretability, LR became one of the most adopted model in this field. The

traditional linear model can easily handle large-scale data with clear understanding

of which features are the most important for the task. However, LR does not able to

learn nonlinear interactions which are highly important for CTR prediction, limiting

the performance of the predictions. As the volume of the data and the complexity of

user behaviors increased, the limitations of LR become more restrictive.
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2.1.2 Low Order Interaction Models

To address the shortcomings of linear models, Factorization Machines (FM) were in-

troduced as a way to model pairwise feature interactions efficiently [9]. FMs allow to

model feature interactions by using latent vectors to represent each feature. Instead

of expliticitly adding a feature interaction term for every possible pair, FMs can ef-

fectively capture the second-order interactions without needing to explicitly add each

pair. FMs introduce a more efficient way to model feature interactions by using latent

vectors to represent each feature. This has been proved to handle sparse data which

is a common case in recommender systems where field interactions are highly sparse.

Another advantage of factorizing the interaction terms into a product of latent fac-

tors is reducing the number of parameters that need to be learned, so FMs reduce the

number of parameters to be learnt when it is compared to manually adding pairwise

interactions in logistic regression. The other advantage which is worth to highlight is

generalization capability of FMs. In LR with pairwise feature interactions, if some

feature combinations never appear in the training data, the model will not able to learn

these interactions, but FMs generalize better by leveraging the latent vectors to infer

interactions for unseen feature pairs.

Briefly, FM’s ability to capture pairwise interactions without manual feature engi-

neering marked a significant improvement over LR. However, the scope of FM was

limited to second-order interactions, which constrained its ability to fully model com-

plex, high-order relationships between features. As a result, while FM outperformed

traditional linear models, it still fell short of the growing demands for higher-order

interaction modeling in CTR prediction tasks.

2.1.3 Transition to High Order Interactions

To address the limitations of models like FM in capturing only second-order interac-

tions, the development of more complex models became necessary. The vanilla Deep

Neural Networks (DNN) is good at learning the high-order feature interactions, but

they have a problem with generalization.

The Wide & Deep [10] is one of the first model that attempts to utilize both low

6



and high level feature interactions. It combines a linear (Wide) component and a

neural network (Deep) component, trained jointly. The two components-Wide and

Deep- are responsible for memorization and generalization respectively. The Wide

component is feature engineered cross interactions of features and needs a manual

pairwise interaction extraction with a linear model, but it is effective for memorization

of relevant items. On the other hand, the Deep part does not require any feature

engineering and it is better to generalize feature interaction which rarely occur in

the dataset but it is more prone to over-generalization if feature interactions are too

sparse.

While the low-order feature interactions should be extracted by manually in the Wide

part, it is challenging to implement this for all tasks. To address this, Factorization

Machines (FM) [9] were introduced as a solution for efficiently modeling second-

order interactions and are particularly effective in sparse data scenarios, as detailed

in subsection 2.1.2. However, despite their success in capturing second-order inter-

actions, FM alone is insufficient for the growing need to model complex high-order

relationships.

Building on the groundbreaking performance of the Wide & Deep model, the DeepFM

[2] model was proposed. DeepFM has a similar structure with Wide & Deep where

there are two components for low and high-order feature interactions. The most im-

portant difference is that DeepFM leverages the FM component to extract second-

order feature interactions, instead of relying on manually feature-engineered Wide

component. DeepFM is considered as one of the state-of-the-art models in CTR pre-

diction due to it is robust and effective for all open source datasets in online. [11]

One of the biggest disadvantages of DeepFM and FM-based architectures is the limi-

tations for its representative power for high-order feature interactions due its shallow

structure. There have been several studies about extending to higher orders such as

High Order Factorization Machines (HOFM) [12], but it results with huge computa-

tional cost due to the enormous number of parameters. The Deep & Cross Network

(DCN) [3] model was proposed to efficiently learn bounded high-order feature in-

teractions. The structure of the proposed model is similar to DeepFM, with only a

few small differences. It has two components where Deep part is exactly same as

7



DeepFM’s Deep component, and Cross Network is responsible for low-order feature

interactions. Although Cross Network and FM are responsible for low-order feature

interactions, the Cross Network is able to learn any degree of feature interactions the-

oretically thanks to cross layers. The highest polynomial degree increases at each

cross layer degree which does not require any manual feature engineering. The DCN

model is also a state-of-the-art approach in CTR prediction due to its simple yet ef-

fective architecture.

Another conventional model is the xDeepFM [13] model which contains improve-

ments on DeepFM by introducing the Compressed Interaction Network (CIN) as a

replacement of FM component. The CIN layer can capture feature interactions at

vector-wise level but in a very efficient way by compressing the interactions with

convolutions.

Another model that should be mentioned and that greatly affects our work is FiBiNet

[14] model. FiBiNet model does not have a joint two streams as deep and interaction

components. The feature interaction extraction is applied before the deep part in the

model. The feature interaction part contains two Bilinear Interaction layers which

are fed by original feature embeddings and updated feature embeddings. The update

mechanism is based on SENet (Squeeze and Excitation Network) [15] layer, and the

SENet layer initially used in computer vision area with remarkable results. The aim

of SENet layer is updating the feature embeddings to increase the effects of relevant

features and interactions in the model. It is actually an attention mechanism in that

sense, and in our study, we experimented different type of SENet-Like architectures

as our attention mechanisms.

In our experiments, we chose DNN, DeepFM and DCN as our base models which are

the most common and conventional models, but there are also other worth to mention

models in the field of CTR prediction. The AutoInt [4] model is another notable

advancement in the field of CTR prediction. AutoInt uses self-attention mechanisms

with residual connections that allow model to learn low-order and high-order feature

interactions without any feature engineering. Another one is Neural Factorization

Machines (NFM) [16] which surpass some of the limitations of the FM by leveraging

the neural networks at the top of bilinear interaction component. This aggregation

8



allows NFM to catch more complex relationships between features better than FM.

2.2 Attention Networks in CTR Prediction

The attention mechanism is a powerful tool to dynamically extract relevant features

and interactions. The power of the attention mechanisms is a well-established concept

in natural language processing and computer vision field [17, 18, 19]. There are

different type of attention mechanisms, which are used in CTR prediction domain,

with different objectives.

The earliest adoption of the attention mechanism in CTR prediction domain is the At-

tentional Factorization Machines (AFM) [20], which uses the attention mechanism to

update the weights of the FM’s pairwise interaction outputs. The pairwise interaction

outputs are fed into a attention network that has a MLP to calculate the weights for

each pair, then multiplied with pairwise interaction output. Attention mechanism are

also used for capture the sequential features in CTR prediction task.

The attention mechanism is also extensively used for capturing sequential features in

user behavior, which is crucial for personalized recommendation. The self-attention

mechanism is used to retrieve relevant sequential features in user history at Deep

Interest Network (DIN) [21] and Deep Session Interest Network (DSIN) [22]. DIN

implements attention mechanism to dynamically select the most relevant items from

the user’s historical actions with respect to target item. This leads model to update the

weights according to different historical interactions and their relevance to the user’s

current interest. DSIN, on the other hand, extends this idea in terms of session-based

sequential self-attention mechanism. One of the biggest advantage of using self-

attention over traditional recurrent neural networks (RNN), which process sequences

sequentially, is self-attention mechanism can efficiently handle long sequences of user

interactions thanks to parallel processing of the sequences.

The self-attention mechanism not only being used for sequential features but also in

the AutoInt [4], it is implemented to learn feature interactions by leveraging multi-

head self attention network with residual connections as we described above. The

aim of using residual connections is preserving the original features alongside the

9



attention-based feature interactions. Another model that feeds updated vectors with

attention mechanism is DAFM (Deep Attention Factorization Machine) model, but

with one big difference which is the updated vectors are not fed into the FM compo-

nent, which is the low order interaction component in the architecture, but only the

Deep part of the model [23].

Other than self attention mechanism, the Squeeze and Excitation Network (SENet)

[15] based attention mechanisms are highly used for updating the feature embed-

dings. The performance of the SENet was already a known fact in computer vision,

but FiBiNet [14] is the first model that uses SENet in its architecture. SENet is used

to update the feature embeddings which will be fed into Bilinear Interaction layer,

and it learns the feature importance and related interactions with SENet layer. SENet

layer has three parts which are squeeze, excitation and reweight. In the squeeze com-

ponent, the summary statistic of each field embedding to represent global information

about each field embedding. The summary statistic is mean pooling in FiBiNet and

mean and max pooling with groups in FiBiNet++ [24] which is low-parameter and

high-performer version of FiBiNet. The excitation part is where the weight is are

calculated by using all global information coming from squeeze part for the instance

by applying a MLP which reduces and repairs the dimension of the input vector. The

final part is reweight and it produces the updated feature embeddings by multiply-

ing the weights of the excitation part and original feature embeddings. Then, these

new feature embeddings are fed into Bilinear Interaction to create CTR prediction.

FiBiNet++ also leverages skip-connections by elementwise addition and layer nor-

malization after the reweight step.

There are other CTR prediction models that incorporate the SENet mechanism in

various forms. The FAT-DeepFFM [25] model uses DeepFM-like architecture with a

SENet-like mechanism. Instead of the FM component in DeepFM, it employs Field-

aware factorization machines (FFM) [26], which increase the parameter size as each

pair in FFM has its own weight. The attention mechanism is proposed as CENet

(Compose Excitation Network), which shares components with SENet but uses 1x1

convolution as the pooling operation to create summary statistics. FAT-DeepFFM

updates the feature embeddings before the DeepFFM part in CENet layer.

10



Another model is ECANFM [27], which combines ECANET [28], based on the ECA

method in the computer vision field, with NFM [16]. ECANET is also another SENet-

like attention mechanism, and in its squeeze part, it also uses mean pooling. However,

the excitation parts differ, as ECANET uses one-dimensional convolution instead of

an MLP structure in its excitation part.

Finally, there is an attention module named MMBAttn [29] that focuses solely on

an attention mechanism based on the SENet architecture, with vector-wise and bit-

wise attentions. It implements mean and max pooling in parallel in the squeeze part

for attentions, summing them to create feature embedding updates. Additionally,

The bit-wise attention, which is a special type of SENet-like attention, emphasizes

relationships between individual bits within the features. They experimented with

mean-attention, max-attention, mean-max attention, bit-wise attention, and a joint

method on a DNN model, and tested the joint method on a few SOTA models to

evaluate the proposed method’s usefulness.
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CHAPTER 3

PRELIMINARIES

This chapter describes the essential components of conventional CTR prediction mod-

els and our proposed squeeze-and-excitation-based attention mechanisms.

3.1 Feature Embedding

In domains such as computer vision and natural language processing, data is often

spatially correlated, allowing raw features to be directly used as dense features. How-

ever, recommender systems typically deal with sparse, categorical raw data that can

be transformed into high-dimensional features using one-hot encoding. Embedding

layers enable these high-dimensional features to be converted into low-dimensional,

dense representations. For example, a user who is male and likes sports can be repre-

sented as high-dimensional sparse features using one-hot encoding, as shown below:

[(1,0), (0,0,1,0,...)], where the first field represents gender and the sec-

ond field represents the type of activity the user likes. An embedding layer can be im-

plemented to compress the information contained in these sparse, high-dimensional

features. Another advantage of using feature embeddings is that they produce same-

length embeddings, even when the original feature lengths of different fields vary.

To generalize, an input feature value vectorX = {xfield1 , . . . , xfieldM} which stores

one-hot vectors for categorical fields and raw values for continuous fields, can be

transformed into a field embedding vector E = {e1, . . . , eM} where M is the number

of feature fields, and ei ∈ RD, where D is the embedding dimension and i represents

the i-th field.

Embedding layers are applied not only to categorical features but also to numerical
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features in our study. An example transformation for an instance containing three

input features—two categorical and one numerical—can be seen in Figure 3.1.

Figure 3.1: An example transformation from field vectors to feature embeddings is

shown, where the embedding dimension is set to 5 in this example.

3.2 Base Models

3.2.1 DNN

A Deep Neural Network (DNN), also known as a Multi-Layer Perceptron (MLP), is

widely used not only in CTR prediction models but across nearly every domain in the

deep learning field. In this study, all three base models incorporate a deep network

as a component in their implementations. A DNN consists of several fully connected

feed-forward layers. The advantage of deep networks lies in their ability to effectively

capture high-order feature interactions, as all features interact with each other during

the feed-forward process. The overall architecture of a DNN model is illustrated in

Figure 3.2.

As shown in Figure 3.2, an instance with sparse features, transformed into its low-

dimensional feature embeddings, is fed into the feed-forward layers. The output of

the embedding layer is concatenated into a single long vector for the input, as given

in Equation 3.1:

a0 = concatenation([e1, e2, . . . , em]) (3.1)

a0 is fed into the model, and the below forward process is executed for the first layer:
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Figure 3.2: Example architecture of DNN model

a1 = σ (W0a0 + b0) (3.2)

where:

• a0 ∈ Rd0 is the input feature vector.

• a1 ∈ Rd0 is the output of the first hiden layer.

• W0 ∈ Rd0×d1 is the weighting matrix.

• M is the number of feature fields.

• D is the embedding dimension.

• b0 ∈ Rd1 is the bias term.

• d1 is the output dimension of first hidden layer.

and d0 is equal to M × D, d1 is the output dimension of first hidden layer. Finally,

σ is the activation function which allow DNN model to capture nonlinear relation-

ships between features, and we set this as ReLU and the function equation is given in

Equation 3.3:

f(x) = max (0, x) (3.3)
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The equation 3.2 can be applied to for all layers in the deep network. The generalized

form of the equation is given in Equation 3.4:

al+1 = σ (Wlal + bl) (3.4)

where l is the depth of the layer. After the hidden layers, a dense feature vector is

achieved to be fed into final fully connected layer to get the prediction for the instance

with the below Equation 3.5:

ŷDNN = σ (WLaL + bL) (3.5)

where WL ∈ RL×1, L is the number of hidden layers, and σ is the activation function

used as Sigmoid because this function produces outputs which relies between (0, 1).

The Sigmoid function is given in Equation 3.6

f(x) =
1

1 + e−x
(3.6)

Finally, the ŷDNN will be a scalar value which relies between (0, 1) that can be used

as CTR value for the given instance.

3.2.2 DeepFM

DeepFM is the second base model used in our study and consists of two components:

the Deep component and the FM component. The Deep component is essentially a

DNN model, with an architectural design identical to the DNN model described in

Section 3.2.1. The primary contribution of DeepFM to the CTR prediction field is its

second component, the Factorization Machines (FM). As discussed in Section 3.2.1,

while DNNs are highly effective at learning high-order feature interactions, they may

lose some important low-order feature interactions due to the complex interactions

within each layer. The overall architecture of the FM component is illustrated in

Figure 3.3.

The FM model can theoretically capture both first-order and second-order feature in-

teractions. The mathematical formulation for the FM component is given in Equation

3.7

16



Figure 3.3: Overall architecture of FM model

ŷFM = W0 +
M∑
i=1

Wixi +
M∑
i=1

M∑
j=i+1

eiej (3.7)

where:

• ŷFM is the predicted output of FM.

• W0 is the global bias.

• Wi are the weights of the individual features.

• ei and ej are the feature embeddings for the interactions.

• xi and xj are the feature values.

The equation can be separated into two parts: the addition part and the inner prod-

uct part. The addition part, W0 +
∑M

i=1Wixi is responsible for learning first-order

feature interactions. In this part, each individual feature value is multiplied by its cor-

responding weight, and the summation of these values, along with the global bias,

represents the first-order feature effects for the instance. The inner product part,∑M
i=1

∑M
j=i+1 eiej , captures second-order feature interactions. The summation of the

inner products of each pair of feature embeddings represents the second-order feature

interaction effects for the instance.

The Deep and FM components each produce a one-unit output, and the training is

a joint operation, ensuring that all the parameters of both components are updated

together. The final prediction for the CTR value for an instance is calculated as shown

in Equation 3.8
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ŷDeepFM = σ (ŷFM + ŷDNN) (3.8)

where σ is the Sigmoid function to be sure that the predicted CTR value ŷDeepFM ∈
(0, 1). An important note is although the DNN model has a Sigmoid function at the

end of our formulation for ŷDNN calculation, the Deep component of DeepFM does

not have this activation function at the end of its architecture.

3.2.3 DCN

The Deep & Cross Network (DCN) is the last conventional architecture we selected

as one of our base models. DCN is quite similar to DeepFM in terms of the parallel

training of high-order and low-order feature interaction extractions. It consists of

two parallel components: the Deep and Cross components, much like DeepFM. The

Deep component is identical to that in DeepFM, except for the output size. Unlike

in DeepFM, the output length of the Deep component is not 1 but rather matches the

length of the last hidden layer unit in the Deep component. The overall architecture

of DCN is illustrated in Figure 3.4.

The FM and Cross Network components are similar in their underlying approach to

low-order feature interaction extraction. The key difference between the two is that

FM can only capture second-order feature interactions, whereas the Cross Network

can learn interactions of unlimited degrees. The Cross Network contains several cross

layers, which are the essential parts of feature interaction extraction. The cross layer

equation can be expressed as shown in Equation 3.9

al+1 = a0al
⊤Wl + bl + al (3.9)

where:

• a0 ∈ RMD is the original input feature embedding vector.

• al ∈ RMD is the output of feature embedding vector at layer l.

• Wl ∈ RD is the weight vector at layer l.
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Figure 3.4: Overall architecture of DCN model

• bl ∈ RD is the bias term at layer l.

The degree of the feature interaction can be determined by the rank of the cross layer.

Therefore, to capture the second-order feature interactions, L = max(l) should be set

as 1 because it consists of two feature vector interaction. A generalized rule is the

highest ranked feature interaction for a given L is L + 1. Each cross layer also adds

back to its input feature vector to not lose important information during the crossing

process. The visualization of layer l + 1 formulation for a cross layer can be seen in

Figure 3.5.

In DCN, the training of the Deep and low order feature interaction components (Cross

Network) is parallel and joint, similar to DeepFM. However, the outputs of the two

components are not scalar values but vectors of the component outputs. Therefore,

DCN includes a combination layer at the top of its structure,where the outputs from

the two components are concatenated into a single vector and then fed into a standard

logits layer. The prediction formula can be expressed as given in Equation 3.10
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Figure 3.5: Visualization of a cross layer formulation for layer l + 1

ŷDCN = σ
(
Wlogitconcatenate([aCrossNetwork,(LCrossNetwork+1), aDeep,(LDeep+1)]) + blogit

)
(3.10)

where:

• aCrossNetwork,(LCrossNetwork+1) ∈ RMD is the output of last cross layer in Cross Net-

work Component.

• aDeep,(LDeep+1) ∈ RH is the output of last hidden layer in the Deep Component.

• Wlogit ∈ R(MD+H) is the weight vector at prediction logit layer.

• blogit ∈ R1 is the bias term at prediction logit layer.

• ŷDCN is the predicted output of DCN.

and σ is Sigmoid as in other base models. LCrossNetwork is the number of cross layers

in DCN and LDeep is the number of hidden layers in DCN’s Deep Component.

3.3 Comparison of Base Models

All three base models were chosen because they are the most robust and widely used

models in the field of CTR prediction [11]. There are both similarities and differences

among these models. The primary similarity is that all three models include a deep

component. However, the DNN is purely a deep component without any interaction
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extraction component and can be described as a one stream model. On the other

hand, DCN and DeepFM contain interaction extraction components—Cross Network

and FM, respectively—and can be described as two stream models. Both DNN and

DeepFM directly produce a single unit prediction, whereas DCN has a combination

output layer to produce a single unit prediction. The generalized architectures for

each model can be seen in the Figure 3.6, illustrating the differences and similarities.

Figure 3.6: Generalized architectures of base models
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3.4 Squeeze and Excitation Networks

Our attention mechanism is based on the Squeeze and Excitation Networks (SENet)

module. SENet has proven its success in the computer vision domain by capturing

the relationships between the channels of convolutional features. The first use of

the SENet layer in the CTR prediction task was implemented in the FiBiNet model.

The FiBiNet model differs slightly from our base models, as it includes two identical

Bilinear Interaction layers with two different inputs: the first input is feature embed-

dings, and the second input is feature embeddings updated with SENet attention. The

two output vectors of the Bilinear Interaction layers are concatenated and then used

to calculate the prediction value.

In the study, researchers found that the SENet layer enhances the performance of the

bilinear interaction layer by highlighting important feature interaction weights. The

SENet layer consists of three components: Squeeze, Excitation, and Reweight. In the

Squeeze part, a summary statistic of each field embedding is calculated to represent

the field, and various summary statistic methods, such as max or mean pooling, can be

used. FiBiNet uses mean pooling as the summary statistic, while FiBiNet++ (a low-

parameter, better-performing version of FiBiNet) uses both mean and max pooling

within each group that is split for each field embedding.

The Excitation component learns the weight of each field embedding based on the

summary statistics produced during the Squeeze step. Finally, the Reweight step is

performed by multiplying the excitation vector with the original field embedding to

produce an updated vector.

Following the groundbreaking performance of FiBiNet, several novel models have

incorporated the SENet mechanism. For example, FAT-DeepFFM uses a 1x1 convo-

lution layer as the pooling operation in the Squeeze part and names the model CENet

(Compose Excitation Network). Another model, ECANFM, uses a 1x1 convolution

layer in its Excitation part instead of Squeeze, with mean pooling as the summary

statistic for the fields. Finally, the MMBATTN (Max-Mean and Bitwise Attention)

model implements three SENet-like attention mechanisms in a joint manner. The

summary statistics are mean and max for the vector-wise attention mechanism, and
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there is also a bitwise attention mechanism in the joint architecture of the attention

mechanism.

The steps of the SENet layer will be elaborated on in the upcoming subsections and

overall architecture of SENet layer can be seen in the Figure 3.7.

Figure 3.7: Overall architecture of SENet layer

3.4.1 Squeeze

In the Squeeze step, the ’summary statistics’ of each field embedding are calculated

using any pooling mechanism. The options are all functions that can summarize a

vector distribution. The most common are mean pooling and max pooling, but in our

study, we also implemented Mean-Max joint pooling and Mean-Standard Deviation

(Std) joint pooling, as these can better capture the distribution of the field embedding.

The original field embedding vector is E = {e1, . . . , eM} where M is the number

of feature fields, and each field embedding has D dimension vector which is the em-

bedding dimension. The squeeze layer outputs a statistic vector Z = {z1, . . . , zM}.

zi is a scalar value which stores the global information for the i-th field and where

i ∈ [1, ...,M ]. The proposed pooling method calculations will be elaborated on in

Section 4.

Additionally, if we use bit-wise attention, we do not have a squeeze step, as all bits in

the field embedding are represented individually. However, we concatenate the field
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embeddings into one vector to employ bit-wise excitation.

3.4.2 Excitation

The Excitation step is used to calculate the weight of the field embedding using the

summary statistic vector Z. This step consists of two fully connected nonlinear layers:

the first layer is a dimensionality-reduction layer, and the second layer restores the

dimension to the input dimension. The output of the Excitation step, which is the

weight of the field embedding, can be formulated as follows in Equation 3.11

A = Fexcitation(Z) = σ2(W2σ1(W1Z)) (3.11)

where:

• Z ∈ R1×M is the summary statistic vector.

• W1 ∈ RM×M
r is the weight matrix at the dimension reduction layer.

• W2 ∈ RM
r
×M is the weight matrix to restore the dimension layer.

• σ1 and σ2 are the activation functions for each layer, respectively.

• A ∈ R1×M is the field weight vector.

If the attention mechanism is bit-wise instead of vector-wise, the equation can be

formulated as given in Equation 3.12

A = Fexcitation(Z) = σ2(W2σ1(W1Z)) (3.12)

where:

• Z ∈ R1×(MD) is the concatenated field embedding vector.

• W1 ∈ RMD×MD
r is the weight matrix at the dimension reduction layer.

• W2 ∈ RMD
r

×MD is the weight matrix to restore the dimension layer.
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• σ1 and σ2 are the activation functions for each layer, respectively.

• A ∈ R1×MD is the field weight vector.

3.4.3 Re-weight

The Reweight step, also referred to as rescale in the original paper, is the last step in

the SENet attention mechanism. The objective is to update the field embeddings ac-

cording to the weights calculated in the Excitation step. The original field embedding

E and the field weight vector A are field-wise (vector-wise) muliplied to create the

updated embeddings V = {v1, . . . , vM}. Reweight step can be formulated as given

in Equation 3.13.

V = Freweight(E,A) = [e1 · a1, . . . , eM · aM ] = [v1, . . . , vM ] (3.13)

where:

• E = {e1, . . . , eM} is the original field embedding vector.

• A = {a1, . . . , aM} is the field weight vector which is the output of excitation

layer.

• V = {v1, . . . , vM} is the updated field embedding vector.

If the attention mechanism is bit-wise attention, then the formulation has slight changes

as given in Equation 3.14.

V = Freweight(E,A) = [e1 · a1, . . . , eMD · aMD] = [v1, . . . , vMD] (3.14)

where:

• E = {e1, . . . , eMD} is the original concatenated field embedding vector.

• A = {a1, . . . , aMD} is the field weight vector which is the output of excitation

layer.
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• V = {v1, . . . , vMD} is the updated concatenated field embedding vector.

An important note for bit-wise attention is that, since bit-wise attention uses the con-

catenated embeddings vector and outputs a concatenated vector, the output vector is

transformed back into its original shape after the reweight step so that each field has

its own embedding again. That is, V ∈ RMD is transformed into V ∈ RM×D.
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CHAPTER 4

STUDIED ANALYSIS APPROACH

In this chapter, we introduce the attention mechanisms that we experimented on con-

sidered models as elaborated on Section 3, as well as the hyperparameter candidates,

which include the reduction ratio for the squeeze part, the application of layer nor-

malization, and feeding the updated embeddings to the interaction layer.

4.1 Studied Attention Mechanisms

We have studied several well-known statistical attention mechanisms and an addi-

tional one that, to our knowledge, no study has ever tried. FiBiNet [14] is the first

model to use the SENet [15] module in the CTR prediction task. In FiBiNet, the

squeeze component establishes the summary statistic vector using mean pooling in-

stead of max pooling, which is the pooling function of the original SENet module

for computer vision tasks. They stated that mean pooling performs better than max

pooling, but the performance results are not provided in the paper. However, in FiB-

iNet++ [24], they improved the model’s performance by implementing an enhanced

SENet layer, SENet+. Instead of retrieving a summary statistic for each field embed-

ding, they split each field embedding into the same number of groups, calculate the

summary statistic for each group using max and mean pooling, and concatenate the

resulting summary vectors of each group as the output for the squeeze part. The aim

of implementing both mean and max pooling is to provide more useful information

about field embeddings. Additionally, MMBAttn [29] also implemented mean and

max pooling in their application, but instead of concatenating them, they summed the

two summary statistic vectors as the aggregation method. Although the performance
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of mean pooling, max pooling, and mean-max pooling with summation on the DNN

model for the Criteo and Avazu datasets is shared, the performance of concatenation

on the DNN model for the Criteo and Avazu datasets, as well as the same summary

statistics method on different models and datasets, is not shared. As stated, mean-max

pooling with summation is the best-performing attention mechanism among solely

mean and max attention mechanisms on the DNN model; hence, MMBAttn includes

a component that uses mean-max attention. The other component of MMBAttn is bit-

wise attention, which is based on bit-wise relations instead of vector-wise relations as

in summary statistics. Each bit is used in the attention mechanism instead of a repre-

sentative vector. Finally, we propose experimenting with the mean-standard deviation

attention mechanism, as the aim is to provide meaningful information about the distri-

bution of the field embedding. The final attention mechanisms that are experimented

with are listed below:

• Mean Attention Mechanism: Uses only mean pooling in the squeeze part.

• Max Attention Mechanism: Uses only max pooling in the squeeze part.

• Mean-Max Concatenation Attention Mechanism: Applies mean and max pool-

ing with concatenation as the aggregation method in the squeeze part.

• Mean-Max Summation Attention Mechanism: Applies mean and max pooling

with summation as the aggregation method in the squeeze part.

• Mean-Std Concatenation Attention Mechanism: Uses mean and standard de-

viation pooling with concatenation as the aggregation method in the squeeze

part.

• Mean-Std Summation Attention Mechanism: Uses mean and standard devia-

tion pooling with summation as the aggregation method in the squeeze part.

• Bitwise Attention Mechanism: No squeeze part, as there is no summary statistic

for the vectors.

We elaborate on the dimensions of the vectors and the operations in the steps followed

by each attention mechanism in the subsections.
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4.1.1 Mean Attention

The Mean Attention Mechanism uses mean pooling as the summary statistic vector

in the squeeze part, and the remaining steps (excitation and reweighting) are the same

as in a regular SENet layer. In the excitation part, the reduction ratio is set to 1, 3,

and 5 in the experiments. The calculation for the squeeze part in the Mean Attention

Mechanism can be formulated as given in Equation 4.1.

zi = Fsqueeze(ei) =
1

D

D∑
j=1

eij (4.1)

where:

• ei = [e1, e2, . . . , eD] is the field embedding vector for i-th field.

• D is the embedding dimension.

• zi is the mean of the i-th field embedding vector.

4.1.2 Max Attention

The Max Attention Mechanism uses max pooling instead of mean pooling, as in the

Mean Attention Mechanism, while the other parts remain the same as in the Mean

Attention. The zi scalar value, which is the i-th field summary statistic under max

pooling, can be formulated as given in Equation 4.2.

zi = Fsqueeze(ei) = max
j=1,...,D

{eij} (4.2)

where:

• ei = [ei1, ei2, . . . , eiD] is the field embedding vector for the i-th field.

• D is the embedding dimension.

• zi is the maximum value of the i-th field embedding vector.
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4.1.3 Mean-Max Concatenation Attention

The Mean-Max Concatenation Attention is a joint summary statistic vector con-

structed to provide more information about the field embedding vectors. The squeeze

part contains two separate squeeze functions, which are the same as in the Mean At-

tention and Max Attention mechanisms. However, Mean-Max Concatenation differs

in the excitation part, as the two summary statistic vectors for mean and max func-

tions are concatenated and used as input for the excitation part. This idea is similar to

FiBiNet++, where the excitation part takes a vector of different size and produces an

output of the size of the field embedding vector. The excitation step can be formulated

as given in Equation 4.3.

A = Fexcitation(Zconcat) = W2σ(W1Zconcat) (4.3)

where:

• Zconcat ∈ R1×2M is the concatenated summary statistic vector which is concat(Zmean, Zmax).

• W1 ∈ R2M× 2M
r is the weight matrix at the dimension reduction layer.

• W2 ∈ R 2M
r

×M is the weight matrix to restore the dimension layer.

• σ is the activation function which is ReLU.

• A ∈ R1×M is the field weight vector.

• r ∈ [1, 3, 5] is the reduction ratio

4.1.4 Mean-Max Summation Attention

Another aggregation method for mean pooling and max pooling operations is sum-

ming the summary statistic vectors instead of concatenating them. Although FiBi-

Net++ concatenates these two vectors, some models in the CTR prediction field sum

these two vectors. Summation can lead to a loss of information, but it may also

increase the generalization of the summary vectors. The mathematical difference be-

tween the two aggregation methods (concatenation and summation) is that there will
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be two excitation layers in summation, whereas there is only one layer in concatena-

tion. The excitation steps can be formulated as given in Equation 4.4.

Amean = Fexcitationmean(Zmean) = W2meanσ(W1meanZmean)

Amax = Fexcitationmax(Zmax) = W2maxσ(W1maxZmax)

A = Amean + Amax

(4.4)

where:

• Zmean ∈ R1×M is the summary statistic vector for mean pooling.

• Zmax ∈ R1×M is the summary statistic vector for max pooling.

• W1mean ∈ RM×M
r is the weight matrix at the dimension reduction layer for

mean pooling.

• W1max ∈ RM×M
r is the weight matrix at the dimension reduction layer for max

pooling.

• W2mean ∈ RM
r
×M is the weight matrix to restore the dimension layer for mean

pooling.

• W2max ∈ RM
r
×M is the weight matrix to restore the dimension layer for max

pooling.

• σ is the activation functions which are ReLU.

• Amean ∈ R1×M is the field weight vector for mean pooling.

• Amax ∈ R1×M is the field weight vector for max pooling.

• A ∈ R1×M is the field weight vector.

• r ∈ [1, 3, 5] is the reduction ratio.

4.1.5 Mean-Std Concatenation Attention

Another method to compress information from the feature vectors is using standard

deviation pooling. However, without an auxiliary pooling operation, standard devia-

tion alone will not be sufficient for information storage. Therefore, mean pooling and
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standard deviation pooling can be used together to create summary statistic vectors,

as some computer vision and voice recognition models have done [30, 31]. How-

ever, to our knowledge, there are no models that have used standard deviation for

the CTR prediction task. The only difference between Mean-Std Concatenation and

Mean-Max Concatenation attention is that the squeeze layer uses standard deviation

pooling instead of max pooling. The remaining parts are the same as in Mean-Max

Concatenation attention in terms of parameter sizes and mathematical operations. The

zi scalar value, which is the i-th field summary statistic under standard deviation pool-

ing, can be formulated as given in Equation 4.5.

zi = Fsqueeze(ei) =

√√√√ 1

D

D∑
j=1

(eij − µ)2 (4.5)

where:

• ei = [ei1, ei2, . . . , eiD] is the field embedding vector for the i-th field.

• D is the embedding dimension.

• µ is the mean of the field embedding vector ei.

• zi is the standard deviation of the i-th field embedding vector.

4.1.6 Mean-Std Summation Attention

Similar to Mean-Max Summation, we also conducted experiments with Mean-Std

Summation attention. The only difference from Mean-Max Summation is that, in-

stead of the Max pooling function, we use the Standard Deviation pooling function.

Moreover, the formulations are exactly the same as in Mean-Max Summation, except

for the Max pooling function.

4.1.7 Bitwise Attention

Bitwise Attention is the final proposed attention mechanism in our study. The aim of

Bitwise Attention is to use all the bits in the excitation step to calculate the weight
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of each bit, instead of using vector-wise weighting. Bitwise Attention does not have

a squeeze part, as there is no pooling mechanism. Additionally, the field embedding

vector is flattened and undergoes an MLP to reduce the dimension and then restore it

to the original size in the excitation part. Another difference is in the reweighting part,

where the attention value, which has the same dimension as the total dimension of

the feature embedding, is elementwise multiplied with the field embedding to obtain

the updated feature embeddings. In the final step, the concatenated updated vector is

reshaped into field vectors that have the same dimension as the input at the beginning.

The excitation part of the Bitwise Attention can be formulated as given in Equation

4.6.

A = Fexcitation(Econcat) = W2σ(W1Econcat) (4.6)

where:

• Econcat ∈ R1×MD is the concatenated field embedding vector.

• W1 ∈ RMD×MD
r is the weight matrix at the dimension reduction layer.

• W2 ∈ RMD
r

×MD is the weight matrix to restore the dimension layer.

• σ is the activation function which is ReLU.

• A ∈ R1×MD is the field weight vector.

• r ∈ [1, 3, 5] is the reduction ratio

The reweighting part of the bitwise attention can be formulated as below:

V = A · Econcat (4.7)

where:

• V ∈ R1×MD is the updated concatenated field embedding vector

Then, V is reshaped into field vectors which has the dimension as RM×D.
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4.2 Studied Architectural Designs

In this section, the design choices of the attention mechanisms are detailed. In our

experiments, we analyzed the performance of applying the layer normalization algo-

rithm after the attention mechanism and examined the effect of feeding only the Deep

part with the attention mechanism instead of both the Deep and Interaction parts.

4.2.1 Layer Normalization

Layer Normalization (Layer Norm) is a crucial normalization method for stabilizing

training in the machine learning domain [32]. It is also a technique to reduce over-

fitting, as it normalizes the input across features during each training phase. Several

studies in the literature have shown that utilizing layer normalization after the atten-

tion mechanism leads to better performance in CTR prediction tasks [24, 33]. In this

thesis, the aim is to investigate the effects of layer normalization on attention mech-

anisms as an additional operation after the attention mechanism. Therefore, layer

normalization is applied to the updated field vectors before feeding these vectors to

the base models. Given a vector V = [v1, v2, . . . , vd], Layer Normalization formula-

tion is given in Equations 4.8 through Equations 4.11.

1. Compute the mean µ of the vector:

µ =
1

d

d∑
i=1

vi (4.8)

2. Compute the variance σ2 of the vector:

σ2 =
1

d

d∑
i=1

(vi − µ)2 (4.9)

3. Normalize the vector:

v̂i =
vi − µ√
σ2 + ϵ

(4.10)

where ϵ is a small constant added for numerical stability and it is 1e-05 as in PyTorch

default setting.
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4. Apply the learned scale γ and shift β:

yi = γv̂i + β (4.11)

The final output vector Y = [y1, y2, . . . , yd] is the result of the Layer Normalization.

4.2.2 No Feeding on Interaction Component

As it is discussed in Section 3.2, DeepFM and DCN have two components: the Deep

component and the Low-Order Interaction component. For DeepFM, the low-order

interaction component is the FM component, and for the DCN model, it is the Cross

Network. The objective of low-order feature interaction components is to capture a

bounded degree of feature interactions using field embedding vectors. Therefore, the

effects of updating the field embedding vectors with attention mechanisms on low-

order feature interaction components should be considered. There are a few studies

that feed the updated feature vector with the attention mechanism only to the Deep

component, but not to the interaction component [23]. However, to our knowledge,

there are no studies that compare the performance with or without feeding the interac-

tion component. Therefore, we conduct our experiments with the options of feeding

or not feeding the interaction component for DeepFM and DCN, but not for DNN, as

it only has the Deep component.

4.2.3 Experimental Choices for Architectural Desing

In this subsection, we explain the experimental choices for each base model. As dis-

cussed above, the updated field embedding vectors with attention mechanisms can

either be fed or not fed into the interaction component for DeepFM and DCN, result-

ing in two options for the experiments on ’No Feeding on Interaction Component.’

Additionally, layer normalization can be applied or not applied after the attention

mechanisms for all base models, which also leads to two more options. Therefore,

there are four experimental design options for DeepFM and DCN, and two for DNN.

The overall structures for these four options can be seen in Figure 4.1

As explained above, DCN and DeepFM models have all 4 experimentation options,
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but DNN only has option 3 and option 4 as it does not have an interaction compo-

nent.
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Figure 4.1: Overall structures of experimentation settings
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CHAPTER 5

EXPERIMENTAL RESULTS

This section elaborates on the experimental results of different attention mechanism

under different architectural setups for four different datasets on the three most com-

mon models for CTR prediction. By these experiments, we aimed to answer the

following research questions:

• (RQ1): Do the attention mechanisms we experimented provide improvements

over the mostly known conventional models?

• (RQ2): Can we make general inferences about the performance of attention

mechanisms across different datasets and models?

• (RQ3): Does layer normalization improve the performance of models with

attention mechanisms?

• (RQ4): Does the attention mechanism perform better without feeding into the

interaction layer?

5.1 Experiment Setup

5.1.1 Datasets

Three of the most widely used datasets have been employed and the splits for training,

validation and test sets. For the Criteo, MovieLens, and Frappe datasets, the data are

randomly split into 7:1:2 ratios for the training, validation, and test sets. On the other

hand, the Avazu dataset is split into a 7:2:1 ratio for the training, validation, and test

sets, as in the BARS open-benchmark datasets for CTR prediction [11]. Moreover,
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Table 5.1: Summary Statistics of Datasets

Dataset # Instances # Fields # Categorical Fields

Criteo 45M 39 26

Avazu 40M 22 22

MovieLens 2M 3 3

Frappe 289K 10 10

no preprocessing steps are applied, as the goal of these models is to learn the hidden

features and interactions without any feature engineering. These four datasets have

different number of categorical and numerical variables as the feature fields. More-

over, these datasets were selected because they represent different characteristics.

Criteo [34] is a display ad dataset that contains ad impressions as instances and bi-

nary labels as ad clicked or not. This dataset is the largest dataset in terms of number

of examples and 39 feature fields which 26 of them are categorical fields and rest of

them are numerical. Avazu [35] is a mobile advertisement click dataset and it con-

tains 22 categorical fields that store user and advertisement information. Movielens

[36] dataset is a well-known recommender systems dataset that contains 3 categorical

fields which are userID, movieID and tagID and label is whether corresponding user

has tagged the movie. Frappe [37] dataset stores logs of app usages for the users who

have different attributes such as country, weather, daytime with other user specific in-

formation such as userID, appID. In the dataset, there are 10 categorical features. The

label represents if the app user made a session under the given context features. The

summary statistics of the datasets are listed in Table 5.1

5.1.2 Evaluation Metric

We used AUC (Area Under the ROC Curve) as our metric for model and architec-

tural design evaluation. AUC is the most common metric for CTR prediction model
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evaluation in the literature. AUC can be measured by the area under the ROC curve.

To establish a ROC curve, TPR (True Positive Rate) and FPR (False Positive Rate)

should be calculated for various thresholds over the prediction probabilities. This

metric measures the probability that a randomly chosen positive example has a higher

rank than randomly chosen negative example. It is highly important to note that a

0.001-point uplift for AUC metric is accepted as a significant improvement in this

field [1, 2, 3, 4].

Logloss is used for evaluation and optimization within the training process. Logloss,

which is also known as binary cross entropy, is mainly used for binary classification

tasks. One of the most important differences between Logloss and AUC is that AUC

does not depend on the positive label ratio of the dataset. Logloss formula can be

formulated in Equation 5.1

Logloss = − 1

N

N∑
i=1

[yi log(ŷi) + (1− yi) log(1− ŷi)] (5.1)

In the equation, yi and ŷi are the values for the true and predicted labels for the

corresponding instance i and N is the total instances in the training set. The objective

in our binary classification model is to decrease this number as much as possible

while training.

5.1.3 Architecture Comparison

In this study, we evaluated various attention mechanisms, including mean, max, mean-

max summation, mean-max concatenation, mean-std summation, mean-std concate-

nation, and bitwise attentions. These mechanisms were employed to three different

models which are vanilla MLP (DNN), DeepFM and DCN. Each model was tested

with different architectural hyperparameter settings, incorporating layer normaliza-

tion and the inclusion or exclusion of an interaction layer. Only the DNN model does

not have an option for feeding interaction layer because the model does not possess

an interaction layer.
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5.1.4 Implementation Details

For all three baseline model, we used the reported best hyperparameter settings on

BARS open-benchmark datasets for CTR prediction and all the attention mechanism

experiments for each model and dataset pairs are built on these hyperparameter set-

tings. We executed our experiments by using FuxiCTR [38] library which is an open

source CTR prediction library. To ensure a fair comparison, we reported our experi-

mental results instead of using the reported AUC results for the baseline models. In

these reported best settings, all the hyperparameters for each model are kept same,

except for embedding regularizers and dropout rates. Embedding dimension for each

field is 10, MLP contains 3 hidden layers with shape of [400, 400, 400] and batch

size is 4096. The number of cross network layer is set as 3. We followed the same

optimization steps with BARS, the initial learning rate is set as 0.001 and an adaptive

learning rate strategy is used, where the learning rate is divided by a factor of 10 each

time the validation loss increases after an epoch. The model is trained for 100 epochs

at maximum, with early stopping logic by using a patience parameter of 2 and the

optimizer is chosen as Adam [39]. Adam optimizer is a Stochastic Gradient Descent

optimizer type algorithm that is based on adaptive estimation of first and second order

moments. The Adam optimizer updates the parameters using the given in Equations

5.2 through Equations 5.6.

mt = β1mt−1 + (1− β1)gt (5.2)

vt = β2vt−1 + (1− β2)g
2
t (5.3)

m̂t =
mt

1− βt
1

(5.4)

v̂t =
vt

1− βt
2

(5.5)

θt = θt−1 − α
m̂t√
v̂t + ϵ

(5.6)

where:

• mt is the first moment estimate.

• vt is the second moment estimate.
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• m̂t is the bias-corrected first moment estimate.

• v̂t is the bias-corrected second moment estimate.

• θt are the parameters at time step t.

• α is the learning rate.

• β1 and β2 are the exponential decay rates for the moment estimates.

• gt is the gradient at time step t.

• ϵ is a small constant for numerical stability.

The reduction ratio for attention mechanisms are experimented with 1, 3, 5 ratios

and the best model according to the AUC score is considered for the comparisons.

Each attention mechanism has 2 or 4 architectural design choice option as attention

mechanism with layer normalization or not, and attention mechanism solely affects

the DNN part of the model. All of these experiments conducted on a RTX 4000 GPU

with CUDA version 11.7.

5.2 Results and Discussions

In this section, the experiment results and analyses will be shared and discussed.

5.2.1 Performances of Attention Mechanisms On Conventional Models (RQ1)

In the literature, the success of different attention mechanisms in CTR prediction task

has been studied several times [20, 21, 4, 23, 14, 25, 26, 27]. However, in these stud-

ies, the success of the proposed architecture—which may contain components other

than the attention mechanism—was generally examined in comparison to the base-

line results, rather than focusing on the attention mechanism itself. Additionally, as

our knowledge, no study has ever been conducted before on the behavior of atten-

tion mechanisms across different conventional models and the most commonly used

datasets. To analyze the performances of attention mechanism, the experiment results

of Option 1 settings in Figure 4.1 are being used in the tests. The tests are conducted
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by comparing AUC value of the experiments and the base model AUC values. There-

fore, the only difference between the two pairs is attention mechanism layer. The

experimental datasets for the base and experiment values are given in Appendix A.1.

In the experiments, the gradient flow problem was observed for Mean-Standard Sum-

mation Attention and Mean-Standard Concatenation Attention mechanisms on the

DCN base model and Avazu dataset. These two cases are excluded in the analysis as

they are accepted as outliers. Moreover, this problem is not observed when the layer

normalization is activated and more details is provided in Section 5.2.3. To begin

the initial examination of overall behavior, Table 5.2 shows the attention mechanisms

that performed the best in each dataset and base model, as well as the percentage up-

lift and change observed in comparison to the base AUC value and experiment AUC

value.

Table 5.2: Best performer attention mechanisms for each dataset and model pair. LN

refers to Layer Normalization and ICF refers to Interaction Component Feeding.

DataSet Base Model LN ICF Attention Mechanism Experimented Attention Mechanism AUC Base Model AUC Change Percentage Uplift

Avazu DCN Yes Yes Max Attention 0.7654 0.7623 0.0031 0.4067%

Avazu DNN Yes NA1 Mean Max Concatenation Attention 0.7648 0.7635 0.0013 0.1703%

Avazu DeepFM Yes Yes Mean Max Summation Attention 0.7644 0.7642 0.0002 0.0262%

Criteo DCN - - Bitwise Attention 0.8141 0.8137 0.0004 0.0492%

Criteo DNN - NA1 Bitwise Attention 0.8140 0.8136 0.0004 0.0492%

Criteo DeepFM - - Bitwise Attention 0.8142 0.8137 0.0005 0.0614%

Frappe DCN Yes - Bitwise Attention 0.9846 0.9843 0.0003 0.0305%

Frappe DNN - NA1 Mean Attention 0.9846 0.9844 0.0002 0.0203%

Frappe DeepFM Yes Yes Mean Max Summation Attention 0.9849 0.9844 0.0005 0.0508%

Movielens DCN - - Bitwise Attention 0.9695 0.9686 0.0009 0.0929%

Movielens DNN Yes NA1 Mean Max Concatenation Attention 0.9686 0.9676 0.0010 0.1033%

Movielens DeepFM Yes Yes Max Attention 0.9686 0.9683 0.0003 0.0310%

For the Avazu dataset, the best-performing attention mechanisms were Max Atten-

tion for DCN and Mean-Max Attention mechanisms for DNN and DeepFM. Notably,

all best-performing attention mechanisms were obtained when layer normalization

was applied, with the updated weights being fed into the interaction component.

Among all the best-performing experiments for each dataset-model pairs, the high-

est percentage uplift was achieved using the Max Attention mechanism on the Avazu

dataset with the DCN base model with 0.4067% uplift. For the Criteo dataset, all the

best-performing experiments utilized the Bitwise Attention mechanism, where nei-

ther layer normalization nor interaction component feeding was applied. The Criteo

1Interaction Component feeding is not applicable for DNN models
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dataset is the only dataset that contains mixed field types, and numerical features

might perform better with bitwise attention mechanism then vectorwise attention

mechanisms.

For the Frappe dataset, the best-performing attention mechanisms varied across the

models. In the DCN model, Bitwise Attention was the top performer, while Mean

Attention excelled in the DNN model. In the DeepFM model, the best results were

obtained using the Mean Max Summation Attention mechanism. Interestingly, for

the Frappe dataset, the best-performing experiments involved a mix of using and

not using layer normalization and interaction component feeding, depending on the

model. Among the Frappe results, the highest percentage uplift was achieved with

the DeepFM model using the Mean Max Summation Attention mechanism, leading

to a 0.0508% uplift.

For the Movielens dataset, Bitwise Attention resulted as the best performer for the

DCN model as in the Frappe dataset, while the DNN model performed best with the

Mean Max Concatenation Attention mechanism. For the DeepFM model, Max At-

tention was the top performer. Similar to the Frappe dataset, the Movielens dataset

achieved success with Bitwise Attention in the DCN model, even without layer nor-

malization or interaction component feeding. The DNN model, on the other hand,

showed the highest percentage uplift among all Movielens experiments, with a 0.1033%

improvement using the Mean Max Concatenation Attention mechanism.

To measure the general success of attention mechanisms, two tests were performed

on all datasets and base models. To compare the AUC values, we used two tests

which are Wilcoxon signed-rank test and the Sign Test to measure whether there

were significant changes. Even though these two tests are similar, as they are non-

parametric tests, they have different objectives. The objective of the Wilcoxon signed-

rank test is to determine if the distribution of the differences is symmetric about zero,

while the objective of the Sign Test is to test whether there is a significant difference

in the number of positive and negative differences in paired data.

The number of positive impacts, total pairs, median percentage changes, and corre-

sponding p-values of the tests can be seen in the Table 5.3. Bitwise Attention, Max

Attention and Mean Attention performed better than the base model more than half of
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Table 5.3: Comparison of Different Attention Mechanisms Based on Median Percent-

age Change, Wilcoxon p-value, and Sign Test p-value

Attention Mechanism # of Positive Impact Total Experiments Sign Test p-value Percentage Change in Medians Wilcoxon Test p-value

Bitwise Attention 7 12 0.7744 0.0505% 0.1677

Max Attention 7 12 0.7744 -0.1067% 0.4142

Mean Attention 9 12 0.1460 -0.1123% 0.4238

Mean Max Summation Attention 2 12 0.0386∗ -0.5052% 0.0076∗

Mean Max Concatenation Attention 4 12 0.3877 -0.9937% 0.0342∗

Mean Std Summation Attention 1 11 0.0117∗ -1.5916% 0.0109∗

Mean Std Concatenation Attention 4 11 0.5488 -4.8987% 0.0420∗

the times, but we cannot conclude as significant them according to Sign Test, as their

p-values are greater than 0.05. Moreover, the most positive effect was achieved by

obtaining higher test AUCs than base AUC values in 9 out of every 12 experiments in

the Mean Attention mechanism. On the other hand, the median percentage is decreas-

ing, implying that there should be a few base models and datasets that are affected

negatively due to the Mean Attention mechanism. The joint attention mechanisms

performed worse than the base model itself in most of the experiments. Addition-

ally, joint mechanisms with summation aggregation significantly performed worse

than base model according to Sign test. The median percentage change is decreasing

for all joint mechanisms, and these performance decreases are significant according

to Wilcoxon signed-rank test. Moreover, the median percentage change was most

negatively affected by Mean Standard Attention mechanisms.

This analysis is also examined more specifically on a dataset basis, and the number of

samples for each attention mechanism and dataset pair decreases to three. The overall

performances of attention mechanisms on each dataset can be seen in Table 5.4.

According to test results, none of the test results are significant, which may be due to

the small sample size, which is just three. However, the overall tendency has some

patterns. In the Criteo dataset, which contains the most number of fields, all attention

mechanisms performed better than the base model, except for the joint mechanisms

with summation aggregation method. Additionally, the median values of all attention

mechanism are increasing, and Bitwise Attention and Mean Attention mechanisms

have the highest uplifts for the median percentage changes. The second dataset is

Avazu, which has the second-highest number of fields. The Bitwise Attention and

46



Table 5.4: Comparison of Different Attention Mechanisms Based on Median Percent-

age Change, Wilcoxon p-value, and Sign Test p-value on across datasets

Attention Mechanism Dataset # of Positive Impact Total Experiments Sign Test p-value Percentage Change in Medians Wilcoxon Test p-value

Bitwise Attention Avazu 2 3 1.000 -0.026% 0.750

Max Attention Avazu 1 3 1.000 -0.026% 1.000

Mean Attention Avazu 2 3 1.000 0.013% 0.750

Mean Max Summation Attention Avazu 0 3 0.250 -0.131% 0.250

Mean Max Concatenation Attention Avazu 1 3 1.000 -0.065% 0.750

Mean Std Summation Attention Avazu 0 2 0.500 -0.223% 0.500

Mean Std Concatenation Attention Avazu 1 2 1.000 -0.118% 1.000

Bitwise Attention Criteo 3 3 0.250 0.049% 0.250

Max Attention Criteo 3 3 0.250 0.037% 0.250

Mean Attention Criteo 3 3 0.250 0.049% 0.250

Mean Max Summation Attention Criteo 2 3 1.000 0.037% 0.157

Mean Max Concatenation Attention Criteo 3 3 0.250 0.012% 0.250

Mean Std Summation Attention Criteo 1 3 1.000 0.000% 0.317

Mean Std Concatenation Attention Criteo 3 3 0.250 0.025% 0.250

Bitwise Attention Movielens 2 3 1.000 -0.031% 0.500

Max Attention Movielens 1 3 1.000 0.010% 0.500

Mean Attention Movielens 0 3 0.250 -0.031% 0.250

Mean Max Summation Attention Movielens 0 3 0.250 -0.878% 0.250

Mean Max Concatenation Attention Movielens 0 3 0.250 -0.867% 0.250

Mean Std Summation Attention Movielens 0 3 0.250 -1.652% 0.250

Mean Std Concatenation Attention Movielens 0 3 0.250 -1.239% 0.250

Bitwise Attention Frappe 0 3 0.250 -0.020% 0.180

Max Attention Frappe 1 3 1.000 0.000% 0.317

Mean Attention Frappe 3 3 0.250 0.010% 0.250

Mean Max Summation Attention Frappe 0 3 0.250 -0.904% 0.250

Mean Max Concatenation Attention Frappe 0 3 0.250 -0.731% 0.250

Mean Std Summation Attention Frappe 0 3 0.250 -0.498% 0.250

Mean Std Concatenation Attention Frappe 0 3 0.250 -0.904% 0.250

Mean Attention mechanisms performed better than the base model half of the times.

The only uplift in the median values is occurred with the Mean Attention mecha-

nism. On the other hand, the joint mechanisms with summation aggregation methods

(Mean-Max Summation Attention and Mean-Standard Summation Attention) did not

achieve better test AUCs than the base models. The third dataset is Frappe, which

has 10 fields and the fewest instances among the datasets. Models with the Mean

Attention mechanism performed better than the base models in all three experiments.

However, only the model with the Max Attention mechanism performed better than

the base models in terms of AUC value, while the remaining attention mechanisms

achieved worse results than the base model AUC values. Finally, the last dataset is

MovieLens dataset, which contains 3 fields, the lowest number of fields among the

datasets. Moreover, only the Bitwise Attention mechanism performed better than

the base model more than half of the times, and the attention mechanisms which are

vector-wise mechanisms established poor performances. The reason behind this may
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be the low number of fields lead to poor performances with vector-wise attention

mechanisms.

5.2.2 Comparison of Attention Mechanisms (RQ2)

In this section, we aim to determine whether there are any significant performance

differences among the attention mechanisms. To achieve this, non-parametric statis-

tical methods are applied to ensure that the comparisons remain robust and applicable

across diverse data scenarios. In these analyses, Friedman Chi-Square and posthoc

Conover Friedman tests are applied to compare the performances of Attention mech-

anisms with each other. The Friedman Chi-Square test is a non-parametric test that

examines whether there is a significant difference between groups. The null hypoth-

esis is that there are no differences in the distributions of the groups, meaning it tests

whether the groups are identical or not. Additionally, the posthoc Conover test is

also a non-parametric test, and it is used to perform pairwise comparison after the

Friedman Chi-Square which indicated a significant difference between the groups.

The aim of the posthoc Conover test outputs groups that are significantly differ with

other groups. Firstly, the overall performances of attention mechanisms are analyzed

to capture a general view. The test result of the Friedman Chi-Square test indicates

significantly different groups, which are the AUC values of different attention mecha-

nisms on different datasets, with p-value as 9.810e-7. Therefore, the posthoc Conover

test can be applied to differentiate the performances of the attention mechanisms. To

conduct the posthoc Conover test, the mean rank of AUC values for each attention

mechanism is used. The output of the posthoc Conover test is pairwise p-values

which test if there is significant difference between the pairs, and the overall sign plot

which represents the p-values can be seen in Figure 5.1.
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Figure 5.1: Overall Conover posthoc test sign plot of attention mechanisms

The pink cells represent insignificant differences, while the green cells indicate sig-

nificantly different pairs. The tone of the color implies the significance level: the

darkest shade represents the most significant differences, while the lightest shade

represents the least significant differences. In addition to sign plot, the critical dif-

ference diagram, which can be seen in Figure 5.2, indicates differentiated groups.

The dark line denotes that there is no significant difference between the connected

attention mechanisms. The average rank of attention mechanisms is ordered from

right to left, from highest to lowest. Therefore, we can conclude that the Bitwise

Attention mechanism is the best performer on the overall. However, there is no sig-

nificant difference between Bitwise Attention and Max Attention, Mean Attention,

and Mean-Max Summation Attention mechanisms, as the CD line passes through all

these attention mechanisms. On the other hand, Bitwise Attention significantly out-

performs Mean-Std Concatenation Attention, Mean-Std Summation Attention, and

Mean-Max Concatenation Attention. Additionally, Max Attention also significantly

differs from the Mean-Std Attention mechanisms.
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Figure 5.2: Overall Conover posthoc test Critical Difference diagram of attention

mechanisms

To make a deep dive analysis, the same tests are conducted for each dataset separately.

The first dataset is Avazu, and this dataset contains 22 categorical fields. We are not

able to conclude that there is a statiscally significant difference between the groups

according to Friedman Chi-Square test as the p-value is 0.117. Although the test did

not indicate a statistical difference between the groups, we conducted the posthoc

Conover to examine the effects of the groups on each other. The Conover test sign

plot for Avazu dataset can be seen in Figure 5.3, and the CD diagram can be seen in

Figure 5.4.

Figure 5.3: Conover posthoc test sign plot of attention mechanisms for Avazu Dataset
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Figure 5.4: Conover posthoc test Critical Difference diagram of attention mechanisms

for Avazu Dataset

Although the Friedman Chi-Square test does not indicate a significant difference be-

tween the groups, the posthoc Conover test shows a significant difference between

Mean-Standard Summation and some other attention mechanisms under the pair-

wise comparison. Moreover, although in the overall comparisons the highest aver-

age ranked attention mechanism was Bitwise Attention, the highest average ranked

attention mechanism is Mean Attention, followed by Max Attention for the Avazu

dataset. However, there is indifference between Mean Attention, Max Attention,

Bitwise Attention, Mean-Max Attention, Mean-Max Concatenation Attention and

Mean-Standard Concatenation Attention.

The second dataset examined is the Criteo dataset, which has the most features, and

its fields are of mixed types. According to the Friedman Chi-Square test, there is no

statistically significant difference among the attention mechanisms, as the p-value is

0.208. However, it is worth examining the posthoc Conover test results to gain a basic

understanding of the attention mechanisms on this dataset. The Conover test sign plot

for Criteo dataset can be seen in Figure 5.5, and the CD diagram can be seen in Figure

5.6.
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Figure 5.5: Conover posthoc test sign plot of attention mechanisms for Criteo Dataset

Figure 5.6: Conover posthoc test Critical Difference diagram of attention mechanisms

for Criteo Dataset

As seen in Figure 5.6, the behavior of the attention mechanisms is similar to that of the

Avazu dataset. As with the Avazu dataset, the highest average-ranked attention mech-

anism is Mean Attention, followed by Max Attention. However, there is indifference

among Mean Attention, Max Attention, Bitwise Attention, Mean-Max Summation

Attention, Mean-Max Concatenation Attention, and Mean-Standard Concatenation

Attention. The only difference is that Mean-Standard Summation is almost indiffer-

ent to every attention mechanism except for Mean Attention.
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The third dataset is Frappe, which contains 10 categorical fields with the lowest num-

ber of records. This is the first dataset that can be concluded that there is a significant

difference between the attention mechanisms with p-value as 0.0402 according to the

Friedman Chi-Square test. The differences among the attention mechanisms are more

concrete in this dataset, and the Conover test sign plot for the Frappe dataset can be

seen in Figure 5.7, and the CD diagram can be seen in Figure 5.8.

Figure 5.7: Conover posthoc test sign plot of attention mechanisms for Frappe Dataset

Figure 5.8: Conover posthoc test Critical Difference diagram of attention mechanisms

for Frappe Dataset

According to the CD diagram of the posthoc Conover test, the highest average-ranked
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attention mechanism is Bitwise Attention, with an average rank of 1, meaning it is

always placed in the first rank. However, we cannot conclude this difference is sig-

nificant among Bitwise Attention, Max Attention and Mean Attention, as the CD line

is linked all three attention mechanism according to the CD diagram. Additionally,

Bitwise Attention is significantly performing better than joint attention mechanisms,

namely Mean-Max Concat Attention, Mean-Standard Concat Attention, Mean-Max

Summation Attention, and Mean-Standard Summation Attention. This is illustrated

by the absence of a connecting CD line between Bitwise Attention and these joint

attention mechanisms, indicating a clear and significant performance distinction.

The last dataset is MoveiLens, which has only 3 categorical fields. The p-value is

0.0137 according to the Friedman Chi-Square test and there is significant differences

among the groups of AUC values for different attention mechanisms. Moreover, the

posthoc Conover test sign plot for MovieLens dataset can be seen in Figure 5.9, and

the CD diagram can be seen in Figure 5.10.

Figure 5.9: Conover posthoc test sign plot of attention mechanisms for MovieLens

Dataset
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Figure 5.10: Conover posthoc test Critical Difference diagram of attention mecha-

nisms for MovieLens Dataset

Based on the critical difference (CD) diagram of the Conover posthoc test on the

MovieLens dataset, Bitwise Attention is again observed to have the highest average-

ranked attention mechanism as in the Frappe dataset. Moreover, Bitwise Attention is

significantly different from all other attention mechanisms except Max Attention. The

difference between joint and solely attention mechanisms (e.g., Bitwise Attention,

Max Attention, Mean Attention) is the most significant in MovieLens dataset. One

possible reason for this could be the low number of fields, so vector-wise attention

mechanisms may not provide any additional benefit to the categorical fields.

5.2.3 Impact of Layer Normalization on Attention-Based Models (RQ3)

To analyze the effect of layer normalization, we first compare the performance of

attention mechanisms with and without layer normalization. All hyperparameters,

except for layer normalization (whether it is active or not), are kept the same for the

test pairs, including the base model, interaction feeding, and dataset. The Test Set

AUC values of the pairs with and without layer normalization are used to analyze

the performances. We conducted our tests first on all datasets and then on dataset

breakdowns. The same two tests that are implemented in Section 5.2.1 are conducted

to analyze the impact of layer normalization.

For the comparisons of all datasets, there are 140 pairs with and without layer nor-

malization which 78 of the pairs showed better performance with layer normalization.

However, we could not conclude that the difference in the number of positive pairs

are significantly more than negative ones according to the Sign Test (p-value = 0.20).

On the other hand, there is a 1.02% increase in median of AUC values when layer
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normalization is active. Moreover, according to the Wilcoxon signed-rank test, the

median difference between the pairs are significant as we can reject the null hypoth-

esis at a confidence level of 5% (p-value = 0.00003).

When we examine the effect of the layer normalization on a per-dataset basis, we

observed different behaviors across all datasets. There are 35 pairs in each dataset,

and Table 5.5 shows the number of experiments where layer normalization has a

positive effect when it is active, compared to when it is not, and the Sign Test p-

values.

Table 5.5: Impact of Layer Norm across different datasets

Dataset # of Layer Norm Positive Impact Total Experiments p-value

Avazu 32 35 4.1770e-07∗

Criteo 3 35 4.1770e-07∗

MovieLens 21 35 0.3105

Frappe 22 35 0.1755

Layer normalization performed best on the Avazu dataset, which contains only 22

categorical features, as 32 pairs of the 35 all pairs had a better performance under

layer normalization. In addition to that, the difference is significant according to the

Sign Test with p-value as 4.1770e-07. Conversely, in the Criteo dataset, which is a

mixed dataset with 26 categorical and 13 numerical fields, layer normalization had a

positive impact in only 3 out of 35 pairs, and the Sign Test outputs that the negative

difference is also significant (p-value = 4.1770e-07). In the Frappe and MovieLens

datasets, we observe similar results with 22 and 21 positive impacts out of 35 pairs,

respectively, and the positive number differences to negative numbers is insignificant

according to the Sign Test.
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Table 5.6: Layer Norm effects for Median Changes on across Datasets

Dataset Percentage Change in Medians p-value

Avazu 0.131% 6.222e-06∗

Criteo -0.061% 1.967e-06∗

MovieLens 0.238% 0.0015∗

Frappe 0.183% 0.0025∗

As shown in Table 5.6, the effect of layer normalization is significantly positive in the

Avazu, MovieLens and Frappe datasets according to Wilcoxon signed-rank test, and

the highest uplift achieved in MovieLens dataset with 0.238% median change. On the

other hand, in the Criteo dataset, the median of AUC values is decreasing with 0.061%

when layer normalization is active, and this change in the median is significant at a

confidence level of 5%. As we stated layer normalization only performed worse on

the Criteo dataset, and the reason might be occurred due to intrinsic variability in

numerical features that layer normalization might over-smooth.

We conducted our tests for the impact analysis of layer normalization across the

datasets and base models. Table 5.7 shows that the effects of datasets on models re-

flect similar trends. All models (DNN, DCN, DeepFM) show consistent results on the

Avazu dataset, and except DNN tests, the uplifts are significant for both tests which

are Sign Test and Wilcoxon signed-rank test. For the Criteo dataset, all test results are

significant and we can conclude that layer normalization performs poorly independent

from the base model. For the small datasets which are Frappe and MovieLens, the

behaviors are similar. Although there are more positive impacts than negatives, we

could not able define as significant difference according to Sign test. However, some

of the median percentage changes in the distributions are significant (DCN-Frappe,

DeepFM-MovieLens, DCN-MovieLens).
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Table 5.7: Impact of Layer Norm across different Datasets and Base Models

Dataset Base Model # of Layer Norm Positive Impact Total Experiments Sign Test p-value Percentage Change in Medians Wilcoxon Test p-value

Avazu DNN 5 7 0.4531 0.0393% 0.1563

Avazu DeepFM 14 14 0.0001∗ 0.1245% 0.0001∗

Avazu DCN 13 14 0.0018∗ 0.1901% 0.0004∗

Criteo DNN 0 7 0.0156∗ -0.1475% 0.0156∗

Criteo DeepFM 2 14 0.0129∗ -0.0430% 0.0036∗

Criteo DCN 1 14 0.0018∗ -0.0614% 0.0041∗

Frappe DNN 5 7 0.4531 0.4390% 0.1563

Frappe DeepFM 8 14 0.7905 0.0712% 0.1520

Frappe DCN 9 14 0.4240 0.1884% 0.0295∗

Movielens DNN 3 7 1.0 0.0829% 0.1441

Movielens DeepFM 10 14 0.1796 0.9454% 0.0295∗

Movielens DCN 8 14 0.7905 0.2695% 0.1040

In the last stage of our analysis on the effects of layer normalization, we conducted

our tests based on attention mechanisms and observed that the effect of layer normal-

ization on joint attention mechanisms (Mean-Max Attention and Mean-Std Attention)

is significantly positive for both tests. These joint mechanisms perform poorly as we

discussed, but their performances are better and might benefit more from layer nor-

malization due to their inherent weaknesses. There may be several reason behind that.

Firstly, one of the layer normalization advantage is stabilizing the training by normal-

izing the inputs to each layer. Mean-Max and Mean-Std models were performing

poorly and this smoothing feature of layer normalization might reduce the variance

in the output of the models. Secondly, we observed gradient flow problems in some

of the experiments with Mean-Std where the model could not achieve learning, and

these results occurred when the layer normalization was not utilized. Layer normal-

ization might help to solve these issues by ensuring that the gradients maintain in a

stable range.

On the other hand, in Bitwise, Max and Mean Attention, the majority stated that better

results were obtained without layer normalization in terms of number of negative pairs

and decrease in the median change, but we can conclude that only mean attention

is significant as a result of the Sign Test. The overall statistics for effects of layer

normalization across attention mechanisms can be seen in Table 5.8
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Table 5.8: Impact of Layer Norm across Attention Mechanisms. LNPI refers to Layer

Normalization Positive Impact

Attention Type # of LNPI Total Experiments Sign Test p-value Percentage Change in Medians Wilcoxon Test p-value

Bitwise Attention 8 20 0.5034 -0.0561% 0.5061

Max Attention 6 20 0.1153 -0.0112% 0.0533

Mean Attention 4 20 0.0118∗ -0.0169% 0.0133∗

Mean Max Concatenation Attention 14 20 0.1153 0.9016% 0.0019∗

Mean Max Summation Attention 14 20 0.1153 0.4688% 0.0025∗

Mean Std Concat Attention 15 20 0.0414∗ 1.0333% 0.0012∗

Mean Std Summation Attention 17 20 0.0026∗ 0.7191% 0.0003∗

5.2.4 Impact of Not Feeding Attention Mechanisms Outputs on Interaction

Component (RQ4)

Another hyperparameter in our test set is whether or not to activate the feeding of

updated feature embeddings with the attention mechanism to low-order feature inter-

action components.

To analyze the impacts of feeding updated feature embeddings to the interaction and

deep components together, the following steps are the same as those described in the

layer normalization analysis steps in subsection 5.2.3. The overall performance with

and without the feeding mechanisms is examined under the circumstances where all

hyperparameters, except for feeding the interaction component (base model, interac-

tion feeding, and dataset), are kept the same for the test pairs. One difference from the

layer normalization analysis is that the experiments are only conducted with DeepFM

and DCN bases, as the DNN model does not have a low-order interaction component.

We have used same statistical tests to monitor the evaluate the feeding interaction

component effects. The evaluation metrics are the AUC values of with and without

feeding the interaction component.

For the comparisons across all datasets, there are 112 pairs with and without feed-

ing the interaction component, compared to 140 pairs for layer normalization. The

number of pairs decreased because the DNN model cannot be used for this test by na-

ture. Moreover, only 49 of the pairs showed an uplift in AUC values when the feeding

mechanism was activated, indicating that in most experiments, feeding the interaction
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component with updated feature vectors led to performance decreases. However, we

cannot state that the difference in the number of negative pairs is significantly greater

than the positive pairs according to the Sign Test, with a p-value of 0.2191. Addition-

ally, the median AUC values for the experiments where the feeding mechanism was

activated decreased by 0.64% compared to those where the feeding mechanism was

deactivated. However, this median value decrease is not significant according to the

Wilcoxon signed-rank test, with a p-value of 0.71.

For the dataset-based analysis, the impacts of the feeding interaction mechanism are

similar across all datasets. Each dataset contains 28 pairs, and Table 5.9 demonstrates

the number of experiments with positive impacts, the total number of experiments,

and the p-value for the Sign Test. All datasets, except for MovieLens, are negatively

affected by feeding the interaction component in terms of the number of positive

impacts. The only positive impact occurred in the MovieLens dataset, with 16 out of

the 28 pairs resulting in better AUC values. However, we cannot conclude that these

effects are significant, as their p-values for the sign test are greater than 0.05.

Table 5.9: Impact of Not Feeding Attention Mechanisms Outputs on Interaction Com-

ponent across different datasets. ICFPI refers to Interaction Component Feeding Pos-

itive Impact

Dataset # of ICFPI Total Experiments p-value

Avazu 13 28 0.8506

Criteo 9 28 0.0872

MovieLens 16 28 0.5716

Frappe 11 28 0.3449

As shown in Table 5.10, feeding the interaction component with updated feature vec-

tors leads to smaller changes in median differences compared to changes in layer

normalization (Table 5.6). The interaction component feeding helps to increase per-

formance in the Avazu and MovieLens datasets, with median changes of 0.0065%
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and 0.0414%, respectively. However, these changes are insignificant according to the

Wilcoxon signed-rank test. Moreover, the median AUC values decrease for the Criteo

and Frappe datasets, but these decreases are also insignificant.

Table 5.10: Not Feeding Attention Mechanisms Outputs on Interaction Component

effects for Median Changes on across Datasets

Dataset Percentage Change in Medians p-value

Avazu 0.0065% 0.3739

Criteo -0.0184% 0.2743

MovieLens 0.0414% 0.5301

Frappe -0.0356% 0.5388

When we dive into dataset and base model analysis, the general tendency does not

change, and all changes are insignificant except for the DeepFM base model in the

Criteo dataset. The most positive impact is observed for the DCN base model in the

MovieLens dataset, with 16 out of the 28 pairs resulting in better AUC values. Feed-

ing the interaction component works best for MovieLens, as we discussed. However,

the only significantly impacted dataset and base model combination is the Criteo

dataset with the DeepFM base model. In this case, only 2 out of the 14 pairs are

positively affected when feeding the interaction component is active, with a signifi-

cant p-value of 0.0129 according to the sign test. The median percentage decrease is

0.0184%, which is significant according to the Wilcoxon signed-rank test.
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Table 5.11: Impact of Not Feeding Updated Features with Attention Mechanisms on

Interaction Component across different Datasets and Base Models. ICFPI refers to

Interaction Component Feeding Positive Impact

Dataset Base Model # of ICFPI Total Experiments Sign Test p-value Percentage Change in Medians Wilcoxon Test p-value

Avazu DeepFM 8 14 0.7905 0.0065% 0.5759

Avazu DCN 5 14 0.4240 -0.0197% 0.1726

Criteo DeepFM 2 14 0.0129∗ -0.0184% 0.0481∗

Criteo DCN 7 14 1.0000 0.0061% 0.3711

Frappe DeepFM 5 14 0.4240 -0.0712% 0.5301

Frappe DCN 6 14 0.7905 -0.0356% 0.8751

MovieLens DeepFM 7 14 1.0000 0.0259% 0.5830

MovieLens DCN 9 14 0.4240 -0.0465% 0.6001

Finally, the tests are conducted based on attention mechanisms, and the results indi-

cate that the Bitwise Attention mechanism has a minor impact, with only 5 out of 16

experiments showing a positive effect and a median percentage change of 0.0168%,

and these results are statistically insignificant according to the sign test and Wilcoxon

signed-rank. Max Attention and Mean Attention are the only attention mechanisms

that exhibited positive effects, with 11 out of 16 experiments and 10 out of 16 ex-

periments resulting in better AUC values, respectively. However, the significance

threshold was not reached for the number of positive pairs, but the median percentage

change, which is 0.0730% for Max Attention, can be concluded as significant accord-

ing to Wilcoxon signed-rank test. Although the median change, which is 0.0899%

for Mean Attention, is higher than Max Attention, we have to fail to reject the null

hypothesis for Wilcoxon signed-rank test. All joint attention mechanisms are nega-

tively affected in terms of number of positive pairs, but none of them are significant

according to the sign test. In addition to that, the median percentage change for

Mean-Standard Summation Attention is -0.0283% and it is significant according to

Wilcoxon signed-rank test. The only uplift in median percentage change among the

joint mechanisms is occurred in Mean Max Summation Attention with 0.1130%, but

we cannot conlude this uplift as significant. The overall statistics for effects of feeding

updated features across attention mechanisms can be seen in Table 5.12
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Table 5.12: Impact of Not Feeding Updated Features with Attention Mechanisms

on Interaction Component across Attention Mechanisms. ICFPI refers to Interaction

Component Feeding Positive Impact

Attention Type # of ICFPI Total Experiments Sign Test p-value Perc. Change in Medians Wilcoxon Test p-value

Bitwise Attention 5 16 0.2101 0.0168% 0.2941

Max Attention 11 16 0.2101 0.0730% 0.0352∗

Mean Attention 10 16 0.4545 0.0899% 0.1398

Mean Max Concatenation Attention 7 16 0.8036 -0.0567% 0.7820

Mean Max Summation Attention 6 16 0.4545 0.1130% 0.7545

Mean Std Concatenation Attention 5 16 0.2101 -1.544% 0.5095

Mean Std Summation Attention 5 16 0.2101 -0.0283% 0.0950∗

5.2.5 Key Findings

The prominent findings of the conducted analyses can be listed as follows:

• General Performances of Attention Mechanisms:

– The solely attention mechanisms (Bitwise Attention, Max Attention, and

Mean Attention) generally performed better than the base models, though

joint mechanisms achieved the highest scores in a few cases.

– In the dataset-specific analyses, most attention mechanisms outperformed

the base models in the Criteo dataset, which features a diverse set of fields.

However, when the number of fields is decreasing the performance of

attention mechanisms are also starting to decrease.

– Bitwise Attention is the least affected mechanism by the reduction in

the number of fields, maintaining better performance across datasets with

fewer fields.

– Although Mean-Std Attention is used in other domains, this attention

mechanism performed poorly in most of the experiments. The reason

behind this may be that Standard Deviation pooling captures the variance

in the feature embeddings, which can be an important indicator in other

domains, such as voice recognition, but not for the CTR prediction task.

• Comparison of Attention Mechanisms:
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– In the comparative analysis, Bitwise Attention, Mean Attention, and Max

Attention generally outperform joint mechanisms. However, no signif-

icant performance differences were observed between attention mecha-

nisms for the most complex datasets (Criteo and Avazu).

– Mean Attention ranks highest on average for the Criteo and Avazu datasets,

which have a larger number of fields.

– For datasets with fewer fields (Movielens and Frappe), joint mechanisms

perform poorly compared to other attention mechanisms, with Bitwise

Attention emerging as the best performer.

– It is observed that vector-wise attention mechanisms can face trouble lever-

aging the advantages of the attention mechanism if there are a limited

number of fields.

– The average ranking of the attention mechanisms in the radar chart in Fig-

ure 5.11 and the data matrix, which contains the top 3 performing atten-

tion mechanisms for each dataset in Figure 5.12 illustrates the overall per-

formance of different attention mechanisms across datasets with varying

characteristics and visually represents our conclusions about the varying

effectiveness of attention mechanisms depending on dataset complexity

and the number of fields.

• Impact of Layer Normalization:

– The effects of layer normalization on attention mechanisms vary depend-

ing on the dataset and mechanism. Layer normalization generally im-

proves performance in all datasets except Criteo, which contains mixed

categorical and numerical fields. The reason behind may be because of

the gradient flows that are observed a few times, and implementing layer

normalization may help to stabilize the gradients, enhance learning and

overall model performance.

– Joint attention mechanisms performed better when the layer normalization

is implemented. The reason behind may be because of the gradient flows

that are observed a few times, and implementing layer normalization may

help to stabilize the gradients, enhance learning and overall model perfor-

mance.

64



• Impact of Feeding Low-Order Feature Interaction Component:

– The impact of feeding interaction components with updated weights by

attention mechanisms is mostly neutral. However, Max Attention and

Mean Attention show slight performance improvements when the inter-

action layer is fed with updated weights instead of raw field vectors.

Figure 5.11: Radar Chart of Attention Mechanisms across the Datasets
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Figure 5.12: Data Matrix of Attention Mechanisms across the Datasets
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CHAPTER 6

CONCLUSION

To conclude, in this thesis, we aimed to examine the effects of attention mechanisms

in CTR prediction models on highly used datasets and the models. Our analysis re-

veals plenty of key insights into the performance of attention mechanisms on the

conventional models under the different type of hyper-parameter settings. The atten-

tion mechanisms do not have to perform well in every condition, and the design of

choice should be considered before the experiment phase. For instance, the joint at-

tention mechanisms occasionally achieved the highest score, but the solely attention

mechanisms like Bitwise Attention, Max Attention and Mean Attention mechanisms

are more robust and performed well in most of the cases. Therefore, it can be sug-

gested that if the dataset that will be used to predict CTR values has few number of

categorical variables, it is more likely to perform poorly with joint mechanism while

Bitwise Attention mechanism can perform better than without attention mechanism.

Additionally, it is observed that layer normalization generally performed well. One

difference was in the Criteo dataset, which contains mixed type of fields, where the

layer normalization may lead to over-smoothing in the numerical features.

Finally, the feeding updated weights from attention mechanisms into the interaction

layer showed neutral to slightly positive effects, especially for Max Attention and

Mean Attention.

For the future work, the main objective is to increase the number of different types

of datasets to achieve better generalization on the behaviors of attention mechanisms

across diverse datasets. Another objective is to explore the impacts of the residual

networks in the attention mechanisms which is proved to reduce the information loss
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in some of the studies [24], and the other future objective is exploring the performance

of self-attention mechanism [19, 18], which is the main structure of the groundbreak-

ing transformer architectures.
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APPENDIX A

ATTENTION MECHANISM EXPERIMENTS

A. Experiment vs Base Values for Option 1 Settings

Table A.1: Experiment vs Base Values for Option 1 Settings

Base Model Attention Mechanism DataSet Layer Normalization Interaction Component Feeding Experimented Attention Mechanism AUC Base Model AUC

DCN Bitwise Attention Avazu - Yes 0.7633 0.7623

DCN Bitwise Attention Criteo - Yes 0.8141 0.8137

DCN Bitwise Attention Movielens - Yes 0.9689 0.9686

DCN Bitwise Attention Frappe - Yes 0.9842 0.9843

DeepFM Bitwise Attention Avazu - Yes 0.7633 0.7642

DeepFM Bitwise Attention Criteo - Yes 0.8142 0.8137

DeepFM Bitwise Attention Movielens - Yes 0.968 0.9683

DeepFM Bitwise Attention Frappe - Yes 0.9842 0.9844

DNN Bitwise Attention Avazu - - 0.7638 0.7635

DNN Bitwise Attention Criteo - - 0.814 0.8136

DNN Bitwise Attention Movielens - - 0.968 0.9676

DNN Bitwise Attention Frappe - - 0.9844 0.9844

DCN Max Attention Avazu - Yes 0.7643 0.7623

DCN Max Attention Criteo - Yes 0.8141 0.8137

DCN Max Attention Movielens - Yes 0.9691 0.9686

DCN Max Attention Frappe - Yes 0.9846 0.9843

DeepFM Max Attention Avazu - Yes 0.7631 0.7642

DeepFM Max Attention Criteo - Yes 0.814 0.8137

DeepFM Max Attention Movielens - Yes 0.9685 0.9683

DeepFM Max Attention Frappe - Yes 0.9844 0.9844

DNN Max Attention Avazu - - 0.7633 0.7635

DNN Max Attention Criteo - - 0.8139 0.8136

DNN Max Attention Movielens - - 0.9653 0.9676

DNN Max Attention Frappe - - 0.9844 0.9844

DCN Mean Attention Avazu - Yes 0.7635 0.7623

DCN Mean Attention Criteo - Yes 0.8141 0.8137

DCN Mean Attention Movielens - Yes 0.9688 0.9686

DCN Mean Attention Frappe - Yes 0.9844 0.9843

DeepFM Mean Attention Avazu - Yes 0.7636 0.7642

DeepFM Mean Attention Criteo - Yes 0.8141 0.8137

DeepFM Mean Attention Movielens - Yes 0.9681 0.9683

DeepFM Mean Attention Frappe - Yes 0.9845 0.9844

DNN Mean Attention Avazu - - 0.7636 0.7635

DNN Mean Attention Criteo - - 0.814 0.8136

DNN Mean Attention Movielens - - 0.9652 0.9676

DNN Mean Attention Frappe - - 0.9846 0.9844
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Table A.2: Table 1 (continued)

Base Model Attention Mechanism DataSet Layer Normalization Interaction Component Feeding Experimented Attention Mechanism AUC Base Model AUC

DCN Mean Max Summation Attention Avazu - Yes 0.7612 0.7623

DCN Mean Max Summation Attention Criteo - Yes 0.814 0.8137

DCN Mean Max Summation Attention Movielens - Yes 0.9651 0.9686

DCN Mean Max Summation Attention Frappe - Yes 0.9704 0.9843

DeepFM Mean Max Summation Attention Avazu - Yes 0.7635 0.7642

DeepFM Mean Max Summation Attention Criteo - Yes 0.814 0.8137

DeepFM Mean Max Summation Attention Movielens - Yes 0.9583 0.9683

DeepFM Mean Max Summation Attention Frappe - Yes 0.982 0.9844

DNN Mean Max Summation Attention Avazu - - 0.7625 0.7635

DNN Mean Max Summation Attention Criteo - - 0.8136 0.8136

DNN Mean Max Summation Attention Movielens - - 0.9647 0.9676

DNN Mean Max Summation Attention Frappe - - 0.9755 0.9844

DCN Mean Max Concat Attention Avazu - Yes 0.7627 0.7623

DCN Mean Max Concat Attention Criteo - Yes 0.8138 0.8137

DCN Mean Max Concat Attention Movielens - Yes 0.9647 0.9686

DCN Mean Max Concat Attention Frappe - Yes 0.9754 0.9843

DeepFM Mean Max Concat Attention Avazu - Yes 0.763 0.7642

DeepFM Mean Max Concat Attention Criteo - Yes 0.8141 0.8137

DeepFM Mean Max Concat Attention Movielens - Yes 0.9495 0.9683

DeepFM Mean Max Concat Attention Frappe - Yes 0.9786 0.9844

DNN Mean Max Concat Attention Avazu - - 0.7631 0.7635

DNN Mean Max Concat Attention Criteo - - 0.8137 0.8136

DNN Mean Max Concat Attention Movielens - - 0.9617 0.9676

DNN Mean Max Concat Attention Frappe - - 0.9772 0.9844

DCN Mean Std Summation Attention Avazu - Yes 0.5 0.7623

DCN Mean Std Summation Attention Criteo - Yes 0.8137 0.8137

DCN Mean Std Summation Attention Movielens - Yes 0.9555 0.9686

DCN Mean Std Summation Attention Frappe - Yes 0.982 0.9843

DeepFM Mean Std Summation Attention Avazu - Yes 0.762 0.7642

DeepFM Mean Std Summation Attention Criteo - Yes 0.814 0.8137

DeepFM Mean Std Summation Attention Movielens - Yes 0.9522 0.9683

DeepFM Mean Std Summation Attention Frappe - Yes 0.9788 0.9844

DNN Mean Std Summation Attention Avazu - - 0.7623 0.7635
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