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ABSTRACT

DUCTILE-BRITTLE FRACTURE OF AMORPHOUS GLASSY POLYMERS

Başdemir, Selçuk

M.S., Department of Mechanical Engineering

Supervisor: Prof. Dr. Hüsnü Dal

September 2024, 87 pages

Amorphous glassy polymers are extensively used in industrial sectors like micro-

electronics, medical devices, and aerospace. Their design and application have be-

come crucial due to their varying fracture responses, which can range from duc-

tile to brittle depending on factors such as entanglement density, temperature, and

loading rate. Ductile responses are driven by diffuse shear zones exhibiting volume-

preserving inelastic deformations, while brittle responses are manifested by small

crack-like defects with fibrillar bridges separated by micro-voids, indicating void for-

mation through nucleation and propagation.

This thesis focuses on describing shear yielding and crazing phenomena through evo-

lution equations. It also extends the modeling of fracture using a crack phase-field

approach, allowing for the simultaneous consideration of ductile and brittle failure.

This approach is based on a novel failure criterion that features both a critical amount

of plastic strain and void volume fraction, making it more physically grounded than

current models. Additionally, a coupled thermo-mechano-fracture model for amor-

phous glassy polymers is introduced, enabling simultaneous treatment of ductile and

brittle fracture.
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Constitutive formulations for shear yielding, crazing, and void volume fraction are

derived, starting with the local and conductive components of the dissipation inequal-

ity. The model’s governing equations integrate mechanics with the crack phase-field

and temperature evolution, addressing the global thermal problem—a key focus of

this research. The model’s performance is evaluated using local and global Newton-

type update algorithms, tested against experimental data from homogeneous and in-

homogeneous tests, revealing significant temperature dependency on failure type and

interaction between loading rate and temperature due to dissipative heating.

Keywords: Amorphous glassy polymers, Crack phase–field, Crazing, Finite thermo-

viscoplasticity, Void growth
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ÖZ

AMORF CAMSI POLİMERLERİN SÜNEK-GEVREK KIRILMASI

Başdemir, Selçuk

Yüksek Lisans, Makina Mühendisliği Bölümü

Tez Yöneticisi: Prof. Dr. Hüsnü Dal

Eylül 2024 , 87 sayfa

Amorf camsı polimerler, mikroelektronik, tıbbi cihazlar ve havacılık gibi sanayi alan-

larında yaygın olarak kullanılmaktadır. Tasarımları ve kullanımları, dolanma yoğun-

luğu, sıcaklık ve yükleme hızı gibi faktörlere bağlı olarak sünekten gevreğe değişebi-

len kırılma tepkileri nedeniyle önemli hale gelmiştir. Sünek tepkiler, hacim koruyucu

inelastik deformasyonlar sergileyen yaygın kesme bölgeleriyle, gevrek tepkiler ise

mikro boşluklarla ayrılmış fibril köprülerden oluşan küçük çatlak benzeri kusurlarla

ortaya çıkar. Bu durum, boşluk oluşumunun çekirdeklenme ve yayılma adımlarını

içerdiğini gösterir.

Bu tez, kesme akması ve çatlama olgusunun evrim denklemleriyle tanımlanmasına

odaklanmaktadır. Ayrıca, sünek ve gevrek kırılmayı aynı anda ele almayı sağlayan bir

çatlak faz alanı yaklaşımı ile kırılma modellemesi genişletilmiştir. Bu yaklaşım, hem

kritik plastik deformasyonu hem de boşluk hacim fraksiyonunu içeren yeni bir hasar

kriterine dayanmaktadır ve mevcut modellere kıyasla daha fiziksel temelli olduğu

iddia edilmektedir. Ayrıca, amorf camsı polimerler için önerilen bu hasar kriterine

dayalı bir termomekanik-kırılma modeli sunularak sünek ve gevrek kırılma aynı anda

ele alınabilmektedir.
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Kesme akması, çatlama ve boşluk hacmi fraksiyonu için türetilen yapısal formüller,

yerel ve iletken bileşenlerin yitim eşitsizliğiyle başlar. Modelin mekanik denklemleri,

çatlak faz alanı ve sıcaklık evrim denklemiyle birleştirilmiş ve çalışmanın temel odak

noktalarından biri olan genel termal problem ele alınmıştır. Modelin performansı,

yerel ve genel Newton tipi güncelleme algoritmalarıyla değerlendirilmiş, homojen ve

heterojen testlerden elde edilen deneysel verilere dayanarak test edilmiştir. Bulgular,

sıcaklığın kırılma türü üzerindeki önemli etkisi ile yükleme hızı ve katıdaki yayılabilir

ısı nedeniyle sıcaklık değişimi arasındaki etkileşimi ortaya koymuştur.

Anahtar Kelimeler: Amorf camsı polimerler, Çatlak faz alanı, Çatlama, Sonlu termo-

viskoplastisite, Boşluk büyümesi
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CHAPTER 1

MOTIVATION AND OVERVIEW

1.1 Introduction

Optimal use and design of materials in goods have become a significant task in the

key industrial sectors ranging from micro–electronics to aerospace and medical indus-

try. Mechanical properties such as low weight and high fracture toughness blended

with workability and manufacturability ultimately render polymers, especially ther-

moplastics, superior over metals. Thermoplastics are distinguished from thermosets

by their behavior with rising temperature levels. In fact, thermoplastics can melt

when heated above melting temperature θm owing to their secondary bonds, e.g.,

van der Waals and hydrogen, forming the entanglements between polymer chains.

Most thermoplastics possess linear or branched molecular structure unlike the cross–

linked network structure associated with thermosets. Classified under thermoplastics

amorphous glassy polymers, such as polystyrene (PS), polycarbonate (PC) and poly-

methylmethacrylate (PMMA) have broad end–use applications in the industry. There-

fore, it is of utmost interest to assess the durability and the fracture response of those

polymers when subjected thermal and mechanical loading. For details regarding the

basics of polymeric materials, we refer among others to POWELL & HOUSZ [99]

and HAWARD & YOUNG [56]. The aforementioned properties of glassy polymers

heavily depend on the microstructure (entanglement density and the anisotropy in

the molecular alignment), temperature level and the external loading rate which may

transition the fracture response from ductile to brittle or vice versa. The brittle re-

sponse of amorphous polymers is revealed by very small, see Fig. 1.1(a), inelastically

deformed zones, namely crazes whose thickness is measured in some micrometers,

see KRAMER [72]. Crazes are very small crack-like defects containing a sequence
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Figure 1.1: High–voltage electron micrograph (HVEM) and transmission electron

micrograph (TEM) images of PS films undergoing (a) fibrillar bridge formation,

adopted from MICHLER & BALTÁ-CALLEJA [83]; (b) micro–shear bands, adopted

from BOWDEN & RAHA [24], respectively.

of fibrillar bridges and elongated micro–voids, thereby resembling the void formation

consisting of nucleation and growth stages. Their formation is driven by tensile strain-

ing followed by volumetric inelastic deformations. In fact, the development of crazes

is favored by high strain-rate, relatively low temperature levels (well below glass

transition temperature θg), and low entanglement density. The ductile response of

amorphous polymers is, on the other hand, manifested by diffuse shear zones involv-

ing much larger amount of material and thereby a larger process zone, see Fig. 1.1(b).

These zones are created by shear yielding mechanisms which are accompanied by

substantial volume-preserving inelastic deformations. Shear yielding generally oc-

curs under low strain-rate, relatively high temperature levels (around glass transition

temperature θg) and high entanglement density. Addition of various fillers in glassy

polymers promote multiple concurrent craze nucleation sites enhancing the fracture

toughness remarkably as indicated by SEELIG & VAN DER GIESSEN [103, 104].

1.2 Literature Overview

1.2.1 Shear yielding in amorphous glassy polymers

At high temperature levels and low strain–rate amorphous glassy polymers exhibit

volume-preserving plastic deformations as the yield stress is reached earlier than the

crazing stress, i.e. stress necessary to initiate crazing, see BERGER & KRAMER [18]

and IMAI & BROWN [59]. Besides, amorphous polymers such as PC predominantly

experience shear yielding due to their high entanglement density making it hard for
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Figure 1.2: PC used in spacesuits especially for helmet bubbles and visors. Qualita-

tive true stress-strain relationship typical for PC subjected to uniaxial compression P

leading to ductile fracture. Reconstructed from www.nasa.gov.

crazes to develop. A qualitative ductile response of a cylindrical PC specimen under

compressive load P is illustrated in Fig. 1.2.

The elasto–viscoplastic response of amorphous polymers originates from the disor-

dered micro–structure inherent in the material. The well–accepted studies by AR-

GON [10] and BOYCE ET AL. [26] state that an amorphous polymer must overcome

two physical source of resistance prior to the ductile mechanical response; first, the

inter–molecular resistance to segment rotation which is explained by the double–kink

theory and second, the entropic resistance to molecular orientation, the so–called rub-

bery response. While the double–kink theory sets a free enthalpy barrier by the sur-

rounding chains to the rotation of a double–kink formed in a single chain, the entropic

resistance corresponds to an external stress state that retains the texture in the sense

of plastic stretches as the chains orient themselves in the principal loading directions.

We refer to the seminal works of ARGON [10], BOYCE ET AL. [26], ARRUDA ET

AL. [14, 16] and HASAN & BOYCE [53] for the fundamentals of the finite viscoplas-

tic response of glassy polymers due to shear yielding. The theory is further elaborated

by WU & VAN DER GIESSEN [116–118], TOMITA & TANAKA [109], GOVAERT ET

AL. [48], ANAND ET AL. [5–7], MIEHE ET AL. [89, 90], and FLEISCHHAUER ET

AL. [43]. Pre– and post–yield softening of PC as seen in the load–displacement dia-

grams during the cold–drawing process are conspicuously smooth and curved [89]. In

order to account for this smooth transition, HASAN & BOYCE [53] proposed the free

volume flow theory that considers several internal variables motivated by microme-

3
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Figure 1.3: Schematic description of (a) wedge–shaped craze tip advance as the stress

induced melt transforms into fibrils via the Taylor meniscus instability; (b) xy–plane

of craze depicting the cascade of events leading to craze tip advance starting from the

top image. Reconstructed from KRAMER [72].

chanics. The local free volume theory presented by ANAND & GURTIN [7], on

the other hand, introduces a single scalar state variable representing the free volumes

due to plastic deformation. A three–dimensional, thermo-mechanical extension of the

approach, i.e. [53], was conducted by MIEHE ET AL. [90], whereas an endochronic

time scale in the sense of VALANIS [113] and an activation free energy modified from

KOCKS ET AL. [71] were added into the flow rule by FLEISCHHAUER ET AL. [43]

improving the modeling capacity in the neighborhood of the yield point as well as

capturing the rate dependency of the yield point over a wide range.

1.2.2 Crazing in amorphous glassy polymers

Crazes can be visualized as very small, localized, and plastically deformed zones con-

sisting of a dense array of fibrils separated by microvoids. Craze phenomenon can be

observed in three stages, namely, the initiation, growth and the breakdown, respec-

tively. Locations where crazes nucleate are naturally existing surface grooves and

dust particles or rubber particles added into the microstructure. The embryonic phase

of crazing has an initial width ranging between 5–20 [nm] rendering craze initiation

largely elusive. As a matter of fact, there exist no holistic explanation untangling the

mystery despite the abundance of experiments. Nonetheless, it is conjectured that the

localization of plastic strains induces lateral stresses which, in turn, leads to high hy-

drostatic stresses resulting in voids which link up with remaining polymer ligaments
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between them. Afterwards, they turn into stable fibrillar crazes. More comprehen-

sive information can be found in the reviews of KAMBOUR [68], KRAMER [72],

ISHIKAWA ET AL. [61] and references therein. Criteria for craze initiation can be

investigated in terms of (i) principal stresses, e.g., STERNSTEIN & MYERS [105]; (ii)

principal strains, e.g., OXBOROUGH & BOWDEN [98]; (iii) the linear elastic fracture

mechanics (LEFM), e.g., ANDREWS & BEVAN [8] and BUCKNALL [29]; (iv) lower-

ing of the glass transition temperature at sites of craze nucleation, e.g., GENT [47]; (v)

a cavitation problem triggered by triaxial stresses, e.g., KRAMER [72] and ARGON

ET AL. [9, 12].

The fibrils generated lie normal to the craze bulk-interface and grow in the direction of

maximum principal stress in the isotropic material. Such an advance in width occurs

as the new material from craze bulk-interface is drawn into the fibrils, elongating them

under constant stretch and thickness analogous to the cold drawing mechanism of

macroscopic polymer fibers, see KRAMER [72]. The propagation of a craze in length

is explained by the Taylor meniscus instability in which the tip of the craze melts into

several void fingers as illustrated in Fig. 1.3. Introduced first by ARGON [11], this

mechanism is elaborated through experiments on PS by ARGON & SALAMA [13].

In the meniscus instability, the yielded polymer at the air–polymer interface around

the craze tip constitutes a melted layer into which the so–called meniscus propagates.

At this point, if loading continues, then the fibrils are further extended due to de-

crease in the entanglement density in the middle of each fibril, thereby making them

more likely to break. Amorphous polymers such as PMMA primarily exhibit crazing

induced brittle response due to the low entanglement density. A qualitative brittle

response of a dog–bone shaped PMMA specimen subjected to tensile loading P is

illustrated in Fig. 1.4.

To date, numerous studies have been proposed to model the crazing induced failure

in amorphous polymers according to; (i) the critical crack tip opening displacement

incorporated into cohesive zone type discrete models, e.g., TIJSSENS ET AL. [108],

based on the interferometric measurements carried out by DÖLL [40]; (ii) critical in-

elastic strain criterion, e.g., GEARING & ANAND [45]; (iii) the fracture toughness,

e.g., HUI ET AL. [58]. Apart from that YANG ET AL. [119] developed a microscopic

statistical model in which a Weibull distribution reflects the craze fibril breakdown by
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Figure 1.4: PMMA used in a stop lamp on an automobile. Qualitative true stress-

strain relationship typical for PMMA subjected to uniaxial extension P leading to

brittle fracture.

means of the random disentanglement of molecular strands at the craze–bulk inter-

face.

1.2.3 Phase field models of fracture

Modeling of fracture in materials have seen a paradigm shift over the last two decades.

Instead of handling the discontinuities via discrete methods such as cohesive zone

modeling (CZM) and extended finite element method (XFEM), the crack phase field

approach (CPF) avoids the realization of those sharp crack topologies and surmounts

the well-known shortcomings, i.e. determination of curvilinear crack paths, crack

kinking and branching angles, of the classical theory of brittle fracture treated in

GRIFFITH [49] and IRWIN [60]. Based on the variational principle the early treat-

ments of CPF, e.g., FRANCFORT & MARIGO [44], BOURDIN ET AL. [22], BU-

LIGA [30], BRAIDES [27], feature a diffuse crack topology between the intact and

the ruptured parts of the solid converging to the free discontinuity problem, i.e. Γ-

convergence, as the length scale parameter l vanishes in the limit case. Recent

contributions by MIEHE ET AL. [91, 94] defines fracture only in tension, a precise

characterization of the dissipation, and introduce an artificial viscosity that stabilizes

post-critical solution paths. CPF approach has been successfully applied to several

multi–physics problems including, but not restricted to, thermo-elasto-plastic brittle

and ductile fracture, such as AMBATI ET AL. [2–4], BORDEN ET AL. [20, 21], and

MIEHE ET AL. [85,86,88,92,93] in isotropic materials. Anisotropic CPF models were
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among others presented by LI ET AL. [76], TEICHTMEISTER ET AL. [107], CLAY-

TON & KNAP [32], NGUYEN ET AL. [97], GÜLTEKIN ET AL. [50–52], MANDAL ET

AL. [78, 79], and DENLI ET AL. [39].

1.3 Scope of the thesis

Despite the evident influence on the mechanical response, there are very few contri-

butions attempting to model the competition between ductile and brittle behavior of

amorphous polymers. ESTEVEZ ET AL. [42] proposed a cohesive zone formulation

through craze and cohesive surface opening rate along with the craze initiation sensi-

tivity. The drawback of the study is the dependence of the model on a priori existing

crack inserted in the mesh. The models presented by GEARING & ANAND [45] and

JIANG ET AL. [67] are independent from the existing crack tip. However, they are not

mesh objective as being based on element deletion technique upon the critical craze

strain is reached. The very recent contributions made by MIEHE ET AL. [92] and

NARAYAN & ANAND [96] incorporated CPF approach in order to model the brittle

and ductile fracture in view of the critical value of the accumulated craze strain and/or

the disentanglement strain akin to plastic strain, respectively.

In this contribution, we propose a new constitutive model for the ductile and brittle

fracture of amorphous polymers that relates the phenomena of crazing to a physical

measure, improving experimental observations and better informing the theoretical

and numerical approaches. In addition, a new failure criterion that synchronously

predicts shear yielding and crazing induced crack initiation and growth in the context

of crack phase–field approach is presented. To this end, Argon–type viscoplastic flow

rule in the sense of BOYCE ET AL. [26] in combination of the local free volume the-

ory by ANAND & GURTIN [7] are adopted for the shear yielding of amorphous glassy

polymers, while the craze flow is treated according to GEARING & ANAND [45].

Concurrent evolution of the dilatational and volume preserving plastic flow is inhib-

ited by a stress based craze initiation criterion based on [45] which is incorporated

into a switch function. In this work, we have conceptually combined the scalar state

variable describing the local free volume theory with the void volume fraction in the

case of shear induced flow. Besides, the normal components of the rate of the craze

strain drives the growth of the void volume fraction in the case of craze induced flow.
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Craze nucleation is promoted by both the hydrostatic and deviatoric components of

the tensile stress, corroborating our hypothesis that the void volume fraction is driven

by both shear yielding and crazing parts. We follow MIEHE ET AL. [87] and estab-

lish the entire kinematic framework in the logarithmic strain space based on metric

tensors describing shear yielding and crazing. The proposed failure criterion features

the critical amounts of plastic strain and void volume fraction. Such a modality pre-

dicts the macroscopic crack initiation and growth at once, leading to ductile or brittle

failure, as such purports to be more physically grounded compared to what have been

proposed so far in the literature.

The thesis is organized as follows: The investigation starts in Chapter 2 with contin-

uum mechanics prelimenary. All mathematical background to be able to understand

proposed work is provided in this chapter, briefly. Chapter 3 deals with underlying

kinematics and the thermodynamical restrictions and the evolution equations emanat-

ing from shear yielding and crazing behavior, which, in turn, drive the evolution of

the void volume fraction. In the sequel, the global form of the multi-physics problem

is outlined with regard to balance and non–local evolution equations reflecting the

deformation and the crack phase-field. Then, specific forms of the constitutive func-

tions governing the finite viscoplasticity of amorphous glassy polymers and the novel

failure criterion elucidating the ductile and brittle fracture. Finally, the capability of

the model is assessed via verification and validation of the proposed algorithm with

respect to representative homogeneous and inhomogeneous tests in Chapter 4 and all

the remarks are concluded in Chapter 5.
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CHAPTER 2

INTRODUCTION TO CONTINUUM THEORY

In this chapter, It will be given a brief introduction to continuum mechanics to be

able to clearly examine the proposed coupled thermo-viscoelastic fracture model for

ductile-brittle failure of amorphous glassy polymers.

2.1 Basic concepts in Continuum Mechanics

Continuum mechanics is a branch of mechanics dealing with stresses in all states of

matter (solid, liquid and gas) and flow or deformation of the materials. In contin-

uum aproach, it is disregarded the molecular structure matter and imagine it as no

gaps or empty spaces in the material. Beside the media we are considering, all the

mathematical functions entering the theories are continous functions (at least piece-

wise continious). Therefore, this hypotetical continious material in space and time

is called continuum or continious medium. The method of continuum mechanics is

used as powerful and effective tool to understand several physical phenomena suffi-

ciently without detail knowledge of the complexity of the internal microstructure.

Continuum mechanics deals with interactions between forces, motions, heat fluxes,

temperature changes at a specific point within a material. Unlike rigid-body mechan-

ics, which disregards the deformation a body undergoes during motion, continuum

mechanics focuses on the complex relationship between deformation and forces such

as body forces (force per unit volume) and traction (force per unit area). Addition-

ally, continuum mechanics provides a thorough analysis of both translational and

rotational motion of a body. Fundamental equations in continuum mechanics can be

classified into two categories:
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Physical conservation laws

‚ balance of mass

‚ balance of linear momentum

‚ balance of angular momentum

‚ balance of energy (first law of thermodynamics)

‚ balance of entropy (second law of thermodynamics)

Constitutive equations specific to material

‚ stress-strain relation

‚ heat flux-temperature (gradient) relation for heat conduction pq “ ´k∇T q

F
xX

BB0 BB
ϕpX, tq

BB0

Figure 2.1: Mathematical description of the motion of a body B in R.

These balance laws and proposed constitutive relations for amorphous glassy poly-

mers will be introduced comprehensively in Section 2.2 and 3.4, respectively.

2.1.1 Kinematics

Let B0 represent a continuum body containing point P at a given instant t0. Then,

one can introduce a right-handed reference frame with rectangular coordinate system

having an origin at O. This coordinate system is spanned by orthonormal unit vectors

teau “ te1, e2, e3u. While the continuum body B0 is moving in space through time,

it covers arbitrary spatial regions B in that space. Each one-to-one mapping between

these regions, or namely configuration, can be denoted as χ0, ..., χt. The continuous

body B may have infinitely many configurations in the space from time to time and
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every point P laying in B corresponds to another arbitrary point, namely position,

in these configurations pχ0, ..., χtq. The configuration at time insant t0 is represented

by χ0 and it refers to undeformed configuration or predefined reference configuration

depending on the nature of the problem. The configuration at t “ 0 is called initial

configuration and since we agree that undeformed and initial configurations coincide

for simplicity,χ0 is also denoted as initial configuration. However, this may not be the

case in dynamics. Position of an arbitrary pointP P B at t “ 0 can be identified by the

position vector X with respect to fixed predefined origin O. As the continuum body

moves in space from initial configuration to another, the position vector associated

with point P changes and is labelled as x, see (Figure 2.1). Basis vectors of position

vectors X and x are denoted as Ei and ei respectively.

x “ χtpPq “ χtχ0
´1pXq “ χt ˝ χ´1

0 pXq “: ϕtpXq,

ϕ “

$

’

&

’

%

B0 ÝÑ B P R3

X ÞÝÑ x “ ϕpX, tq
(2.1)

The motion of the body B0 can be defined by a mapping ϕ. Since the deformation

map is one-to-one, it’s inverse can be denoted by X “ ϕ´1px, tq, uniquely. For

simplicity, we follow Einstein’s summation convention, where can be expressed A “
Aij ..kei b ej b ...b ek. The symbol b refers to the dyadic product with orthonormal

base vectors ea and all subscripts pi, j, ..., kq take values from set t1, 2, 3u.

In the light of these, one can delineate the definiton of displacement

UpX, tq “ xpX, tq ´ X and upx, tq “ x ´ Xpx, tq (2.2)

Derivative of the deformation map with respect to time gives velocity

V pX, tq “ B
BtϕpX, tq and vpx, tq “ V rϕ´1px, tq, ts (2.3)

Then, second derivative of the deformation map refers to acceleration clearly

ApX, tq “ B2ϕ

Bt2 and apx, tq “ Arϕ´1px, tq, ts (2.4)

Uppercase letters for tensorial quantities means that these quantities are in refer-

ence(material) coordinates. On the other hand, any tensorial quantity in current(spatial)
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coordinates is denoted by lowercase letters.

Deformation gradient, line, area and volume mapping:

One of the primary objectives of mechanics is to study the deformation (i.e., changes

in size and shape) of a continuum body as it transitions from one configuration to

another. To capture this deformation, a fundamental measure is defined to relate two

configurations. In the context of a continuum body’s motion, the local deformation

at any point along a trajectory is represented by a tangent vector. These infinitesimal

vector elements in the reference (undeformed) and current (deformed) configurations

are known as material and spatial line elements, respectively. The deformation gradi-

ent, denoted by F , provides a mapping between these elements as described by the

equation:

dx “ F pX, tqdX or dxa “ FaAdXA (2.5)

where the deformation gradient is defined as:

F pX, tq “ BϕtpX, tq
BX . (2.6)

The deformation gradient plays a crucial role in parameterizing the trajectories of

particles P P B, providing a detailed description of deformation (see HAUPT [54]

and HOLZAPFEL [57]). In Figure 2.2, three fundamental maps of a continuum are

illustrated: (a) The deformation gradient F as a mapping of an infinitesimal line el-

ement, (b) its cofactor cofrF s as an area map, and (c) its determinant detrF s as a

volume map. In addition to the line element dX , the infinitesimal area and vol-

ume elements in the reference configuration are denoted by dA and dV , respectively

(see Figure 2.2). The deformation of these elements is characterized by deformation

gradient-based quantities, such as the cofactor cofrF s “ detrF sF´T and the Jaco-

bian J “ detrF s ą 0:

da “ cofF dA and dv “ JdV. (2.7)

Here, JpX , tq represents the determinant of the deformation gradient F . Since the

material is impenetrable, meaning that the volume cannot become negative, a con-
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Figure 2.2: Three fundamental maps of a continuum: (a) The deformation gradientF

as a mapping of a tiny line element, (b) its cofactor cofrF s as an area map, and (c)

and its determinant detrF sas a volume map.

dition where JpX, tq ă 0 is physically impossible. Furthermore, the deformation

gradient is invertible, so JpX, tq ‰ 0.

The deformation process maps the unit tangent vector, T , from the reference or La-

grangian configuration to its corresponding counterpart, t, in the current Eulerian

configuration, as illustrated in Figure 2.3.

Push-forward and Pull-back Operations:

If different reference frames are used for the reference and current configurations,

vector and tensor quantities can be resolved in either frame depending on the analysis

choice. The transformation between material and spatial coordinates is accomplished

through push-forward and pull-back operations, allowing for the conversion of quan-

tities between the two coordinate systems. These operations enable the analysis of

the body’s deformation and motion in a way that aligns with our analytical needs.
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T
t

F

Figure 2.3: Deformation gradient mapping.

t “ FT : push-forward of T ,

T “ F´1t : pull-back of t.
(2.8)

Deformation and Strain Measures:

The mapping of a unit vector A in the reference configuration to a vector a in the

current configuration is defined as:

a “ FA. (2.9)

According to this definition, the stretch (λ) of the vector A due to deformation is

given by λ “ |a|. To further examine the extent of the stretch, we consider the square

of the stretch:

λ2 “ a ¨ a “ FA ¨ FA “ AF T ¨ FA “ A ¨ CA, (2.10)

where C “ F TF .

The tensor C , derived from λ2, is a commonly used measure of deformation in ma-

terial coordinates. It is a second-order symmetric positive definite tensor and is often

called the right Cauchy-Green tensor in material coordinates. Its spatial counterpart,

denoted as b, is known as the Finger tensor or the left Cauchy-Green tensor. The

Finger tensor is derived from the definition of λ´2 as the square of the inverse stretch:

λ´2 “ A ¨ A “ F´1a ¨ F´1a “ aF´T ¨ F´1a “ a ¨ b´1a. (2.11)

The tensor b “ FF T is also symmetric and positive definite. In the absence of

deformation, F equals the identity tensor I, and therefore b and C also equal I. The
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identity tensor I is defined as δijei b ej , where δij is the Kronecker delta, equal to 1

for i “ j and δij “ 0 for i ‰ j.

The polar decomposition of the deformation gradient F can be expressed as:

F “ RU “ vR. (2.12)

This decomposition allows us to separate F into two components: pure rotation(R)

and pure stretch(U and/or v).

The right-stretch tensor U and the left-stretch tensor v satisfy the properties:

U 2 “ UU “ C and v2 “ vv “ b. (2.13)

These tensors describe the stretch and deformation behavior of the material. The

tensor R is a proper orthogonal tensor with detR “ 1, representing a valid rotation.

Additionally, detU “ detv “ J ą 0.

The right-stretch tensor U has a relationship given by:

UNa “ λaNa,where |Na| “ 1, and a “ 1, 2, 3. (2.14)

The set tNau represents the eigenvectors of U , while λa corresponds to the eigenval-

ues. From Equation (2.17), we can deduce that:

CNa “ U 2Na “ λ2aNa, a “ 1, 2, 3. (2.15)

Since both U and C are purely Lagrangian measures, they share the same eigenvec-

tors known as principal axes. Similarly, we can derive a comparable relationship for

b using Equation (2.17):

bna “ v2na “ λ2ana, a “ 1, 2, 3. (2.16)

The eigenvalues of v and b are also equal to λa and λ2a, respectively. Both v and b

have the same set of orthonormal eigenvectors as spatial measures. In conclusion,
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for a given deformation gradient F , we can extract crucial information about the

material’s deformation and stretch by analyzing the tensors U , v, C, and b. This

relationship indicates that v and b are collinear in spatial coordinates. For distinct

values of λ1, λ2 and λ3 the symmetric tensors U , v, C and b can be expressed in

their spectral decomposition forms as follows

U 2 “ C “
3

ÿ

a“1

λ2aNa b Na,

v2 “ b “
3

ÿ

a“1

λ2ana b na.

(2.17)

Where λa represent the principal stretches (eigenvalues) and Na and na denote the

principal directions (eigenvectors) in the Lagrangian and Eulerian frameworks, re-

spectively.

Furthermore, the deformation gradient can be represented as:

F “
3

ÿ

a“1

λana b Na, (2.18)

which is a two-point tensor. As F may not be symmetric, the λa values can not be

directly considered as the eigenvalues of F . Since both C and b are symmetric and

positive definite, they possess three uniquely defined invariants. The scalar invariants

of C can be summarized as:

I1pCq “ λ21 ` λ22 ` λ23,

I2pCq “ λ2
1
λ2
2

` λ2
1
λ2
3

` λ2
2
λ2
3
,

I3pCq “ λ2
1
λ2
2
λ2
3

“ J2.

(2.19)

Additionally, within a generalised coordinate system, both the reference B0 and the

spatial B manifolds are equipped locally with the Lagrangian metric G and Eule-

rian counterpart (current metric) g. These metric tensors are crucial in converting

covariant and contravariant entities within the Lagrangian and Eulerian manifolds. If

cartesian basis vectors are employed, metric tensors are

G “ δABE
A b EB and g “ δabe

a b eb. (2.20)

The right Cauchy Green tensor and the inverse of the left Cauchy Green tensor can

be formulated utilising these metric tensors.
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F´TF´T
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Figure 2.4: Definition of metric tensors. a) current metric in Lagrangian configura-

tion; b) reference metric in Eulerian configuration.

The right Cauchy Green tensor and the inverse of the left Cauchy Green tensor can

be expressed using metric tensors denoted as

C “ F TgF (2.21)

and

c “ F´TGF´1 (2.22)

these equations correspond to the pullback of the current metric g and the push for-

ward of the Lagrangian metric G, respectively. The left Cauchy Green tensor, also

known as the Finger tensor, is represented by b “ c´1. Please refer to Figure 2.4 for

a geometric interpretation.

2.1.2 Stress expressions

da

b BS S
t “ tpx,´nq

t “ tpx,nq

´n

n

S0

BS0
B

BB

`

Figure 2.5: The removal of slice S from the body B depicts the tractions and normals

associated with both the slice S and the remaining portion S .

Consider a body B with specific boundary conditions applied to BB and subjected to
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σ11

σ12

σ13
σ22

σ21

σ23

σ33

σ32

σ31

1st: surface normal
2nd: direction of stress component

e1

e2

e3

Figure 2.6: Stress components on the surfaces of unit cube.

internal boy forces. Suppose a section of the boundary, BS, is isolated as shown in

Figure 2.5. The isolated section, denoted as S, is subjected to the traction force t and

the body force b in its current configuration. The net forces acting on the isolated

section S of body B and the remaining part S are given by:

F1 “
ż

S

b dv `
ż

BS

tpx,nq ds, (2.23)

F2 “
ż

S

b dv `
ż

BS

tpx,´nq ds. (2.24)

F “ F1 ` F2 is the total net force applied on the body. Notice that the integration

of the body forces over the entire body, expressed as
ş

B
b dv, is the sum of the inte-

grations over the slice
ş

S
b dv and its complement p

ş

S
b dvq. These expressions lead

to important equality:
ż

BS

tpx,nq ds`
ż

BS

tpx,´nq ds (2.25)

which can be locally simplified to:

tpx,nq “ ´tpx,´nq (2.26)

This relationship is known as Cauchy’s fundamental lemma. It reflects Newton’s

third law of motion, stating that when two surfaces are in contact, they will exert

equal magnitude of force in opposite directions to each other.

t1 “ σ11e1 ` σ12e2 ` σ13e3

t2 “ σ21e1 ` σ22e2 ` σ23e3

t3 “ σ31e1 ` σ32e2 ` σ33e3

(2.27)
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e1

e2

e3

´t3∆A3

´e3

t∆A

n

´e1

´t1∆A1

´e1

´t2∆A2

Q1

Q2

Q3

P

Figure 2.7: Traction components on triangular section taken from the unit cube.

In a more compact form, Equation (2.27) can be rewritten as:

ti “ σijej or σij “ tj ¨ ej (2.28)

Next, consider a section of a unit cube (Figure 2.6) visualized as a tetrahedron (Figure

2.7). The force equilibrium from the free body diagram is

t∆A´ t1∆A1 ´ t2∆A2 ´ t3∆A3 “ 0. (2.29)

n1 “ ∆A1

∆A
n2 “ ∆A2

∆A
n3 “ ∆A3

∆A
(2.30)

Substituting surface normal components in Equaiton (2.30) into Equaiton (2.29) leads

to

rt ´ t1n1 ´ t2n2 ´ t3n3s∆A “ 0 (2.31)

or in a compact form

t “ tini from Equation (2.28)

t “ niσijej “ tjej

(2.32)

leading to

tj “ niσij or t “ σn (2.33)

19



This is known as Cauchy’s stress theorem, σ “ F ptq{Aptq where σ is Cauchy stress,

F ptq is actual force and Aptq is actual area. The Cauchy stress vector, tpx, t,nq
calculates the stress relative to the deformed area, which is called the true stress. If

we define the first Piola-Kirchoff stress vector T pX, t,Nq parallel to tpx, t,nq and

calculate the first Piola-Kirchoff stress with this vector using the undeformed area,

this stress is engineering stress.

P dA “ σda,

P “ JσF´T “ τF´T ,

τ “ Jσ

S “ F´1P “ F´1τF´T ,

(2.34)

where P is the first Piola-Kirchhoff stress, τ is the Kirchhoff stress and S is the

second Piola-Kirchhoff stress tensors (Figure 2.8). The semi-pull-back of the first

Piola-Kirchhoff stress gives rise to the symmetric second Piola-Kirchhoff stress (S),

which serves as an important alternative stress measure.

T ˚
XB0 T ˚

xB

TxBTXB0

P

F

F´T

S τ

Figure 2.8: Relationship between stresses.

In Figure 2.8, TXB0 and TxB refer to tangent spaces in reference and current config-

urations respectively while T ˚
XB0 and T ˚

xB correspond to co-tangent space in those

configurations.

2.2 Balance Laws

Balance laws are fundamental principals in continuum mechanics that explain the

conservation of physical quantities within a system. These laws are obtained from

governing differential equations and are cruical for describing the material behaviour
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under arbitrary physical conditions. Under following subsections, each law will be

discussed, briefly. All derivations are done for a unit volume of current configuration.

2.2.1 Conservation of Mass

The total mass in a closed system is neither created or destroyed within a system so

that it is constant under action of any motion.

m “
ż

B

ρdυ “
ż

B0

ρ0dV “ constant ñ dm

dt
“ 0 (2.35)

The continuity equation which describes local conservation of mass at any point in a

continuum is shown as
dρ

dt
` ρ div v “ 0 , (2.36)

where ρ, ρ0 and v are the current density, reference density and the spatial velocity,

respectively.

2.2.2 Conservation of Momentum

The change in the momentum of a body over time is equal to the sum of the forces

acting on the body. Thus, conservation of momentum is expressed as

d

dt

ż

B

ρvdυ “
ż

B

ρbdυ `
ż

BB

tdA . (2.37)

The Cauchy’s theorem states that

t “ σn , (2.38)

where b is the body forces acting on unit deformed volume, t is the surface traction

vector applied on unit deformed area and σ is the Cauchy stress tensor. Combining

equations (2.36) and (2.37), expression for the local form of the momentum balance

is obtained

ρ 9v “ divσ ` ρb . (2.39)

2.2.3 Conservation of Moment of Momentum

The conservation of angular momentum states that changes in the angular momem-

ntum is balanced by the net moment acting on the body. Local form of balance of
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angular momentum ensures that the Cauchy stress is symmetric

σ “ σT . (2.40)

As a result, following equities hold

τ “ τ T , PF T “ FP T , S “ ST (2.41)

for the Kirchhoff stress tensor, the First Piola-Kirchhoff stress tensor and the second

Piola-Kirchhoff stress tensor, respectively.

2.2.4 Conservation of Energy: First Axiom of Thermodynamics

The energy conservation or namely first axiom of thermodynamics is an expression

of the interconvertibility of heat and work in a system and can be expressed as

d

dt

ż

B

ρpe` 1

2
v ¨ vqdυ “

ż

B

ρpb ¨ v ` rqdυ `
ż

B

pt ¨ v ´ hqda (2.42)

In the above equation, e is the mass specific internal energy, r is the heat source

generated by internal processes in the body and h is the outwards heat flux. The

global expression of the internal energy balance can be shown as

d

dt
pK ` Eq “ P ` Q, (2.43)

where K, E , P and Q are the kinetic energy, the internal energy, the mechanical

power and non-mechanical power, respectively. It states that the rate of change of the

total kinetic and internal energy equals to the sum of mechanical and non–mechanical

power in a closed system. The specific forms of each component in equation (2.43)

can be defined as,

K :“
ż

B

1

2
ρv ¨ vdυ,

E :“
ż

B

ρedυ,

P :“
ż

B

ρb ¨ vdυ `
ż

BB

t ¨ vda,

Q :“
ż

B

ρrdυ ´
ż

BB

hda.

(2.44)
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Considering all the spesific form of balance equations given above, final form of the

balance of internal energy is written as

ρ 9e` div q “ σ : d ` ρr , (2.45)

where d :“ symrgls is the symmmetric part of the spatial velocity gradient l :“
9FF´1.

2.2.5 Clausius-Duhem Inequality: Second Axiom of Thermodynamics

The second law of thermodynamics imposes limitations on the constitutive relations

governing both elastic and inelastic dissipative mechanisms in mechanical processes,

as well as on the direction of heat flow in thermal processes.

The Clausius-Duhem inequality is denoted as

d

dt

ż

B

ρηdυ ě
ż

B

ρr

θ
dυ ´

ż

BB

h

θ
da (2.46)

where η and θ correspond to entrophy per volume and absolute temperature , respec-

tively. It simply implies that rate of entropy increase must be greater than the entropy

input rate. Using the Gauss integral theorems and the Cauchy law (h “ q ¨ n) yields

final form of

ρ 9η ě ρr

θ
´ divpq

θ
q “ ρr

θ
´ 1

θ
div q ` 1

θ2
q ¨ ∇xθ . (2.47)

2.3 Dissipation Inequality: Coleman’s Method

The constitutive relations are constructed in a way that inherently satisfies the second

law of thermodynamics so that these relations are thermodynamically consistent. In

other saying, the Clausius-Duhem Inequality (CDI) given in equation (2.47) imposes

a restriction on the constitutive relations. Considering the local form of global balance

of energy equation (2.45) in CDI, we get,

ργ “ ρ 9η ´ 1

θ
pρ 9e´ σ : dq ´ 1

θ2
q ¨ ∇xθ ě 0 (2.48)

where γ entrophy production per volume. Modified form of CDI express the dissipa-

tion at an arbitrary material point as follows

D :“ θγ “ 9η ´ p 9e ´ 1

ρ
σ : dq ´ 1

ρθ
q ¨ ∇xθ ě 0 (2.49)
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The dissipation terms is divided into two components: local and conductive parts,

both of which are greater than zero

D “ Dloc ` Dcon ě 0, (2.50)

where

ρDloc :“ σ : d ´ ρ 9e` ρθ 9η ě 0 (2.51)

and

ρDcon :“ ´1

θ
q ¨ ∇xθ ě 0. (2.52)

The stronger conditions mentioned in equations (2.51) and (2.52) are referred as the

Clausius-Planck Inequality (CPI) and the Fourier Inequality (FI), respectively.

Helmholtz free energy is oftenly used rather than internal energy e in solid mechanics.

By using the Legendre transformation, the Helmholtz free energy can be defined as

Ψ :“ e´ θη. (2.53)

The derivative of the internal energy with respect to time in CPI can be rewritten as

9e “ 9Ψ ` η 9θ ` θ 9η. (2.54)

then plugging into equation (2.51) yields

ρDloc :“ σ : d ´ ρ 9Ψ ´ ρη 9θ ě 0, (2.55)

an alternative form for the CPI. The equations (2.52) and (2.55) fulfill the fundamen-

tal thermodynamic restriction on constitutive equations.

The Helmholtz free energy function and the heat flux are stated for general formula-

tion of inelasticity problem as follows

Ψ “ Ψ̂pX,F , θ,I, gq q “ q̂pX, θ,F , gq (2.56)

where I is the generalized internal variables vector and g is the temperature gradient.

Then, time derivative of the Helmholtz free energy function turns out

9Ψ “ BFΨ : 9F ` BθΨ 9θ ` B
I
Ψ : 9I ` BgΨ ¨ 9g. (2.57)

Substituting obtained derivative into equation (2.55) with alternative expression of

stress power σ : d (2.58)

σ : d “ σ : l “ J´1P : 9F “ J´1S :
1

2
9C “ J´1τ : d (2.58)
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results in

rJ´1P ´ ρBFΨs : 9F ´ ρrη ` BθΨs 9θ ´ ρrB
I
Ψs : 9I ´ ρrBgΨs ¨ 9g ě 0 (2.59)

The equality of equation (2.59) must be satisfied for any arbitrary rates of deforma-

tion, temperature and temperature gradient. Hence, Coleman’s explotation method

implies

rP ´ ρ0BFΨs “ 0, rη ` BθΨs “ 0, rBgΨs “ 0. (2.60)

It is clearly shown that the Helmholtz free energy is not a function of temperature

gradient beside it behaves as a potential for the stress and the entropy with following

relations

P “ ρ0BFΨ and η “ ´BθΨ (2.61)

Finally, local dissipation can be expressed

ρDloc :“ ´ρrB
I
Ψs : 9I “ J´1β : 9I ě 0, (2.62)

where β “ ´ρ0BIΨ stands for thermodynamical force conjugate to any internal vari-

ables, I ,of viscoplasticty or damage mechanism.
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CHAPTER 3

A PHASE-FIELD APPROACH FOR DUCTILE-BRITTLE FAILURE OF

AMORPHOUS GLASSY POLYMERS

This chapter will examine a proposed phase field approach for ductile-brittle failure

of amorphous glassy polymers. First, we will investigate kinematics and thermo-

dynamical restriction underlying inelastic formulation of proposed approach. Then,

evolution equations stemming shear yielding and crazing which induce the evolu-

tion of void volume fraction will be outlined. Hereafter, global form of multi-physic

problem is concerned regarding balance and non-local evolution equations describ-

ing deformation, crack phase-field and thermal field. Later, we will introduce specific

forms of the constitutive relations governing the finite thermoviscoplasticity of amor-

phous glassy polymers and the novel failure criterion which demonstrate the ductile

and brittle failure simultaneously.

3.1 Kinematics and Thermodynamics

3.1.1 Kinematics

Let B and S Ă R3 be the Lagrangian (reference) and the Eulerian (spatial) configu-

ration of a continuous body at specific time t0 and t P T Ă R`, respectively. Then,

the nonlinear one-to-one deformation mapping ϕpX, tq can be defined as follows

ϕtpXq :

$

&

%

B ˆ T Ñ S P R3

pX, tq ÞÑ x “ ϕpX, tq
, (3.1)
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deformation field
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plastic strain

εc
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vf

void volume fraction
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Γlpdq

l

∇Xd ¨ N “ 0

d

phase-field

BBθ

BBQ

θ “ θ̄

θ

Q ¨ N “ Q

temperature field

Figure 3.1: Primary and local field variables constituting the multi-physics of ductile

and brittle fracture in the reference frame; deformation map ϕ along with Dirichlet

and Neumann-type boundary conditions

The deformation map projects the reference configuration onto its counterpart in the

spatial configuration, see Fig. 3.1. Additionaly, the crack phase-field variable, d, reads

d :

$

&

%

B ˆ T Ñ r0, 1s
pX, tq ÞÑ dpX, tq

. (3.2)

While phase field parameter is d “ 0, material is intact. On the other hand, material

can be said in fully ruptured state when d “ 1. Therefore, phase field variable lies

in interval of r0, 1s. As mentioned in previous chapter, deformation map ϕtpXq at a

fixed time t, the deformation gradient and its determinant are defined as

F :“ ∇XϕtpXq and J :“ detpF q ą 0 . (3.3)

Afterwards, we describe the temperature field in the finite strain context

θ :

$

&

%

B ˆ T Ñ R1
`

pX, tq ÞÑ θpX, tq
, (3.4)

as shown in Fig. 3.1

In mathematical saying, the deformation gradient is a basic nonlinear bijective map-

ping which construct a relation between tangent vectors of material curves and tan-

gent vectors of the deformed curves. The gradient operator ∇Xp‚q and the Jacobian
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J in (3.3) denote the spatial derivative with respect to the reference X and linear

transformation between an infinitesimal reference volume and associated spatial one,

respectively. As we move further, consider the reference B and the spatial S man-

ifolds with the covariant reference G and spatial g metric tensors. These metric

tensors are identical to Kronecker delta, i.e. gab “ δab and GAB “ δAB, in Cartesian

coordinates system. Then, the right Cauchy Green tensor can be defined as

C :“ F TgF where CAB “ F a
AgabF

b
B, (3.5)

in the reference configuration. Beyond the aforementioned primary deformation vari-

ables of mechanics, any inelastic response is history dependent and is hence incorpo-

rated through internal variables evolving over time. For the problem of interest, these

internal variables are the covariant Lagrangian inelastic metrics Gp and Gc which

are related to shear yielding and crazing, respectively. These metrics are defined as

follows

Gp :

$

&

%

B ˆ T Ñ R6

pX, tq ÞÑ GppX, tq
and Gc :

$

&

%

B ˆ T Ñ R6

pX, tq ÞÑ GcpX, tq
,

(3.6)

with initial conditions Gp,cpt “ t0q “ G. Considering MIEHE ET AL. [87], Hencky–

type total, plastic and crazing strains are presented, i.e.

ε :“ 1

2
lnC , εp :“ 1

2
lnGp and εc :“ 1

2
lnGc , (3.7)

in the logarithmic strain space, which provides the usage of additive decomposition

of the strain measurements analogous to small strain approach such that

εe :“ ε ´ εp ´ εc. (3.8)

Since there is one-to-one correspondance between tεp, εcu and tGp, Gcu, the loga-

rithmic inelastic strains εp and εc are used as internal variables elucidating the local

inelastic deformations. Additionaly, we also introduce vf representing the void vol-

ume fraction in a continuum point which serve as a micromechanically motivated

damage variable, i.e.

vf :

$

&

%

B ˆ T Ñ rvf0, 1s
pX, tq ÞÑ vf pX, tq

(3.9)

where vf pt “ t0q “ vf0 stands for the initial value of the void volume fraction.
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3.1.2 Stress and heat flux

Consider a body which admits the Kirchhoff stress tensor τ . Then,

P “ τF´T and S “ F´1τF´T , (3.10)

characterize the first Piola–Kirchhoff (nominal) and the second Piola–Kirchhoff stress

tensor, respectively. Besides, let us consider the Cauchy–type (true) heat flux vector q

and h “ Jq being the corresponding Kirchhoff–type heat flux vector. The Cauchy–

type and the Lagrangian heat flux vectors are related through the identity

Q ¨ dA “ q ¨ da. (3.11)

where dA and da are the infinitesimal material and spatial areal vectors, respectively.

From (3.11), the material (Lagrangian) heat flux vector reads Q “ F´1Jq. Then,

an important relation between the two for the subsequent construction is obtained via

the Piola identity, i.e.

DivpQq “ F´1JDivpqq “ J div pqq. (3.12)

2

3.1.3 Thermodynamical framework

To construct the mathematical framework of thermodynamical restrictions for the

multi-physics problem we are dealing with, it is introduced the rate of the total loga-

rithmic strain first, i.e.

9ε :“ T :
1

2
£ν g and 9

T :“ t :
1

2
£ν g (3.13)

in terms of the Eulerian transformation tensors T and t which is defined as first and

second derivatives of the total logarithmic strain with respect to the spatial metric

tensor g such that

T :“ 2Bgε and t :“ 4B2

ggε . (3.14)

At a local point, the material response is assumed to depend on the total Hencky strain

ε, the plastic strain εp, the crazing strain εc as well as the void volume fraction vf ,

the crack phase–field d and the temperature θ. Then, the Helmholtz free energy is

composed of these internal variables as follows

Ψ “ Ψ̂pε, εp, εc, vf , d, θq, (3.15)
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3.1.3.1 Local dissipation inequality

The local dissipation inequality, or namely the Clausius–Planck inequality, combined

with the time derivative of the free energy function and in view of the Legendre trans-

formation, i.e. Ψ :“ e´ θηe, in (3.15) yields

Dloc :“ τ :
1

2
£ν g ´ ηe 9θ ´ 9Ψ ě 0, (3.16)

where ηe stands for the specific entropy per unit volume. Insertion of the time deriva-

tive of (3.15) into (3.16) gives rise to

Dloc :“ pτ´2BgΨq : 1
2
£νg´BεpΨ : 9εp ´BεcΨ : 9εc ´BvfΨ 9vf ´BdΨ 9d´pηe`BθΨq 9θ ě 0.

(3.17)

Here, τ denotes the Kirchhoff stress tensor. The constitutive expressions for the

Kirchhoff stress tensor and the corresponding logarithmic stress tensor, i.e. σ, ob-

tained from (3.17) by using Colemann–Noll exploitation method, i.e.

τ :“ 2BgΨ “ BεΨ : 2Bgε “ σ : T where σ :“ BεΨ, and ηe :“ ´BθΨ
(3.18)

in regard to the transformation tensor T in (3.14). This procedure directly leads to

the reduced form of the Clausius–Planck inequality (3.17) in the following form

Dred
loc :“ σp : 9εp ` σc : 9εc ` σvf 9vf ` σd 9d ě 0, (3.19)

in which the thermodynamic driving stress tensors, i.e. σp and σc, and scalars, i.e.

σvf and σd, are introduced which are work conjugate to the rate of the inelastic strains,

i.e. 9εp and 9εc, and the rate of the void volume fraction 9vf and the crack phase–field 9d.

Their definitions are

σp :“ ´BεpΨ, σc :“ ´BεcΨ, σvf :“ ´BvfΨ, σd :“ ´BdΨ. (3.20)

We impose a stronger condition than (3.19 to split the processes of shear yielding,

crazing, void growth and damage i.e.

σp : 9εp ě 0, σc : 9εc ě 0, σvf 9vf ě 0, σd 9d ě 0. (3.21)

3.1.3.2 Algorithmic tangent moduli

In order to derive these stress tensors, we set up the algorithmic expression for the

tangent moduli by computing Lie–derivative of the Kirchhoff stress tensor τ with
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respect to the velocity v and the incremental deformation map ∆ϕ, obtaining

£ντ Ñ £∆ϕτ



algo : 1

2
£ν g Ñ

`

T

T : Ealgo : T` σ : t
˘

: 1

2
£∆ϕg.

(3.22)

The Eulerian tangent moduli algo follow from (3.22)2, i.e.



algo :“ T

T : Ealgo : T` σ : t, (3.23)

which can be simply regarded as the geometric transformation between Eulerian and

logarithmic arguments, i.e. the consistent logarithmic tangent moduli Ealgo and the

stress σ.

3.1.3.3 Non-local heat conduction

The locally generated heat is conducted throughout the material in a non–local fash-

ion as given in the conductive part of the total dissipation inequality known as the

Fourier’s inequality, i.e.

Dcon :“ ´1

θ
Q ¨ ∇Xθ “ ´1

θ
q ¨ ∇xθ ě 0, (3.24)

according to the material and spatial configurations. Moreover, the temperature gra-

dients are described as follows

G :“ ´∇Xθ and g :“ ´∇xθ, (3.25)

in both reference and spatial configurations, respectively. The heat flux vectors out-

lined in Sec.3.1.2stand on an objective dissipation potential function for the given

state of the material, i.e.

Φcon “ Φ̂conpG;C, d, θ,Xq “ Φ̂conpg; g,F , d, θ,Xq. (3.26)

It should be emphasized that the inequality in (3.24) is fulfilled as long as the Φcon is

adopted to be a convex function with respect to G and g.

3.2 Evolution Equations

3.2.1 Shear yielding

As stated in BOYCE ET AL. [26], the local description of the shear yielding is man-

ifested by an isotropic and isochoric viscoplastic flow in the direction of deviatoric
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plastic force, see (3.20)1, i.e.

9εp “ 9γp
devpσ̃pq

}devpσ̃pq} where 9γp :“ 9γ
p
0
exp

#

´As

θ

«

1 ´
ˆ

σ̃p

s̃

˙
5

6

ff+

, (3.27)

in terms of the scalar flow function 9γp according to the double–kink theory which

will be outlined under specification of the flow rule. In this manner, s̃ denotes the

effective athermal shear strength of the polymer reckon with the pressure dependency

of yielding, i.e.

s̃ “ s ` ̺p̃, (3.28)

where p stands for the hydrostatic pressure and ̺ P r0.1, 0.2s is a parameter handling

the pressure sensitivity of the yield stress, see, e.g., BOWDEN & JUKES [23]. In

(3.27), devpσ̃pq :“ σ̃p : P designates the deviatoric part of the effective thermody-

namic driving stress σ̃p which is simply double contraction of that stress and fourth

order projection tensor, P “ I ´ 1 b 1{3. Parameters, such as the pre–exponential

factor 9γ
p
0 , the lumped parameter A and the temperature θ are retrieved from experi-

ments and/or micro–structural data. In addition, J2 flow theory is incorporated into

(3.27) via σ̃p such that

σ̃p :“
a

J2 “
c

1

2
r devpσ̃pq : devpσ̃pq s (3.29)

Other than the pressure dependence, stress softening which is observed in amorphous

glassy polymers is assessed by a phenomenological evolution law for s, i.e.

9s “ h1

ˆ

1 ´ s

sspvf q

˙

9γp with sp0q “ s0 (3.30)

where s0 and h1 imply the material parameters controlling the initial value of the

athermal shear strength s and the slope of the softening, respectively, while sspvfq
denotes the saturation value of s and is considered as function of the void volume

fraction vf , i.e.

sspvf q “ sssr1 ` h2pvssf ´ vfqs, (3.31)

similar to the local free volume theory proposed by ANAND & GURTIN [7]. In (3.31),

sss and vssf are the steady–state values of s and vf under shear yielding and h2 is

another material parameter controlling post-yield softening, respectively.
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3.2.2 Crazing

The flow rule associated with crazing is assumed to occur in the direction of maxi-

mum principle tensile stress based on GEARING & ANAND [46] in the form of

9εc “ 9γcf b f where 9γc “ 9γc0

ˆ

σ̃max

scr

˙m

, (3.32)

Here, 9γc is a scalar function for the craze flow and f “ emax is denoted the eigen-

vector that refers to the effective maximum principle tensile stress, i.e. σ̃max “
maxtσ̃AuA“1,2,3,obtained from the spectral decomposition, i.e.

σ̃ “
3

ÿ

A“1

σ̃AeA b eA. (3.33)

In (3.32)2, 9γc0 corresponds to the reference rate of the craze strain, while the resistance

to craze flow is asserted by scr and m is just a parameter stands for the strain–rate

sensitivity. We highlight that the eigenvector f is not changed once the craze initiates.

3.2.3 Void volume fraction

Craze nucleation is driven by both deviatoric and volumetric components of the ap-

plied stress. Hence, both the shear yielding and crazing mechanisms contributes the

growth of the void volume fraction.

Shear yielding is only effective mechanism for the evolution of void volume fraction

between vf P rvf0, vssf s. On the contrary, once craze initiation criterion is met then

the void volume fraction evolves, i.e. vf P rvssf , 1s, under the action of craze flow.

Therefore, the evolution equation incorporates two cases, i.e.

9vf :

$

&

%

h3

´

s
sss

´ 1
¯

9γp ùñ shear yielding

p1 ´ vfq trp 9εcq ùñ crazing
(3.34)

where h3 is another constant which control the slope of the growth. Note that such

a interpretation is motivated by the classical growth theory related to crazing, beside

the evolution of free volumes presented in GEARING & ANAND [46] is considered

for shear yielding. Dealing with (3.30) in combination of (3.31) and (3.34)1 as a sys-

tem of ordinary differential equations (ODEs), we investigate the equilibrium points

(critical points) on (s,vf )–plane as t Ñ 0. Accepting h1, h2, h3 and 9γp are all positive
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scalars and solving the algebraic equations 9s “ 0 and 9vf “ 0, the system come up to

a single equilibrium point, i.e. (sss, vssf ). Consequently, s Ñ sss and vf Ñ vssf under

shear yielding mechanism.

3.3 Global Equations of the Multi–Field Problem

The constituve framework emphasized in aforementioned sections embedded into

governing global equations of the thermo-viscoplastic fracture at finite strains. First,

we outline fundamental balance laws that satisfy the core axioms of the thermome-

chanics are the balance of linear and angular momentum such that

J divpτ {Jq ` ρ0γ “ 0 and τ T “ τ , (3.35)

governing the initial boundary value problem. ρ0 stands for the density of the refer-

ence configuration and γ is the prescribed body–force field. divp‚q denotes the diver-

gence operator with respect to the spatial coordinates x. The second global equation

is the nonlocal evolution equation of the crack phase–field for a rate dependent case

9d “ 1

η
r2p1 ´ dqH ´ 1

l
pd ´ l2∆dqs , (3.36)

driven by the local history field H storing the loading unloading conditions in terms

of the relevant quantities which will be specified in Section 3.4. The term ∆p‚q “
DivrGradp‚qs represents the Laplace operator with respect to the reference coordi-

nates X . The l indicates the length–scale parameter appear in the phase-field theory

inherently whereas the artificial viscosity parameter, η, is for stabilization of the so-

lution algorithm. For very small values of the length–scale, the Laplacian term can

be omitted. Then, it conduces to a closed form solution for the local evolution of the

phase-field. The desired growth conditions for the phase–field from initially intact

state, i.e. d “ 0, to a fully broken state where d “ 1 are satisfied by a monotonically

increasing specific crack driving source term H.

The third global equation features the balance of internal energy, i.e.

9e “ τ :
1

2
£ν g ` r ´ J divpqq, (3.37)

in the spatial configuration where e refers to the specific energy per unit volume, while

r is the prescribed heat source. With the first law of thermodynamics at hand, one can
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exploit the Legendre transformation, i.e. e “ Ψ ` θηe. Taking the time derivative of

the Legendre transformation and substituting (3.18) and (3.19) into 9Ψ, we arrive at

the following intermediate result, i.e.

9e “ τ :
1

2
£ν g ´ Dred

loc ` θ 9ηe. (3.38)

Comparing (3.37) and (3.38) we obtain the evolution equation for the entropy

θ 9ηe “ ´J divpqq ` r ` Dred
loc , (3.39)

Remembering the definition of the entropy (3.18)2 the temperature times the evolution

of the entropy with respect to time reads

θ 9ηe “ θBθηe 9θ ´ θBθpτ : 1

2
£ν g ´ Dred

loc q

“ c 9θ ´ L,

(3.40)

where we have introduced the specific heat capacity and latent heating, i.e.

c :“ θBθηe “ ´θB2

θθΨ and L :“ θBθpτ :
1

2
£ν g ´ Dred

loc q, (3.41)

respectively. Next, the evolution equation of the temperature follows from (3.40)

substituted into (3.39) such that

c 9θ “ ´J divpqq ` r ` Dred
loc ` L. (3.42)

we end up with q ” 0 and r ” 0 for an adiabatic process. As stated in MIEHE [84],for

entropic thermo-elasticity the amount of latent heating is remarkably small compared

to the dissipative heating . Hence, one can omit the latent heating, i.e. L « 0 without

loss of generality.

3.4 Specific Constitutive Functions

3.4.1 Free energy function

The free energy introduced in (3.15) can be decomposed into thermally coupled elas-

tic and plastic parts along with a purely thermal contribution, i.e.

Ψ̂pε, εp, εc, d, vf , θq :“ Ψ̂epεe, d, θq ` Ψ̂ppεp, vf , θq ` Ψ̂θpθq

“ gepdqΨ̂e
0pεe, θq ` gppvf qΨ̂p

0pεp, θq ` Ψ̂θpθq,
(3.43)
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where Ψ̂e
0
pεe, θq and Ψ̂p

0
pεp, θq account for the elastic impetus of the chains and the

entropic resistance to molecular alignment, acting as potentials for the effective and

back–stress response, respectively. gepdq and gppvfq show the degradation functions

due to phase–field and void volume fraction acting on the elastic and the plastic part

of the free energy function, respectively. We highlight that gppvf q would only be

operational provided that the switch function (3.63) is dropped out of the constitutive

formulation, see DAL ET AL. [37] for the related discussion. Unlike Ψ̂e
0pεe, θq and

Ψ̂p
0pεp, θq, the thermally stored energy Ψ̂θpθq is not influenced by the fracture or void

growth so thermal energy is not released instantaneously right after fracture occurs.

In accordance with the additive split of the free energy, the effective plastic driving

force (3.20)1 is obtained via

σ̃p “ σ̃ ´ σ̃b with σ̃ :“ BεeΨ̂
e
0pεe, θq and σ̃b :“ BεpΨ̂

p
0pεp, θq, (3.44)

in the sense of the effective stress and back–stress tensors σ̃ and σ̃b formulated in

the logarithmic strain space. It should be underlined that only the effective deviatoric

part of the driving force σ̃p enters the flow rule (3.27).

3.4.1.1 Thermo-elastic contribution

Amorphous glassy polymers show noticeably small elastic deformation before yield-

ing. Therefore, linear elastic model can be used to describe the behavior of the mate-

rial in that regime, i.e.

Ψ̂e
0pεe, θq “ κ

2
tr 2pεeq ´ καT trpεeq pθ ´ θ0q ` µ̂pθq }devpεeq}2 , (3.45)

where κ, µ̂pθq and αT stand for the bulk modulus, the temperature dependent shear

modulus and the thermal expansion coefficient, respectively, while θ0 denotes the

initial temperature of the material. The effective Kirchhoff stress and its logarithmic

counterpart are obtained by exploitation of (3.18), i.e.

τ̃ :“ σ̃ : T where σ̃ :“ κrtrpεeq ´ αT pθ ´ θ0qs1 ` 2µ̂pθq devpεeq. (3.46)

Temperature effect on the shear modulus can be identified by the following empirical

relation as proposed in BOYCE ET AL. [25]

µ̂pθq “ exp rlnpµrq ´ cspθ ´ θrqs , (3.47)
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in which θr, µr and cs represent the reference temperature, shear modulus at reference

temperature and sensitivity parameter, respectively.

3.4.1.2 Thermoplastic contribution

The plastic part of the intact free energy describes the post–kinematic hardening ef-

fect via effective back–stress σ̃b resulting from the intramolecular resistance to the

plastic flow owing to the chain alignment in the principal deformation directions, see

(3.44)3. Also, amorphous glassy polymers show entropic nature as in rubbery poly-

mers. Hence, polymer network theories are oftenly used to model plastic part of the

free energy function and post–kinematic hardening region.

There are pervasive approaches in the literature which construct a relationship be-

tween microscopic and macroscopic deformations through particular kinematic as-

sumptions, see among others the three chain model of JAMES & GUTH [64] and

WANG & GUTH [114], the eight chain model of ARRUDA & BOYCE [14]. We re-

fer to DAL ET AL. [35] for further information. As the plastic part is modelled as

polymer network, it can be considered to be isotropic and can be identified by plastic

principal stretches, i.e.

λ
p
i “ exppǫpi q where i “ 1, 2, 3. (3.48)

These are derived by the spectral decomposition of the plastic stretch tensor via the

Hencky–type plastic strain εp, i.e.

U p :“ Gp 1{2 “ exppεpq “
3

ÿ

i“1

exppǫpi q np
i b n

p
i , (3.49)

where tnp
i ui“1,2,3 are the principal directions of the plastic strain. We directly adopt

the eight chain model proposed by ARRUDA & BOYCE [14] all among the polymer

network theories mentioned above. Accordingly, the network stretch Λp is calculated

from the following relationship

Λp2 :“ 1

3
pλp2

1
` λ

p2
2

` λ
p2
3

q “ 1

3
trpGpq. (3.50)

Conclusively, one can declare the energetic state of the full network considering the

energy of a fictitious prototype chain via

Ψ̂p
0pΛ̂p

r, θq “ µ̂ppθqN̂ppθq
˜

Λ̂p
rpθqL´1rΛ̂p

rpθqs ` ln
L´1rΛ̂p

rpθqs
sinhL´1rΛ̂p

rpθqs

¸

. (3.51)
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Here, µ̂ppθq and N̂ppθq represent the thermally dependent plastic shear modulus and

the number of segments per chain, respectively. In fact, the standard argument based

on TRELOAR [111] determines the plastic shear modulus

µ̂ppθq “ n̂ppθqkBθ, (3.52)

where nppθq stands for the temperature dependent fictitious chain density, while kB

is the Boltzmann constant. Unlike cross–linked rubbery polymers, the chain density

in amorphous glassy polymers is not constant rather subject to decrease as the tem-

perature of the domain rises. This phenomenon is elucidated according to RAHA &

BOWDEN [101] and ARRUDA ET AL. [16] by the following empirical relation

n̂ppθq “ B ´ D exp

ˆ

´Ed

Rθ

˙

, (3.53)

in which B and D appear as constants, while Ed denotes the dissociation energy of

the entanglements in the molecular network. R stands for the gas constant. The ratio

between B and D can be determined from experimental observations conducted at

the glass transition temperature θg, whereby the molecular network completely breaks

down leading to n̂ppθq “ 0. Then, we have

B

D
“ exp

ˆ

´ Ed

Rθg

˙

, (3.54)

according to BASU & GIESSEN [17]. The total number of rigid links in the network

is assumed to be conserved at any temperature, i.e. n̂ppθqN̂ppθq “ const., whereby

the actual number of segments per chain can be calculated as follows,

N̂ppθq “ n̂ppθrq
n̂ppθq N̂

ppθrq, (3.55)

see, e.g., ARRUDA ET AL. [16] and the references therein. Here, n̂ppθrq and N̂ppθrq
express the chain density and the number of segments for a single chain at the refer-

ence temperature θr. Returning back to (3.51), L´1r¨s denotes nothing but the inverse

of the well–known Langevin function, i.e. Lr¨s :“ cothp¨q ´ 1{p¨q. In following

section, well accepted approaches are classified and investiagated by means of com-

plexity and accuracy.

In proposed approach, Padè approximation for the inverse Langevion function is used,

i.e.

L´1rΛ̂p
rpθqs « Λ̂p

rpθq3 ´ Λ̂p2
r pθq

1 ´ Λ̂p2
r pθq

, (3.56)
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see COHEN [33] for details. In (3.51), the temperature dependent relative plastic

network stretch Λ̂p
rpθq :“ Λp{

b

N̂ppθq where Λ̂p
rpθq P r0, 1s gives an account of the

limited extensibility of the chains as Λ̂p
l pθq “

b

N̂ppθq being the locking stretch.

Accordingly, the back–stress (3.44)3 in the logarithmic strain space is computed via

the chain rule

σ̃b :“ B
Λ̂
p
r
Ψ̂p

0
pΛ̂p

r, θq B
ΛpΛ̂p

r Bλp
i
Λp Bǫpiλ

p
i Bεpǫpi where i P t1, 2, 3u. (3.57)

Inserting the respective derivatives into (3.57) we end up with the effective back–

stress tensor

σ̃b :“ µ̂ppθq
3

˜

3N̂ppθq ´ Λp2

N̂ppθq ´ Λp2

¸

Gp with Gp “
3

ÿ

i“1

λ
p2
i n

p
i b n

p
i . (3.58)

It should be emphasized that only the deviatoric part of the effective back–stress σ̃b

enters the flow rule in (3.27).

3.4.1.3 Thermal contribution

Following form is enough to elucidate to purely thermal part of the free energy func-

tion, i.e

Ψ̂θ
0
pθq “ ´c

„

θ
θ

θ0
´ pθ ´ θ0q



, (3.59)

Here, c denotes the specific heat capacity while θ0 indicates the initial temperature of

the body.

3.4.2 Degradation functions

The degradation function for the elastic part gepdq in (3.43) describes the softening

of the material with evolving damage parameter d. The chosen function must satisfy

following restrictions

gep0q “ 1, gep1q “ 0, Bdgep1q “ 0. (3.60)

The first two constraints in (3.60) set limits for the intact and the ruptured state of

the material, whereas the latter condition ensures that the energy dissipation reaches

a saturated value as the damage converges to the fully–broken state, i.e. d “ 1. Even

alternative forms of degradation functions can be found in KUHN ET AL. [74] and
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BORDEN ET AL. [20], we prefer to directly adopt a simple quadratic form for gepdq
which satisfies predefined conditions in the sense of MIEHE ET AL. [94].

gepdq “ p1 ´ dq2, (3.61)

Note that gepdq acts on only elastic part of the free energy function in (3.43). Since

accumulated plastic deformation is not altered by fracture, plastic energy release does

not take place. Therefore, it is assumed that plastic stored energy is not affected by

fracture in general.

Glassy polymers lose their ability of exhibiting ductile response due to evolution of

voids in the material and they start to show brittle-type response. Therefore, the

degradation function gppvfq is plugged into plastic part of the free energy function to

emphasize the decline the contribution of the plastic part due to shear yielding in an

analogous form to (3.61), i.e.

gppvf q “ p1 ´ vfq2, (3.62)

The proposed degradation form above is enough to characterize the lessening in the

plastic contribution accounting for the void growth.

3.4.3 Craze nucleation criterion

Simultaneous evolution of both shear yielding and crazing is omitted1,see DAL ET

AL. [37] for further discussion . Alternatively, we consider two serial viscoplastic

dashpots together with an irreversible switch function Fc for the onset of crazing

Fcpσ̃q :

$

’

’

&

’

’

%

fcpσ̃q ď 0 _ σ̃max ď 0 _ σ̃vol ď 0 ùñ shear yielding

fcpσ̃q ą 0 ^ σ̃max ą 0 ^ σ̃vol ą 0 ùñ crazing

(3.63)

where the effective mean normal stress (negative hydrostatic pressure) is defined as

κrtrpεeq ´ αT pθ ´ θ0qs in the logarithmic strain space and fc stands for the nucle-

ation function to be stated. At the beginning, the material behaves viscoplastic in

which the crazing strains have not evolved yet, 9εc “ 0. When the stress state of

the material reaches the criterion proposed in (3.63), craze initiates and the rate of

plastic strains due to shear yielding become frozen 9εp “ 0. It needs to be underlined

that the plastic deformation due to shear yielding is a volume preserving process, i.e.
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trpεpq “ 0, which is in accordance with the finite viscoplastic behavior of ductile

amorphous glassy polymers. However, crazing is associated with dilatational plastic

straining, thereby making the inelastic flow compressible once the craze nucleation

criterion (3.63) is satisfied. Influenced by the criterion proposed by STERNSTEIN

& MYERS [105] we enhance the following craze initiation function in the sense of

GEARING & ANAND [46] to provide temperature dependency, i.e.

fcpσ̃, θq “ σ̃max´
ˆ

ĉ1pθq ` ĉ2pθq
σ̃vol

` ĉ3pθqσ̃vol
˙

with ĉ3pθq “ 3νpθq
1 ` νpθq , (3.64)

where ĉ1pθq [MPa], ĉ2pθq [MPa2], and ĉ3pθq [-] represent temperature dependent ma-

terial parameters according to

ĉipθq “ ĉipθrq exp
ˆ

Qi

kBθ

˙

where i “ 1, 2. (3.65)

Therein, Q1 [Nmm] and Q2 [Nmm] should be determined from experimental data

as proposed by TIJSSENS ET AL. [108]. Note that in (3.64)2, νpθq denote the tem-

perature dependent Poissons’ ratio. Given criterion in (3.63) operates as a one–way

switch function in proposed model.

3.4.4 Local history field as a failure criterion

For the purpose of establish the novel failure criterion for simultaneous modeling of

ductile and brittle fracture, we introduce an equivalent plastic strain due to the shear

yielding

α :“ }εp} “
?
εp : εp. (3.66)

Then we propose the crack driving source term in (3.36) for the local evolution of of

the crack phase field d.

Hpx, α, vf , tq :“ ζx
´α

ᾱ

¯2

`
ˆ

vf

v̄f

˙2

´ 1y, (3.67)

1Concurrent evolution of crazing and shear yielding has been profoundly investigated by postulating a single

evolution equation of the inelastic strains, that is, 9εpc “ gcpvf q 9εc ` gppvf q 9εp resulting in εe “ ε ´ εpc. There,

gcpvf q signifies a general growth function for crazing, e.g., gcpvf q “ v2f , while gppvf q is a degradation function

for shear yielding analogous to (3.61). Such a formalism dispenses with the plastic incompressibility. However,

this has led to enormous numerical issues, especially when combined with phase-field modeling of fracture and

could not be circumvented. Therefore, we need to rely on the switch function separating the evolution of the two

phenomena. In this case, the degradation term gppvf q in front of Ψ̂p
0
pεpq in (3.43) becomes trivial since the switch

function already carries out the intended purpose in an abrupt manner.
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ζ is a parameter associated with the growth process for the crack phase field and

the Macaulay brackets, i.e. xxy “ 1

2
px ` |x|q, ensure only the positive values are

taken into account.Therein, ᾱ and v̄f are the critical equivalent plastic strain and void

volume fraction associated with shear yielding and crazing, respectively.

Such a modality in constitutive modelling of amorphous glassy polymers can not

only relate the phenomena of crazing to more physically grounded measure rathert

than the extant criteria in the literature but also simultaneously models shear yielding

and crazing induced crack initiation and growth in the context of crack phase–field

approach.

3.4.5 Dissipation potential for heat conduction

The objective dissipation potential function stated in (3.26) represent the heat flux

within the body and is formulated in the following convex quadratic form

Φ̂conpg; g,F , θq “ 1

2
k g´1 : g b g, (3.68)

where g is the temperature gradient vector in the spatial configuration and k is the heat

conductivity constant which is chosen greater than zero in order to generate a positive

dissipation. From (3.68) we conclude the Cauchy–type (true) heat flux vector defined

in Sec.3.1.2, i.e.

q “ kgg´1 “ ´k∇xθg
´1. (3.69)

The Lagrangian equivalent of (3.69) is given as

Q “ kGC´1 “ ´k∇XθC
´1. (3.70)

3.5 Global algorithmic treatment

The coupled global field equations stated in (3.35), (3.36) and (3.42) in Sec. 3.3 de-

scribe the multi–physics nature of the phenomena in an analytical sense. To go one

step further in the numerical development, let us focus on a time interval r tn, tn`1 s Ă
R during which the initial boundary–value problem is depicted by the initial condi-

tions at tn, i.e.

tϕ, d, θu|pt“tnq “ tϕn, dn, θnu, (3.71)

for the primary field variables. In what follows, the Dirichlet–type boundary con-

ditions for the deformation field, the crack phase–field and the temperature field are
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prescribed as follows

ϕ “ ϕ̄ on BBϕ, d “ d̄ on BBd and θ “ θ̄ on BBθ, (3.72)

along with the Neumann–type boundary conditions, i.e.

τ ¨ n “ t̄ on BSt, ∇Xd ¨ N “ 0 on BB∇d and h ¨ n “ h̄ on BSh.

(3.73)

In (3.73), N and n “ F ´TN are the outward normals on the surface BB of the

reference configuration and BS of the spatial configuration. Having demonstrated

the initial and boundary conditions of the multi–field problem, an important concept

apropos the thermal problem awaits to be set on the exterior boundary which is the

convective heat exchange. A linear relationship holds for the heat exchange between

the ambient and the solid domain such that

h̄ “ hcpθ ´ θ8q on BSh, (3.74)

where hc is the coefficient of the convective heat exchange and θ8 represent the am-

bient temperature. The numerical setup starts with the one–pass operator splitting

algorithm featuring a concept of dividing the non-convex monolithic problem into

convex sub–problems according to ϕ, θ and d. In this way, they are successively

updated in a typical time step ∆t “ tn`1 ´ tn,

ALGOMTC “ ALGOM ˝ ALGOT ˝ ALGOC , (3.75)

where each partitioned system reads

pMq :

$

’

’

’

’

&

’

’

’

’

%

J divpJ´1τ q ` ρ0γ “ 0

9θ “ 0

9d “ 0,

pT q :

$

’

’

’

’

&

’

’

’

’

%

9ϕ “ 0

9θ “ ´J divpqq{c ` Dred
loc {c

9d “ 0,

pCq :

$

’

’

’

’

&

’

’

’

’

%

9ϕ “ 0

9θ “ 0

9d “ 1

η
r2p1 ´ dqH ´ 1

l
pd ´ l2∆dqs.

(3.76)
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Therein, the mechanical step pMq is solved for the frozen the temperature and the

crack phase–field θn`1 “ θn and dn`1 “ dn, respectively, whereas the temperature

evolution step pT q admits a frozen deformation map ϕn`1 “ ϕn and the frozen crack

phase–field dn`1 “ dn. Finally, the evolution step for the crack phase–field accepts

the frozen states for the deformation map and the temperature in which ϕn`1 “ ϕn

and θn`1 “ θn, respectively. Note that all variables without subscript are hereinafter

evaluated at time tn`1 and gradients without subscripts, i.e. ∇p¨q, refer to the refer-

ence configuration.

3.6 A one-pass predictor-corrector algortihm for the inverse Langevin function

Langevin function, named after Paul Langevin, is expressed by

Lpxq “ coth x´ 1

x
, (3.77)

where coth x is hyperbolic cotangent. Its inverse function is widely used in sev-

eral fields of statistical mechanics such as magnetism, polymer physics [73] and rub-

ber elasticity [41]. Since the inverse Langevin function L´1pxq cannot be expressed

in closed form, there are mainly two ways to compute it: (i) by approximate func-

tions and (ii) numerical methods. Approximate functions can be classified into three

classes: power series [41, 63, 110], rational functions [33, 38, 65, 73, 100, 111] and

trigonometric functions [19, 69, 70]. Taylor series expansion is the most commonly

used power series approximation for an arbitrary function yielding very accurate pre-

dictions within a convergence radius that increases with increased number of series

terms [62, 110]. However, the Taylor series approximation is divergent in the limit

y “ Lpxq Ñ 1. The general formula for the Taylor series expansion of the inverse

Langevin function is

L´1pyq «
n

ÿ

k“1

aky
k, a2k “ 0 for k “ 1, ..., n (3.78)

First five non-zero terms of Taylor series expansion for the inverse Langevin function

were introduced by KUHN & GRÜN [75] and it paved the way for further contribu-

tions based on Taylor expansion [15, 115, 120]

L´1pyq « 3y ` y3

5
` 297y5

175
` 1539y7

785
` 126117y9

67375
. (3.79)
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A simple iterative procedure to obtain the coefficients ai of the Taylor series at any

order is proposed by KRÖGER [73]. Recently, radius of convergence of Taylor se-

ries for the inverse Langevin function was estimated as r “ 0.904 [66] for first

1500 non-zero terms of Taylor expansion on the basis of the procedure by MER-

CER & ROBERTS [82]. Since r ă 1, Taylor series of the inverse Langevin func-

tion cannot provide accurate results near the singularity around y « 1 [62]. Ratio-

nal functions are proposed as an alternative for approximating the inverse Langevin

function. It is based on Padé approximant technique which is expanding a given

function fpxq as a ratio of two power series. These functions are usually more ac-

curate, yet they have more complex mathematical forms. Many approximation func-

tions [33,38,65,73,100,110] have been proposed with different level of accuracy and

complexity based on Padé approximant technique but most common approximation of

the inverse Langevin function in rubber mechanics is the Cohen’s approximation [33].

Other approximate functions will be discussed in the following section. Last class of

approximants is the trigonometric functions [19,69,70]. BERGSTRÖM [19] suggested

a piecewise function that contains trigonometric terms. His approach has lower max-

imum relative error compared to functions based on Padé approximant. However, its

implementation into analytical works is quite compelling due to its piecewise form.

Several approximations based on non-piecewise trigonometric functions were devel-

oped to handle this difficulty [69,70]. In recent years, numerical techniques have been

used to find better approximations for the inverse Langevin function. MARCHI& AR-

RUDA [80] introduced new formulae in the form of rational functions resulting from

a standard optimization problem. Coefficients in the formulae were obtained by the

method of differential evolution. MOROVATI ET AL. [95] proposed an approach that

consists of two parts: first part is the main function (fpxq) with correct poles and

residues and second part is a power series (MpEq) derived to reduce the error E aris-

ing from chosen main function.

L´1pxq “ fpxq ` MpEq with E “ L´1pxq ´ fpxq . (3.80)

Adding more terms in the Maclaurin series M reduces the relative error. To illustrate

the proposed approach, they considered two main functions: namely a Warner-like

function ( 2x
1´x2 ) and a trigonometric function (π

2
tanpπ

2
xq). Furthermore, they opti-

mized the coefficient of the last term of power series to reduce the relative error.
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Among all these type of approaches, there is a tradeoff between accuracy and com-

plexity. The interested reader is referred to the excellent reviews of KRÖGER [73],

MARCHI & ARRUDA [80], MOROVATI ET AL. [95].

In this work, we propose a one-pass predictor-corrector algorithm for the approxima-

tion of the inverse Langevin function. In the predictor step, an approximant function

yppxq is used to predict the inverse of the Langevin function ypxq “ L´1pxq. In order

to improve the approximation yp an error function Epypq “ Lpypq ´ x is introduced.

The linearization of Epypq around yp and its y-intercept y‹
p leads to the corrected value

of the approximant. The novelty of the approach lies in the fact that, the current cor-

rector is a function of yp rather than “x”, opposed to the the correction terms proposed

in the literature.

3.6.1 Proposed approach

Let the error function be given

E “ Lpypq ´ x Ñ E “ coth pypq ´ 1

yp
´ x . (3.81)

The linearization of the error function around y reads

LinE “ Epypq ` dE

dy

ˇ

ˇ

ˇ

ˇ

yp

∆y
!“ 0 . (3.82)

The tangent of the error function with respect to y can be derived as

K “ dE

dy

ˇ

ˇ

ˇ

ˇ

yp

Ñ K “ 1

sinh2 pypq
´ 1

y2p
. (3.83)

Incorporation of (3.83) and (3.81) into the linearized error expression (3.82) , the

approximation can be updated

yc “ yp ` ∆y “ yp ´ E

K
. (3.84)

The interval [0,1] is divided equally into 104 intervals and the error is calculated for

each point except the singular ones. The calculations are repeated for 6 different

approximants outlined in Table 3.1. The elapsed time is observed after the predictor

and the corrector steps. To compare these features, a MATLAB code is compiled and

timeit function is used to keep record of the run-time. It calls the specified function

multiple times and returns the median of the time intervals.
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Table 3.1: One-pass predictor-corrector algorithm for e.g. Padé approximation [33].

I. Predictor step Given: yp “ x
3 ´ x2

1 ´ x2

II. Corrector step

1. Error function E :“ cothpypq ´ 1

yp
´ x

2. Linearization Lin E “ E ` K∆y
!“ 0 .

3. Tangent K “ 1

sinh2 pypq
´ 1

y2p

4. Solve ∆y “ ´ E

K

5. Update yc “ yp ´ E

K

Table 3.2: Approximate rational functions for the inverse Langevin function

Proposed by Approximant

Cohen [33] L´1pxq “ x
3 ´ x2

1 ´ x2

Treloar [111] L´1pxq “ 3x

p1 ´ x2qp1 ` 0.4x2 ` 0.2x4q

Puso [100] L´1pxq “ 3x

1 ´ x3

Jedynak [65] L´1pxq “ 3x´ 2.6x2 ` 0.7x3

p1 ´ xqp1 ` 0.1xq

Kröger [73] L´1pxq “ 3x

p1 ´ x2qp1 ` 0.5x2q

Itskov & Darabi [38] L´1pxq “ 3x´ 3x2 ` x3

1 ´ x

KRÖGER [73] suggested the term complexity defined as the sum of the orders of

polynomials in the nominator and denominator for rational functions. In the lights of

this claim, one can infer why Treloar [1/6] approach takes more time than Itksov and

Darabi [3/1], see Figure 3.2. On the other hand, according to Kröger’s complexity

definition, Puso approach [1/3] (order 4) is less complex than Cohen approach [3/2]

(order 5). However, required time for Puso approach is obviously larger. It shows
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that such a definiton is not a persistent way of measuring the computational cost of

an approximant. In this work, we pursue with the elapsed time instead of complexity

which is more general allowing comparison of functions of any type. As can be seen

from Figure 3.2, elapsed time for corrector step is identical for all approximants as the

methodology suggests. For Cohen and Kröger approaches, elapsed time for predictor

steps are quite similar and the elapsed time for corrector step is less than half that of

predictor step. Moreover, elapsed time for predictor step of the approximants of Puso,

Jedynak and Itskov are almost identical and the corrector steps take nearly one fourth

of the elapsed time for predictor step. The relative error distributions for the predictor

and correctors steps of each approximant are plotted in the range x P r0, 1q and

depicted in Figure 3.3. Maximum relative errors of rational functions are given in
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Figure 3.2: Elapsed time for the predictor and corrector steps of the rational approxi-

mants to Langevin function.

Table 3.3. Therein, the exact results are obtained by employing 10 Newton-Raphson

(NR) iterations to the error expression (3.81). After a few steps, NR iterations lead to

the machine tolerance for the error. According to results, the predictor step applied to

Cohen’s approximant reduces the relative error from 4.937% to 0.240% and still takes

less time than initial call of other approaches, such as Treloar, Jedynak, and Itskov

& Darabi. Similarly, Kröger approximation performs the best among others both

after the predictor (Erel “ 1.264%) and the corrector steps (Erel “ 0.016%). Kröger

approximation is not only the most accurate approximant but also computationally

the most feasible approximation. For all approximations, the corrector step reduces
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Figure 3.3: Relative errors for the predictor and corrector steps of rational approxi-

mants to inverse Langevin function.

the relative error by at least an order of magnitude, see Table 3.2.

Besides the rational functions given in Table 3.1, 4 different functions which were

proposed by Morovati et al. [95] are investigated as a second set of examples. In a

similar way, max relative error and elapsed time for each function are calculated and

presented in Table 3.3 and Figure 3.4. Approximants #1 and #2 are constructed on the

modified version of Warner approach ( 2y

1´y2
). On the other hand, approximants #3 and

#4 are produced by taking a trigonometric function as a basis function (π
2
tanpπ

2
yq)

and adding power series terms to reduce the relative error. Both main functions are

odd, have simple poles at y “ ˘1 and a residue of ´1. Thus, the second set of ap-
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Table 3.3: Relative errors for the predictor and corrector steps of rational approxi-

mants to inverse Langevin function.

Max relative error [%]

Approach Predictor Corrector

Cohen 4.937 0.240

Treloar 6.250 0.391

Puso 4.612 0.122

Jedynak 1.513 0.023

Kröger 1.264 0.016

Itskov & Darabi 2.639 0.041

proximants exhibit asymptotic behavior similar to the inverse Langevin function. For

further discussion on the features of admissible approximants for inverse Langevin

function, we refer to KRÖGER [73].

To show the effectiveness of the proposed approach, it is applied to approximants

Table 3.4: Relative errors of approximate functions at predictor and corrector steps

2*Function type Max relative error [%]

Predictor Corrector

Warner-like functions [95]

1)
2y

1 ´ y2
` y ´ y3

5
2.90 0.084

2)
2y

1 ´ y2
` y ´ y3

5
´ 53y5

175
´ 0.16y7 0.41 -

Trigonometric functions [95]

3)
π

2
tanpπ

2
yq ` 0.53y ´ 0.23y3 2.92 0.085

4)
π

2
tanpπ

2
yq ` 0.53y ´ 0.23y3 0.35 -

´0.31y5 ´ 0.14y7

#1 and #3, then maximum relative error of predicor and corrector steps are calcu-

lated. The approximants #2 and #4 are already proposed as improvement to #1 and
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#3. Therefore the corrector step of our approach is compared to the additional terms

added by MOROVATI ET AL. [95] in order to compare its efficiency. Hence, the cor-

rector step is not applied to approximants #2 and #4 as the main idea behind the our

idea is to use relatively simpler expressions as predictors. The improvement of our

approach can be clearly seen from the maximum relative errors reported in Table 3.3.

Maximum relative error for approximant #1 reduces from 2.90% to 0.084% in the

predictor step whereas the correction term added in #2 reduces the maximum relative

error to 0.41%. Although the approximant #2 has a series expansion up to seventh

order term, the maximum relative error resulting from the predictor step is about one

fifth of the approximant #2. Furthermore, the additional computational cost of the

corrector step is less than half that of #2, see Figure 3.4. Similar trend is observed

Function number

E
la

ps
ed

ti
m

e
[1
0

´
3

s]

1 2 3 4

Predictor
Corrector

0

1

2

3

4

Figure 3.4: Elapsed time for the approximants from Morovati et al. [95] and the

proposed predictor-corrector algorithm.

as the one-pass predictor-corrector algorithm is applied to approximant #3 and com-

pared to #4. Maximum relative error for approximant #3 decreases to 0.085% after

corrector step whereas the the approximant #4 leads 0.35% maximum relative error.

As the the predictor-corrector algorithm is used to improve approximant #3, the ad-

ditional computational cost considerably less than that of #4, which also is used to

improve #3 with additional polynomial terms, see Figure 3.4.

3.6.2 Representative example: Rubber elasticity

In this section, the proposed approximant is applied for the computation of the inverse

Langevin function in rubber elasticity. Our aim is to assess (i) the quality of the ap-
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proximant on the fitting performance of the constitutive model and (ii) the sensitivity

of model parameters on the approximant. We choose the Cohen’s approximant as the

predictor. The particular reason for this choice is its wide use of Cohen’s approxi-

mant L´1pxq “ x3´x2

1´x2 in rubber elasticity [35]. To this end, eight-chain model [15]

and the extended eight-chain model [36] are investigated with respect to the exper-

imental dataset of TRELOAR [112]. The eight-chain model is derived based on the

non-Gaussian Langevin statistics of an ideal, freely jointed phantom chains that can

pass freely through their neighbouring chains so that, effect of constrained junctions

and entanglements are neglected. This fact manifests itself in terms of underesti-

mated stress-strain response under biaxial deformation states in the Gaussian-region.

The extended eight-chain model incorporates a tube-like constraint that accounts for

the entanglements restricting the free-motion of the chains. This is achieved in terms

of an areal stretch based constraint free energy function. Both models are based on

the first and second invariants. In this regard, the stress expressions under uniaxial

(UT), equibiaxial (ET) and pure shear (PS) deformations read

(UT) P1 “ 2pc1 ` c2

λ
qpλ ´ 1

λ2
q

(ET) P1 “ 2pc1 ` c2λ
2qpλ ´ 1

λ5
q

(PS) P1 “ 2pc1 ` c2qpλ ´ 1

λ3
q

(3.85)

with

c1 “ Bψ
BI1

and c2 “ Bψ
BI2

. (3.86)

For the extended eight-chain model, the partial derivatives are

c1 “ µ

6

L´1pλrq
λr

and c2 “ 1

9

µc

ν2c
. (3.87)

Herein, the average network stretch, the relative average network stretch and the av-

erage areal network stretches are, respectively,

λn“
c

λ21 ` λ22 ` λ23
3

“
c

I1

3
, λr “ λn?

N
(3.88)

and

νn“ 3

c

ν2
1

` ν2
2

` ν2
3

3
“ 3

c

I2

3
. (3.89)

The λ2i and ν2i are the eigenvalues of the right Cauchy-Green tensor C and its cofac-

tor cofC, respectively. The model parameters µ, N , and µc are the shear modulus,
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segment number and tube-constraint parameter, respectively. The model recovers the

eight-chain model for c1 “ 0 or µc “ 0. In both investigations, the parameter identifi-

cation procedure outlined in DAL ET AL. [35] is utilized and the model parameters of

the eight-chain model is obtained for the cases: (i) Cohen’s approximant used for the

inverse Langevin function and (ii) corrector scheme applied to the Cohen’s approxi-

mant used as predictor. In short, the cost function is defined as

ETOTpζ,wq “ w1EUT ` w2EET ` w3EPS , (3.90)

where error expression for uniaxial, equibiaxial and pure shear experiments read

Ekpζq “
nk
ÿ

i“1

pP11pζ, λiq ´ P
exp
11 pλiqq2 (3.91)

with k “ tUT, ET, PSu. w1, w2, w3 are the associated weight factors.

Table 3.5: Optimized model parameters and relative stretch range for eight-chain

model obtained for UT dataset of Treloar: (i) Cohen’s approximant (predictor) and

(ii) one-pass corrector term.

Eight-chain model µ [MPa] N λr P rmin , maxs

Cohen’s approximant [33] 0.2672 25.5927 [0.1977 , 0.8693]

Predictor-corrector 0.2782 25.5108 [0.1980 , 0.8707]

Table 3.6: The quality of fit values obtained from the parameter identification process

for the eight-chain model: (i) Cohen’s approximant (predictor) and (ii) one-pass cor-

rector term.

Quality of fit

Eight-chain model Total Region 1 Region 2 Region 3

Cohen’s approximant [33] 0.2468 0.0756 0.0809 0.0930

Predictor-corrrector 0.2010 0.567 0.0644 0.0799

In the first example, the eight-chain model parameters are obtained from the UT

dataset of Treloar. The material parameters obtained from fitting process are outlined
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Figure 3.5: Predictions of eight chain model with (i) Padé approximant and (ii)

one-pass predictor-corrector algorithm employed for the inverse Langevin function:

The parameters are fitted to the uniaxial tension experiment of Treloar: (left) The

eight-chain model parameters µ “ 0.2672 & N “ 25.5927 (Padé approximant) and

µ “ 0.2782 & N “ 25.5108 (predictor-corrector algorithm) are identified. (right)

Parameters µ “ 0.2782 & N “ 25.5108 are taken identical for comparison.

in Table 3.5. Model parameters change slightly as the Padé approximant is replaced

with the corrector term during the parameter identification. To express the agree-

ment between the model prediction and the experimental data in a comprehensive

manner, the quality of fit expressions for both cases are tabulated for three regions

of deformation in Table 3.6, see also DAL ET AL. [35] The inverse Langevin func-

tion enters the stress expression as a function of the relative stretch λr “ λn{
?
N

which varies in between λr P r0.19, 0.88s during the uniaxial tension test, see Table

3.7. This value varies slightly according to the variations in segment number N as

the Padé approximation is replaced with the correcter term. It is shown that one-pass

predictor-corrector step improves the fitting quality marginally. On the other hand,

a more noticeable change is observed in the identified paramters. The initial shear

modulus is about 4.12% higher when the predictor-corrector scheme is employed,

see Figure 3.5(left). In order to assess the variation in model prediction when Padé

approximation is replaced with the predictor-corrector scheme for fixed model pa-

rameters, the stress-stretch results for the uniaxial tensile deformations for the eight-

chain model are plotted for the two cases, see Figure 3.5(right). The model param-

eters for two cases are µ “ 0.2782 & N “ 25.5108. The nominal stresses obtained

with Padé approximation slightly overshoot the values obtained from the predictor-
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corrector scheme in the non-Gaussian region and the gap decreases towards the chain

extensibility limit. However, it is possible to improve the quality of fit of the esti-

mates obtained from Padé approximation by modifying the material parameters of

the eight-chain model.

In the second example, the proposed predictor-corrector scheme is embedded into

extended eight-chain model [36] and new model parameter sets are computed for

simultaneous fitting of UT+ET+PS dataset of Treloar. The fitted curves for both ap-

proaches are illustrated in Figure 3.6. The identified material parameters, and the

quality of fit results for the (i) Padé approximant and (ii) predictor-correcter scheme

based computations are outlined in Table 3.7 and Table 3.8, respectively. It is ob-

served that quality of fit decreases slighlty after switching from Padé approximant to

the predictor-correcter scheme. The difference between the identified shear moduli µ

and µc are 4.4%, 5.2%, respectively. Although the difference between the identified

shear moduli parameters are more pronounced in each case, the effective shear mod-

ulus µeff “ µ ` 4{9µc “ 0.471 in the former and µeff “ 0.472 for the latter case. The

difference between the identified segment numbers N is less than 0.2%.
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Figure 3.6: Predictions of extended eight-chain model and its modified version with

one-pass predictor-corrector algorithm for combination of uniaxial, equibiaxial, and

pure shear loadings using Treloar data.
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Table 3.7: The material parameters, relative stretch range, and the quality of fit values

obtained from the parameter identification process for the extended eight-chain model

with Padé approximation.

Material parameters µ “ 0.2614 N “ 25.3775 µc “ 0.4715

Relative stretch UT ET PS

λmin
r 0.1985 0.1985 0.1985

λmax
r 0.8730 0.7213 0.5815

Quality of fit

Weight Total Region 1 Region 2 Region 3

UT 0.1 0.0526 0.0070 0.0154 0.0302

ET 0.8 0.0849 0.0216 0.0278 0.0355

PS 0.1 0.0526 0.0118 0.0123 0.0285

Total 1.0 0.1902 0.0404 0.0555 0.0943

Table 3.8: The material parameters, relative stretch range, and the quality of fit values

obtained from the parameter identification process for the extended eight-chain model

with predictor-corrector scheme.

Material parameters µ “ 0.2730 N “ 25.3308 µc “ 0.4470

Relative stretch UT ET PS

λmin
r 0.1987 0.1987 0.1987

λmax
r 0.8738 0.7219 0.5820

Quality of fit

Weight Total Region 1 Region 2 Region 3

UT 0.1 0.0858 0.0079 0.0302 0.0477

ET 0.8 0.0871 0.0197 0.0281 0.0393

PS 0.1 0.0651 0.0102 0.0118 0.0431

Total 1.0 0.2380 0.0378 0.0701 0.1301
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CHAPTER 4

REPRESENTATIVE NUMERICAL EXAMPLES

The theoretical framework proposed in Chapter 3, have been implemented into FEAP

developed by TAYLOR [106]. Modeling capacity of the employed approach is ass-

esed by matchting between experimental data in the literature and simulation results.

In Section 4.1, only mechano-fracture is investigated for a complex geometry in or-

der to show model sensitivity, i.e thermal field is not solved. Then, beside uniaxial

compression tests under various temperature with constant strain rate, uniaxial ten-

sion tests under room temperature with several strain rate are considered to assign

material parameters of PMMA. Once parameter identification process is done, then

coupled thermo-mechanic fracture problem is simulated for a complex geometry un-

der different strain rates and temperature values to emphasize the modeling ability of

transition in between ductile-brittle fracture.

4.1 Tensile test on a double notched specimen

A benchmark example has been performed in order to assess the sensitivity of the

computations with regard to various fracture parameters under shear yielding and

crazing induced failure and to assess the ability of the numerical model to capture

complex crack patterns. Motivated by the blanking process, a problem geometry with

two asymmetrically placed rounded notches is used as originally proposed by [28].

We also refer to the investigations carried out on the same geometry by [1, 81] for

ductile and porous plasticity of metals. The bottom and right boundaries remain fixed,

and the specimen is driven by ûptq “ vt on the left and top boundary, see Figure

4.1(a). The tip velocity is taken as v “ 6 [mm/s]. The left edge is fixed against

horizontal motion. The sensitivity analysis is based on various combinations of v̄, ᾱ
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ᾱ “ 0.1, ζ “ 100

v̄ “ 10´4, ζ “ 100

Figure 4.1: (a) Geometry and boundary conditions for tensile test on double notched

square specimen. The dimensions of the geometry are, l1 “ 2mm, l2 “ 2.5mm,

a “ 1mm, l “ 10 mm, respectively. (b) Brittle-to-ductile failure due to shear

yielding: Force-displacement curves for various {ᾱ, ζ} parameters.The parameter set

v̄ “ 10´4, ζ “ 100 refers to the brittle failure due to crazing. All other simulations

are carried out for shear yielding dominated failure where the craze switch is off.

and ζ . The rest of the material parameters can be found in [37].

The IBVP is solved for various scenarios. The limit viscoplastic shear-yielding be-

haviour is depicted with black curve where the craze switch and crack initiation cri-

teria are suppressed, see Figure 4.1(b). Then, various combinations of ᾱ that controls

the damage initiation in terms of equivalent plastic strain can be observed. Increasing

the value ᾱ delays the crack initiation. For a constant value of ᾱ “ 0.6 two different

values of ζ clearly demonstrate that the lower value of ζ promotes a more ductile fail-

ure pattern as it creates a larger domain of plastic region in the crack process zone, see

Figure 4.4. In Figure 4.2, various snapshots which correspond to the points piq-pvq
on Figure 4.1(b) for the parameter set ᾱ “ 0.3, ζ “ 100 are depicted for a relatively

more brittle and premature failure. The snapshots are also marked in Figure 4.1(b).

On the other hand, 4.3 shows the same simulation repeated for ᾱ “ 0.6, ζ “ 10 as

an example for ductile failure. In this scenario, the material is extremely ductile and

the specimen could not be totally broken since the damage variable d evolves slowly.

The simulation terminated due to extreme mesh distortion around degraded elements.
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Figure 4.2: Brittle fracture due to shear yielding: Snapshots of damage field d and

equivalent plastic strain α at various stages for ᾱ “ 0.3, ζ “ 100.
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Figure 4.3: Ductile fracture due to shear yielding: Snapshots of damage field d and

equivalent plastic strain α at various stages for ᾱ “ 0.6, ζ “ 10.
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Figure 4.4: The final snapshots of simulations corresponding to five different scenar-

ios.
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Comparison of both figures clearly demonstrates the role of the damage growth pa-

rameter ζ on the ductility of the material during crack propagation. In order to demon-

strate the difference in shear yielding and crazing dominated failure the craze switch

function Fc is reactivated and material parameters v̄ “ 10´4 is taken. This choice

leads to nearly identical stress-strain curve and onset of damage to the case ᾱ “ 0.1

at material level. However, comparison of the load-displacement curves in Figure

4.1(b) clearly demonstrates that crazing induced failure is considerably more brittle

compared to the shear yielding dominated failure. For crazing-dominated failure sce-

nario, the one observe no significant amount of plastic deformation. The final snap-

shots of simulations corresponding to five different scenarios are depicted in Figure

4.4. For higher ᾱ value,material shows more ductile behavior and crack growths like

in S-shape between doublenotches. However, material behavior become more brittle

and crack pattern sraightens, as ᾱ value decreases.

4.2 Uniaxial compression behavior

In this section, we investigate uniaxial compression behaviour of proposed consitu-

tive model. ARRUDA ET AL. [16] conducted uniaxial compression experiments on

PMMA at 25˝C, 50˝C and 75˝C with true strain rate 9ε “ 10´3 r1{ss under isother-

mal condition in order to observe the temperature effect on stress-strain response. As

the test results show shear-yielding dominant behavior, these tests are considered to

assign parameters related to shear yielding. In order to calibrate these parameters,

three simulations are performed under same conditions with experiments and are fit-

ted on those experiments simultaneously as shown in Figure 4.5. Notice that linear

pre-yield regime and post-yield thermal softening are well captured quantitatively and

qualitatively. Obtained parameters are kept constant for rest of the simulations.

4.3 Uniaxial tension behavior

In the sequel, uniaxial tension tests conducted by JIANG ET AL. [67] are considered

to understand strain rate effect on the craze initiation of PMMA and to assign the

crazing-related parameters of the proposed model. Response of uniaxial tension tests

under three different strain level are provided in Figure 4.6 with corresponding fi-

nite element analysis. Clearly seen that stress level at craze initiation increases with
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Figure 4.5: Isothermal simulations at a material point under uniaxial compression

increasing strain rate and this agrees with experimental observation of HAWARD ET

AL. [55]. Shear-yielding related parameters obtained from uniaxial compression tests

are fixed and only crazing related parameters are adjusted while finite elements sim-

ulations are running simultaneously until sufficient agreement is satisfied. At low

strain rate levels, proposed approach captures the behaviour of PMMA under uniax-

ial tension reasonably. On the other hand, at high strain level simulation result shows

poor agreement with experiment.
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Figure 4.6: Uniaxial tension test data and FEM analysis under different strain rates
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Table 4.1: Material & model parameters associated with thermo-viscoplasticity, craz-

ing and crack phase–field.

Par. Description Value Unit Par. Description Value Unit

κ Eq. (3.45) 2500 MPa h2 Eq. (3.31) 100 -

µ0 Eq. (3.47) 1005 MPa scr Eq. (3.32) 200 MPa

cs Eq. (3.47) 0.0040 - m Eq. (3.32) 2 -

B Eq. (3.53) 4.08 ˆ 10
18 mm´3

9γc
0

Eq. (3.32) 10 s´1

D Eq. (3.53) 5.54 ˆ 10
21 mm´3 vssf Eq. (3.31) 3 ˆ 10

´4 -

Ed Eq. (3.53) 23.43 ˆ 10
6 Nmm{mol h3 Eq. (3.34) 9 ˆ 10

´3 -

N̂ppθrq Eq. (3.55) 2.7 - ĉ1pθrq Eq. (3.65) 12.96 MPa

n̂ppθrq Eq. (3.55) 3.67 ˆ 10
18 mm´3 ĉ2pθrq Eq. (3.65) 728.14 MPa2

9γ
p
0

Eq. (3.27) 2.8 ˆ 10
7 s´1 Q1 Eq. (3.65) 375.76 Nmm

A Eq. (3.27) 100.6 K{MPa Q2 Eq. (3.65) 433.16 Nmm

̺ Eq. (3.28) 0.2 - l Eq. (3.36) 2 ˆ hmin mm

θr Eq. (3.45) 296 K η Eq. (3.36) 1 ˆ 10
´4 MPa . s

h1 Eq. (3.30) 315 MPa ζ Eq. (3.67) 1 -

s0 Eq. (3.30) 138 MPa v̄f Eq. (3.67) 0.03 -

sss Eq. (3.31) 114.45 MPa ᾱ Eq. (3.67) 0.9 -

These tests being conducted over a span of more than 20 years by different research

teams following different test protocols, and the fact that the materials they used,

although they tested PMMA, were supplied by different vendors, makes it challenging

to calibrate the proposed model and determine a unique set of parameters specifically

for PMMA.

Table 4.1 indicates the list of the material and model parameters used in following

example. Recall that the thermo-viscoplastic parameters are obtained from the uni-

axial compression tests by ARRUDA ET AL. [16] and parameters related to crazing

calibrated based on the those identified by JIANG ET AL. [67]. The parameters for

crack-phase field are adjusted according to work of MIEHE ET AL. [92]. Finally, crit-

ical plastic strain and void volume fraction values inheretly appear in local evaluation

of crack phase field are directly taken from DAL ET AL. [37].
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Figure 4.7: (a) Rectangular specimen with a circular hole located in the middle of

the solid subjected to tension. One quadrant of the domain is discretized due to sym-

metries associated with x– and y–axis. Given also are the appropriate boundary and

loading conditions. All dimensions are in [mm]. (b) Force–displacement curves re-

sulting from simulations carried out at temperatures θ “ t0˝, 23˝, 50˝, 70˝, 80˝, 90˝u
[C], corresponding to blue, green, magenta, orange, cyan and black solid lines, re-

spectively.

4.4 Brittle to ductile transition due to homogeneous temperature rise under

uniaxial tension

This example investigates the transition of brittle mechanical response into ductile

one for glassy polymers as the temperature gradually rises from 273 K (0˝ C) to the

nearly glass–transition temperature 363 K (90˝ C) for each simulation of a uniaxial

extension test. To this end, a replica of the experimental test setup given in JIANG ET

AL. [67] is created. The geometry is composed of a rectangular PMMA plate with a

circular hole located in the middle of the geometry, see Fig. 4.7(a). However, only one

quadrant of the entire domain is modeled thanks to the symmetry with respect to x–

and y–axis. The finite element mesh generated involves 3027 4–node Q1P0 elements
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connected by 3154 nodes. Besides, regions where the crack growth is expected are

refined with the minimum mesh size hmin “ 0.0625 [mm]. Considering apposite

boundary conditions for a plane–strain case, the displacement–driven loading ū is

applied on the upper edge along y–direction at the rate 9u “ 5ˆ10´2 [mm/s], ensuring

isothermal conditions with the temperature value being uniform all over the solid.

Therefore, it should be underlined that the coupled thermo-mechanical effects are

entirely neglected for this example.

Fig. 4.7(b) show the force–displacement curves in regard to various simulations per-

formed at distinct temperature levels, i.e. blue, green, magenta, orange, cyan and

black solid lines correspond to θ “ t0˝, 23˝, 50˝, 70˝, 80˝, 90˝u [C], respectively.

Clear manifestation of brittle to ductile transition of failure can be observed. While

the mechanical response of the glassy polymer is palpably brittle when far away from

the glass transition temperature, e.g., the blue solid line indicating the result at θ “ 0˝

C, ductility gradually builds up with the yield stress significantly lowered under ele-

vated temperatures close the glass transition temperature, see, e.g., the cyan and black

solid lines corresponding to θ “ 80˝ C and θ “ 90˝ C, respectively. Upon a closer

look, the drop in the shear modulus, see (3.47), due to temperature increase is dis-

cernible which is accompanied by substantial drop of the yield point at which the

peak stress level is reached. Such a decrease in the yield stress is explained by the in-

crease in the value of the scalar flow function 9γp, see (3.27), for elevated temperatures

where σ̃p ă s̃. The immediate effect of this increase in 9γp is seen in the evolution of

the athermal shear strength such that the right hand side of (3.30) grows in magnitude,

assuming a greater negative value since s ą sspvf q before yielding. As a result, the

value of the athermal shear strength s and therefore its effective value s̃ are reduced

at that particular strain, thereby diminishing the yield stress level.

Figure 4.8(a) illustrates the evolution of the crack phase-field d, the void volume frac-

tion vf , and the equivalent plastic strain α under the temperature θ “ 0˝ C at three

instants where (I) the craze initiates, (II) the crack grows, and finally (III) the ulti-

mate failure takes place. Note that the finite elements where d ě 0.9 are blanked

for the sake of visuality. The polymer initially exhibits a viscoplastic response with

a small plastically deformed region subjected to shear yielding around the two sides

of the circular hole as indicated by the equivalent plastic strain α. Afterwards, the
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Figure 4.8: Contour plots of the crack phase-field d in relation to void volume fraction

vf and the equivalent plastic strain α under the tensile loading at (a) θ “ 0˝ C at the

instants (I) the onset of crazing, (II) during crack growth, and (III) when the rupture

takes place; (b) θ “ 80˝ C at the instants (I) the initiation of cracking, (II) the onset of

crazing, (II) during crack growth, and (III) when the fracture occurs. Note that max

P t1, 0.1, 0.1u for d, vf , and α, respectively. For visual purposes, elements where

d ě 0.9 are blanked.
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viscoplastic flow is terminated in regions subjected to crazing which, in fact, com-

mences at the entire mid–plane of the specimen marked by the void volume fraction

vf greater than vssf . During the evolution of the crack phase–field d, both the void

volume fraction vf and the equivalent plastic strain α contribute to the crack growth,

see (3.67). Nevertheless, it is the crazing that is dominant during the fracture process

for the test conducted at θ “ 0˝ C. The maximum values vf and α attain during the

simulation are 0.67 and 0.18, respectively.

In fact, the crack grows from not only the inner circular hole but also the outer edges

at the mid–plane following the voids that are merged together. Finally, the ultimate

failure takes place breaking the specimen into two pieces.

Figure 4.8(b) depicts the state of the crack phase-field d, the void volume fraction

vf , and the equivalent plastic strain α for the under the temperature θ “ 80˝ C at

three instants where (I) the crazes initiate, (II) the crack propagates, and finally (III)

the rupture occurs. For visual purposes, elements where d ě 0.9 are blanked here

as well. In contrast to Fig. 4.8(a), a much larger full-fledged shear band around the

circular hole is evident until crazes initiate. Upon the onset of crazing, however, the

development of shear band is impeded in regions where crazes initiate. During the

crack growth, shear yielding takes more precedence over crazing even though both

void volume fraction vf and the equivalent plastic strain α contribute to the cracking

phenomenon. The maximum values that vf and α attain in this case are 0.78 and

0.79, respectively. Later, the crack propagates at the intersection of the circular hole

and the mid–plane following the voids that are merged together, leading to complete

fracture of the polymer.

4.5 Ductile to brittle transition due to increase in loading rate under uniaxial

tension

This example demonstrates how the ductile failure behavior changes into a brittle

one upon increasing the loading rate from 9u “ 1 [mm/min] to 9u “ 100 [mm/min]

along with the associated heating in the solid due to the local dissipation Dred
loc of

the energy in terms of heat. Therefore, the numerical solution features the coupled

thermo-mechanical effects with fracture. As for the geometrical setup, we generate
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Figure 4.9: (a) Dumbbell–shaped specimen with two symmetrically applied radial

notches (r “ 2rmms) located in the middle of the geometry subjected to tension.

One quadrant of the domain is discretized due to symmetries associated with x– and

y–axis along with the appropriate boundary and loading conditions. Given also are

the contour plots of the final state of d for 9u “ 1 [mm/min] and 9u “ 100 [mm/min]

in the area of interest. For visual purposes, elements where d ě 0.9 are blanked.

All dimensions are in [mm]. (b) Force–displacement curves emanating from the

thermo–mechano–fracture analyses such that red and black solid lines correspond-

ing to 9u “ 1 [mm/min] and 9u “ 100 [mm/min], respectively. Also shown are the

thermo-viscoplastic analyses alone with crazing being suppressed in blue and orange

dashed lines for 9u “ 1 [mm/min] and 9u “ 100 [mm/min], respectively.

a dumbbell–shaped solid domain in accordance with ASTM D638–14 TYPE I [34]

with the addition of a 2–mm–radius notch applied symmetrically in the middle of the

specimen as shown in Fig. 4.9(a). The symmetrical layout of the geometry permits

the modeling of only one quadrant of the entire domain and generate a finite element

mesh composed of 1935 4–node Q1P0 elements connected by 2081 nodes. Regions

where the crack propagation is expected are refined with the minimum mesh size

hmin “ 0.075 [mm]. Appropriate boundary conditions are applied to avoid rigid

body motion for a plane–strain case. The displacement–driven loading ū is applied
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on the upper edge along y–direction at loading rates 9u “ 1 [mm/min] and 9u “ 100

[mm/min].

Table 4.2: Material parameters associated with the incorporated temperature field.

Par. Description Value Unit Par. Description Value Unit

c Eq. (3.41) 1.46 J g´1 K´1 k Eq. (3.68) 0.192 W m´1 K´1

αT Eq. (3.45) 8.4 ˆ 10´5 K´1 hc Eq. (3.74) 0.01 W K´1

Purely thermal material parameters are listed in Table 4.2 which are retrieved partly

from ARRUDA ET AL. [16] and MIEHE ET AL. [90]. The rest of the material and

model parameters are considered according to Table 4.1.

The contour plots in Fig. 4.9(a) reveal the final state of the crack phase–field d for

9u “ 1 [mm/min] to 9u “ 100 [mm/min] with elements where d ě 0.9 are blanked

for the sake of visuality. Unfortunately, as the plastic deformations become domi-

nant within the notched region, extreme mesh distortions present tremendous chal-

lenges in regard to numerical convergence, causing the simulation to crush prema-

turely. Nonetheless, the trend of the red and black solid lines corresponding to 9u “ 1

[mm/min] and 9u “ 100 [mm/min], respectively, is tangible in Fig. 4.9(b), manifest-

ing the remarkable loss in the load bearing capacity, thereby indicating the location

of fracture. In addition to the three–field coupled thermo–mechano–fracture analy-

ses, we also perform two–field coupled thermo-viscoplastic simulations under 9u “ 1

[mm/min] and 9u “ 100 [mm/min] while the onset of crazing is suppressed. By

comparing the solid and the dashed lines in Fig. 4.9(b), one can clearly ascertain the

damage induced softening due to phase–field evolution, namely the loss in the load

bearing capacity of the specimen. Also deduced from the purely thermo-viscoplastic

analyses is the effect of thermal softening associated with 9u “ 100 [mm/min] on

the post–yield response which almost overlaps that of 9u “ 1 [mm/min]. In fact, the

struggle between the strain hardening and the thermal softening is tipped in the favor

of the latter for relatively high loading rates.

Figures 4.10(a)–(b) depict the state of the temperature θ, the void volume fraction

vf , and the equivalent plastic strain α at 9u “ 1 [mm/min] and 9u “ 100 [mm/min],

respectively, at three instants where (I) the craze initiates, (II) the crack grows, and fi-
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nally (III) at the end of the simulation. Observe that the finite elements where d ě 0.9

are blanked for the sake of visuality. The initial thermo-viscoplastic response of the

glassy polymer is revealed first by the well–developed plastic regions between two

notches. We infer from the distribution of the equivalent plastic strain α that in the

case of 9u “ 1 [mm/min] the material exhibits more ductility. Thermal softning is

manifested by the heating inbetween the notches marked by the temperature distribu-

tion. As a matter of fact, the higher loading rate leads to greater dissipative heating

and thereby higher temperatures, i.e. the maximum value of θ are 346.8 [K] and 427.7

[K] for 9u “ 1 [mm/min] and 9u “ 100 [mm/min], respectively. Later, the development

of the shear yielding is hindered in regions undergoing crazing whose distribution is

comparable under both loading rates, see the evolution of vf in Figs. 4.10(a)–(b). The

maximum values vf and α attain during the simulation are 0.9 and 1.53 under 9u “ 1

[mm/min], respectively. These values change slightly but not much for 9u “ 100

[mm/min] where vf and α take on 0.8 and 2.23, respectively. With the aid of these

simulations, the interplay between loading rate and the temperature is unveiled in a

systematic way.
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Figure 4.10: Contour plots of the temperature θ in relation to void volume fraction vf

and the amount of plastic strain α and phase field parameter d in the area of interest at

(a) 9u “ 1 [mm/min] at the instants (I) the onset of crazing, (II) during crack growth,

and (III) the end of the simulation; (b) 9u “ 100 [mm/min] at the instants (I) the onset

of crazing, (II) during crack growth, and (III) the end of the simulation. Elements

where d ě 0.9 are blanked for the sake of visuality.
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CHAPTER 5

CONCLUSION

The current study presents a three–field thermo–mechano–fracture model for the

shear yielding and/or crazing induced failure of amorphous glassy polymers indicated

by ductile or brittle mechanical response, respectively. The employed continuum me-

chanical framework features the Hencky–type elastic, plastic and craze strains in the

logarithmic strain space along with the auxiliary variable, i.e. the void volume frac-

tion, in order to characterize the deformation field. Once the mechanical groundwork

was laid, the other primary fields such as the crack phase–field elucidating the rup-

tured state of the material and the temperature field accounting for the change in the

temperature of the domain were assigned to the system. Local evolution laws for

the plastic strain εp by BOYCE ET AL. [26], the craze strain as presented by GEAR-

ING & ANAND [46] and the void volume fraction as specified by DAL ET AL. [37]

were adopted. The constitutive relations – established entirely in the Eulerian form–

essentially entail (i) a Helmholtz free energy function composed of a linear thermo–

elastic, thermo–plastic network and a purely thermal contribution; (ii) a degradation

function in order to describe the transition from intact to fractured state; (iii) a switch

function between shear yielding and crazing; (iv) a failure criterion consisting of the

critical equivalent plastic strain and the critical void volume fraction; (v) a dissipation

potential function portraying the heat conduction. On the numerical side, the global

field equations were temporally discretized by operator splitting algorithm, while a

typical Galerkin–type weak formulation established the spatial discretization. Hav-

ing constructed the local and global Newton–type update algorithms in regard to the

dissipative internal and the primary field variables, respectively, the robustness of the

model was assessed via several numerical testing. Results obtained shed light on the

dependence of the type of the failure on temperature as well as the interplay between
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the loading rate and the change in temperature due to dissipative heating.

With this study, while coming up with a new model to understand the fracture of

amorphous polymers, it has been also tried to reach up the mechanisms inherent in

the microstructure from form to meaning as we have introduced the void volume

fraction to the model. On one hand, the model analyses testify the ubiquitous role of

loading rate as well as the temperature level in the failure of glassy polymers; on the

other hand, the model proposed still sits in the realm of continuum mechanics with all

of its limitations, especially, in terms of the number of material and model parameters

that soar up with the addition of new primary and auxiliary fields. Crack phase–field

approach has been successfully applied to several multi–physics problems including,

but not restricted to, isotropic materials, such as AMBATI ET AL. [2], BORDEN ET

AL. [21], and MIEHE ET AL. [85, 88, 93] and anisotropic materials as presented by

LI ET AL. [76], TEICHTMEISTER ET AL. [107], NGUYEN ET AL. [97], GÜLTEKIN

ET AL. [50–52], DENLI ET AL. [39], and MANDAL ET AL. [79]. The use of phase–

field poses certain challenges, particularly in the crack propagation in the post–yield

region as mentioned in Sec. 4.5. These issues can be circumvented via increasing the

polynomial order of the shape functions from C0 to C1 continuity so that extremely

distorted mesh in the plastically deformed region can be sufficiently treated. Another

aspect of future development can be the use of data–driven and/or machine learn-

ing approaches, see e.g., ROVINELLI ET AL. [102], CARRARA ET AL. [31], LIU

ET AL. [77], in the context of failure in amorphous glassy polymers. These may be

assembled to generate more potent and more balanced tools with less material param-

eters in the prediction of polymer failure.
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