
ON AN EFFICIENT IMPLEMENTATION OF COMBINED TRUE RANDOM
NUMBER GENERATOR AND PHYSICALLY UNCLONABLE FUNCTION ON

A SOC FPGA

A THESIS SUBMITTED TO
THE GRADUATE SCHOOL OF APPLIED MATHEMATICS

OF
MIDDLE EAST TECHNICAL UNIVERSITY

BY

YUNUS EMRE YILMAZ

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR

THE DEGREE OF DOCTOR OF PHILOSOPHY
IN

CRYPTOGRAPHY

SEPTEMBER 2024

Approval of the thesis:

ON AN EFFICIENT IMPLEMENTATION OF COMBINED TRUE RANDOM
NUMBER GENERATOR AND PHYSICALLY UNCLONABLE FUNCTION ON

A SOC FPGA

submitted by YUNUS EMRE YILMAZ in partial fulfillment of the requirements for
the degree of Doctor of Philosophy in Cryptography Department, Middle East
Technical University by,

Prof. Dr. Ayşe Sevtap SELÇUK KESTEL
Dean, Graduate School of Applied Mathematics

Assoc. Prof. Dr. Oğuz YAYLA
Head of Department, Cryptography

Assoc. Prof. Dr. Oğuz YAYLA
Supervisor, Cryptography, METU

Examining Committee Members:

Prof. Dr. Zülfükar SAYGI
Department of Mathematics, TOBB

Assoc. Prof. Dr. Oğuz YAYLA
Department of Cryptography, METU

Assist. Prof. Dr. Talha ARIKAN
Department of Mathematics, Hacettepe University

Assist. Prof. Dr. Buket ÖZKAYA
Department of Cryptography, METU

Assist. Prof. Dr. Eda TEKİN
Department of Business Administration, Karabük University

Date:

iv

I hereby declare that all information in this document has been obtained and
presented in accordance with academic rules and ethical conduct. I also declare
that, as required by these rules and conduct, I have fully cited and referenced all
material and results that are not original to this work.

Name, Last Name: YUNUS EMRE YILMAZ

Signature :

v

vi

ABSTRACT

ON AN EFFICIENT IMPLEMENTATION OF COMBINED TRUE RANDOM
NUMBER GENERATOR AND PHYSICALLY UNCLONABLE FUNCTION ON

A SOC FPGA

YILMAZ, YUNUS EMRE
Ph.D., Department of Cryptography

Supervisor : Assoc. Prof. Dr. Oğuz YAYLA

September 2024, 86 pages

True Random Number Generators (TRNGs) and Physically Unclonable Functions
(PUFs) are two basic and useful primitives in designing cryptographic systems.
TRNGs must be invariably random, while PUFs must have repetitive results and
instance-specific randomness. In this work, these primitives are implemented in
a System-on-Chip Field-Programmable Gate Array (SoC FPGA), or simply SoC.
Phase-Locked Loops (PLLs) are essential components in both FPGAs and SoCs,
widely implemented for various functions. Within these devices, PLLs offer a promis-
ing method for generating random numbers. Due to their isolated operation, broad
utilization, and strong entropy generation, as validated by prior research, PLLs inte-
grated into FPGAs or SoCs serve as highly effective foundations for PLL-based true
random number generators (PLL-TRNGs). This makes PLL-TRNGs a particularly
viable solution for generating secure random numbers in such architectures. The pa-
rameter selection in PLL-TRNG is a very critical process since it requires yielding
both a sufficient entropy rate and an adequate output bit rate. Hence, in the first part
of this thesis, a parameter selection algorithm based on the backtracking method in
the literature is chosen and adapted to our selected SoC. In addition to these, a novel
methodology is proposed to enhance the rate of random data bit generation of PLL-
TRNG by using extra PLLs with a specific interconnection while preserving entropy

vii

characteristics. Performance metrics are rigorously evaluated against the criteria set
by the German Federal Office for Information Security (BSI) AIS-20/31 Tests and
compared to the works in the literature. Other than TRNGs, designing a secure PUF
is another motivation for this thesis. The Arbiter PUF, recognized as the first sili-
con PUF, is capable of generating a substantial number of secret keys instantaneously
based on the input, all while maintaining a lightweight design. This advantageous
characteristic makes it particularly well-suited for device authentication in applica-
tions with constrained resources, especially for Internet of Things (IoT) devices. De-
spite these advantages, arbiter PUFs are vulnerable to machine learning (ML) attacks.
Hence, those arbiter PUF designs are improved to achieve increased resistance against
such attacks. These improvements aim to increase resilience against ML attacks while
maintaining usefulness and efficiency for IoT applications. In the second part of this
thesis, a machine-learning-resistant 32-bit and 64-bit component-differentially chal-
lenged XOR Arbiter PUF (CDC-XPUF) is implemented based on a design found in
the literature. The 32-bit and 64-bit 7-stream CDC-7-XPUFs are evaluated using PUF
metrics in the literature, namely steadiness, correctness, diffuseness, uniformity, and
uniqueness. Additionally, the utilization ratios for both TRNG and PUF implemen-
tations are presented. In the last part of this thesis, PLL-TRNG with four PLLs (4-
PLL-TRNG) and 64-bit 7-stream CDC-XPUF (CDC-7-XPUF) is combined so that
they can work together. The random numbers generated by 4-PLL-TRNG are uti-
lized by CDC-7-XPUF to generate other challenges from the main challenge. All
the tests applied to TRNG and PUF are also applied to this combined design, and
it is shown that that combined design is a suitable candidate to use in an IoT sys-
tem. Consequently, a total of three different configurations, two of which are discrete
implementations of PLL-TRNG and CDC-XPUF and one of which is a combined
implementation of these PLL-TRNG and CDC-XPUF, are implemented. All of the
tests are implemented using the ZC702 Rev1.1 Evaluation Board, which features the
Xilinx Zynq 7020 SoC, and utilizes a configuration involving three boards for exper-
imental validation.

Keywords: True Random Number Generator (TRNG), Physically Unclonable Func-
tion (PUF), Field-Programmable Gate Array (FPGA), System-on-Chip (SoC), Phase-
Locked Loop (PLL), Component-Differentially Challenged XOR Arbiter PUF (CDC-
XPUF)

viii

ÖZ

BİR SOC FPGA ÜZERİNDE KOMBİNE GERÇEK RASTGELE SAYI ÜRETECİ
VE FİZİKSEL OLARAK KLONLANAMAYAN FONKSİYONUN VERİMLİ BİR

UYGULAMASI ÜZERİNE

YILMAZ, YUNUS EMRE
Doktora, Kriptografi Bölümü

Tez Yöneticisi : Doç. Dr. Oğuz YAYLA

Eylül 2024, 86 sayfa

Gerçek Rastgele Sayı Üreteçleri (TRNG’ler) ve Fiziksel Olarak Klonlanamayan Fonk-
siyonlar (PUF’lar) kriptografik sistemlerin tasarlanmasında kullanılan iki temel ve
kullanışlı ilkel araçtır. TRNG’ler değişmez şekilde rastgele olmalıdır, PUF’lar ise
tekrarlayan sonuçlara ve örneğe özgü rastgeleliğe sahip olmalıdır. Bu çalışmada, bu
ilkeller bir Çip Üzerinde Sistem Alan Programlanabilir Kapı Dizisinde (SoC FPGA)
veya kısaca SoC’de uygulanmıştır. Faz Kilitli Döngüler (PLL’ler) hem FPGA’lerde
hem de SoC’lerde çeşitli işlevler için yaygın olarak uygulanan temel bileşenlerdir.
Bu cihazlarda PLL’ler rastgele sayılar üretmek için umut verici bir yöntem sunar. Ön-
ceki araştırmalarla doğrulandığı üzere, izole çalışmaları, geniş kullanımları ve güçlü
entropi üretimleri nedeniyle, FPGA’lara veya SoC’lere entegre edilen PLL’ler, PLL
tabanlı gerçek rastgele sayı üreteçleri (PLL-TRNG’ler) için oldukça etkili temeller
olarak hizmet eder. Bu da PLL-TRNG’leri bu tür mimarilerde güvenli rastgele sayılar
üretmek için özellikle uygun bir çözüm hâline getirmektedir. PLL-TRNG’de para-
metre seçimi, hem yeterli bir entropi oranı hem de yeterli bir çıkış bit oranı sağlamayı
gerektirdiğinden çok kritik bir süreçtir. Bu nedenle, bu çalışmada literatürdeki geri
izleme (backtracking) yöntemine dayalı bir parametre seçim algoritması seçilmiş ve
seçilen SoC’ye uyarlanmıştır. Bunlara ek olarak, entropi özelliklerini korurken belirli
bir ara bağlantıya sahip ekstra PLL’ler kullanarak PLL-TRNG’nin rastgele veri biti

ix

üretme oranını artırmak için yeni bir metodoloji önerilmiştir. Performans ölçütleri,
Alman Federal Bilgi Güvenliği Ofisi (BSI) AIS-20/31 Testleri tarafından belirlenen
kriterlere göre titizlikle değerlendirilmiş ve literatürdeki çalışmalarla karşılaştırılmış-
tır. İlk silikon PUF olarak kabul edilen hakem (Arbiter) PUF, hafif tasarımını ko-
rurken, girdiye bağlı olarak anında önemli sayıda gizli anahtar üretebilmektedir. Bu
avantajlı özellik, özellikle Nesnelerin İnterneti (IoT) cihazları gibi kısıtlı kaynaklara
sahip uygulamalarda cihaz kimlik doğrulaması için çok uygundur. Bu avantajlara rağ-
men, hakem PUF’lar makine öğrenimi saldırılarına karşı savunmasızdır. Bu nedenle,
bu tür saldırılara karşı daha fazla direnç elde etmek için bu hakem PUF tasarımları
geliştirilmiştir. Bu iyileştirmeler, IoT uygulamaları için kullanışlılığı ve verimliliği
korurken makine öğrenmesi saldırılarına karşı dayanıklılığı artırmayı amaçlamakta-
dır. Bu çalışmada, literatürde bulunan bir tasarıma dayalı olarak makine öğrenmesine
dirençli 32 bit ve 64 bit bileşen farklılaştırmalı XOR Hakem PUF (CDC-XPUF) ger-
çeklenmiştir. 32-bit ve 64-bit 7 akışlı CDC-7-XPUF’ler, literatürdeki PUF ölçütleri
olan kararlılık, doğruluk, dağınıklık, tekdüzelik ve benzersizlik kullanılarak değer-
lendirilmiştir. Ek olarak, hem TRNG hem de PUF uygulamaları için kullanım oran-
ları sunulmuştur. Bu çalışmanın son bölümünde, dört PLL’li PLL-TRNG (4-PLL-
TRNG) ve 64-bit 7 akışlı CDC-XPUF (CDC-7-XPUF) birlikte çalışabilecek şekilde
birleştirilmiştir. 4-PLL-TRNG tarafından üretilen rastgele sayılar CDC-7-XPUF tara-
fından ana PUF girdisinden (challenge) diğer PUF girdilerini üretmek için kullanılır.
TRNG ve PUF’a uygulanan tüm testler bu birleşik tasarıma da uygulanmış ve bu
birleşik tasarımın bir IoT sisteminde kullanılmak için uygun bir aday olduğu göste-
rilmiştir. Sonuç olarak, ikisi PLL-TRNG ve CDC-XPUF’un ayrık uygulamaları ve
biri de bu PLL-TRNG ve CDC-XPUF’un birleşik uygulaması olmak üzere toplam
üç farklı konfigürasyon gerçeklenmiştir. Tüm testler, Xilinx Zynq 7020 SoC içeren
ZC702 Rev1.1 Değerlendirme Kartı kullanılarak uygulanmış ve deneysel doğrulama
için üç kart içeren bir yapılandırma kullanılmıştır.

Anahtar Kelimeler: Gerçek Rastgele Sayı Üreteci (TRNG), Fiziksel Klonlanamayan
Fonksiyonlar (PUF), Sahada Programlanabilir Kapı Dizileri (FPGA), Çip Üzerinde
Sistem (SoC), Faz Kilitli Döngü (PLL), Bileşen-Farklı Zorlanmış XOR Hakem Fi-
ziksel Klonlanamayan Fonksiyonu (CDC-XPUF)

x

To the love of my life
To my mother
To my brother

xi

xii

ACKNOWLEDGMENTS

I would like to express my very great appreciation to my thesis supervisor
Assoc. Prof. Dr. Oğuz Yayla, for his patient guidance, enthusiastic support, and in-
valuable advice throughout the development and preparation of this thesis. His gen-
erous commitment of time and willingness to share his expertise have significantly
shaped my doctoral journey. I am deeply appreciative of the experience, insights,
and thorough reviews he provided during the preparation of both this thesis and the
related articles.

I would like to acknowledge Aselsan Inc. for its support during the preparation of this
thesis, as well as for providing three Xilinx ZC702 Evaluation Boards, which were
instrumental in the implementation of the algorithms presented in this thesis. I would
like to thank my department manager, Cüneyt Seven, and my team leader, Salih Alper
Engin, for their assistance in securing this support and for their contributions to the
preparation of this thesis.

I would like to thank Prof. Dr. Zülfikar Saygı, Assist. Prof. Buket Özkaya, Assist.
Prof. Dr. Eda Tekin, and Assoc. Prof. Talha Arıkan for being a committee member
of my defense.

I would like to thank all the academic and administrative staff of the Institute of
Applied Mathematics for their valuable assistance throughout my doctoral study. I
am particularly grateful to Serkan Demiröz, Nejla Erdoğdu, and Ebru Gündoğdu for
their administrative guidance.

I would like to thank Dr. İzzet Kağan Erünsal, who has consistently supported me
throughout my doctoral studies, both as a valued friend and a dedicated academic,
despite the distance. My gratitude also extends to Ahmet Ayaşlı for making the doc-
toral journey more bearable with his humor and for standing by me during difficult
times. I am sincerely grateful to Mete Eray for generously sharing his insights on
both life and technical matters and for his continuous encouragement to complete my
doctorate. I am also thankful to Görkem Uyar for his unwavering support throughout
my doctoral journey, both during our time at Aselsan and after his departure. Like-
wise, I would like to thank my colleague Canberk Tatlı for his friendship and support
during this process. Finally, I would like to acknowledge Hakan Erünsal, Sencer Er-
gin, MD, and Aziz Çelebi for their steadfast support and companionship throughout
this journey.

xiii

I am profoundly grateful to my mother, Kıvanç Yılmaz, and my brother, Berat Yıl-
maz. Their invaluable support has made this doctoral journey significantly easier, and
I deeply appreciate their help and patience throughout this entire process.

Last but not least, my deepest gratitude goes to the love of my life, Fatma Demirci,
whose support and patience throughout this challenging doctoral journey have been
invaluable. Her presence provided me with peace whenever I felt overwhelmed by
the stress of the process. I am forever grateful for her unwavering patience and en-
couragement during this time. I feel incredibly fortunate to have her in my life, and I
look forward to the future we will share with both excitement and curiosity.

xiv

TABLE OF CONTENTS

ABSTRACT . vii

ÖZ . ix

ACKNOWLEDGMENTS . xiii

TABLE OF CONTENTS . xv

LIST OF TABLES . xxi

LIST OF FIGURES . xxiii

LIST OF ABBREVIATIONS . xxv

CHAPTERS

1 INTRODUCTION . 1

1.1 Motivation . 5

1.2 Contributions . 5

1.3 Thesis Organization . 6

2 PRELIMINARIES . 7

2.1 Phase-Locked Loop-based True Random Number Generator
(PLL-TRNG) . 7

2.1.1 True Random Number Generators (TRNGs) 7

2.1.1.1 Randomness Sources in Logic Devices 9

xv

Clock Jitter 10

Phase Jitter 11

Period Jitter 12

Cycle to Cycle Jitter . . . 13

Jitter Components 14

Metastability 16

Metastability in FPGAs . 16

Oscillatory Metastability . 19

2.1.1.2 Extraction of Randomness from the
Clock Jitter 20

2.1.2 PLL-TRNG . 22

2.1.2.1 Basics of PLL 22

2.1.3 Random Bit Generation Principle of the PLL-TRNG 22

2.2 Physically (or Physical) Unclonable Function (PUF) 25

2.2.1 Basics of PUFs 25

2.2.2 A Basic Form of PUF-Based Authentication 26

2.2.3 Types of PUFs 27

2.2.4 Types of Arbiter PUFs 28

2.2.4.1 Basic Arbiter PUF 28

2.2.4.2 XOR Arbiter PUF (XOR-PUF) 29

2.2.4.3 Component-differentially challenged
XOR-PUF (CDC-XPUF) 29

xvi

2.3 Combined PUF-TRNG Design 31

2.4 Evaluation Metrics of TRNGs and PUFs 32

2.4.1 Evaluation Criteria of TRNGs 32

Procedure A in AIS-20/31 Tests: Sta-
tistical Testing for Ran-
dom Number Generators . 33

Procedure B in AIS-20/31 Tests: En-
tropy and Stochastic Model
Evaluation 34

2.4.2 Evaluation Criteria of PUFs 36

2.4.2.1 Resistance to Machine Learning (ML)
Attacks 37

2.4.2.2 Reliability of Responses From the Same
PUFs 38

Steadiness 38

Correctness 39

2.4.2.3 Entropy of Responses From the Same
PUFs 39

Diffuseness 40

Uniformity 40

2.4.2.4 Fingerprint Property 41

Uniqueness 41

2.5 Xilinx Zynq SoC FPGA . 42

3 AN AIS-20/31 COMPLIANT PLL-TRNG IMPLEMENTATION ON
A ZYNQ-7020 SOC . 45

xvii

3.1 PLL-TRNG Implementation 45

3.1.1 Determining PLL-TRNG Parameters 47

3.1.2 PLL-TRNG Implementation Setup 49

3.2 PLL-TRNG Results and Comparisons with Previous Works . 50

3.3 Utilization Results of 4-PLL-TRNG in Zynq-7020 SoC FPGA 51

3.3.1 Discussion About PLL-TRNG Implementation Re-
sults . 52

4 32-BIT AND 64-BIT CDC-7-XPUF IMPLEMENTATION ON A ZYNQ-
7020 SOC . 55

4.1 CDC-XPUF Implementation Details 55

4.2 32-bit and 64-bit CDC-7-XPUF Experimental Results and
Comparisons . 58

4.2.1 Steadiness . 58

4.2.2 Correctness . 59

4.2.3 Diffuseness . 59

4.2.4 Uniformity . 60

4.2.5 Uniqueness . 60

4.2.6 Utilization Results of CDC-7-XPUFs in Zynq-7020
SoC FPGA . 61

4.2.7 Discussion About CDC-7-XPUF Implementation
Results . 62

5 A COMBINED DESIGN OF 4-PLL-TRNG AND 64-BIT CDC-7-
XPUF ON A ZYNQ-7020 SOC . 63

5.1 Introduction . 63

xviii

5.2 Implementation Details of the Combined Design 4-PLL-TRNG
and CDC-7-XPUF . 64

5.3 Implementation Results of the Combined Design 4-PLL-TRNG
and CDC-7-XPUF . 67

5.3.1 Implementation Results of the Random Numbers
in 4-PLL-TRNG of Combined Designs 68

5.3.2 Implementation Results of the Responses in CDC-
7-XPUF of Combined Designs 69

5.3.2.1 The Steadiness Results of the Com-
bined Designs 69

5.3.2.2 The Correctness Results of the Com-
bined Designs 69

5.3.2.3 The Diffuseness Results of the Com-
bined Designs 69

5.3.2.4 The Uniformity Results of the Com-
bined Designs 70

5.3.2.5 The Uniqueness Results of the Com-
bined Designs 70

5.3.3 Utilizations of Combined Designs of Zynq-7020
SoCs . 71

5.4 Discussion About Combined Designs Implementation Results 71

6 CONCLUSION AND FUTURE WORKS 75

6.1 Conclusion . 75

6.2 Future Works . 76

REFERENCES . 77

CURRICULUM VITAE . 85

xix

xx

LIST OF TABLES

Table 3.1 Configurations of PLL-TRNG Implementations 46

Table 3.2 Table of ranges of possible values for the PLL parameters and fre-
quencies for Zynq-7000 SoC [4], [8] . 47

Table 3.3 Determined Parameters for the PLL-TRNG Implementations
for fref = 125 MHz . 48

Table 3.4 PLL-TRNG Implementation Results 51

Table 3.5 PLL-TRNG Implementation Results Comparison with [16], [45],
and [48] . 51

Table 3.6 Utilization Table Generated Using Vivado 2019.1 [5] for 4-PLL-
TRNG Implementation . 52

Table 4.1 Steadiness Results . 58

Table 4.2 Correctness Results . 59

Table 4.3 Diffuseness Results . 59

Table 4.4 Uniformity Results . 60

Table 4.5 Uniqueness Results . 61

Table 4.6 Utilization Table Generated Using Vivado 2019.1 [5] for 32-bit and
64-bit CDC-7-XPUF Implementations 61

Table 5.1 AIS-20/31 Test Results of the Combined Designs and the Reference
Design of 4-PLL-TRNG . 68

Table 5.2 The Shannon Entropy Results with Respect to AIS-20/31 of the
Combined Designs and the Reference Design of 4-PLL-TRNG 68

Table 5.3 The Steadiness Results of the Combined Designs and the Reference
Design of 64-bit CDC-7-XPUF . 69

xxi

Table 5.4 The Correctness Results of the Combined Designs and the Refer-
ence Design of 64-bit CDC-7-XPUF . 69

Table 5.5 The Diffuseness Results of the Combined Designs and the Refer-
ence Design of 64-bit CDC-7-XPUF . 70

Table 5.6 The Uniformity Results of the Combined Designs and the Reference
Design of 64-bit CDC-7-XPUF . 70

Table 5.7 The Uniqueness Results of the Combined Designs and the Refer-
ence Design of 64-bit CDC-7-XPUF . 71

Table 5.8 The Utilization Rates of the Combined Designs and the Reference
Design of 4-PLL-TRNG and 64-bit CDC-7-XPUF 71

xxii

LIST OF FIGURES

Figure 2.1 Clock jitter [46] . 10

Figure 2.2 Reference level fluctuations originating from analog noises causing
clock jitter in digital circuits [46] . 11

Figure 2.3 Illustration of the phase jitter of the second rising edge of the clock
signal [46] . 12

Figure 2.4 Illustration of the period jitter of a real clock signal compared to
the ideal clock [46] . 13

Figure 2.5 Illustration of the cycle to cycle jitter [46] 13

Figure 2.6 Overview of deterministic and random jitter components [46] . . . 14

Figure 2.7 Metastability of a coin flip [46] 16

Figure 2.8 Metastability Illustrated as a Ball Dropped on a Hill [3] 17

Figure 2.9 Examples of Metastable Output Signals [3] 18

Figure 2.10 Internal structure of a TERO [46] 19

Figure 2.11 Example waveforms of a TERO [46] 20

Figure 2.12 Randomness extraction from the jittered clock signal by its sam-
pling on the rising edge of the reference clock signal [46] 20

Figure 2.13 Elementary ring oscillator TRNG [46] 21

Figure 2.14 Block diagram of a PLL (PFD: phase frequency detector, CP:
charge pump, LF: loop filter, VCO: voltage-controlled oscillator) [16]
. 22

Figure 2.15 Principle of the PLL-TRNG with one PLL [23] 23

Figure 2.16 PLL-TRNG with two PLLs configuration [23] 23

Figure 2.17 Extracting manufacturing process variations in an IC for PUF [27] . 26

Figure 2.18 PUF model [14] . 26

xxiii

Figure 2.19 PUF-based authentication [14] . 27

Figure 2.20 Classification of PUFs [54] . 28

Figure 2.21 The basic APUF [14] . 29

Figure 2.22 An XOR-PUF with 2 sub-streams and n bits of each stream [37] . . 30

Figure 2.23 A CDC-XPUF with 2 sub-streams and n bits of each stream [37] . . 30

Figure 2.24 Hierarchy of security in IoT [63] 31

Figure 2.25 Xilinx Zynq-7000 SoC ZC702 Evaluation Kit [7] 42

Figure 2.26 Block Scheme of Internal Structure of Xilinx Zynq-7000 SoC [6] . 43

Figure 3.1 Implemented PLL-TRNG Configurations: (a), (b), (c), and (d) . . . 46

Figure 3.2 Block Diagram of Implementation Setup 49

Figure 4.1 Vivado 2019.1 Schematic Design View of CDC-7-XPUFs 56

Figure 4.2 An Example of Bad Placement of CDC-7-XPUF MUXes 56

Figure 4.3 An Example of Good Placement of CDC-7-XPUF MUXes 57

Figure 4.4 Block Diagram of Implementation Setup of CDC-7-XPUFes 57

Figure 5.1 Block Diagram of Implementation Setup of the Combined Design
of 4-PLL-TRNG and CDC-7-XPUF . 65

xxiv

LIST OF ABBREVIATIONS

APUF Arbiter Physically Unclonable Function

ASIC Application Specific Integrated Circuit

AXI Bus Advanced eXtensible Interface Bus

BSI Bundesamt für Sicherheit in der Informationstechnik (Federal
Office for Security in Information Technology)

CDC-XPUF Component-Differentially Challenged XOR Arbiter Physically
(or Physical) Unclonable Function

COSO-TRNG Coherent Sampling-based True Random Number Generator

CP Charge Pump

CRP Challenge-Response Pair

DFF Data or Delay Flip-Flop

DRNG Deterministic Random Number Generator

DSP Digital Signal Processor

ERO-TRNG Elementary Ring Oscillator-based True Random Number Gen-
erator

FIT Failure In Time

FPGA Field-Programmable Gate Array

IC Integrated Circuit

IoT Internet of Things

IP Intellectual Property

ML Machine Learning

MTBF Mean Time Between Failures

MUX Multiplexer

NIST the National Institute of Standards and Technology

NPTRNG Non-Physical True Random Number Generator

PC Personal Computer

PFD Phase Frequency Detector

PL Programmable Logic

PLL Phase-Locked Loop

xxv

PLL-TRNG PLL-based True Random Number Generator

PVCOd Post-Voltage-Controlled Oscillator Divider

PS Processing System

PUF Physically (or Physical) Unclonable Function

PRNG Pseudo-Random Number Generator

PTRNG Physical True Random Number Generator

RFID Radio-Frequency Identifier

RNG Random Number Generator

RoT Root of Trust

SR-Latch Set/Reset Latch

SoC System-on-Chip

TERO Transient Effect Ring Oscillator

TRNG True Random Number Generator

VCO Voltage-Controlled Oscillator

VHDL Very High-Speed Integrated Circuit Hardware Description Lan-
guage

XOR-PUF XOR Arbiter Physically (or Physical) Unclonable Function

xxvi

CHAPTER 1

INTRODUCTION

Random numbers are essential components in cryptography, used for generating con-

fidential keys, padding data, initialization vectors, and nonces in challenge-response

protocols. Additionally, random numbers are employed to generate random masks,

which are critical in preventing side-channel attacks. Random number generators

(RNGs) serve as cryptographic primitives designed to produce sequences of bits or

symbols (e.g., bit groups or vectors) that exhibit no discernible patterns. For these

generators, independence and uniform distribution are crucial properties. RNGs are

typically classified into two main types: true random number generators (TRNGs) and

pseudo-random number generators (PRNGs), also referred to as deterministic random

number generators (DRNGs). Each type offers distinct characteristics, benefits, and

limitations. Beyond RNGs, a new class of hardware primitives has emerged, sharing

some properties with TRNGs, known as physically (or physical) unclonable func-

tions (PUFs). PUFs are utilized for hardware authentication in challenge-response

protocols and for generating device-specific confidential keys.

The circuitry of both PUFs and TRNGs necessitates a minimal systematic mismatch

to ensure the absence of bias in their respective outputs. Although the responses

of both PUFs and TRNGs are inherently unpredictable, a key distinction lies in the

behavior of their outputs: for a given challenge, the response of a PUF remains con-

sistent across multiple executions, whereas the output of a TRNG exhibits random

variation with each execution, as indicated in [49].

According to Kerckhoff’s Principle, the security of any cryptographic system funda-

mentally depends on safeguarding the keys used in the implemented algorithm. In

1

high-end information security systems, particularly when operating in uncontrolled

environments, cryptographic keys and random masks must be generated within the

system and should never be exposed or transmitted in an unencrypted form. As a re-

sult, when the security system is integrated into a single chip (cryptographic system-

on-chip), key generation must occur within the same chip or logic device. However,

logic devices are designed to execute deterministic logic operations, not to gener-

ate randomness based on analog physical phenomena. Consequently, implementing

RNGs and PUFs on logic devices such as field-programmable gate arrays (FPGAs)

and digital application-specific integrated circuits (ASICs) presents a significant chal-

lenge, as noted in [20].

Recently popular System-on-Chip (SoC) Field-Programmable Gate Arrays (FPGAs)

or SoCs are semiconductor devices that integrate programmable logic with hard pro-

cessor cores. They offer higher integration, lower power, smaller board sizes, and

higher bandwidth communication between the processor and FPGA. In this thesis

work, SoC is preferred instead of FPGA since SoC has hard processor power, and

this power can be used for further applications on a single chip without the need for

any external connection.

Both in FPGA and SoCs, Phase-Locked Loops (PLLs) are required and placed. Briefly,

those are feedback control systems that automatically adjust the phase of a locally

generated signal to match the phase of an input signal. These PLL structures can be

used to design TRNGs, as shown in [24].

Phase-locked loops (PLLs), operating in the analog domain, are well-suited for cryp-

tographic TRNG designs due to their inherent analog source of unpredictable ran-

domness, as stated in [24]. PLLs are commonly employed to enhance clock distri-

bution performance and to enable on-chip clock-frequency synthesis. Additionally,

these units benefit from dedicated power sources within FPGAs, which helps to iso-

late them from the rest of the device, minimizing interference. However, the number

of available PLLs in FPGAs is limited, which constrains the extent to which TRNG

implementations can leverage multiple PLLs.

The primary challenge in PLL-TRNG design is the selection of optimal PLL settings

from a vast configuration space. The chosen parameters must yield both a sufficient

2

entropy rate and an adequate output bit rate. This study adopts the parameter deter-

mination process outlined in [16].

While it is advantageous to implement PLL-TRNG considering its high entropy and

isolated locations of PLL, one of the main drawbacks of the PLL-TRNG is its rela-

tively low random data output speed. A new PLL-TRNG method using four PLLs is

proposed to overcome this disadvantage. This research culminates in the implemen-

tation of a four-PLL True Random Number Generator (4-PLL TRNG) on a SoC. To

elucidate the design progression, a referenced configuration utilizing two PLLs and

two intermediate configurations utilizing three PLLs are developed. Subsequently,

four distinct PLL-TRNG configurations are implemented.

NIST SP 800-90B [57] and AIS-20/31 [13] are cryptographic standards focused on

RNGs, but with different regional origins and scopes. NIST SP 800-90B emphasizes

the evaluation and testing of entropy sources for RNGs, focusing on entropy esti-

mation, health tests, and ensuring the unpredictability of random outputs. AIS-20/31

provides a more comprehensive approach by defining standards for both deterministic

(DRNG) and true (TRNG) random number generators, classifying them into differ-

ent security levels. In this work, by considering the properties and the comprehensive

approach of the AIS-20/31, the generated random numbers are evaluated using the

AIS-20/31 standard, a methodology set forth by the German Federal Office for In-

formation Security (BSI), to assess their quality and ensure compliance with security

standards. This evaluation confirms the improved performance and reliability of the

proposed design.

The Arbiter PUF, the first silicon-based PUF, generates numerous secret keys effi-

ciently from input data while maintaining a lightweight design. This makes it well-

suited for device authentication in environments with limited resources, such as IoT

applications. However, its vulnerability to machine learning attacks highlights the

need for enhanced design solutions to improve security.

Consequently, to improve resistance to machine learning (ML) attacks, arbiter PUF

designs have been enhanced. In this study, an ML attack-resistant component-

differentially challenged XOR arbiter PUF (CDC-XPUF) is implemented, following

the reference designs from [43] and [37]. Research in [37] demonstrates that designs

3

with 64-bit or longer challenges and at least 7-stream PUFs are resistant to the most

advanced ML attack techniques. Consequently, this work implements a referenced

32-bit CDC-7-XPUF, followed by an improved 64-bit version for enhanced ML at-

tack resilience. The performance results for both the 32-bit and 64-bit CDC-7-XPUFs

are presented and compared to the reference design.

In addition to the tests applied to TRNG and PUF designs, the utilization rates of

both TRNG and PUF designs are evaluated, showing that they are well-suited for IoT

systems by providing sufficient space for other software or firmware.

Considering the intended use of TRNGs and PUFs, these hardware primitives have

become a crucial component of modern IoT systems. A root-of-trust for an embed-

ded device can be implemented by combining TRNG and PUF together. Therefore,

a design that combines these two primitives would not only be beneficial but also

efficient in terms of resource consumption on SoC or FPGA platforms. In this study,

after separately implementing both hardware primitives on an SoC, we propose a

combined structure where both can operate together. In this structure, the random

numbers generated by the TRNG are transferred to the PUF section to generate six of

the seven challenges for the CDC-7-XPUF, excluding the main challenge. All tests

applied to the TRNG and PUF were also applied to this combined structure, and its

resource usage was subsequently calculated. As a result, the combined design of the

4-PLL-TRNG and CDC-7-XPUF successfully passes all tests and demonstrates low

resource usage. This promising result indicates that the design can be implemented

on the same SoC alongside other firmware and software intended for IoT applications,

offering a secure solution as evidenced by the performance metrics.

All of the designs were implemented and tested in a test setup utilizing the ZC702

Rev1.1 Evaluation Board [7], equipped with the Xilinx Zynq 7020 SoC and a config-

uration of three such boards for experimental validation.

4

1.1 Motivation

During this study, we are primarily driven by two motivations:

• All network-based embedded systems, such as those used in the Internet of

Things (IoT), require hardware primitives like TRNGs and PUFs to serve as

the root of trust (RoT). Therefore, the efficient and reliable implementation of

these primitives, both individually and in combination, will address the need

for a robust RoT in such systems. The goal is to meet the RoT requirements of

IoT systems while minimizing the hardware load these primitives impose, thus

leaving adequate design space for other firmware and software.

• SoCs have become increasingly common in IoT and similar systems. A key

motivation for this work has been the implementation of these hardware prim-

itives, both individually and in combination, on SoC platforms, ensuring their

adaptability across different SoCs and facilitating their use in various systems.

1.2 Contributions

Our work presents three primary contributions: We design a new, fast, and adap-

tive structure of PLL-TRNG, which contains 4 PLLs with a specific interconnec-

tion and named 4-PLL-TRNG, implemented on the Xilinx Zynq 7020 SoC, which

is compatible with new FPGAs or SoCs and can increase the bit rate without com-

promising cryptographic properties, and we evaluate its performance with respect to

AIS-20/31 tests, comparing the results with previous works. We implement the 64-

bit version of the CDC-XPUF (64-bit CDC-7-XPUF), based on the Arbiter PUF, with

seven streams. It is reported in [37] that this version is resistant to machine learning

(ML) attacks. Additionally, the implemented PUF is evaluated based on the met-

rics of steadiness, correctness, diffuseness, uniformity, and uniqueness, as well as

its resource utilization on the SoC. It is demonstrated that the implemented PUF is

appropriate regarding all these metrics and resource utilization.

By combining the 4-PLL-TRNG (with the max. R configuration) and the 64-bit CDC-

7-XPUF, a design functioning as both a TRNG and a PUF is developed, creating a

5

structure that can serve as a hardware primitive in IoT systems. In this dual structure,

the random numbers generated by the TRNG are used to create new challenges by

XORing the main challenge in the PUF. Test scenarios are designed considering that

both subsystems could operate simultaneously in real-time applications. Within these

test scenarios, the tests applied to both the TRNG and the PUF are also applied to this

combined structure, which results in the new structure having good properties.

1.3 Thesis Organization

The thesis is organized as follows:

• In Chapter 2, preliminary information about PLL-TRNG, CDC-7-XPUF, the

combined design of both, applied tests to TRNGs and PUFs, and Zynq-7020

SoCs are presented.

• In Chapter 3, the details of PLL-TRNG implementations are presented. After

that, the results and comparison with previous works are demonstrated.

• In Chapter 4, we describe the implementations of both 32-bit and 64-bit CDC-

7-XPUF in detail and subsequently present the results and comparisons with

the referenced study.

• In Chapter 5, we explain the details of the implementation of the combined

design of 4-PLL-TRNG and 64-bit CDC-7-XPUF. The results and the compar-

isons of them with respect to separate implementations are explained in this

chapter.

• In Chapter 6, the conclusion part is presented, and the future works of the thesis

are explained.

6

CHAPTER 2

PRELIMINARIES

In this chapter, preliminary information about the combined PUF-TRNG implementa-

tion is presented. Hence, the following sections about PLL-TRNG, PUF, PUF-TRNG,

evaluation metrics of TRNGs and PUFs, and Xilinx Zynq SoC FPGA contain required

explanations in order to understand the combined PUF-TRNG implementation in this

thesis.

2.1 Phase-Locked Loop-based True Random Number Generator (PLL-TRNG)

2.1.1 True Random Number Generators (TRNGs)

Cryptography is a fundamental component of modern information systems, and within

cryptographic frameworks, random number generators (RNGs) are essential. RNGs

are utilized not only for generating cryptographic keys but also for producing nonces,

initialization vectors, and random masks, which are critical in defending against side-

channel attacks.

Despite the wide range of applications for random numbers in cryptographic systems,

they must meet two primary criteria. First, they must demonstrate strong statistical

properties, particularly a uniform probability distribution, to ensure that all possible

values have an equal likelihood, thus mitigating vulnerabilities such as frequency

attacks. Second, unpredictability is crucial, especially for secret parameters like keys,

to prevent adversaries from predicting future or past values based on captured data.

Due to the broad range of RNG applications in cryptography, various RNG principles

7

exist to meet different needs. Two fundamental RNG types are deterministic/pseudo-

random number generators (DRNG/PRNG) and true random number generators

(TRNGs).

DRNGs generate sequences that appear random in the short term but are periodic

in the long term. They use mathematical algorithms and initialization values called

seeds to produce less predictable output. On the other hand, TRNGs are not algorith-

mic; they extract randomness from non-algorithmic phenomena such as temperature

fluctuations or radioactive decay, producing real random data.

TRNGs can be physical (PTRNG), utilizing physical noise on the electron level, or

non-physical (NPTRNG), relying on non-physical randomness sources like user in-

teractions. While deterministic RNGs ensure unpredictability computationally, true

RNGs guarantee unpredictability through random physical phenomena characterized

by the entropy rate.

Cryptographic systems often utilize hybrid RNGs, combining the strengths of both

TRNGs and DRNGs. Hybrid true RNGs merge a TRNG with cryptographic post-

processing to ensure forward and backward secrecy and perfect statistical properties.

Hybrid deterministic RNGs use a TRNG to periodically generate seeds for a DRNG,

reducing predictability.

To maintain the security of confidential keys, it’s essential to generate them within the

cryptographic system. As contemporary cryptographic systems are predominantly

implemented in logic devices like Field Programmable Gate Arrays (FPGAs) and

Application-Specific Integrated Circuits (ASICs), the focus of research is often on im-

plementing RNGs in these hardware-supported digital logic synthesis devices. Thus,

in the following subsection, the randomness sources for these digital logic structures

are presented. The details of this section and the following sections can be found in

[46].

Those who wish to gain more in-depth knowledge about random numbers can refer

to [34] and [35] for further study.

8

2.1.1.1 Randomness Sources in Logic Devices

TRNGs can rely on either physical or non-physical noise sources; however, in logic

devices, the availability of physical noise sources is constrained due to the design fo-

cus on maintaining a consistent and well-defined state. To generate random numbers,

an inherently uncontrollable random phenomenon is necessary. The primary physical

phenomena employed for random number generation in logic devices include clock

jitter (the deviation of the clock edge from its ideal timing), metastability (a cir-

cuit’s ability to remain in an indeterminate state for an unpredictable duration), chaos

(the unpredictable behavior of deterministic systems that are highly sensitive to initial

conditions), and analog signals (such as diode shot noise and thermal noise).

This chapter will focus on clock jitter and metastability. The generation of random

numbers using analog signals is beyond the scope of this thesis, as they are difficult to

utilize in logic devices. Incorporating an analog signal into a digital system requires

an analog-to-digital converter, and most digital logic devices under consideration,

such as FPGAs and ASICs, lack such an analog interface.

Chaotic behavior characterizes seemingly deterministic systems, displaying extreme

sensitivity to initial conditions, resulting in vastly different outcomes with even the

slightest initial state change. This behavior has been investigated for TRNG imple-

mentation, as the divergence in results from different initial states disrupts dependen-

cies in the output sequence. Systems exhibiting chaotic behavior typically require

analog components like A/D converters or switched capacitors. However, this thesis

focuses on randomness sources that do not necessitate such components, as they are

generally unavailable in logic devices.

In this thesis, the clock jitter is chosen as the source of the randomness since it is

available in every digital logic device and has an unstable nature in some instances,

which exhibits a reliable source for randomness.

9

Clock Jitter

A desired clock signal in digital logic devices should ideally be a square wave with

a 50% duty cycle and a consistent period. However, due to the influence of various

electronic interferences, the clock signal is never perfectly stable, and its edges devi-

ate from their intended positions. This phenomenon, known as clock jitter, manifests

as fluctuations in the phase of the clock signal. In the time domain, these fluctuations

are observable as jitter, while in the frequency domain, they manifest as phase noise

[19], [46].

Clock jitter is generally undesirable in logic devices but is often inevitable. Exten-

sive research has been conducted to understand and characterize jitter, particularly its

negative impact on high-frequency communications and high-speed systems. In ana-

log systems, the jitter is best analyzed in the frequency domain to study its phase and

amplitude components separately. Conversely, in digital systems, temporal properties

of jitter take precedence, and thus it is characterized in the time domain.

In a digital system, clock jitter refers to the deviation of the actual clock edge from

the ideal clock edge, as described by Equation 2.1, where t(n) denotes the time of the

n-th period of a clock signal, and T represents the clock signal’s period. Due to jitter,

real clock signals do not always arrive at precise integer multiples of their period,

resulting in variations from the ideal timing.

t(n) = n · T (2.1)

Various physical phenomena, such as thermal noise, power supply noise, and ambient

electromagnetic noise, contribute to the occurrence of jitter, as illustrated in Figure

2.1.

Figure 2.1: Clock jitter [46]

10

Figure 2.2 demonstrates a primary cause of jitter in digital circuits. These circuits use

a reference level, typically located in the middle of the operating voltage range, to

detect clock edges. While the reference level should ideally remain stable, it fluctuates

in reality due to different noises. When the reference level shifts, it leads to the earlier

or later detection of the clock edge than intended, resulting in temporal shifts observed

as clock jitter.

Figure 2.2: Reference level fluctuations originating from analog noises causing clock
jitter in digital circuits [46]

Subsequent sections will elaborate on various jitter measurements observed in digital

circuits and their interrelations.

Phase Jitter

Phase jitter is defined as the difference between the time of the n-th actual clock

edge, denoted as tr(n), and the time (or phase) of the n-th ideal clock edge. This

relationship is expressed in Equation 2.2.

δφ(n) = tr(n)− n · Tref (2.2)

Figure 2.3 depicts the jitter phenomenon for the case where n = 3. To enhance clarity,

we specifically showcase the phase jitter pertaining to the rising edges. However, it

is important to acknowledge that the phase jitter impacts each edge of the clock, not

just the rising edges.

11

Figure 2.3: Illustration of the phase jitter of the second rising edge of the clock signal
[46]

In Figure 2.3, it is evident that the presented phase jitter δφ(2) is influenced not solely

by the phase discrepancy of tr(2) but also incorporates contributions from the varia-

tion in tr(1). This phenomenon is termed jitter accumulation, leading to an increase

in the observed phase jitter with larger values of n.

Period Jitter

Period jitter is defined as the difference between the actual clock period and the ideal

clock period. Additionally, as outlined in Equation 2.3, it corresponds to the first-

order difference of the phase jitter.

δT (n) = [tr(n)− tr(n− 1)]− Tref

δT (n) = δφ(n)− δφ(n− 1)
(2.3)

Figure 2.4 illustrates period jitter. It is observable that actual periods exhibit variations

over time, in contrast to ideal periods that remain constant.

12

Figure 2.4: Illustration of the period jitter of a real clock signal compared to the ideal
clock [46]

Cycle to Cycle Jitter

Cycle-to-cycle jitter is defined as the difference between two consecutive actual clock

periods, as expressed in Equation 2.4

δc = Tr(n)− Tr(n− 1)

= [tr(n)− tr(n− 1)]− [tr(n− 1)− tr(n− 2)]

δc = δT (n)− δT (n− 1)

(2.4)

Figure 2.5 portrays this jitter phenomenon.

Figure 2.5: Illustration of the cycle to cycle jitter [46]

13

These various jitter measurements are interconnected: period jitter is essentially the

first-order difference of phase jitter, and cycle-to-cycle jitter is the first-order differ-

ence of period jitter. Consequently, it is generally adequate to measure just one of

these aspects and subsequently calculate any other as necessary.

Jitter Components

Jitter comprises various components stemming from diverse phenomena, categorized

as either random or deterministic. Random components, like those arising from ther-

mal or 1/f noise, are unpredictable and adhere to some probabilistic law. Determin-

istic components, contingent on the implementation, rely on specific factors such as

processed data and power supplies. Deterministic components lack a probabilistic

nature, making their characterization generally impractical. Figure 2.6 visually rep-

resents both deterministic and random jitter components and their cumulative contri-

bution to the overall jitter observed in logic devices.

Figure 2.6: Overview of deterministic and random jitter components [46]

14

Both random and deterministic jitter can originate from either local or global sources.

Local sources primarily affect specific regions within the electronic system, often

near high-frequency or high-power components such as oscillators and amplifiers. In

contrast, global sources include ambient noise and disturbances from power supplies,

which impact the entire system.

In the context of TRNGs, deterministic jitter components are undesirable, as they

do not produce true randomness. Genuine randomness arises exclusively from jitter

caused by random noise. However, before random numbers can be generated from

jitter, it is crucial to analyze its statistical properties.

Statistically, noise can be classified as independent or dependent. Independent noise

is typically non-manipulable and relatively straightforward to characterize. Conse-

quently, many TRNG designs utilize the sum of independent noise sources, com-

monly referred to as Gaussian noise, as a randomness source. A key challenge in

designing a TRNG based on Gaussian noise is estimating the contribution of only

non-correlated (Gaussian) noise to the random numbers while excluding the influ-

ence of dependent noise.

Dependent noises include deterministic ones, which are unsuitable for generating ran-

dom numbers. Additionally, there are non-deterministic autocorrelated noises, such

as 1/f noise, also known as flicker noise. Flicker noise, a well-known semiconductor

phenomenon since the 1950s and 1960s, has gained interest in TRNG applications.

Despite being studied extensively in [29], [32], [39], and [41] its physical cause and

characterization remain challenging. In TRNG design, efforts are made to exclude the

contribution of flicker noise to entropy rate estimation and rely solely on uncorrelated

thermal noise.

From a statistical standpoint, considering only uncorrelated random noises, the time

of arrival of the nth clock edge is a random variable Xtn . Each variable’s probability

distribution function has its mean value at n ∗ Tref . The variance of these functions

provides insight into the extent of clock edge fluctuations. Observing a clock sig-

nal reveals a specific realization of each variable Xtn , as demonstrated in previous

sections.

15

Metastability

Metastability refers to a system’s ability to endure an unlawful state for an indefinite

duration. To illustrate, consider a coin flip, as depicted in Figure 2.7. Ideally, when

we flip a coin, we expect it to land on one of its two faces, constituting the legal

states. However, if the coin lands on its side, the outcome becomes uncertain, leading

to an indecisive and, hence, illegal state known as metastability. When a coin lands

on either face, it attains a stable state. To remain in a metastable state, a coin must

maintain perfect equilibrium, as even the slightest force applied to it will prompt it to

fall onto one of its faces.

Figure 2.7: Metastability of a coin flip [46]

Metastability in FPGAs

In digital devices such as FPGAs, all registers must meet specific signal timing re-

quirements to correctly capture input data and produce output signals. For proper

functionality, a register’s input must remain stable for a minimum period before the

clock edge (referred to as setup time, tSU) and for a minimum period after the clock

edge (referred to as hold time, tH). The register’s output becomes available after a

defined clock-to-output delay (tCO). If a transition in the data signal occurs in viola-

tion of the register’s tSU or tH requirements, the register may enter a metastable state.

In this state, the output oscillates between high and low values for a period, delaying

the transition to a stable state beyond the expected tCO.

In synchronous systems, adherence to register timing requirements prevents metasta-

bility. However, metastability issues arise when transferring a signal between unre-

lated or asynchronous clock domains, as the designer cannot guarantee meeting tSU

and tH requirements due to variable arrival times relative to the destination clock. Not

16

every violation of a register’s tSU or tH results in metastable output; the likelihood

and the time needed to return to a stable state depend on the device’s manufacturing

process and operating conditions.

A useful analogy for visualizing a register sampling a data signal at a clock edge is

that of a ball dropped onto a hill. The stable states are represented by the sides of the

hill, corresponding to the signal’s old and new data values after a transition, while the

peak of the hill represents a metastable state. If the ball is dropped precisely at the

top, it may remain balanced indefinitely; however, in practice, it will eventually shift

slightly and roll to one side. The further the ball is from the peak, the more quickly it

reaches a stable state. This concept is illustrated in Figure 2.8.

Figure 2.8: Metastability Illustrated as a Ball Dropped on a Hill [3]

When a data signal transitions after the clock edge and the minimum hold time (tH), it

is comparable to dropping the ball on the old data value side, preserving the original

output value for that clock cycle. Conversely, if the data input transitions before the

clock edge and satisfies the minimum tH , it is akin to dropping the ball on the new

data value side, allowing the output to promptly stabilize at the new value within the

specified clock-to-output delay (tCO). However, if the data input violates either the

setup time (tSU) or the hold time (tH), it resembles dropping the ball near the top of

the hill. In such cases, the ball takes longer to reach a stable state, causing the output

delay to exceed the expected tCO. Figure 2.9 demonstrates this metastability, where a

violation of tSU causes the output to oscillate between high and low states, delaying

the transition to a stable value [3].

17

Figure 2.9: Examples of Metastable Output Signals [3]

The outcome of whether the register settles in a new or previous state is determined

by random factors, resulting in a random transition. However, generating random

numbers in this manner faces a significant challenge—the precise synchronization of

two signals arriving at the register simultaneously. This difficulty arises due to sub-

stantial efforts by device manufacturers to minimize setup and hold times, preventing

registers from entering metastable states.

Device manufacturers perform comprehensive lifetime studies to assess the Failure

In Time (FIT) rate of a device, where one FIT represents a failure occurring once

every 109 hours, as explained in [46]. This FIT rating is then used to calculate the

Mean Time Between Failures (MTBF) for a particular device and design. MTBF

provides an estimate of the average time interval between two system failures caused

by metastability, typically measured on the order of several decades.

Considering the typical MTBF, it would take a long time, possibly years, to generate a

single random bit using only the metastability of a circuit as a source of randomness.

Therefore, it is deemed impractical to rely solely on metastability for generating large

quantities of random data.

18

Oscillatory Metastability

Due to the high MTBF values, instead of waiting for metastability to occur sponta-

neously, one of the types of metastability intentionally created for random number

generation is known as oscillatory metastability. Unlike the metastable behavior seen

in registers, this form of metastability does not lead a system into an undefined state

but causes it to oscillate between low and high states for an undetermined period.

In a study referenced as [52], it is demonstrated that oscillatory metastability can

be induced by introducing an additional delay to a set/reset latch (SR-latch) circuit.

This modified circuit is then initialized to an illegal state to exhibit its oscillatory

metastable behavior.

In [58], the transient effect ring oscillator (TERO) is introduced as a mechanism that

leverages oscillatory metastability for randomness generation. The TERO consists of

a modified SR-latch that is periodically forced into an illegal state through simultane-

ous set and reset operations, thereby violating the latch’s setup and hold times. The

internal architecture of the TERO is depicted in Figure 2.10.

Figure 2.10: Internal structure of a TERO [46]

When the control signal is activated, the TERO enters an oscillatory state, remaining

in this state for a random duration. Following the oscillatory phase, the cell stabilizes

at one of the two logic levels (high or low), with the final state being random as well.

Figure 2.11 illustrates that the number of oscillations at the TERO’s output, as well

as its final state, are variable. Unlike the analog metastability shown in Figure 2.7, in

this case, the output oscillates between two discrete states, as depicted in Figure 2.8.

19

Figure 2.11: Example waveforms of a TERO [46]

2.1.1.2 Extraction of Randomness from the Clock Jitter

Clock jitter is regarded as a promising source of randomness in digital devices due

to its constant presence and intrinsic random elements. To generate random numbers

from the jitter, a digitization process is required, and the most commonly employed

method involves sampling the jittered clock edge, as depicted in Figure 2.12.

Figure 2.12: Randomness extraction from the jittered clock signal by its sampling on
the rising edge of the reference clock signal [46]

Generating random bits requires the clock signal to align with the jitter-affected edge

of the jittered signal. This process demands highly precise clock timing, as jitter is

typically very small, often on the order of picoseconds or approximately 1
1000

of the

clock period. Although jitter is inevitable, the sampling clock signal is also suscep-

tible to jitter, complicating the timing precision further. Additionally, random bits

generated through this sampling method may exhibit bias, which is significantly in-

fluenced by the duty cycle of the sampled clock. With a 50% duty cycle, there is

an equal probability (50%) of the output bit being 1. However, if the duty cycle is

imbalanced, the probabilities of generating a 1 or 0 are no longer equal but rather pro-

portional to the duty cycle. Despite these limitations, this sampling method remains

the most commonly employed approach for extracting randomness from clock jitter

as described in works of [11], [15], [53], [56].

20

One approach to converting random jitter into random bits involves accumulating the

jitter until its size surpasses the sampled signal period [11]. In this scenario, each

sampling of such a signal would yield a completely unpredictable result [46].

A TRNG employing jitter accumulation is the Elementary Ring Oscillator-based

TRNG (ERO-TRNG), which was suggested and modeled in [11]. The internal con-

figuration of this TRNG is illustrated in Figure 2.13 and includes two ring oscillators,

a frequency divider, and a D flip-flop.

Figure 2.13: Elementary ring oscillator TRNG [46]

The inclusion of a frequency divider enables the extension of the time interval be-

tween two samplings of Oscillator 1 in the ERO-TRNG. This elongation facilitates

the accumulation of phase jitter, and when the K value is sufficiently large, each

output bit becomes entirely unpredictable due to the accumulated jitter.

Alternatively, the jitter accumulation time can be controlled using a frequency divider,

as depicted in Figure 2.13, or by designing the periods T1 and T2 in such a way that

their difference is smaller than the jitter standard deviation, as defined in Equation

2.5. This latter method is employed in the Coherent Sampling-based TRNG (COSO-

TRNG) in [36]. In this method, instead of sampling, a counter is utilized to extract

randomness from the clock jitter.

σ > |T1| − |T2| (2.5)

Coherent sampling, also referred to as subsampling, is a technique that improves sam-

pling accuracy without increasing the frequency of the sampling clock. In traditional

sampling, an image of each period of the sampled signal is captured, whereas sub-

sampling reconstructs the signal by taking samples over multiple periods. For this

method to be effective, two conditions must be satisfied: the sampled signal must be

periodic, and the ratio between the sampling frequency and the signal frequency must

21

be known. Although subsampling typically operates at a slower rate than conven-

tional sampling, it allows lower sampling frequencies to be used while maintaining

high sampling precision.

2.1.2 PLL-TRNG

2.1.2.1 Basics of PLL

Figure 2.14: Block diagram of a PLL (PFD: phase frequency detector, CP: charge
pump, LF: loop filter, VCO: voltage-controlled oscillator) [16]

A phase-locked loop (PLL) is a circuit, illustrated in Figure 2.14, that synchronizes a

signal from an internal oscillator to an external input signal. The grey blocks represent

analog components, which are fixed and cannot be parameterized, whereas the integer

division coefficients M , N , and C, shown in white blocks, must be configured. These

coefficients are crucial for determining the output frequency of the PLL (fout) based

on the reference frequency (fref), as defined in Equation (2.6).

fout = fref ×
M

N × C
(2.6)

2.1.3 Random Bit Generation Principle of the PLL-TRNG

The working principle of the PLL-TRNG with one PLL is presented in Figure 2.15,

and also PLL-TRNG with two PLLS is presented in Figure 2.16.

The jittered clock signal clk1 from the PLL is sampled by a data or delay flip-flop

(DFF) using the reference clock signal clk0. A 1-bit counter is used to track the

number of samples that equal one. Due to the frequency relationship established by

the PLL, a periodic pattern with a period of TQ = KD × T0 = KM × T1 emerges

at the flip-flop output. As a result, certain samples are consistently one (shown as

22

blue in Figure 2.15 and these are 4th and 7th dots), some are always zero (shown

as green and these are 2nd and 5th dots), and others are random (shown as red and

these are 1st, 3rd, 6th, and 8th dots). By applying the coherent sampling principle and

rearranging the samples based on their positions, the waveform of one period of clk1

can be reconstructed, as described in [23] and [24].

Figure 2.15: Principle of the PLL-TRNG with one PLL [23]

Figure 2.16: PLL-TRNG with two PLLs configuration [23]

This work adopts a PLL-TRNG architecture containing two PLLs as a reference

model due to its better performance characteristics. The incorporation of two PLLs

significantly enhances design flexibility by expanding the practical operating ranges

for critical parameters, KM and KD, consequently increasing attainable bit and en-

tropy rates. Moreover, this configuration substantially reduces autocorrelation be-

tween output bits. While incurring increased implementation costs, these can often

be mitigated through resource sharing with other system components, as proposed in

[47].

23

In this two PLLs case, firstly, as it is stated in Figure 2.16:

f1
f0

=
KM

KD

(2.7)

where KM and KD are integer values representing frequency multiplication and divi-

sion factors, depending on the configuration of PLLs. Each PLL has its multiplication

and division factors. Moreover, they are related to KM and KD as:

KM = KM1 ·KD0 (2.8)

KD = KM0 ·KD1 (2.9)

The output (Q) of DFF in Figure 2.15 has a pseudo-random pattern with a certain

period. After XORing that pattern in the decimator or 1-bit counter, the bit rate of the

PLL-TRNG is defined as follows:

R =
f0
KD

=
f1
KM

(2.10)

The entropy rate per bit at the generator’s output is influenced by both the jitter pa-

rameters and the generator’s characteristics, specifically its sensitivity to the jitter:

S = ∆−1 = f0 ·KM = f1 ·KD (2.11)

The design of PLL-TRNG relies on choosing appropriate PLL multiplication and di-

vision factors. However, selecting these factors can be challenging due to the physical

constraints of the PLL, such as the maximum and minimum values of N , M , C, and

the input, output, PFD, and VCO frequency range. Consequently, determining these

values is an optimization problem, and our solution to this problem is explained in

Section 3.1.1 for Zynq 7020 SoC values listed in Table 3.2.

24

2.2 Physically (or Physical) Unclonable Function (PUF)

2.2.1 Basics of PUFs

A Physically Random Function or Physical Unclonable Function (PUF) is a function

that establishes a mapping from a set of challenges to a set of responses based on the

inherently intricate nature of a physical system. Consequently, this static mapping

results in a random assignment, as stated in [55]. The evaluation of the function can

only occur with the specific physical system, and it is distinct for each individual

physical instance. While PUFs can be implemented using various physical systems,

this thesis focuses on silicon PUFs, which rely on the concealed timing and delay

information inherent in integrated circuits. Even when sharing identical layout masks,

variations in the manufacturing process lead to significant delay discrepancies among

different integrated circuits.

As highlighted in the introduction, PUFs offer notably heightened physical security

by deriving secrets from intricate physical systems rather than storing them in non-

volatile memory. Another advantageous aspect of PUFs is that they do not necessitate

any specialized manufacturing process or specific programming and testing steps, as

noted in [55].

PUF extracts entropy from the physical characteristics of an integrated circuit (IC).

Each chip exhibits variations due to the inherent unpredictability in the manufacturing

process, as shown in Figure 2.17. In contrast to TRNGs, PUFs harness static entropy

from the fluctuations in the manufacturing process. Once the chip is fabricated, the

disparities in the manufacturing process become consolidated and undergo minimal

changes throughout the chip’s lifespan. Consequently, this form of entropy is termed

static entropy, as described in [14].

A PUF essentially produces a sequence (response) that serves as a unique signature in

response to an input state (challenge), forming what are known as challenge-response

pairs (CRPs). Each PUF can be modeled as a black box, R = f(C), as shown in

Figure 2.18, where the function f() remains secret, as highlighted in [14].

25

Figure 2.17: Extracting manufacturing process variations in an IC for PUF [27]

Figure 2.18: PUF model [14]

PUF circuits are often characterized by their resilience and compact size, making

them particularly suitable for applications in radio-frequency identifiers (RFIDs),

smart cards, and other small, cost-effective Internet of Things (IoT) devices as stated

in [21]. More detailed information about PUFs can be found in [28].

2.2.2 A Basic Form of PUF-Based Authentication

As outlined in [14], the most fundamental PUF-based authentication protocol in-

volves two phases: registration and authentication, as illustrated in Figure 2.19. Dur-

ing the registration phase, conducted in a secure environment, a trusted entity with ac-

cess to the authentic PUF device (referred to as A) selects a random subset of possible

challenges and applies them to the PUF, generating a corresponding set of responses.

The CRPs for each device are securely stored by the server in a database for future

authentication. Due to the large CRP space in strong PUFs and the confidentiality of

the chosen subset, only a small number of CRPs need to be stored per device, making

it difficult for an adversary to replicate the token for impersonation. In the verification

phase, the server selects a challenge that was previously recorded but not yet used in

authentication and requests a response from PUF device A. If the response closely

matches a previously stored response, the device is verified as authentic.

26

Figure 2.19: PUF-based authentication [14]

2.2.3 Types of PUFs

In the literature, there are various types of PUFs, as shown in Figure 2.20, and they

can be classified with respect to their entropy sources and their CRPs [54]. In this re-

search, an intrinsic and delay-based strong PUF, named Arbiter PUF, is implemented.

It is important to note that the Arbiter PUF is a strong PUF. In order to understand the

importance of this, we first need to explain the definitions of PUFs according to CRP

types. With respect to CRPs, PUF types can be classified as given in [54]:

1. Strong PUF: A Strong PUF can generate a vast number of challenge-response

pairs (CRPs), making it impractical to read all possible CRPs within a reason-

able timeframe. This property makes them suitable for applications requiring

high security due to their extensive challenge-response space.

2. Weak PUF: A Weak PUF has a limited number of CRPs, often accommodating

only a small number or none at all. They are typically used in applications

where limited challenge-response space is sufficient and high complexity is not

required.

27

3. Controlled PUF: Controlled PUFs incorporate an additional layer of control

logic that manages the interaction with the PUF. This control logic can filter,

modify, or restrict access to the CRPs, enhancing security and functionality by

preventing direct access to the raw responses of the PUF.

Figure 2.20: Classification of PUFs [54]

2.2.4 Types of Arbiter PUFs

2.2.4.1 Basic Arbiter PUF

An Arbiter Physical Unclonable Function (APUF) is a robust PUF relying on de-

lay, featuring a race condition between two symmetrical digital paths. In each delay

stage, two multiplexers are incorporated, and their operation is governed by chal-

lenges (C0, . . . , Cn−1), as illustrated in Figure 2.21.

28

Figure 2.21: The basic APUF [14]

Upon activation, the APUF initiates its operation with a trigger signal. This signal

traverses two paths determined by a pre-input challenge, ultimately reaching an ar-

biter. The arbiter then determines which of the two paths is faster in generating the

binary response that aligns with the black-box model (R = f(C)), where C is the

challenge and R is the response.

2.2.4.2 XOR Arbiter PUF (XOR-PUF)

Due to the limited resistance of arbiter PUFs against machine learning modeling at-

tacks, a new PUF design was introduced in [55]. This new design incorporates a

non-linear XOR gate into multiple arbiter PUFs to generate the final response, which

is referred to as the XOR arbiter PUF. Figure 2.22 depicts a simple example of an n-

bit 2-XOR-PUF. An n-XOR-PUF consists of n-component arbiter PUFs (also known

as streams or sub-challenges), wherein the responses from all n-component arbiter

PUFs are XORed together at the XOR gate to produce a single-bit response. It is

important to note that all component arbiter PUFs in an XOR-PUF are supplied with

the same challenge bits [37].

2.2.4.3 Component-differentially challenged XOR-PUF (CDC-XPUF)

Component-differentially challenged XOR-PUF (CDC-XPUF) and XOR-PUF share

a similar architecture, comprising multiple arbiter PUF components and XOR gates.

The key distinction between CDC-XPUF and XOR-PUF lies in the challenge inputs:

each component arbiter PUF in a CDC-XPUF receives different challenge inputs,

29

Figure 2.22: An XOR-PUF with 2 sub-streams and n bits of each stream [37]

whereas all component arbiter PUFs in an XOR-PUF receive the same challenges

[37]. Figure 2.23 illustrates the structure of CDC-XPUF.

Figure 2.23: A CDC-XPUF with 2 sub-streams and n bits of each stream [37]

30

In order to generate different challenge bits in [37], a PRNG structure is proposed as

follows:

Cn+1 = (a ∗ Cn + g) mod m (2.12)

where C is the sequence of the generated random number, a is a multiplier, g is a

given constant, and m is 2K̇, where K is the number of stages.

2.3 Combined PUF-TRNG Design

Security assurance traditionally depends on well-established cryptographic protocols

that serve various functions, such as key generation, identification, and authentication.

These protocols are founded on cryptographic algorithms, which are, in turn, based

on physical implementations of hardware primitives. For robust security, hardware

primitives must be resilient to physical attacks, providing a foundational layer of

physical security assurance. The hierarchical security structure in IoT systems is

illustrated in Figure 2.24.

Figure 2.24: Hierarchy of security in IoT [63]

Historically, security architects have primarily focused on software security, partic-

ularly on cryptographic algorithms and protocols. However, with the increasing ef-

fectiveness of physical attacks—often more efficient and impactful than traditional

attacks, even against advanced cryptographic algorithms that are mathematically se-

cure—the focus has shifted to the hardware domain. In IoT devices, constrained re-

sources such as memory and power present challenges to implementing conventional

31

cryptographic security solutions. Consequently, hardware-based primitives, such as

TRNGs and PUFs, which are the main focus of this thesis, are preferable [63].

As the entropy sources for conventional TRNGs and PUFs differ, these components

are typically designed as separate modules or chips. Nevertheless, there is an antici-

pation to integrate both hardware security primitives, namely TRNG and PUF, into a

single chip to enhance the security of applications relying on security measures [14].

Hence, an integrated PUF-TRNG design is implemented in this thesis. TRNG part

uses clock jitter as a randomness source, while PUF part uses process variation of an

SoC FPGA. Details of this combined design are presented in Chapter 5.

2.4 Evaluation Metrics of TRNGs and PUFs

2.4.1 Evaluation Criteria of TRNGs

The Bundesamt für Sicherheit in der Informationstechnik (BSI), Germany’s national

cybersecurity agency, plays a crucial role in developing and promoting standards,

guidelines, and best practices in the fields of cybersecurity and cryptography, in-

cluding random number generation.The BSI collaborates with government bodies,

industry stakeholders, and international organizations to strengthen cybersecurity and

safeguard critical infrastructure. Through the establishment of rigorous standards

and guidelines, the BSI ensures the security and reliability of cryptographic systems.

Additionally, various other organizations and research groups contribute tools and re-

sources for evaluating RNGs, which complement the BSI’s test suites, as discussed

in [18].

The BSI test suites [13] are highly regarded for evaluating the quality of RNGs due

to their widespread adoption and recognition as reliable and effective tools. Hence,

in this work, for the evaluation metrics of TRNG, AIS-20/31 [13] is chosen.

The summary of the tests found in AIS-20/31 under Procedure A and Procedure B

in [13], along with brief explanations based on the standard used for cryptographic

evaluation of RNGs:

32

Procedure A in AIS-20/31 Tests: Statistical Testing for Random Number Gener-

ators

This procedure focuses on statistical randomness of generated sequences and includes

the following key tests:

Test T1 - Monobit Test:

Purpose: Evaluates the balance of 1s and 0s in the binary output of the RNG.

Explanation: Ensures that roughly half of the bits are 1s and half are 0s, which

is expected from a random sequence.

Test T2 - Poker Test:

Purpose: Tests the frequency of different bit patterns (like a poker hand).

Explanation: The goal is to assess the uniform distribution of small groups of

bits (e.g., 4 bits) in the output. A non-uniform distribution would indicate

potential bias or non-randomness.

Test T3 - Runs Test:

Purpose: Evaluates the length and frequency of consecutive sequences of iden-

tical bits (runs of 0s or 1s).

Explanation: This test checks if the runs of 0s and 1s appear with the expected

frequency and length, as expected in a random sequence.

Test T4 - Long Runs Test:

Purpose: Detects any overly long sequences of identical bits.

Explanation: If the RNG produces unusually long runs of 0s or 1s, this could

indicate non-random behavior, which the test aims to capture.

Test T5 - Autocorrelation Test:

Purpose: Measures the correlation between bits in the sequence at various

spacings.

Explanation: Ensures that the sequence is not predictable and that the occur-

rence of one bit does not depend on earlier bits.

33

Procedure B in AIS-20/31 Tests: Entropy and Stochastic Model Evaluation

This procedure emphasizes evaluating the RNG’s entropy source and its model to

ensure unpredictability. The focus is less on statistical randomness and more on the

inherent unpredictability of the generated bits.

Test T6 - Uniform Distribution Test:

Purpose: This test evaluates whether the output of the random number gener-

ator (RNG) follows a uniform distribution.

Explanation: The RNG’s output should be uniformly distributed, meaning

each possible output value should have an equal probability of occurring.

If certain values are more or less frequent, it would indicate a bias, which

would compromise the randomness and unpredictability of the RNG. The

Uniform Distribution Test checks for this by analyzing the distribution of

the generated random numbers.

Test T7 - Test for Homogeneity:

Purpose: This test evaluates whether the output from different sections or time

periods of the RNG behaves in a similar (homogeneous) manner.

Explanation: The homogeneity test checks if the random numbers produced

by the RNG are consistent over time. It ensures that the quality of ran-

domness doesn’t fluctuate between different runs or time periods. If the

output from various sections shows significant differences, it could indi-

cate a problem with the RNG’s stability or the entropy source, potentially

introducing weaknesses in cryptographic applications.

Test T8 - Entropy Estimation Test:

Purpose: To measure the amount of entropy in the output of the RNG, ensur-

ing sufficient randomness.

Explanation: This test calculates the entropy (often min-entropy) of the gen-

erated random numbers. Entropy estimation assesses the unpredictability

of the sequence by examining how difficult it is to predict the most likely

outcome. It ensures that the randomness generated by the RNG has a

34

high degree of unpredictability, which is crucial for cryptographic secu-

rity. A lower-than-expected entropy value could indicate predictability,

thus compromising the security of the random numbers.

Entropy is a very important parameter in evaluating randomness. Hence, how it is

evaluated must examined carefully. The entropy values produced by Procedure B of

the BSI suite are estimations of the min-entropy Hmin, which is the most conservative

measure of unpredictability, calculated as the negative logarithm of the probability of

the most likely outcome. Depending on the application of the implemented entropy

source module, another related metric, Shannon entropy HS , may be required. Shan-

non entropy can be derived from min-entropy using the following formula:

HS = −2−Hmin · log2
(
2−Hmin

)
−
(
1− 2−Hmin

)
· log2

(
1− 2−Hmin

)
(2.13)

The BSI standard also specifies a minimum requirement for Shannon entropy that

must be met to validate a module. The formula for Shannon entropy is applied to

min-entropy normalized to a bit unit. For example, if the Hmin value from the BSI

suite corresponds to entropy samples with a bit width greater than 1 bit, it must be

normalized by dividing the Hmin value by the bit width. For example, values of 7.999

and 7.888 were obtained, corresponding to normalized min-entropy values of 0.999

and 0.986, respectively. Applying the Shannon entropy formula, the resulting HS

values were both approximately 1.000. In addition to these, the BSI specifies that the

confidence level of the results is 99.87% [13].

Although it is not included in any standard evaluation method, the resource utilization

rate within the SoC or FPGA has also been a key evaluation metric in our study. This

is because our goal is to minimize the resource usage of the hardware primitives

we utilize, ensuring that there is still space available for other designs that will be

implemented for additional applications within the SoC or FPGA. This metric has

been applied for both the TRNGs and PUFs designs.

35

2.4.2 Evaluation Criteria of PUFs

This section outlines a set of PUF characteristics to evaluate the suitability of a PUF

design for security applications. Certain statistical properties, such as stability, cor-

rectness, diffuseness, uniformity, and uniqueness, can be empirically demonstrated

through silicon-based experimentation. Other attributes, including the security vul-

nerability of PUFs, require computational analysis for thorough assessment.

The first section explains how implemented PUFs are not vulnerable to machine learn-

ing (ML) attacks.

In the subsequent chapters following the initial chapter, the evaluation criteria studied

and constructed by either Hori et al. [30] or Maiti et al. [40] are explained. They are

grouped with respect to three different properties of the responses, and these groups

are listed below and explained in detail in the following sections. Additionally, in the

list below, it is indicated that each metric is defined by whom.

1. Reliability of responses from the same PUFs

• Steadiness in Hori et al. [30]

• Correctness in Hori et al. [30]

2. Entropy of responses from the same PUFs

• Diffuseness in Hori et al. [30]

• Uniformity in Maiti et al. [40]

3. Fingerprint property

• Uniqueness in Maiti et al. [40]

The metrics in the first and the second groups evaluate the responses of the same

PUFs, although the metrics in the third group evaluate how the responses vary be-

tween different devices.

The quality of random numbers is pivotal in cryptography, necessitating a thorough

evaluation of their properties. While Hori et al. [30] defines the randomness metric,

36

Maiti et al. [40] defines the uniformity metric. In this work, we think that the uni-

formity metric is more suitable to use. Because, although randomness in Hori et al.

[30] indicates that randomness is evaluated, only some kind of uniformity is evalu-

ated as in Maiti et al. [40]. This choice can be understood better by the explanation in

Section 2.4.2.4. In addition to these, as indicated in [9], in general, how to determine

the exact entropy of the PUF responses is another very important open research prob-

lem. Consequently, for the PUF implementation, only the uniformity and diffuseness

metrics are used to evaluate entropy.

2.4.2.1 Resistance to Machine Learning (ML) Attacks

PUFs are considered secure due to their inherently unclonable architecture. However,

several successful studies have demonstrated that PUFs can be mathematically cloned

using the additive delay model, as explained in [38]. Additionally, if adversaries gain

access to a sufficient number of silicon CRPs, PUFs may become susceptible to ma-

chine learning attacks, as explained in [1], [2], [10], [44]. Therefore, it is imperative

for users to ensure that PUFs are resistant to all forms of attacks before deploying

them in practical applications.

The study in [37], a comprehensive evaluation of the security of CDC-XPUFs against

advanced ML attack methods, utilizing problem-specific parameter values, was con-

ducted to assess the robustness of CDC-XPUFs. Compared to previously reported

findings, their study uncovered vulnerabilities in the CDC-XPUF with PUF circuit

parameter configurations that were previously not considered insecure. Specifically,

they successfully compromised 64-bit CDC-6-XPUFs using approximately 100 mil-

lion simulated CRPs, and 64-bit CDC-5-XPUFs with 4.5 million simulated CRPs

or 2.5 million silicon CRPs. Additionally, they managed to break 128-bit CDC-5-

XPUFs with 40 million simulated CRPs, instances that had previously been consid-

ered resistant to any existing ML attack methods. Notably, the method in [37] was

able to break 64-bit CDC-4-XPUFs using only around 80,000 CRPs, significantly

fewer than those used in earlier studies. On the other hand, it also demonstrates

that the security of CDC-XPUFs improves substantially as the number of compo-

nent PUFs increases, with 64-bit CDC-XPUFs featuring seven components proving

37

entirely resilient to the two ML attack methods employed. This finding is partic-

ularly encouraging for the IoT security community, as many CDC-XPUFs remain

secure, especially those with 64-bit or longer challenges and seven or more compo-

nent PUFs, which are resistant to the most advanced ML attack methods developed

to date. Consequently, the experimental attack study in [37] redefines the boundary

between secure and insecure regions within the PUF circuit parameter space, offering

valuable insights to PUF manufacturers and IoT security developers for refining the

protocols of CDC-XPUF-based applications and mitigating potential risks.

2.4.2.2 Reliability of Responses From the Same PUFs

PUF responses must be reliable and trusted in real-world applications. A PUF is con-

sidered reliable if it consistently generates the same response when the same chal-

lenge is applied to the same device. Several factors can affect the reliability of these

responses, particularly changes in the operating environment. These factors include,

but are not limited to, ambient temperature, humidity, the junction temperature of the

circuit, power supply voltage, and circuit aging.

In this work, the environmental variances listed above have not been changed. We

have worked at an ambient room temperature of approximately 27oC, stable humidity,

and stable core voltage of Zynq SoC.

In terms of the reliability of responses from the same PUFs, steadiness, and correct-

ness are examined in this section.

Steadiness

Steadiness is a reliability metric that is defined by Hori et al. [30]. When gener-

ating identical responses multiple times on the same device, it is expected that all

responses remain consistent. Steadiness measures the stability of a PUF in producing

the same responses to identical challenge sets. A steadiness value of 1 indicates that

no variations occurred in the responses recorded during the experiment. Steadiness is

calculated as follows:

38

S = 1 +
1

Nc

Nc∑
k=1

log2max{
∑Na

j=1 bk,j

Na

, 1−
∑Na

j=1 bk,j

Na

} (2.14)

where Nc represents the number of distinct challenges used, Na refers to the number

of times each challenge is applied, and bk,j denotes the j-th response out of all Na

responses to the k-th challenge in the set of Nc challenges. The challenge-response

pairs (CRPs) that pass the steadiness test are referred to as Correct ID, as noted in

[43].

Correctness

This metric is defined by Hori et al. [30] and is almost the same metric as reliability,

which is defined by Maiti et al. [40]. The primary distinction between their equations

lies in the normalization factor. Correctness is normalized by the maximum value of

the Fractional Hamming Distance of the responses, whereas reliability is normalized

by the average. Therefore, only the correctness value was calculated, and reliability

was not considered. The ideal correctness value is 1, which is computed as follows:

C = 1− 2

Nc ×Na

Nc∑
k=1

Na∑
j=1

(bk ⊕ bk,j) (2.15)

where bk is the Correct ID. The Correct ID is determined by majority voting among

all responses provided for a given input challenge. In this case, Nc denotes the number

of challenges in the dataset, and bk,j represents the j-th response within the set of Na

responses corresponding to the k-th challenge.

2.4.2.3 Entropy of Responses From the Same PUFs

A PUF is considered uniform if it generates an equal distribution of zeros and ones in

response to a set of challenges. This characteristic is particularly desirable in block

and stream cipher processes, as repeated patterns in secret keys are deemed detrimen-

tal. In terms of entropy, Hori et al. [30] introduced the diffuseness metric, while

39

Maiti et al. [40] proposed the uniformity metric. Given the close resemblance be-

tween Hori’s [30] randomness metric and Maiti’s [40] uniformity metric, only the

uniformity metric is assessed in this context.

Diffuseness

The diffuseness metric, introduced by Hori et al. [30], is an intra-chip metric that

assesses the variability of a PUF’s responses to different challenges. A PUF is con-

sidered to exhibit diffuseness if it produces distinct responses for distinct challenges;

for instance, the response to a specific challenge X should differ from the responses

generated by other challenges. Diffuseness is quantified by calculating the fractional

Hamming distance between the responses produced by the same device in response

to a set of challenges. The diffuseness can be computed using the following formula:

D =
4

K2 × L

L∑
l=1

K−1∑
i=1

K∑
j=i+1

(bi,l ⊕ bj,l) (2.16)

where L represents the length of the responses, measured in bits, while K denotes the

number of multi-bit responses utilized in the experimental study.

Uniformity

The uniformity, as introduced by Maiti et al. [40], evaluates the balance between

zeros and ones in the responses generated by a PUF. The ideal value for uniformity is

0.5. It can be computed as follows:

U =
1

Nr

Nr∑
i=1

bi (2.17)

where Nr represents the length of the response in the set, and bi refers to the i-th bit

of the response.

The randomness metric, defined by Hori et al. [30], is not used for the evaluation

since it is very similar to the uniformity. In order to make this statement more clear,

40

the equations to calculate the randomness are provided below:

H = − log2max(p, 1− p), (2.18)

where p is the frequency of ’1’ in the response set given by:

p =
1

Nr

Nr∑
i=1

bi (2.19)

where Nr is the response length in a set, and bi is the i-th response bit.

It is obvious that the Equations (2.17) and (2.19) are nearly the same. These two equa-

tions define the same thing actually, and it is the uniformity of the responses. Hori

et al. [30] claim that taking this uniformity and using them in (2.18) calculates the

randomness. The approach presented by Hori et al. [30] is not suitable for accurately

calculating randomness. Equation (2.18) can only provide information regarding the

percentage distribution of 0s and 1s, which is already captured in the uniformity met-

ric proposed by Maiti et al. [40] in Equation (2.17). Thus, using this equation does not

contribute to a deeper understanding of randomness beyond what uniformity already

indicates. As stated in [9], how to determine the exact entropy of the PUF responses

is another very important open research problem. Hence, in order to evaluate entropy,

we use the uniformity metric introduced by Maiti et al. [40].

2.4.2.4 Fingerprint Property

Uniqueness

The uniqueness, as introduced by Maiti et al. [40], is determined by calculating the

Hamming Distance between the responses of two devices. It can be computed as

follows:

Uk =
2

N(N − 1)

N−1∑
i=1

N∑
j=i+1

HD(IDi, IDj)

L
(2.20)

where IDi and IDj represent two L-bit responses generated by a PUF implemented

on two different chips (the i-th and j-th chip) in response to the k-th challenge, which

is applied repeatedly L times. The ideal value of Maiti’s uniqueness metric [40] is

0.5.

41

As indicated in the last part of the previous section, the resource utilization rate is a

metric for both TRNGs and PUFs.

2.5 Xilinx Zynq SoC FPGA

The algorithm in this thesis work is implemented in SoC FPGA or simply SoC. Us-

ing SoC instead of FPGA has some advantages. They offer higher integration, lower

power, smaller board sizes, and higher bandwidth communication between the pro-

cessor and FPGA. Additionally, since SoCs have hard processors, these processors

can also be used for future implementations.

Xilinx Zynq-7000 SoC ZC702 HW-Z7-ZC702 Rev1.1 Evaluation Board is chosen for

the PUF-TRNG implementation in this thesis. In Figure 2.25, this board is shown.

Using this board, the algorithm is executed, and the results from both TRNG and

PUF are saved in an external memory. After that, these results are sent to a PC to be

examined using compliance tests.

Figure 2.25: Xilinx Zynq-7000 SoC ZC702 Evaluation Kit [7]

42

The ZC702 Evaluation Board includes an SoC FPGA from Xilinx Zynq-7000 Series,

and the exact part number is XC7Z020-CLG484-1. The internal architecture of these

SoCs is depicted in Figure 2.26. These SoCs are composed of two primary sections:

the processing system (PS) and the programmable logic (PL). In this work, the algo-

rithms are implemented within the PL section, where the PLLs are also utilized.

Figure 2.26: Block Scheme of Internal Structure of Xilinx Zynq-7000 SoC [6]

43

44

CHAPTER 3

AN AIS-20/31 COMPLIANT PLL-TRNG IMPLEMENTATION

ON A ZYNQ-7020 SOC

In this chapter, the implementation details of the PLL-TRNG are presented. Also, the

results of the implementation and comparisons with the previous work are demon-

strated. The outcome of this chapter was accepted at 17th International Conference

on Computational Intelligence in Security for Information Systems (CISIS 2024), see

[62].

3.1 PLL-TRNG Implementation

The PLL-TRNG is particularly well-suited for integration in FPGAs or SoC FPGAs.

Its implementation in ASICs is relatively expensive due to the substantial silicon area

required by PLLs. However, in many FPGAs, multiple PLLs are available, signif-

icantly reducing the implementation cost. Additionally, PLLs in FPGAs are phys-

ically and electrically isolated as they are implemented as hardwired blocks. The

repeatability of the PLL-TRNG is high because the implementation relies solely on

the configuration of digital components within the PLL, such as multiplication and di-

vision factors. This chapter provides a comprehensive review of PLL-TRNG design,

discusses its advantages and potential challenges, and proposes automated methods

to optimize PLL-TRNG design. The reference design of the PLL-TRNG with two

PLLs, described in detail in citepeturathesis, is improved by adding other PLLs.

A primary limitation of PLL-TRNGs is their comparatively low output data rate. To

address this constraint, this work proposes a methodology to enhance output capacity

45

by leveraging additional PLLs available within the SoC. The Zynq 7020 SoC, featur-

ing four PLLs, represents the upper bound for this implementation. However, prior

to full-scale implementation, intermediate configurations employing three PLLs are

investigated to facilitate a systematic design process. This study elucidates the design

rationale for the four-PLL system by providing detailed explanations of these inter-

mediate steps. Consequently, four distinct PLL-TRNG configurations are presented

in Table 3.1 and visually depicted in Figure 3.1:

Table 3.1: Configurations of PLL-TRNG Implementations
Codes of

PLL-TRNG Designs
Depicted in Figure 3.1

Number
of

PLLs

Purpose of Use of PLL PLL-TRNG
Design TypeAs Reference

Clock
As Jittered

Clock
(a) 2 1 1 Referenced Design

(b) 3 1 2
Intermediate Step

for Proposed Approach

(c) 3 2 1
Intermediate Step

for Proposed Approach
(d) 4 2 2 Proposed Design

Figure 3.1: Implemented PLL-TRNG Configurations: (a), (b), (c), and (d)

46

3.1.1 Determining PLL-TRNG Parameters

In this work, as the parameter search algorithm, the backtracking algorithm in [16]

is selected. Given a set of variables explained in Section 2.1.2.1 and Section 2.1.3

and constraints listed in Table 3.2, this backtracking method iteratively investigates

potential solutions. Unlike a brute-force approach, it promptly eliminates any vari-

able values that fail to meet a constraint, then backtracks to explore other possible

values until all valid solutions are identified. The algorithm detailed in [16] involves

determining the PLL-TRNG parameters that comply with both physical constraints

and application requirements.

Table 3.2: Table of ranges of possible values for the PLL parameters and frequencies
for Zynq-7000 SoC [4], [8]

Parameters
Xilinx

Zynq-7000
Min Max

fref (MHz) 19 800
PVCOd 1 1

M 2 64
N 1 56
C 1 128

fPFD(MHz) 19 450
fVCO (MHz) 800 1600
fout (MHz) 6.25 464

The code in the backtracking is open-source shared in [17]. Hence, we can modify

it for Zynq 7020 SoC parameters provided in Figure 2.14. The open source code

of this algorithm is in Python programming language [51] and modified in Visual

Studio 2022 [42]. Table 3.2 is generated with PLL properties of the SoC except for

fout which is determined concerning the maximum frequency value of BUFG clock

buffer in Zynq 7000 Series [8]. BUFG must be used in the SoC design, and hence, it

restricts fout value for the search algorithm.

After generating results for our case, the algorithm results are ordered with respect to

three different configurations. Those are the maximum bit rate (max. R), the maxi-

mum sensitivity to jitter (max. S), and the maximum R · S value as the optimization

between max. S and max. R.

47

After obtaining the candidate results for three different configurations, those results

must be tested with one more criterion. The sampling process of the jittered clock

with the reference clock is illustrated in Figure 2.15. To generate random numbers at

the output of this PLL-TRNG, it is necessary for at least one sample to be influenced

by jitter. This requires that the distance between any edge of clk0 and the correspond-

ing edge of clk1 be less than ∆. This condition is satisfied if the following equation

holds, as discussed in [25] and [45]:

σjit > max(∆Tmin) (3.1)

where σjit represents the standard deviation of the jitter at the PLL output, and

max(∆Tmin) denotes the maximum distance between the two nearest edges of clk0

and clk1. This can be calculated as outlined in [25] and [45]:

max(∆Tmin) =
Tclk0

4KM

gcd(2KM , KD) =
Tclk1

4KD

gcd(2KM , KD), (3.2)

where gcd is the greatest common divisor of two integers.

Upon executing the backtracking algorithm and obtaining results for the selected SoC,

the maximum value of max(∆Tmin) can be determined. However, accurately measur-

ing or estimating σjit presents significant challenges. At this juncture, the estimation

tool named Clocking Wizard in Vivado 2019.1 can be utilized. This tool provides an

estimation of the jitter at the PLL’s output clock, given the PLL parameters. Conse-

quently, the results from the backtracking algorithm are first examined, and max. R,

max. S and the max. R · S are identified. These three candidates are then evaluated

against Equation (3.1). Candidates failing to satisfy the equation are discarded, and

alternative candidates from the backtracking results are considered.

The results of the search algorithms are listed in Table 3.3. As it can be seen, all the

selected configurations satisfy Equation (3.1).

Table 3.3: Determined Parameters for the PLL-TRNG Implementations
for fref = 125 MHz

Config.
(M0, N0, C0)

(M1, N1, C1)

f0 (MHz)
f1 (MHz)

KM KD
R

(Mbit/s)
S

(ps−1)
R · S σjit max(∆Tmin)

Max. R
(51,4,4)
(11,1,3)

398.438
458.333

176 153 2.60417 0.07013 0.18263 76.706 3.56506

Max. S
(51,4,4)
(32,3,3)

398.438
444.444

512 459 0.86806 0.204 0.177084 100.882 1.22549

Max. R · S (37,5,2)
(32,3,3)

462.5
444.444

320 333 1.38889 0.148 0.20556 100.882 1.68919

48

3.1.2 PLL-TRNG Implementation Setup

Figure 3.2: Block Diagram of Implementation Setup

The implementation setup employed in this study is illustrated in Figure 3.2. It uti-

lizes the ZC702 Rev1.1 Evaluation Board [7], which incorporates the Zynq 7020

XC7Z020-1CLG484C SoC to facilitate the implementation of four distinct PLL-

TRNG configurations as detailed in Section 3.1. In the Programmable Logic (PL) sec-

tion, four distinct designs, specified in Table 3.1, are developed using Vivado 2019.1

[5] in VHDL[31]. To enable real-time transmission of generated random numbers to

a personal computer (PC), a dual-access Block RAM (BRAM) was employed. One

port of this BRAM is connected to the PL, while the other is connected to the pro-

cessing system (PS) section. The requisite code for the PS section is written in the C

programming language [33]. The PL section generates random numbers and writes

a predefined value to a specific BRAM address to indicate that the random bits are

ready. Once this indication is given, the software in the PS section outputs the random

bits to the UART serial port, which are then converted to USB and transmitted to the

PC. The received bits on the PC are saved in their ASCII-coded hexadecimal form

and later converted to binary form offline to serve as input for AIS-20/31 Tests [12].

The codes of AIS-20/31 Tests in [12] were compiled using [22] as it was. Both Proce-

dure A and Procedure B Tests of AIS-20/31 are conducted for each result. Given that

these tests require approximately 7 Mb of random bits, each output file is generated

to have a size of approximately 7.2 Mb. Additionally, a 125 MHz clock frequency

was selected for the system’s main clock (clkin) due to timing constraints inherent in

the SoC.

49

In conclusion, three ZC702 Rev1.1 Evaluation Boards are employed to demonstrate

that the implemented PLL-TRNG configurations are not specific to a particular de-

vice. The backtracking algorithm and the elimination criteria outlined in Equation

(3.1) are used to determine the PLL-TRNG configuration parameters for maximizing

S, R, and the product R · S. Subsequently, five random output bit files are gener-

ated for each of the four configurations described in Section 3.1 and tested on the

three evaluation boards. The results are stored on a PC, and AIS-20/31 Tests are

conducted. The outcomes of these tests are detailed in the following section.

3.2 PLL-TRNG Results and Comparisons with Previous Works

The implementation results are presented in Table 3.4. In this table, each row corre-

sponds to a unique configuration defined by the number of PLLs in the PLL-TRNG

and the parameter configuration. By considering our four different PLL-TRNG con-

figurations and three different PLL parameter selections, we have twelve distinct

rows, in other words, twelve different results. For each row, five different approx-

imately 7.2 Mb random number files are generated for each of the ZC702 Boards.

Hence, the arithmetic mean of these fifteen values (3 boards × 5 repetitions) is used

for the Shannon entropy calculation in Table 3.4.

Procedure B of the BSI Test Suite calculates min-entropy Hmin for a given bitstream.

After normalizing these values and using Equation 2.13, the Shannon entropies are

calculated and presented in Table 3.4. Additionally, it is not indicated in Table 3.4,

but it must be emphasized that all four PLL-TRNG designs passed all the AIS-20/31

Tests for all three different configurations on three distinct boards for all generated

files.

Table 3.5 provides a comparative analysis of our work with previously implemented

PLL-TRNGs. The results indicate that our 4-PLL implementation significantly en-

hances the output bit rate of the PLL-TRNG design while maintaining robust crypto-

graphic properties. Specifically, the table shows that a speed of approximately 10.4

Mb/s can be achieved, which is notably higher than any other reported PLL-TRNG

implementation. Additionally, our results exhibit superior Shannon Entropy com-

50

pared to earlier PLL-TRNG designs in [45] and [48].

Table 3.4: PLL-TRNG Implementation Results

PLL Configuration
Parameter

Configuration
R

(Mbit/s)

Output
Bit Rate
(Mbit/s)

S

(ps−1)
R · S Entropy

(Shannon)

Max. R 2.6042 2.60417 0.0701 0.18263 0.999999986833568
Max. S 0.8681 0.86806 0.204 0.17708 0.999999986516413

2-PLL with one
reference clock and
one jittered clock Max. R · S 1.3889 1.38889 0.148 0.20556 0.999999981069240

Max. R 2.6042 5.20834 0.0701 0.18263 0.999999976364641
Max. S 0.8681 1.73612 0.204 0.17708 0.999999977771549

3-PLL with one
reference clock and
two jittered clocks Max. R · S 1.3889 2.77778 0.148 0.20556 0.999999980834110

Max. R 2.6042 5.20834 0.0701 0.18263 0.999999985962200
Max. S 0.8681 1.73612 0.204 0.17708 0.999999961780714

3-PLL with two
reference clocks and

one jittered clock Max. R · S 1.3889 2.77778 0.148 0.20556 0.999999966076834
Max. R 2.6042 10.41668 0.0701 0.18263 0.999999972332402
Max. S 0.8681 3.47224 0.204 0.17708 0.999999971434251

4-PLL with two
reference clocks and
two jittered clocks Max. R · S 1.3889 5.55556 0.148 0.20556 0.999999956486246

Table 3.5: PLL-TRNG Implementation Results Comparison with [16], [45], and [48]
Results of

4-PLL-TRNG

Results in [16]
for Xilinx
Spartan-6

Results in [45]
for Xilinx
Spartan-6

Parameter
Configs.

Output
Bit Rate
(Mbit/s)

S
(ps−1)

Entropy
(Shannon)

Output
Bit Rate
(Mbit/s)

S
(ps−1)

Entropy
(Shannon)

Output
Bit Rate
(Mbit/s)

S
(ps−1)

Entropy
(Shannon)

Max. R 10.41668 0.07013 0.999999972332402 1.042 0.094 1 0.555 0.0913 0.997
Max. S 3.47224 0.204 0.999999971434251 0.521 0.167 0.99999 0.555 0.0913 0.997

Max. R · S 5.55556 0.148 0.999999956486246 N/A N/A N/A 0.555 0.0913 0.997

Results of
4-PLL-TRNG

Results in [48]
for Xilinx
Spartan-6

Parameter
Configs.

Output
Bit Rate
(Mbit/s)

S
(ps−1)

Entropy
(Shannon)

Output
Bit Rate
(Mbit/s)

S
(ps−1)

Entropy
(Shannon)

Max. R 10.41668 0.07013 0.999999972332402 0.44 N/A 0.999931407560694
Max. S 3.47224 0.204 0.999999971434251 0.44 N/A 0.999931407560694

Max. R · S 5.55556 0.148 0.999999956486246 0.44 N/A 0.999931407560694

3.3 Utilization Results of 4-PLL-TRNG in Zynq-7020 SoC FPGA

Our final design is a PLL-TRNG consisting of 4 PLLs, named 4-PLL-TRNG, and

as a result, we focus on analyzing the utilization rate of its various configurations.

The implementation employs state machines in the PL part, enabling the generation

of random numbers within the PL part, which are then transmitted to the PS part

via Dual Access BRAM. Despite the PL part containing not only the 4-PLL-TRNG

but also the necessary state machines for the implementation, the overall utilization

rate remains relatively low, with the exception of the PLLs, as demonstrated in Table

3.6 for the three different configurations of the 4-PLL-TRNG design. These low

utilization rates highlight the potential of the 4-PLL-TRNG as a promising candidate

51

for applications requiring a TRNG.

Table 3.6: Utilization Table Generated Using Vivado 2019.1 [5] for 4-PLL-TRNG
Implementation

Resource
Type

Avaliable Resource
Quantity

Utilization Quantity
(Utilization Rate as %)

of Max. R
Configuration

Utilization Quantity
(Utilization Rate as %)

of Max. S
Configuration

Utilization Quantity
(Utilization Rate as %)

of Max. R · S
Configuration

LUT 53200
1539

(2.89%)
1542

(2.90%)
1536

(2.89%)

LUTRAM 17400
72

(0.41%)
72

(0.41%)
72

(0.41%)

FF 106400
1884

(1.77%)
1884

(1.77%)
1884

(1.77%)

BRAM 140
2

(1.43%)
2

(1.43%)
2

(1.43%)

IO 200
8

(4.00%)
8

(4.00%)
8

(4.00%)

PLL 4
4

(100.00%)
4

(100.00%)
4

(100.00%)

3.3.1 Discussion About PLL-TRNG Implementation Results

In this chapter, a total of four versions of the PLL-TRNG were implemented, includ-

ing a 2-PLL version as the reference design and a 4-PLL version as the final design.

The details of these two versions, along with the other two intermediate versions, are

provided in Table 3.1. During these implementations, three different ZC702 Evalua-

tion Boards were used. The AIS-20/31 test was employed to assess the randomness

of the generated outputs.

One of the most critical aspects of PLL-TRNG designs is the appropriate selection

of PLL parameters, as shown in Figure 2.14. To achieve this, the backtracking-based

algorithm in [16] was utilized, and suitable candidates were identified. These can-

didates were ranked according to the max. R, max. S, and max. R · S criteria,

and from the results, three different configurations were created. The tests were per-

formed on all three boards for each of the three different configurations. Additionally,

each configuration was tested five times on each board, and the arithmetic mean of

the results was calculated for Shannon entropy calculations. The block diagram of

the implementation setup is illustrated in Figure 3.2

The generated random bitstreams successfully passed all tests defined in AIS-20/31,

and the Shannon entropy values were equal to or better than those reported in the lit-

52

erature. Furthermore, the 4-PLL-TRNG with the max. R configuration demonstrated

that this design offers a higher output probability than all other PLL-TRNGs in the

literature.

In addition, the resource utilization of the Zynq-7020 SoC used for this design was

examined for the three different configurations of the 4-PLL-TRNG, and in all three

cases, the resource usage was low enough not to hinder its use in any IoT system.

The results are listed in Table 3.6. Naturally, due to the use of all four PLLs in the

SoC (which contains only four), the utilization of this resource is 100%. For all other

resources, the usage does not exceed 4%. These resource utilization results indicate

that the 4-PLL-TRNG with the max. R configuration is suitable for use in IoT systems

due to its low resource consumption, high output rate, and high entropy.

53

54

CHAPTER 4

32-BIT AND 64-BIT CDC-7-XPUF IMPLEMENTATION ON A

ZYNQ-7020 SOC

In this chapter, details of the implementations of the 32-bit and 64-bit CDC-7-XPUF

are presented. Also, the results of the implementation and comparison with the refer-

enced work are demonstrated. The results of this PUF implementation are presented

in the paper [60].

4.1 CDC-XPUF Implementation Details

In this study, our aim is to implement an ML-resistant PUF with good cryptographic

properties explained in Section 2.4.2.2 - 2.4.2.4. As it is stated in [37], 64-bit CDC-7-

XPUF is ML-resistant. However, in [37], the cryptographic properties are examined.

These are examined in [43], but only for a maximum of 32-bit CDC-7-XPUF. Hence,

we decided that firstly, we implemented 32-bit CDC-7-XPUF and showed that the

design satisfies good cryptographic properties, as the referenced PUF design does.

After that, we implemented the 64-bit or ML-resistant version of CDC-7-XPUF. In

this chapter, we present all of our results with respect to the metrics explained in

Section 2.4.2.2 - 2.4.2.4 and compare our results to the referenced design [43].

The implementation details of CDC-XPUF are given in both [43] and [37] and also

explained in Section2.2.4.3. The results of the implementation and comparisons with

the previous works are presented in Section 4.2.

The MUX-based CDC-XPUF arbiter structures are implemented in Vivado 2019.1.

55

As an illustration of this structure, the schematic of four MUXes of the MUX array

is shown in Figure 4.1. Both the 32-bit design and the 64-bit design have the same

MUX-based structure illustrated in Figure 4.1.

Figure 4.1: Vivado 2019.1 Schematic Design View of CDC-7-XPUFs

Since the CDC-XPUF is a delay-based PUF, relying on the calculation of delays

incurred by the internal gates and interconnections, the correct placement of its com-

ponents is crucial. To ensure equal delay lines, the top and bottom of each stage in

the CDC XPUF must be precisely aligned. Figure 4.2 illustrates a bad placement ex-

ample of the CDC XPUF’s MUXes. In this figure, the bottom path is longer than the

top path due to the MUXes highlighted in orange, resulting in the bottom path’s delay

consistently exceeding the top path’s delay and causing biased responses. In contrast,

Figure 4.3 demonstrates a good placement example and the way how we implement

MUXes in the actual design.

Figure 4.2: An Example of Bad Placement of CDC-7-XPUF MUXes

56

Figure 4.3: An Example of Good Placement of CDC-7-XPUF MUXes

For generating different challenges for different stages, a PRNG is proposed in Equa-

tion 2.12. Obviously, two PRNGs with two different parameter sets are used for the

32-bit and 64-bit designs.

The implementation setup illustrated in Figure 4.4 is used. It is very similar to the

PLL-TRNG setup in Figure 3.2. The only difference is that PLL-TRNG parts are

changed with CDC-7-XPUF codes. Obviously, both the 32-bit and the 64-bit designs

have the same setup with different VHDL codes.

The software developed in Python [51] using Visual Studio 2022 [42] is utilized to

calculate the scores for the five evaluation metrics, which are detailed in Section 2.4.2

from the generated bitstreams.

Figure 4.4: Block Diagram of Implementation Setup of CDC-7-XPUFes

Using the setup in Figure 4.4, for the statistical characteristics CRPs, we generated up

to 16,000 (challenges) ×32 (iterations) ×128 (response length) ×3 (Zynq 7020 SoCs)

CRPs out of each design. The repetition of the CRPs is needed to study the statistical

characteristics and investigate related metrics such as correctness and steadiness. The

57

CRPs were captured at an ambient temperature of approximately 27oC, and the core

voltage was set to 1.0V. The ambient temperature does not reflect the temperature of

the chip, which has changed as long as the experiments continue. Through a dual-

access BRAM, CRPs are sent to the PS part. From the PS part via UART, the CRPs

are sent to the PC with a baud rate of 230,400 bits/second between the PuTTY [50]

terminal and the SoCs.

4.2 32-bit and 64-bit CDC-7-XPUF Experimental Results and Comparisons

The evaluation metrics of PUFs are explained in Section 2.4.2. As explained in Sec-

tion 2.4.2, respectively, the implementation results of steadiness, correctness, diffuse-

ness, uniformity, and uniqueness are presented. Furthermore, the calculated metric

scores of the reference PUF implemented on [43] are presented in the result tables in

the following sections for comparison purposes.

4.2.1 Steadiness

The steadiness scores of the referenced 32-bit CDC-7-XPUF in [43], our implemented

32-bit CDC-7-XPUF, and 64-bit CDC-7-XPUF are presented in Table 4.1. In Equa-

tion 2.14, the steadiness score is calculated between 0 and 1. Hence, we normalize it

using percentages to calculate the score in the table. As stated before, 32 iterations

of 128-bit responses are generated. In the steadiness calculation, these 4096-bit long

responses are used.

Our result for the 32-bit is only slightly worse than the reference design in an accept-

able range. Also, the 64-bit result is slightly worse than the 32-bit results. As it can

be seen in [43], increasing the stage number has a negative effect on the steadiness.

Table 4.1: Steadiness Results
Steadiness Score of
Referenced Work

32-bit CDC-7-XPUF [43]

Steadiness Score of
32-bit CDC-7-XPUF

Implementation

Steadiness Score of
64-bit CDC-7-XPUF

Implementation
98.18% 97.09% 96.70%

58

4.2.2 Correctness

The correctness scores of the referenced 32-bit CDC-7-XPUF in [43], our imple-

mented 32-bit CDC-7-XPUF, and 64-bit CDC-7-XPUF are presented in Table 4.2.

In Equation 2.15, the correctness score is calculated between 0 and 1. Hence, we

normalize it using percentages to calculate the score in the table.

Our result for the 32-bit is only slightly worse than the reference design in an accept-

able range. Also, the 64-bit result is slightly worse than the 32-bit results. As it can

be seen in [43], increasing the stage number has a negative effect on the correctness.

Table 4.2: Correctness Results
Correctness Score of

Referenced Work
32-bit CDC-7-XPUF [43]

Correctness Score of
32-bit CDC-7-XPUF

Implementation

Correctness Score of
64-bit CDC-7-XPUF

Implementation
97.63% 96.64% 96.19%

4.2.3 Diffuseness

The diffuseness scores of the referenced 32-bit CDC-7-XPUF in [43], our imple-

mented 32-bit CDC-7-XPUF, and 64-bit CDC-7-XPUF are presented in Table 4.3.

In Equation 2.16, the diffuseness score is calculated between 0 and 1. Hence, we

normalize it using percentages to calculate the score in the table. For the diffusion

calculation, "Correct ID"s are used.

Our result for the 32-bit is only slightly better than the reference design. Also, the 64-

bit result is slightly better than the 32-bit results. As it can be seen in [43], increasing

the stage number has a positive effect on the diffuseness.

Table 4.3: Diffuseness Results
Diffuseness Score of

Referenced Work
32-bit CDC-7-XPUF [43]

Diffuseness Score of
32-bit CDC-7-XPUF

Implementation

Diffuseness Score of
64-bit CDC-7-XPUF

Implementation
99.90% 99.96% 99.99%

59

4.2.4 Uniformity

The uniformity scores of the referenced 32-bit CDC-7-XPUF in [43], our imple-

mented 32-bit CDC-7-XPUF, and 64-bit CDC-7-XPUF are presented in Table 4.4.

In Equation 2.17, the uniformity score is calculated between 0 and 1, whose expected

score is 0.5. Hence, we normalize it using percentages to calculate the score in the ta-

ble. For the uniformity calculation, "Correct ID"s are used. In [43], the results of the

uniformity are not direct, yet they can be inferred from the results of the randomness,

as it can be seen from Equations 2.17, 2.18, and 2.19. However, the result of this in-

ference is ambiguous. Since it can not be known that p or 1−p is greater, the result in

Table 4.4 for the referenced 32-bit work can be 49.60% also. But it is not important.

Because, in terms of uniformity, the proximity of the value to 50% is important, not

the percentage value. Hence, in terms of proximity, 50.40% and 49.60% are the same.

Consequently, that approach is applied to the comparison in the following paragraph.

Our result for the 32-bit is only slightly worse than the reference design. However, the

64-bit result is slightly better than the result of our 32-bit design and the referenced

32-bit design. Although, as it can be seen in [43], increasing the stage number has a

negative effect on the uniformity, in our case, it increased the uniformity.

Table 4.4: Uniformity Results
Uniformity Score of
Referenced Work

32-bit CDC-7-XPUF [43]

Uniformity Score of
32-bit CDC-7-XPUF

Implementation

Uniformity Score of
64-bit CDC-7-XPUF

Implementation
50.40% 50.94% 49.89%

4.2.5 Uniqueness

The uniqueness scores of the referenced 32-bit CDC-7-XPUF in [43], our imple-

mented 32-bit CDC-7-XPUF, and 64-bit CDC-7-XPUF are presented in Table 4.5.

In Equation 2.20, the uniqueness score is calculated between 0 and 1. Hence, we

normalize it using percentages to calculate the score in the table. For the uniqueness

calculation, "Correct ID"s are used.

Our result for the 32-bit is only slightly better than the reference design. Also, the 64-

60

bit result is slightly better than the 32-bit results. As it can be seen in [43], increasing

the stage number has a positive effect on the uniqueness.

Table 4.5: Uniqueness Results
Uniqueness Score of

Referenced Work
32-bit CDC-7-XPUF [43]

Uniqueness Score of
32-bit CDC-7-XPUF

Implementation

Uniqueness Score of
64-bit CDC-7-XPUF

Implementation
17.90% 18.06% 18.96%

4.2.6 Utilization Results of CDC-7-XPUFs in Zynq-7020 SoC FPGA

For the implementation, we use state machines in the PL part so that we can take the

challenges from the PS part, and we can send responses derived from these challenges

through the Dual Access BRAM. Although the PL part consists of not only CDC-

7-XPUFs but also state machines which are necessary for the implementation, the

utilization rate is relatively low, as it can be seen in Table 4.6 for both 32-bit and

64-bit CDC-7-XPUF implementations.

As expected, the 64-bit design has a higher utilization rate, especially in DSP re-

sources. In order to generate different challenges for each of the streams, we use

PRNGs, which multiply 64-bit numbers requiring more DSP than 32-bit design. That

relatively low utilization result makes 64-bit CDC-7-XPUF a promising candidate for

applications that require a PUF.

Table 4.6: Utilization Table Generated Using Vivado 2019.1 [5] for 32-bit and 64-bit
CDC-7-XPUF Implementations

Resource
Type

Avaliable Resource
Quantity

Utilization Quantity
(Utilization Rate as %)
of 32-bit CDC-7-XPUF

Utilization Quantity
(Utilization Rate as %)
of 64-bit CDC-7-XPUF

LUT 53200
1500

(2.82%)
1740

(3.27%)

LUTRAM 17400
72

(0.41%)
72

(0.41%)

FF 106400
1781

(1.67%)
1933

(1.82%)

BRAM 140
2

(1.43%)
2

(1.43%)

DSP 220
12

(5.45%)
68

(30.91%)

IO 200
8

(4.00%)
4

(100.00%)

61

4.2.7 Discussion About CDC-7-XPUF Implementation Results

We have thoroughly examined the resilience against machine learning attacks in Sec-

tion 2.4.2.1. As discussed in this section and demonstrated in [43], the 64-bit CDC-

XPUF designs with 7 streams are resistant to machine learning attacks.

In the following part, evaluation criteria are examined. The PL part of Zynq 7020

shown in Figure 2.26 has a very similar architecture to Artix-7, which is used to

implement the reference design of CDC-XPUF in [43]. Hence, we expected similar

results found in [43], and, as expected, we observed similar results as can be seen in

the previous sections.

In the last part, the utilization rate of both 32-bit and 64-bit designs are examined, and

it is shown that both designs are suitable for an IoT application since they provide a

lot of space in the PL part.

62

CHAPTER 5

A COMBINED DESIGN OF 4-PLL-TRNG AND 64-BIT

CDC-7-XPUF ON A ZYNQ-7020 SOC

In this chapter, after a brief introduction section, the combined design of the 4-PLL-

TRNG and CDC-7-XPUF is explained, and the implementation results on Xilinx

Zynq-7000 SoC ZC702HW-Z7-ZC702 Rev1.1 Evaluation Board are presented. The

findings from this part of the research are detailed in [61].

5.1 Introduction

The foundational concepts of PLL-TRNG and CDC-XPUF are introduced in Chap-

ter 2, with detailed implementation discussions provided in Chapter 3 and Chapter

4. Therefore, a comprehensive understanding of these three chapters is essential for

grasping the combined design presented in this chapter.

As shown in Figure 2.24 in Section 2.3, TRNGs and PUFs are two basic hardware

primitives in the security of IoT systems. They can be implemented separately in an

IoT device. However, if they are implemented in a combined way so that the overall

security qualifications of the device are improved, it would be efficient, which will

ensure effective utilization of the computational resources of the device. Based on

this principle of working in combination, we have worked on a design in which these

two hardware primitives are both related to each other and also can work separately.

In the following section, details of the implementation of the combined design are

explained.

63

5.2 Implementation Details of the Combined Design 4-PLL-TRNG and CDC-

7-XPUF

4-PLL-TRNG is a version of PLL-TRNG prepared with four discrete PLLs. The

detailed illustration of this version is shown in Figure 3.1 as (d) proposed design in

Section 3.1. In the combined design, this 4-PLL-TRNG is used as it is and has its

own BRAM block to write random numbers. There are three different configurations

of PLL-TRNGs in this work, as explained in Section 3.1.1. Those are the maximum

bit rate (max. R), the maximum sensitivity to jitter (max. S), and the maximum R ·S
value as the optimization between max. S and max. R. In the combined designs, we

choose max. R to work with and use the values in Table 3.3 for PLL configuration.

In the PUF part, in order to differentiate the challenges, a new approach is applied

instead of PRNGs. The results in [59] demonstrate that PUFs utilizing fix-point-free

permutations exhibit a level of resistance to machine learning attacks that is nearly

equivalent to that of pseudorandom input transformations, which [59] asserts to be

the most robust approach in mitigating such adversarial techniques. Furthermore,

the proposed design incurs minimal hardware overhead, as it solely involves a fixed

routing mechanism for challenge bits to the individual arbiter chains. This fix-point-

free transformation is a one-to-one and onto (or a bijective) function. In our work, we

use another bijective and random transformation to generate other challenges from the

main challenge. In that method, we apply the XOR operation to the main challenge

with the random numbers, which is the output of the 4-PLL-TRNG. As it is in [59],

we expect resistance to ML attacks.

The block diagram of this combined design is shown in Figure 5.1. CDC-7-XPUF

needs random numbers provided from 4-PLL-TRNG in order to generate challenges.

Hence, the 4-PLL-TRNG must first be run, and random numbers must be obtained.

For this application, we have six 64-bit challenges in addition to one 64-bit main chal-

lenge. Hence, we use 6×64 = 384 bit of random numbers. Additionally, two discrete

BRAMs connected to these systems are used to allow the two subsystems to operate

separately. However, since there is only one processor on the PS side, the BRAMs

are transferred to the PC via UART and USB as random numbers or responses fill

them. Since the processor can only deal with one BRAM at a time, this structure

64

creates a bottleneck in terms of throughput. In real applications, this bottleneck can

be overcome by using different architectures. The architecture to be employed will

vary depending on whether the random numbers and responses are used within the

SoC or, as in our implementations, transmitted externally, as well as the interface

used for external transmission. One possible architectural design involves converting

the 4-PLL-TRNG and 64-bit CDC-7-XPUF into intellectual property (IP) cores, en-

abling communication with relevant units and the hard processor via the Advanced

eXtensible Interface (AXI) bus. Additionally, memory buffers may be incorporated

into the design to accommodate the communication speeds of the interacting units.

Figure 5.1: Block Diagram of Implementation Setup of the Combined Design of 4-
PLL-TRNG and CDC-7-XPUF

The aim of the combined design is that in a real-world application, both should be

able to work together, but that this interoperability should not adversely affect the

performance of the other subsystem. To demonstrate that this aim is achieved, three

different test setups are prepared. These three setups share the structure shown in

Figure 5.1. However, due to the different implementations, only the content of the

state machines and hence the wrapper code changes.

The purpose of building the first test setup is to run 4-PLL-TRNG and CDC-7-XPUF

sequentially to provide a reference run for the other two test setups. In the first test

setup, 4-PLL-TRNG is run first. Then, the 6 × 64 bit random numbers are taken by

CDC-7-XPUF, and CDC-7-XPUF is run.

The purpose of building the second test setup is to show that the continuous operation

65

of the TRNG does not affect the PUF. In the second test setup, the 4-PLL-TRNG is

run for one round first. This is because CDC-7-XPUF needs random numbers for

the other 6 challenges other than the main challenge. After the random numbers are

generated, CDC-7-XPUF starts to run. However, while CDC-7-XPUF runs, 4-PLL-

TRNG also keeps running without stopping. In this test run, only the results of the

CDC-7-XPUF are recorded.

The purpose of the third test setup is to show that, unlike the second test setup, the

continuous operation of CDC-7-XPUF does not cause any deterioration in the per-

formance of 4-PLL-TRNG. In the third test setup, the 4-PLL-TRNG is run for one

round first. This is because CDC-7-XPUF needs random numbers for the other 6

challenges other than the main challenge. After the random numbers are generated,

CDC-7-XPUF starts to run. However, while 4-PLL-TRNG runs, CDC-7-XPUF also

keeps running without stopping. In this test run, only the results of the 4-PLL-TRNG

are recorded. In order to be sure that CDC-7-XPUF runs continuously, the result of

the fifth run of 4-PLL-TRNG is recorded.

The implementation setup employed in this study is illustrated in Figure 5.1. It uti-

lizes the ZC702 Rev1.1 Evaluation Board [7], which incorporates the Zynq 7020

XC7Z020-1CLG484C SoC to facilitate the three different test implementations of

the combined design 4-PLL-TRNG and CDC-7-XPUF as detailed in this section. In

the PL section, three different test setups are developed using Vivado 2019.1 [5] in

VHDL [31]. Two dual-access BRAM blocks are employed to enable real-time trans-

mission of generated random numbers and CRPs to the PC. One port of each of these

BRAMs is connected to the PL, while the other ports are connected to the PS sec-

tion. The requisite code for the PS section is written in the C programming language

[33]. The PL section generates random numbers and CRPs and writes a predefined

value to specific BRAM addresses to indicate that the random bits or CRPs are ready.

Once this indication is given, the software in the PS section outputs the random bits

or CRPs to the UART serial port, which are then converted to USB and transmitted to

the PC. The received random bits or CRPs on the PC are saved in their ASCII-coded

hexadecimal form. Random bits are later converted to binary form offline to serve as

input for AIS-20/31 Tests [12]. The codes of AIS-20/31 Tests in [12] were compiled

using [22] as it was. Both Procedure A and Procedure B Tests of AIS-20/31 are con-

66

ducted for each result. Given that these tests require approximately 7 Mb of random

bits, each output file is generated with a size of approximately 7.2 Mb. For the PUF

part, as it is indicated in Section 4.1, for the statistical characteristics CRPs, we gen-

erated up to 16,000 (challenges) ×32 (iterations) ×128 (response length) ×3 (Zynq

7020 SoCs) CRPs out of each design. The repetition of the CRPs is needed to study

the statistical characteristics and investigate related metrics such as correctness and

steadiness. In order to calculate scores of metrics for the PUF part, test codes are pre-

pared in Python [51] and compiled using Microsoft Studio 2022 [42]. Additionally,

a 125 MHz clock frequency was selected for the system’s main clock (clkin) due to

timing constraints inherent in the SoC. From the PS part via UART, the random bits

and the CRPs were sent to the PC with a baud rate of 230,400 bits/second between

the PuTTY [50] terminal and the SoCs.

In the setup in Figure 5.1, the random bits and CRPs were captured at an ambient

temperature of approximately 27oC, and the core voltage was set to 1.0V. The ambient

temperature does not reflect the temperature of the chip, which has changed as long

as the experiments continue. Through a dual-access BRAM, random bits and CRPs

were sent to the PS part.

In the following section, the implementation results for those three different test se-

tups are presented.

5.3 Implementation Results of the Combined Design 4-PLL-TRNG and CDC-

7-XPUF

As explained in the previous section, a total of three different test configurations are

examined in this section. These are:

1. In this first test setup, 4-PLL-TRNG and CDC-7-XPUF are run sequentially to

provide a reference run for the other two test setups. Both generated random

numbers and responses are recorded in this configuration. This configuration is

named in the tables of results as Combined Design (a).

67

2. In the second test setup, TRNG works continuously, and after the first run, only

generated responses by PUF are recorded. This configuration is named in the

tables of results as Combined Design (b).

3. In the third test setup, PUF works continuously, and after the first run, only gen-

erated random numbers by TRNG are recorded. This configuration is named in

the tables of results as Combined Design (c).

5.3.1 Implementation Results of the Random Numbers in 4-PLL-TRNG of Com-

bined Designs

AIS-20/31 test results of the combined designs and for the reference discrete imple-

mentation of 4-PLL-TRNG with max. R configuration are presented in Table 5.1.

Table 5.1: AIS-20/31 Test Results of the Combined Designs and the Reference De-
sign of 4-PLL-TRNG

Implementation Type / Tests Procedure A -
T0 Result

Procedure A -
T1-T5 Result

Procedure B -
T6-T8 Result

Discrete Implementation of
4-PLL-TRNG with

max. R Configuration
PASSED PASSED PASSED

Combined Design (a) PASSED PASSED PASSED
Combined Design (c) PASSED PASSED PASSED

The Shannon entropy values of the combined designs and, for reference, the discrete

implementation of 4-PLL-TRNG with max. R configuration with respect to AIS-

20/31 test are presented in Table 5.2. As expected, the Shannon entropy values of the

referenced and the combined designs are very close to each other.

Table 5.2: The Shannon Entropy Results with Respect to AIS-20/31 of the Combined
Designs and the Reference Design of 4-PLL-TRNG

Implementation Type Entropy
(Shannon)

Discrete Implementation of
4-PLL-TRNG with

max. R Configuration
0.999999972332402

Combined Design (a) 0.999999992061094
Combined Design (c) 0.999999971489810

68

5.3.2 Implementation Results of the Responses in CDC-7-XPUF of Combined

Designs

5.3.2.1 The Steadiness Results of the Combined Designs

The steadiness scores of the combined designs and, for reference, the discrete im-

plementation of 64-bit CDC-7-XPUF are presented in Table 5.3. As expected, the

steadiness scores of the referenced and the combined designs are very close to each

other.

Table 5.3: The Steadiness Results of the Combined Designs and the Reference Design
of 64-bit CDC-7-XPUF

Implementation Type Steadiness Score
Discrete Implementation of

64-bit CDC-7-XPUF
96.70%

Combined Design (a) 96.95%
Combined Design (b) 96.75%

5.3.2.2 The Correctness Results of the Combined Designs

The correctness scores of the combined designs and, for reference, the discrete im-

plementation of 64-bit CDC-7-XPUF are presented in Table 5.4. As expected, the

correctness scores of the referenced and the combined designs are very close to each

other.

Table 5.4: The Correctness Results of the Combined Designs and the Reference De-
sign of 64-bit CDC-7-XPUF

Implementation Type Correctness Score
Discrete Implementation of

64-bit CDC-7-XPUF
96.19%

Combined Design (a) 96.46%
Combined Design (b) 96.25%

5.3.2.3 The Diffuseness Results of the Combined Designs

The diffuseness scores of the combined designs and, for reference, the discrete im-

plementation of 64-bit CDC-7-XPUF are presented in Table 5.5. It is expected that

69

the diffuseness scores of the referenced and the combined designs are very close, but

they have the same score value.

Table 5.5: The Diffuseness Results of the Combined Designs and the Reference De-
sign of 64-bit CDC-7-XPUF

Implementation Type Diffuseness Score
Discrete Implementation of

64-bit CDC-7-XPUF
99.99%

Combined Design (a) 99.99%
Combined Design (b) 99.99%

5.3.2.4 The Uniformity Results of the Combined Designs

The uniformity scores of the combined designs and, for reference, the discrete im-

plementation of 64-bit CDC-7-XPUF are presented in Table 5.6. As expected, the

uniformity scores of the referenced and the combined designs are very close to each

other.

Table 5.6: The Uniformity Results of the Combined Designs and the Reference De-
sign of 64-bit CDC-7-XPUF

Implementation Type Uniformity Score
Discrete Implementation of

64-bit CDC-7-XPUF
49.89%

Combined Design (a) 50.05%
Combined Design (b) 49.81%

5.3.2.5 The Uniqueness Results of the Combined Designs

The uniqueness scores of the combined designs and, for reference, the discrete imple-

mentation of 64-bit CDC-7-XPUF are presented in Table 5.7. Significant improve-

ments in the ’Uniqueness’ parameter have been observed due to the random numbers

generated by the 4-PLL-TRNG for the production of challenges other than the main

challenge.

70

Table 5.7: The Uniqueness Results of the Combined Designs and the Reference De-
sign of 64-bit CDC-7-XPUF

Implementation Type Uniqueness Score
Discrete Implementation of

64-bit CDC-7-XPUF
18.96%

Combined Design (a) 50.30%
Combined Design (b) 50.07%

5.3.3 Utilizations of Combined Designs of Zynq-7020 SoCs

The utilization results of the combined designs and, for reference, the discrete im-

plementation of 4-PLL-TRNG with max. R configuration and 64-bit CDC-7-XPUF

are presented in Table 5.8. As expected, the utilization rates of the combined de-

signs are very close to each other. Although these usage rates are higher than those

of discrete implementations, they still consume fewer resources than a design where

discrete components are used separately, each consuming resources individually. In

other words, the combined design offers a lower utilization rate than a design that

includes the discrete 4-PLL-TRNG and 64-bit CDC-7-XPUF implementations.

Table 5.8: The Utilization Rates of the Combined Designs and the Reference Design
of 4-PLL-TRNG and 64-bit CDC-7-XPUF

Resource
Type

Avaliable
Resource
Quantity

Utilization % of
4-PLL-TRNG with

max. R Configuration
(Utilization)

Utilization % of
64-bit CDC-7-XPUF

(Utilization)

Utilization % of
Combined Design (a)

(Utilization)

Utilization % of
Combined Design (b)

(Utilization)

Utilization % of
Combined Design (c)

(Utilization)

LUT 53200
2.89%
(1539)

2.82%
(1500)

4.64%
(2469)

4.65%
(2474)

4.64%
(2466)

LUTRAM 17400
0.41%
(72)

0.41%
(72)

0.47%
(82)

0.47%
(82)

0.47%
(82)

FF 106400
1.77%
(1884)

1.67%
(1781)

2.79%
(2965)

2.79%
(2966)

2.76%
(2936)

BRAM 140
2.86%

(2)
2.86%

(2)
2.86%

(4)
2.86%

(4)
2.86%

(4)

DSP 220
0%
(0)

5.45%
(12)

4.55%
(10)

4.55%
(10)

4.55%
(10)

IO 200
4.00%

(8)
4.00%

(8)
4.00%

(8)
4.00%

(8)
4.00%

(8)

PLL 4
100%

(4)
0%
(0)

100%
(4)

100%
(4)

100%
(4)

5.4 Discussion About Combined Designs Implementation Results

The aim of combining the 4-PLL-TRNG and the 64-bit CDC-7-XPUF in a unified

design is to maintain the cryptographic properties of these two subsystems while

achieving a more compact solution rather than utilizing them separately and embed-

71

ding them within the SoC. In this integration process, the random numbers generated

by the TRNG are used to create additional challenges within the PUF aside from the

main challenge. This approach not only allows for a mutualistic integration where

the output of one subsystem is utilized by the other but also simplifies the operations

required for generating additional challenges in the CDC-7-XPUF by replacing the

multiplication and addition processes with a simple XOR operation.

In order to test this combined structure, three different test configurations are cre-

ated, one of which serves as the reference. In the first test configuration, which is

also the reference configuration, random numbers are generated in the initial stage

via the 4-PLL-TRNG. Once this subsystem completes its operation, a 6× 64-bit ran-

dom number required for the operation of the 64-bit CDC-7-XPUF is transferred to

the PUF subsystem, and the additional challenges are generated by XORing these

random numbers with the main challenge. The PUF then begins the process of gen-

erating the response. It should be noted at this point that the two subsystems are not

operated simultaneously. However, in a real application, such as in an IoT system,

the concurrent operation of these two subsystems would be naturally desirable. For

this purpose, two additional test configurations are designed. In one of these configu-

rations, the PUF results are tested while the TRNG continuously operates, and in the

other, the opposite scenario is tested.

In the second test configuration, which is created to examine these scenarios, random

numbers are generated first, similar to the first configuration. The 6× 64-bit random

number is then transferred to the PUF for challenge generation. However, unlike the

first configuration, the TRNG is not stopped and continues to operate. Meanwhile,

the PUF generates the response, and the results are recorded on the PC. In this con-

figuration, the effect of continuous TRNG operation on the PUF is examined.

In the third test configuration, as in the previous ones, the TRNG is initially activated,

and the random number transfer process to the PUF subsystem is repeated. Once the

PUF starts generating challenges with these random numbers, the TRNG continues to

run to observe its potential interference with the PUF. During this period, the TRNG

is reactivated three more times while the PUF continues to operate in a loop without

interruption. The results of these four TRNG activations, including the first one, are

72

not recorded. On the fifth and final activation, the TRNG is run again, and the random

number outputs are recorded on the PC. Consequently, in this last test configuration,

the effect of continuous PUF operation on the TRNG is analyzed.

These three configurations are named Combined Design (a), Combined Design (b),

and Combined Design (c). All of these test configurations are implemented in the test

setup whose block diagram is presented in Figure 5.1.

Starting with the evaluation of the random number generation results in this combined

structure, as in Chapter 3, the random numbers were assessed using AIS-20/31 tests,

and their Shannon entropies are calculated using the formula in Equation 2.13. For

these evaluations, the reference 4-PLL-TRNG (with the max. R configuration) from

Chapter 3 is used alongside Combined Design (a) and Combined Design (c). Tables

5.1 and 5.2 are prepared for this assessment. As expected, all three configurations

pass the AIS-20/31 tests, and very similar Shannon entropy values are measured in

each case. Consequently, these tests demonstrate that there is no issue in utilizing the

combined design in terms of random number generation.

The evaluation metrics for PUFs are thoroughly examined in Section 2.4.2. These

metrics include resilience against ML attacks, steadiness, correctness, diffuseness,

uniformity, and uniqueness. For these evaluations, the reference 64-bit CDC-7-XPUF

from Chapter 4 is used in conjunction with Combined Design (a) and Combined

Design (b).

The first metric to evaluate is the resilience of the PUF against ML attacks. As dis-

cussed in Section 5.2 and mentioned in [59], it is expected that the process of gener-

ating new challenges by XORing the main challenge with random numbers produced

by the proposed 4-PLL-TRNG, instead of using the fix-point-free transformation,

provides resistance to ML attacks.

The second metric in the PUF evaluation is steadiness. Our expectation for this met-

ric is to obtain results similar to those of the independently implemented reference

design. As shown in Table 5.3, very similar results are observed. Therefore, the

combined design is appropriate in terms of steadiness.

The third metric in the PUF evaluation is correctness. Similar to steadiness, we expect

73

to achieve results comparable to those of the independently implemented reference

design. As seen in Table 5.4, very similar results were observed, indicating that the

combined design is also suitable in terms of correctness.

The fourth metric in the PUF evaluation is diffuseness. Again, our expectation for

this metric is to achieve results similar to those of the independently implemented

reference design. The reference value is already 99.99%. As shown in Table 5.5, the

same results are observed. Therefore, the combined design is appropriate in terms of

diffuseness.

The fifth metric in the PUF evaluation is uniformity. Our expectation is to achieve

results comparable to those of the independently implemented reference design. As

shown in Table 5.6, very similar results are observed. Therefore, the combined design

is appropriate in terms of uniformity.

The final metric in the PUF evaluation is uniqueness. In this metric, our expectation

is to achieve slightly better results than the independently implemented reference de-

signs, as we anticipate that XORing would produce better challenges compared to a

PRNG. As shown in Table 5.7, significantly better results are observed. Therefore,

the combined design is appropriate in terms of uniqueness.

Lastly, we compared the utilization rate of the separate designs with the combined

designs in Table 5.8. Through simple mathematics, it is shown that resources ex-

pected to be more heavily utilized when used separately are used more efficiently in

the combined design. As can be seen in Table 5.8, the utilization of all resources ex-

cept the PLL remained below 5%. This indicates that when this combined design is

used, there is still room in the SoC for other designs to be implemented for additional

applications.

In conclusion, when the combined design is evaluated in terms of the TRNG and PUF

metrics, it is clear that the combined design is highly suitable for use in IoT systems.

The analysis and tests conducted in this chapter have demonstrated that the combined

design retains all the features of the separately designed 4-PLL-TRNG and 64-bit

CDC-7-XPUF.

74

CHAPTER 6

CONCLUSION AND FUTURE WORKS

In this chapter, the conclusion of the research and the future works of this thesis are

presented.

6.1 Conclusion

In this research, as the first part, we delineated the design and implementation proce-

dures of an innovative and fast PLL-TRNG utilizing the coherent sampling method of

jittered PLL clocks. For parameter selection, we employ the backtracking algorithm

[16]. Unlike conventional designs, which typically incorporate two PLLs, our ap-

proach leverages four PLLs to enhance the output bit rate. The choice of four PLLs is

constrained by the Xilinx Zynq 7020 SoC, which accommodates exactly four PLLs.

Nevertheless, the methodology illustrated in Figure 3.1 is adaptable to any FPGA or

SoC platform. This flexibility ensures the broad applicability of our approach across

various hardware configurations. We show that our proposed methods can generate

random numbers with AIS-20/31 compliance. With their excellent results compared

to the previous works, it can be concluded that our proposed method is promising.

Also, the resource utilization is very low, except for PLLs, since we use all of them

to increase the output bit rate, as shown. The outcome of this TRNG part is detailed

in [62].

In the second part, we implemented 32-bit and 64-bit CDC-7-XPUFs for PUF ap-

plications, building on the improved Arbiter PUF design [26]. This implementation

thoroughly examines resilience against ML attacks, as outlined in Section 2.4.2.1,

75

and supported by [43], showing that 64-bit CDC-XPUF with seven streams is resis-

tant to such attacks. Metrics such as steadiness, correctness, diffuseness, uniformity,

and uniqueness were used to evaluate the PUF results. To ensure a meaningful com-

parison, we first implemented the 32-bit design, followed by the 64-bit design for

enhanced ML resilience. Similar to the TRNG section, the utilization rates of both

designs were assessed, demonstrating their suitability for IoT applications due to their

efficient use of space in the PL part. The results of this PUF implementation are pre-

sented in [60].

In the last part of the thesis, In conclusion, we have introduced and implemented a

combined 4-PLL-TRNG and 64-bit CDC-7-XPUF in a unified design. While these

components have been implemented independently in previous works [62] and [60],

their integration follows the current trend of combining TRNG and PUF hardware

primitives for enhanced efficiency and security. This combined design is evaluated

in terms of the TRNG and PUF metrics, and we concluded that the combined design

is highly suitable for use in IoT systems. The analysis and tests conducted in this

work have demonstrated that the combined design retains all the features of the sepa-

rately designed 4-PLL-TRNG and 64-bit CDC-7-XPUF. The output of this PUF part

is presented in [61].

6.2 Future Works

As a future work, the following items can be listed:

• In addition to AIS-20/31 tests, NIST SP 800-90B [57] test suite would also be

applied.

• The results of the combined design would be tested in various environmental

conditions such as varying temperature and varying voltage

• Our combined design is also applicable to other FPGA and SoC platforms.

Hence, this design would be tested for these other platforms.

76

REFERENCES

[1] M. A. Alamro, K. T. Mursi, Y. Zhuang, A. O. Aseeri, and M. S. Alkatheiri,
Robustness and Unpredictability for Double Arbiter PUFs on Silicon Data: Per-
formance Evaluation and Modeling Accuracy, Electronics, 9(5), 2020, ISSN
2079-9292, https://www.mdpi.com/2079-9292/9/5/870.

[2] M. S. Alkatheiri and Y. Zhuang, Towards Fast and Accurate Machine Learning
Attacks of Feed-Forward Arbiter PUFs, in 2017 IEEE Conference on Depend-
able and Secure Computing, pp. 181–187, 2017, http://dx.doi.org/
10.1109/DESEC.2017.8073845.

[3] Altera, Understanding Metastability in FPGAs, White Pa-
per WP-01082-1.2, July 2009, https://www.intel.
com/content/www/us/en/content-details/650346/
understanding-metastability-in-fpgas.html, accessed:
2023-08-01.

[4] AMD, 7 Series FPGAs Clocking Resources User Guide (UG472)
(v1.14), https://docs.amd.com/v/u/en-US/ug472_7Series_
Clocking, accessed: 2023-10-01.

[5] AMD, Xilinx (AMD) Vivado 2019.1 Design Software for Xilinx (AMD)
Adaptive SoCs and FPGAs, https://www.xilinx.com/support/
download/index.html/content/xilinx/en/downloadNav/
vivado-design-tools/archive.html, accessed: 2023-09-01.

[6] AMD, Xilinx Zynq-7000 SoC Block Scheme, https://www.xilinx.
com/products/silicon-devices/soc/zynq-7000.html, ac-
cessed: 2023-09-01.

[7] AMD, Xilinx Zynq-7000 SoC ZC702 Evaluation Kit, https://www.
xilinx.com/products/boards-and-kits/ek-z7-zc702-g.
html, accessed: 2023-09-01.

[8] AMD, Zynq-7000 SoC: DC and AC Switching Characteristics
(DS187) (v1.21), https://docs.amd.com/v/u/en-US/
ds187-XC7Z010-XC7Z020-Data-Sheet, accessed: 2023-10-01.

[9] N. N. Anandakumar, M. Hashmi, and M. Tehranipoor, FPGA-based Physical
Unclonable Functions: A comprehensive overview of theory and architectures,

77

https://www.mdpi.com/2079-9292/9/5/870
http://dx.doi.org/10.1109/DESEC.2017.8073845
http://dx.doi.org/10.1109/DESEC.2017.8073845
https://www.intel.com/content/www/us/en/content-details/650346/understanding-metastability-in-fpgas.html
https://www.intel.com/content/www/us/en/content-details/650346/understanding-metastability-in-fpgas.html
https://www.intel.com/content/www/us/en/content-details/650346/understanding-metastability-in-fpgas.html
https://docs.amd.com/v/u/en-US/ug472_7Series_Clocking
https://docs.amd.com/v/u/en-US/ug472_7Series_Clocking
https://www.xilinx.com/support/download/index.html/content/xilinx/en/downloadNav/vivado-design-tools/archive.html
https://www.xilinx.com/support/download/index.html/content/xilinx/en/downloadNav/vivado-design-tools/archive.html
https://www.xilinx.com/support/download/index.html/content/xilinx/en/downloadNav/vivado-design-tools/archive.html
https://www.xilinx.com/products/silicon-devices/soc/zynq-7000.html
https://www.xilinx.com/products/silicon-devices/soc/zynq-7000.html
https://www.xilinx.com/products/boards-and-kits/ek-z7-zc702-g.html
https://www.xilinx.com/products/boards-and-kits/ek-z7-zc702-g.html
https://www.xilinx.com/products/boards-and-kits/ek-z7-zc702-g.html
https://docs.amd.com/v/u/en-US/ds187-XC7Z010-XC7Z020-Data-Sheet
https://docs.amd.com/v/u/en-US/ds187-XC7Z010-XC7Z020-Data-Sheet

Integration, 81, 07 2021, https://doi.org/10.1016/j.vlsi.2021.
06.001.

[10] A. O. Aseeri, Y. Zhuang, and M. S. Alkatheiri, A Machine Learning-Based
Security Vulnerability Study on XOR PUFs for Resource-Constraint Internet of
Things, in 2018 IEEE International Congress on Internet of Things (ICIOT), pp.
49–56, 2018, http://dx.doi.org/10.1109/ICIOT.2018.00014.

[11] M. Baudet, D. Lubicz, J. Micolod, and A. Tassiaux, On the Security of
Oscillator-Based Random Number Generators, Journal of Cryptology, 24(2), pp.
398–425, 2011, https://doi.org/10.1007/s00145-010-9089-3.

[12] Bundesamt für Sicherheit in der Informationstechnik (BSI), Implementation
of Test Procedure A and Test Procedure B for Application Notes and In-
terpretation of the Scheme (AIS) 20/31 Standard, https://www.bsi.
bund.de/SharedDocs/Downloads/DE/BSI/Zertifizierung/
Interpretationen/AIS_31_testsuit_zip.zip, accessed: 2023-
09-01.

[13] Bundesamt für Sicherheit in der Informationstechnik (BSI), AIS 20/31 -
Functionality Classes for Random Number Generators, https://www.bsi.
bund.de/SharedDocs/Downloads/DE/BSI/Zertifizierung/
Interpretationen/AIS_31_Functionality_classes_for_
random_number_generators_e.html, 2011.

[14] Y. Cao, W. Liu, L. Qin, B. Liu, S. Chen, J. Ye, X. Xia, and C. Wang, Entropy
Sources Based on Silicon Chips: True Random Number Generator and Phys-
ical Unclonable Function, Entropy, 24(11), 2022, ISSN 1099-4300, https:
//www.mdpi.com/1099-4300/24/11/1566.

[15] A. Cherkaoui, V. Fischer, A. Aubert, and L. Fesquet, A Self-Timed Ring Based
True Random Number Generator, in 2013 IEEE 19th International Symposium
on Asynchronous Circuits and Systems, pp. 99–106, 2013, https://doi.
org/10.1109/ASYNC.2013.15.

[16] B. Colombier, N. Bochard, F. Bernard, and L. Bossuet, Backtracking
Search for Optimal Parameters of a PLL-based True Random Number
Generator, in Proceedings of the 23rd Conference on Design, Automa-
tion and Test in Europe, DATE ’20, p. 1–6, EDA Consortium, San Jose,
CA, USA, 2020, ISBN 9783981926347, https://doi.org/10.23919/
DATE48585.2020.9116307.

[17] B. Colombier, N. Bochard, F. Bernard, and L. Bossuet, The source code of the
backtracking algorithm in [16], https://gitlab.univ-st-etienne.
fr/sesam/pll-trng-constraint-programming/tree/master,
2020, accessed: 2023-11-01.

78

https://doi.org/10.1016/j.vlsi.2021.06.001
https://doi.org/10.1016/j.vlsi.2021.06.001
http://dx.doi.org/10.1109/ICIOT.2018.00014
https://doi.org/10.1007/s00145-010-9089-3
https://www.bsi.bund.de/SharedDocs/Downloads/DE/BSI/Zertifizierung/Interpretationen/AIS_31_testsuit_zip.zip
https://www.bsi.bund.de/SharedDocs/Downloads/DE/BSI/Zertifizierung/Interpretationen/AIS_31_testsuit_zip.zip
https://www.bsi.bund.de/SharedDocs/Downloads/DE/BSI/Zertifizierung/Interpretationen/AIS_31_testsuit_zip.zip
https://www.bsi.bund.de/SharedDocs/Downloads/DE/BSI/Zertifizierung/Interpretationen/AIS_31_Functionality_classes_for_random_number_generators_e.html
https://www.bsi.bund.de/SharedDocs/Downloads/DE/BSI/Zertifizierung/Interpretationen/AIS_31_Functionality_classes_for_random_number_generators_e.html
https://www.bsi.bund.de/SharedDocs/Downloads/DE/BSI/Zertifizierung/Interpretationen/AIS_31_Functionality_classes_for_random_number_generators_e.html
https://www.bsi.bund.de/SharedDocs/Downloads/DE/BSI/Zertifizierung/Interpretationen/AIS_31_Functionality_classes_for_random_number_generators_e.html
https://www.mdpi.com/1099-4300/24/11/1566
https://www.mdpi.com/1099-4300/24/11/1566
https://doi.org/10.1109/ASYNC.2013.15
https://doi.org/10.1109/ASYNC.2013.15
https://doi.org/10.23919/DATE48585.2020.9116307
https://doi.org/10.23919/DATE48585.2020.9116307
https://gitlab.univ-st-etienne.fr/sesam/pll-trng-constraint-programming/tree/master
https://gitlab.univ-st-etienne.fr/sesam/pll-trng-constraint-programming/tree/master

[18] L. Crocetti, P. Nannipieri, S. Di Matteo, L. Fanucci, and S. Saponara, Review of
Methodologies and Metrics for Assessing the Quality of Random Number Gen-
erators, Electronics, 12(3), 2023, ISSN 2079-9292, https://www.mdpi.
com/2079-9292/12/3/723.

[19] N. D. Dalt and A. Sheikholeslami, Understanding Jitter and Phase Noise: A
Circuits and Systems Perspective, Cambridge University Press, USA, 1st edi-
tion, 2018, ISBN 1107188571.

[20] M. Deutschmann, S. Lattecher, J. Delvaux, V. Rozic, B. Yang, D. Sin-
gelee, L. Bossuet, V. Fischer, U. Mureddu, O. Petura, A. A. Yama-
jako, B. Kasser, and G. Battum, Hardware Enabled Crypto and Ran-
domness (HECTOR) d2.1 - Report on Selected TRNG and PUF Prin-
ciples, February 2016, https://ec.europa.eu/research/
participants/documents/downloadPublic?documentIds=
080166e5a6bd305c&appId=PPGMS accessed: 2023-07-01.

[21] M. Ebrahimabadi, M. Younis, W. Lalouani, and N. Karimi, A Novel Modeling-
Attack Resilient Arbiter-PUF Design, in 2021 34th International Confer-
ence on VLSI Design and 2021 20th International Conference on Embed-
ded Systems (VLSID), pp. 123–128, 2021, https://doi.org/10.1109/
VLSID51830.2021.00026.

[22] Eclipse Foundation, Eclipse IDE for Java Developers - 2023-12, version 2023-
12 https://www.eclipse.org/downloads/packages/ accessed:
2024-01-15.

[23] V. Fischer, F. Bernard, and N. Bochard, Modern random number gener-
ator design – Case study on a secured PLL-based TRNG, it - Informa-
tion Technology, 61(1), pp. 3–13, 2019, https://doi.org/10.1515/
itit-2018-0025.

[24] V. Fischer and M. Drutarovský, True Random Number Generator Embedded
in Reconfigurable Hardware, in B. S. Kaliski, Ç. K. Koç, and C. Paar, editors,
Cryptographic Hardware and Embedded Systems - CHES 2002, pp. 415–430,
Springer Berlin Heidelberg, Berlin, Heidelberg, 2003, ISBN 978-3-540-36400-
9, https://doi.org/10.1007/3-540-36400-5_30.

[25] V. Fischer, M. Drutarovský, M. Simka, and N. Bochard, High Performance True
Random Number Generator in Altera Stratix FPLDs, volume 3203, pp. 555–
564, 08 2004, ISBN 978-3-540-22989-6, https://doi.org/10.1007/
978-3-540-30117-2_57.

[26] B. Gassend, D. Clarke, M. van Dijk, and S. Devadas, Silicon Physical Ran-
dom Functions, in Proceedings of the 9th ACM Conference on Computer and
Communications Security, CCS ’02, p. 148–160, Association for Computing

79

https://www.mdpi.com/2079-9292/12/3/723
https://www.mdpi.com/2079-9292/12/3/723
https://ec.europa.eu/research/participants/documents/downloadPublic?documentIds=080166e5a6bd305c&appId=PPGMS
https://ec.europa.eu/research/participants/documents/downloadPublic?documentIds=080166e5a6bd305c&appId=PPGMS
https://ec.europa.eu/research/participants/documents/downloadPublic?documentIds=080166e5a6bd305c&appId=PPGMS
https://doi.org/10.1109/VLSID51830.2021.00026
https://doi.org/10.1109/VLSID51830.2021.00026
https://www.eclipse.org/downloads/packages/
https://doi.org/10.1515/itit-2018-0025
https://doi.org/10.1515/itit-2018-0025
https://doi.org/10.1007/3-540-36400-5_30
https://doi.org/10.1007/978-3-540-30117-2_57
https://doi.org/10.1007/978-3-540-30117-2_57

Machinery, New York, NY, USA, 2002, ISBN 1581136129, https://doi.
org/10.1145/586110.586132.

[27] R. Helinski, Evaluating Physical Unclonable Functions, February 2020,
https://www.osti.gov/biblio/1766751 accessed: 2023-11-01.

[28] M. Hofer and C. Böhm, Physical Unclonable Functions in Theory and Practice,
Springer New York, NY, 1st edition, 2012, https://doi.org/10.1007/
978-1-4614-5040-5.

[29] F. Hooge, 1/ƒ Noise Is No Surface Effect, Physics Letters A, 29(3),
pp. 139–140, 1969, ISSN 0375-9601, https://doi.org/10.1016/
0375-9601(69)90076-0.

[30] Y. Hori, T. Yoshida, T. Katashita, and A. Satoh, Quantitative and Statisti-
cal Performance Evaluation of Arbiter Physical Unclonable Functions on FP-
GAs, in 2010 International Conference on Reconfigurable Computing and
FPGAs, pp. 298–303, 2010, https://dl.acm.org/doi/10.1109/
ReConFig.2010.24.

[31] IEEE Computer Society, IEEE Standard VHDL Language Reference Manual,
IEEE Std 1076-2008, 2008, https://standards.ieee.org/ieee/
1076/3666/ accessed: 2023-07-01.

[32] N. Kasdin, Discrete Simulation of Colored Noise and Stochastic Processes and
1/fα Power Law Noise Generation, Proceedings of the IEEE, 83(5), pp. 802–
827, 1995, https://doi.org/10.1109/5.381848.

[33] B. W. Kernighan and D. M. Ritchie, The C Programming Language, Prentice
Hall, Englewood Cliffs, NJ, 2nd edition, 1988, ISBN 978-0131103627.

[34] D. E. Knuth, The Art of Computer Programming, Volume 2: Seminumerical
Algorithms, Addison-Wesley, Boston, 1997, ISBN 0201896842.

[35] Ç. K. Koç, Cryptographic Engineering, Springer, New York, 2009, https:
//doi.org/10.1007/978-0-387-71817-0.

[36] P. Kohlbrenner and K. Gaj, An Embedded True Random Number Generator for
FPGAs, Proceedings of the 2004 ACM/SIGDA 12th international symposium
on Field programmable gate arrays, 2004, https://doi.org/10.1145/
968280.968292.

[37] G. Li, K. T. Mursi, A. O. Aseeri, M. S. Alkatheiri, and Y. Zhuang, A New Se-
curity Boundary of Component Differentially Challenged XOR PUFs Against
Machine Learning Modeling Attacks, International Journal of Computer Net-
works & Communications (IJCNC), 14(03), pp. 1–15, 2022, https://doi.
org/10.5121/ijcnc.2022.14301.

80

https://doi.org/10.1145/586110.586132
https://doi.org/10.1145/586110.586132
https://www.osti.gov/biblio/1766751
https://doi.org/10.1007/978-1-4614-5040-5
https://doi.org/10.1007/978-1-4614-5040-5
https://doi.org/10.1016/0375-9601(69)90076-0
https://doi.org/10.1016/0375-9601(69)90076-0
https://dl.acm.org/doi/10.1109/ReConFig.2010.24
https://dl.acm.org/doi/10.1109/ReConFig.2010.24
https://standards.ieee.org/ieee/1076/3666/
https://standards.ieee.org/ieee/1076/3666/
https://doi.org/10.1109/5.381848
https://doi.org/10.1007/978-0-387-71817-0
https://doi.org/10.1007/978-0-387-71817-0
https://doi.org/10.1145/968280.968292
https://doi.org/10.1145/968280.968292
https://doi.org/10.5121/ijcnc.2022.14301
https://doi.org/10.5121/ijcnc.2022.14301

[38] D. Lim, J. Lee, B. Gassend, G. Suh, M. van Dijk, and S. Devadas, Extracting
Secret Keys From Integrated Circuits, IEEE Transactions on Very Large Scale
Integration (VLSI) Systems, 13(10), pp. 1200–1205, 2005, https://doi.
org/10.1109/TVLSI.2005.859470.

[39] C. Liu, Jitter in Oscillators with 1/f Noise Sources and Application to True
RNG for Cryptography, Ph.D. Thesis, Worcester Polytechnic Institute, Jan 2006,
https://digital.wpi.edu/show/sj1392036.

[40] A. Maiti, V. Gunreddy, and P. Schaumont, A Systematic Method to Evaluate
and Compare the Performance of Physical Unclonable Functions, pp. 245–267,
Springer New York, New York, NY, 2013, ISBN 978-1-4614-1362-2, https:
//doi.org/10.1007/978-1-4614-1362-2_11.

[41] A. L. McWhorter, 1/f Noise and Germanium Surface Properties, in Semiconduc-
tor Surface Physics, p. 207–228, Philadelphia, PA: Univ. Pennsylvania Press,
1957.

[42] Microsoft Corporation, Visual Studio 2022, 2022, https://
visualstudio.microsoft.com/ Accessed: 2023-11-01.

[43] K. T. Mursi, From XOR PUF to CDC XOR PUF: Cost-Effectiveness,
Statistical Characteristics, and Security Assessment, Ph.D. Thesis, Texas
Tech University, 2021, https://ttu-ir.tdl.org/bitstreams/
d26a326c-9494-47e4-a9e2-9af57d949e88/download.

[44] K. T. Mursi, Y. Zhuang, M. S. Alkatheiri, and A. O. Aseeri, Extensive
Examination of XOR Arbiter PUFs as Security Primitives for Resource-
Constrained IoT Devices, in 2019 17th International Conference on Privacy,
Security and Trust (PST), pp. 1–9, 2019, http://dx.doi.org/10.1109/
PST47121.2019.8949070.

[45] E. Noumon Allini, Characterisation, Evaluation and Use of Clock Jitter as
a Source of Randomness in Data Security, Ph.D. Thesis, Université de Lyon,
September 2020, https://ujm.hal.science/tel-02952931.

[46] O. Petura, True Random Number Generators for Cryptography : Design, Secur-
ing and Evaluation, Ph.D. Thesis, Université de Lyon, October 2019, https:
//theses.hal.science/tel-02895861.

[47] O. Petura, U. Mureddu, N. Bochard, and V. Fischer, Optimization of the PLL
Based TRNG Design Using the Genetic Algorithm, in 2017 IEEE International
Symposium on Circuits and Systems (ISCAS), pp. 1–4, 2017, https://doi.
org/10.1109/ISCAS.2017.8050839.

[48] O. Petura, U. Mureddu, N. Bochard, V. Fischer, and L. Bossuet, A Survey
of AIS-20/31 Compliant TRNG Cores Suitable for FPGA Devices, in 2016

81

https://doi.org/10.1109/TVLSI.2005.859470
https://doi.org/10.1109/TVLSI.2005.859470
https://digital.wpi.edu/show/sj1392036
https://doi.org/10.1007/978-1-4614-1362-2_11
https://doi.org/10.1007/978-1-4614-1362-2_11
https://visualstudio.microsoft.com/
https://visualstudio.microsoft.com/
https://ttu-ir.tdl.org/bitstreams/d26a326c-9494-47e4-a9e2-9af57d949e88/download
https://ttu-ir.tdl.org/bitstreams/d26a326c-9494-47e4-a9e2-9af57d949e88/download
http://dx.doi.org/10.1109/PST47121.2019.8949070
http://dx.doi.org/10.1109/PST47121.2019.8949070
https://ujm.hal.science/tel-02952931
https://theses.hal.science/tel-02895861
https://theses.hal.science/tel-02895861
https://doi.org/10.1109/ISCAS.2017.8050839
https://doi.org/10.1109/ISCAS.2017.8050839

26th International Conference on Field Programmable Logic and Applica-
tions (FPL), pp. 1–10, 2016, https://doi.org/10.1109/FPL.2016.
7577379.

[49] K. Pratihar, U. Chatterjee, M. Alam, R. S. Chakraborty, and D. Mukhopad-
hyay, Birds of the Same Feather Flock Together: A Dual-Mode Circuit Candi-
date for Strong PUF-TRNG Functionalities, IEEE Transactions on Computers,
72(6), pp. 1636–1651, 2023, https://doi.org/10.1109/TC.2022.
3218986.

[50] PuTTY, PuTTY - a free and open-source terminal emulator, serial console, and
network file transfer application, https://www.putty.org/, accessed:
2023-09-01.

[51] Python Software Foundation, Python Language Reference, version 3.x,
https://www.python.org/ accessed: 2023-11-01.

[52] L. Reyneri, D. Del Corso, and B. Sacco, Oscillatory Metastability in Homo-
geneous and Inhomogeneous Flip-Flops, IEEE Journal of Solid-State Circuits,
25(1), pp. 254–264, 1990, https://doi.org/10.1109/4.50312.

[53] V. Rozic, B. Yang, W. Dehaene, and I. Verbauwhede, Highly Efficient En-
tropy Extraction for True Random Number Generators on FPGAs, in 2015
52nd ACM/EDAC/IEEE Design Automation Conference (DAC), pp. 1–6, 2015,
https://doi.org/10.1145/2744769.2744852.

[54] M. B. R. Srinivas and K. Elango, Era of Sentinel Tech: Charting Hardware
Security Landscapes Through Post-Silicon Innovation, Threat Mitigation and
Future Trajectories, IEEE Access, 12, pp. 68061–68108, 2024, http://dx.
doi.org/10.1109/ACCESS.2024.3400624.

[55] G. E. Suh and S. Devadas, Physical Unclonable Functions for Device Authenti-
cation and Secret Key Generation, in 2007 44th ACM/IEEE Design Automation
Conference, pp. 9–14, 2007, https://doi.org/10.1145/1278480.
1278484.

[56] B. Sunar, W. J. Martin, and D. R. Stinson, A Provably Secure True Random
Number Generator with Built-In Tolerance to Active Attacks, IEEE Transac-
tions on Computers, 56(1), pp. 109–119, 2007, https://doi.org/10.
1109/TC.2007.250627.

[57] M. S. Turan, E. Barker, J. Kelsey, K. McKay, M. L. Baish, and M. Boyle,
Recommendation for the Entropy Sources Used for Random Bit Generation:
NIST SP 800-90B, January 2018, https://doi.org/10.6028/NIST.
SP.800-90b.

82

https://doi.org/10.1109/FPL.2016.7577379
https://doi.org/10.1109/FPL.2016.7577379
https://doi.org/10.1109/TC.2022.3218986
https://doi.org/10.1109/TC.2022.3218986
https://www.putty.org/
https://www.python.org/
https://doi.org/10.1109/4.50312
https://doi.org/10.1145/2744769.2744852
http://dx.doi.org/10.1109/ACCESS.2024.3400624
http://dx.doi.org/10.1109/ACCESS.2024.3400624
https://doi.org/10.1145/1278480.1278484
https://doi.org/10.1145/1278480.1278484
https://doi.org/10.1109/TC.2007.250627
https://doi.org/10.1109/TC.2007.250627
https://doi.org/10.6028/NIST.SP.800-90b
https://doi.org/10.6028/NIST.SP.800-90b

[58] M. Varchola and M. Drutarovsky, New High Entropy Element for FPGA Based
True Random Number Generators, in S. Mangard and F.-X. Standaert, editors,
Cryptographic Hardware and Embedded Systems, CHES 2010, pp. 351–365,
Springer Berlin Heidelberg, Berlin, Heidelberg, 2010, ISBN 978-3-642-15031-
9, https://doi.org/10.1007/978-3-642-15031-9_24.

[59] N. Wisiol, G. T. Becker, M. Margraf, T. A. A. Soroceanu, J. Tobisch, and
B. Zengin, Breaking the Lightweight Secure PUF: Understanding the Relation
of Input Transformations and Machine Learning Resistance, in S. Belaïd and
T. Güneysu, editors, Smart Card Research and Advanced Applications, pp. 40–
54, Springer International Publishing, Cham, 2020, ISBN 978-3-030-42068-0,
https://doi.org/10.1007/978-3-030-42068-0_3.

[60] O. Yayla and Y. E. Yılmaz, 32-bit and 64-bit CDC-7-XPUF Implementation on
a Zynq-7020 SoC, Cryptology ePrint Archive, Paper 2024/1443, 2024, https:
//eprint.iacr.org/2024/1443.

[61] O. Yayla and Y. E. Yılmaz, A Combined Design of 4-PLL-TRNG and 64-
bit CDC-7-XPUF on a Zynq-7020 SoC, Cryptology ePrint Archive, Paper
2024/1457, 2024, https://eprint.iacr.org/2024/1457.

[62] O. Yayla and Y. E. Yılmaz, Design and Implementation of a Fast, Platform-
Adaptive, AIS-20/31 Compliant PLL-Based True Random Number Generator
on a Zynq 7020 SoC FPGA, Cryptology ePrint Archive, Paper 2024/1442, 2024,
https://eprint.iacr.org/2024/1442.

[63] Y. Yu, Design and Security Analysis of TRNGs and PUFs, Ph.D. Thesis,
KTH, Electronic and Embedded Systems, 2022, https://urn.kb.se/
resolve?urn=urn:nbn:se:kth:diva-307501.

83

https://doi.org/10.1007/978-3-642-15031-9_24
https://doi.org/10.1007/978-3-030-42068-0_3
https://eprint.iacr.org/2024/1443
https://eprint.iacr.org/2024/1443
https://eprint.iacr.org/2024/1457
https://eprint.iacr.org/2024/1442
https://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-307501
https://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-307501

84

CURRICULUM VITAE

PERSONAL INFORMATION

Surname, Name: Yılmaz, Yunus Emre

EDUCATION

Degree Institution Year of Graduation

M.S. METU - Electrical & Electronics Engineering 2016

B.S. METU - Electrical & Electronics Engineering 2011

PROFESSIONAL EXPERIENCE

Year Place Enrollment

Jan. 2015 - present Aselsan Inc. Digital Hardware Design Engineer

Dec. 2011 - Jan. 2015 Mikes Inc. Digital Design Engineer

PUBLICATIONS

International Conference Publications

• B. Aksoy, Y. A. Bilgin, M. Cenk, M. B. İlter, N. Koçak, and

Y. E. Yılmaz, Analyzing NIST 2nd-round Lattice-based Postquantum

KEM Algorithms, Information Security and Cryptology Conference,

Ankara, Turkey, 2019, https://bilgiguvenligi.org.tr/BGD/

ISCTurkey%202019%20Bildiriler%20Kitab%C4%B1.pdf.

85

https://bilgiguvenligi.org.tr/BGD/ISCTurkey%202019%20Bildiriler%20Kitab%C4%B1.pdf
https://bilgiguvenligi.org.tr/BGD/ISCTurkey%202019%20Bildiriler%20Kitab%C4%B1.pdf

• O. Yayla and Y. E. Yılmaz, Design and Implementation of a Fast, Platform-

Adaptive, AIS-20/31 Compliant PLL-Based True Random Number Genera-

tor on a Zynq 7020 SoC FPGA, 17th International Conference on Computa-

tional Intelligence in Security for Information Systems Salamanca, Spain, 2024,

https://eprint.iacr.org/2024/1442.

• O. Yayla and Y. E. Yılmaz, 32-bit and 64-bit CDC-7-XPUF Implementation

on a Zynq-7020 SoC, Cryptology ePrint Archive, Paper 2024/1443, 2024,

https://eprint.iacr.org/2024/1443.

• O. Yayla and Y. E. Yılmaz, A Combined Design of 4-PLL-TRNG and 64-

bit CDC-7-XPUF on a Zynq-7020 SoC, Cryptology ePrint Archive, Paper

2024/1457, 2024, https://eprint.iacr.org/2024/1457.

86

https://eprint.iacr.org/2024/1442
https://eprint.iacr.org/2024/1443
https://eprint.iacr.org/2024/1457

	ABSTRACT
	ÖZ
	ACKNOWLEDGMENTS
	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	LIST OF ABBREVIATIONS
	INTRODUCTION
	Motivation
	Contributions
	Thesis Organization

	PRELIMINARIES
	Phase-Locked Loop-based True Random Number Generator (PLL-TRNG)
	True Random Number Generators (TRNGs)
	Randomness Sources in Logic Devices
	Clock Jitter
	Phase Jitter
	Period Jitter
	Cycle to Cycle Jitter
	Jitter Components

	Metastability
	Metastability in FPGAs
	Oscillatory Metastability

	Extraction of Randomness from the Clock Jitter

	PLL-TRNG
	Basics of PLL

	Random Bit Generation Principle of the PLL-TRNG

	Physically (or Physical) Unclonable Function (PUF)
	Basics of PUFs
	A Basic Form of PUF-Based Authentication
	Types of PUFs
	Types of Arbiter PUFs
	Basic Arbiter PUF
	XOR Arbiter PUF (XOR-PUF)
	Component-differentially challenged XOR-PUF (CDC-XPUF)

	Combined PUF-TRNG Design
	Evaluation Metrics of TRNGs and PUFs
	Evaluation Criteria of TRNGs
	Procedure A in AIS-20/31 Tests: Statistical Testing for Random Number Generators
	Procedure B in AIS-20/31 Tests: Entropy and Stochastic Model Evaluation

	Evaluation Criteria of PUFs
	Resistance to Machine Learning (ML) Attacks
	Reliability of Responses From the Same PUFs
	Steadiness
	Correctness

	Entropy of Responses From the Same PUFs
	Diffuseness
	Uniformity

	Fingerprint Property
	Uniqueness

	Xilinx Zynq SoC FPGA

	An AIS-20/31 Compliant PLL-TRNG Implementation on a Zynq-7020 SoC
	PLL-TRNG Implementation
	Determining PLL-TRNG Parameters
	PLL-TRNG Implementation Setup

	PLL-TRNG Results and Comparisons with Previous Works
	Utilization Results of 4-PLL-TRNG in Zynq-7020 SoC FPGA
	Discussion About PLL-TRNG Implementation Results

	32-bit and 64-bit CDC-7-XPUF Implementation on a Zynq-7020 SoC
	CDC-XPUF Implementation Details
	32-bit and 64-bit CDC-7-XPUF Experimental Results and Comparisons
	Steadiness
	Correctness
	Diffuseness
	Uniformity
	Uniqueness
	Utilization Results of CDC-7-XPUFs in Zynq-7020 SoC FPGA
	Discussion About CDC-7-XPUF Implementation Results

	A Combined Design of 4-PLL-TRNG and 64-bit CDC-7-XPUF on a Zynq-7020 SoC
	Introduction
	Implementation Details of the Combined Design 4-PLL-TRNG and CDC-7-XPUF
	Implementation Results of the Combined Design 4-PLL-TRNG and CDC-7-XPUF
	Implementation Results of the Random Numbers in 4-PLL-TRNG of Combined Designs
	Implementation Results of the Responses in CDC-7-XPUF of Combined Designs
	The Steadiness Results of the Combined Designs
	The Correctness Results of the Combined Designs
	The Diffuseness Results of the Combined Designs
	The Uniformity Results of the Combined Designs
	The Uniqueness Results of the Combined Designs

	Utilizations of Combined Designs of Zynq-7020 SoCs

	Discussion About Combined Designs Implementation Results

	Conclusion and Future Works
	Conclusion
	Future Works

	REFERENCES
	CURRICULUM VITAE

