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Abstract 
Network inference or reconstruction algorithms play an integral role in successfully analyzing and identifying causal relationships 
between omics hits for detecting dysregulated and altered signaling components in various contexts, encompassing disease states and 
drug perturbations. However, accurate representation of signaling networks and identification of context-specific interactions within 
sparse omics datasets in complex interactomes pose significant challenges in integrative approaches. To address these challenges, we 
present pyPARAGON (PAgeRAnk-flux on Graphlet-guided network for multi-Omic data integratioN), a novel tool that combines network 
propagation with graphlets. pyPARAGON enhances accuracy and minimizes the inclusion of nonspecific interactions in signaling 
networks by utilizing network rather than relying on pairwise connections among proteins. Through comprehensive evaluations 
on benchmark signaling pathways, we demonstrate that pyPARAGON outperforms state-of-the-art approaches in node propagation 
and edge inference. Furthermore, pyPARAGON exhibits promising performance in discovering cancer driver networks. Notably, we 
demonstrate its utility in network-based stratification of patient tumors by integrating phosphoproteomic data from 105 breast 
cancer tumors with the interactome and demonstrating tumor-specific signaling pathways. Overall, pyPARAGON is a novel tool for 
analyzing and integrating multi-omic data in the context of signaling networks. pyPARAGON is available at https://github.com/netlab-
ku/pyPARAGON. 
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Introduction 
Omics technologies provide a multidimensional view of the 
cell’s functional mechanism, context-specific alterations in 
diseases or drug perturbations, and biological processes [1, 2]. 
As the omics data accumulate, integrating them accurately 
and translating them into interpretable knowledge remains 
challenging due to data sparsity, missing data points, and 
computational complexity [3–5]. Omic hits are sparsely connected 
in a reference interactome and carry noise from high-throughput 
outcomes [6, 7]. 

Recent methods utilizing learning- and network-based algo-
rithms are on the rise to overcome these challenges and decode 
causal relations between omic entities [8–11]. Learning-based 
methods efficiently integrate multi-omic data to extract inter-
pretable annotations such as pathways, reactions, and processes 
[12–14]. Also, network-based algorithms, including shortest paths 
[15], Steiner trees/forests [16, 17], and random walks [18], have 
been frequently used to construct specific networks by propa-
gating omic hits [19, 20]. Network-based methods can uncover 
the most relevant interactions between a given set of proteins/-
genes by either inferring from a reference protein–protein inter-
action (PPI) network or reconstructing them [1, 21, 22]. These 

reference networks integrate numerous databases and datasets, 
disregarding experimental context across diverse cell types and 
states [23]. Thus, the network inference methods may suffer from 
false positive interactions. However, these methods eventually 
obtain a network model, which may represent the alterations 
in disease models or the effects of drug treatments with the 
help of topological and statistical features [24–29]. The bene-
fit of using global and local network features (e.g. degree dis-
tribution, clustering coefficients) for propagation or inference 
[30, 31] is limited when this type of sparse data is elaborated 
[32, 33]. Therefore, the frequent subgraphs, known as network 
motifs in biological networks such as metabolic [34], regula-
tory [35, 36], and cellular signaling networks [37], can provide 
a more comprehensive insight into their functional impact in 
complex cellular networks [38]. Specific network motifs function 
in rewiring signaling cascades and regulating cellular signaling 
and information processing, including feedback and feedforward 
loops, which entail signaling adaptations [39], cell lineage [40], 
and cell dynamics and functions in tissue [41]. Small connected, 
non-isomorphic subgraphs, called graphlets, are over-represented 
in the reference interactome and associated with specific func-
tions [42, 43]. Graphlet statistics solve several complex problems 
in this context, such as the comparison of biological networks,
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delineating the functional organization of networks, discovering 
functionally related genes, regulatory interactions, and parameter 
tuning for network-based approaches [12, 32, 33, 44–47]. Another 
challenge is the presence of highly connected and multifunctional 
proteins, particularly hub proteins, which can bring nonspecific 
interactions to the resulting network models. Therefore, using 
network motifs, graphlets, or revealing modules can improve the 
context-specific aspects of the models [1, 25, 48]. 

In this study, we hypothesize that the utilization of network 
motifs, in lieu of pairwise connections among proteins, may pro-
vide a more accurate representation of signaling networks and 
mitigate the inclusion of nonspecific interactions. Therefore, we 
present pyPARAGON (PAgeRAnk-flux on Graphlet-guided network 
for multi-Omic data integratioN) that combines network propa-
gation with graphlets to construct context-specific networks. We 
found that graphlets filter out nonspecific interactions and miti-
gate the dominance of highly connected nodes, thereby trimming 
the reference interactome. pyPARAGON, as a hybrid method, per-
formed better than the selected state-of-the-art methods in the 
reconstruction of known cancer signaling pathways. We demon-
strated the utility of pyPARAGON in patient stratification using 
a breast cancer dataset comprising 105 tumors and associated 
phosphoproteomic data. Our analysis unveiled tumor-specific sig-
naling pathways for each patient group. 

Methods 
Overview of pyPARAGON as a hybrid network 
inference framework 
Hybrid approaches can be more effective than relying on a single 
method alone when integrating different types of omic data [17]. 
The accuracy of reconstructed networks is highly dependent on 
the reference interactome quality [49, 50]. On one hand, includ-
ing interactions with low confidence scores may lead to the 
identification of false positive proteins and interactions. On the 
other hand, highly connected proteins (i.e. hubs) may dominate 
the final network and obscure context-specific connections of 
proteins/genes. pyPARAGON copes with these challenges in two 
independent steps. First, graphlet search mitigates the dominance 
of hub nodes. Graphlets are small, connected subgraphs with 
a specific pattern of edges and are similar to network motifs 
representing recurring patterns [42, 43]. Additionally, pyPARAGON 
calculates the flux value by multiplying a node’s propagation 
score with the confidence score of its interaction and normalizing 
it with its degree. In this way, pyPARAGON prioritizes the high 
confidence scores and associated nodes while penalizing the 
highly connected nodes. pyPARAGON has three steps (Fig. 1A): (i) 
graphlet-guided network (GGN) construction; (ii) propagation and 
edge scoring via the Personalized PageRank (PPR) algorithm and 
flux calculation; (iii) preserving the edges in GGN with high scores 
and filtering out the rest. 

In general, state-of-the-art methods use an immediate edge 
between two nodes in the reference network and node-based 
features (e.g. degree, betweenness, closeness, and eigenvector 
centralities). The GGN construction step of pyPARAGON goes 
further by following an unsupervised approach to identify a core 
region in the reference interactome by combining significantly 
frequent graphlets composed of 2-, 3-, and 4-nodes (Fig. 1B). In 
omics-based network construction, direct connections between 
the genes/proteins of interest are often sparse, and intermediate 
nodes are required to connect them and form a coherent network 

structure. Thus, we constrained that graphlets having more than 
two nodes may have an intermediate node. Intermediate nodes 
are the ones that have the highest connections to the seed nodes 
(initial nodes) in the corresponding graphlet (Fig. S1A). 

In the second step, the PPR algorithm propagates signals from 
seed nodes across the reference interactome. Node weights after 
propagation, their degrees, and edge confidence scores are com-
bined in a single function to calculate edge fluxes [51]. If the 
reference interactome is an unweighted graph, pyPARAGON sets 
a default score of 1.0 for all edges. Similarly, if seed nodes do not 
have weights, pyPARAGON assigns them a default value of 1.0. In 
this function, the degree component penalizes highly connected 
proteins that are nonspecifically present in the resulting subnet-
works. In the final step, we map edges with flux scores to GGN to 
obtain a context-specific network (Fig. 1C). To simplify biological 
interpretation, pyPARAGON additionally uncovers modules, corre-
sponding to network communities, which function in specific bio-
logical processes or pathways (Fig. 1D). Based on network topol-
ogy, the Louvain community detection method divides inferred 
subnetworks into small modules [52]. Then, using a hypergeomet-
ric test, pyPARAGON discovers context-specific annotations [53]. 
In this way, we reveal not only hidden connections between initial 
nodes but also significant context-specific modules. 

Network inference via PageRank-flux on 
graphlet-guided network 
We used 2-, 3-, and 4-node-graphlets (G0, G1, G2, . . . , G8, shown 
in Fig. S1A), which are small non-isomorphic subgraphs. An iso-
morphism of graphlets between two subgraphs, X(VX, EX) and 
Y(VY, EY), is defined with bijections between VX and VY [42]. We 
searched the graphlets for an intermediate node in one of the 
highest-degree orbits and seed nodes in the remaining orbits. 
The reference network is R(VR, ER, c(e)), where VR, ER, and c(e) 
are node set, undirected edge set, and their confidence scores, 
respectively. Similarly, we calculated the frequencies of graphlets 
in 100 permuted networks, recruiting the same seed node set. To 
prepare permutated networks, we randomly swapped two edges 
between four different nodes so that the network topology and the 
number of interactions of the reference interactome could be used 
for statistical analysis [21]. We compared the graphlet frequencies 
in the reference and permuted networks with a z-test (P < 0.05, 
z-score > 1.65). The union of significant graphlets constructs the 
GGN, G(VG, EG), where G ⊆ R. 

The PPR algorithm calculates the probability of being at each 
node at a particular step in the reference networks according to 
Equation (1). 

p(t+1)(y) = 
1 − λ 

N 
+ λ 

xN∑

y=xi 

pt (xi) 
deg (xi) 

(1) 

where p(y) represents the probability of being at node y in the 
network at a particular time step t and λ is the damping factor. 
xi represents each neighbor of y. deg(xi) is the degree of node xi 

and N is the number of nodes [54, 55]. 
We modified the combined score formula described by Rubel 

and Ritz and introduced directed flux scores accordingly [51]. 
When combining two directional flux scores, we assigned the 
minimum flux score to the edge, instead of multiplying both 
directional flux scores. The scores are calculated for both direc-
tions (fu → t and ft → u) by using Equations (2 and 3), where u, t ∈ 
VR, and  e is the edge between u and t, respectively. The negative
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Figure 1. The overview of pyPARAGON. (A) pyPARAGON uses a reference network and a set of initial nodes (seed nodes) as the input. pyPARAGON has three 
steps: (i) GGN construction; (ii) edge scoring with PPR flux calculation; (iii) subnetwork inference using edge scores and GGN. (B) We investigated nine 
non-isomorphic graphlets (G0–G8) composed of 2, 3, and 4 nodes in the reference network and its 100 permuted networks. Except for G0, each  graphlet  
covers at least two seed nodes (red circles) and one intermediate node (white circles) that connects the seeds in the center of the orbit. We conducted 
a z-test to compare the frequency of graphlets in the reference and permuted networks. The union of significantly frequent graphlets constructs GGN. 
(C) By random walking from weighted initial nodes in the reference network, the PPR algorithm assigns weight to each node during propagation. Then, 
computed edge fluxes were used as the edge scores in the reference interactome. In the edge selection step, high-scoring ones in GGN construct the 
final subnetwork. (D) pyPARAGON employs the Louvain community detection method, based on network topology, to divide the inferred network into 
functional units. Significant biological processes and pathways in each module were found by using a hypergeometric test. 

logarithm of minimum flux scores is used as a final edge score 
(f(e)) defined in Equation (4). 

fu→t (u, t) = 
p(u).c(e) 
deg(u) 

(2) 

ft→u (t, u) = 
p(t).c(e) 
deg(t) 

(3) 

f (e) = −log
(
min

(
fu→t (u, t) , ft→u (t, u)

))
(4) 

We weighted the edge set of GGN, G(VG, EG), with  f(e) where e1, 
e2, e3, . . . , ej, . . . en ∈ EG, 1 ≤ j ≤ n and f(ej-1) > f(ej) > f(ej + 1). The total 
flux scores (F) in GGN are calculated as formulated in Equation (5). 

F = 
n∑

i=1 

f (ei) (5) (5) 

Let τ (0 ≤ τ ≤ 1) represent the scaling factor describing the 
threshold percentage of F. We selected the edges by summing flux 
scores up to τxF (Equation (6)). In this way, we infer the context-
specific network C(VC, EC), where EC ⊆ EG and VC ⊆ VG. 

τxF = 
j∑

i=1 

f (ei) , 1 ≤ j ≤ n (6) 

Results 
Network trimming via graphlets improves 
network inference 
We used NetPath [56] as the benchmark dataset to reconstruct 
curated signaling pathways and assess the performance of 
pyPARAGON. In general, the performance of the methods is 
evaluated based on topological features, coverage of predicted 
nodes, and edges. As a result of screening all graphlets across 
the reference interactomes, we found G2, G5, G6, G7, and  G8 

to be the most frequent graphlets (Fig. S1A). The frequency of 
direct interactions between input nodes (represented with G0) 
is insignificant in the reference interactome; however, the direct 
interactions in a graphlet with at least three nodes are significant. 
For example, the direct interaction of seed nodes in G2 gets more 
important in the presence of an intermediate node interacting 
with G0. As to our observation, significant graphlets having at 
least one intermediate node to connect seeds provide more 
precision compared to including direct interactions between two 
seeds (i.e. G0) in GGN. 

Each available interactome has a specific evaluation and scor-
ing scheme to integrate PPIs from different resources [49]. In this 
study, we used ConsensusPathDB [57], HIPPIE v2.2, and HIPPIE v2.3 
[58], which have different topological features (Supplementary 
Methods, Table S1). The constructed GGN by pyPARAGON is a 
subnetwork of the reference interactome. When we separately 
compared the original interactomes and trimmed interactomes
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Figure 2. GGN trims reference interactome by removing some highly connected nodes and their non-specific interactions. (A) Highly connected nodes 
(3887) are defined with degrees within the top 20% of all proteins in HIPPIE interactome. On the left side, the presence of these nodes in GNNs and 
reconstructed pathways is shown for each signaling pathway (red and green dots, respectively). On the right side, the reduction ratio (RR) separately 
represents the decrease in the interaction number of highly connected nodes for GGN and pathways. (B) AUPRC of each tool (blue = OI2, orange = PL, 
red = DOMINO, and green = pyPARAGON; left panel for edge prediction and right panel for node prediction performance) in each pathway reconstruction. 
The ratio of positives to negatives in HIPPIE interactome is scaled at 10−3, which demonstrates the sparsity of target nodes and edges in the reference 
network. (C) Distribution of F1-scores for each tool across 18 pathways is shown for node (blue) and edge (orange) predictions. (D) Performance evaluation 
in cancer-specific networks for eight distinct cancer types. Marker size represents network sizes, while recall and precision scores are shown on the 
x-axis and y-axis. The recall score represents the ratio of correctly predicted cancer driver genes in cancer-specific networks to the total number of 
drivers. 

via GGN construction, we observed that their similarities signifi-
cantly increase when GGNs are used ( Fig. S1B). Another advantage 
of GGN construction is attenuating the dominance of the highly 
connected nodes with degrees within the top 20% of all nodes 
in the reference network [59]. Notably, highly connected pro-
teins have numerous functions in the cellular processes known 
from prior knowledge and interactions in reference networks [60]. 
pyPARAGON puts a constraint on graphlets in that seed nodes 
must be connected via an intermediate node. The constructed 
GGN eventually consists of the topologically most important part 
of the reference interactome. Thus, nodes that are not present in 
any graphlet and not linked to the seed nodes, are trimmed. With 
this approach, we eliminate the most highly connected nodes 
(3887) in the reference network, HIPPIE v2.3 (Fig. 2A). The remain-
ing highly connected nodes within GGN lost a large number of 
interactions that are not related to the given context (Fig. S1C). 
Also, the final GGNs preserve the properties of a scale-free net-
work (Fig. S1D) [57], which characterize biological networks where 
the distribution of node degrees follows a power-law distribution 
[61, 62]. However, based on their degree exponent (γ HIPPIE = 1.45 
R2 

HIPPIE = 0.88, and γ GGNs = 2.40, R2 
GGNs = 0.84), GGNs have stronger 

features of a scale-free network [23, 63, 64]. Scale-free networks 
are robust to the random loss of nodes, defined as error tolerance, 
and fragile to targeted worst-case attacks [65]. 

We compared the performance of pyPARAGON with three 
selected state-of-the-art tools, PathLinker [15], Omics Integrator 
2 [16], and DOMINO [17]. PL computes multiple shortest paths 
between seed nodes and selects the highly-scored interactions 
by maximizing their own path scores to get rid of the noise. 
Omics Integrator 2 (OI2) and DOMINO solve the prize-collecting 
Steiner Forest problem. DOMINO statically selects the most 
relevant interactions and then solves the prize-collecting Steiner 
tree problem. These four approaches are compared based on 
their performance in inferring curated signaling pathways in 
NetPath. Since there is no definitive benchmark or ground truth 
for assessing tool performance, we relied on propagated nodes 
and predicted edges as evaluation criteria. Since the performance 
of tools is highly dependent on parameter sets, we inferred 
signaling pathways by applying various parameter sets in a grid 
for each network inference tool (Supplementary Methods). Then, 
we measured performance using the area under the precision-
recall curve (AUPRC) to demonstrate how well each pathway’s 
nodes and edges were recovered in the predicted networks. Bias 
toward hub proteins in the reference interactomes is a challenge 
in signaling pathway reconstruction that has been considered in 
all (pyPARAGON, OI2, PL, and DOMINO). Our analysis showed that 
pyPARAGON outperformed these tools at both the node and edge 
levels for inferring signaling pathways in all pathways of NetPath
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(Fig. 2B). Furthermore, the proportion of positive and negative 
instances, based on both nodes and edges, indicated that our 
target nodes and edges are extremely scarce inside the reference 
network (Table S2). 

Performance comparison of pyPARAGON with others was done 
in two directions: (i) node propagation, (ii) edge inference. We 
used the F1 score to compare them because it simultaneously 
represents precision and recall in one metric. The overall results 
show that pyPARAGON and PL are better at propagation, while 
pyPARAGON and OI2 are better at network inference (Fig. 2C). 
Due to the usage of significant modules in reference networks, 
DOMINO runs in a balance to propagate nodes and predict inter-
actions. These modules are defined based on annotations in 
Gene Ontology. However, missing annotations in reference net-
works and databases may lead to low-performance scores. Thus, 
DOMINO exhibits lower F1 scores and AUPRC than pyPARAGON. 
Highly connected reference networks decreased the propagation 
ability of OI2 while providing more robust interactions than PL. 
On the other hand, PL propagated the seed node set more robustly 
due to considering multiple shortest paths but introducing many 
false positive interactions. Many seed nodes have a tendency to be 
connected by hub nodes as shortcuts due to biological networks 
being scale-free. Thus, multiple-shortest paths and random walk-
based approaches may include more false positive interactions 
[19, 66]. However, penalizing highly connected nodes, e.g. the 
calculation of PageRank flux normalized the score in pyPARAGON 
or degree-dependent negative prizing in OI2, reduces false positive 
edges and improves F1-score in edge prediction. 

Cancer driver genes provide a selective growth benefit and 
enhance cancer development via harboring specific mutations. 
Therefore, predicting and prioritizing genes likely to play a 
crucial role in oncogenesis are important tasks. We next utilized 
pyPARAGON to construct cancer network models to test its 
performance in detecting driver genes. The most frequently 
mutated genes in eight cancer types are utilized as seed nodes [67, 
68]. We compared the nodes in the reconstructed networks with 
the known driver genes in IntOGen database [69] (Supplementary 
Methods), listed in pyPARAGON/Supplementaries folder on 
GitHub. Because we use 5-fold cross-validation, for each fold, we 
filtered out the common proteins between the seed list and known 
drivers and then reconstructed cancer type-specific networks 
with pyPARAGON, PL, DOMINO, and OI2. 

Cancer-type-specific networks include both driver gene nodes 
and the intermediate nodes. However, not all cancer driver 
mutations, genes, and functionalities are known in the available 
datasets. Consequently, the accuracy of predicting driver genes in 
the absence of ground truth is the reason of low performance 
metrics, particularly in precision scores. As shown in Fig. 2D, 
the reconstructed network by pyPARAGON finds more driver 
genes and mostly achieves higher recall and precision than 
other methods in all cancer types (Supplementary Table S3). 
In PL-generated networks, precision scores are in general close 
to pyPARAGON. They are better than pyPARAGON for ESCA and 
BRCA. PL recruits the multiple shortest paths. Thus, intermediate 
nodes corresponded more to highly connected genes than specific 
driver genes with default parameters. In pyPARAGON, we use the 
PageRank algorithm to propagate seed nodes to the neighbors in 
the reference interactome, which helps obtain more candidate 
drivers. The prize-collecting Steiner tree algorithm terminates 
propagation at the seed nodes, which results in fewer driver 
genes being recovered in networks inferred by OI2 and DOMINO. 
In large reference networks, highly connected nodes generate 
network shortcuts instead of using signal cascades or motifs. 

Overall, pyPARAGON performs significantly better in cancer driver 
network prediction and can be further elaborated for tumor- or 
patient-specific network construction and network similarity-
based comparisons. 

Tumor-specific network inference unveil hidden 
commonalities across patients 
We employed pyPARAGON to construct the specific networks for 
105 breast cancer patients’ tumors [68], where the seed nodes 
are significant phosphoproteins, as detailed in Supplementary 
Methods. It is important to note that pyPARAGON is also appli-
cable to pan-cancer datasets. We consider the modules as func-
tional subunits of networks that participate individually or jointly 
in context-specific molecular processes (Supplementary Meth-
ods). pyPARAGON uses hypergeometric tests to identify these 
active modules that are significantly over-represented in spe-
cific biological processes (Fig. S2). Figure 3 shows an example 
tumor-specific network composed of active modules that are 
significantly associated with KEGG pathways. All modules of 
the tumor-specific network are visualized and demonstrated in 
Fig. S3. Similarly, we identified active modules annotated with 
biological processes and then calculated the cosine similarities 
between patient-specific networks. Eventually, patient tumors 
are clustered into four groups (Fig. 4A, Supplementary Methods). 
Table S4 lists the 20 most common biological functions for each 
cluster. We uncovered critical biological processes in at least 
two clusters (Fig. 4B). In patient cluster-1, the most frequently 
associated biological process is the ubiquitin-dependent protein 
catabolic process, where several transcription factors (TFs) and 
enzymes are present. Ubiquitination (one of the post-translational 
modifications) is a multistep enzymatic process involved in the 
regulation of cancer metabolism [70]. The patients in cluster-
2 frequently share the mitotic cytokinesis process. Cytokinesis 
defects increase chromosomal instability, vast genomic alteration, 
and point mutations, provoking intratumoral heterogeneity [71, 
72]. The patient similarity network (Fig. S4) shows that only five 
patients in cluster-2 have higher similarity scores than 0.5 due 
to heterogeneity. Interestingly, we found that the nervous system 
development (NSD) process was the most frequent biological 
process in cluster-3. Breast cancer is the second most common 
cause of central nervous system metastasis after lung cancer [73]. 
In our datasets, just two patients had metastases. We found both 
patients with the NSD process in cluster-3. In cluster-4, the reg-
ulation process of actin cytoskeleton organization is significantly 
enriched which is relevant to cancer initiation, metastasis, and 
therapeutic responses. Rho GTPases, a family of the Ras GTPase 
superfamily, play a key role in this regulation [74]. 

Survival and KEGG pathway over-representation analysis 
revealed distinct molecular variations among clusters through 
tumor-specific signaling pathways. The Kaplan–Meier analysis 
and the log-rank test of the overall survival of patient clusters 
[75] showed that patients in cluster-4 have a significantly worse 
survival probability than cluster-1 (Fig. 4C, Fig. S5). Followingly, we 
annotated active modules with KEGG pathways to figure out their 
over-representation in these clusters (Fig. 4D) [76]. Cell cycle and 
PI3K/Akt signaling pathways are the most frequent pathways in 
the clusters, except cluster-2. Their presence in tumors in cluster-
1 is more frequent than in cluster-4. Critical protein complexes 
in DNA replication, repair mechanisms, and mitosis; Cyclin-
dependent kinases (CDKs) regulate the cell cycle pathway [77]. 
Dysregulation of CDKs in breast cancer mediates changes in 
cell cycle progression, driving uncontrolled cell proliferation [78]. 
Additionally, CDKs mediate crosstalk between PI3K/Akt and cell
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Figure 3. An example active module in tumor-specific network constructed by pyPARAGON (TCGA-A8-A079). Significantly phosphorylated proteins were 
used as the initial (seed) node-set (colored pink), and intermediate nodes predicted by pyPARAGON are in green circles. Active modules, bordered with 
dashed red lines and numbered within red boxes, are associated with at least one significantly overrepresented KEGG pathway. The pathways belonging 
to cellular processes and signal transduction are shown in the top left panel. 

cycle pathways [ 79]. Thus, CDKs and their regulators have become 
prominent targets for drug development [80]. We identified 23 TFs 
from TRRUST database [81] regulating CDKs in tumor-specific 
networks (Table S5). Ninety drugs, authorized by the FDA in the 
Therapeutic Target Database (TTD) [82], target eight of these TFs 
(Table S6). On the other hand, the activation and inactivation 
in the components of the Hippo signaling pathway lead to drug 
resistance through rewiring in cell cycle cascades [83, 84]. The 
focal adhesion and Ras signaling pathways are significantly more 
frequent in cluster-4. The Ras signaling pathway is one of the 
key pathways for drug resistance owing to the bypassing of 
drug action mechanisms in the signaling network [85, 86]. In 
Fig. 4E, we demonstrated the module associated with the Ras-
signaling pathway, where pyPARAGON linked phosphoproteins 
with intermediate nodes, including KRAS, NRAS, HRAS, RHOA, 
and RHOD. Next, we extracted 8297 drugs, 330 drug targets from 
TTD [82], and active modules were linked to 161 pathways that 
are found significantly enriched in 105 breast cancer patient-
specific networks (on GitHub at pyPARAGON/Supplementaries/). 
An example of drugs connected to the active modules of patient 
A2-A0YD is given in Fig. S6. Adagrasib (MRTX849) and Sotorasib 
specifically target the Ras signaling-associated module. Both 
drugs are novel KRASG12C inhibitors approved by the FDA [85, 87]. 

Discussion 
In this work, we present pyPARAGON as a network-based multi-
omic data integration tool. pyPARAGON simultaneously utilizes 
the most frequent graphlets covering omic hits and network prop-
agation to construct context-specific networks. Network infer-
ence algorithms encounter challenges arising from sparse data 
and the complexity associated with the growing number of inter-
actions within reference networks and potential false positives in 

the inferred subnetwork. In our study, by employing pyPARAGON, 
we mitigated the impact of highly connected nodes in the ref-
erence networks. pyPARAGON eliminates the interactions based 
on the calculated edge fluxes. Thus, the reference interactome 
is not prefiltered based on a confidence threshold. Additionally, 
pyPARAGON preserves scale-free properties inherent in biologi-
cal networks in the constructed GGNs. We leveraged the PageR-
ank flux calculation for edge prioritization and integrated GGNs 
to successfully construct context-specific networks. Additionally, 
driver networks that are inferred by pyPARAGON encompassed 
more precise and higher number of cancer drivers. 

Although network inference algorithms can infer context-
specific networks from large reference databases and exper-
imental data, these networks prevent complete biological 
interpretations. Thus, module identification is crucial for gaining 
biological interpretations from network knowledge. Independent 
of the network inference, pyPARAGON is able to identify func-
tional modules and their corresponding annotations. In tumor-
specific networks, we integrated modules and different types of 
annotations, such as biological processes in GOA, pathways in 
KEGG, and drug knowledge in TTP. Additionally, we statistically 
explored interpretable biological knowledge in modules to 
disentangle tumor-specific pathways. These annotations can 
be valuable in revealing commonalities and differences across 
patients and drug perturbations. 

Different molecular aberrations representing the context can 
induce identical disease outcomes [88–90]. pyPARAGON was 
developed as a general-purpose framework for integrating a 
given list of proteins/genes or other biological entities from any 
omic resources and an interactome for various contexts. In this 
study, we used omics data from CPTAC breast cancer samples 
[68] to infer context-specific networks with annotated modules. 
Patients were clustered based on the network-based similarity
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Figure 4. Stratification of tumors and associated biological processes with patient clusters. (A) 105 breast cancer tumors are stratified into four clusters 
based on their similarity of significant biological processes in their network modules: Cluster-1 (32 patients), cluster-2 (22 patients), cluster-3 (19 patients), 
and cluster-4 (32 patients). (B) Heatmap of patient coverage ratio for each cluster and significant process pairs. A biological process is included in the  
heatmap if it is enriched in at least two clusters. The patient coverage ratio represents the ratio of patients having the enriched biological process in the 
corresponding clusters. (C) Kaplan–Meier analysis shows the survival probabilities of cluster-1 (red) and cluster-4 (purple). The log-rank test (P < 0.05) 
statistically demonstrated that patients in cluster-4 have a significantly worse survival probability than cluster-1. (D) Heatmap shows significantly 
enriched KEGG pathways in active modules. (E) The example module of the A2-A0YD-specific network corresponding to the Ras signaling pathway is 
shown where seed nodes are red and intermediate nodes are green. 

between the overrepresented biological processes identified with 
functional modules. We show that active modules with the same 
driver genes mediate various biological processes or pathways. 
Thus, pyPARAGON potentially enhances the identification of 
hidden functional commonalities beyond the common edges and 
nodes across context-specific networks. 

pyPARAGON provides advantages for multi-omics data inte-
gration strategies as well. For instance, significantly expressed 
genes that are identified from transcriptomic data, can be used 
for identifying significantly active TFs and providing as a part of 
input seed sets. For the same example, the list of mutated proteins 

and significant TFs can be used together to form a seed node list. 
Similarly, enzymes or substrates associated with metabolomic 
hits can be extracted to be used as inputs, if available. Proteomics 
or phosphoproteomics hits can be used directly as the seed node 
set. In another independent case study, we determined differential 
TFs between cancer and autism spectrum disorders by identifying 
their common target pathways, using transcriptomics hits and 
frequent mutations [91]. Differential TFs in disease-specific 
networks demonstrated how rewired signaling mechanisms 
alter disease phenotypes [91]. All these case studies proved 
that pyPARAGON is capable of integrating omic datasets via
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networks. pyPARAGON can be used to integrate various datasets, 
including the data from Pan-Cancer Atlas [92], the Cancer Cell 
Line Encyclopedia (CCLE) [93], the Genomics of Drugs Sensitivity 
in Cancer (GDSC) [94], and the LINCS [95], to reveal new biological 
insights in complex diseases, and drug perturbations. 

Recent network inference methods, such as the SWEET tool 
[23], aim to construct sample-specific networks for individual 
samples [96–98]. pyPARAGON is highly modular, and the users can 
provide a custom reference interactome as input. For example, 
an aggregated interactome generated by SWEET to cover all phe-
notypic alterations across the entire sample set can be given as 
the reference. Then, pyPARAGON can infer a final subnetwork for 
each sample. 

Despite the success of integrative approaches, including 
pyPARAGON, there is still significant potential for further 
enhancement.. Notably, network-based methods strongly depend 
on the features and coverage of reference networks [99]. As a 
result of incomplete knowledge in large reference interactomes, 
protein complexes tend to form more topological modules than 
metabolic pathways [100, 101]. Thus, generic biological processes, 
such as transcription and replication, can be found more 
frequently in inferred networks. Thus, biological interpretations 
of context-specific networks are challenging through causal 
relations, modules, and biological processes. Additionally, some 
network-based methods cannot handle the alternative copies of 
individual hits e.g. various protein isoforms and different post-
translational modifications of a protein. Despite delivering more 
specific functions, this information is generalized and potentially 
lost in the network. 

Extended integrations in reference networks and highly 
connected nodes have become a prominent challenge in recent 
network inference tools based on belief propagation [102, 103], 
random walks [18, 104], the prize-collecting Steiner Forest [16, 
105, 106], heat diffusion [107, 108], and shortest path algorithms 
[15, 109]. Here, graphlets were deployed in our approaches for 
network trimming. In pathway reconstruction and the inference 
of context-specific networks, we compared our method with 
three popular tools: PL, OI2, and DOMINO. Hub proteins may 
dominate the inferred network with unrelated interactions. The 
prize-collecting Steiner Forest algorithm penalizes hubs based 
on the number of interactions. Similarly, the flux calculation 
in pyPARAGON is a countermeasure against the curse of hubs 
beyond scoring interactions. OI2 and pyPARAGON work better at 
predicting interactions. Regarding the identification of associated 
genes, our tool outperformed the other tools. In the PL algorithm, 
highly connected nodes further diminish the shortest paths 
between seed nodes. OI2 early terminates the propagation of 
the seed nodes in a large reference network. However, the 
PageRank algorithm in pyPARAGON propagates the seed nodes 
before network inference, independent of GGN. Thus, pyPARAGON 
optimizes the inference of interactions and the propagation of 
seed nodes in the network. 

In conclusion, we released pyPARAGON as a novel tool, 
which infers context-specific networks by using graphlets and 
network propagation. pyPARAGON can infer a network from 
the omic datasets and potentially predict context-specific 
biomarkers, drugs, and therapeutic targets. For downstream 
analysis, communities in the network can potentially identify 
mechanistic molecular relations in complex and rare diseases. 
Here, pyPARAGAON integrated bulk omic data for static tumor-
specific network models. The next version of pyPARAGON will be 
an extension that incorporates omic data at the single-cell level 
to elucidate cell-type specific interactions. 

Key Points 
• pyPARAGON combines graphlets with network propaga-

tion using the PPR algorithm. This is followed by interac-
tion selection based on edge flux calculation, effectively 
addressing challenges in network modeling such as the 
inclusion of false positive proteins/genes and interac-
tions, as well as accounting for the dominance of hubs 
and obscure context-specific relationships. 

• pyPARAGON is an open-source method that offers easy 
accessibility and can be run in local environments. This 
feature provides a significant advantage for research 
groups interested in omic data integration. 

• In constructing cancer signaling pathways and identi-
fying cancer driver networks, pyPARAGON outperforms 
other state-of-the-art approaches in terms of node prop-
agation and edge inference. 

• We found that network trimming through graphlets 
plays a crucial role in improving the performance of 
network inference. 

• pyPARAGON can construct tumor-specific networks, 
revealing hidden commonalities across tumors. 
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