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Abstract: Hepatocellular carcinoma (HCC) is the most prevalent primary liver cancer, with a high
mortality rate due to the limited therapeutic options. Systemic drug treatments improve the patient’s
life expectancy by only a few months. Furthermore, the development of novel small molecule
chemotherapeutics is time-consuming and costly. Drug repurposing has been a successful strategy for
identifying and utilizing new therapeutic options for diseases with limited treatment options. This
study aims to identify candidate drug molecules for HCC treatment through repurposing existing
compounds, leveraging the machine learning tool MDeePred. The Open Targets Platform, UniProt,
ChEMBL, and Expasy databases were used to create a dataset for drug target interaction (DTI)
predictions by MDeePred. Enrichment analyses of DTIs were conducted, leading to the selection
of 6 out of 380 DTIs identified by MDeePred for further analyses. The physicochemical properties,
lipophilicity, water solubility, drug-likeness, and medicinal chemistry properties of the candidate
compounds and approved drugs for advanced stage HCC (lenvatinib, regorafenib, and sorafenib)
were analyzed in detail. Drug candidates exhibited drug-like properties and demonstrated significant
target docking properties. Our findings indicated the binding efficacy of the selected drug compounds
to their designated targets associated with HCC. In conclusion, we identified small molecules that
can be further exploited experimentally in HCC therapeutics. Our study also demonstrated the use
of the MDeePred deep learning tool in in silico drug repurposing efforts for cancer therapeutics.

Keywords: drug candidate; drug repurposing; hepatocellular carcinoma; machine learning; MDeePred

1. Introduction

Cancer is a significant global health burden, standing as the primary reason for early
mortality (specifically between ages 30 and 69) in 134 out of 183 nations and holding the
third or fourth position in another 45 countries [1]. If current global trends persist, it is
projected that the worldwide cancer cases will surge by over 60%, reaching approximately
29.4 million cases by 2040 [2].

The primary liver cancer, hepatocellular carcinoma (HCC), arises due to chronic liver
conditions, frequently resulting from infections like hepatitis B or C, excessive alcohol
consumption, or metabolic disorders [3]. Primary liver cancer ranks among the most
prevalent cancers across the globe, with an increasing incidence in Western nations due to
obesity-associated chronic liver disease [4]. Globally, its death-to-diagnosis ratio stands at
0.91. It is diagnosed 2.3 times more in men compared to women, and a significant 72% of
these new cases emerge in Asia [5].
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Currently, recommended curative treatments for HCC include surgical resection,
liver transplantation (LT), and radiofrequency ablation (RFA) [6]. However, only one-
third of HCC patients are eligible for these curative methods. The majority of the patients
undergo non-curative treatments like transarterial chemoembolization (TACE) and systemic
medications, such as molecular targeted agents (MTAs), monoclonal antibodies, or immune
checkpoint inhibitors, as their primary treatment [7]. Finally, advanced-stage tumors
are typically treated with systemic medications like combinations such as atezolizumab
and bevacizumab, as well as individual drugs like sorafenib, lenvatinib, regorafenib,
cabozantinib, and ramucirumab [8].

For treatment options for cancer in general, including primary liver cancer, targeted
drug therapies stand out as effective methods. Pre-clinical and clinical studies, manufac-
turing procedures, target identification and validation, therapeutic screening, and lead
compound optimization are complex and protracted processes involved in the systemic
drug development process. All of these stages present significant difficulties in the quest
to identify efficacious systemic drugs for tackling cancer [9]. The current systemic drug
discovery process is not only costly but also time-inefficient. Introducing a new drug to the
market requires about 15 years of time, irrespective of the cost [10]. Given the prolonged
nature of drug development, drug repurposing has emerged as a beneficial and effective
approach to discovering and developing new drug molecules. It is highlighted as a method
that saves both time and money in delivering new therapeutic agents. Since the safety,
dosage, and toxicity of existing drugs are typically already established, they can move
through clinical stages faster than brand-new drugs [11].

In light of these challenges and considerations, this study aims to identify candi-
date drug molecules for HCC therapeutics through drug repurposing among existing
compounds found in small molecule databases. To achieve this, we employed a recently
developed deep learning-based method named MDeePred [12]. Our proposed approach
holds promise in streamlining the drug discovery process by leveraging existing data and
computational methods to identify potential therapeutic options not limited to HCC but
also for other cancers.

2. Results
2.1. Datasets

To find HCC-related genes, the Open Targets Platform database was used. The Open
Targets Platform integrates an extensive genetic and biomedical database to comprehen-
sively analyze genes associated with complex diseases. Utilizing this platform to identify
genes responsible for HCC is crucial for better understanding the genetic basis of the
disease and pinpointing specific genes and mutations that contribute to its development.
The Open Targets Platform enables genetic associations, somatic mutations, biological
pathways, and their connections to a disease such as HCC. This facilitates more accurate
identification of genes directly involved in the pathogenesis of HCC. By using this platform,
we identified high-confidence 7853 HCC-related data, which is a key step towards iden-
tifying potential therapeutic targets and developing new treatment approaches for HCC.
After genetic associations and somatic mutations selection, 673 genes were obtained that
were associated with HCC (Table S1). The selection of “genetic associations and somatic
mutations” was crucial in the identification of genes directly associated with HCC. Genetic
associations reveal disease-linked variants and their potential roles in the development
of HCC, while somatic mutations identify genetic changes that occur within cancer cells,
directly contributing to tumor formation. By combining these two criteria, the selection
of HCC-associated genes becomes more specific and targeted for therapeutics. Therefore,
using these two approaches together not only identifies HCC-associated genes but also
enhances our understanding of their impact on HCC. This step is vital for determining
potential biomarkers and therapeutic targets, thereby increasing the accuracy and relevance
of the research.
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To obtain the set of genes used in this research, the arithmetic mean of the genetic
associations and somatic mutation scores was calculated. Then, genes that have an arith-
metic mean value 0.25 and above were selected. The cut-off value of 0.25 was chosen
to filter genes strongly associated with HCC, ensuring only the most relevant genes are
selected while minimizing false positives. This threshold balances the gene pool, avoiding
excessive noise without excluding significant candidates. By combining genetic association
and somatic mutation data, this cut-off enhances the reliability of the study and ensures
biologically meaningful results. Thus, 106 genes that are associated with HCC were selected
as our actual genes. Table S2 shows 106 genes and their genetic associations and somatic
mutation scores.

By using the ChEMBL database, a compound–protein activity training dataset for
each target was created. While choosing compounds, the IC50 and pChEMBL values were
taken into account, and some filtering criteria were done (refer to Table S3). After that,
46,400 data (for 106 genes) were grouped to select the transferases by using the ChEMBL,
UniProt, and Expasy databases. At first, it was checked whether the targets were enzymes
or not. Then, the enzyme class of the targets that were enzymes were determined. Finally,
22 targets (38,794 data) were identified as transferases (Table 1).

Table 1. Identification of 22 targets as transferases.

Genes ChEMBL ID Genes Name

ACVR2A CHEMBL5616 Activin receptor type-2A
AKT1 CHEMBL4282 Serine/threonine-protein kinase AKT
ALK CHEMBL4247 ALK tyrosine kinase receptor
ATM CHEMBL3797 Serine-protein kinase ATM

CREBBP CHEMBL5747 CREB-binding protein
ERBB3 CHEMBL5838 Receptor tyrosine-protein kinase erbB-3
FGFR1 CHEMBL3650 Fibroblast growth factor receptor 1
FLT3 CHEMBL1974 Tyrosine-protein kinase receptor FLT3
FLT4 CHEMBL1955 Vascular endothelial growth factor receptor 3
JAK3 CHEMBL2148 Tyrosine-protein kinase JAK3
KDR CHEMBL279 Vascular endothelial growth factor receptor 2
KIT CHEMBL1936 Stem cell growth factor receptor

KMT2A CHEMBL1293299 Histone-lysine N-methyltransferase MLL
MAP3K1 CHEMBL3956 Mitogen-activated protein kinase kinase kinase 1

MET CHEMBL3717 Hepatocyte growth factor receptor
NTRK1 CHEMBL2815 Nerve growth factor receptor Trk-A
PIK3CA CHEMBL4005 PI3-kinase p110-alpha subunit

PRKACA CHEMBL4101 cAMP-dependent protein kinase alpha-catalytic subunit
RET CHEMBL2041 Tyrosine-protein kinase receptor RET

ROS1 CHEMBL5568 Proto-oncogene tyrosine-protein kinase ROS
SETD2 CHEMBL3108647 Histone-lysine N-methyltransferase SETD2
TERT CHEMBL2916 Telomerase reverse transcriptase

The genes given in Table 1 play critical roles in the pathogenesis of HCC, affecting
tumor cell survival, proliferation, and metastasis. TERT and PIK3CA are involved in
telomerase activity and the PI3K/AKT signaling pathway, promoting cell immortalization
and survival [13]. Tyrosine kinase receptors such as MET, ALK, RET, and ROS1 facilitate
HCC cell invasion and metastasis by regulating growth, migration, and differentiation [14].
Epigenetic regulators like CREBBP and SETD2 control gene expression through histone
modifications, with their dysregulation leading to tumor development [15–17]. Signaling
pathways involving AKT1 and MAP3K1 influence cell survival and apoptosis, enhancing
tumor growth when activated [18–22]. VEGF receptors (KDR, FLT4, FGFR1, and FLT3) and
FGF receptors support tumor angiogenesis, providing essential nutrients for growth [23,24].
KIT and ERBB3 receptors regulate cellular growth and differentiation, driving tumor prolif-
eration [25–27]. JAK3 and NTRK1 impact signaling pathways and immune responses, while
ATM and KMT2A are involved in DNA repair and gene expression [28–32]. Protein kinases
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such as ACVR2A and PRKACA participate in signaling pathways governing cell growth
and differentiation, with their dysregulation contributing to tumor progression [33–35].
Given their crucial roles in HCC, these genes are valuable therapeutic targets, and their
inhibitors or modulators hold potential to halt or slow disease progression [36].

2.2. Results of MDeePred

The MDeePred technique was selected as the machine learning approach to identify
potential drug candidates for HCC. To create the train and test datasets, data with more
than one datum of the same gene for the same molecule, coming from different experiments,
were deduplicated. To handle the duplicate data, we used the median bioactivity value.
As a result, a total of 38,794 data for 22 tranferases was reduced to 30,821 data. The train
and test datasets were created by using deduplicated data. After that, MDeePred was
performed with these datasets. We obtained 380 DTIs after MDeePred (Table S4).

Six DTIs, which target–compound relationship has been studied in the literature,
among 380 DTIs were decided to be used for further studies (Table 2).

Table 2. Selected drug–target interactions list.

Ligand
(Drug/Compound)

Molecular Formula
of Ligands

2D Structure of
Ligands Target Protein

CHEMBL388978
(Staurosporine) C28H26N4O3
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Table 2. Cont.

Ligand
(Drug/Compound)

Molecular Formula
of Ligands

2D Structure of
Ligands Target Protein

CHEMBL1773601 C22H19N3O4S2

Int. J. Mol. Sci. 2024, 25, 9392 5 of 20 
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2.3. Enrichment Analyses of the MDeePred Results

For HCC, molecular function enrichment analysis is crucial for the identification
of therapeutic targets, understanding the disease mechanism, diagnosis and prognosis
of the disease, and evaluating the treatment response. Therefore, molecular function
enrichment analysis for HCC is a critical tool to understand the molecular basis of this
cancer, potential treatment targets, and treatment responses. As a result of enrichment
analyses of the MDeePred results, molecular functions were grouped into two categories.
These are transmembrane receptor protein tyrosine kinase activity (Figure 1) and ATP
binding (Figure 2). Biological process analyses were grouped into 27 main categories
(Figure 3).
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2.4. SwissADME and Molecular Docking Results

SwissADME and molecular docking are critically important tools for evaluating,
optimizing, and selecting potential drug candidates for HCC treatment. These tools can
expedite the drug development process, contributing to the development of more effective
and safer treatments.

The schematic diagram of oral bioavailability is used to quickly assess the pharma-
cokinetic properties (lipophilicity, size, polarity, insolubility, insaturation, and flexibility)
of a drug candidate. This is particularly important in the drug design and development
stage to predict the oral bioavailability of potential drug candidates. A schematic diagram
of the oral bioavailability of the drug candidate compounds, lenvatinib, regorafenib, and
sorafenib is illustrated in Figure 4.
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CHEMBL1773581. (F) CHEMBL1773601. (G) Lenvatinib. (H) Regorafenib. (I) Sorafenib.
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The BOILED-Egg diagram is a graphical tool used to predict a molecule’s overall
absorption, distribution, metabolism, and excretion (ADME) properties. The BOILED-Egg
represents predictions on the gastrointestinal absorption (GIA) and the ability of a molecule
to cross the blood–brain barrier (BBB). The BOILED-Egg diagram of the drug candidate
compounds and approved HCC drugs is illustrated in Figure 5.
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Figure 5. BOILED-Egg diagram of the drug candidate compounds and drugs. (1) CHEMBL388978.
(2) CHEMBL1615189. (3) CHEMBL328029. (4) CHEMBL1165499. (5) CHEMBL1773581.
(6) CHEMBL1773601. (7) Lenvatinib. (8) Regorafenib. (9) Sorafenib.

The predictive findings related to physicochemical characteristics, lipophilicity, water
solubility, pharmacokinetics, drug-likeness, and medicinal chemistry of the drug candidate
compounds, lenvatinib, regorafenib, and sorafenib are illustrated in Tables 3 and S5–S8.

In addition, molecular docking analyses were applied to the selected six DTIs, which
contain five different protein targets from the transferase class after the MDeePred analysis,
six drug candidates together with lenvatinib, regorafenib, and sorafenib. In Figure 6, drug
candidates and drugs for human HCC are illustrated, along with the best poses in their
docking with the binding site of their targets.

Additionaly, Table 4 shows the docking results (vina score, cavity volume (Å3), and
contact residues) of lenvatinib, regorafenib, and sorafenib and our six DTI transferases.
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Figure 6. The best poses in the molecular docking of DTIs. (A) FGFR1 and CHEMBL328029. (B) ALK
and CHEMBL1165499. (C) AKT1 and CHEMBL1773601. (D) AKT1 and CHEMBL1773581. (E) FLT3
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interact with target proteins.
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Table 3. Drug-likeness of the drug candidate compounds and drugs (lenvatinib, regorafenib, and
sorafenib).

Drug
Candidate

Compounds
Lipinski Ghose Veber Egan Muegge Bioavailability

Score

CHEMBL388978 Yes;
0 violation

No;
1 violation:
MR > 130

Yes Yes
No;

1 violation:
#rings > 7

0.55

CHEMBL1615189 Yes;
0 violation

No;
1 violation:

WLOGP > 5.6
Yes

No;
2 violations:

WLOGP > 5.88,
TPSA > 131.6

Yes 0.55

CHEMBL328029 Yes;
0 violation Yes Yes Yes Yes 0.55

CHEMBL1165499 Yes;
0 violation

No;
1 violation:
MR > 130

Yes Yes Yes 0.55

CHEMBL1773581 Yes;
0 violation Yes

No;
1 violation:
TPSA > 140

No;
1 violation:

TPSA > 131.6

No;
1 violation:
TPSA > 150

0.55

CHEMBL1773601 Yes;
0 violation Yes Yes

No;
1 violation:

TPSA > 131.6
Yes 0.55

Lenvatinib Yes;
0 violation Yes Yes Yes Yes 0.55

Regorafenib Yes; 0 violation

No;
2 violations:
MW > 480,

WLOGP > 5.6

Yes
No;

1 violation:
WLOGP > 5.88

Yes 0.55

Sorafenib Yes; 0 violation
No;

1 violation:
WLOGP > 5.6

Yes
No;

1 violation:
WLOGP > 5.88

Yes 0.55

Table 4. Docking results of the ligands; MDeePred DTI transferases; and approved drugs: lenvatinib,
regorafenib, and sorafenib.

Ligand
(Drug/Compound)

Target
Protein

Vina
Score

Cavity
Volume (Å3) Contact Residues

CHEMBL328029 FGFR1 −8.7 543 ILE19 GLN24 LYS51 LEU54 PHE55 GLY58 GLN59 ILE61 MET62
VAL75 PHE91 VAL93 HIS96 ILE99 TYR100

CHEMBL1165499 ALK −9.6 6263

VAL131 ASP133 GLU135 VAL136 ASN426 ILE427 ASN428 MET441
ALA442 LEU443 TRP446 VAL461 THR462 GLY463 SER464 LYS468
LEU639 LYS640 GLU642 GLN643 LEU645 THR679 VAL680 SER681
GLN682 ARG683

CHEMBL1773601 AKT1 −7.8 110 LYS8 GLU9 GLY10 TRP11 LEU12 HIS13 PRO24 TYR26 ARG41
VAL90 GLU91 GLU95 TRP99

CHEMBL1773581 AKT1 −7.4 110 LYS8 GLU9 GLY10 TRP11 LEU12 HIS13 PRO24 HIS89 VAL90
GLU91 GLU95 TRP99

CHEMBL388978 FLT3 −9.6 1932
GLY1121 LEU1122 GLY1123 HIS1124 GLY1125 VAL1130 ALA1148
LYS1150 VAL1180 LEU1196 GLU1197 LEU1198 MET1199 GLY1202
ASP1203 ARG1253 ASN1254 LEU1256 GLY1269 ASP1270

CHEMBL1615189 PIK3CA −9.6 904 LEU484 GLY485 VAL492 ALA512 LYS514 GLU531 MET535 ILE545
VAL561 GLU562 TYR563 ALA564 GLY567 LEU630 ALA640 ASP641
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Table 4. Cont.

Ligand
(Drug/Compound)

Target
Protein

Vina
Score

Cavity
Volume (Å3) Contact Residues

Lenvatinib FGRF1 −9.1 8731

ARG576 ARG577 PRO578 LEU595 SER596 SER597 LEU600 TRP691
PHE694 THR695 LEU696 GLY698 SER699 TYR701 PRO702 HIS717
ARG718 MET719 ASP720 LYS721 PRO722 SER723 ASN724 TYR730
ARG577 PRO578 LEU595 LEU600 TRP691 PHE694 THR695 LEU696
GLY697 GLY698 SER699 PRO700 TYR701 PRO702 HIS717 ARG718
MET719 ASP720 LYS721 PRO722 SER723 ASN724 ASN727

Lenvatinib ALK −9.0 1932

ARG1120 LEU1122 GLY1123 HIS1124 GLY1125 ALA1126 VAL1130
GLU1132 ALA1148 VAL1149 LYS1150 VAL1180 LEU1196 GLU1197
LEU1198 MET1199 ALA1200 GLY1201 GLY1202 ASP1203 LYS1205
SER1206 ASP1249 ARG1253 ASN1254 CYS1255 LEU1256 GLY1269
ASP1270 GLY1272 MET1290

Lenvatinib AKT1 −6.7 110 VAL7 LYS8 GLU9 GLY10 TRP11 LEU12 HIS13 PRO24 ARG25
TYR26 ARG41 HIS89 VAL90 GLU91 GLU94 GLU95 GLU98 TRP99

Lenvatinib FLT3 −8.5 832

TYR572 GLU573 SER574 GLN575 TYR589 TYR591 PHE621 ALA657
ARG810 ASP811 ASN816 ASP829 PHE830 GLY831 LEU832 ARG834
ILE836 TYR842 ARG845 GLY846 ASN847 ALA848 ARG849 LEU850
PRO851 MET855 SER859 LEU860 PHE861 GLU862 GLY863 ILE864
TYR865

Lenvatinib PIK3CA −8.9 6263

GLU127 MET130 VAL131 LYS132 ASP133 PRO134 GLU135 VAL136
ASN426 ILE427 ASN428 PHE430 ASP431 TYR432 THR435 LEU436
VAL437 SER438 MET441 ALA442 LEU443 TRP446 VAL461 THR462
GLY463 SER464 ASN465 PRO466 LYS468 LYS640 GLU642 GLN643
TYR644 LEU645 THR679 VAL680 GLN682 ARG683

Regorafenib FGRF1 −9.9 8731

GLN574 ARG577 PRO578 TRP691 PHE694 THR695 LEU696 GLY698
SER699 PRO700 TYR701 PRO702 VAL704 HIS717 ARG718 MET719
ASP720 LYS721 PRO722 SER723 ASN724 TYR730
ARG577 PRO578 LEU595 SER597 LEU600 TRP691 PHE694 THR695
LEU696 GLY697 GLY698 SER699 PRO700 TYR701 PRO702 VAL704
LEU712 GLU715 GLY716 HIS717 ARG718 MET719 ASP720 LYS721
PRO722 SER723 ASN724 ARG734

Regorafenib ALK −9.6 1932

ARG1120 GLY1121 LEU1122 GLY1123 HIS1124 GLY1125 ALA1126
VAL1130 GLU1132 GLN1146 ALA1148 LYS1150 VAL1180 LEU1196
GLU1197 LEU1198 MET1199 ALA1200 GLY1201 GLY1202 ASP1203
LYS1205 SER1206 ASP1249 ARG1253 ASN1254 CYS1255 LEU1256
GLY1269 ASP1270 GLY1272 MET1273 MET1290

Regorafenib AKT1 −7.2 110
ILE6 VAL7 LYS8 GLU9 GLY10 TRP11 LEU12 HIS13 PRO24 ARG25
TYR26 LYS39 GLU40 ARG41 HIS89 VAL90 GLU91 GLU95 GLU98
TRP99 THR101 ALA102 THR105

Regorafenib FLT3 −8.6 832

TYR572 GLU573 SER574 GLN575 LEU576 GLN577 MET578 TYR589
TYR591 VAL592 ASP593 PHE594 ARG595 PHE621 LEU646 ARG655
GLU656 ALA657 SER660 GLU661 MET664 ARG810 ASP811
ASN816 ASP829 PHE830 GLY831 LEU832 ARG834 ILE836 TYR842
ASN847 ALA848 ARG849 LEU850 PRO851 MET855 SER859 LEU860
GLU862 GLY863 TYR865

Regorafenib PIK3CA −10.0 2313

TYR165 VAL166 TYR167 PRO168 ASN170 VAL196 ILE197 TYR250
LYS253 VAL254 CYS257 ASP258 GLU259 TYR260 LYS271 TYR272
SER275 MET286 LEU287 MET288 ALA289 SER292 SER295 GLN296
LEU297 PRO298 GLN661 ARG662 HIS665 PHE666 MET697 TYR698
HIS701 GLY750 PHE751 LEU752 ASN756 PRO757 ALA758 HIS759
GLN760 LEU761 GLY762 PRO786 ASP787 ILE788 LEU793 PHE794
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Table 4. Cont.

Ligand
(Drug/Compound)

Target
Protein

Vina
Score

Cavity
Volume (Å3) Contact Residues

Sorafenib FGRF1 −9.9 348

LEU484 GLY485 GLU486 GLY487 ALA488 PHE489 GLY490 GLN491
VAL492 ALA512 VAL513 LYS514 MET515 LEU516 ASP524 ASP527
LEU528 GLU531 MET535 ILE545 VAL559 VAL561 GLU562 TYR563
ALA564 GLY567 ASN568 ARG570 GLU571 ARG627 ASN628
LEU630 ILE639 ALA640 ASP641 PHE642 LEU644 ALA645 THR657
THR658 ASN659

Sorafenib ALK −8.9 1932

ARG1120 LEU1122 GLY1123 HIS1124 GLY1125 ALA1126 VAL1130
GLU1132 ALA1148 VAL1149 LYS1150 VAL1180 LEU1196 GLU1197
LEU1198 MET1199 ALA1200 GLY1202 ASP1203 LYS1205 SER1206
GLU1210 ASP1249 ARG1253 ASN1254 LEU1256 GLY1269 ASP1270
GLY1272 MET1273

Sorafenib AKT1 −7.0 152
LYS14 ARG15 GLY16 GLU17 TYR18 ILE19 LYS20 ARG23 LEU52
ASN53 ASN54 PHE55 THR65 GLU66 ARG67 PRO68 THR72 ILE74
ARG76 GLN79 THR82 VAL83 ILE84 GLU85 ARG86 THR87

Sorafenib FLT3 −10.3 832

TYR572 GLU573 SER574 GLN575 LEU576 GLN577 MET578 TYR591
VAL592 ASP593 PHE594 ARG595 PHE621 GLU656 ALA657 SER660
GLU661 MET664 ARG810 ASP811 ASN816 ASP829 PHE830 GLY831
LEU832 ARG834 ILE836 TYR842 ARG845 GLY846 ASN847 ALA848
ARG849 LEU850 PRO851 MET855 SER859 LEU860 GLU862 GLY863
ILE864 TYR865

Sorafenib PIK3CA −10.3 2313

TYR165 VAL166 TYR167 PRO168 PRO169 ASN170 ASP258 GLU259
TYR260 MET288 SER292 LEU293 GLN296 LEU297 PRO298 ASP300
GLN661 ARG662 HIS665 CYS695 GLY696 MET697 TYR698 LYS700
HIS701 GLY750 PHE751 LEU752 ASN756 PRO757 ALA758 GLN760

2.5. Literature-Based Validation of Novel DTI Predictions towards Drug Repurposing

As a result of the literature review of 380 DTIs, for only 6 DTIs, publications showing
the target compound relationship were found. Table 5 lists the DTI predictions for each
interaction that have been supported by the literature, along with the original source. In
addition, the IC50 values of six DTIs were obtained from ChEMBL.

Table 5. Literature verified the selected DTI predictions of MDeePred.

Ligand (Drug/
Compound)

Target
Protein

Experimental
Bioactivity Reference

CHEMBL328029 Fibroblast growth factor receptor 1
(FGFR1) IC50: 10,500 nM [37]

CHEMBL1165499 ALK tyrosine kinase receptor (ALK) IC50: 33 nM [38]

CHEMBL1773601 Serine/threonine-protein kinase AKT
(AKT1) IC50: 1160 nM [39]

CHEMBL1773581 Serine/threonine-protein kinase AKT
(AKT1) IC50: 1260 nM [39]

CHEMBL388978
(Staurosporine)

Tyrosine-protein kinase receptor FLT3
(FLT3) IC50: 1 nM [40]

CHEMBL1615189 PI3-kinase p110-alpha subunit
(PIK3CA) IC50: 6.3 nM [39]

3. Discussion

HCC is a common malignant tumor in the digestive system. It ranks fifth in incidence
and third in fatality rate among all malignant tumors globally. Primary liver cancer of-
ten develops without noticeable symptoms, and the majority of cases are diagnosed at
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an intermediate or advanced stage, resulting in a poor prognosis [41]. While systemic
chemotherapy has improved survival rates in HCC patients, progress in treatment out-
comes remains slow and insufficient [42]. Additionally, the development of new drugs
is both a lengthy and expensive process that typically takes 10–15 years to develop a
new drug candidate, with an average success rate of only 2.01% [43]. Drug repurposing
leverages approved or investigational drugs for applications beyond their original medical
indications. The main advantage is that their pharmacokinetic, pharmacodynamic, and
toxicity profiles are already established from early studies. This allows these drugs to
quickly progress to phase II and III clinical trials [44].

In this study, we aimed to identify candidate therapeutic compounds for HCC by
repurposing existing small molecule drugs using a machine learning approach named
MDeePred. MDeePred was used to identify potential drug candidates targeting genes
responsible for HCC through a DTI study. We identified 380 DTIs using the MDeePred
method (Table S4). After reviewing the current literature on these 380 drug–target inter-
actions, six were chosen for further investigation (Table 2). Among these, five proteins
associated with HCC carcinogenesis were identified: FGFR1, ALK, AKT1, FLT3, and PI3K.
Each of these target proteins plays crucial roles in various metabolic processes, and their
dysfunctions contribute to the development and progression of HCC. Fibroblast growth
factor receptor 1 (FGFR1) belongs to the type 4 receptor tyrosine kinase family (FGFR1–4),
which binds to fibroblast growth factors (FGFs) [45]. Overexpression of FGFR1 has been
found to have important roles in HCC [46,47]. Anaplastic lymphoma kinase (ALK) is a
significant molecular target in the receptor tyrosine kinase family, holding vast relevance in
drug discovery, particularly for cancer treatments. ALK is a member of the insulin receptor
superfamily and plays a role in multiple malignancies, HCC being one of them [48,49]. The
PI3K/Akt/mTOR signaling pathway promotes cell growth, invasion, and angiogenesis
and prevents cell apoptosis in various cancers [48]. Loss of the PTEN tumor suppressor
protein leads to hyperactivity in the PI3K/Akt pathway, which promotes cell survival
and resistance to therapeutics in various cancers, including liver cancer [50,51]. FLT3 is a
receptor tyrosine kinase, and its inhibition has been shown to reduce tumor size in HCC,
making it a promising therapeutic target for treatment [52,53].

The enrichment target proteins that are selected as a result of MDeePred prediction
resulted in molecular function classification into two main categories: transmembrane
receptor protein tyrosine kinase activity (Figure 1) and ATP binding (Figure 2). Meanwhile,
analyses of biological processes were categorized into 27 primary groups (Figure 3). To the
best of our knowledge, the predicted drug molecules have never been tested on these target
proteins with respect to HCC. After that, SwissADME (Figures 4 and 5 and Table 3 and
Tables S5–S8) and the molecular docking properties (Figure 6 and Table 4) were determined
for six DTIs that contain five different targets, six drug candidates; and HCC-approved
drugs (lenvatinib, regorafenib, and sorafenib).

The oral bioavailability radar offers a brief evaluation of a compound’s drug-likeness
by evaluating six physicochemical properties: saturation, lipophilicity, polarity, size, solu-
bility, and flexibility [54]. The lipophilicity (XLOGP3) ranged between −0.7 and +5.0, and
molecular weights were between 150 and 500. Polarity, defined by TPSA, ranged from
20 to 130 Å2, while solubility (log S) did not exceed 6. The saturation, indicated by the
fraction of carbons in sp3 hybridization, was not less than 0.25, and flexibility was defined
by a maximum of nine rotatable bonds (Figure 4 and Table S5) [55]. CHEMBL388978,
CHEMBL328029, and CHEMBL1165499 fall within the favorable zone for lipophilicity,
size, polarity, solubility, saturation, and flexibility. CHEMBL1615189 and CHEMBL1773601
meet all the criteria, except for saturation. CHEMBL1773581 meets all the criteria, except
for saturation and polarity. The analyzed drugs approved for HCC treatment, lenvatinib,
regorafenib, and sorafenib, meet all the criteria, except saturation.

In the BOILED-Egg diagram (Figure 5), the selected compounds within the white el-
lipse indicate potential for GIA. Those in the yellow ellipse, or “yolk”, suggest a strong like-
lihood of crossing the BBB to access the central nervous system (CNS) [56]. CHEMBL388978,
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CHEMBL328029, and CHEMBL1165499, as shown in the diagram, demonstrate high BBB
penetration and GIA. Only lenvatinib demonstrated high GIA.

The methods iLOG, XLOGP3, WLOGP, MLOGP, and SILICOS-IT were used to esti-
mate the Log Po/w values for the compounds. These different methods represent vari-
ous methodologies to estimate how lipophilic (or hydrophobic) a compound is [57–62].
The consensus Log Po/w value is calculated as the arithmetic mean of the predictions
made by these five methods. This average provides a more reliable estimate by bal-
ancing out the potential biases or errors of individual methods [57]. The Log Po/w is
ranged between −0.7 and +5.0 according to the oral bioavailability radar. This range is
significant for determining the oral bioavailability of these compounds. The specific Log
Po/w values for CHEMBL388978, CHEMBL1615189, CHEMBL328029, CHEMBL1165499,
CHEMBL1773581, and CHEMBL1773601 are reported in Table S6, all falling within the
acceptable range, indicating favorable characteristics for oral absorption. Lenvatinib falls
within the acceptable range. Regorafenib and sorafenib fall within the acceptable range,
except for Log Po/w (WLOGP). The water solubility of the compounds is categorized
using Log S values, which range from insoluble (−10) to highly soluble (0) [63,64]. The
Log S values of CHEMBL388978, CHEMBL1615189, CHEMBL328029, CHEMBL1165499,
CHEMBL1773581, CHEMBL1773601, lenvatinib, regorafenib, and sorafenib are given in Ta-
ble S7. CHEMBL388978, CHEMBL1165499, and CHEMBL1773581 are within the acceptable
range for the moderately soluble class. CHEMBL328029 is within the acceptable range for
the soluble class. CHEMBL1615189 and CHEMBL1773601 are within the acceptable range
for the poorly soluble class. Moreover, lenvatinib, regorafenib, and sorafenib are within the
acceptable range for the moderately soluble class.

The drug-likeness of the candidate compounds is evaluated using SwissADME, which
applies rule-based filters and the Abbot bioavailability score to determine their suitability
based on key pharmacokinetics criteria (Table 3) [65]. CHEMBL388978, CHEMBL1615189,
and CHEMBL1773581 meet several of these criteria, with each compound adhering to
different combinations of the Lipinski, Veber, Egan, and Muegge rules. CHEMBL328029
and CHEMBL1165499 show broader compliance, aligning with nearly all filters, except
Ghose in the case of CHEMBL1165499. Meanwhile, CHEMBL1773601 satisfies all but the
Egan rule. Lenvatinib shows broader compliance, aligning with all filters. Regorafenib
and sorafenib satisfy all but the Ghose and Egan rules. These assessments indicate that the
compounds possess characteristics favorable for drug development, with varying degrees
of alignment to the established pharmacokinetic rules.

Pan-assay interference compounds (PAINS) are known for their problematic non-
specific interactions with multiple biological targets, which can lead to misleading out-
comes in drug discovery [66]. Another tool used in the assessment is the Brenk filter,
which helps identify unwanted functionalities that might contribute to potential toxicity
or unfavorable pharmacokinetics. CHEMBL388978, CHEMBL1165499, CHEMBL1773581,
CHEMBL1773601, lenvatinib, regorafenib, and sorafenib passed this filter without any
alerts, while CHEMBL1615189 and CHEMBL328029 each had one alert, suggesting some
concerns regarding their functional groups, as noted in Table S8. Lead-likeness is another
important criterion, focusing on the overall suitability of a compound as a starting point
for drug development. Here, only CHEMBL328029 met all the criteria with no violations,
indicating its potential as a promising lead candidate. Furthermore, the synthetic accessibil-
ity of these compounds, which measures how easily they can be produced using standard
synthetic methods, indicates that all are relatively easy to synthesize [57]. CHEMBL328029
stands out as particularly accessible, making it not only a lead-like but also a synthetically
feasible candidate for further development. This combination of favorable properties makes
CHEMBL328029 a standout in the group, despite the single alert in the Brenk filter.

Molecular docking is an important tool used to predict the binding behaviors of small
molecules to their target proteins, identifying potential sites and affinities crucial for drug
development [67,68]. Here, the docking results provide insights into the molecular interac-
tions specific to HCC for the MDeePred DTIs. The visual molecular interactions in Figure 6
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and vina scores in Table 4 indicate that the compounds have favorable docking properties
for their protein targets. The greater the negative value of the vina score, the greater the
Gibbs binding energy for drug–target complexes. This increases the binding potential
of drug–target complexes. Contact residues and bonds showed contact amino acids and
bond structures between the ligands and target proteins. The vina scores determined for
lenvatinib, regorafenib, and sorafenib used in the treatment of advanced HCC and the vina
scores of the six small molecules highlighted in our study were compared. The negative
vina score (or Gibbs binding energy) of CHEMBL1165499 was found to be higher than
sorafenib and equal to regorafenib for ALK. The negative vina scores of CHEMBL1773601
and CHEMB1773581 were found to be higher than all the drugs for AKT1. The negative
vina score of CHEMBL388978 was found to be higher than lenvatinib and regorafenib for
FLT3. The negative vina score of CHEMBL1615189 was found to be higher than lenva-
tinib for PIK3CA. As a result of the comparisons made with lenvatinib, regorafenib, and
sorafenib used in the treatment of advanced HCC, it was determined that the six small
molecules featured in our study are promising drug candidates to be used in the treatment
of HCC.

Finally, we performed a literature survey on the MDeePred predicted small molecules
(Table 5) [37–40]. The pairing of FGFR1 with CHEMBL328029 was reported as the potential
biological target of small molecules using in silico repositioning strategies, ligand-based sim-
ilarity predictions, and molecular docking analyses. Additionally, the ALK and its potential
binding molecule, CHEMBL1165499, were described as new kinases for therapeutic drug
targets. Molecules CHEMBL1773601, CHEMBL1773581, and CHEMBL1615189 targeting
AKT1 and PIK3CA were reported as a result of the structure of selective kinase inhibitors
using molecular modeling and 3D-QSAR methods. Validated with experimental data,
the model demonstrated high reliability in predicting the effectiveness of these inhibitors.
Staurosporine, a well-known multi-kinase inhibitor effective at micromolar concentrations,
shows target specificity at lower concentrations. The interaction between CHEMBL388978
(staurosporine) and FLT3 was reported to have bioactivity at nanomolar concentrations.

The current treatments for HCC vary depending on the disease stage, tumor size,
the patient’s overall health, and liver function. However, the widely accepted treatments
include surgical resection, liver transplantation, local ablative therapies, TACE, molecular
targeted therapies, and immunotherapy. Our study focuses on molecular targeted thera-
pies, specifically tyrosine kinase inhibitors like sorafenib and lenvatinib, which are drug
treatments approved for advanced HCC. These small molecule agents work by inhibiting
tumor growth and angiogenesis [69–73]. Our study identified six small molecules, all inter-
acting with genes exhibiting kinase activity, including FGFR1, ALK, and FLT3 proteins with
tyrosine kinase activity. These findings suggest that the six small molecules could be further
exploited as kinase or tyrosine kinase inhibitors in the treatment of HCC. These potential
drug candidates will be available for clinical use following in vitro and in vivo studies.

In this study, small molecule drug candidates for HCC treatment were identified using
the machine learning-based in silico MDeePred method for drug repurposing. We demon-
strated that machine learning tools can be effectively used for drug repurposing in HCC
to identify potential new therapeutic agents that carry highly drug-like properties similar
to those of HCC-approved drugs. Consequently, the MDeePred-based drug repurposing
method provided new drug candidates for HCC that can be less costly and time-consuming.
Our approach using the MDeePred method can also be applied to other types of cancer.

4. Materials and Methods
4.1. Data Collection

HCC-related genes were identified using the Open Targets Platform database. The
Open Targets Platform is used as a powerful tool to find disease-associated genes. By
integrating a wide range of information from genetic data, clinical findings, and biomedical
databases, it helps to identify potential genetic targets contributing to the etiology of a
disease [74]. Genetic associations and somatic mutations were chosen as data-type filters.



Int. J. Mol. Sci. 2024, 25, 9392 16 of 20

The arithmetic mean of the genetic associations and somatic mutations was calculated to
select the actual HCC-related genes to be used in this research [75]. The gene list is given in
Table S1.

The UniProt database was used to verify the protein products of the selected HCC-
related genes. UniProt is a protein database that provides comprehensive, high-quality
information on protein sequences and functions for biological research [76]. The ChEMBL
database was used to construct the manually curated compound–protein activity dataset for
each HCC-related gene (called targets during this study). ChEMBL is a chemical database
that provides comprehensive information on small molecules with known biological activi-
ties and their potential in drug discovery [77]. First, datasets were filtered with respect to
the “target organism” (i.e., Homo sapiens), “target type” (i.e., single protein), “assay type”
(i.e., binding assays), “standard unit” (i.e., molar), “standard type” [i.e., the half maximal
inhibitory concentration (IC50)], and “standard relation” (i.e., = and >) attributes (Table S3).
We noticed that the dataset contained repeated measurements from separate experiments.
To handle this, we calculated the median bioactivity for each pair and used this as the
single bioactivity measurement. We then excluded the bioactivity measurements without
pChEMBL value, which represents the half-maximal response on a negative logarithmic
scale. A data point with a pChEMBL value indicates that the corresponding record has been
curated and is thus considered reliable [78]. Following data filtration (filtered gene sets
are given in Table S3), the dataset was grouped using the UniProt, ChEMBL, and Expasy
databases. We selected the “HCC-associated transferases” enzyme class as our final dataset
to employ MDeePred drug target deep learning-based binding affinity prediction in the
tool [12,79,80].

The rationale behind the selection of transferases lies in their critical involvement in
transferring functional groups, such as phosphate, methyl, or hydroxyl groups. Transferases
play pivotal roles in modulating protein function and activity, which are indispensable
processes in the context of carcinogenesis. Phosphate transferases, for instance, regulate
signal transduction pathways by phosphorylating proteins, thereby influencing cell growth
and differentiation. Similarly, methyl and hydroxyl transferases contribute to epigenetic
modifications and post-translational modifications of proteins, ultimately impacting gene
expression and cellular functions associated with cancer development and progression.
By targeting transferases involved in these essential molecular mechanisms, we aim to
gain insights into their potential as therapeutic targets and elucidate their roles in driving
oncogenic processes.

4.2. Data Preperation for MDeePred and Selection of the DTIs

The MDeePred method was employed as a deep learning tool to identify the even-
tual drug candidates for HCC. For the MDeePred method, training and test datasets
were formed using the “transferases” bioactivity drug target data, according to Rifaioglu
et al. [12]. In MDeePred, each compound is depicted as a 2D image of 200 × 200 pixels,
showing its molecular structure from their SMILES strings. SMILES is a standardized
representation available in open-access bioactivity data repositories, which includes all the
necessary information for generating the 2D images.

We then used the MDeePred tool trained specifically for the “HCC-associated trans-
ferases” dataset to screen over a million small molecule drug compound entries from the
ChEMBL database (v24) to predict novel DTIs. Subsequent to this, a statistical measure was
undertaken to assign the bioactivities of small molecules of the targets within the extensive
DTI predictions. We conducted an ontology-based enrichment test, specifically for protein
sets, to discern the shared characteristics of these targets. In this analysis, annotations were
overrepresented based on GO molecular function and biological process ontology terms
were prioritized based on their statistical relevance on target proteins [81].
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4.3. In Silico Validation of Predicted Small Molecule Target HCC Transferases

Using SwissADME online, the small molecule drug candidate compounds against
“HCC-associated transferases” were analyzed for their physicochemical attributes, lipophilic-
ity, water solubility, drug-likeness, and medicinal chemistry tool [57]. Molecular docking
was conducted using CB-Dock version 2, a web server. Blind docking was executed by
inputting the 3D structure PDB file of five distinct targets alongside the SDF file of each
drug compound into the server. The analysis was focused on the docking poses that had
the highest vina scores [82]. In addition, comparisons were made with our small molecules
for lenvatinib, regorafenib, and sorafenib, which are currently used in the treatment of
advanced HCC.

4.4. Literature-Based Validation of Novel DTI Predictions towards Drug Repurposing

We carried out a literature search to validate the predictions “HCC-associated trans-
ferases” DTI pairs from MDeePred to support the evidence of DTIs in published scientific
reports. We focused on the interactions between target proteins and drugs in order to prove
the experimental validation of our drug repurposing DTIs.
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