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Abstract
Motivation: Tracking SARS-CoV-2 variants through genomic sequencing has been an important part of the global response to the pandemic 
and remains a useful tool for surveillance of the virus. As well as whole-genome sequencing of clinical samples, this surveillance effort has 
been aided by amplicon sequencing of wastewater samples, which proved effective in real case studies. Because of its relevance to public 
healthcare decisions, testing and benchmarking wastewater sequencing analysis methods is also crucial, which necessitates a simulator. 
Although metagenomic simulators exist, none is fit for the purpose of simulating the metagenomes produced through amplicon sequencing 
of wastewater.
Results: Our new simulation tool, SWAMPy (Simulating SARS-CoV-2 Wastewater Amplicon Metagenomes with Python), is intended to provide 
realistic simulated SARS-CoV-2 wastewater sequencing datasets with which other programs that rely on this type of data can be evaluated and 
improved. Our tool is suitable for simulating Illumina short-read RT–PCR amplified metagenomes.
Availability and implementation: The code for this project is available at https://github.com/goldman-gp-ebi/SWAMPy. It can be installed on 
any Unix-based operating system and is available under the GPL-v3 license.

1 Introduction
Wastewater sequencing has proven useful in the genomic sur
veillance of SARS-CoV-2 and can provide a less biased pic
ture of the variants circulating in a population than clinical 
surveillance (Brown et al. 2021). Amplicon sequencing is the 
preferred method for this purpose since it is efficient in terms 
of cost, labor, and time, and is well-suited for heavily con
taminated samples—as may be found with biological samples 
collected for SARS-CoV-2 sequencing—thanks to its targeted 
nature (Hourdel et al. 2020). Such sequencing has typically 
been done via multiplex PCR using a pre-defined primer set 
with paired-end reads generated by an Illumina device 
(Brown et al. 2021).

A number of methods and software tools for wastewater 
SARS-CoV-2 sequencing data analysis are available such as 
SAM Refiner (Gregory et al. 2021), COJAC (Jahn et al. 
2022), LCS (Valieris et al. 2022) and Freyja (Karthikeyan 
et al. 2022). Evaluating the effectiveness of new methods on 
in vivo or in vitro samples is often difficult or impossible, e.g. 
because of the lack of availability of a wide range of real or 

synthetic samples and the costs of repeated experiments 
(Angly et al. 2012). However, simulated datasets can provide 
an efficient way of benchmarking the performance of new 
methods (Escalona et al. 2016).

There is a specific set of features characteristic of data com
ing from wastewater amplicon sequencing. For example, it 
has been shown that there is a high variation in amplification 
across different amplicons of a given primer set, resulting in a 
variation in read depth across the genome (Hourdel et al. 
2020, Brown et al. 2021). Moreover, wastewater data are 
expected to represent a mixture of different SARS-CoV-2 var
iants since the biological matter in the sample comes from 
multiple people, and will carry RNA degradation signatures 
resulting from the environmental exposure of the viral RNAs 
in sewage as well as PCR, sequencing library layout-specific 
and sequencing device-specific errors (De Maio et al. 2020, 
Turakhia et al. 2020, Jacot et al. 2021).

Existing standard metagenomic simulators do not attempt 
to capture all the characteristics seen in the amplicon se
quencing protocols used for SARS-CoV-2 such as the ARTIC 
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community protocols (Tyson et al. 2020, https://artic.net 
work/ncov-2019, https://artic.network/resources/ncov/ncov- 
amplicon-v3.pdf) widely used to prepare samples for 
Illumina sequencing platforms. For example, InSilicoSeq 
(Gourl�e et al. 2018) is intended to produce shotgun metage
nomic sequences; and while Grinder (Angly et al. 2012) can 
simulate amplicon sequencing, it cannot be tuned to produce 
a bespoke amplicon distribution and does not produce realis
tic sequencing quality scores. The simulation tool ART 
(Huang et al. 2011) can also generate reads for amplicons, 
but only in equal proportions. Studies (Baaijens et al. 2022, 
Gafurov et al. 2022, Valieris et al. 2022, Sapoval et al. 2023) 
have demonstrated the need for a dedicated wastewater 
SARS-CoV-2 sequencing simulator. Each, however, per
formed its own simulations for its specific use case, with most 
simulators limited to simplified scenarios with uniform 
amplicon abundances and only read errors (e.g. Baaijens 
et al. 2022, Gafurov et al. 2022, Kayikcioglu et al. 2023), or 
recreating the read-depth variation of one specific real experi
ment (e.g. Valieris et al. 2022, Sapoval et al. 2023). Both 
cases have drawbacks, either risking overfitting to one data
set or omitting important characteristics of real-life data such 
as PCR errors and variable amplicon abundances. Table 1 
shows a comparison of some of these simulation tools.

Our simulator, SWAMPy (Simulating SARS-CoV-2 
Wastewater Amplicon Metagenomes with Python), is intended 
to produce a realistic set of reads that might be generated 
through multiplex PCR of a wastewater sample, and sequenced 
by an Illumina sequencer. We model the following scenario:

1) Different viral genomes coming from a human popula
tion contaminate wastewater systems, creating a mix
ture of virus variants which is then captured in a 
wastewater sample. At this stage, viral RNAs are ex
posed to RNA degradation and there is a variation in 
variant abundance in the mixture. 

2) After sample collection, PCR amplification of whole vi
ral genomes in segments using a pre-defined primer set 
results in an amplicon population. At this stage, ampli
cons gain PCR errors and there is further variation in 
amplicon abundance due to differential amplification 
success of the primers of a given primer set. 

3) These amplicons are then sequenced on an Illumina de
vice, creating paired-end reads of a fixed length. At this 
stage, sequencing errors appear. 

2 Materials and methods
The overall workflow of SWAMPy can be seen in Fig. 1. The 
four basic steps of our software pipeline are detailed 
as follows:

1) Create an initial amplicon population. 
2) Simulate the number of DNA fragments (copies) 

per amplicon. 
3) Simulate high-frequency errors by mutating amplicons 

in the amplicon population. “High-frequency errors” is 
an umbrella term we use for all substantially recurrent 
mismatches between the nucleotide sequences of input 
viral lineages and output reads, which might be caused 
by a number of phenomena such as RNA degradation, 
PCR errors, or alternative binding of amplicon primers 
(De Maio et al. 2020). Standard sequencing errors, 

simulated in the next step, are not considered high- 
frequency errors because they are randomly distributed 
across the genome, while high-frequency errors are 
position-specific (see Methods Section 1.3) and as such 
might have a higher potential of causing lineage infer
ence errors. 

4) Simulate sequencing reads using ART. 

2.1 Create an initial amplicon population
The software assumes that the user has supplied a set of input 
SARS-CoV-2 genomes, which we refer to as source genomes, 
and has selected a supported primer set among ARTIC V1, 
V4, and V5 (Tyson et al. 2020), or Nimagen V2 (Coolen 
et al. 2021) https://pubmed.ncbi.nlm.nih.gov/34619382/. 
Alternatively, users can supply custom primer panels. On the 
basis of this selection, amplicons are extracted from each ge
nome as follows. First, we use Bowtie 2 (Langmead and 
Salzberg 2012) to align the primers (forward and reverse 
complement) to each virus genome to detect primer binding 
positions on the source genomes. In a very crude approach to 
account for amplicon dropouts, if a primer does not align 
well with a viral genome (i.e. Bowtie 2 does not find a match 
exceeding its—score-min threshold), the corresponding 
amplicon is not produced. Next, we slice the source genomes 
from the primer binding positions to obtain individual ampli
cons of each source genome, including the primer sequences.

2.2 Simulate numbers of copies per amplicon
To simulate the numbers of copies per amplicon and genome, 
we offer two versions of a combined Multinomial and 
Dirichlet model. For either of these models, the user must 
supply three parameters: total target number of reads N, a 
vector of genome abundances pg indexed over genomes g, 
and a Dirichlet parameter c. The choice of c roughly equates 
to a measure of sample quality: a higher value of c (e.g. 200) 
corresponds to high-quality samples (roughly uniform abun
dances of amplicons between simulation runs) and a lower 
value (e.g. 10) to low-quality samples (highly variable ampli
con abundances between simulations, with higher rates of 
amplicon dropout). For the supported primer sets SWAMPy 
provides an experimentally derived prior on the amplicon 
proportions πa indexed over amplicons a. As explained in our 
software documentation, the user has the option of overrid
ing these default priors and supplying their own.

Model 1 (equal expected amplicon proportions across genomes):

1) Sample genome read counts Ng from MultinomialðN;pgÞ

2) Sample amplicon proportions pa from Dirichletðc×πaÞ

to be shared across all genomes 
3) For each genome, sample numbers of reads per amplicon 

per genome as xa;g �MultinomialðNg;paÞ

Model 2 (different amplicon proportions across genomes):

1) Sample genome read counts Ng from MultinomialðN;pgÞ

2) For each genome, independently sample amplicon pro
portions pa;g from Dirichletðc×πaÞ

3) For each genome, sample numbers of reads per amplicon 
per genome as xa;g �MultinomialðNg;pa;gÞ

One subtlety in this process is that the numbers of reads do 
not account for amplicons dropped in the alignment step, 
which leads to some missing reads. For example, if the model 
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assigns 100 reads to amplicon 1 in genome A, yet a mutation 
at the primer site of this amplicon causes it to drop out, then 
the total number of reads produced would be 100 fewer than 
expected. Hence the actual total number of reads may be less 
than the target, N.

2.3 Add high-frequency errors
While we model uniformly distributed sequencing error with 
the standard bioinformatics tool ART (Huang et al. 2011), we 
also developed a model to generate recurrent mismatches be
tween input viral genomes and output reads, mimicking the 
effects of a number of phenomena (De Maio et al. 2020) such 
as RNA degradation, PCR mutations, reverse transcription 
errors, library preparation artifacts, alternative primer binding, 
etc, which we collectively refer to as “high-frequency errors.” 
We define high-frequency errors as non-naturally occurring 
insertions, deletions, and substitutions that non-independently 
affect multiple reads. Rather than trying to distinguish different 
independent sources of recurrent errors, we use a small number 
of distributions to model the combined effect of all these phe
nomena. We classify high-frequency errors as unique or recur
rent with respect to their presence across different source 
genomes in the mixture. Recurrent errors are the ones that are 
present in all source genomes in the simulated mixture, consis
tent with our observation of individual errors affecting multiple 
real wastewater sequencing experiments. These might originate, 
e.g. from genomic positions particularly susceptible to degrada
tion, or context-dependent PCR errors (Meyerhans et al. 1990, 

Potapov and Ong 2017). In contrast, unique high-frequency 
errors are present in only one of the genomes in the mixture, 
e.g. due to context-dependent PCR errors, or low-rate RNA 
degradation.

2.4 Sampling high-frequency errors
To simulate high-frequency errors in SWAMPy, we first create 
a table like that shown in Table 2 containing all the sampled 
high-frequency errors to be introduced.

1) The number of each type of error to be introduced is sam
pled from PoissonðL×R) where L ¼ 29 903 is the length 
of the Wuhan reference genome Wuhan-Hu-1 (Wu et al. 
2020) and R is the error rate of the given type of error (in
sertion, deletion, or substitution, each either unique or re
current). This Poisson distribution approximates the 
BinomialðL;RÞ distribution since error rates are typically 
low. Error rates are user-definable for each of the six types 
of error, with default values estimated from real wastewa
ter experiments (see Supplementary Material). 

2) A genomic position for each error is sampled randomly 
without replacement from Wuhan-Hu-1. For unique 
errors, one of the source genomes is randomly assigned 
with sampling weights equal to the genome abundances 
in the mixture. Moreover, if more than one amplicon 
spans the previously determined error position, a unique 
error is assigned to only one of them. Recurrent errors 

Figure 1. Summary of the SWAMPy workflow. Clockwise from top left, SWAMPy takes as input the genomes of the variants to be represented in the 
simulated wastewater sample, as well as information on the relative abundances of the variants in the simulated mixture. Source or input genomes are 
sliced according to a primer set to create a reference amplicon population, and amplicon read depths are adjusted to fit the amplicon abundance 
distribution of the given primer set (see Supplementary Material) while taking into account a user-defined parameter which reflects the quality of the 
samples. The amplicon population is then further diversified by the addition of PCR mutants bearing different kinds of high-frequency errors, using 
parameters estimated from real data (see Supplementary Material). The resulting reference and mutant amplicons, with corresponding read counts, are 
passed to the ART_illumina program of ART (Huang et al. 2011) to model the Illumina sequencing step, where sequencing errors and base qualities are 
simulated. Finally, reads are merged and shuffled to create mixed-variant forward and reverse FASTQ files.
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are assigned to all source genomes and overlap
ping amplicons. 

3) An error length is assigned to each error. The error length 
is always 1 for substitutions, while for deletions it is sam
pled from a geometric distribution with parameter n; 
higher n will result in shorter deletions. For insertions, the 
error length is sampled from UniformðmÞ where m is the 
maximum insertion length. Error length parameters n and 
m can be defined by the user, with their default values 
obtained from real data (see Supplementary Material). 

4) An alternative allele is created for each error. For substi
tutions, it is a random single nucleotide that is different 
from the reference genome, and for insertions, it is a se
quence of randomly sampled nucleotides of the previ
ously determined error length. 

5) A variant allele frequency (VAF), f, is sampled for each 
error from a Betaðα;βÞ distribution. The Beta distribu
tion parameters are similarly user-definable, separately 
for unique and recurrent substitutions, insertions, and 
deletions. Assigned VAF values are the expected VAF of 
the recurrent errors in the final mixture, while for 
unique errors, the expected value of the VAF in the final 
mixture will be the product of the assigned VAF f and 
the corresponding amplicon abundance πa. 

2.5 Apply sampled errors to simulated amplicons
After we compile the table that contains all simulated errors, we 
process each source genome g and each amplicon a in the ampli
con population that we previously created. For each a, g:

1) Errors that affect genome g and amplicon a are selected 
from the error table. 

2) Because simulated error positions are based on the 
Wuhan-Hu-1 reference and a variant amplicon in a 
wastewater sample may contain indels, the amplicon 
sequences are aligned to Wuhan-Hu-1 using Bowtie 2 
(Langmead and Salzberg 2012), and the positions of the 
errors within the amplicon are determined. 

3) For each error e, the number of reads in which e is pre
sent is determined by sampling a read count ne from 
Binomialðxa;g; feÞ, where xa;g is the total read count of 
amplicon a for genome g as described in Section 1.2, 
and fe is the VAF of the error as determined in 
Section 1.3.1. 

4) For each possible combination i of high-frequency errors 
affecting genome g and amplicon a, a read count ni is 
randomly sampled respecting individual read counts of 
the errors. We make no attempt to simulate correlations 
among the errors on amplicons as simulating error in
heritance for each amplicon is computationally too ex
pensive and we assume errors on an amplicon are 
independent. 

5) Finally, for each combination i of errors affecting a and 
g, a new corresponding modified amplicon sequence 
is created. 

2.6 Simulate read sequencing using ART
To create a set of simulated paired-end Illumina reads from 
each amplicon, each with a given read count, we use the pro
gram ART (Huang et al. 2011). We use ART’s paired-end 
amplicon mode, as well as the noALN and maskN flags. 
These settings create paired-end reads of customizable length 
(default 250 bp) and faithfully transcribe any “N” characters 
appearing within the amplicons. We use a set of default error 
rates and quality score profiles tuned for the Illumina MiSeq 
V3 sequencer, though the ART package has options available 
for other platforms and read lengths. A full list of the flags 
used is in the Supplementary Material.

Finally, we use a custom script based on ubiquitous bash util
ities to concatenate all of the FASTQ read files, and shuffle their 
order to avoid potential biases in case any downstream applica
tion software can be influenced by read ordering.

3 Results
The source code of our python implementation of SWAMPy, 
together with the program documentation and exemplar files 
is available under the GPL-v3 license at https://github.com/ 
goldman-gp-ebi/SWAMPy.

3.1 SWAMPy implementation
SWAMPy takes as input a multi-FASTA file containing the 
SARS-CoV-2 variant genomes that will be present in the sim
ulated wastewater sample, as well as a file that contains the 
relative abundances of these variants in the mixture. For ease 
of use, other input files (primer-set-specific sequence files, 
and primer-set-specific amplicon distribution files) were 
wrapped with a single—primer-set parameter which loads 
the corresponding input files for the specified primer set. As 
of June 2024, there are four supported primer sets: ARTIC 
V1, V4, and V5 (Tyson et al. 2020), and Nimagen V2 
(Coolen et al. 2021). There are many command line parame
ters that allow fine control of the program such as the ampli
con pseudo counts parameter c that reflects the quality of the 
wastewater sample as described in Section 1.2, the target 
number of simulated reads, and error rates, VAF and lengths 
of high-frequency errors as described in Section 1.3.1. The 
full list of command line interface arguments and their 
explanations are available on the GitHub wiki page: https:// 
github.com/goldman-gp-ebi/SWAMPy/wiki/CLI-arguments.

An example SWAMPy run takes 300 seconds to complete 
and reaches 700 MB of max memory when run with default 
parameters (three SARS-CoV-2 variants and default error 
rates and 100 000 total read counts) on a single thread of an 
Intel Xeon Gold 6336Y 2.40 GHz CPU.

SWAMPy produces five output files by default:

� FASTQ files of the simulated forward and reverse reads, 
matching Illumina standards 

� A table that shows the abundance of each wild-type 
amplicon after the randomness in amplicon copy number 
sampling (as described in Section 1.2) was applied 

� A VCF file that contains all the intended high-frequency 
errors from the error table described in Section 1.3.1 

� A log file 

Table 2. Example simulated high-frequency errors.

Type rec/u Genome len pos ref alt VAF amp

subs rec g1, g2, g3 1 20 000 A T 0.1 70, 71
subs u g2 1 530 T G 0.2 3
ins rec g1, g2, g3 7 245 A AGCG 0.9 2
del u g3 3 230 AGCT A 0.6 2

Abbreviations: rec, recurrent; u, unique; subs, substitution; del, deletion; 
ins, insertion; amp, amplicon number; len, length; alt, alternative allele; pos, 
genomic position; gN, SARS-CoV-2 variant genome.
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Alignment images of simulation outputs illustrate that the 
major characteristics of wastewater data are present in the 
simulated data (Fig. 2) such as overlapping amplicons, differ
ent kinds of errors, and read depth variation across 
the genome.

3.2 Benchmark with real data
We benchmarked SWAMPy models 1 and 2, as well as the 
amplicon wastewater simulation tool ww_simulations 
(Kayikcioglu et al. 2023) https://github.com/CFSAN- 
Biostatistics/ww\_simulations/ using 120 real SARS-CoV-2 
wastewater samples listed in the Supplementary Material. 
These samples formed part of a Houston SARS-CoV-2 sur
veillance project and were sequenced using the ARTIC V3 
protocol, which differs from V1 by the introduction of 11 
pairs of alternative primers. We used the SARS-CoV-2 decon
volution tool Freyja (Karthikeyan et al. 2022) to estimate the 
proportions of the dominant lineages from each real sample 
(those above 2% abundance). We then generated synthetic 
mixtures of these same lineages and proportions with each 
simulation tool considered—SWAMPy models 1 and 2, and 
ww_simulations. Real and simulated read sets were then 
mapped back to the Wuhan-Hu-1 reference genome to calcu
late variant allele frequencies and amplicon proportions. 
SWAMPy more faithfully captured the variation in amplicon 
proportions than ww_simulations (Fig. 3D, Supplementary 
Fig. 3), and overall read depths across the genome (Fig. 3A 
and C). Variant allele frequencies generated by SWAMPy 
were also more similar to the real dataset than ww_simula
tions (Fig. 3B, Supplementary Fig. 4). For all simulators, we 
tuned three parameters, selecting a read length of 150 bp, and 
fragment size and standard deviation of 155 and 75, respec
tively. Other parameters could have been tuned to generate 
amplicon distribution mean and variance customized for this 
wastewater dataset. Although SWAMPy models 1 and 2 both 
performed similarly when comparing bulk properties of the 
VAF and amplicon abundance distributions, the difference 

can be seen when looking at amplicon distributions at a 
lineage-resolved level (Supplementary Fig. 5). For this data
set, both SWAMPy and ww_simulations seem to generate 
reads with overly pessimistic error rates. Both tools rely on 
the short read simulator ART_illumina for this task. When 
we turned off read errors in ART within SWAMPy, the num
ber of simulated low-frequency variants became much closer 
to those observed in real data (Supplementary Fig. 4). This 
suggests that, in addition to SWAMPy’s parameters, realistic 
simulations might often need the tuning of ART’s parameters 
as well.

3.3 Use case
We used SWAMPy to simulate 73 time points throughout the 
course of a hypothetical SARS-CoV-2 pandemic where the 
Alpha (B.1.1.7) variant starts out dominant before Delta 
(AY.4) rises in frequency and then Omicron (BA.1.1) emerges 
and takes over (Fig. 4; see the Supplementary Material for the 
SWAMPy options used; for the exact abundances at each 
time point, see Supplementary Material). Then we used a 
downstream application program, Freyja, which is designed 
to detect SARS-CoV-2 variants and their relative abundances 
from sequencing data obtained from wastewater samples 
(Karthikeyan et al. 2022). We observe that Freyja is quite 
successful in demixing the simulated data overall in this rela
tively complex scenario, though it sometimes inferred the 
presence of variants that are not specified in the simulated 
mixture, occasionally with high frequencies.

4 Conclusions
We have shown that SWAMPy is a viable simulation tool for 
SARS-CoV-2 wastewater metagenomes, building on the sim
ulator ART but much better suited to the modeling challenges 
idiosyncratic to SARS-CoV-2 metagenomes such as high- 
frequency errors and irregular amplicon abundance profiles. 
Both of these models are based on real abundance and error 

Figure 2. IGV (Robinson et al. 2011) images of SWAMPy simulated reads. Reads come from time point 53 of the simulations described in Section 3.3, 
involving SARS-CoV-2 Alpha, Delta, and Omicron variants. Uppermost portion is the coverage track of IGV. Below that, horizontal bars show forward and 
reverse reads in “link supplementary alignments” mode of IGV. Black dashed lines are IGV’s optional “center line,” aiding visual perception of the 
alignment of bases; faded colors indicate low-quality bases. (A) C ! T SNP at position 7124 in the Delta variant, is not present in the Alpha and Omicron 
variants. (B) Sequencing errors added by ART. This image (zoomed out, with variant bases indicated by color) is from a read end, where sequencing error 
density is often higher with Illumina sequencing. (C) Unique high-frequency error. This only appears in one read direction and, despite this exemplar being 
chosen to be in an amplicon overlap region (not shown), only one of the amplicons carries the error. (D) Recurrent high-frequency error (insertion of 
length 5) appearing in both read directions and in both amplicons covering the chosen region (not shown).
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Figure 3. Comparison of real and simulated wastewater sequencing data. We simulated wastewater sequencing data using SWAMPy and 
ww_simulations, mimicking a real dataset, and then compared features of real and simulated datasets. (A) Total simulated bases mapped to the Wuhan- 
Hu-1 reference genome (Y-axis), against real ones (X-axis), per sample. The drop in coverage in some simulated ww_simulations samples appears to be 
due to strict primer binding requirements. (B) Numbers of high-frequency SNPs (VAF >20% and depth of alternative allele > 30) per sample. Samples are 
ordered by total depth in the real data. (C) Standard deviations of depth across the genome, on a log 10 scale, of simulated data (Y-axis) against real data 
(X-axis). Each dot represents one sample. The red dashed line indicates equality between the simulated and observed data, thick lines are lines of best fit. 
(D) Median coverage across samples (Y-axis) for each amplicon (X-axis). The two SWAMPy models are not distinguishable due to strong overlap. Unlike 
SWAMPy, the ww_simulations package assumes uniform coverage prior across amplicons.

Figure 4. Progression of a simulated pandemic. Sequencing of wastewater samples at 73 time points was simulated with SWAMPy, and corresponding 
Freyja estimations of SARS-CoV-2 variant abundances were made. Background colors represent the simulated values and lines represent the Freyja 
estimations. Lines generally follow the boundaries between the shaded areas, suggesting broadly accurate variant proportion estimates from Freyja. The 
region above the topmost jagged line (yellow) shows the sum of non-simulated variants (i.e. false positive variant detection) that Freyja 
erroneously inferred.
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data, from a large number of in vitro whole-genome ampli
con sequencing experiments, detailed in the Supplementary 
Material. Compared with other metagenomic simulators, 
many of which support a range of complex features such as 
chimeric amplicons and shotgun metagenomic reads, 
SWAMPy aims to fill a niche created by metagenomic ampli
con studies such as wastewater surveillance of SARS-CoV-2. 
This niche seems important given the disparity between fea
tures available in most general-purpose metagenomic simula
tors (Table 1) and the requirements of tools being developed 
for wastewater studies.

Our simulator supports three versions of the ARTIC proto
col, which at present is the most prevalent sequencing proto
col for SARS-CoV-2 metagenomes, and the Nimagen V2 
protocol. We will strive to support future iterations of these, 
as well as new superseding protocols as they arise in the fu
ture. There are other areas where we hope to make improve
ments to modeling and usability, such as supporting a greater 
range of sequencing platforms and more closely matching 
amplicon dropout rates with experimental findings. It might 
also be beneficial in the future to account for additional com
plexity in high-frequency error models, such as specific sour
ces of errors (e.g. PCR amplification and RNA degradation), 
and empirically derived position-specific error rates.

We hope that our simulation tool will prove valuable by 
providing non-trivial test cases, especially for strain-resolving 
SARS-CoV-2 metagenomics algorithms, and for creating con
trol case data for researchers working on SARS-CoV-2 waste
water studies. Wastewater surveillance can provide a cheaper 
alternative to widespread sequencing of clinical SARS-CoV-2 
samples, and it is our hope that through appropriate model
ing and simulation of the processes involved in amplicon se
quencing of wastewater, these data can be leveraged to their 
full potential in aiding public health.
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