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CrossMark
Abstract
We give a detailed canonical analysis of the n-dimensional f(Riemann) gravity,
correcting the earlier results in the literature. We also write the field equations in
the Fischer—Marsden form which is amenable to identifying the non-stationary
energy on a spacelike hypersurface. We give pure R? and R, R theories as
examples.

Keywords: constraints, evolution, generic, gravity
1. Introduction

Within the paradigm of effective field theories, general relativity augmented with dark matter
and dark energy is the lowest-order effective theory of gravity that works remarkably well at
small and large scales. Of course, it is expected to be modified at extremely high energies, or
extremely short distances, for example around the black hole or Big Bang singularities. The
modifications can be computed from a microscopic theory, such as string theory, alternatively,
one can study generic modifications consistent with symmetries (see, for example, [1] for
more arguments of the raison d’étre of modified gravity theories). A large subclass of modified
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gravity theories is described by the action of the form?

1
5= [ 4% VTR MR, M

M

where f(R,,,,0) is a differentiable scalar invariant of the Riemann curvature tensor (we are
taking the Newton’s constant x = 1). We consider the metric tensor to be the independent field.
We shall work in the metric formulation and in n dimensions. Canonical analysis of this type of
theory was given in the pioneering work [3], whose notation we shall adapt here. Our analysis
mostly agrees with those of [3], however, we shall make some corrections and also recast the
Hamiltonian formulation of the theory in the rather beautiful Fischer—-Marsden form [4]. Such a
construction easily allows one to define the Killing initial data (KID) and the approximate KIDs
that are used in the definition of non-stationary energy contained in a spatial hypersurface [5—
9]. These computations would be relevant to identifying the initial gravitational wave content.
Many papers are dedicated to various aspects of the f(R,,.,») theory. For example in [10],
the particle spectrum, the masses of the perturbative excitations of this generic theory with
one massive spin-2, one massless spin-2, and a massive spin-0 particle was given around any
one of its constant curvature vacua. In [11], conserved charges of the theory, such as energy-
momentum and angular momentum, were constructed.

Here one of our goals is to expound upon the Arnowitt—-Deser—Misner (ADM) analysis
[12] and give sufficient details of the computations, so that the reader can follow all the details
rather easily. We also apply our results to pure R* and R,,,, R* theories. We made a meticulous
effort to write all the proofs of our statements in the appendices, so as not to significantly cut
the flow of the discussion in the main text.

The layout of this paper is as follows: In section II, we introduce the action and the field
equations of f(Riemann) theories. In section III, we summarize the ADM splitting [12] of
the action, which yields the Hamiltonian, the constraint equations, and then the time-evolution
equations of the initial data on the hypersurface. In section IV, we introduce the construction of
the nonstationary energy for f(Riemann) theories. In section V, we consider the R* and R, R"¥
theories as examples. The computations are long, therefore, we give most of the details of the
calculations in Appendices.

2. Field Equations of f(Riemann) theories

The field equations coming from variation of the action (1) in the presence of a minimally
coupled matter field are*

_ 2VUVP8RL

_lgw/f_ R of
2 a(pv)p

e aRV)wU

=1, 2

where the round brackets denote symmetrization with a factor of 1/2. In appendix A, we
gave the ADM decompositions of the necessary spacetime tensor fields, and then the proof
of (2) is given in appendix B. This equation includes fourth-order derivatives of the metric.

3 This manuscript is written for the volume ‘Fields, Gravity, Strings and Beyond: In Memory of Stanley Deser’ edited
by M Henneaux, R I Nepomechie, and D Seminara. Deser (1931-2023) was very interested in modified theories of
gravity: we dedicate this work to him. For personal reminiscence, the reader is invited to read [2].

4 There is a sign difference in the second term of the field equations in [3].
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One introduces auxiliary variables to simplify the ensuing discussion and lower the number of
derivatives. Following [3], let us consider the ‘mother action’:

1
Si= 3 /d"x V=g <f(p/wpa) + "7 (Ruvpo — plwpﬂ))7 S
M

where two auxiliary fields (p,¢) have been introduced. These rank-4 tensors have the same
symmetries as the Riemann tensor and are assumed to be independent of each other and the
metric g,,,, tensor. Therefore, variation of the action with respect to all fields can be written
as

1
5=y [ ds (W (Abrso) + 27 Ruspe = b))

M

+v-g (5f(pwpo) + 00" P7 (Ruvpo — Puvps) +@"P° (0R 1 po — §puupa)>> - 4)

One has 6f(puvpe) = apfif:poép,wpg, and the variation of the Riemann tensor reads

5Rul/po = 58;L>\R)‘,,pg + g/LX(SR)\upav
= égHAR)\upo + vpv[VégH]U + V[PVU} 5g/w + Vﬂv[uégu]p- )

Due to the symmetries of the tensor fields, one gets

gOMVPU (5R;wpa . 5,0/“,,,0) _ 5guVR(lf\po—<PV))\pU + zwd(ﬂu)Pvpvaéglw _ (p;u/patspuupa.

(6)
Using integration by parts and defining the following tensor field’
v v a o v 1 v g
e = _R(lf\paw o 2Vo Ve e — Egu (f(PMPU) + 7P (Rxypo — PMPJ))7
(N
one can express the variation of the total action as
58 — 1 d" v nvpo af pvpo
- xy/—g| =€ 0gur + 0y (Ruvpo — puvpo) + - dpuvpo |-
2 Opuvpo
M
@)

In appendix C, one can see more details of this computation including the variation of the
‘mother action’. From the last expression, one gets a set of field equations.

3 Note that in equation (2.3) of [3] there is an additional term involving the derivative of f with respect to p, which
should not exist.
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e Variation with respect to "7 gives

Ruypa = Puvpo- )
e Variation with respect to p,,, o yields

(p,uvpa _ 8f af

= ) (10)
apuupa aR,uupa’
where for the second equality we have used the previous result.
e The metric variation in the action yields
MV =TH, a1

Substituting the additional equations in the explicit form of £#¥, we recover the original fourth
order derivative equation (2). We assumed minimal coupling of matter and the metric, and no
direct coupling of the matter to the auxiliary fields p and .

3. ADM decomposition of the f(Riemann) theory

Let us assume that the topology of the spacetime manifold is .#Z = R x X, with the first factor
being the time dimension and X being a spacelike hypersurface. In Einstein’s gravity, the initial
data constitute the Riemannian metric v and the extrinsic curvature K on X together with the
initial matter. The connection on the hypersurface satisfies the metric compatibility condition:
Dj~yjx = 0. See figure 1 for the slicing of the spacetime.

The metric in terms of the lapse function and the shift vector reads

ds® = (N;N' — N*) d* + 2N; drdx’ + ~;dx’ d’. (12)

More explicitly, the components of the metric and the inverse metric are

800 = —N? + NN, goi =N; i = Vi (13)
1 . 1 . .. .. 1 .
00 0i i i i i
- _ - N i~ NN 14
g M8 Tt T T a4

We choose the future-pointing unit normal vector n* as

1 N =
nt = (N,—N), nM:(—N,O), (15)
while the extrinsic curvature in terms of the unit-normal vector reads as

|
Kyj = Vinj = o (3 = DilN; = DiNi), (10

where 7; := Oyy;;. To rewrite the action (3) in terms of the ADM fields, we start with the
equality

" P (Ruvpo — Puvpo) = @™ (Rij — pit) + 4™ (Riro — pijno) + 4™ (Riojo — piojo)-
(17
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2“r+6t

n*

Figure 1. Slicing of the spacetime in terms of co-dimension one spatial hypersurface.

We introduce the ADM splitting of the corresponding components of the Riemann tensor in
appendix A in detail. Using these results, one gets

"7 (Ryuwpo — Prvper) = ¢ (Riwt — pit) + 40" (N (DiKjx — DiKie) + N'Rijit — pijeo)
+ 4% (NkN’ R+ N°KyK; + NN* (D;Kji + D;Ki — 2DiK;;)

+N(DiDjN— K,] + ENKU) — pi0j0> . (18)

Here £ denotes the Lie derivative along the vector field N!, which is defined as
['NKij = NkaKij + Kk,‘Dij + KijiNk. (19)

Following [3], let us introduce the once and twice hypersurface-projected spatial tensor fields,
respectively as

F =y oy, = O, (20)
Pl i= =29" 0 oy, = 4 1)
which can equivalently be written as
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W = —INPO, (23)
Similarly, for the other auxiliary field, we introduce
" pige = 1" pijky = Pije (24)
PQi = ntn” iy = Q. (25)
The last two expressions explicitly read
1 N
Pije = N Pik0 — 37 Pkl (26)
1 NENI NF
Q= N2 P00~ N Pikil — (pirg + pjxi) » 27

where pj; and ¥ themselves are spatial tensor fields on the hypersurface by assumption:
namely, one has p;; = = pijk and @K = 2,k and for the sake of brevity, we dropped the
index Y. In other words, we can express the spacetime tensor components pjixo and pjjo in

terms of purely spatial tensor fields:

piiko = N pgi + N piju,
piojo = N* Qs + NN pygz + NN* (g + pjsa) - (28)

So then, the contracted term (18) becomes®

SDMVPU (R,uupo - pyupa) = Soijkl(Rijkl - pijkl)
y N
— 4% (Dink — DiKic = piie + 5 (Rijit — Pijkl))

i NN 1 :
e (Rt — pikgn) + N (DiD;N — Kij + LnKj)

Nk
+ Kika — Qi+ N (DiKjx + DiKix — 2Dy K;; — pixj — iji)) . (29

Inserting all of the variations to the generalized action (3), one arrives at

Q) 1,
SZ/d"xNﬁ <f(p2>+230’kl(Rijkl—Pijk1)
M
1

. N
— 2% (Dink — DiKi = piiec+ (Rijur — Pijkz))

(NN 1 :
- N (Rt — pirit) + N (DiDjN - Kij+ ﬁNKij)

Nk
+ KK — € + v (DiKji + DiKix — 2DiKij — pir — iji))) . (30)

Now let us eliminate the spatial tensors ¢’ and ¥, which are nondynamical. The field

equation for /¥ is

pit = Rij = Z Ry + KuKjy — KuKjy, (3D

6 In appendix D, we give more details of this computation.

6
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while the field equation for ¢ is
Nl
DKy — DiKjj — piji + N(Rijkl — pijur) = 0. (32)

The last two terms inside the round brackets cancel each other due to the constraint and one
arrives at the second constraint

pijk = DiKj — DjKi. (33)
Using the constraints, the action (30) reduces to

Q) 1 T )
S— / d"x Ny/y <f(p2) — (K,-ka — Qi+ ND,-D,-N) + o (WK WNK,,-)) .
M

(34)

Using integration by parts, one can rewrite the last two terms, ignoring the boundary contri-
butions, to arrive at the action S = [ ad"x L, where the Lagrangian density is

Q) 1 i e )
L=N~ (f(pz) o (KK, + KaK: — Q;+ ND,-DjN) - 5Ki (1/)’1 - ﬁNW)> .

(35)

Therefore, with the help of the auxiliary fields, we have managed to recast the higher deriv-
ative action as a lower derivative one as desired. It is now easier to find the Hamiltonian of the
theory from this lower-derivative action.

3.1 Hamiltonian of the theory

The dynamical fields are (7;, 1”), and hence one needs to introduce the two canonical
momenta corresponding to these dynamical fields. These are

oL
I = ——, 36
v 6O (36)
and
i oL 0L 6Ky
p’ = = | (37
68071’]‘ 5K1m 5")/ij
After a straightforward computation, one ends up with
Hij = —ﬁKii. (38)

The constraints (31), (33) can now be recast in terms of the canonical momenta as

0, 11,

1
it = Rijg = =Ry + 5 (T — IT00) . (40)
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Similarly one arrives at

i Y1 V(1
=05k, " 2 N

(LT = ) — 4T yM Ky — KoV — K], — z/zf"KL> L@
Then the Hamiltonian density

H = pTay + mh’ — L, (42)
becomes

H = 2NK;;p” — /7Ky LAr)" 4+ 2p " DiN;

1 . . o
+ AN <—§ + U DIDN — 470 + KYMKy + K,-,-z/ﬂ"K}c> : (43)

3.2. Constraint equations

Up to a boundary contribution, one can express the Hamiltonian density as a sum of constraint
equations:

H = NPy + N'D;. (44)

Here ¢, denotes the Hamiltonian constraint and &; denotes the momentum constraints. Using
(43), one can rewrite the Hamiltonian density as

= (k=L DDyt 90 KR+ K
k
+N/y <_2Dk (\%) — KuDip" — 2Dk(1l)leu)> . (45)

Equivalently, in terms of the canonical momenta one obtains

e

H =Ny <12r + DD — 1/1’19,-,-) + 7 (—21L;pY + I TLpY + LIy )
k

i(—2 pi) D +2 <’dn”')>. 46
+N( ﬁDk<ﬁ+k1Dw+ﬁDkwﬁ )

Therefore the constraints are

@0 = \f’y (WKUPU — Jj +DiDj’t/Jlj — ’(ﬁl] QU + KKij’(/)l] +K,'jK;(1l)jk) s (47)

2
(o

The constraints vanish in a vacuum; but if there is a non-zero energy momentum tensor, then
they must be equal to the corresponding projection of the energy-momentum tensor onto the
initial hypersurface:

Plf > ki Kl )
L — KyuDjy™ — 2D, Ki) |. 48
/A wDit K (V" Ki) (48)

Py =2T,, = % (2N'Toy; — Too — N'N'Ty) (49)

8
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®; =2T,; = % (NT; —Toi) . (50)

In addition, the field equations of {2;; also are constraints: % = 0. Finally, let us write all
L

the constraints’.

e The Hamiltonian constraint:

@0 = \/’7 <—JZC + D,‘Djiﬁl] — Quwl]> + ﬁ (—ZH,-jp” + HH,‘j’lﬁl] + H,]wak) =0.
(51)

e The momentum constraint:

P]'() kl (leli>
;= —-2./vDi | —= | + IyuD;y" +2,/vD — ] =0. 52
vV k(\ﬁ wDi) VDk | ¥ 7 (52)

e The additional constraint of the auxiliary field:

L 5f
y _— =
200 4 5 0. (53)

3.3. Time evolution equations

3.3.1. The first set: ¢, From now on we are going to construct the time evolution
equations®. The phase space variables are (vij, Y, pY, II;;). The canonical coordinates evolve
via

OH .o 0H

) = < V= . 54
The definition of extrinsic curvature leads to

Yij = 2NK;j + DiN; + D;N;. (55)
The relation (38) additionally yields

2N
Y = ——=ij + Lnvys (56)
ij Vel ij ij

and so we can write

7 Note that the reader can study appendix E for more construction details.
8 Since the computation is rather long, we delegate some details of this section to appendix F.

9
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. 2N

\/7)/

On the other hand, one has

.. N ; 3 , . A i Ny of

y— Y i ki i i,k ik i

P 7( 2p7 + Vg ¥ + TIp¥ + T + TE 3 )+£Nw o
(58)

3.3.2. The second set: p', IT;.  Next, we find the time-evolution equations for the canonical
momenta:

oH . oH
- I, = — 2
vy’ T oy

Hi

(39

The second one is easier to obtain since we only focus on the variations with respect to V.
Using the Hamiltonian (46), we have

. ) N §
II; =—N — (DD — M Q) — — — (g " + 1L, 1™
i \ﬁ&w(kﬂﬁ Y Q) W&W( wY" + )
m_0 Kl 11 im
NS (HHme + 207D (w #)) (60)
where
WML
=5 G+ aep). ©1)
After ignoring the total derivative terms, we get
N-2 DyDp¥ = D;D;N (62)
5wlj k1 ijY,
and
N’"HH%DW“ = —N"Dyll; = TD,N", (63)
and also
) I 1
N" ..Dk<wk1):—ﬂm,~D~N’”. (64)
5,¢z] ﬁ ﬁ (CGag))

Substituting all of these pieces, we end up with

10
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: N II;
I; = /7 (NQ — D;D;N) — 7 (TIT0; + IaIIS) + /YL (ﬁ) + TI;DiNE.
(65)

Similarly we can find p¥. Clearly, we can express

" N ; o i i
Pl = i (7" (—2Mp* + Ty + T, TIMp™ ) + T + HJIW)
of

— N7 o
i

kn
>+szme”+2ﬁDk <w’“3’;)>, 66)

5
0ij

N
DD + =

o p
— -2 D
Nm5%:/' < VI k(

v
where the last two terms cancel each other because of the variation with respect to the spatial
metric. Taking into account the covariant derivatives correctly, we have’

7

pl=— <WU (I + Mg 17" — 210p* ) + TV + H§H£¢k1>

ﬂ

n ? (Dk (VDN = 20*DIN) + 4 (NDDi - wleszN)>

Pij N of ij k
— /=2 + Pt . 7
+ﬁ£~<ﬂ)+2ﬁ5%j+pDkN (67)

In appendix G, we gave the construction of the constraint and time evolution equations of
general relativity using the results we have obtained in this and in the previous sections.

As explained in detail in [7], the Hamiltonian form of the Einstein—Hilbert action, when
extremized, leads to the Fischer—Marsden form [4] of the field equations. For the generic
f(Riemann) theory studied here, one can also recast the Hamiltonian flow in a concise form as

7

Y 0 0 0 1
d . 0 0 1 0
Zlo]=vepeaumme, =0 2 g ol (68)
1I -1 0 0 O

\.

where the small circle represents the usual matrix product.

In this matrix equation, D@ (v, 1, 7, II) is the formal adjoint of the linearized constraint map
(D®(,%,,1I)). Why the adjoint map appears in the Hamiltonian flow can be understood
from the discussion in [7]. Here N is the lapse-shift vector with components (N, N). Observe

9 Note that in both of these equations (65), (67), all the terms except the last term in each one are the same as those
of [3]. Those two terms are missing in that work.

1
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that there is no time-evolution when D®” (, v, 7, IT)(N') = 0, and these points in the space of
initial data yield Killing vectors in spacetime [13, 14]. Such a description of Killing symmetries
is extremely useful in understanding the amount of non-stationary energy contained in a given
initial data. Here is how: if A" = ¢ is a Killing vector, say a stationary Killing vector, then the
time evolution is trivial. The failure of N to be a Killing vector field is given as

Y

d

D& (7,4, 7 (N) =/ "o & ? . (69)
11

Next, we discuss the non-stationary energy in this generic theory based on the approximate
Killing initial data.

4. Non-stationary energy in f(Riemann) Theories

Dain [5] introduced the concept of non-stationary energy for the time-symmetric initial data
in general relativity for vacuum asymptotically flat spacetimes. That definition is based on
the notion of approximate KID, which is to be defined below. Dain’s invariant was extended
to the time-asymmetric case in [6], and for asymptotically non-flat spacetimes in [7], where
another definition based on the time-evolution equations was given. In [9] the construction was
extended to non-vacuum spacetimes.

Let us briefly recap Dain’s construction as it is not widely known and involves several
subtle steps. Let the constraint covector be ® := (P, ®;) and DP be its linearization about
a given solution initial solution. Then, D®™ is the formal adjoint of the linearized constraint
map that acts on the lapse and shift vector. A crucial tool in the construction of Dain’s invariant
is Bartnik’s operator P defined as [15]

1 0
P:=D®o (0 —D’”)’ (70)
of which the formal adjoint is

PN = <(1) lg’m) o D®* (N). 1)

If one uses the densitized versions of the constraints, one must also rescale the Bartnik’s oper-
ator as

- —1/2
P*(N) = <7 0 ?) o P*(N). (72)

Finally, we can write the Dain’s invariant, .# (£), that quantifies the amount of non-stationary
energy in the initial data that solves the constraint equations:

(€)= / v P*(€)- P (), (73)

P
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where ¢ := (N,N'), and P*(¢) := P* <]Ci

N\ (A ,
(M) : (Bi) := NA+ N'B;. (74)

The important step here is the following: in the integral (73), one considers only the lapse
and shift functions that satisfy a fourth-order partial differential equation that arises in the
integration by parts as

). More explicitly, in (73) one has

PoP*(€) =0. (75)

This is called (by Dain) the ‘approximate KID equation’, which admit all the Killing initial
data as solutions, but has more solutions than the Killing initial data.

Our formulation [7, 9] of Dain’s invariant directly involves the time evolution equations
since one can write the formal-adjoint of Bartnik’s operator as

1 0 O 0 ol

(10 o o1 0 o) L dfw
P = (0 Dm)oD<I> w=19 o o lerealt] 76)

o 0 O D, II

Then, Dain’s invariant for generic f(Riemann) theories in the time evolution formulation reads
as

700 = [av (1Dl 19w P 2 (19724 15) ) )
J gl
where the time derivatives of the phase space fields appear. One must also be careful with the
notation as one has |D,, 1) |* = yuyyDpp " DN
Let us remark on a possible use of the results of this section. Given initial data that solves
the constraints, one can identify what fraction of that data will turn into gravitational waves
using the expression (77). As a fully deterministic theory, this is what one expects in gravity.
Unfortunately, it is generically hard to find analytical solutions to the constraints. Therefore,
one needs to compute (77) for a numerical solution. Even in the simplest case, provided by
Dain [5] for asymptotically flat time-symmetric initial data in Einstein’s theory, a numerical
evaluation of the related integral that gives the non-stationary energy has not been carried out.
It is an outstanding problem'”.

5. Applications of the formalism

5.1 The R? theory
From now on, we shall adapt our results to the R theory. We consider the following function

f(p;wpo) = p2 = g#pgwgaﬁg%f%uwﬂawn (78)

10 One reason this approach to the gravitational wave content of initial data has not received much attention could be
the fact that Sergio Dain passed away at the age of 46 before he was able to expound upon his ideas on the topic [16].

13
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to represent the R” theory, where p = gHg"° Puvpo and so

p=28""8" puvpo
= gvo (gOPPOVpU + gippivpo) (79)
—_ Vo (00 0i i0 i
=8 (g Povoe + & Povie + 8 Pivos + 8 pzv;o) ;
which yields
p=8" (£° piovs + 8 pivjer) + 8" (8* poros + 8" poric + &° piros + &' pito) (80)
and then

p Zgoogijﬂioj'o +g% (giopiOOk + gijpiojk) +4 (ginOkiO + gijpikjo) @1
+ 8 (8% poror + &* poxit + % pixar + 87 pi) -

The auxiliary field p,,,, has the all symmetries of the Riemann tensor. Therefore, by renaming
the indices we get
p = &"8" piji + 200 (%8 — 8% ¢") + 4¢" " poig- (82)

Inserting the corresponding components of the inverse spacetime metric, we arrive at

) 1
p =" pigy — 2’7"@ (NN pugi + piojo — N* (poikj + pojki)) (83)

where we have already introduced the hypersurface projected field Q; = n*n"p;,;, with the
future pointing unit normal vector n* = (1 /Ni — N /N) Hence we get

p =" pig — 297 = = p — 20,
where we have used py; = Zpikjl and §; = EQU-. Then
I =400 — 49Ty Y™ Dt + VY™ Pkt YT E P (84)

Here we have used %4/ p;;; = ¥ p, to make the difference clear between the trace with the
spacetime metric, p = g"”g"? p,.,po. Then, we write

f(puupo) sz = (Zp_29)2~ (85)

To construct the primary constraint, 9f/9Q; = —21Y, we need to calculate df/9€;. It is
easy to prove that

of
09

=80 — 4~ %), (86)

Therefore the primary constraint of the auxiliary field is

P =47 (2%p—40Q). (87)
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Recall that in general relativity one has 1)/ = 4%, and now we have v, > p, {2 dependence in
the hypersurface field /Y. The Hamiltonian constraint (51) reduces to

7

1 2
By =27 (DkaEp—ZDkaQ—i—(f _ Zzpz) += ((H?,-Jrnz) (Ep—ZQ) —p"ln,d) ,
(88)

and the momentum constraint (52) becomes

k

®; = —2./7Dx <\’;;> +211D; (¥p - 29) +4,/7Dy (\% (Ep—29)> . (89)

5.2. The R,.R"" theory

In this section, we are going to evaluate the R, R*" theory as an example. To be able to do
this, first, we have to compute the space and time decomposition of the contraction p,,, p"".
Clearly, we have

F(Puvpe) = puw ™ = poop™ + poip™ + piop™ + pyp?, (90)
and
Fouvpo) = poop™ +2p0ip" + pijp". 1)

Now we should decompose the corresponding components into the ADM variables. We start
with p,,,,, which can be obtained as follows

Puv = gaﬁpa,uﬁu
= gOBPO,uﬂu + giﬁpi,uﬁu 92)
= gOOPONOV + gO[pOuiV + gioppou + gijpiuju-

Using the symmetries of p,,.», one has

Puv = 8% pouow + & (Pvino + Puivo) + &7 piyjv (93)
which yields

poo = &7 piojo.- 94)
Recall that pggoo and poioo automatically vanish because of the symmetries. Similarly po; reads

poi = —&" pioko + 8" pucino- (95)
Moreover, the spatial component p;; can be written as

pii = 8" poioj + ™ (pigo + piio) + & priy- 96)

15
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Recall that, we have already introduced the hypersurface projected tensor fields p; and (2;;
via (28) and the inverse metric components. Let us reexpress pgo. Using (94) we can write

N"N"
P00 = (,ymn - 7) (NZan + NkNlpmknl +NNk (pmkn + pnkm)) ) (97)

which yields

00 :Nz'Yanmn + Nklvl')/mnpmknl + 2NNk7mn,0mkn —N"N"Qu

N"N" N"N" (93)
- TNkMpmknl - TNkpmkna

where the last two terms vanish because of the symmetries. For simplicity, we introduce
— s s
Q == ’Yanmm Pkl = ’Ymnpmknlv Pk = anpmkm

where p,p and p,u, are purely spatial by assumption and therefore we removed the over X
on these fields. Then, pgg reduces to

poo = N*Q+ NN (¥ py — Q) + 2NN > py.. 99)

Now let us compute pgi. One has (95), which yields

N™
Poi == 37 (Nszi + NEN! ptis + NN* (ot + Pikm))
N 1 (100)
+ (y™ - 7) (Npnim + N puimi) ,
and
N"NFEN! N™NF
Poi = *NQOi — % Pmkil — ——5 (pmki + pikm)
v N™"N" N N"N'N! (101
+Npi "+ Nlpm' n,_ Npmm N, — - ,Omml'
Then it reduces to
N"Npy, N"Npy,
i — _NQOl - — NZ i NmZ im m 102
00 N2 TN TN N (102)
where pixn = —pkim - Then, one ends up with
poi =N = p;+ N (¥ pi — Q). (103)
Similarly we can compute pj;;. Using (96), one has
1
Pi =" (N*Q + NN pigi + NN* (pitg + pii))
(104)

Nm mn
+ e (N(pjmi + pims) + N (0jmit + pimit) ) + (7 " — T)pmin]’-

16
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Then, we obtain

NEN! NF N
pij = — Qij — ———pixjt — ~ (pirg + pixi) + — (Pjmi + Pimj)
N? N N
(105)
NN . NN
=+ N (pjit + pijt) + pmi" j — N2 Philiy
which reduces to following compact form
>

pij =" pij — Q. (106)

To compute the contraction p,,, p"”, we have to compute the higher indices versions of the
components. Let us start with p% . Clearly one has

POO :gMOgOVpHU _ gOOgOOPOO 4 2gm0g00pm0 + gnOngpnm. (107)

Inserting the inverse spacetime metric components, we have

1 2N™ N'N"p,
00 nm
P —ﬁpoo—ﬁpom-ﬁ-T, (108)
and making use of (99), (103), (106) one arrives at
1
pOO = N (Nzﬁ + NN (Epk[ — le) + 2NN* Zpk
(109)

—2NN" Epm - 2Nme (Epkm - ka) +]van (anm - an)) )

where all the terms, except the first one on the right-hand side of the last equation cancels each
other. Therefore we arrive at a simple result

Q
00
=—. 110
N (110)
Now we can compute the first piece in (91), that is pgop®. One has the following
NEN! Nt
poop™ = 0+ ——Q (Zpu — Q) +2—Q 7y (111)
N N
Similarly, we can evaluate p":
P = "8" pun = 8% poo + 88" puo + 88" pom + &0 pum,  (112)
and we can write
pOi — gOOginoo 4 Dm0 (googmi + nggOi) 4 g”ogmipnm- (1 13)
More explicitly, one obtains
PO —gW0g0INRQ) | (Zp/d — Q) (NkngOOgOi + gM0l1 4 N (gOOgli n glOgOi)) .

4 Zpk (ZNngOOgOi +N(g00gki +gk0g0i)) .

17
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Inserting the inverse metric components, one ends up with

. 1 . .

pl=——(NQ+ ). (115)
N
Then, the second piece in (91) becomes
: . NN
0i b DINN b b

ip = —"pi P — N Tpi @ — ——Q “pi —

poip pimp =GN Tp Nz (% pic — Qir)
NE
— P o= ). (116)

Note that p; # *p;;. Let’s continue with p¥. One can express

plj = giugiyp,uu

i0 j im _j i0 jm in jm (117)
=g"¢"po0 + pmo (88" + £°¢"™) + 8" & pum-

Since we will compute the contraction p;p”, we may use the symmetries of the indices at
this step to simplify the construction from now on. Inserting the results (99), (103), (106), we
obtain

o =N O £ 2N =), (ngiogj0+gjkgi0)

o o L (118)
+ (P — ) (NN + 2Ng¢" + g%¢") .
After using the inverse metric components, the last equation reduces to
. NN 2
=" Q4 2l — QU+ 2N ¥, 119
pr=—g 2+ Vo (119)
The last term in (91) is easy to construct. We can easily obtain
i 2 NN 2 -
pip” = (Fpy— Q)"+ —5 (T — Q) + TN Ep (Fpy Q)
N? N
where
2 i i
(Zpi— Q)" = (Zpy — Q) (Zp" —QF). (120)
Collecting the pieces, p,, p"” becomes
S(Oppo) = Buuvpt™ =QF = 2%p; = p -+ =p; = p¥ — 207 =p; + Q; OV (121)

Recall that the constraint on the auxiliary field 1) was given in (53). In our case, differenti-
ation of f with respect to {2; yields

8 a '] IS
agj;, = 90 <7k17m"9k19mn —2%p; Ep + Ep[j =l
y ij
22 an n+ anQk]’)’km ln> ) (122)
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Working out the details, one has
af o ’Ykl mn (Q ann QO 8le) ) X mn 8an

89,:/' B K 89,:]‘ " an] 8917
o0 o0
km _ In mn 7/(1
+’7 Y < 6Qij le+ an] an) ) (123)
and using
O 1
=_ (¢ ! 124
90, ~2 (65,0, + 0,8, , (124)
one arrives at
of ) s
=2(QY+ QY — vy, 125
20, (Q7 497 = =p") (125)

Then, the constraint equation of the auxiliary field (53) yields

Pl = Zpl —Qy¥ — (126)

We have already introduced the Hamiltonian and the momentum constraint Equations of
generic f(Riemann) theories in (51), (52). Using these expressions, the momentum constraint
reduces to

,

Pt
@i = = ZﬁDk (ﬁ) + Hk[Di (Epkl - le) — HDIQ
Hli Xkl ki k QHki
+2/~D, ( Pl — QM) ) —2,4DF [ —2 ). (127)
AL \ﬁ( )) =27 e

Similarly, the Hamiltonian constraint becomes

(D() = ? (Qz + Zzpi Zpi — Ep,zj + Qg + 2D,’Dj (Epij — Qij) — 2D,'DiQ)
+ (—2H,~,~p’f + (P — ) (I + ) — Q (112 + Hg)) . (128

6. Conclusions

We studied the time evolution and the constraint structure of f(Riemann)-type theories using
the auxiliary fields as was done in [3] and recast the Hamiltonian flow in the compact Fischer—
Marsden form [4]. This form of Einstein’s equations can be considered to be a failure of the
initial data to possess an exact time translation symmetry, a vantage point that led to a definition
of non-stationary energy or Dain’s invariant [5]. The type of theories we studied here represent
a large class of theories that can be handled with two auxiliary fields, going beyond these and
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including the derivatives of the Riemann tensor is somewhat challenging which we shall do
in a separate work. One of our motivations for this work was to give a detailed account of
the computations leading to the final constraints and time evolution expressions as there are
several important mistakes and omissions in the existing literature. We also gave two concrete
examples: the R? and R,,,R"" theories.
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Appendix A. ADM decomposition

A.1. The metric and the connection

For the sake of completeness let us give here the ADM split of the Einstein’s equations and all
the relevant tensors. Using the (n — 1) + 1 dimensional splitting of the spacetime metric (12),
Wwe can express

go=—N+NN, goi=Ni =" (AD)
and the inverse metric components are

1 A . P
00 _ _ 0i _ " N V=~V _N'N. A2
S A B R N T2 (A2

In generic n dimensions, the spacetime metric in a matrix form reads

800 &oi N;N; — N? Ni)
v p— = . A3
Bu (80;‘ gij) ( N; Vij (A3)

Taking the determinant of the spacetime metric, we can relate the determinants of the spacetime
metric and the spatial metric as

Vg =N, (A

where we have used g = detg,,,, and similarly v = det~;;. Let I'; , denote the Christoffel sym-
bol of the n dimensional spacetime

1
FluLp = Eg'ug (augpa =+ apguo - aogllp) , (A5)

and let ZF; denote the Christoffel symbol of the n — 1 dimensional hypersurface, which is
compatible with the spatial metric v;;, Diy; = 0, as

1
Ty = E’Ykl (Oryjt + Opvir — Orvig) - (A6)

20
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Then a simple computation gives one the following components of the connection

1

Y = N (N+ NN+ N'Ky)) , (A7)
and
o1 (ON+NKy), TIf)= L. rh—=pe_ ﬁK-- (A8)
Oi_N i ik) > U_N ijs ij = ij N ijs
and
. 1 . . .
Loy = =N (ON + KyN*) + NK;' + D;N', (A9)
and also
Too=—% (N+ N (0N +N'Ky)) + N (ON+2NK') + N + NDN'. (A10)

To compute the decomposition of the field equations, we need to express the additional tensor
quantities such as the Riemann and the Ricci tensor components, the scalar curvature.

A.1.1. ADM splitting of the Riemann tensor. The Riemann tensor of the spacetime is defined
as

R oo = 0p1, — 0,1, + T ), =10 1) . (A11)
So, it is straightforward to compute the components given below

R"ju="R" g+ KyK{ — KuK]' + % (DiKjx — DiKj) (A12)

ROy = 1 (DiKji — DiKy) (A13)

R = N (Kij — DiD;N — N'D;K; — 2K;;D;)N') — Ky K5, (Al4)

where *R" ki 1s the Riemann tensor of the hypersurface and it explicitly reads

PRy = O ST — 9T+ ST STy — I Ty (A15)

Also, we need to compute Rjgj. Using the above results it becomes
Rigjo = NN' >Ry + NN* (D;Kj + D;Ky. — 2Dy K;;)
+ N (DiD;N — K+ Ly Ky) + N°Ky K, (A16)

where £ denotes the Lie differentiation along the shift vector N* and when it acts on the
extrinsic curvature, one has

L Kij=N'DyKy + KuD;N* + KigD:N*. (A17)

Moreover, we can introduce the hypersurface projected components of the Riemann tensor as
Riju, Rijii and Rz Below we will prove the following three statements:

Ry = “ Ry + KKy — KuKjg, (A18)
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Rijiii = n"' Rij,. = DiKj — DKy, (A19)
Rigji = n"n" Riyjp = N (LxKij+DiDN — Kyj) + Ky K} . (A20)

Let us start with the proof of the first statement (A18). We have
Riju = gipR" ju = gioR jua + gimR" s = NiR® jyg -+ YimR™ s, (A21)

where one can express

Ry = 0Ty — Ol + T3, T =) T
1 1 1
=0 (W) o (NKJ*) + 32 Kt (0N +N"Ki)

1 . N7 1 "
+ —Kim (2 - K) — 2K (OIN +N" K1)

N N
i A
K (Erj‘k - jk) , (A22)
which yields
1
Ry = N (0Kt — 0K + Kkmzrj-? - szEF,'-Z) ) (A23)

or in terms of the hypersurface covariant derivatives

1
Ry = N (DkKjy — DiK) . (A24)

Similarly we can compute R" ;. By definition we have

R"jy = akr;; _ 8,1"]{’; + Fk’”#l"j’,j - ;ﬁl"ﬁ(, (A25)
which reduces to
m 3 pm m m N"
R"jjy = “R" iy + Ky Ki" — Ky K" + N (DiKjx — DyKj) . (A26)
Collecting the pieces we end up with (A18).
Let us prove (A19). By definition, projection once can be written as
i 0 ; 1 N
Rijiiz = n"' Rijry, = 0 Rijro + 'Ry = NRijkO - NRijkh (A27)
where
Rijto = gooR’ 1ji + goiR' ki, (A28)
which reads
Riro = N'*Ryi + N (D:Kyx — DiKy) + N' (KiiKj — KijKip) - (A29)
Using the last equation in (A27), one arrives at the desired result (A19).
We also need to construct R;;7, which reads
R = n"n” Ripj = —R® jo; + N°R® j, (A30)

22
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where the nonvanishing components of the first term are

1 -.
R joi = v [K;j — D;D;N — N'D;K); — K;D;N' — Ky D;N*] — Ky K}

Substituting the results, we obtain the desired result (A20).
A.2. ADM splitting of the Ricci tensor and the scalar curvature
Starting with the definition of the spacetime Ricci tensor

Ryo = 0u e —0p1 o + 14,10, —T0 T,

one can express

Rij = 0oLy + L — 0T, + T) + T(Tgo + Tho)
+ FSF& + Fllzlréj - ngrgi - Fl(c)jréi - ngrléj - Fj]'(l]-—‘;civ

which yields
1 .
Rj =R+ KK; — 2Ky K} + I (Kj — N*DyK;j — DiD;N — KuD;N* — KiyDiN¥) |

where *R;; denotes the ij component of the Ricci tensor on the hypersurface
2Ry = 0, =T% — 8 °T¥, + T4 =T, — Zrh=r
The 0i component can be written as
Roi = 0oL'g; + kLg; — 8T + Tg) + T lio + T Ll — Too L% — LT
and this expression gives us the following simple result
Ro; = NR;j + N(D, K" — DiK).
Similarly, the 00 component
Roo = 9L — AoLx + LooLo + TisTo0 — Lok — TorThos

can be written in a compact form as

Roo = N'N'R;j — N°K;K¥ + N (DyD*N — K — N*DyK + 2N*D,, K" .

(A31)

(A32)

(A33)

(A34)

(A35)

(A36)

(A37)

(A38)

Then, the scalar curvature of the spacetime, R = g*”R,,,,, can be expressed in terms of the

scalar curvature of the spatial hypersurface, ¥R = /¥ 2R,-j, as

.. 2 .
R=*R+K*+K;K7 + ¥ (K — DD'N — N'DiK) .

23
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Appendix B. Field equations of the f(Riemann) theory

Let us start with the action
l n
S[gp,v] = Z/Md Xy 7gf(R/pr')7 B1)

of which the first-order variation is

3S(ga) = 5 4" (VR A Rypr) + V' 6 Ryr). B2)
where
ov/—g= %Vfgg“”5guu = —%\/nguﬁg“”, (B3)
and
(Ruspr) = G (617K 300) = G (R B, +0, R ). (B4)

Here, the linear order variation of the Riemann tensor is 0R” 5 = Vpéffw — Vol , and
the variation of the spacetime connection is

1
oTg, = 5 87 (V0800 + V08,un — Vadguw) - (B5)
So we have
af T T T
5f(R/Lupa) = W (R ’ypa(sgAT +8&xr (VP(SF’YU - voar—yp))
Ypo
of

= (RT WJU(Sg)\-,— + va[ﬁg/\]a + VUV[)\(SgV]p) . (B6)
aRMpa

By renaming the indices and using the antisymmetry of the Riemann tensor, the last equation
can be written as

of

Of (Ruvpo) = W
Ypo

(R 4po08ar +2V V1 0851) . B7)

Collecting the pieces, we arrive at

of

1 |
N [gm/] = E /M dnx\/ _g<2g“' (5gul/f(R/\'ypU) + m

(R” ypo08r + ZVPVW(Sg[,)\)> .
(B8)
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Using integration by parts and ignoring the boundary terms, one has

1
oS [gw/] = Z /M dnx\/jg (glwégul/ f(R/\’ypU>
of

of
08w | =——R" 0 RY . s
o8 (apra v ORypo ” )

0 0
208w VoV (aRxfpu * aRufm ) ) , ®9

and in a compact form it reads

1 1 ) 9
NI 3 /M d"x/—g08u <2g‘“’f(RMpg) +R™,, 6R)f +2V,V f) ,

vpo : aRU(uv)p
(B10)
which yields the field equations
1 af of
g (Rynpe) —RP, S g Y B11
2g f e ) i 8RV)’YPU paRd(W)p g ( )
where
2 matter
Ty = = 5;;;5 _ (B12)

Appendix C. Introducing auxiliary fields

To turn the field equation (B11) into a set of first-order differential equations, we start with the
augmented action

vpo 1 n vpo
S[guwpul/poa@'u r ]: Z/Md Xy _g<f(puupa)+§0# ’ (Ruupa _puupo)>v (Cl)

where the two auxiliary fields p,,,- and @**?? have all the algebraic symmetries of the
Riemann tensor R, -

Assuming that the matter couples minimally to the metric and not to the auxiliary fields,
the variation of the action reads

1
35060161 = | @5 (V8 by + 6% R — )

TV (5f(p/“’90) + 09" (Ryuwpo — Puvpo) + "7 (R wpe — 0puvpo) )> )
(C2)
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where
Rir = Ry + 3 (vpvuégw £V, Vg
—V,Vugve —VaVi08pu — Ve V,iguu + Vavuég,,p) . (CY)
Using the symmetries of the fields, we have

(pliupa (5R;wpa _ 5p;wpa) — QOHVpUR)‘ VPU(SgM)\ _ (p/wpo(splwpa

1
+ E@MDPU (Vqu(;ga,u — va#(;gya- *VgVy(ggp# + VGV#(sgup) ,

(C4)
which can be rewritten as

P Po (5pr0 _ 6/’#1/00) — (5gWR(#/\pU<pu)Apa + Zwa(#u)pvpva(ggw _ W#UPJ(SPW,JU-

(C5)
Inserting these results in (C2), and integrating by parts, one ends up with
1
0S(g.p ) = 5 /M d"xy/~g <5glu/ {R(“ Apo @7 2V 5V o7 ()P (C6)

1 v o
+ Eg# (f(p)\'ypa) =+ @A'Yp (R)\'ypo - p>\'ypa')):|

7)
+ (ap f - @MVPU> 6pHVPO' + (R;wpo - p;wpo) 530#Vp0> + IBoundary (€7
uvpo

where the boundary terms read

Toundary = /M d"x/—g (v,, (np”(‘“’)pvgég,“,) -V, (5ngpw<“”>ﬂ)) . (C8)

Introducing

1% v [e o 1% 1 1% ag
EM = _R(H,\pgw e 2V,V 0 e Eg# <f(p>\'ypo) + @Aﬂyp (R)\'yp(f - p/\’ypo))v
(€9)

and dropping the boundary terms, one arrives at
5 _ 1 dn / g,u,l/(s R (5 nvpo af nvpo (5
§= E XV =8| — Suv + ( pypo*pm/po) @ + m 2 Puvpo | -
(C10)
The field equations given in section II follow from the above variation. One can show that

using the field equations for the auxiliary fields in the £#¥ = T equation, one gets back the
correct second-order field equations (2), hence the consistency.
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Appendix D. ADM splitting of the auxiliary fields
Let us give some details of the computations leading to the action (30). One has

it (R;wpo - p;wpo) = (p0upa (ROVpU - pOVPU) + (‘Oiwm (Riypg B Piupa)
= (Pina (Roipo — Poips) + ‘PiOpa (Riops — piopo) Jr@ij/m Rijpo — Pijpo) -

(DD
Due to the symmetries, it can be written as
SOIWPJ (R;ujpa - puupa) = 2()00[;70 (RinU - pino) + (pijpcr (Rijpa - pijpo) ) (DZ)
which yields
PP (Ryvpo — puvpo) = 20”7 (Roios — poios) +2¢°7 (Rojjo — poijo)
+ (pijOU (RijOU - PijOa) + (pijka (Rijka' - pijka) ) (D3)

and then

7 (Ryuwpo — Puvpo) = 20" (Roioj — poioy) + 207 (Royjo — poijo) + 207 (Rog — poije)

+ " (Ryjor — pyjor) + " (Ryko — pigno) + ™ (Rt — piju) -

(D4)

Using the symmetries, one ends up with
"% (Rywpo — Puvpo) = O™ (R — pirt) + 407 (Rijno — pijno) +4¢™° (Riojo — piojo) -
Moreover, using the decomposition of the components of the Riemann tensor one obtains
Vi (lepa - p,uvpa) :Soljkl (Rijkl - Pijkl)

+ 49" (N (DiKy — DiKi) + N'Ryjis — pijeo )

+ 4Lpi0j0 (NNk (D,'Kjk + DKy — 2DkKij>

+N (—kij + ENKZ:]- + DiDjN) +N2KikKkj + Nk]V]R,‘kj] — pinO) .
(D35)

Defining

ik — il jm, kn p ij — ik . jl v
@j =7 ’Y/ 0 n' Plmnp s W = _27 "7‘,”#” Pulv s

Pijk = 1" pijiy, Qi =n"n" piyju, (D6)

one can express the corresponding components of the auxiliary field ¢#*?? in terms of the
spatial tensor fields as follows

ijk ij
ko _ _ P in():_’L/}

N @ SNE (D7)

¥
and similarly, in terms of the spatial tensors, we can write the components of p,,,. o as
1
Pijko = Npijk + N pijut,
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Pijko = NZQ,-j + NkNlpikjl + NN* (pikj + iji) . (D8)
Then, we arrive at
@/Lupa (R;u/po - p,u,l/pa) :Lpijkl (Rijkl - pijkl)

y N
— 4 <Dink — DiKix = piie + (Rijur — pijkl))

B NkNl
—2¢Y (N2 (Rt — pgn) + KiK*; — €

Nk
t (DiKjx + DjKi — 2DiKij — pij — pjii)
1 .
+~ (—Kij+ LnKy + D,-D,N)) , (D9)

from which one obtains (30).

Appendix E. The constraints

By definition, the canonical momenta are defined as

) - 1) 0L 0Ky
I, = L pi e O£ _ 0L 0K (E1)
6601/}1] 68071’] 6Klm 671]
where the Lagrangian density is given in (35), and so we can express
H,’j = —ﬁKlj. (E2)

In the computation of p¥, one needs to compute the variation of the extrinsic curvature with
respect to ;. By definition, we have

6Klm 14 . | R
= (3m— DNy — DyN)) = —6i8. .
53y 2N a5, D TR

(E3)

One also uses the explicit form of the Lagrangian (35) to arrive at

5L Ny§ of 1 o l o l
= — m __ my _ m SKS_K m ”Km— m"K )
oK, 2 ok, TN ('CW L ) VP K g — K — K — 1)K

Collecting the pieces we express the conjugate momenta as

= g 51? + ? (N (£N¢U - T/)U) — Ky — KT — Ky — Tﬁ]kKZ) :
ij

The last expression directly yields the velocities as
N 6f 2N y y y . .

A B N N(—’f MK — Kbl — K — ka’). E4
2 5K; ﬁp‘f'/\ﬂﬁ‘*‘ VP K — Ky — Ky — K, (E4)

The Hamiltonian density reads

1/')1'1'

H=p"y+ i) — L, (ES)
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and inserting the velocities together with the Lagrangian density (35) it can be expressed as
follows

H =2NK;; p’ — /7K La)" 4+ 2p"DiN;

1 . . o
+VAN (—J; + U DIDIN =7 +K¢"’Kk1+w’klf’k>. (E6)

Up to a boundary term, the Hamiltonian density can be written as a sum of the constraint
equations. Namely, one has

H = NPy +N'®;. (E7)

After a straightforward computation, one obtains

2 | " y .
H =Ny~ (ﬁKiJ’PU = 5/ (Puvpa) + DiDp" — 4y + KKy + KinIkwlk>

k
i Di

+N'/y (—ZDk < ) — KuD)X — 2Dy (WK,i)) ) (E8)

VA
Since we have already obtained the relation between the extrinsic curvature and the conjugate
momenta, K;; = —II; / V/Y> We can equivalently write

" . 1 N . " -
H =Ny (DiDjW — Yy — zf(p/wpn)> 5 (*ZHiij + ;Y + n,.,nw")

i P{'( Kl < leli)>
N (—2~D, T1,,D; 2./7D i), E9
+ ( VA k(\ﬁ)-i- wDi™ +23/D | ¥ Nei (E9)

which yields the Hamiltonian and the momentum constraints as

P :\f’y (D,‘Djwl/ — '(/)U Q,J — 2f(puvpo‘)) + ﬁ (_2Hijpu + Hii '(/}U + Hinkalk> 7 (E10)

- Pf) Kl ( kIHli>
d, =—-2./vD 11, D; 2./vD, — . El1l
VY k(ﬁ + D™ + 24/vDy | ¢ Nei (E1D)

Appendix F. Time evolution equations

As for the dynamical equations, the first set of the evolution equations is

_0H gi=
6pl]’ 61_[,]

Vi (F1)

This set gives the velocities in terms of canonical variables. Ignoring the total derivative terms,
the Hamiltonian density can be expressed as

1 N
H =N\/v (DkDﬂ#kl — M — Ef (p;wpo)) + — (—2Mup" + T g + I I0, 0™

ﬁ
+N" (—ZﬁDk (”51> + D, +2/ADy (wkln’"’»
il ! Vi)

(F2)
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Then automatically we obtain

. 2N
Yij = —71_[,']‘ + EN'Yzj = ZNKij +Di1\7j +DjNi, (F3)

V&l

which is the expected result (57) and by definition Lie derivative yields Ly7; = DiN; + D;N;.
Similarly ¥ can be written as

Ny of
2 ol

07 = = (=29 4+ T+ T 4 TG 4+ T ) + Ly —
Vi
where one can evaluate the last term easily for a given f.

Now, we can continue with the second set of the evolution equations. One has the following
relations

(F4)

oH . OH
5 I, = — S0 (F5)

-

Using the Hamiltonian density again let us construct H,j We have

. N N 4
II; =N/ Q — —II II;; — —TIII* — N\/3— (DyD1g"
ij VT 8 N ij ﬂk/ f&/ﬂ(kl ) (F6)
0 )
—N"y—— (D) -2 — (D (11
N kz(wl]( ) Nm(wu(k(w im))
and we have to compute the last three terms. We have
mekl _ amwkl + El—\lrjmwnl + El—\ﬁnnwkn’ (F7)

which yields the following variation
5D = 0,09 + Tk o 4+ ETL 5yf 45 =Tk + 6 =T | (F8)
and it can be written in a more compact form as
5D = Dy + S ETh - phng =Tl (F9)
The variation of the hypersurface connection can be expressed as
5T, = %vk” (D0 Yp + D0 Ymp — Dpyun) - (F10)

Therefore in a more explicit form, one obtains

1
5mekl :Dmawkl + Ewnl’ykp (Dm§7np + Dn(s’VmP - Dpavmn)

| (F11)
+ Ewkn'YIP (Dm(S'an + Dn(S'Ymp - Dp(s%nn) s
which can be reexpressed as
5 mekl -D,, (Wd + W(k 7l)p ( Dm(g%p + Dn57mp _ Dp5%m) , (F12)
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and directly yields variation with respect to )V as

3 (D))

N’"HMW

= —N"D, I — I1;D,,N". (68)

Note that there is no contribution coming from the variations of the connection in the last
expression. Similarly we can compute 5D D)X as

Dlewkl :ak (aﬂ/)kl + EFIZcm,(/)ml + Zl—‘émwkm) + Erim (8lwml + EF%'(/)”[ + Erﬁnl/)mn) .

(F13)
Taking the variation, we write
SDDM = DDy + DP (4" D6y ) — %Dk (4" Di6im)
£ 2D (897 Dy53p) 37 D Dy (F14)

Since we focus on variation of the spatial field ), we only consider the first term on the right-
hand side. Hence, ignoring the total derivative terms, we get

b
NWW (DkDM) = \/AD:D;N. (F15)

Now we should compute the last term: 8Dy (1/¥I1,,,). The variation of this term gives us
Dy (¢! T) = Did (M0, ) — MT1, 67T, (1)

Up to a boundary term we get

N

g kl m
51/)ijDk (¢ Hlm) = _Hm(iDj)N . (72)

Inserting them in IT;;, we end up with the desiring evolution Equation

ij>
: N
I; = /7 (NQ; — D;D;N) — 7 (LTI + T IL}) + Lyl + I;DeN'. - (F16)

Then, we can construct p¥ = —6H / 07;;. Since we have the variations

01 i Sy~1/2 1 1/2.ij
— = ——~" 4 F17
55 SV 5 R (F17)
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from the Hamiltonian density (46) we directly obtain

- N N 1 ) 1
Pl = _E\ﬁ'ylj <Dle¢kl - wlekl - 2f(/’,uvpo’)> - N\FV&Y <Dle¢kl - Zf(plwﬂd)>
ij
N .
+ 5=y (= 20p" + T g + I ™
N )
N
- T =5 Hmnfymn Hklwkl + Hlemn’anwml
V7 0 ( )
PV <—27mmﬁDk (”k" ) + Tt + 27D (w’dn””)) . (F18)
07ij V4l N4l
To simplify the last equation, we use the Hamiltonian constraint (51) together with
Sy 1, Ji
— _ _ mi n m, mn F19
5r 5 (" ") (F19)

in (F18) to arrive at

\/TY

0 N )
- N\ﬁg (DkDﬂﬁkl) + Eﬁﬂyf(mvm)
ij i

P=— (W’U (IT )" + T Ik g™ — 2Hklpkl) + T TN + Hﬁﬂjlcl/fkl)

kn

5 )4 1_Ilm
—N" (—2% YDy ( ) + Dt 4 24/ Dx (M’)) : (F20)
vy 7 VI " v VI
A straightforward calculation gives us
g Kl __ﬂ i Dk — 2k D)) ij Kk
N\~ 5 (DiD) = =5 | De (DN =20 "DIN )+~ (NDD — " DiDiN) |
ij
(F21)
and
o (w Naz (” k" )) =Ly ( i ) + p'DN* (F22)
6’7,7 mn \ﬁ \ﬁ )
and also
N <Hk1D M 4+2./4D; <¢k’H”">) =0. (F23)
i vai
Finally, after collecting the pieces, one ends up with the last evolution equation (67)
i N[ m ij ity
M= <7’ (I L) + T L™ — 200gp*) + T + HﬂW’)
val ik k(i 1y) ij Kk
+5 Dy (VDN —2¢4""D'N ) + 4" (ND D) — ¥ DyDiN))
N of pl , "
+ =V + ’Y&v( ) + p"DyN". (F24)

At this point, one needs to know the explicit form of the function f to proceed further.
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Appendix G. Application to general relativity

In this section, we will use the generic results to evaluate Einstein’s theory. Let us set the
function f to

f(P;wpU) =8""8" puvpo- (GD)

Since p,.p0 has the symmetries of the Riemann tensor by assumption, one can easily show
that

f=8"¢" pij + 48" " poiii + 2poio; (878" — g"g%) . (G2)
We can insert the components of the inverse spacetime metric to arrive at

FPuvpo) =7 pija + ]%,ﬂij (2N poirj — poioj — NN piggr) - (G3)
Using the hypersurface projected tensor fields that we introduced before, we arrive at

F =7 pijsa — 297;. (G4
Now we can construct the constraint on the auxiliary field 4%, (53). It directly yields

P =" (G5)

Therefore, the first set of evolution equations (57), (58) are related. Since 17 = ~¥, we can
rewrite (58) as

B o 2N i S 0
4 = —D'N — DIN' 4+ — (Hv” + 1Y — p¥ — Iy / ) : (G6)
V7 Opikji

where we can use

8f Pq . nm 8ppnqm

) (G7)
apikjl apikjl

We have to preserve the symmetries on both sides of the equation. So, we have to express it in
a more correct form as

o 1y
Opuj 4 Opikji

(ppnqm + Pgmpn — Prpgm — ppnmq) , (G8)

which yields

82/;1 B % (YA =~19) . ©%
Then we have

4 = DN — DIN' + 2\2 (;H’YU + %H’ —p”) ) (G10)
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Using the basic relation ;; = —fyikfyﬂf'yk’ , one can directly rewrite the last expression as

. 2N 1 3
For consistency with the time evolution of the spatial metric

2N
4;; = ———=11;; + D;N; + D;N;, (G12)
ij Vel ij T
one needs
_ P
Hij_z(pij—zy,.j). (G13)

G.1. Constraint equations

One can reexpress the Hamiltonian density of general relativity, using ¥¥ = ~v¥ and (G13) as

H= (—p"f + 257’7) i — L. (G14)
We then introduce the new momentum

= —pl+ 271971;,-7 (G15)
which yields the trace

r="2 ; 2 (G16)

Then, the Hamiltonian density becomes
H=nl5,— L. (G17)
One has the inverse relations
" i 2 i
Y = -27% + ——~Ym, (G18)
n—2
and IT =27r/(n — 2). Additionally, we can express

.. .. 2 .. n
b ij —
p ™ +n_27777 p w2

. (G19)

Finally, the Hamiltonian and the momentum constraint equations (51) and (52) reduce to

2 72 ¥
Bo(y,m) = = (7~ 75) - VT ok, (G20)
and
(v, ) = 2Dy} (G21)
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