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Abstract
We give a detailed canonical analysis of the n-dimensional f (Riemann) gravity,
correcting the earlier results in the literature.We also write the field equations in
the Fischer–Marsden form which is amenable to identifying the non-stationary
energy on a spacelike hypersurface. We give pure R2 and RµνRµν theories as
examples.

Keywords: constraints, evolution, generic, gravity

1. Introduction

Within the paradigm of effective field theories, general relativity augmented with dark matter
and dark energy is the lowest-order effective theory of gravity that works remarkably well at
small and large scales. Of course, it is expected to be modified at extremely high energies, or
extremely short distances, for example around the black hole or Big Bang singularities. The
modifications can be computed from a microscopic theory, such as string theory, alternatively,
one can study generic modifications consistent with symmetries (see, for example, [1] for
more arguments of the raison d’être of modified gravity theories). A large subclass of modified
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gravity theories is described by the action of the form3

S=
1
2

ˆ

M

d nx
√
−g f(Rµνρσ), (1)

where f(Rµνρσ) is a differentiable scalar invariant of the Riemann curvature tensor (we are
taking the Newton’s constant κ= 1). We consider the metric tensor to be the independent field.
We shall work in the metric formulation and in n dimensions. Canonical analysis of this type of
theory was given in the pioneering work [3], whose notation we shall adapt here. Our analysis
mostly agrees with those of [3], however, we shall make some corrections and also recast the
Hamiltonian formulation of the theory in the rather beautiful Fischer–Marsden form [4]. Such a
construction easily allows one to define theKilling initial data (KID) and the approximateKIDs
that are used in the definition of non-stationary energy contained in a spatial hypersurface [5–
9]. These computations would be relevant to identifying the initial gravitational wave content.
Many papers are dedicated to various aspects of the f(Rµνρσ) theory. For example in [10],
the particle spectrum, the masses of the perturbative excitations of this generic theory with
one massive spin-2, one massless spin-2, and a massive spin-0 particle was given around any
one of its constant curvature vacua. In [11], conserved charges of the theory, such as energy-
momentum and angular momentum, were constructed.

Here one of our goals is to expound upon the Arnowitt–Deser–Misner (ADM) analysis
[12] and give sufficient details of the computations, so that the reader can follow all the details
rather easily. We also apply our results to pure R2 and RµνRµν theories. We made a meticulous
effort to write all the proofs of our statements in the appendices, so as not to significantly cut
the flow of the discussion in the main text.

The layout of this paper is as follows: In section II, we introduce the action and the field
equations of f (Riemann) theories. In section III, we summarize the ADM splitting [12] of
the action, which yields the Hamiltonian, the constraint equations, and then the time-evolution
equations of the initial data on the hypersurface. In section IV, we introduce the construction of
the nonstationary energy for f (Riemann) theories. In section V, we consider the R2 and RµνRµν

theories as examples. The computations are long, therefore, we give most of the details of the
calculations in Appendices.

2. Field Equations of f(Riemann) theories

The field equations coming from variation of the action (1) in the presence of a minimally
coupled matter field are4

−1
2
gµν f−R(µ

γρσ

∂f
∂Rν)γρσ

− 2∇σ∇ρ
∂f

∂Rσ(µν)ρ
= Tµν , (2)

where the round brackets denote symmetrization with a factor of 1/2. In appendix A, we
gave the ADM decompositions of the necessary spacetime tensor fields, and then the proof
of (2) is given in appendix B. This equation includes fourth-order derivatives of the metric.

3 This manuscript is written for the volume ‘Fields, Gravity, Strings and Beyond: In Memory of Stanley Deser’ edited
by M Henneaux, R I Nepomechie, and D Seminara. Deser (1931–2023) was very interested in modified theories of
gravity: we dedicate this work to him. For personal reminiscence, the reader is invited to read [2].
4 There is a sign difference in the second term of the field equations in [3].
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One introduces auxiliary variables to simplify the ensuing discussion and lower the number of
derivatives. Following [3], let us consider the ‘mother action’:

S=
1
2

ˆ

M

d nx
√
−g
(
f(ρµνρσ)+φµνρσ(Rµνρσ − ρµνρσ)

)
, (3)

where two auxiliary fields (ρ,φ) have been introduced. These rank-4 tensors have the same
symmetries as the Riemann tensor and are assumed to be independent of each other and the
metric gµν tensor. Therefore, variation of the action with respect to all fields can be written
as

δS=
1
2

ˆ

M

d nx

(
δ
√
−g
(
f(ρµνρσ)+φµνρσ(Rµνρσ − ρµνρσ)

)

+
√
−g
(
δf(ρµνρσ)+ δφµνρσ(Rµνρσ − ρµνρσ)+φµνρσ(δRµνρσ − δρµνρσ)

))
. (4)

One has δf(ρµνρσ) =
∂f

∂ρµνρσ
δρµνρσ , and the variation of the Riemann tensor reads

δRµνρσ = δgµλR
λ
νρσ + gµλδR

λ
νρσ,

= δgµλR
λ
νρσ +∇ρ∇[νδgµ]σ +∇[ρ∇σ]δgµν +∇σ∇[µδgν]ρ. (5)

Due to the symmetries of the tensor fields, one gets

φµνρσ(δRµνρσ − δρµνρσ) = δgµνR
(µ
λρσφ

ν)λρσ + 2φσ(µν)ρ∇ρ∇σδgµν −φµνρσδρµνρσ.

(6)

Using integration by parts and defining the following tensor field5

Eµν :=−R(µ
λρσφ

ν)λρσ − 2∇σ∇ρφ
σ(µν)ρ − 1

2
gµν
(
f(ρλγρσ)+φλγρσ(Rλγρσ − ρλγρσ)

)
,

(7)

one can express the variation of the total action as

δS=
1
2

ˆ

M

dnx
√

−g

(
−Eµνδgµν + δφµνρσ(Rµνρσ − ρµνρσ)+

(
∂f

∂ρµνρσ
−φµνρσ

)
δρµνρσ

)
.

(8)

In appendix C, one can see more details of this computation including the variation of the
‘mother action’. From the last expression, one gets a set of field equations.

5 Note that in equation (2.3) of [3] there is an additional term involving the derivative of f with respect to ρ, which
should not exist.
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• Variation with respect to φµνρσ gives

Rµνρσ = ρµνρσ. (9)

• Variation with respect to ρµνρσ yields

φµνρσ =
∂f

∂ρµνρσ
=

∂f
∂Rµνρσ

, (10)

where for the second equality we have used the previous result.
• The metric variation in the action yields

Eµν = Tµν . (11)

Substituting the additional equations in the explicit form of Eµν , we recover the original fourth
order derivative equation (2). We assumed minimal coupling of matter and the metric, and no
direct coupling of the matter to the auxiliary fields ρ and φ.

3. ADM decomposition of the f(Riemann) theory

Let us assume that the topology of the spacetime manifold is M = R×Σ, with the first factor
being the time dimension andΣ being a spacelike hypersurface. In Einstein’s gravity, the initial
data constitute the Riemannian metric γ and the extrinsic curvature K on Σ together with the
initial matter. The connection on the hypersurface satisfies the metric compatibility condition:
Diγjk = 0. See figure 1 for the slicing of the spacetime.

The metric in terms of the lapse function and the shift vector reads

ds2 =
(
NiN

i−N2
)
dt2 + 2Ni dtdx

i+ γij dx
i dxj. (12)

More explicitly, the components of the metric and the inverse metric are

g00 =−N2 +NiN
i, g0i = Ni, gij = γij, (13)

g00 =− 1
N2
, g0i =

1
N2
Ni, gij = γij− 1

N2
NiNj. (14)

We choose the future-pointing unit normal vector nµ as

nµ =

(
1
N
,−Ni

N

)
, nµ = (−N, 0⃗), (15)

while the extrinsic curvature in terms of the unit-normal vector reads as

Kij =∇inj =
1
2N

(γ̇ij−DiNj−DjNi) , (16)

where γ̇ij := ∂0γij. To rewrite the action (3) in terms of the ADM fields, we start with the
equality

φµνρσ(Rµνρσ − ρµνρσ) = φijkl(Rijkl− ρijkl)+ 4φijk0(Rijk0 − ρijk0)+ 4φi0j0(Ri0j0 − ρi0j0).
(17)
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Figure 1. Slicing of the spacetime in terms of co-dimension one spatial hypersurface.

We introduce the ADM splitting of the corresponding components of the Riemann tensor in
appendix A in detail. Using these results, one gets

φµνρσ(Rµνρσ − ρµνρσ) = φijkl(Rijkl− ρijkl)+ 4φijk0
(
N(DiKjk−DjKik)+NlRijkl− ρijk0

)
+ 4φi0j0

(
NkNlR ikjl+N2KikK

k
j +NNk (DiKjk+DjKik− 2DkKij)

+N(DiDjN− K̇ij+LNKij)− ρi0j0

)
. (18)

Here LN denotes the Lie derivative along the vector field N i, which is defined as

LNKij = NkDkKij+KkiDjN
k+KkjDiN

k. (19)

Following [3], let us introduce the once and twice hypersurface-projected spatial tensor fields,
respectively as

Σφijk := γilγjmγknnµφlmnµ ≡ φijk, (20)
Σψij :=−2γikγjlnµnνφkµlν ≡ ψij, (21)

which can equivalently be written as

φijk =−Nφijk0, (22)

5
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ψij =−2N2φi0j0. (23)

Similarly, for the other auxiliary field, we introduce
Σρijk := nµρijkµ ≡ ρijk, (24)

ΣΩij := nµnνρiµjν ≡ Ωij. (25)

The last two expressions explicitly read

ρijk =
1
N
ρijk0 −

Nl

N
ρijkl, (26)

Ωij =
1
N2
ρi0j0 −

NkNl

N2
ρjkil−

Nk

N
(ρikj+ ρjki) , (27)

where ρijkl and φijkl themselves are spatial tensor fields on the hypersurface by assumption:
namely, one has ρijkl = Σρijkl and φijkl = Σφijkl, and for the sake of brevity, we dropped the
index Σ. In other words, we can express the spacetime tensor components ρijk0 and ρi0j0 in
terms of purely spatial tensor fields:

ρijk0 = Nρijk+Nl ρijkl,

ρi0j0 = N2 Ωij+NkNl ρikjl+NNk (ρikj+ ρjki) . (28)

So then, the contracted term (18) becomes6

φµνρσ(Rµνρσ − ρµνρσ) = φijkl(Rijkl− ρijkl)

− 4φijk
(
DiKjk−DjKik− ρijk+

Nl

N
(Rijkl− ρijkl)

)
− 2ψij

(
NkNl

N2
(R ikjl− ρikjl)+

1
N

(
DiDjN− K̇ij+LNKij

)
+KikK

k
j −Ωij+

Nk

N
(DiKjk+DjKik− 2DkKij− ρikj− ρjki)

)
. (29)

Inserting all of the variations to the generalized action (3), one arrives at

S=
ˆ

M

d nx N
√
γ

(
f(ρ,Ω)

2
+

1
2
φijkl(Rijkl− ρijkl)

− 2φijk
(
DiKjk−DjKik− ρijk+

Nl

N
(Rijkl− ρijkl)

)
−ψij

(
NkNl

N2
(R ikjl− ρikjl)+

1
N

(
DiDjN− K̇ij+LNKij

)
+KikK

k
j −Ωij+

Nk

N
(DiKjk+DjKik− 2DkKij− ρikj− ρjki)

))
. (30)

Now let us eliminate the spatial tensors φijkl and φijk, which are nondynamical. The field
equation for φijkl is

ρijkl = Rijkl =
ΣRijkl+KikKjl−KilKjk, (31)

6 In appendix D, we give more details of this computation.
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while the field equation for φijk is

DiKjk−DjKik− ρijk+
Nl

N
(Rijkl− ρijkl) = 0. (32)

The last two terms inside the round brackets cancel each other due to the constraint and one
arrives at the second constraint

ρijk = DiKjk−DjKik. (33)

Using the constraints, the action (30) reduces to

S=
ˆ

M

d nx N
√
γ

(
f(ρ,Ω)

2
−ψij

(
KikK

k
j −Ωij+

1
N
DiDjN

)
+

1
N

(
ψijK̇ij−ψijLNKij

))
.

(34)

Using integration by parts, one can rewrite the last two terms, ignoring the boundary contri-
butions, to arrive at the action S=

´
M d nx L, where the Lagrangian density is

L= N
√
γ

(
f(ρ,Ω)

2
−ψij

(
KKij+KikK

k
j −Ωij+

1
N
DiDjN

)
− 1
N
Kij
(
ψ̇ij−LNψ

ij
))

.

(35)

Therefore, with the help of the auxiliary fields, we have managed to recast the higher deriv-
ative action as a lower derivative one as desired. It is now easier to find the Hamiltonian of the
theory from this lower-derivative action.

3.1. Hamiltonian of the theory

The dynamical fields are (γij, ψij), and hence one needs to introduce the two canonical
momenta corresponding to these dynamical fields. These are

Πij :=
δL

δ∂0ψij
, (36)

and

pij :=
δL
δ∂0γij

=
δL
δKlm

δKlm
δγ̇ij

. (37)

After a straightforward computation, one ends up with

Πij =−√
γKij. (38)

The constraints (31), (33) can now be recast in terms of the canonical momenta as

ρijk = Dj

(
Πik√
γ

)
−Di

(
Πjk√
γ

)
, (39)

ρijkl = Rijkl =
ΣRijkl+

1
γ
(ΠikΠjl−ΠilΠjk) . (40)

7
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Similarly one arrives at

pij =
√
γ

4
δf
δKij

+

√
γ

2

(
1
N
(LNψ

ij− ψ̇ij)− γijψklKkl−Kψij−ψikKjk−ψ jkKik

)
. (41)

Then the Hamiltonian density

H= pijγ̇ij+πijψ̇
ij−L, (42)

becomes

H= 2NKij p
ij−√

γKijLNψ
ij+ 2pijDiNj

+
√
γN

(
− f
2
+

1
N
ψijDiDjN−ψijΩij+KψklKkl+Kijψ

jkKik

)
. (43)

3.2. Constraint equations

Up to a boundary contribution, one can express the Hamiltonian density as a sum of constraint
equations:

H= NΦ0 +NiΦi. (44)

Here Φ0 denotes the Hamiltonian constraint and Φi denotes the momentum constraints. Using
(43), one can rewrite the Hamiltonian density as

H= N
√
γ

(
2
√
γ
Kij p

ij− f
2
+DiDjψ

ij−ψijΩij+KKijψ
ij+KijK

i
kψ

jk

)
+Ni

√
γ

(
−2Dk

(
pki√
γ

)
−KklDiψ

kl− 2Dk(ψ
klKli)

)
. (45)

Equivalently, in terms of the canonical momenta one obtains

H= N
√
γ

(
− f
2
+DiDjψ

ij−ψijΩij

)
+

N
√
γ

(
−2Πijp

ij+Π Πijψ
ij+ΠijΠ

i
kψ

jk
)

+Ni
(
−2

√
γDk

(
pki√
γ

)
+ΠklDiψ

kl+ 2
√
γDk

(
ψkl

Πli√
γ

))
. (46)

Therefore the constraints are

Φ0 =
√
γ

(
2
√
γ
Kij p

ij− f
2
+DiDjψ

ij−ψijΩij+KKijψ
ij+KijK

i
kψ

jk

)
, (47)

Φi =
√
γ

(
−2Dk

(
pki√
γ

)
−KklDiψ

kl− 2Dk(ψ
klKli)

)
. (48)

The constraints vanish in a vacuum; but if there is a non-zero energy momentum tensor, then
they must be equal to the corresponding projection of the energy-momentum tensor onto the
initial hypersurface:

Φ0 = 2Tnn =
2
N2

(
2NiT0i−T00 −NiNjTij

)
, (49)

8
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Φi = 2Tni =
2
N

(
NjTij−T0i

)
. (50)

In addition, the field equations of Ωij also are constraints: δH
δΩij

= 0. Finally, let us write all

the constraints7.

• The Hamiltonian constraint:

Φ0 =
√
γ

(
− f
2
+DiDjψ

ij−Ωijψ
ij

)
+

1
√
γ

(
−2Πijp

ij+ΠΠijψ
ij+ΠijΠ

i
kψ

jk
)
= 0.

(51)

• The momentum constraint:

Φi =−2
√
γDk

(
pki√
γ

)
+ΠklDiψ

kl+ 2
√
γDk

(
ψkl

Πli√
γ

)
= 0. (52)

• The additional constraint of the auxiliary field:

2ψij+
δf
δΩij

= 0. (53)

3.3. Time evolution equations

3.3.1. The first set: γ̇ij, ψ̇
ij. From now on we are going to construct the time evolution

equations8. The phase space variables are (γij, ψij, pij,Π ij). The canonical coordinates evolve
via

γ̇ij =
δH
δpij

, ψ̇ij =
δH
δΠij

. (54)

The definition of extrinsic curvature leads to

γ̇ij = 2NKij+DiNj+DjNi. (55)

The relation (38) additionally yields

γ̇ij =− 2N
√
γ
Πij+LNγij, (56)

and so we can write

7 Note that the reader can study appendix E for more construction details.
8 Since the computation is rather long, we delegate some details of this section to appendix F.
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γ̇ij = 2NKij+DiNj+DjNi =− 2N
√
γ
Πij+LNγij. (57)

On the other hand, one has

ψ̇ij =
N
√
γ

(
−2pij+ γijΠklψ

kl+Πψij+Πi
kψ

jk+Πj
kψ

ik
)
+LNψ

ij−
N
√
γ

2
δf
δΠij

.

(58)

3.3.2. The second set: ṗij, Π̇ij. Next, we find the time-evolution equations for the canonical
momenta:

ṗij =− δH
δγij

, Π̇ij =− δH
δψij

. (59)

The second one is easier to obtain since we only focus on the variations with respect to ψij.
Using the Hamiltonian (46), we have

Π̇ij =−N√γ δ

δψij
(
DkDlψ

kl−ψklΩkl
)
− N

√
γ

δ

δψij
(
ΠΠklψ

kl+ΠmnΠ
n
kψ

mk
)

−Nm
δ

δψij

(
ΠklDmψ

kl+ 2
√
γDk

(
ψkl

Πlm√
γ

))
, (60)

where

δψkl

δψij
=

1
2

(
δki δ

l
j + δliδ

k
j

)
. (61)

After ignoring the total derivative terms, we get

N
δ

δψij
DkDlψ

kl = DiDjN, (62)

and

NmΠkl
δ

δψij
Dmψ

kl =−NmDmΠij−ΠijDmN
m, (63)

and also

Nm
δ

δψij
Dk

(
ψkl

Πlm√
γ

)
=− 1

√
γ
Πm(iDj)N

m. (64)

Substituting all of these pieces, we end up with

10
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Π̇ij =
√
γ (NΩij−DiDjN)−

N
√
γ

(
ΠΠij+ΠikΠ

k
j

)
+
√
γLN

(
Πij√
γ

)
+ΠijDkN

k.

(65)

Similarly we can find ṗij. Clearly, we can express

ṗij =
N
√
γ

(
γij
(
−2Πklp

kl+ΠΠklψ
kl+ΠkmΠ

m
n ψ

nk
)
+ΠijΠklψ

kl+Πi
lΠ

j
kψ

kl

)
−N

√
γ
δ

δγij
DkDlψ

kl+
N
2
√
γ
δf
δγij

−Nm
δ

δγij

(
−2

√
γγmnDk

(
pkn
√
γ

)
+ΠklDmψ

kl+ 2
√
γDk

(
ψkl

Πlm√
γ

))
, (66)

where the last two terms cancel each other because of the variation with respect to the spatial
metric. Taking into account the covariant derivatives correctly, we have9

ṗij =
N
√
γ

(
γij
(
ΠΠklψ

kl+ΠkmΠ
m
n ψ

nk− 2Πklp
kl
)
+ΠijΠklψ

kl+Πi
lΠ

j
kψ

kl

)

+

√
γ

2

(
Dk

(
ψijDkN− 2ψk(iDj)N

)
+ γij

(
NDkDlψ

kl−ψklDkDlN
))

+
√
γLN

(
pij
√
γ

)
+
N
2
√
γ
δf
δγij

+ pijDkN
k. (67)

In appendix G, we gave the construction of the constraint and time evolution equations of
general relativity using the results we have obtained in this and in the previous sections.

As explained in detail in [7], the Hamiltonian form of the Einstein–Hilbert action, when
extremized, leads to the Fischer–Marsden form [4] of the field equations. For the generic
f (Riemann) theory studied here, one can also recast the Hamiltonian flow in a concise form as

d
dt


γ
ψ
p
Π

= J ◦DΦ∗(γ,ψ,π,Π)(N ), J :=


0 0 0 1
0 0 1 0
0 −1 0 0
−1 0 0 0

 , (68)

where the small circle represents the usual matrix product.
In this matrix equation, DΦ∗(γ,ψ,π,Π) is the formal adjoint of the linearized constraint map
(DΦ(γ,ψ,π,Π)). Why the adjoint map appears in the Hamiltonian flow can be understood
from the discussion in [7]. HereN is the lapse-shift vector with components (N,Ni). Observe

9 Note that in both of these equations (65), (67), all the terms except the last term in each one are the same as those
of [3]. Those two terms are missing in that work.
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that there is no time-evolution whenDΦ∗(γ,ψ,π,Π)(N ) = 0, and these points in the space of
initial data yieldKilling vectors in spacetime [13, 14]. Such a description of Killing symmetries
is extremely useful in understanding the amount of non-stationary energy contained in a given
initial data. Here is how: if N = ξ is a Killing vector, say a stationary Killing vector, then the
time evolution is trivial. The failure of N to be a Killing vector field is given as

DΦ∗(γ,ψ,π,Π)(N ) = J−1 ◦ d
dt


γ
ψ
p
Π

 . (69)

Next, we discuss the non-stationary energy in this generic theory based on the approximate
Killing initial data.

4. Non-stationary energy in f(Riemann) Theories

Dain [5] introduced the concept of non-stationary energy for the time-symmetric initial data
in general relativity for vacuum asymptotically flat spacetimes. That definition is based on
the notion of approximate KID, which is to be defined below. Dain’s invariant was extended
to the time-asymmetric case in [6], and for asymptotically non-flat spacetimes in [7], where
another definition based on the time-evolution equations was given. In [9] the construction was
extended to non-vacuum spacetimes.

Let us briefly recap Dain’s construction as it is not widely known and involves several
subtle steps. Let the constraint covector be Φ := (Φ0,Φi) and DΦ be its linearization about
a given solution initial solution. Then, DΦ∗ is the formal adjoint of the linearized constraint
map that acts on the lapse and shift vector. A crucial tool in the construction of Dain’s invariant
is Bartnik’s operator P defined as [15]

P := DΦ ◦
(
1 0
0 −Dm

)
, (70)

of which the formal adjoint is

P∗(N ) :=

(
1 0
0 Dm

)
◦DΦ∗(N ). (71)

If one uses the densitized versions of the constraints, one must also rescale the Bartnik’s oper-
ator as

P̃∗(N ) :=

(
γ−1/2 0
0 1

)
◦P∗(N ). (72)

Finally, we can write the Dain’s invariant, I (ξ), that quantifies the amount of non-stationary
energy in the initial data that solves the constraint equations:

I (ξ) :=

ˆ

Σ

dV P∗(ξ) · P∗(ξ), (73)

12
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where ξ := (N,Ni), and P∗(ξ) := P∗
(
N
Nk

)
. More explicitly, in (73) one has

(
N
Ni

)
·
(
A
Bi

)
:= NA+NiBi. (74)

The important step here is the following: in the integral (73), one considers only the lapse
and shift functions that satisfy a fourth-order partial differential equation that arises in the
integration by parts as

P ◦P∗ (ξ) = 0. (75)

This is called (by Dain) the ‘approximate KID equation’, which admit all the Killing initial
data as solutions, but has more solutions than the Killing initial data.

Our formulation [7, 9] of Dain’s invariant directly involves the time evolution equations
since one can write the formal-adjoint of Bartnik’s operator as

P∗(N ) :=

(
1 0
0 Dm

)
◦DΦ∗(N ) =


1 0 0 0
0 1 0 0
0 0 Dm 0
0 0 0 Dm

 ◦ J−1 ◦ d
dt


γ
ψ
p
Π

 . (76)

Then, Dain’s invariant for generic f (Riemann) theories in the time evolution formulation reads
as

I (N ) =

ˆ

Σ

dV

(
|Dmγ̇ij|2 + |Dmψ̇

ij|2 + 1
γ

(
|ṗij|2 + |Π̇ij|2

))
, (77)

where the time derivatives of the phase space fields appear. One must also be careful with the
notation as one has |Dmψ̇

ij|2 ≡ γikγjlDmψ̇
ijDmψ̇kl.

Let us remark on a possible use of the results of this section. Given initial data that solves
the constraints, one can identify what fraction of that data will turn into gravitational waves
using the expression (77). As a fully deterministic theory, this is what one expects in gravity.
Unfortunately, it is generically hard to find analytical solutions to the constraints. Therefore,
one needs to compute (77) for a numerical solution. Even in the simplest case, provided by
Dain [5] for asymptotically flat time-symmetric initial data in Einstein’s theory, a numerical
evaluation of the related integral that gives the non-stationary energy has not been carried out.
It is an outstanding problem10.

5. Applications of the formalism

5.1. The R2 theory

From now on, we shall adapt our results to the R2 theory. We consider the following function

f(ρµνρσ) = ρ2 = gµρgνσgαβgγκρµνρσραγβκ (78)

10 One reason this approach to the gravitational wave content of initial data has not received much attention could be
the fact that Sergio Dain passed away at the age of 46 before he was able to expound upon his ideas on the topic [16].
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to represent the R2 theory, where ρ= gµρgνσρµνρσ and so

ρ= gµρgvσρµvρσ

= gvσ
(
g0ρρ0vρσ + giρρivρσ

)
= gvσ

(
g00ρ0v0σ + g0iρ0viσ + gi0ρiv0σ + gijρivjσ

)
,

(79)

which yields

ρ=g0σ
(
gi0ρi00σ + gijρi0jσ

)
+ gkσ

(
g00ρ0k0σ + g0iρ0kiσ + gi0ρik0σ + gijρikjσ

)
, (80)

and then

ρ=g00gijρi0j0 + g0k
(
gi0ρi00k+ gijρi0jk

)
+ gk0

(
g0iρ0ki0 + gijρikj0

)
+ gkl

(
g00ρ0k0l+ g0iρ0kil+ gi0ρik0l+ gijρikjl

)
.

(81)

The auxiliary field ρµvρσ has the all symmetries of the Riemann tensor. Therefore, by renaming
the indices we get

ρ= gijgklρikjl+ 2ρi0j0
(
g00gij− g0ig0j

)
+ 4gikg0jρ0ijk. (82)

Inserting the corresponding components of the inverse spacetime metric, we arrive at

ρ= γijγklρikjl− 2γij
1
N2

(
NkNlρikjl+ ρi0j0 −Nk(ρ0ikj+ ρ0jki)

)
, (83)

where we have already introduced the hypersurface projected field Ωij = nµnvρiµjv with the
future pointing unit normal vector nµ =

(
1/N1 −Ni/N

)
. Hence we get

ρ= γijγklρikjl− 2γijΩij =
Σρ− 2Ω,

where we have used ρikjl = Σρikjl and Ωij =
ΣΩij. Then

f = 4γijγklΩijΩkl− 4γijΩijγ
klγmnΣρkmln+ γklγmnΣρkmlnγ

psγijΣρpisj. (84)

Here we have used γikγjlρijkl = Σρ, to make the difference clear between the trace with the
spacetime metric, ρ= gµρgνσρµνρσ . Then, we write

f(ρµνρσ) = ρ2 =
(
Σρ− 2Ω

)2
. (85)

To construct the primary constraint, ∂f/∂Ωij =−2ψij, we need to calculate ∂f/∂Ωij. It is
easy to prove that

∂f
∂Ωij

= 8Ωγij− 4γijΣρ. (86)

Therefore the primary constraint of the auxiliary field is

ψij = γij
(
2Σρ− 4Ω

)
. (87)
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Recall that in general relativity one has ψij = γij, and now we have γ,Σρ,Ω dependence in
the hypersurface field ψij. The Hamiltonian constraint (51) reduces to

Φ0 = 2
√
γ

(
DkD

kΣρ− 2DkD
kΩ+Ω2 − 1

4
Σρ2

)
+

2
√
γ

((
Π2
ij+Π2

)(
Σρ− 2Ω

)
− pklΠkl

)
,

(88)

and the momentum constraint (52) becomes

Φi =−2
√
γDk

(
pki√
γ

)
+ 2ΠDi

(
Σρ− 2Ω

)
+ 4

√
γDk

(
Πk
i√
γ

(
Σρ− 2Ω

))
. (89)

5.2. The RµνRµν theory

In this section, we are going to evaluate the RµνRµν theory as an example. To be able to do
this, first, we have to compute the space and time decomposition of the contraction ρµνρµν .
Clearly, we have

f(ρµνρσ) = ρµνρ
µν = ρ00ρ

00 + ρ0iρ
0i+ ρi0ρ

i0 + ρijρ
ij, (90)

and

f(ρµνρσ) = ρ00ρ
00 + 2ρ0iρ

0i+ ρijρ
ij. (91)

Now we should decompose the corresponding components into the ADM variables. We start
with ρµν , which can be obtained as follows

ρµν = gαβραµβν

= g0βρ0µβν + giβρiµβν

= g00ρ0µ0ν + g0iρ0µiν + gi0ρiµ0ν + gijρiµjν .

(92)

Using the symmetries of ρµνgσ, one has

ρµν = g00ρ0µ0ν + g0i
(
ρνiµ0 + ρµiν0

)
+ gijρiµjν , (93)

which yields

ρ00 = gijρi0j0. (94)

Recall that ρ0000 and ρ0i00 automatically vanish because of the symmetries. Similarly ρ0i reads

ρ0i =−g0kρi0k0 + gklρkil0. (95)

Moreover, the spatial component ρij can be written as

ρij = g00ρ0i0j+ g0k
(
ρikj0 + ρjki0

)
+ gklρkilj. (96)
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Recall that, we have already introduced the hypersurface projected tensor fields ρijk and Ωij

via (28) and the inverse metric components. Let us reexpress ρ00. Using (94) we can write

ρ00 =
(
γmn− NmNn

N2

)(
N2Ωmn+NkNlρmknl+NNk (ρmkn+ ρnkm)

)
, (97)

which yields

ρ00 =N
2γmnΩmn+NkNlγmnρmknl+ 2NNkγmnρmkn−NmNnΩmn

− NmNn

N2
NkNlρmknl−

NmNn

N
Nkρmkn,

(98)

where the last two terms vanish because of the symmetries. For simplicity, we introduce

Ω≡ γmnΩmn,
Σρkl ≡ γmnρmknl,

Σρk ≡ γmnρmkn,

where ρmknl and ρmkn are purely spatial by assumption and therefore we removed the over Σ
on these fields. Then, ρ00 reduces to

ρ00 = N2Ω+NkNl
(
Σρkl−Ωkl

)
+ 2NNkΣρk. (99)

Now let us compute ρ0i. One has (95), which yields

ρ0i =− Nm

N2

(
N2Ωmi+NkNlρmkil+NNk (ρmki+ ρikm)

)
+
(
γmn− NmNn

N2

)(
Nρnim+Nlρniml

)
,

(100)

and

ρ0i =−NmΩmi−
NmNkNl

N2
ρmkil−

NmNk

N
(ρmki+ ρikm)

+Nρni
n+Nlρni

n
l−

NmNnρnim
N

Nn−
NmNnNlρniml

N2
.

(101)

Then it reduces to

ρ0i =−NmΩmi−
NmNkρikm

N2
+N Σρi+NmΣρim−

NmNkρkim
N

, (102)

where ρikm =−ρkim . Then, one ends up with

ρ0i = N Σρi+Nk
(
Σρik−Ωik

)
. (103)

Similarly we can compute ρij. Using (96), one has

ρij =− 1
N2

(
N2Ωij+NkNlρikjl+NNk (ρikj+ ρjki)

)
+
Nm

N2

(
N
(
ρjmi+ ρimj

)
+Nl

(
ρjmil+ ρimjl

))
+
(
γmn− NmNn

N2

)
ρminj.

(104)
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Then, we obtain

ρij =−Ωij−
NkNl

N2
ρikjl−

Nk

N
(ρikj+ ρjki)+

Nm

N
(ρjmi+ ρimj)

+
NkNl

N2
(ρjkil+ ρikjl)+ ρmi

m
j−

NkNl

N2
ρkilj,

(105)

which reduces to following compact form

ρij =
Σρij−Ωij. (106)

To compute the contraction ρµνρµν , we have to compute the higher indices versions of the
components. Let us start with ρ00 . Clearly one has

ρ00 =gµ0g0νρµν = g00g00ρ00 + 2gm0g00ρm0 + gn0gm0ρnm. (107)

Inserting the inverse spacetime metric components, we have

ρ00 =
1
N4
ρ00 −

2Nm

N4
ρ0m+

NnNmρnm
N4

, (108)

and making use of (99), (103), (106) one arrives at

ρ00 =
1
N4

(
N2Ω+NkNl

(
Σρkl−Ωkl

)
+ 2NNk Σρk

− 2NNm Σρm− 2NmNk
(
Σρkm−Ωkm

)
+NmNn

(
Σρnm−Ωmn

))
,

(109)

where all the terms, except the first one on the right-hand side of the last equation cancels each
other. Therefore we arrive at a simple result

ρ00 =
Ω

N2
. (110)

Now we can compute the first piece in (91), that is ρ00ρ00. One has the following

ρ00ρ
00 =Ω2 +

NkNl

N
Ω
(
Σρkl−Ωkl

)
+ 2

Nk

N
Ω Σρk. (111)

Similarly, we can evaluate ρ0i:

ρ0i = gµ0gνiρµν = g00g0iρ00 + gm0g0iρm0 + g00gmiρ0m+ gn0gmiρnm, (112)

and we can write

ρ0i = g00g0iρ00 + ρm0
(
g00gmi+ gm0g0i

)
+ gn0gmiρnm. (113)

More explicitly, one obtains

ρ0i =g00g0iN2Ω+
(
Σρkl−Ωkl

)(
NkNlg00g0i+ gk0gli+Nk

(
g00gli+ gl0g0i

))
+ Σρk

(
2NNkg00g0i+N

(
g00gki+ gk0g0i

))
.

(114)
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Inserting the inverse metric components, one ends up with

ρ0i =− 1
N

(
Ni Ω+ Σρi

)
. (115)

Then, the second piece in (91) becomes

ρ0iρ
0i = −Σ ρi

Σρi− 1
N
Ni Σρi Ω− NiNk

N2
Ω
(

Σρik−Ωik
)

− Nk

N
Σρi
(
Σ ρik−Ωik

)
. (116)

Note that ρij ̸= Σρij. Let’s continue with ρij. One can express

ρij = giµgjνρµν

= gi0gj0ρ00 + ρm0
(
gimgj0 + gi0gjm

)
+ gingjmρnm.

(117)

Since we will compute the contraction ρijρij, we may use the symmetries of the indices at
this step to simplify the construction from now on. Inserting the results (99), (103), (106), we
obtain

ρij =N2gi0gj0 Ω+ 2N Σρk
(
Nkgi0gj0 + gjkgi0

)
+
(
Σρkl−Ωkl

)(
gi0gj0NkNl+ 2Nkgi0gjl+ gikgjl

)
.

(118)

After using the inverse metric components, the last equation reduces to

ρij =
NiNj

N2
Ω+ Σρij−Ωij+

2
N
Ni Σρj. (119)

The last term in (91) is easy to construct. We can easily obtain

ρijρ
ij =

(
Σρij−Ωij

)2
+
NiNj

N2
Ω
(

Σρij−Ωij
)
+

2
N
Ni Σρj

(
Σρij−Ωij

)
,

where (
Σρij−Ωij

)2
=
(

Σρij−Ωij
)(

Σρij−Ωij
)
. (120)

Collecting the pieces, ρµνρµν becomes

f(ρµνρσ) = ρµνρ
µν =Ω2 − 2Σρi

Σρi+ Σρij
Σρij− 2Ωij Σρij+Ωij Ω

ij. (121)

Recall that the constraint on the auxiliary field ψ was given in (53). In our case, differenti-
ation of f with respect to Ωij yields

∂f
∂Ωij

=
∂

∂Ωij

(
γklγmnΩk1Ωmn− 2Σρi

Σρi+ Σρij
Σρij

− 2ΣρmnΩmn+ΩmnΩklγ
kmγln

)
. (122)
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Working out the details, one has

∂f
∂Ωij

= γklγmn
(
Ωkl

∂Ωmn

∂Ωij
+Ωmn

∂Ωk1

∂Ωij

)
− 2 Σρmn

∂Ωmn

∂Ωij

+ γkmγln
(
∂Ωmn

∂Ωij
Ωkl+

∂Ωkl

∂Ωij
Ωmn

)
, (123)

and using

∂Ωmn

∂Ωij
=

1
2

(
δimδ

j
n+ δinδ

j
m

)
, (124)

one arrives at

∂f
∂Ωij

= 2
(
Ωij+Ωγij− Σρij

)
. (125)

Then, the constraint equation of the auxiliary field (53) yields

ψij = Σρij−Ωγij−Ωij. (126)

We have already introduced the Hamiltonian and the momentum constraint Equations of
generic f (Riemann) theories in (51), (52). Using these expressions, the momentum constraint
reduces to

Φi =− 2
√
γDk

(
Pik√
γ

)
+ΠklDi

(
Σρkl−Ωkl

)
−ΠDiΩ

+ 2
√
γDk

(
Πli√
γ

(
Σρkl−Ωkl

))
− 2

√
γDk

(
ΩΠki√
γ

)
. (127)

Similarly, the Hamiltonian constraint becomes

Φ0 =

√
γ

2

(
Ω2 + 2Σρi

Σρi− Σρ2ij+Ω2
ij+ 2DiDj

(
Σρij−Ωij

)
− 2DiD

iΩ
)

+
1
√
γ

(
−2Πijp

ij+
(
Σρij−Ωij

)(
Πij+ΠikΠ

k
j

)
−Ω

(
Π2 +Π2

ij

))
. (128)

6. Conclusions

We studied the time evolution and the constraint structure of f (Riemann)-type theories using
the auxiliary fields as was done in [3] and recast the Hamiltonian flow in the compact Fischer–
Marsden form [4]. This form of Einstein’s equations can be considered to be a failure of the
initial data to possess an exact time translation symmetry, a vantage point that led to a definition
of non-stationary energy or Dain’s invariant [5]. The type of theories we studied here represent
a large class of theories that can be handled with two auxiliary fields, going beyond these and
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including the derivatives of the Riemann tensor is somewhat challenging which we shall do
in a separate work. One of our motivations for this work was to give a detailed account of
the computations leading to the final constraints and time evolution expressions as there are
several important mistakes and omissions in the existing literature. We also gave two concrete
examples: the R2 and RµνRµν theories.
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Appendix A. ADM decomposition

A.1. The metric and the connection

For the sake of completeness let us give here the ADM split of the Einstein’s equations and all
the relevant tensors. Using the (n− 1)+ 1 dimensional splitting of the spacetime metric (12),
we can express

g00 =−N2 +NiN
i, g0i = Ni, gij = γij, (A1)

and the inverse metric components are

g00 =− 1
N2
, g0i =

1
N2
Ni, gij = γij− 1

N2
NiNj. (A2)

In generic n dimensions, the spacetime metric in a matrix form reads

gµν =

(
g00 g0i
g0i gij

)
=

(
NiNi−N2 Ni

Ni γij

)
. (A3)

Taking the determinant of the spacetimemetric, we can relate the determinants of the spacetime
metric and the spatial metric as

√
−g= N

√
γ, (A4)

where we have used g= detgµν and similarly γ = detγij. Let Γµ
νρ denote the Christoffel sym-

bol of the n dimensional spacetime

Γµ
νρ =

1
2
gµσ (∂νgρσ + ∂ρgνσ − ∂σgνρ) , (A5)

and let ΣΓkij denote the Christoffel symbol of the n− 1 dimensional hypersurface, which is
compatible with the spatial metric γij, Dkγij = 0, as

ΣΓkij =
1
2
γkl (∂iγjl+ ∂jγil− ∂lγij) . (A6)
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Then a simple computation gives one the following components of the connection

Γ0
00 =

1
N

(
Ṅ+Nk(∂kN+NiKik)

)
, (A7)

and

Γ0
0i =

1
N

(
∂iN+NkKik

)
, Γ0

ij =
1
N
Kij, Γkij =

ΣΓkij−
Nk

N
Kij, (A8)

and

Γi0j =− 1
N
Ni
(
∂jN+KkjN

k
)
+NKj

i+DjN
i, (A9)

and also

Γi00 =−Ni

N

(
Ṅ+Nk

(
∂kN+NlKkl

))
+N

(
∂iN+ 2NkKk

i
)
+ Ṅi+NkDkN

i. (A10)

To compute the decomposition of the field equations, we need to express the additional tensor
quantities such as the Riemann and the Ricci tensor components, the scalar curvature.

A.1.1. ADM splitting of the Riemann tensor. The Riemann tensor of the spacetime is defined
as

Rµ
νρσ = ∂ρΓ

µ
νσ − ∂σΓ

µ
νρ +Γµ

ργΓ
γ
νσ −Γµ

σγΓ
γ
νρ. (A11)

So, it is straightforward to compute the components given below

Rm jkl =
ΣRm jkl+KjlK

m
k −KjkK

m
l +

Nm

N
(DlKjk−DkKjl) , (A12)

R0
jkl =

1
N
(DkKjl−DjKkl) , (A13)

R0
j0i =

1
N

(
K̇ij−DiDjN−NlDiKjl− 2Kl(iDj)N

l
)
−KjkK

k
i , (A14)

where ΣRm jkl is the Riemann tensor of the hypersurface and it explicitly reads

ΣRm jkl = ∂k
ΣΓmjl − ∂l

ΣΓmjk+
ΣΓmks

ΣΓsjl− ΣΓmls
ΣΓsjk. (A15)

Also, we need to compute Ri0j0. Using the above results it becomes

Ri0j0 = NkNlΣR ikjl+NNk (DiKjk+DjKik− 2DkKij)

+N
(
DiDjN− K̇ij+LNKij

)
+N2KikK

k
j , (A16)

where LN denotes the Lie differentiation along the shift vector N i and when it acts on the
extrinsic curvature, one has

LNKij = NkDkKij+KkiDjN
k+KkjDiN

k. (A17)

Moreover, we can introduce the hypersurface projected components of the Riemann tensor as
Rijkl, Rijk⃗n and Ri⃗nj⃗n. Below we will prove the following three statements:

Rijkl =
ΣRijkl+KikKjl−KilKjk, (A18)
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Rijk⃗n = nµRijkµ = DiKjk−DjKik, (A19)

Ri⃗nj⃗n = nµnνRiµjν =
1
N

(
LNKij+DiDjN− K̇ij

)
+KikK

k
j . (A20)

Let us start with the proof of the first statement (A18). We have

Rijkl = giµR
µ
jkl = gi0R

0
jkl+ gimR

m
jkl = NiR

0
jkl+ γimR

m
jkl, (A21)

where one can express

R0
jkl = ∂kΓ

0
jl− ∂lΓ

0
jk+Γ0

kµΓ
µ
jl −Γ0

lµΓ
µ
jk

= ∂k

(
1
N
Kjl

)
− ∂l

(
1
N
Kjk

)
+

1
N2
Kj̇l (∂kN+NmKmk)

+
1
N
Kkm

(
ΣΓmjl −

Nm

N
Kj̇l

)
− 1
N2
Kj̇k (∂lN+NmKml)

− 1
N
Klm

(
ΣΓmj̇k−

Nm

N
Kjk

)
, (A22)

which yields

R0
jkl =

1
N

(
∂kKjl− ∂lKjk+Kkm

ΣΓmjl −Klm
ΣΓmjk

)
, (A23)

or in terms of the hypersurface covariant derivatives

R0
jkl =

1
N
(DkKjl−DlKjk) . (A24)

Similarly we can compute Rmjkl. By definition we have

Rmjkl = ∂kΓ
m
j̇l − ∂lΓ

m
j̇k+ΓmkµΓ

µ
jl −ΓmlµΓ

µ
jk, (A25)

which reduces to

Rmjkl =
ΣRmjkl+KjlKk

m−KjkK
m
l +

Nm

N
(DlKjk−DkKjl) . (A26)

Collecting the pieces we end up with (A18).
Let us prove (A19). By definition, projection once can be written as

Rijk⃗n = nµRijkµ = n0Rijk0 + nlRijkl =
1
N
Rijk0 −

Nl

N
Rijkl, (A27)

where

Rijk0 = g00R
0
kji+ g0lR

l
kji, (A28)

which reads

Rijk0 = NlΣRlkji+N(DiKjk−DjKik)+Nl (KkiKjl−KkjKil) . (A29)

Using the last equation in (A27), one arrives at the desired result (A19).
We also need to construct Ri−→n j−→n , which reads

Ri⃗nj⃗n = nµnνRiµjν =−R0
j0i+NkR0

jki, (A30)
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where the nonvanishing components of the first term are

R0
j0i =

1
N

[
K̇ij−DiDjN−NlDiKlj−KljDiN

l−KikDjN
k
]
−KikK

k
j . (A31)

Substituting the results, we obtain the desired result (A20).

A.2. ADM splitting of the Ricci tensor and the scalar curvature

Starting with the definition of the spacetime Ricci tensor

Rρσ = ∂µΓ
µ
ρσ − ∂ρΓ

µ
µσ +Γµ

µνΓ
ν
ρσ −Γµ

σνΓ
ν
µρ, (A32)

one can express

Rij = ∂0Γ
0
ij+ ∂kΓ

k
ij− ∂i(Γ

0
0j+Γkkj)+Γ0

ij(Γ
0
00 +Γkk0)

+ΓkijΓ
0
0k+ΓkklΓ

l
ij−Γ0

0jΓ
0
0i−Γ0

kjΓ
k
0i−Γ0

kiΓ
k
0j−ΓkjlΓ

l
ki,

which yields

Rij =
ΣRij+KKij− 2KikK

k
j +

1
N

(
K̇ij−NkDkKij−DiDjN−KkiDjN

k−KkjDiN
k
)
, (A33)

where ΣRij denotes the ij component of the Ricci tensor on the hypersurface

ΣRij = ∂k
ΣΓkij− ∂i

ΣΓkkj+
ΣΓkkl

ΣΓlij− ΣΓkjl
ΣΓlki. (A34)

The 0i component can be written as

R0i = ∂0Γ
0
0i+ ∂kΓ

k
0i− ∂i(Γ

0
00 +Γkk0)+Γ0

0iΓ
k
k0 +ΓkklΓ

l
i0 −Γk00Γ

0
ki−Γk0lΓ

l
ki, (A35)

and this expression gives us the following simple result

R0i = NjRij+N(DmK
m
i −DiK) . (A36)

Similarly, the 00 component

R00 = ∂kΓ
k
00 − ∂0Γ

k
0k+Γ0

00Γ
k
k0 +ΓkklΓ

l
00 −Γk00Γ

0
k0 −Γk0lΓ

l
k0, (A37)

can be written in a compact form as

R00 = NiNjRij−N2KijK
ij+N

(
DkD

kN− K̇−NkDkK+ 2NkDmK
m
k

)
. (A38)

Then, the scalar curvature of the spacetime, R= gµνRµν , can be expressed in terms of the
scalar curvature of the spatial hypersurface, ΣR= γij ΣRij, as

R= ΣR+K2 +KijK
ij+

2
N

(
K̇−DkD

kN−NkDkK
)
. (A39)
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Appendix B. Field equations of the f(Riemann) theory

Let us start with the action

S [gµv] =
1
2

ˆ
M
d nx

√
−g f(Rµvρσ) , (B1)

of which the first-order variation is

δS [gµv] =
1
2

ˆ
M
d nx
(
δ
√
−g f(Rµvρσ)+

√
−g δf(Rµvρσ)

)
, (B2)

where

δ
√
−g= 1

2

√
−ggµνδgµν =−1

2

√
−ggµνδgµν , (B3)

and

δf(Rµvρσ) =
∂f

∂Rλγρσ
δ (gλτR

τ
γρσ) =

∂f
∂Rλγρσ

(Rτ
γρσδgλτ + gλτδR

τ
γρσ) . (B4)

Here, the linear order variation of the Riemann tensor is δRτ
γρσ =∇ρδΓ

τ
γσ −∇σδΓ

τ
γρ and

the variation of the spacetime connection is

δΓσ
µv =

1
2
gσλ (∇µδgvλ +∇vδgµλ −∇λδgµv) . (B5)

So we have

δf(Rµνρσ) =
∂f

∂Rλγρσ

(
Rτ

γρσδgλτ + gλτ
(
∇ρδΓ

τ
γσ −∇σδΓ

τ
γρ

))
=

∂f
∂Rλγρσ

(
Rτ

γρσδgλτ +∇ρ∇[γδgλ]σ +∇σ∇[λδgγ]ρ
)
. (B6)

By renaming the indices and using the antisymmetry of the Riemann tensor, the last equation
can be written as

δf(Rµνρσ) =
∂f

∂Rλγρσ
(Rτ

γρσδgλτ + 2∇ρ∇γδgσλ) . (B7)

Collecting the pieces, we arrive at

δS [gµν ] =
1
2

ˆ
M
d nx

√
−g
(
1
2
gµνδgµν f(Rλγρσ)+

∂f
∂Rλγρσ

(Rτ
γρσδgλτ + 2∇ρ∇γδgσλ)

)
.

(B8)
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Using integration by parts and ignoring the boundary terms, one has

δS [gµν ] =
1
4

ˆ
M
d nx

√
−g

(
gµνδgµν f(Rλγρσ)

+ δgµν

(
∂f

∂Rµγρσ
Rν

γρσ +
∂f

∂Rνγρσ
Rµ

γρσ

)
+ 2δgµν∇σ∇ρ

(
∂f

∂Rµσρν
+

∂f
∂Rνσρµ

))
, (B9)

and in a compact form it reads

δS [gµν ] =
1
2

ˆ
M
d nx

√
−gδgµν

(
1
2
gµν f(Rλγρσ)+R(µ

γρσ
∂f

∂Rν)γρσ
+ 2∇σ∇ρ

∂f
∂Rσ(µν)ρ

)
,

(B10)

which yields the field equations

−1
2
gµν f(Rλγρσ)−R(µ

γρσ
∂f

∂Rν)γρσ
− 2∇σ∇ρ

∂f
∂Rσ(µν)ρ

= Tµν , (B11)

where

Tµν =− 2√
−g

δSmatter

δgµν
. (B12)

Appendix C. Introducing auxiliary fields

To turn the field equation (B11) into a set of first-order differential equations, we start with the
augmented action

S [gµν ,ρµνρσ,φ
µνρσ] =

1
2

ˆ
M
d nx

√
−g
(
f(ρµνρσ)+φµνρσ (Rµνρσ − ρµνρσ)

)
, (C1)

where the two auxiliary fields ρµvρσ and φµvρσ have all the algebraic symmetries of the
Riemann tensor Rµvρσ.

Assuming that the matter couples minimally to the metric and not to the auxiliary fields,
the variation of the action reads

δS[g,ρ,φ] =
1
2

ˆ
M
d nx
(
δ
√
−g
(
f(ρµνρσ)+φµνρσ (Rµνρσ − ρµνρσ)

)
+
√
−g
(
δf(ρµνρσ)+ δφµνρσ (Rµνρσ − ρµνρσ)+φµνσ (δRµνρσ − δρµνρσ)

))
,

(C2)
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where

δRµνρσ = Rλ
νρσδgµλ +

1
2

(
∇ρ∇νδgσµ +∇ρ∇σδgνµ

−∇ρ∇µδgνσ −∇σ∇νδgρµ −∇σ∇ρδgνµ +∇σ∇µδgνρ

)
. (C3)

Using the symmetries of the fields, we have

φµνρσ (δRµνρσ − δρµνρσ) = φµνρσRλ νρσδgµλ −φµνρσδρµνρσ

+
1
2
φµνρσ (∇ρ∇νδgσµ −∇ρ∇µδgνσ −∇σ∇νδgρµ +∇σ∇µδgνρ) ,

(C4)

which can be rewritten as

φµνρσ (δRµνρσ − δρµνρσ) = δgµνR
(µ

λρσφ
ν)λρσ + 2φσ(µν)ρ∇ρ∇σδgµν −φµνρσδρµνρσ.

(C5)

Inserting these results in (C2), and integrating by parts, one ends up with

δS[g,ρ,φ] =
1
2

ˆ
M
d nx

√
−g

(
δgµν

[
R(µ

λρσφ
ν)λρσ + 2∇σ∇ρφ

σ(µν)ρ (C6)

+
1
2
gµν

(
f(ρλγρσ)+φλγρσ (Rλγρσ − ρλγρσ)

)]
+

(
∂f

∂ρµνρσ
−φµνρσ

)
δρµνρσ +(Rµνρσ − ρµνρσ)δφ

µνρσ

)
+ IBoundary, (C7)

where the boundary terms read

IBoundary =
ˆ
M
d nx

√
−g
(
∇ρ

(
φσ(µν)ρ∇σδgµν

)
−∇σ

(
δgµν∇ρφ

σ(µν)ρ
))

. (C8)

Introducing

Eµν :=−R(µ
λρσφ

ν)λρσ − 2∇σ∇ρφ
σ(µν)ρ − 1

2
gµν
(
f(ρλγρσ)+φλγρσ (Rλγρσ − ρλγρσ)

)
,

(C9)

and dropping the boundary terms, one arrives at

δS=
1
2

ˆ
d nx

√
−g
(
−Eµνδgµν +

(
Rµνρσ−ρµνρσ

)
δφµνρσ +

(
∂f

∂ρµνρσ
−φµνρσ

)
δρµνρσ

)
.

(C10)

The field equations given in section II follow from the above variation. One can show that
using the field equations for the auxiliary fields in the Eµν = Tµν equation, one gets back the
correct second-order field equations (2), hence the consistency.
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Appendix D. ADM splitting of the auxiliary fields

Let us give some details of the computations leading to the action (30). One has

φµνρσ (Rµνρσ − ρµνρσ) = φ0νρσ (R0νρσ − ρ0νρσ)+φiνρσ (Riνρσ − ρiνρσ)

= φ0iρσ (R0iρσ − ρ0iρσ)+φi0ρσ (Ri0ρσ − ρi0ρσ)+φ
ijρσ (Rijρσ − ρijρσ) .

(D1)

Due to the symmetries, it can be written as

φµνρσ (Rµνρσ − ρµνρσ) = 2φ0iρσ (R0iρσ − ρ0iρσ)+φijρσ (Rijρσ − ρijρσ) , (D2)

which yields

φµνρσ (Rµνρσ − ρµνρσ) = 2φ0i0σ (R0i0σ − ρ0i0σ)+ 2φ0ijσ (R0ijσ − ρ0ijσ)

+φij0σ (Rij0σ − ρij0σ)+φijkσ (Rijkσ − ρijkσ) , (D3)

and then

φµνρσ (Rµνρσ − ρµνρσ) = 2φ0i0j (R0i0j− ρ0i0j)+ 2φ0ij0 (R0ij0 − ρ0ij0)+ 2φ0ijk (R0ijk− ρ0ijk)

+φij0k (Rij0k− ρij0k)+φijk0 (Rijk0 − ρijk0)+φijkl (Rijkl− ρijkl) .
(D4)

Using the symmetries, one ends up with

φµνρσ (Rµνρσ − ρµνρσ) = φijkl (Rijkl− ρijkl)+ 4φijk0 (Rijk0 − ρijk0)+ 4φi0j0 (Ri0j0 − ρi0j0) .

Moreover, using the decomposition of the components of the Riemann tensor one obtains

φµνρσ (Rµνρσ − ρµνρσ) =φ
ijkl (Rijkl− ρijkl)

+ 4φijk0
(
N(DiKjk−DjKik)+NlRijkl− ρijk0

)
+ 4φi0j0

(
NNk (DiKjk+DjKik− 2DkKij)

+N
(
−K̇ij+LNKij+DiDjN

)
+N2KikK

k
j+NkNlRikjl− ρi0j0

)
.

(D5)

Defining

φijk ≡ γilγjmγknnµφlmnµ, ψij ≡−2γikγjlnµnvφkµlν ,

ρijk ≡ nµρijkµ, Ωij ≡ nµnνρiµjν , (D6)

one can express the corresponding components of the auxiliary field φµνρσ in terms of the
spatial tensor fields as follows

φijk0 =−φ
ijk

N
, φi0j0 =− ψij

2N2
, (D7)

and similarly, in terms of the spatial tensors, we can write the components of ρµνρσ as

ρijk0 = Nρijk+Nlρijkl,
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ρijk0 = N2Ωij+NkNlρikjl+NNk (ρikj+ ρjki) . (D8)

Then, we arrive at

φµνρσ (Rµνρσ − ρµνρσ) =φ
ijkl (Rijkl− ρijkl)

− 4φijk
(
DiKjk−DjKik− ρijk+

Nl

N
(Rijkl− ρijkl)

)
− 2ψij

(
NkNl

N2
(Rikjl− ρikjl)+KikK

k
j−Ωij

+
Nk

N
(DiKjk+DjKik− 2DkKij− ρikj− ρjki)

+
1
N

(
−K̇ij+LNKij+DiDjN

))
, (D9)

from which one obtains (30).

Appendix E. The constraints

By definition, the canonical momenta are defined as

Πij :=
δL

δ∂0ψij
, pij :=

δL
δ∂0γij

=
δL
δKlm

δKlm
δγ̇ij

, (E1)

where the Lagrangian density is given in (35), and so we can express

Πij =−√
γKij. (E2)

In the computation of pij, one needs to compute the variation of the extrinsic curvature with
respect to γ̇ij. By definition, we have

δKlm
δγ̇ij

=
1
2N

δ

δγ̇ij
(γ̇lm−DlNm−DmNl) =

1
2N
δilδ

j
m. (E3)

One also uses the explicit form of the Lagrangian (35) to arrive at

δL
δKlm

=
N
√
γ

2
δf
δKlm

+N
√
γ

(
1
N

(
LNψ

lm− ψ̇lm
)
− γlmψpsKps−Kψlm−ψlnKmn −ψmnKln

)
.

Collecting the pieces we express the conjugate momenta as

pij =
√
γ

4
δf
δKij

+

√
γ

2

(
1
N

(
LNψ

ij− ψ̇ij
)
− γijψklKkl−Kψij−ψikKk

j−ψ jkKik

)
.

The last expression directly yields the velocities as

ψ̇ij =
N
2
δf
δKij

− 2N
√
γ
pij+LNψ

ij+N
(
−γijψklKkl−Kψij−ψikKjk−ψ jkKik

)
. (E4)

The Hamiltonian density reads

H= pijγ̇ij+Πijψ̇
ij−L, (E5)
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and inserting the velocities together with the Lagrangian density (35) it can be expressed as
follows

H=2NKij p
ij−√

γKijLNψ
ij+ 2pijDiNj

+
√
γN

(
− f
2
+

1
N
ψijDiDjN−ψijΩij+KψklKkl+Kijψ

ikKjk

)
. (E6)

Up to a boundary term, the Hamiltonian density can be written as a sum of the constraint
equations. Namely, one has

H= NΦ0 +NiΦi. (E7)

After a straightforward computation, one obtains

H=N
√
γ

(
2
√
γ
Kij p

ij− 1
2
f(ρµvρσ)+DiDjψ

ij−ψijΩij+KψklKkl+KijK
j
kψ

ik

)
+Ni

√
γ

(
−2Dk

(
pki√
γ

)
−KklDiψ

kl− 2Dk
(
ψklKli

))
. (E8)

Since we have already obtained the relation between the extrinsic curvature and the conjugate
momenta, Kij =−Πij/

√
γ, we can equivalently write

H=N
√
γ

(
DiDjψ

ij−ψijΩij−
1
2
f(ρµvρσ)

)
+

N
√
γ

(
−2Πijp

ij+ΠΠijψ
ij+ΠijΠ

j
kψ

ik
)

+Ni
(
−2

√
γDk

(
pki√
γ

)
+ΠklDiψ

kl+ 2
√
γDk

(
ψkl

Πli√
γ

))
, (E9)

which yields the Hamiltonian and the momentum constraints as

Φ0 =
√
γ

(
DiDjψ

ij−ψijΩij−
1
2
f(ρµvρσ)

)
+

1
√
γ

(
−2Πij p

ij+Πijψ
ij+ΠijΠ

j
kψ

ik
)
, (E10)

Φi =− 2
√
γDk

(
pki√
γ

)
+ΠklDiψ

kl+ 2
√
γDk

(
ψkl

Πli√
γ

)
. (E11)

Appendix F. Time evolution equations

As for the dynamical equations, the first set of the evolution equations is

γ̇ij =
δH
δpij

, ψ̇ij =
δH
δΠij

. (F1)

This set gives the velocities in terms of canonical variables. Ignoring the total derivative terms,
the Hamiltonian density can be expressed as

H=N
√
γ

(
DkDlψ

kl−ψklΩkl−
1
2
f(ρµvρσ)

)
+

N
√
γ

(
−2Πklp

kl+Π Πklψ
kl+ΠklΠ

k
mψ

ml
)

+Nm
(
−2

√
γDk

(
pkm√
γ

)
+ΠklDmψ

kl+ 2
√
γDk

(
ψkl

Πlm√
γ

))
.

(F2)
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Then automatically we obtain

γ̇ij =− 2N
√
γ
Πij+LNγij = 2NKij+DiNj+DjNi, (F3)

which is the expected result (57) and by definition Lie derivative yields LNγij = DiNj+DjNi.
Similarly ψ̇ij can be written as

ψ̇ij =
N
√
γ

(
−2pij+ γijΠklψ

kl+Πψij+Πi
kψ

kj+Πj
kψ

ki
)
+LNψ

ij−
N
√
γ

2
δf
δΠij

, (F4)

where one can evaluate the last term easily for a given f.
Now, we can continue with the second set of the evolution equations. One has the following

relations

ṗij =− δH
δγij

, Π̇ij =− δH
δψij

. (F5)

Using the Hamiltonian density again let us construct Π̇ij. We have

Π̇ij =N
√
γ Ωij−

N
√
γ
Π Πij−

N
√
γ
ΠikΠ

k
j−N

√
γ
δ

δψij
(
DkD1ψ

kl
)

−NmΠkl
δ

δψij
(
Dmψ

kl
)
− 2Nm

δ

δψij
(
Dk(ψ

klΠlm)
)
,

(F6)

and we have to compute the last three terms. We have

Dmψ
kl = ∂mψ

kl+ ΣΓkmnψ
nl+ ΣΓlmnψ

kn, (F7)

which yields the following variation

δDmψ
kl = ∂mδψ

kl+ΣΓkmnδψ
n1 + ΣΓlmnδψ

kn+ψnlδΣΓkmn+ψknδΣΓlmn , (F8)

and it can be written in a more compact form as

δDmψ
kl = Dmδψ

kl+ψnlδΣΓkmn+ψknδΣΓlmn . (F9)

The variation of the hypersurface connection can be expressed as

δΣΓkmn =
1
2
γkp (Dmδγnp+Dnδγmp−Dpδγmn) . (F10)

Therefore in a more explicit form, one obtains

δDmψ
kl =Dmδψ

kl+
1
2
ψnlγkp (Dmδγnp+Dnδγmp−Dpδγmn)

+
1
2
ψknγ1p (Dmδγnp+Dnδγmp−Dpδγmn) ,

(F11)

which can be reexpressed as

δDmψ
kl = Dmδψ

kl+ψn(kγl)p (Dmδγnp+Dnδγmp−Dpδγmn) , (F12)
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and directly yields variation with respect to ψij as

NmΠkl
δ
(
Dmψ

kl
)

δψij
=−NmDmΠij−ΠijDmN

m. (68)

Note that there is no contribution coming from the variations of the connection in the last
expression. Similarly we can compute δDkDlψ

kl as

DkDlψ
kl =∂k

(
∂lψ

kl+ ΣΓklmψ
ml+ ΣΓllmψ

km
)
+ ΣΓkkm

(
∂lψ

ml+ ΣΓmlnψ
nl+ ΣΓllnψ

mn
)
.

(F13)

Taking the variation, we write

δDkDlψ
kl = DkDlδψ

kl+Dp
(
ψmlDlδγmp

)
− 1

2
Dk
(
ψmlDkδγlm

)
+

1
2
Dk
(
ψkmγlpDmδγlp

)
+

1
2
γkpDlψ

mlDmδγkp. (F14)

Since we focus on variation of the spatial field ψ, we only consider the first term on the right-
hand side. Hence, ignoring the total derivative terms, we get

N
√
γ
δ

δψij
(
DkDlψ

kl
)
=
√
γDiDjN. (F15)

Now we should compute the last term: δDk
(
ψklΠ1m

)
. The variation of this term gives us

δDk
(
ψklΠlm

)
= Dkδ

(
ψklΠlm

)
−ψklΠlnδ

ΣΓnkm. (71)

Up to a boundary term we get

Nm
δ

δψij
Dk
(
ψklΠlm

)
=−Πm(iDj)N

m. (72)

Inserting them in Π̇ij, we end up with the desiring evolution Equation

Π̇ij =
√
γ (NΩij−DiDjN)−

N
√
γ

(
ΠΠij+ΠikΠ

k
j

)
+LNΠij+ΠijDkN

k. (F16)

Then, we can construct ṗij =−δH/δγij. Since we have the variations

δ
√
γ

δγij
=

1
2
√
γγij,

δγ−1/2

δγij
=−1

2
γ−1/2γij, (F17)
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from the Hamiltonian density (46) we directly obtain

ṗij =−N
2
√
γγij

(
DkDlψ

kl−ψklΩkl−
1
2
f(ρµvρσ)

)
−N

√
γ
δ

δγij

(
DkDlψ

kl− 1
2
f(ρµvρσ)

)
+

N
2
√
γ
γij
(
−2Πklp

kl+Π Πklψ
kl+ΠklΠ

k
mψ

ml
)

− N
√
γ

δ

δγij

(
Πmnγ

mn Πklψ
kl+ΠklΠmnγ

knψml
)

−Nm
δ

δγij

(
−2γmn

√
γDk

(
pkn
√
γ

)
+ΠklDmψ

kl+ 2
√
γDk

(
ψkl

Πlm√
γ

))
. (F18)

To simplify the last equation, we use the Hamiltonian constraint (51) together with

δγmn

δγij
=−1

2

(
γmiγjn+ γmjγin

)
, (F19)

in (F18) to arrive at

ṗij =
N
√
γ

(
γij
(
Π Πklψ

kl+ΠklΠ
k
mψ

ml− 2Πklp
kl
)
+ΠijΠklψ

kl+Πi
lΠ

j
kψ

kl

)

−N
√
γ
δ

δγij

(
DkDlψ

kl
)
+
N
2
√
γ
δ

δγij
f(ρµvρσ)

−Nm
δ

δγij

(
−2γmn

√
γDk

(
pkn
√
γ

)
+ΠklDmψ

kl+ 2
√
γDk

(
ψkl

Πlm√
γ

))
. (F20)

A straightforward calculation gives us

N
√
γ
δ

δγij

(
DkDlψ

kl
)
=−

√
γ

2

(
Dk

(
ψijDkN− 2ψk(iDj)N

)
+ γij

(
NDkDlψ

kl−ψklDkDlN
))
,

(F21)

and

2Nm
δ

δγij

(
γmn

√
γDk

(
pkn
√
γ

))
=
√
γLN

(
pij
√
γ

)
+ pijDkN

k, (F22)

and also

Nm
δ

δγij

(
ΠklDmψ

kl+ 2
√
γDk

(
ψkl

Πlm√
γ

))
= 0. (F23)

Finally, after collecting the pieces, one ends up with the last evolution equation (67)

ṗij =
N
√
γ

(
γij
(
Π Πklψ

kl+ΠklΠ
k
mψ

ml− 2Πklp
kl
)
+ΠijΠklψ

kl+Πi
lΠ

j
kψ

kl

)

+

√
γ

2

(
Dk

(
ψijDkN− 2ψk(iDj)N

)
+ γij

(
NDkDlψ

kl−ψklDkDlN
))

+
N
2
√
γ
δf
δγij

+
√
γLN

(
pij
√
γ

)
+ pijDkN

k. (F24)

At this point, one needs to know the explicit form of the function f to proceed further.
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Appendix G. Application to general relativity

In this section, we will use the generic results to evaluate Einstein’s theory. Let us set the
function f to

f(ρµνρσ) = gµρgνσρµνρσ. (G1)

Since ρµνρσ has the symmetries of the Riemann tensor by assumption, one can easily show
that

f = gikgjlρijkl+ 4g0jgikρ0ijk+ 2ρ0i0j
(
g00gij− g0ig0j

)
. (G2)

We can insert the components of the inverse spacetime metric to arrive at

f(ρµνρσ) = γikγjlρijkl+
2
N2
γij
(
2Nkρ0ikj− ρ0i0j−NkNlρikjl

)
. (G3)

Using the hypersurface projected tensor fields that we introduced before, we arrive at

f = γikγjlρijkl− 2γijΩij. (G4)

Now we can construct the constraint on the auxiliary field ψij, (53). It directly yields

ψij = γij. (G5)

Therefore, the first set of evolution equations (57), (58) are related. Since ψij = γij, we can
rewrite (58) as

γ̇ij =−DiNj−DjNi+
2N
√
γ

(
Πγij+Πij− pij−Πkl

∂f
∂ρikjl

)
, (G6)

where we can use

∂f
∂ρikjl

= γpqγnm
∂ρpnqm
∂ρikjl

. (G7)

We have to preserve the symmetries on both sides of the equation. So, we have to express it in
a more correct form as

∂f
∂ρikjl

=
1
4
γpqγnm

∂

∂ρikjl
(ρpnqm+ ρqmpn− ρnpqm− ρpnmq) , (G8)

which yields

∂f
∂ρikjl

=
1
2

(
γijγkl− γilγkj

)
. (G9)

Then we have

γ̇ij =−DiNj−DjNi+
2N
√
γ

(
1
2
Πγij+

3
2
Πij− pij

)
, (G10)
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Using the basic relation γ̇ij =−γikγjlγ̇kl, one can directly rewrite the last expression as

γ̇ij = DiNj+DjNi+
2N
√
γ

(
−1
2
Πγij+ pij−

3
2
Πij

)
. (G11)

For consistency with the time evolution of the spatial metric

γ̇ij =− 2N
√
γ
Πij+DiNj+DjNi, (G12)

one needs

Πij = 2
(
pij−

p
n
γij

)
. (G13)

G.1. Constraint equations

One can reexpress the Hamiltonian density of general relativity, using Ψij = γij and (G13) as

H=

(
−pij+ 2p

n
γij
)
γ̇ij−L. (G14)

We then introduce the new momentum

πij :=−pij+ 2p
n
γij, (G15)

which yields the trace

π =
n− 2
n

p. (G16)

Then, the Hamiltonian density becomes

H= πijγ̇ij−L. (G17)

One has the inverse relations

Πij =−2πij+
2

n− 2
γijπ, (G18)

and Π = 2π/(n− 2). Additionally, we can express

pij =−πij+ 2
n− 2

γijπ, p=
n

n− 2
π. (G19)

Finally, the Hamiltonian and the momentum constraint equations (51) and (52) reduce to

Φ0(γ,π) =
2
√
γ
(π2

ij−
π2

n− 2
)−

√
γ

2
ΣR, (G20)

and

Φi(γ,π) =−2Dkπ
k
i . (G21)
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