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A 4096 channel event-based multielectrode
arraywithasynchronousoutputs compatible
with neuromorphic processors

Matteo Cartiglia 1 , Filippo Costa 1,2, Shyam Narayanan 1, Cat-Vu H. Bui3,
Hasan Ulusan 3, Nicoletta Risi4,5, Germain Haessig1, Andreas Hierlemann 3,
Fernando Cardes 3 & Giacomo Indiveri 1

Bio-signal sensing is pivotal in medical bioelectronics. Traditional methods
focus on high sampling rates, leading to large amounts of irrelevant data and
high energy consumption. We introduce a self-clocked microelectrode array
(MEA) that digitizes bio-signals at the pixel level by encoding changes as
asynchronous digital address-events only when they exceed a threshold, sig-
nificantly reducing off-chip data transmission. This novel MEA comprises a
64 × 64 electrode array, an asynchronous 2D-arbiter, and an Address-Event
Representation (AER) communication block. Each pixel operates autono-
mously, monitoring voltage fluctuations from cellular activity and producing
digital pulses for significant changes. Positive and negative signal changes are
encoded as “up” and “down” events and are routed off-chip via the asyn-
chronous arbiter. We present results from chip characterization and experi-
mental measurements using electrogenic cells. Additionally, we interface the
MEA to a mixed-signal neuromorphic processor, demonstrating a prototype
for end-to-end event-based bio-signal sensing and processing.

As we usher in an era of pervasive computing, we are witnessing an
exponential proliferation of devices and systems designed to aid us in
our daily lives. These systems are very diverse, ranging from localiza-
tion devices to biomedical sensors. Still, they are all expected to
operate continuously atminimal energy costwhile facing the daunting
task of ensuring the secure real-time interpretation of the generated
data. This is especially true in the realm of biosensors that con-
tinuously monitor our bodily state through various signals. These
include neural signals, manifested as action potentials and measured
by electroencephalogram (EEG), cardiac signals manifested as extra-
cellular field potential and recorded as electrocardiogram (ECG), as
well as glucose and insulin signals. The current data inundation from
these sensors necessitates the development of custom hardware that
can process signals locally without the need for offline bulky backend

computers or cloud servers. Biosensors, particularly those with many
channels such as the ones employed in electrophysiological studies
such as multielectrode arrays (MEAs), are experiencing a trend
towards higher channel counts, for simultaneous recording from as
many as 235k channels1. If encoded using a classical digital sampling
approach, the bio-signal measured by a typical channel produces
about 200 kbps,making scalability and off-chip transmission critical in
terms of both bandwidth and power consumption1–7. Although inno-
vations in recording systems, such as time-multiplexing techniques
and sophisticated sampling schemes, have allowed for simultaneous
recording from an increasingly large number of electrodes, the prac-
tical scalability of these systems remains difficult. Furthermore, most
electrophysiology studies are primarily interested in the timing and
shapeof actionpotentials. Consequently, a considerableportionof the
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acquired data ends up being discarded only after costly post-
processing techniques. This highlights the need for more efficient
data acquisition and processing techniques that can better focus on
the features of interest online, ultimately enabling more efficient
online and closed-loop bio-signal processing systems8.

In parallel, neuromorphic sensors9–13 have emerged as a paradigm-
shifting solution for low-latency and power-efficient signal processing.
Unlike traditional sensing technologies that output a continuous,
clocked stream of data, neuromorphic sensors are asynchronous and
event-driven. Event-based sensors only respond to significant changes
in the signal, thus drastically reducing data traffic and, subsequently,
power consumption. Their clock-less, or self-clocked, operation
bypasses the power-hungry high-frequency clock requirements, mak-
ing them well suited for real-world edge, pervasive, and ubiquitous
computing applications. Furthermore, when neuromorphic sensors
are synergistically paired with neuromorphic processors14–17, they
unlock unprecedented potential, enabling sophisticated real-time
signal processing18 that can handle high temporal resolution
requirements19,20, rapid pattern recognition21,22, and adaptive learning,
challenges23 that traditional systems often struggle with.

Within this context, in this paper, we present a fully event-based
microelectrode array biosensor called GAIA (Global Asynchronous
Intelligent Array). The GAIA system uses neuromorphic circuits to
encode signals generated from bioelectric cells directly at the pixel
level, generating and transmitting data only when relevant events,
such as an action potential, occur.

Here, we first introduce the GAIA chip architecture, characterize
the circuitry within each pixel, and characterize the signal encoding
block (level-crossing ADC). We then demonstrate the ability of the
sensor todetect bioelectric signals, and,finally,wevalidateGAIAwith a
beating cardiomyocyte culture. Going a step further, we interfaceGAIA
to a mixed-signal event-based neuromorphic processor, demonstrat-
ing a proof-of-principle end-to-end neuromorphic sensing and pro-
cessing pipeline. Figure 1 outlines the full event-based pipeline: time-
continuous sensing, sparse asynchronous event generation, and,
finally, spike-based processing. This novel combination represents an
important step toward achieving an efficient, scalable, and adaptable
sensing system that elegantly captures the spatio-temporal dynamics
of biological systems while at the same time significantly reducing the
amount of data transmitted off-chip.

Results
GAIA’s distinct advantage lies in its adaptive data transmission
approach: by outputting an asynchronous digital event only when
detecting a local relative voltage change that surpasses a preset
threshold, it favors the encoding of meaningful biological signals with
large transients and discards noise and small fluctuations. Intuitively,
our approach is based on the assumption that relevant biological

signals exhibit voltage transients significantly higher than the noise
floor. This unique data handling strategy makes the output data solely
dependent on the detected activity of the signal, and since the activity
of bioelectric cells is sparse in both space and time, it significantly
reduces the overall output data24.

The event-based microelectrode array
Figure 2a shows an overview of the 4096-channel GAIAMEA system. It
consists of a central 64 × 64 pixel core, flanked by two X and Y address
encoders, and an address event representation (AER)25 communication
block. Each electrode measures 15 × 15μm2, and the pitch between
electrodes is 48μm. Figure 2b shows a block diagramof the signal path
within each pixel: it includes two adjustable gain stages (A1-A2), an
event generation stage, and a reset stage. A large reference electrode,
10μm in width, is positioned on the perimeter of the sensing array.

The A1-A2 amplifiers were designed to amplify signals in the
1 Hz–10 kHz range while rejecting the large DC component at the
electrode-tissue interface. The amplitude of signals of interest can vary
considerably and typically have amplitudes that range from 50μV to
1mV depending on the distance to the electrode and the cell type. The
initial amplification stage (A1 - in red in Fig. 2b) is a single-ended
common-source amplifier in which the gain is regulated by an adjus-
table current source. A tunable gate in the pseudo-resistor modifies
the low cutoff frequency corner26. The pseudo-resistor in A1, working
with the Cin capacitor, establishes a very low-frequency pole, stabiliz-
ing the original zero. The signal is subsequently AC-coupled to a
variable gain amplifier (A2 - in green in Fig. 2b), where the Cc/Cf ratio
determines the gain, offering eight configurable settings. Further
details of the circuitry within eachpixel are available in Supplementary
Material 1.

The event generation block (in yellow in Fig. 2b) emits two digital
types of events (UP and DN), depending on the direction of the signal
variations27. These are linked to a four-phase asynchronous hand-
shaking block, managing data transmission through asynchronous
signals. Generated UP or DN pulses correspond to AER interface
requests (REQ). The REQ signal will elicit an acknowledgment (ACK)
signal from the downstream processing, resetting the comparator
output.

Arbiter and AER interface
Each channel is integrated within an array. This array communicates
asynchronously with peripheral circuits through a handshaking
mechanism25,28,29. Upon event generation, the pixel raises a request
signal (REQ) indicating its readiness for data transmission30,31. A 2D-
arbiter system encodes this event’s location using a unique (X,Y)
address and event polarity (ON or OFF). This results in a 13-bit digital
address: 6-bit each for X and Y addresses, complemented by an ON/
OFF polarity bit. The structure of this 2D arbitrator can be seen
in Fig. 2c.

To ensure a smooth handshaking process, the target receiver
verifies all digital REQevents createdon the chip. These signals employ
a bundled data (BD) representation, where the 13-bit digital address is
portrayed as a parallel word. This word is then accompanied by two
supplementary REQ and ACK signals for handshaking control. The
timing scheme of the asynchronous four-phase handshake, as well as
the timing of the reset signals, is shown in Fig. 2e. In scenarios where
multiple pixels simultaneously produce Address Events (AEs), the
arbitration block comes into play to prevent signal interference. This
block sequentially queues and transmits events over a shared bus,
ensuring a collision-free environment. The peak throughput of the
GAIA system is measured to be 20 mega events per second (Meps).

Figure 2d elucidates the method through which each pixel
accesses this sharedbus. To relay data, a pixel pulls the sharedREQ line
to ground, using a local pull-down transistor, signaling the need for
event transmission. Recognizing this action, the downstream arbiter
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Fig. 1 | Schematic overview of GAIA’s operating principle and benefits. Gra-
phical representation of the working principle of the event-based 4096-channel
GAIA sensor. The signal is sensed and compressed at the pixel level, enabling sparse
and compressed data transmission off-chip. The new data topology is particularly
well suited for on-line processing with Spiking Neural Networks (SNN).
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returns an ACK signal to a global pull-up transistor within the common
line, thereby resetting the REQ signal. This allows for subsequent event
transmissions.

To enhance system fairness and efficiency, we adopted a 2D non-
greedy arbiter32,33. Such arbiters strive to allocate equal access to the
sharedbus among competing nodes. Theprinciple is simple: an arbiter
will not acknowledge the same client consecutively, only proceeding
after all other waiting clients have been attended to. This approach
increases fairness, minimizes potential system congestion, and
improves the overall performance of the system.

Characterization of amplifier gain, noise, power consumption,
and latency
Figure 3 shows the micrograph of the GAIA chip, the electrodes, and
the fully packaged chip. The electrical properties of GAIA were

characterized by applying a 1 mVpp sinusoidal input and sweeping its
frequency from 0.1Hz to 10 kHz. Figure 4a illustrates the transfer
functions that characterize the A1-A2 amplifier chain for various gain
settings. The lowest and middle gain settings yield in-band amplifica-
tions of 37.4 dB and 48.1 dB, respectively. The gain can be pro-
grammed up to 57 dB. Additionally, by altering the bias of the A1
pseudo-resistor, the high-pass corner can be changed. We character-
ized the noise levels of the chip by sweeping the input frequency and
amplitude using a spectrum analyzer. Figure 4b displays the signal-to-
noise-distortion ratio (SNDR) as a function of the input amplitude. The
dynamic range for the lowest gain setting is 37.9 dB, with a peak SNDR
of 37.2 dB. Moreover, Fig. 4c demonstrates the power spectral density
(PSD) of the input-referred noise across GAIA’s operational bandwidth.
The integrated input-referred noise in the 500Hz–3 kHz band is
19.04μV, while in the full 5 Hz–10 kHz bandwidth is 71.05μV.

COLUMN BUFFERS

RO
W

 B
U

FF
ER

S

ARBITER - AER INTERFACE

X/Y ADDRESS

COLUMN PULL-UP

RO
W

 P
U

LL
-U

P

POLARITY

CONFIGSAER CONTROL

a)

Cin

Cc

A1 A2
Vref

ELECTRODE

ON/OFF events

Cin

Cc

A1 A2
Vref

ELECTRODE

ON/OFF events

RESET

Vout

Cf

ASYNCHRONOUS COMMUNICATION

P1

VDD

ACK

UP/DN

P2

0 6362 REQ

X-ACK

Y-REQ

Y-ACK

ARBITERS and AER INTERFACE

13-bit word

REQ

ACK

Y address encoder

      2D
ENCODER

X address encoder
X-REQ

b)

c)

d) e) 4-PHASE HANDSHAKE AND RESET

REQ

ACK

PRST

SRST

REQ

ACK

a c

b d

a

b

Fig. 2 | Detailed breakdown of the CMOS GAIA event-based microelectrode
array. a High-level system architecture depiction. b Close-up view of the circuit
elements within each pixel. c A schematic diagram illustrating the arbiter and
address event representation hierarchy. d Core asynchronous communication

components showing pull-up and pull-down transistors, responsible for generating
and transmitting Request (REQ) and Acknowledgment (ACK) signals. e Temporal
sequence of the 4-Phase handshake protocol fundamental to asynchronous com-
munication on top. On the bottom, is the sequence of reset signals.
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Fig. 3 | Micrograph and post-processing details of the GAIA chip. aMicrograph
showcasing the GAIA chip with dimensions of a 5 × 5mm2 die and an active area of
3 × 3mm2. b Microscope image of the post-processed electrode array. The elec-
trodes have a size of 15 × 15μm2 and are spaced squarely with a pitch of 48 μm. A

small area of 4 × 6 electrodes is highlighted: the exposed top electrode is visible.
c Image of the finalized, fully packaged chip. Following post-processing, the chip
was affixed to a daughterboard PCB, encapsulated using a biocompatible epoxy
resin, and subsequently coated with Pt-black to minimize electrode impedance.
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The power consumption of a single pixel is 842.4 nW. Figure 4d
illustrates the contributions from various pixel structures. The analog
and digital components within the pixel are supplied separately; the
amplifiers are supplied with analog power (in blue), while the digital
structures within the pixel receive digital power (in red). The total
power consumption of the chip, including the pixel core and the 2D-
arbiter, amounts to 3.58mW. Figure 4e displays the breakdown for
each power supply. Power calculations were performed using nominal
biases, with a 2 kHz event rate response from each pixel.

The pixel response latency was assessed by measuring a single
pixel’s response to a low-frequency squarewave. The sensor generates
a positive event on every rising edge and a negative event on every
falling edge. Figure 4f displays the latency for both positive and
negative events. The average latency is 0.9995μs, and the 1-sigma
response jitter is 0.2798μs. As expected, positive events exhibit lower
latency thannegative events due to design choiceswithin thepixel. For
layout symmetry purposes, the comparators are designed using tran-
sistors of the same size. Positive events are generated from an n-FET-
based comparator (with electrons as majority carriers), while negative
events are produced from a pFET-based comparator (with holes as
majority carriers). The lower mobility of holes compared to electrons
causes the pFET comparator to switchmore slowly, resulting in higher
latency for events with negative polarity. Characterizing latency using
a single pixel is also valid for the larger array, as the pixel’s response
time is assumed to be orders ofmagnitude larger than the propagation
time of digital events through the gates of the arbiter tree.

Increasing the number of channels in the GAIA system
to 19,586, equivalent to the system described in ref. 3, would
result in a proportional increase in power consumption due to the
additional channels. Currently, each channel consumes ~850 nW;
thus, scaling up to 19,586 channels would increase the total
power to 16.6mW. Furthermore, as the power associated with the
AER systemwould rise at a sublinear rate due to the binary encoding
of the address space, and as the activity is expected to be sparse,
this part would not have a significant impact on the total power
budget.

Event characterization
Following the initial electrical and functional characterization of GAIA,
we characterized the event generation encoding at the core of the
innovation of GAIA.

Figure 5a presents the asynchronous delta modulator (ADM)
encoding of a 1 kHz sine wave. The original sine wave, single-channel
events, amplified signal, and event-generating thresholds are all
superimposed. A digital UP (DN) event is producedwhen the amplified
signal exceeds (falls below) a configurable threshold, resetting the
amplified signal to A2’s positive output terminal. The placement of
thresholds canbe freely adjusted. Intuitively, the closer the thresholds,
the more events will be generated, resulting in a denser or sparser
encoding of the original signal. Figure 5b shows a 1 kHz sine wave
encoded with different degrees of sparsity. Given known thresholds,
the precise timing of the UP/DN events produced by the event-

Fig. 4 | Electrical characterization of the GAIAmicroelectrode array. a Transfer
functions of the A1-A2 amplifier chain across different gain settings. The amplifier
offers eight programmable gain levels: the lowest (illustrated in black) is at 37.4 dB,
the middle (shown in green) at 48.1 dB, and the high-pass filter corner can be
adjusted (highlighted in red) via the A1 pseudo-resistor bias settings. b Signal-to-
noise-distortion ratio (SNDR) plotted against input amplitude. At the lowest gain
setting (depicted in black), the dynamic range is 37.9 dB with an SNDR of 37.2 dB.
c Power spectral density representing the input-referred noise over the operational

bandwidth of GAIA. Notably, the integrated input-referred noise within the
500Hz–3 kHz range amounts to 19.04μV. d Detailed breakdown of power con-
sumption for individual structures within a single pixel. Power sources for analog
and digital components are depicted in blue and red, respectively. The total power
consumption is 842.4 nW per pixel. e Comprehensive power consumption analysis
for each power supply, resulting in an overall chip consumption made up of
3.58mW. f Assessment of response latency for both positive and negative events,
with an average latency measured at 0.9995 μs.
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generating ADM circuitry contains all the information about the ori-
ginal input signal34,35 (Signal reconstruction is available in the Supple-
mentary Material section 5). To ensure our approach is effective, we
aim to position the thresholds above the noise level to only capture
large extracellular signals.

To fully characterize the on-chip amplification and event gen-
eration of GAIA, we tested the system using previously recorded sig-
nals. A function generator was connected to a silver-silver chloride
electrode, which was submerged in phosphate-buffered saline (PBS)
solution and positioned inside GAIA’s recording chamber. Figure 5c
illustrates the setup. The conductive PBS solution allows the signal
from the function generator to be detected by all electrodes on the
array. Using a previously recorded signal allowed us to test GAIA’s
response to a real extracellular potential through the electrode signal
pathway and the entire encoding pipeline.

Figure 5d displays a previously recorded cardiomyocyte extra-
cellularfieldpotential (top) and the samesignal amplifiedbyGAIA’s A1-
A2 amplifiers (bottom). The top trace was previously recorded using
anotherMEA7 platformandused to evaluate theGAIA system. Figure 5f
demonstrates the event encoding response for the same cardiac
extracellular field potential signal. The extracellular field potential’s
stereotypical waveform is effectively encoded into an asynchronous
stream of UP-DN-UP events on the chip. Figure 5e shows the response
of GAIA to previously recorded neural signal. The neuronal signal (on
top) and the corresponding response of the DN channel (on bottom)
are displayed. The pixel accurately detects the input spike trains,
demonstrating the capability of the system to encode and transmit
biologically relevant signals.

Experimental results
To rigorously validate the GAIA platform, we recorded from a cardio-
myocyte culture. Cardiomyocytes generate periodic signals36–38 (at
1Hz),making themexemplary candidates for characterizing novelMEA
systems.

Human-induced pluripotent stem cells (hiPSC) differentiated into
cardiomyocyteswere used for this validation process. Cardiomyocytes
were seeded onto the GAIA sensor and kept in a humidity-controlled
incubator. Recordings began on day seven after plating, providing
sufficient time for the cells to aggregate and synchronize their beating
patterns spontaneously. Throughoutmultiple days of observation, the
cell culture remained stable, displaying a beating frequency that ran-
ged from 50 to 90 beats per minute (bpm). The main outcomes of the
cell culture experiment are described in Fig. 6. The histogram in Fig. 6a
outlines the total number of events over a 20-second span. Each his-
togram peak corresponds to an extracellular field potential wave. The
cells exhibit a beating frequency of 67 bpm. A deeper dive into two
histogram peaks is presented in Fig. 6b. Specifically, it shows UP and
DN events for each electrode generated by two distinct field potential
waves. Each wave signal has a consistent origin and propagation pat-
tern, resulting in similar footprints in the event space.

Figure 6c extracts the wave propagation velocity based on the
spatial location of the electrode and the timing of the events gener-
ated. The extracted propagation velocity is 0.11 mm/ms. Finally, a
confocalmicroscopewas used to validate the viability of the tissue and
ensure that the extracted beating frequency was correct. A snapshot
from themicroscope is shown in Fig. 6d, where the cell nuclei (in blue)
and the cytoskeleton (in red) are highlighted.

Fig. 5 | Event characterization of theGAIAmicroelectrode array. a Encoding of a
1 kHz sine wave. The original waveform (in blue) is amplified (in black) by the A1-A2
amplifier chain.When the amplified signal crosses the upper threshold (in green) or
falls below the lower threshold (in red), positive or negative events are triggered,
respectively. After crossing a threshold, the amplified signal is reset to a reference
voltage, allowing the AC dynamics to persist. b The density of events can be
influenced by the width of the thresholds, resulting in either denser (bottom) or
sparser (top) event patterns. c Experimental setup employed to assess GAIA with

bioelectric signals. A function generator is connected to an Ag/AgCl electrode
submerged in PBS (phosphate buffer saline) solution. d Previously recorded car-
diomyocyte extracellular field potential (top) and its corresponding sensed and
amplified signal through the GAIA amplifier chain. e DN events (bottom in red)
produced in response to a pre-recorded neural signal (top in black). fUP (in green),
and DN events (in red) produced in response to a single pre-recorded cardio-
myocyte extracellular field potential.
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Expanding upon these results, Fig. 7 provides a wealth of infor-
mation that delves deeper into the propagation of electrical activity. It
graphically presents a time series of the events sensed in response to
an extracellular field potential wave as it travels across the entire array.
Each detected wave follows a consistent trajectory, originating from
the array’s lower right and culminating at its upper left (also shown in
Fig. 6b). Crucially, a wave of DN events is succeeded by a wave of UP
events. This sequence mirrors the biphasic dynamics characteristic of
EFPs. An additional graphical representation of the data and further
analysis are available in the Supplementary Material sections 6 and 7.

In terms of data efficiency, the average unfiltered event rate out-
put from the 4096 GAIA channels amounts to 10 kevs, signifying a
dramatic reduction when compared to conventional sampling meth-
ods that can require up to 200 kbps per channel. This stands as a
testament to GAIA’s capability of compressing large amounts of data
into manageable streams.

It is important to acknowledge that the hardware specifications
of GAIA are not compatible with the signal levels and noise require-
ments to record from live neurons. We have, however, successfully
shown that the overall approach works and is successful in recording
from live cardiomyocytes and from pre-recorded signals as control
inputs.

Spiking neural network interfacing
GAIA’s production of a wholly novel type of data enables an array of
exciting possibilities. Building on the results presented, we success-
fully interfaced GAIA’s event-based outputs to an event-based mixed-
signal neuromorphic processor. This integration aims to harness the
benefits of both hardware components, laying the groundwork for
their potential unification into a singular monolithic system. Here,
pixel and neuron computations occur in the analog domain, while
spike routing is managed digitally.

The union of GAIA’s advantages with the real-time analysis cap-
abilities of neuromorphic processors promises significant advance-
ments in the realm of hardware-based neural computation. While
several existing neuromorphic processors could serve as a proof-of-
concept15,16,39,40, we elected to employ the mixed-signal DYNAP-SE14

processor (described in Supplementary Material section 8) to
demonstrate a fully mixed-signal processing pipeline. The analog
properties of silicon neurons and synapses have been extensively
described41–43. Here we focus on two system-level network motifs. The
first network is a spike detectionmotif that uses a single analog silicon
neuron to detect spikes from a single GAIA channel. It relies on the
integration of UP and DN events through different excitatory input
synapses to create coincidencedetection filters44. Digital UP events are

Fig. 6 | Analysis and visualization of cardiomyocyte activity on GAIA sensor.
a Histogram showcasing the event distribution from GAIA over a 20s duration.
Periodic peaks, resulting from the spontaneous beating of the CMs, reveal a fre-
quency of 67 bpm. Each peak represents the extracellular field potential in
response to a beat event. b Illustration of two distinct beating events. The x axis
represents time, and the y axis indicates the Channel ID, emphasizing clear signal
propagation. Uniformity in the recorded beating shapes indicates the signal’s

consistent origin and propagation pattern. c Estimation of the propagation speed
of the extracellular field potentials, with an estimated velocity of 0.11mm/ms.
d Confocal imaging of cardiomyocyte cell culture on the GAIA sensor. Cytoskele-
tons in red are stained with SIR-Actin, while cell nuclei in blue are stained with
NucBlue, Hoechst 33342. Imaging proves cell viability and optically validates the
measured beating frequency.
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integrated via NMDA-like silicon synapses, while digital DN events are
integrated via AMPA-like silicon synapses45. Both synapses are emu-
lated via dedicated circuits on the DYNAP-SE processor. As in their
biological counterpart46, silicon NMDA synapses are voltage-gated
circuit blocks wherein the output synaptic current is enhanced by the
effect of a recent AMPAsynaptic event boosting the neuronmembrane
potential. The resulting non-linear synaptic summation mechanism is
leveraged in the spike detection network to trigger an output spike
only when subsequent DN-UP events occur within a short time win-
dow. Figure 8a, b shows the described spike detection motif and the
selectivity to spike time and polarity, respectively. Figure 8c shows, on
the bottom, the raw, unfiltered data from a subset of GAIA channels
and, on the top, the DYNAP-SE events generated in response to the
data. The coincidence detection between different polarity events is a
strong de-noising filter on the single output spikes. The on-chip spike
detection network successfully responds only to close successions of
DN-UPeventswhile correctly silencing events due tonoise. The second
network uses the same principle to process the entire GAIA array
within a single DYNAP-SE core. Tomap the full GAIA array into a single
DYNAP-SE core, we coarse-grained the 4096 pixels into a 16 × 16 grid.

Each grid element was connected to a single analog on-chip neuron.
The coarse-graining approach allows the processing of the entire GAIA
MEAwithin a single core. The synaptic biases and the time constants of
the synapses and of the neuron have been tuned to ignore the back-
ground noise and limit false positives. Figure 8d shows the response
over time of the DYNAP-SE core. The main panel shows periodic
beating, while the bottom zoomed-in image focuses on detecting a
single EFP wave event. Silicon neurons show a clear progression at the
time of detection, consistent with the movement of the EFP wave. In
conclusion, we have showcased a proof-of-concept of a fully mixed-
signal processing pipeline. The sensing and processing inside GAIA
andDYNAP-SE occur in the analog domain and thedata transmission in
the digital one.

Advantages and drawbacks of GAIA
As delineated in Table 1, the performance metrics of the GAIA system
are compared to existing state-of-the-art MEA devices, providing a
comparative perspective. GAIA stands out prominently due to its
unique event-based asynchronous nature: the output data rate is solely
determined by the sensed extracellular activity. The analog pixel

Fig. 7 | Propagation of extracellular field potential (EFP) wave. Time surface
showing the propagation of electrical activity from a single EFP wave across the
entirety of the GAIA chip. The activity is calculated over a 2ms timewindowwith an
exponential decay parameterized by τ = 2ms. Negative and positive events (in red
and green) are encoded from the biphasic shape. Notably, within the time frames

presented, the total counts for UP and DN events are 1130 and 1111, respectively.
Although it might seem that there are more UP events, this is because they
represent the trailing edge of the wave, thus occurring closer to the snapshot time,
making them appear more prevalent.
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electronics combined with asynchronous encoding collectively enable
superior energy efficiency and reduced latency. However, the intrinsic
nature of asynchronous event-based systems renders time-
multiplexing unfeasible, and requires dedicated circuitry at each
pixel. This poses a challenge in achieving an optimal balance between
electronics size, which influences overall noise levels, and the physical
spacing between electrodes,which dictates spatial resolution. Building
upon the architecture of GAIA, its event-based design offers expansive
opportunities for scalability. The inherent strength of signal com-
pressing at the pixel level, of the arbiter design, combined with its
efficient bandwidth, suggests that the present 64 × 64 configuration
could seamlessly evolve into larger pixel arrays, echoing advances seen
in vision sensors47. However, it is vital to acknowledge inherent chal-
lenges: with the pixel’s active design, transmitting digital data over
extended wire lengths within an analog computational environment

introduces vulnerabilities to noise disturbances andpotential coupling
issues. In addressing the pixel pitch and input-referred noise chal-
lenges in the GAIA MEA system, it is essential to recognize the direct
consequences of our novel encoding method on these parameters.
The larger 48μm pitch and elevated noise levels are the results of our
commitment to an active pixel sensor design, integrating all amplifi-
cation and event generation blocks within the pixel area. This
approach,while increasing pixel size andnoise, is a deliberate trade-off
to leverage our unique event-based sensing capabilities. Looking for-
ward, advancements such as hybrid architectures or lower technolo-
gical nodes present promising avenues to mitigate these challenges,
potentially reducing both pitch and noise without compromising the
system’s innovative encoding and spatial resolution capabilities.
Moreover, the input-referred noise does not directly affect power
consumption and robustness.

UP

DN

NMDA

AMPA

ΔT

a) b)

c) d)

Fig. 8 | GAIA-DYNAP-SE interface. a Spikedetectionmotif. UP andDNchannels are
connected to different synapses, filtering the incoming digital spikes with different
time constants. b The network is tuned to respond only when a sequence with the
correct polarity and the correct timing is presented (middle). If the timing (top) or
the polarity is inverted (bottom), the silicon neuron is silenced. c Raw GAIA events

(bottom) are processed by the DYNAP-SE processor (top). The silicon neurons on
the DYNAP-SE spike only in response to a close succession of DN-UP GAIA events.
d Neuron-IDs of a full DYNAP-SE core responding to raw, noisy input recorded
by GAIA.

Table 1 | Comparison of state-of-the-art MEA systems

This work ref. 3 ref. 5 ref. 6 ref. 7 ref. 1

Technology [nm] 180 180 180 130 180 90/65

Die size [mm] 5 × 5 6 × 8.9 - 19.2 × 10 12 × 8.9 32.5 × 25.1

Pixel pitch [μm] 48 18 25 15 13.5 11.72

No electrodes 4096 19,586 65,536 16,384 59,760 2,36,880

No readout-channels 4096 19,586 65,536 1024 2048 2,36,880/33,840

Sampling rate <1 μs latency 11.6 kHz 20kHz 20kHz 20 kHz 10/70 kHz

Input-referred noise 19.04 10.4 26 7.5 2.5 5.5

[μVRMS] (500–3 kHz) (300–5 kHz) (100–10 kHz) (100–3 kHz) (300–10 kHz) (300–10 kHz)

Power/channel [μW] 0.8 5.9 - 19.8 42 130
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Discussion
As traditional multichannel biosensors follow a synchronous clocked
data sampling scheme, they are limited in the number of channels they
can record from simultaneously due to fundamental bandwidth and
power constraints. The work we presented here bridges the gap
between direct extracellular sensing and event-based technology,
offering a new approach for real-time bioelectric sensing and mon-
itoring. The GAIA sensor proposed evolves classical MEA designs by
harnessing event-based encoding, offering benefits such as enhanced
energy efficiency and improved scalability. Each pixel asynchronously
converts the detected extracellular potential into a stream of digital
events. GAIA significantly reduces redundant data at the pixel level, by
initiatingdata generation and transmission onlyupon significant signal
changes, such as single action potentials or large extracellular field
potentials. This, in turn, eases the strain on data management and
processing frameworks.

Another notable achievement of this paper is the demonstration
of an integrated event-based MEA device with a mixed-signal neuro-
morphic processor. This combination demonstrates the practicality of
combining event-based biosensing with neuromorphic processing,
suggesting a roadmap for future edge biosensing applications.

The findings and developments presented in this paper set the
stage for further exploration in the MEA and biosensor sector. Event-
based technology in this context opens new avenues for research and
optimization. Moreover, as showcased by direct sensing and proces-
sing integration, the potential for edge devices paves the way formore
decentralized, efficient, and real-time solutions.

In summary, this work presents a novel technological approach
andoffers a practical blueprint for the next generation of bioelectronic
interfaces, emphasizing real-world applicability and efficiency.

Methods
IC fabrication
The chipwas fabricated using a standard 180 nmCMOS 6M1P process.
Information on transistor sizing is available in the supplementary
materials section 2. The dies were wire-bonded onto custom-made
printed circuit boards (PCBs) for effective integration. PCBs were
designed using the open-source Kicad software.

Post-processing, packaging, and Pt-Black deposition
For biocompatibility and usability, a three-phase post-fabrication
protocol was employed. First, the chips were post-processed in a
cleanroom to fabricate stable platinum electrodes and to isolate the
electronics from the culturing media. The GAIA CMOS chip was post-
processed at the die level. Platinum electrodes were manufactured on
the electrode array using a shifted-electrode layout48. Three masks
were used to deposit a SiO2/Si3N4 passivation stack over the entire
chip. Reactive-ion etching was used to create openings in the passi-
vation to create the final 15 × 15μm2 electrodes and for the wire
bonding contacts.

Secondly, the chips were packaged with epoxy and a glass ring to
ensure adequate insulation and to avoid leakage of the culturing
media. Finally, Pt-black was deposited on the bright Pt electrode sur-
face following a previously published protocol49. All electrodes were
connected, and a static current of 500μAwas applied for 40 s. Figure 3
shows the micrograph of the GAIA chip, the electrodes, and the fully
packaged chip.

Data pipeline
An XEM7310 FPGA (Opal Kelley, USA) board was used to interface the
GAIA chip. Custom drivers were developed in System Verilog to digi-
tize, timestamp, and pipeline incoming events. Custom C++ software
was built to visualize and process incoming digital events. The same
software controls the analog biases and digital latches on the GAIA

chip. Additional information is available in the supplementarymaterial
section 4.

Data filtering
The recorded raw data was filtered to extract salient features by
leveraging the analysis performed in Fig. 5f. The data was filtered using
the event-based algorithms described in algorithm 1.

Algorithm 1. Event validation
• E: The list of events to be processed.
• e.ts: Timestamp of event e.
• e.p: Polarity of event e. Negative and positive polarity are
denoted as -1 and 1, respectively.

1: for each e in E do
2: if 9e0 2 E such that je0:ts� e:tsj≤ 1 ms and p:e0 = � p:e then
3: Evalid = Evalid ∪ e,e0.
4: else
5: Discard e from E.
6: end if
7: end for
8: return Evalid

Characterization setup
The chip characterization was conducted using an array of specialized
instruments. The transfer function of theA1-A2 amplification chainwas
assessed using an Agilent Analog Discovery 2. An SRS SR780 network
signal analyzer was used to evaluate the noise and capture the power
spectral density measurements. The necessary waveforms for testing
were produced using the Agilent 33120A waveform generator, and
their characteristics were monitored using the Agilent DSO6054A
oscilloscope. The chip’s analog and digital power needs were met
using two separate Hewlett Packard E3610A power supplies. As for
estimating the chip’s total power consumption, initial computations
weremade using the post-layout extraction feature. These preliminary
estimates were validated using real-time readings from the afore-
mentioned power supplies.

Cell culture
Frozen vials of human-derived cardiomyocytes (iCell Cardiomyocytes
Kit (Cat. R1057)) were purchased from Fujifilm Cellular Dynamics
International (Wisconsin, USA). The cells were thawed and cultured
following the manufacturer’s guidelines. Before cell plating, the GAIA
sensors were sterilized in 70% ethanol for 10minutes and rinsed thrice
with sterile deionized water. The electrode arrays were coated with
human fibronectin (Cat. FC010, Signma-Aldrich) at a concentration of
50mg/mL and incubated at 37 °C for 1 hour. The cells underwent a
thawing procedure and had seeding density adjusted38,50. 30,000 cells
were seeded onto the fibronectin-coated GAIA sensors, and 1.3mL of
iCell PlatingMediumwas added to each chamber. After 48 hours, iCell
Plating Medium was fully replaced with 1.3mL iCell Maintenance
Medium. Half of the medium was exchanged using iCell Maintenance
Medium every 2–3 days until the termination of the experiments.

GAIA-DYNAP-SE interface
The integration betweenGAIA andDYNAP-SE is facilitated through two
primary components. Initially, GAIA’s incoming data undergoes pro-
cessing and timestamping via an FPGA, resulting in a catalog of pixel
addresses paired with their corresponding event timestamps. Further
details on this process can be found in the supplementary material
section 4. Following this, the events captured by GAIA are transferred
to the DYNAP-SE processor using a specialized API. The chronological
integrity of the events is meticulously maintained, owing to the initial
timestamping step.
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Data availability
Data generated from GAIA supporting the findings of this study are
available at: https://doi.org/10.5281/zenodo.11114022.

Code availability
Code that analyzes the data generated from GAIA is available at:
https://doi.org/10.5281/zenodo.11114022.
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