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Prof. Dr. İlkay Ulusoy
Head of Department, Electrical and Electronics Engineering

Assoc. Prof. Dr. Mustafa Mert Ankaralı
Supervisor, Electrical and Electronics Engineering, METU

Examining Committee Members:

Assist. Prof. Dr. Serkan Sarıtaş
Electrical And Electronics Engineering, METU

Assoc. Prof. Dr. Mustafa Mert Ankaralı
Electrical And Electronics Engineering, METU

Assoc. Prof. Dr. İsmail Uyanık
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ABSTRACT

MOTION PLANNING AND CONTROL OF UNDERACTUATED SYSTEMS
OVER OPTIMIZED TRAJECTORIES

Koyuncu, Eminalp

M.S., Department of Electrical and Electronics Engineering

Supervisor: Assoc. Prof. Dr. Mustafa Mert Ankaralı

September 2024, 98 pages

In this work, we propose an optimal control strategy that is robust and capable of

running real-time for nonlinear underactuated systems. Our method combines an

optimization-based trajectory planner with the feedback motion planning methods.

We combine the local controllers created by the feedback motion planning algorithms

to generate a global trajectory with trajectory optimization, taking the underactuation

into consideration. We follow the generated trajectory using a global controller.

We first generate a Sparse Neighborhood Graph (SNG) in the obstacle-free region

of the configuration space. We generate waypoints at each node intersection on the

graph, and hierarchical waypoints are identified along the shortest path from start

to goal. We then run an optimization algorithm, taking the system dynamics and

constraints into account to minimize input effort and generate trajectories between

waypoints using a receding horizon optimization strategy. Finally, we use a linear

time-varying (LTV) model predictive control (MPC) policy to track the generated

trajectory, ensuring constraints are satisfied during system operation.

We tested our algorithm on underactuated unmanned surface vehicles (USVs) to
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drive them in the presence of workspace obstacles, and input and speed constraints.

We used 2 different USV models, one implemented in MATLAB and the other is

Clearpath Robotics Heron USV on a ROS-Gazebo simulation. We compared our re-

sults with previous works, considering real-time performance and robustness. Our

work showed superior results regarding all the criterion. However, one drawback of

our method is the computational time and power required for the offline planning

action.

Keywords: Trajectory Optimization, Underactuated Systems, Model Predictive Con-

trol
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ÖZ

KISITLI TAHRİKLİ SİSTEMLERİN OPTİMİZE YÖRÜNGELER
ÜZERİNDE HAREKET PLANLAMASI VE KONTROLÜ

Koyuncu, Eminalp

Yüksek Lisans, Elektrik ve Elektronik Mühendisliği Bölümü

Tez Yöneticisi: Doç. Dr. Mustafa Mert Ankaralı

Eylül 2024 , 98 sayfa

Bu çalışmada, doğrusal olmayan kısıtlı tahrikli sistemler için gürbüz ve gerçek za-

manlı bir optimal kontrol stratejisi öneriyoruz. Metodumuz, geri beslemeli hareket

planlama yöntemleri üzerine kurulu bir optimizasyon tabanlı yörünge planlayıcısı

kullanıyor. Geri beslemeli planlayıcılar, konfigürasyon uzayını engelsiz bölgelere ayı-

rarak, her bölgede yerel kontrolcü ile sistemin sürülmesini sağlar. Biz ise bu yerel

kontrolcüleri, giriş kısıtlarını dikkate alarak, global bir yörünge oluşturmak için opti-

mizasyon yöntemleri ile kullanıyoruz. Ardından, oluşturulan global yörünge bir kont-

rolcü ile takip ediliyor.

Çalışmamızda ilk olarak sistemin konfigürasyon uzayında Seyrek Komşuluk Grafiği

oluşturarak, başlangıçtan hedefe en kısa yoldan ulaşan düşümlerin kesişim noktasında

bulunan hiyerarşik ara noktaları belirliyoruz. Bu noktalar arasında, sistem dinamikleri

ve kısıtlarını dikkate alarak, girdi eforunu minimize eden bir optimizasyon algorit-

ması ile global yörüngeleri hesaplıyoruz. Son aşamada, sistemin bu yörüngeyi kapalı

döngü bir kontrolcü ile takip etmesini sağlıyoruz.
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Algoritmamızı, kısıtlı tahrikli insansız su üstü araçlarını engelli alanlarda sürerek sı-

nadık. Çalışmamızı MATLAB üzerinde hazır bir model ve Clearpath Robotics Heron

insansız su üstü aracının ROS-Gazebo verileriyle oluşturduğumuz bir modeli kul-

lanarak denedik. Sonuçlar metodun çevrimdışı planlama aşamasında yüksek işlem

gücü gerektirmesine rağmen önceki çalışmalarla karşılaştırıldığında sistemin çevri-

miçi olarak gerçek zamanlı performans ve gürbüzlük açısından üstünlük gösterdiğini

ispatladı.

Anahtar Kelimeler: Yörünge Optimizasyonu, Kısıtlı Tahrikli Sistemler, Model Öngö-

rülü Kontrolcü
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ear dynamics ẋ(t) = f(x(t),u(t)) with initial conditions x(0) = x0. X
and U represents the admissible sets of the state and input variables. Af-

ter the parameterization, the original problem is converted to the stan-

dard form optimization problem with finite number of decision variables. 19

Figure 2.8 Overview of the spline fitting to the state trajectories [4]. Sam-

ples x(t1) = x[1], x(t2) = x[2] and x(t3) = x[3] are calculated at

the knot points of the spline and used to evaluate the cost function and

any additional inequality constraint relating the admissible values of the

state and input variables. The dynamics are evaluated at the collocation

points x(tc,1), x(tc,2) and x(tc,3) etc. . . . . . . . . . . . . . . . . . . . 25

Figure 2.9 The illustration of the USV with respect to the body and global

frames. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

Figure 3.1 Illustration of the trajectory optimization. (a) shows the classical

sequential composition of the funnels. (b) shows the resulting trajecto-

ries as a result of trajectory optimization inside the funnels. . . . . . . . 34

Figure 3.2 Illustration of the receding horizon trajectory optimization for 2

iterations. On the upper figures solid red lines are the planned position

trajectories, red circles are the waypoints, blue arrows are the headings

of the USV at the waypoints, black solid lines are the predicted posi-

tion trajectories and green circles are the next waypoints. Red and black

crosses are the starting and goal positions, respectively, and the black

arrow is the goal heading of the USV. Plots below show the nominal

velocity and input trajectories as the output of the optimization, corre-

sponding to the position trajectories shown with solid red curves. . . . . 37

Figure 4.1 The Overall Algorithm . . . . . . . . . . . . . . . . . . . . . . 41

Figure 4.2 Clearpath Robotics Heron USV [5]. . . . . . . . . . . . . . . . . 45

xvi



Figure 4.3 Heron USV Gazebo simulation environment. (a) shows the iso-

metric view of the Heron USV in the simulation environment. (b) shows

the world coordinate frame of the simulation environment. {W} is the

world coordinate system, with red, green and blue arrows representing

the X, Y and Z axes, respectively. . . . . . . . . . . . . . . . . . . . . . 46

Figure 4.4 The overview of the simulation setup. The Gazebo simulation

runs on a Docker container, containing the Heron simulator, required

ROS packages and noVNC running on Ubuntu 18.04. The simulator

publishes the odometry data to MATLAB environment running on the

local machine. After the necessary computations, the MATLAB envi-

ronment publishes the thrust commands to the simulator on the closed

loop. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

Figure 4.5 Overview of the world and base frames. {B} represents the base

frame of Heron. Vectors u and v represent the surge and sway axes of

the USV respectively. ψ is the heading angle with respect to the world

X axis and r represents the positive direction of the USV angular speed. 47

Figure 4.6 RQT graph of the Gazebo simulator of Heron USV. . . . . . . . 49

Figure 4.7 Input and output sequences used for the system identification. . . 53

Figure 4.8 Fit to the simulation data. . . . . . . . . . . . . . . . . . . . . . 54

Figure 4.9 Input sequences for the first validation. . . . . . . . . . . . . . . 55

Figure 4.10 Output of the first validation. . . . . . . . . . . . . . . . . . . . 55

Figure 4.11 Input sequences for the second validation. . . . . . . . . . . . . 56

Figure 4.12 Output of the second validation. . . . . . . . . . . . . . . . . . . 56

Figure 4.13 Input sequences for the third validation. . . . . . . . . . . . . . 57

Figure 4.14 Output of the third validation. . . . . . . . . . . . . . . . . . . . 57

xvii



Figure 4.15 The virtual environment created for Gazebo simulation. (a)

shows the map created in MATLAB. (b) shows the Gazebo simulation

of the USV. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

Figure 4.16 Trajectory planning on Map (a). Upper plot shows the map and

red solid curve is the planned trajectory. Red circles are the waypoints.

Lower figures show the nominal speed and thrust trajectories for map (b). 61

Figure 4.17 Trajectory planning on Map (b). Upper plot shows the map and

red solid curve is the planned trajectory. Red circles are the waypoints.

Lower figures show the nominal speed and thrust trajectories for Map (a). 62

Figure 4.18 Simulation results for Map (a). Figure (a) shows the nominal po-

sition trajectory and the real closed loop trajectory. Solid black curve is

the nominal trajectory and dashed green curve is the real trajectory. (b)

(c) and (d) shows the nominal and real velocity and thrust trajectories

as the output of the MPC. In (b), the nominal and real USV velocities

are shown. Bold blue, red and yellow curves show the nominal USV

velocities u, v and r, respectively. Thin purple, green and light blue

curves show the real velocities on top of the nominal ones. In Figure

(c) and (d), blue curves are the nominal thrust inputs F1 and F2, re-

spectively. Red curves are the real thrust trajectories. Real trajectories

closely follow the nominal trajectories within the constraints. . . . . . . 63

Figure 4.19 Simulation results for Map (b). Figure (a) shows the nominal

position trajectory and the real closed loop trajectory. Solid black curve

is the nominal trajectory and dashed green curve is the real trajectory.

(b) (c) and (d) shows the nominal and real velocity and thrust trajec-

tories as the output of the MPC. In figure (b) and (c), blue curves are

the nominal thrust inputs F1 and F2, respectively. Red curves are the

real thrust trajectories. In (d), the nominal and real USV velocities are

shown. Bold blue, red and yellow curves show the nominal USV veloc-

ities u, v and r, respectively. Thin purple, green and light blue curves

show the real velocities on top of the nominal ones. Real trajectories

closely follow the nominal trajectories within the constraints. . . . . . . 64

xviii



Figure 4.20 Nominal trajectories for the Monte Carlo experiments. . . . . . . 65

Figure 4.21 Results of the Monte Carlo experiments for the first map. (a)

shows the closed loop position trajectories in the presence of process

noise. (b), (c) and (d) shows the nominal and real velocity and thrust

trajectories for an example run in the presence of the process noise. . . . 65

Figure 4.22 Nominal trajectories for the Monte Carlo experiments. . . . . . . 66

Figure 4.23 Results of the Monte Carlo experiments for the second map. (a)

shows the closed loop position trajectories in the presence of process

noise. (b), (c) and (d) shows the nominal and real velocity and thrust

trajectories for an example run in the presence of the process noise. . . 67

Figure 4.24 The first map for the Gazebo implementation. Grey rectangles

are the generated nodes along the shortest path and the red dots are the

waypoints. Red cross shows the initial position and blue arrow is the

initial heading direction of the USV. Blue dot and arrow are the goal

position and orientation, respectively. . . . . . . . . . . . . . . . . . . . 68

Figure 4.25 Trajectory optimization in map 1. In (a), the red curve is the

nominal position trajectories. (b) shows the nominal velocity trajecto-

ries and (c) shows the nominal input trajectories. . . . . . . . . . . . . . 69

Figure 4.26 Heron USV position trajectory for map 1. Orange curve is the

nominal position trajectory and blue curve is the real position trajectory

of Heron. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

Figure 4.27 Heron USV heading angle trajectory for Map 1. Nominal trajec-

tory is the planned trajectory and the real trajectory is Heron’s trajectory

during operation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

Figure 4.28 Heron USV surge velocity trajectories for Map 1. . . . . . . . . 70

Figure 4.29 Heron USV sway velocity trajectories for Map 1. . . . . . . . . 70

Figure 4.30 Heron USV rotational velocity trajectories for Map 1. . . . . . . 71

xix



Figure 4.31 Heron USV left thruster input trajectories for Map 1. . . . . . . . 71

Figure 4.32 Heron USV right thruster input trajectories for Map 1. . . . . . . 71

Figure 4.33 Heron USV power and energy consumption for map 1. The left

figure shows Heron’s instantaneous power consumption of and the right

figure shows the cumulative energy consumption over time. . . . . . . . 72

Figure 4.34 The second map for the Gazebo implementation. . . . . . . . . . 73

Figure 4.35 Trajectory optimization in map 2. In (a), the red curve is the

nominal position trajectories. (b) shows the nominal velocity trajecto-

ries and (c) shows the nominal input trajectories. . . . . . . . . . . . . . 73

Figure 4.36 Heron USV position trajectory for Map 2. Orange curve is the

nominal position trajectory and blue curve is the real position trajectory

of Heron. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

Figure 4.37 Heron USV heading angle trajectories for Map 2. . . . . . . . . 74

Figure 4.38 Heron USV surge velocity trajectories for Map 2. . . . . . . . . 74

Figure 4.39 Heron USV sway velocity trajectories for Map 2. . . . . . . . . 75

Figure 4.40 Heron USV rotational velocity trajectories for Map 2. . . . . . . 75

Figure 4.41 Heron USV left thruster input trajectories for Map 2. . . . . . . . 75

Figure 4.42 Heron USV right thruster input trajectories for Map 2. . . . . . . 76

Figure 4.43 Heron USV power and energy consumption for Map 2. . . . . . 76

Figure 4.44 The third map for the Gazebo implementation. . . . . . . . . . . 77

Figure 4.45 Trajectory optimization in map 3. In (a), the red curve is the

nominal position trajectories. (b) shows the nominal velocity trajecto-

ries and (c) shows the nominal input trajectories. . . . . . . . . . . . . . 77

xx



Figure 4.46 Heron USV position trajectory for Map 3. Orange curve is the

nominal position trajectory and blue curve is the real position trajectory

of Heron. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

Figure 4.47 Heron USV heading angle trajectories for Map 3. . . . . . . . . 78

Figure 4.48 Heron USV surge velocity trajectories for Map 3. . . . . . . . . 79

Figure 4.49 Heron USV sway velocity trajectories for Map 3. . . . . . . . . 79

Figure 4.50 Heron USV rotational velocity trajectories for Map 3. . . . . . . 79

Figure 4.51 Heron USV left thruster input trajectories for Map 3. . . . . . . . 80

Figure 4.52 Heron USV right thruster input trajectories for Map 3. . . . . . . 80

Figure 4.53 Heron USV power and energy consumption for Map 3. . . . . . 80

Figure 4.54 The fourth map for the Gazebo implementation. . . . . . . . . . 81

Figure 4.55 Trajectory optimization in Map 4. In (a), the red curve is the

nominal position trajectories. (b) shows the nominal velocity trajecto-

ries and (c) shows the nominal input trajectories. . . . . . . . . . . . . . 81

Figure 4.56 Heron USV position trajectory for Map 4. Orange curve is the

nominal position trajectory and blue curve is the real position trajectory

of Heron. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

Figure 4.57 Heron USV heading angle trajectories for Map 4. . . . . . . . . 82

Figure 4.58 Heron USV surge velocity trajectories for Map 4. . . . . . . . . 83

Figure 4.59 Heron USV sway velocity trajectories for Map 4. . . . . . . . . 83

Figure 4.60 Heron USV rotational velocity trajectories for Map 4. . . . . . . 83

Figure 4.61 Heron USV left thruster input trajectories for Map 4. . . . . . . . 84

Figure 4.62 Heron USV right thruster input trajectories for Map 3. . . . . . . 84

xxi



Figure 4.63 Heron USV power and energy consumption for Map 4. The left

figure shows Heron’s instantaneous power consumption of and the right

figure shows the cumulative energy consumption over time. . . . . . . . 85

Figure 4.64 The Monte Carlo Experiment results presented in [6] for the

fully actuated USV. (a) shows the successful trials that end up at the

goal position. (b) shows the thruster commands for all four thrusters

of the fully actuated USV. MPC-Graph shows 98% success during the

trials with the fully actuated USV. . . . . . . . . . . . . . . . . . . . . 86

Figure 4.65 The Monte Carlo Experiment results presented in [6] for the un-

deractuated USV. (a) shows the successful trials that end up at the goal

position. (b) shows the failed trials. (c) shows the thruster commands of

the underactuated USV. MPC-Graph shows 71.2% success during the

trials with the underactuated USV. . . . . . . . . . . . . . . . . . . . . 86

xxii



LIST OF ABBREVIATIONS

2D 2 Dimensional

3D 3 Dimensional

USV Unmanned Surface Vehicles

MPC Model Predictive Control

SNG Sparse Neighborhood Graphs

NARMAX Nonlinear Auto Regressive Moving Average With Exogeneous

Inputs

ROS Robot Operating System

PRM Probabilistic Roadmaps

RRT Rapidly Exploring Random Trees

SNR Signal-to-noise Ratio

SQP Sequential Quadratic Programming

xxiii



xxiv



CHAPTER 1

INTRODUCTION

1.1 Motivation and Problem Definition

In the field of control theory, the control of underactuated systems has been sub-

ject to great interest due to the challenges introduced by underactuation. With such

systems, any control action taking place at some point of time greatly affects the fu-

ture trajectories of the system. That is because some modes of the system are not

directly reachable at that point of time, and they evolve respecting the past control

actions that took place. Another issue with the underactuation is that, it is proven that

the classical linear, nonlinear and continuous state feedback policies cannot stabi-

lize the underactuated systems [7]. To tackle such challenges, control theorists came

up with the idea of using optimal control methods on underactuated systems [8] to

generate a time-varying control policy. Optimal control methods simulate the sys-

tem forward in a time window to see how underactuated modes evolve over time.

Meanwhile, they decide an optimal control policy that will lead the system to reach

a desired state eventually, minimizing a specified cost function and regarding con-

straints imposed on the system [9]. However, using such methods on highly dynamic

and nonlinear systems requires a high amount of computational power and might

not be feasible for real-time systems. In order to overcome this problem, the opti-

mal control methods are reinforced using offline motion planning techniques [10],

to decrease the computational burden on the optimal controller. In particular, with

the emergence of feedback motion planning methods, the configuration space of the

system is divided into the obstacle-free regions and in each region, a local feedback

controller, including optimal controllers, is utilized to drive the system between these

regions hierarchically, with the goal of reaching a desired configuration [6]. These
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methods show a great performance dealing with the nonlinearities of highly dynamic

systems, however, still fall short for underactuated systems, regarding the computa-

tional burden. In this work, we overcome these challenges with the receding horizon

trajectory optimization method applied on the Sparse Neighborhood Graphs (SNG).

With the trajectory optimization, we generate optimized trajectories over the regions

generated using SNG, taking the underactuation into consideration. By doing so, we

minimize the computational burden on the controller. We use a Model Predictive

Control (MPC) policy to create a time-varying control policy that drives the system

over these optimized trajectories in real-time.

1.2 Literature Review

Optimal control methods have been widely used in every aspect of science and robotics,

from aquaculture modelling [11], to cancer chemotherapy [12], power electronics

[13], spacecraft attitude control [14], control of underwater vehicles [15], and con-

trol of quadrotors [16] since the development of the dynamic programming concept

by Richard Bellman [17]. The dynamic programming is a search method originally

developed to solve optimal control problems, however, it suffers from the Bellman’s

curse of dimensionality [18] which states that the number of decision parameters for

the search problem increases exponentially with the number of states (dimensions)

of the dynamical system. As the interest for the optimal control increase, parame-

terizations other than the dynamic programming emerged to be able to parameterize

the dynamics of the system and solve the optimal control problem effectively. Most

popular of these parameterizations are the so-called direct transcription, direct single

shooting and direct collocation methods [19, 20, 21]. There are also relatively new

parameterizations called pseudospectral methods subject to current research [22, 23].

For the nonlinear optimal control, together with these parameterizations, a nonlinear

optimizer such as sequential quadratic programming [24] or an interior-point based

optimizer [25] is utilized to solve the nonlinear optimal control problem.

One of the most popular optimal control methods is the Model Predictive Control

(MPC). This optimal control method is firstly developed to meet the need of optimiz-

ing multi-input multi-output constrained processes of petro-chemical industry with
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the name of Dynamic Matrix Control [26, 27]. As the MPC gains popularity due

to its superior performance and ability to handle complex multi-input multi-output

systems, robotics researchers embraced the MPC and used it for various tasks, in-

cluding the motion control of unmanned surface vehicles (USVs) [28, 29, 30, 31]. In

[28, 30, 31], the authors utilize MPC for the path following problem of the USVs and

in [29], they use a finite control set MPC for the obstacle avoidance of the USVs.

For the robots that operate in environments with obstacles, motion planning is a cru-

cial part of the robot design. The motion planning problem for robotics can be sum-

marized as finding the collision-free trajectories that drive the robot from an initial

configuration to a goal state which obey the constraints imposed by the environment

or the structure of the system [32]. In general, these trajectories can be generated

offline and as the robot starts it operation, a motion controller drives the robot along

these trajectories. This way, the most of the computational burden of the real-time

controller is undertaken during the offline planning phase. Sampling-based motion

planning algorithms gained popularity in the past years due to its relatively low com-

putational complexity even for robots with higher dimensional configuration spaces

[33]. Most notable sampling based methods are the Probabilistic Roadmaps (PRM)

based planners [34] or the Rapidly Exploring Random Trees (RRT) based planners

[35]. One disadvantage of the sampling based methods is that they generate open

loop trajectories for the system that can be tracked using a motion controller later

on. This approach can create infeasible trajectories for the system, especially if the

system has complex and highly constrained dynamics, such as the underactuated sys-

tems. These problems are solved with the emergence of feedback motion planning

methods, especially sequential composition of feedback controllers, that divides the

complex configuration space of the system into simpler regions, along with a local

feedback controller that drives the system between those regions [36]. The sequen-

tial composition method has been successfully applied to several problems in the

literature [37, 38, 39, 40]. One challenge of this method is to find an effective way

to divide the configuration space into simple regions. To solve this problem, sam-

pling based sequential composition methods have emerged. These methods use the

sampling tools of the sampling based methods and create those regions around the

sampled configurations [41, 42, 43, 6]. Especially, in this study, we focus on increas-
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ing the performance of MPC-Graph Algorithm [6], that uses Sparse Neighborhood

Graphs to generate these regions and uses MPC as the local feedback controller for

the underactuated USVs.

1.3 Contributions and Novelties

The main contribution of our work is to enhance the performance of the sequential

composition of feedback controllers method by implementing the receding horizon

trajectory optimization inside each funnel for underactuated systems. In our method,

we first generate a Sparse Neighborhood Graph (SNG) on the obstacle-free region of

the configuration space. Then, we generate possible waypoints for our system at the

intersections of each node of the graph, and we find hierarchical waypoints along the

shortest path, connecting the starting configuration to the desired configuration. After

that, we run an optimization algorithm that takes the system dynamics and constraints

into account and minimizes the input effort between each waypoint. This optimization

procedure generates optimized open-loop state and input trajectories, that connect the

starting configuration to the goal over time. Sİnce most of the predictions of the

system trajectories carried out offline, the computational burden for the controller

decreases significantly. Then, we drive our system along these trajectories using a

linear time varying (LTV) Model Predictive Control (MPC) policy to make sure that

the constraints are still not violated during the operation of the system.

We developed and tested our algorithm on underactuated unmanned surface vehi-

cles (USVs) to drive them in the presence of workspace obstacles, and input and

speed constraints. We used 2 different nonlinear underactuated USV models, one im-

plemented in MATLAB with a predefined model and other obtained by conducting

system identification on Clearpath Robotics Heron USV on a ROS-Gazebo simula-

tion. For the nonlinear system identification of Heron USV, we utilised the so called

NARMAX methods and identified the model parameters of the USV based on Fos-

sen’s equations of motion. Our method showed superior results in terms of real-time

performance, robustness and USV power consumption for the underactuated USV.
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1.4 The Outline of the Thesis

In Chapter 2, we begin with explaining the key concepts used to develop and experi-

ment with our method, namely, the sequential composition algorithm, Sparse Neigh-

borhood Graphs, nonlinear optimization, parameterizations of optimal control, MPC,

USV dynamics and NARMAX methods. After explaining these key concepts, in

Chapter 3, we give the complete description of our algorithm, the receding horizon

trajectory optimization on Sparse Neighborhood Graphs and the motion control over

the optimized trajectories. In Chapter 4, we first explain the implementation of our

method on two different underactuated USV models, one simulated in MATLAB en-

vironment using a pre-defined model and other is the Clearpath Robotics Heron USV

on a Gazebo simulation. After we explain the implementation, we give the key re-

sults of our method. Finally, we compare and contrast the results of our algorithm

with previous work and show its superior real-time performance, robustness and en-

ergy efficiency. In Chapter 5, we outline our work and discuss the possible future

research directions.
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CHAPTER 2

PRELIMINARIES AND BACKGROUND

2.1 Sequential Composition of Feedback Controllers

Sequential composition of feedback controllers is a feedback motion planning tech-

nique that divides the complex configuration space of a robot into simple regions

called "funnels" [36]. At each funnel, a stabilizing feedback control policy drives the

robot from an initial state to a local goal, that connects the active funnel to the next

funnel. The funnel shapes are in general selected as the region of attraction of the

local feedback controller. Following each funnel hierarchically, a robot can be driven

from an initial state to a global goal state. Figure 2.1 illustrates the funnel analogy

used in [36].

Figure 2.1: Illustration of the funnel analogy.
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There are many studies based on sequential composition of feedback controllers dif-

fering in the funnel shape and the local control policy. In the study presented in [33],

the authors use a circular funnel shape in combination with a Lyapunov based con-

troller. Also, in [41], a square and in [43] an elliptic funnel shape are used. In [42]

the local controller is selected as a Linear Quadratic Regulator (LQR) and the funnel

shape is determined as the region of attraction of the LQR controller which is com-

puted using a sums-of-squares verification of Lyapunov functions. Another study is

the MPC-Graph [6], which creates Sparse Neighborhood Graphs using rectangular

funnels that utilize Model Predictive Control (MPC) policy to constrain the system

inside these funnels with box type of constraints. Our study aims to improve the per-

formance of MPC-Graph in the presence of underactuation. The details of the Sparse

Neighborhood Graph generation are explained in the next section.

2.2 Sparse Neighborhood Graphs

In our method, we utilize Sparse Neighborhood Graphs to generate collision-free

waypoints for the trajectory optimization in a 2D workspace. The graph generation

process is explained in detail in [44, 2, 1].

In the graph generation, the set of points covered by the nodes at any time is de-

noted by B. During the process, first a sample qrand is drawn and checked whether

it collides with any of the obstacles or the previously sampled regions. If there is

no collusion, a square node Nodek is expanded around qrand and if there is collision

qrand is discarded. So,

B =
⋃
k

Nodek (2.1)

After drawing qrand, the shortest distance to any of the obstacles is calculated. If we

denote the ith obstacle by WOi and the shortest distance as qobs,
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WO =
⋃
i

WOi (2.2a)

qobs = arg min
q∈WO

||q − qrand|| (2.2b)

If we let the minimum distance between the qobs and qrand by lmin, then we form the

circle shown in the Figure 2.2b, with center qrand and radius lmin. After forming this

circle the largest square node is placed on the circle with edge length lmin

√
2, and its

one edge perpendicular to the line segment connecting qobs and qrand. After placing

the square node, the node expands into a rectangular node as shown in the 2.2c, in

1 and 2 directions incrementally with growth rate γ. It means, at every iteration, the

current edge length of the rectangle is multiplied with γ in direction 1. If any collision

occurs or the node expands outside the map, the last expansion is discarded and the

same process is applied on the direction 2. The overall node generation process is

illustrated in Figure 2.2.

Figure 2.2: Node generation [1]. (a) A collision free random sample is drawn. (b) A

square node is expanded until the encapsulating circle collides with an obstacle. (c)

The node is continued to be expanded with discrete steps in 1 and 2 directions until it

collides with an obstacle.

The node generation continues until B covers a sufficient region in the map by sam-

pling and expanding nodes. The graph generation phase terminates when the follow-

ing inequality holds,
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m ≥ ln(1− Pc)

lnα
− 1. (2.3)

In (2.3), m is the number of discarded samples after a successful node generation, and

Pc and α are the user defined parameters that determines the quality of the generated

graph.

After the graph is generated, for each Nodei, the center of the node centeri is de-

termined. Note that centeri differs from qrand corresponding to the node due to the

rectangular expansion. After that, for each node, the overlapping area with each over-

lapping Nodej is calculated as Ai and the centeroid qi of Ai is determined. This

process is illustrated in Figure 2.3. Finally, the edge cost of the edge connecting

Nodei to Nodej for all (Nodei, Nodej) pair is calculated as the (2.4).

costi,j = ||centeri − qi,j||2 + ||centerj − qi,j||2 +
γ

Ai

(2.4)

After all the edge costs are calculated, the shortest path from given qstart to qgoal is

calculated using the Dijkstra’s algorithm, from the node containing qstart to the node

containing qgoal. Figure 2.4 shows the generated nodes and the shortest path for a

sample run of the algorithm.

qi

Figure 2.3: Visualization of the connected nodes to construct the graph [2]. The dis-

tances between the centers and qi, and the overlapping arena Ai are used to calculate

the edge cost. qi serves as waypoint to the trajectory optimization.
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In this study, we used the rectangular nodes with the same mentality presented in the

[2], for its compatibility with linear MPC framework. In the control part, we constrain

the position of the USV to be inside the rectangular nodes, which makes four linear

inequality constraints per (x, y) Cartesian coordinate pair of the USV. There are also

studies with square [41], and circle [45] nodes, however, rectangular nodes results in

sparser graph structure than the square nodes and the position constraints emerging

from circular nodes happens to be nonlinear. Finally, we keep track of the number of

nodes in the output of the Dijkstra’s algorithm to use in the trajectory optimization.

Let T be the path found by using Dijkstra’s algorithm. So, N = size(T ) is the

number of nodes in the shortest path with size(.) function returning the number of

elements in the argument. We index the nodes in the shortest path starting from the

node containing the starting point to the node containing the goal node consecutively.

So, following the nodes from Nodei for i = 1, . . . ,N , one can reach the goal node

from the starting node.
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(b)

Figure 2.4: Graph generation and the shortest path after the graph search. (a) shows

the overall graph structure after the graph generation is complete. (b) shows the

shortest path. Hollow black circle is the starting point. Black cross is the goal.
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2.3 Nonlinear Optimization

In this work, nonlinear optimization methods are heavily used for the trajectory opti-

mization. In most general form, a nonlinear optimization problem can be formulated

as (2.5). Note that the methods presented in this section applies for bot the convex

and non-convex problems. However, for the non-convex problems, it is likely that the

solver converges to a local minimum instead of a global one.

min
x

f(x)

s.t. h(x) = 0

g(x) ≤ 0

(2.5)

In this formulation, x is the vector of decision variables, f(x) is the scalar valued

nonlinear cost function, h(x) and g(x) are the vector of general nonlinear equality

and inequality constraints in the form of h(x) =
[
h1(x) h2(x) . . . hm(x)

]T
and

g(x) =
[
g1(x) g2(x) . . . gn(x)

]T
, respectively. Here, each hi(x) represents a

nonlinear equality constraint and gi(x) represents a nonlinear inequality constraint.

An optimal feasible solution to the optimization problem is denoted by x∗. The La-

grangian of this problem is defined as,

L(x,λ,µ) = f(x) + λTg(x) + µTh(x), (2.6)

where λ =
[
λ1 λ2 . . . λn

]T
and µ =

[
µ1 µ2 . . . µm

]T
are called the Lagrange

Multipliers for inequality and equality constraints, respectively. Let D be the set of

admissible values of x, and,

d(λ,µ) = inf
x∈D

L(x,λ,µ) (2.7)

So that,

d(λ,µ) ≤ f(x∗) (2.8)

for all λ ≥ 0. (2.8) implies that if the equality holds, which is called strong duality,

the following optimization problem in (2.9) has the same optimal value as the problem

in (2.5), which is called the primal problem whereas (2.9) is called the dual problem.
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max
λ,µ

d(λ,µ)

s.t. λ ≥ 0

(2.9)

A pair of primal optimal solution x∗ to the problem (2.5) and dual optimal solu-

tion (λ∗,µ∗) to the problem (2.9) is called primal-dual optimal feasible solution, and

together they satisfy so called Karush-Kuhn-Tucker (KKT) conditions presented in

(2.10).

∇f(x∗) +
n∑

i=1

λ∗i∇gi(x∗) +
m∑
j=1

µ∗
j∇hj(x∗) = 0 (2.10a)

h(x∗) = 0 (2.10b)

g(x∗) ≤ 0 (2.10c)

λ∗ ≥ 0 (2.10d)

λ∗i gi(x
∗) = 0 (2.10e)

In the given conditions, (2.10a) implies that, at the primal-dual optimal solution, the

Lagrangian is stationary, meaning, the gradients of the Lagrangian vanishes. (2.10b)

and (2.10c) represents the primal feasibility, meaning, the primal optimal solution

is feasible, obeying the constraints. Similarly, (2.10d) implies the dual feasibility,

meaning, the dual optimal solution obeys the constraints of the dual problem. (2.10e)

is called the "Complementary Slackness" and it means that, at the primal-dual optimal

point, either the constraint gi(x∗) ≤ 0 is active with gi(x∗) = 0, or it is inactive with

gi(x
∗) < 0 and λi = 0.

In the case of strong duality, KKT conditions are necessary and sufficient for the

solution to be globally optimal. However, if the duality is weak, KKT conditions are

only necessary and not sufficient for the global optimality and the solution might be

sub-optimal due to a local minimum or a stationary point.

In most of the cases, there is no analytical solution to the KKT system. However,

there are iterative algorithms to find a solution to the KKT system. Two of these

algorithms, namely, Sequential Quadratic Programming and Interior Point Algorithm

will be discussed further in this section.
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2.3.1 Sequential Quadratic Programming (SQP)

With the Sequential Quadratic Programming (SQP) algorithm, instead of directly

solving the KKT system for the given nonlinear optimization problem, we iteratively

solve it using a Newton step approach with the step direction determined by an ap-

proximate Quadratic Programming (QP) subproblem to the original problem. The

Newton step is defined as,

xk+1 = xk + αkd
k∗

x (2.11a)

λk+1 = λk + αkd
k∗

λ (2.11b)

µk+1 = µk + αkd
k∗

µ (2.11c)

where dk∗
x , dk∗

λ and dk∗
µ are called the search or step direction for the decision vari-

ables, Lagrange multiplier for inequality constraint and Lagrange multiplier for equal-

ity constraint, respectively. To calculate the step direction, we first calculate the

second order Taylor Series approximation of the Lagrangian and the linear approx-

imations of the constraints in the vicinity of xk. Defining dk
x = xk+1 − xk and

Hk = ∇2
xxL(xk,λk,µk),

L(xk+1,λk,µk) ≈ L(xk,λk,µk) +∇xL(xk,λk,µk)
Tdk

x + dkT

x Hkd
k
x (2.12a)

hi(xk+1) ≈ hi(xk) +∇hi(xk)d
k
x (2.12b)

gi(xk+1) ≈ gi(xk) +∇gi(xk)d
k
x (2.12c)

Dh(xk) =


∇h1(xk)

T

...

∇hm(xk)
T

 (2.12d)

Dg(xk) =


∇g1(xk)

T

. . .

∇gn(xk)
T

 (2.12e)

In (2.12), (2.12a) is the approximate Lagrangian. Also, (2.12d) and (2.12e) are the

Jacobian matrix of the equality and inequality constraints, respectively. Then, we

form the QP subproblem to find the step directions using the approximate Lagrangian
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and constraints.

min
dk
x

L(xk,λk,µk) +∇xL(xk,λk,µk)
Tdk

x + dkT

x Hkd
k
x

s.t. h(xk) +Dh(xk)d
k
x = 0

g(xk) +Dg(xk)d
k
x ≤ 0

(2.13)

Since L(xk,λk,µk) is a constant term, we drop it from the QP problem. Also, as

long as the QP subproblem is feasible, ∇xL(xk,λk,µk)
Tdk

x term becomes equal to

f(xk)d
k
x, which can be proven by calculating the expression of the gradient of the

Lagrangian, substituting the constraints in the expression and incorporating with the

KKT conditions. So, the QP subproblem can be written as,

min
dk
x

∇f(xk)
Tdk

x + dkT

x Hkd
k
x

s.t. h(xk) +Dh(xk)d
k
x = 0

g(xk) +Dg(xk)d
k
x ≤ 0

(2.14)

Let dk∗
x = dk

x,qp, dk∗

λ = dk
λ,qp and dk∗

µ = dk
µ,qp be the solution to the QP subproblem

and the corresponding Lagrange multipliers. The SQP algorithm is iterated by up-

dating (2.11) with the new step directions as a result of the QP subproblem. At each

step, αk is also updated with a line search, to maximize the step size. The iterations

are terminated when the step size is dropped below a certain threshold.

The SQP algorithm is a very fast algorithm, especially when the cost function is al-

ready a quadratic cost function, which is a typical case in the optimal control. The

SQP steps are not necessarily feasible due to the QP approximations, but, it guar-

antees that the optimal solution is feasible. However, since the intermediate steps

might be non-feasible, it can diverge quickly especially when the initial guess is non-

feasible and for the large scale optimization problems, where the number of decision

variables is large. Figure 2.5 shows the general procedure for the SQP algorithm.

2.3.2 Interior Point Algorithm

Another algorithm introduced to solve the nonlinear optimization problems is the

Interior Point algorithm. The essence of the Interior Point methods is to use a so

called "Logarithmic Barrier Function" to incorporate the inequality constraints to the
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Figure 2.5: Overview of the SQP Algorithm.

cost function. The Logarithmic Barrier Function is given in (2.15).

ϕ(x) = −(1/t)
n∑

i=1

log(−gi(x)) (2.15)

In the barrier function, t is a parameter that adjusts the accuracy, or the sharpness of

the function. As the value of gi(x) approaches to 0, the value of the barrier function

goes to infinity, which means, as the constraint reaches the boundary, the value of the

barrier function increases rapidly. Also, it is a convex and differentiable function, so

it can be added to the cost function. Figure 2.6 shows the logarithmic barrier function

for different values of t.

16



Figure 2.6: The logarithmic barrier function for different values of t [3]. Dashed line

shows the ideal case, where ϕ(u) is equal to zero as long as u < 0 and it is equal to

∞ at u = 0. As the value of t increases, the logarithmic barrier function converges to

the ideal case.

Adding the barrier function in the original optimization problem in (2.5), the follow-

ing problem is obtained.

min
x

t.f(x)−
n∑

i=1

log(−gi(x))

s.t. h(x) = 0

(2.16)

So the corresponding Lagrangian is,

L(x,µ) = t.f(x)−
n∑

i=1

log(−gi(x)) + µTh(x)

= t.f(x) + t.ϕ(x) + µTh(x)

(2.17)

In this case, since there is no inequality constraint, the KKT conditions reduce to,

∇L(x,µ) = t∇f(x) + t∇ϕ(x) +
m∑
i=1

µi∇hi(x) = 0 (2.18a)

h(x) = 0 (2.18b)

Again, taking the first order approximations of the KKT conditions around xk and
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letting dk
x = xk+1 − xk,

∇L(xk+1,µk) = ∇L(xk,µk) +∇2L(xk,µk)d
k
x = 0 (2.19a)

h(xk+1) = h(xk) +∇h(xk)d
k
x = 0. (2.19b)

Rearranging the approximate KKT conditions given in (2.19), the following system

of equations are formed to determine the direction of the Newton step.t∇2f(xk) + t∇2ϕ(x)
∑m

i=1 µi∇2h(xk)

Dh(xk) 0

dk
x

dk
µ


= −

t∇f(xk) + t∇ϕ(xk) +
∑m

i=1 µi∇h(xk)

h(xk)

 (2.20)

After the step directions are determined by solving the system of equations in (2.20),

the decision variables and Lagrange multipliers are updated in the direction of Newton

step.

xk+1 = xk + αkd
k
x (2.21a)

µk+1 = µk + αkd
k
µ (2.21b)

Again, the step size αk is determined by line search to maximize the step size and the

iterations can be terminated when the step size decreases below a specified threshold.

Interior point algorithms require higher computational power than the SQP method,

but it is way more robust. With the interior point algorithms, each iteration is guaran-

teed to be feasible even initializing from a non-feasible point. Due to its robustness,

it can be utilized to solve large scale optimization problems with a large number of

decision variables.

2.4 Parameterizations of System Dynamics for Optimization Problems

When an optimization problem is formulated over a time window, subject to sys-

tem dynamics, the dynamics of the system is included in the problem as dynamic

constraints. In general, when the optimization problem is formulated over nonlinear

continuous time dynamics, the problem has infinite number of decision variables at

each time instant. However, effective algorithms of nonlinear optimization presented
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in Section 2.3 are not formulated for such cases and it is impossible to use them for

infinite dimensional optimization problems. In order to use the standard formula-

tions for the optimization problem, we need to parameterize the system dynamics.

For continuous time systems, the parameterizations enable the solver to evaluate the

dynamic and other constraints at specific time instants. In other words, it acts like

a discretization scheme for the continuous time dynamics. For the systems that are

already discrete time, these parameterizations create a framework that converts these

discrete time dynamic constraints to the standard form. In this section, three of these

parameterizations, namely, direct transcription, direct shooting and direct collocation

methods, will be investigated. Figure 2.7 shows the overall function of these param-

eterizations.

Figure 2.7: Parameterization of infinite dimensional optimization problem to form

a standard form nonlinear optimization problem. J(x(t),u(t)) is the cost function

being minimized over the continuous time nonlinear dynamics ẋ(t) = f(x(t),u(t))

with initial conditions x(0) = x0. X and U represents the admissible sets of the state

and input variables. After the parameterization, the original problem is converted to

the standard form optimization problem with finite number of decision variables.

2.4.1 Direct Transcription Method

With the direct transcription method, the state variables at each time instant is also

included in the optimization problem as decision variables. First, we discretize the

system dynamics with a sampling period of T . At each sampling period, we also keep
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the input constant such that u(t) = u[k], t ∈ [kT, (k + 1)T ].

x[k+ 1] = x[k] +

∫ t0+(k+1)T

t0+kT

f(x(τ),u[k])dτ (2.22)

Then, we recursively construct the dynamics starting from x(0) = x0. Assuming that

the time window that we are trying to conduct the optimization is t ∈ [t0, nT ].

x[0] = x(t0) (2.23a)

x[1] = x[0] +

∫ t0+T

t0

f(x(τ),u[0])dτ (2.23b)

x[2] = x[1] +

∫ t0+2T

t0+T

f(x(τ),u[1])dτ (2.23c)

... (2.23d)

x[n] = x[n− 1] +

∫ t0+nT

t0+(n−1)T

f(x(τ),u[n− 1])dτ (2.23e)

Here nT is called the prediction horizon for the continuous time systems and n is the

prediction horizon for the discrete time systems. Assuming we have m state and p

input variables, the vector of decision variables take the following form for a single

sampling period.

xk =

x[k]
u[k]

 =



x1[k]
...

xm[k]

u1[k]
...

up[k]


(2.24)

In (2.24), xi[k] and uj[k] are the value of ith and jth state and input variables at kth

sample, respectively. So, the overall vector of decision variables become,

x =


x0

x1

...

xn

 (2.25)
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with xn =
[
x1[n] . . . xm[n]

]T
, not including the input variables. After all, the equality

constraint for the nonlinear optimization problem can be written as,

h(x) =



x1[0]− x1(0)
...

xm[0]− xm(0)

x1[1]− x1[0]−
∫ t0+T

t0
f1(x(τ),u[0])dτ

...

xm[1]− xm[0]−
∫ t0+T

t0
fm(x(τ),u[0])dτ

...

x1[n]− x1[n− 1]−
∫ t0+nT

t0+(n−1)T
f1(x(τ),u[n− 1])dτ

...

xm[n]− xm[n− 1]−
∫ t0+nT

t0+(n−1)T
fm(x(τ),u[n− 1])dτ



= 0 (2.26)

for a system with continuous time nonlinear dynamics. For the systems that is already

discrete time, the expression for the equality constraint is straightforward.

h(x) =



x1[0]− x1(0)
...

xm[0]− xm(0)

x1[1]− f1(x[0],u[0])
...

xm[1]− fm(x[0],u[0])
...

x1[n]− f1(x[n− 1],u[n− 1])
...

xm[n]− fm(x[n− 1],u[n− 1])



= 0 (2.27)

Another issue with the parameterizations is the parameterizaton of the cost function.

For the integral cost, we define the accumulating cost for the parameterization.

Jd(x) =
n∑

k=0

Jc(xk) (2.28)
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Finally, for the admissible values of the state and input variables, we generate the

inequality constraints as follows.

g(x) =



gx0,max(x[0])

gu0,max(u[0])

gx0,min(x[0])

gu0,min(u[0])
...

gxn,max(x[n])

gun,max(u[n])

gxn,min(x[n])

gun,min(u[n])



≤ 0 (2.29)

2.4.2 Direct Single Shooting Method

For a given dynamic system, we can determine the state trajectories using only the

initial conditions, input trajectory and the dynamic model. So, we don’t need to im-

pose the state trajectory as a constraint and add all the state variables to the decision

variables of the nonlinear optimizer. With the Direct Single Shooting method, we

simulate forwards the system using the initial conditions and initial guess of the input

trajectory to get rid of the dynamic constraints. To utilize this method, we first parti-

tion the time horizon into time-steps t0 < t1 < · · · < tk < · · · < tn. At each partition

interval, we assume that the input is constant such that u(t) = u[k], t ∈ [kT, (k +

1)T ]. Let Uk = [u1(t0), . . . , up(t0), u1(t1), . . . , up(t1), . . . , u1(tk), . . . , up(tk)]
T be

the vector of input trajectory between t0 and tk for k ∈ [0 n]. We can forward sim-

ulate the system to find the state values at the end of each time partition. Let X n be
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the vector of values of the state variables at the end of each time partition until tn.

X n =


x(t0)

x(t1)
...

x(tn)

 =



x1(t0)
...

xm(t0)∫ t1
t0
f1(x(τ),U0)dτ

...∫ t1
t0
fm(x(τ),U0)dτ

...∫ tn
t0
f1(x(τ),Un−1)dτ

...∫ tn
t0
fm(x(τ),Un−1)dτ



(2.30)

So, the cost function of the nonlinear optimization problem becomes,

Jd(x(t0),Un) =
n∑

k=0

Jc(X n
k ,Un

k ) (2.31)

Since we formulate our cost function only in terms of initial condition x0 and past in-

puts Uk, we don’t have any equality constraint in this formulation. For the admissible

values of the state and input variables,

g(x) = g(x(t0),Un−1) =

 gx(X n)

gu(Un−1)

 ≤ 0 (2.32)

We can derive a similar expression for the discrete time systems by changing integrals

to the sums. Assuming each partition interval has the same length tk − tk−1 = T , let

u[k] = u(kT) for k ∈ [0, n], and

X̂ n =


x[0]

x[1]
...

x[n]

 Ûn−1 =


u[0]

u[1]
...

u[n− 1]

 (2.33)
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From the forward simulation, we obtain 2.34.

x[0] = x0

x[1] = f(x[0],u[0])

x[2] = f(f(x[0],u[0]),u[1])

...

x[n] = f(x[n− 1],Un−1) = f(f(. . . f(x[0],u[0]),u[1]) . . .u[n− 1])

(2.34)

Again, the inequality constraints and the cost function can be calculated as 2.35 and

2.36, respectively.

g(x) = g(x[0], Ûn−1) =

 gx(X̂ n)

gu(Ûn−1)

 ≤ 0 (2.35)

Jd(x[0],Un−1) =
n∑

k=0

Jc(X̂ n
k , Ûn−1

k ) (2.36)

One disadvantage of this parameterization is that the first input u[0] or u(t0) enters all

the terms in the formulation. Hence, the optimizer focuses more on the first input and

gives less attention to the preceding inputs, causing a "vanishing gradients" situation.

So, it is not suggested to use this method for very long prediction horizons. On the

other hand, the time horizon and the time partition can be dynamically adjusted in the

optimizer using this parameterization. Thus, it can be used for the systems where the

time horizon is not known a priori.

2.4.3 Direct Collocation Method

In the direct collocation method, instead of integrating the nonlinear differential equa-

tions during the optimization process, the solution of the differential equations are ap-

proximated using 3rd order splines for the state trajectories and 1st order splines for

the input trajectories. After that, the state equations are evaluated at so-called "col-

location" points. After the dynamics are evaluated, they are imposed as an equality

constraint to the optimizer. Let, x[k] and u[k] be the knot points for the state trajec-

tory and input trajectory splines, respectively. Here, k is the discretization index such

that tk = t0 + kT with T being the time step. So, the splines that approximate state
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and input trajectories can be expressed as (2.37). Figure 2.8 shows the state trajectory

spline, collocation and knot (sample) points. Finally, the dynamics satisfy (2.38).

ui(tc,k) = 1/2(ui[k] + ui[k + 1]), i ∈ [1, p] (2.37a)

xj(tc,k) = (1/2)(xj[k] + xj[k + 1]) + (h/8)(ẋj[k]− ẋj[k + 1]), j ∈ [1, m]

(2.37b)

ẋj(tc,k) = (−2/3h)(xj[k]− xj[k + 1])− (1/4)(ẋj[k] + ẋj[k + 1]), j ∈ [1, m]

(2.37c)

ẋj(tc,k) = fj(x(tc,k),u(tc,k)) (2.38)

Figure 2.8: Overview of the spline fitting to the state trajectories [4]. Samples x(t1) =

x[1], x(t2) = x[2] and x(t3) = x[3] are calculated at the knot points of the spline and

used to evaluate the cost function and any additional inequality constraint relating the

admissible values of the state and input variables. The dynamics are evaluated at the

collocation points x(tc,1), x(tc,2) and x(tc,3) etc.
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With this parameterization, we can define our decision parameters as given in (2.39).

x =



x1[0]
...

xm[0]
...

x1[n]
...

xm[n]

u1[0]
...

up[0]
...

u1[n]
...

up[n]



(2.39)

Thus, we can write equality constraints for our optimization problem as given in

(2.40).

h(x) =



x1[0]− x1(t0)
...

xm[0]− xm(t0)

ẋ1(tc,0)− f1(x(tc,0),u(tc,0))
...

ẋm(tc,0)− fm(x(tc,0),u(tc,0))
...

ẋ1(tc,k)− f1(x(tc,k),u(tc,k))
...

ẋm(tc,k)− fm(x(tc,k),u(tc,k))
...

ẋ1(tc,n)− f1(x(tc,n),u(tc,n))
...

ẋm(tc,n)− fm(x(tc,n),u(tc,n))



= 0 (2.40)

From the expressions, we can see that the evaluation of the state dynamics at the
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collocation points is no longer a differential equation, it is just a nonlinear function

of several variables and can be computed just in terms of x[k], u[k], x[k + 1] and

u[k + 1]. Also, we can evaluate any other inequality constraint g(x) ≤ 0 at the knot

points x[k] and u[k]. Finally, we can compute the cost function as given in (2.41).

Jd =
n∑

n=0

TJc(x[n], u[n]) (2.41)

The direct collocation method has the same number of decision variables as the di-

rect transcription method. However, it does not involve any numerical integration

step, which significantly decreases the computational cost for solving the optimiza-

tion problem. As the knot points get closer to each other (decreasing time step T ), the

approximation of the collocation method converges to the direct transcription method.

The method is developed solely to solve continuous time problems, so, there is no dis-

crete time counterpart for this problem.

2.5 Linear Time Varying Model Predictive Control

In our method, after we find the nominal trajectories using the trajectory optimization,

we linearize the nonlinear dynamics of the USV around the nominal trajectories, re-

sulting in the time varying dynamics. Then, we control the system over the nominal

trajectories using Model Predictive Control (MPC). For the linear time-varying (LTV)

MPC problem imposed over the continuous time dynamics, the following optimiza-

tion problem is solved at each prediction horizon.

min
u(.)

∫ TP

0

[xT (t+ τ |t)Qx(t+ τ |t) + uT (t+ τ |t)Ru(t+ τ |t)] dτ (2.42a)

s.t. ẋ(k|t) = A(k|t)x(k|t) +B(k|t)u(k|t), k = [t, t+ TP ], (2.42b)

u(k|t) ∈ U , k = [t, t+ TP ], (2.42c)

x(k|t) ∈ X , k = [t, t+ TP ], (2.42d)

x(t|t) = x(t). (2.42e)

Here, x(k|t) and u(k|t) denotes the predicted state and input values at prediction time

k and the starting time for the prediction t, respectively. A(k|t) and B(k|t) represents
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the linear time varying dynamics of the system starting from time t along the pre-

diction horizon. Also, X and U are the set of admissible state and input values, i.e.,

the state and input constraints, respectively. Finally, Q and R are the state and input

penalty matrices and TP is the prediction horizon. For the continuous time systems,

the MPC problem can be solved with linear counterparts of the parameterizations

described in the previous section, without the need of any discretization, and these

formulations will be explained further in the preceeding sections. For the systems al-

ready represented in discrete time, the following optimization problem can be solved,

again, by the parameterizations represented previously.

min
u[.]

NP∑
kp=0

xT [k + kp|k] Q x[k + kp|k] + uT [k + kp|k] R u[k + kp|k] (2.43a)

s.t. x[kp + 1|k] = A[kp|k] x[kp|k] +B[kp|k] u[kp|k], kp = [k, k +NP ],

(2.43b)

u[kp|k] ∈ U , kp = [k, k +NP ], (2.43c)

x[kp|k] ∈ X , kp = [k, k +NP ], (2.43d)

x[k|k] = x[k]. (2.43e)

At time t for the continuous time system and k for the discrete time system, the

optimization problems (2.42) and (2.43) are solved. After solving each problem, for

the continuous time system, first Tc seconds of the optimal input trajectory is applied

to the system. Similarly, for the discrete time system, first Nc steps of optimal input

sequence is applied to the system. Here, Tc and Nc are called the control horizon.

After applying these inputs, the MPC problem is solved again and again for each

t+ Tc and k +Nc.

2.6 USV Dynamics

To model the USV dynamics, Fossen’s equations of motion for surface vehicles will

be used [46]. Let v =
[
u v r

]T
denote the velocity vector of the USV with

respect to the body frame. So, the equations of motion for the rigid body can be
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(a) (b)

Figure 2.9: The illustration of the USV with respect to the body and global frames.

expressed as (2.44).

Mv̇ +C(v)v +D(v)v = τ (2.44)

with,

M = MA +MRB (2.45a)

C(v) = CA(v) +CRB(v) (2.45b)

D(v) = Dl +Dn(v) (2.45c)

and,

MRB =


m 0 0

0 m 0

0 0 Iz

 (2.46)

MA =


Xu̇ 0 0

0 Yv̇ Yṙ

0 Yṙ Nṙ

 (2.47)

CA =


0 0 Yv̇v + Yṙr

0 0 −Xu̇u

−Yv̇v − Yṙr Xu̇u 0

 (2.48)

CRB =


0 0 −mv
0 0 mu

mv −mu 0

 (2.49)
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Dl =


Xu 0 0

0 Yv Yr

0 Nv Nr

 (2.50)

Dn =


X|u|u|u| 0 0

0 Y|v|v|v| 0

0 0 N|r|r|r| |

 (2.51)

In this formulation, MRB and CRB represent the mass and inertia of the rigid body,

and the Coriolis forces due to the rigid body motion, respectively. On the other hand,

MA and CA represent the added mass and inertia, and the Coriolis forces due to the

added mass of the USV due to the hydrodynamics of the USV, respectively. Finally,

Dl and Dn represent the linear and nonlinear damping forces acting on the USV,

respectively. In these expressions,m is the mass and Iz is the moment of inertia of the

vehicle perpendicular to the horizontal plane, {Xu̇, Yv̇, Yṙ, Nṙ, Nv̇}, {Xu, Yv, Yr, Nv,

Nr} and
{
X|u|u, Y|v|v, N|r|r

}
are added mass, linear damping and nonlinear damping

parameters, respectively. These parameters are scalar constants that do not change

over time. In order to control the position of the USV with respect to the global

reference frame, a simple coordinate transformation can be applied to the system. Let

η =
[
x y ψ

]T
denote the position and orientation of the USV with respect to

the global frame as shown in Figure 2.9. A simple rotational transformation dictates

(2.52) with the transformation matrix represented in (2.53).

η̇ = J(ψ)v (2.52)

J(ψ) =


cos(ψ) − sin(ψ) 0

sin(ψ) cos(ψ) 0

0 0 1

 (2.53)

So, the overall state space becomes as (2.54).

η̇ = J(ψ)v (2.54a)

v̇ = M−1τ −M−1(C(v)v +D(v))v (2.54b)
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Here, τ represents the input thrust vector to the system and it is defined as 2.55.

τ =


F1 + F2

0

b(F1 − F2)

 (2.55)

Notice that there is no input thrust in the direction of v due to the underactuation.

2.7 NARMAX Methods

The method developed in this work uses the model of the system heavily, during

both the motion planning and control phases. For the implementation of the method,

we selected the domain of USVs. We implemented our method for two USV models.

One of the USVs is the Clearpath Robotics Heron USV and there is no dynamic model

presented in the literature for it. So, in order to implement our method to the Heron

USV, we needed to conduct system identification to the nonlinear dynamics of the

USV. To model the nonlinear dynamics, we selected the Nonlinear Auto Regressive

Moving Average with Exogenous Inputs (NARMAX) model [47]. NARMAX models

generate the system dynamics dependent on the nonlinear combination of previous

state, input and error (noise) terms as presented in (2.56).

x[k] = F(x[k− 1],x[k− 2], . . . ,x[k− nx],

u[k− 1],u[k− 2], . . . ,u[k− nu],

e[k− 1], e[k− 2], . . . , e[k− ne])

(2.56)

In (2.56), x[k], u[k] and e[k] represents the vectors of state, input and error variables,

respectively. Also, nx, nu and ne are the maximum lags for the state, input and error,

and they determine how many past terms will influence the next value of the state.

For convenience, we can define the NARMAX model as in (2.57).

x[k] = F(Xnx ,Unu ,Ene) (2.57)

In this formulation, Xnx =
[
x[k− 1] x[k− 2] . . . x[k− nx]

]T
is the delayed

state sequence up to nx, Unu =
[
u[k− 1] u[k− 2] . . . u[k− nu]

]T
is the de-

layed input sequence up to nu and Ene =
[
e[k− 1] e[k− 2] . . . e[k− ne]

]T
is
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the delayed error sequence up to ne. One particularly useful form of the NARMAX

models is the so called "Linear in the Parameters" representation. In this form, the

model parameters enter the nonlinear dynamics linearly as shown in (2.58).

xi[k] =
P∑
i=1

θiFi(X
nx ,Unu ,Ene) (2.58)

Since the parameters enter linearly to the dynamics in this representation, we can

use the powerful tools of the linear system identification to identify the nonlinear

dynamics [48]. We used this representation to identify the Fossen dynamics of the

Heron USV. The details of the identification process will be presented in Chapter 4.
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CHAPTER 3

METHODOLOGY

For the complex nonlinear underactuted systems, it is hard to implement the classi-

cal sequential composition method for the motion planning and control since these

systems are not controllable or even stabilizable around a single operation point. So,

it is hard to find a local feedback controller that will drive the system to a local op-

eration point, i.e., the outlet of the funnel, or the resulting controllers are infeasible

to use due to their computational complexity. In [42], the outlet of the funnels that

LQR-Tree algorithm generates is a time varying operating point, that serves as a pre-

planned trajectory, not a single stationary operation point. So, applying the LQR

control policy to the linearized system around these trajectories, the system is stabi-

lized and the system is successfully driven to the goal over these trajectories. In our

method, we again generate a complete trajectory on the configuration space of the

underactuated system, using the receding horizon trajectory optimization explained

in the next section. Our method first generates the simple rectangular obstacle free

regions that serves as the funnels in the 2D workspace of the system using the Sparse

Neighborhood Graphs and generates the waypoints for the algorithm. Next, we con-

duct a trajectory optimization between these waypoints employing a receding horizon

strategy to generate the state and input trajectories for the system. With the receding

horizon strategy, we look ahead one node further to predict the further trajectories of

the system while generating trajectories inside the active node. By generating these

trajectories inside each node and combining these trajectories to a single trajectory

that connects the starting configuration to the goal, we are decreasing the computa-

tional burden for the online controller. The concept of receding horizon trajectory

optimization is illustrated in Figure 3.1.
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(a) (b)

Figure 3.1: Illustration of the trajectory optimization. (a) shows the classical sequen-

tial composition of the funnels. (b) shows the resulting trajectories as a result of

trajectory optimization inside the funnels.

The generated trajectory serves as a stabilizable trajectory for the underactuated sys-

tem. We generate these trajectories considering the system dynamics and the config-

uration space constraints, in an optimal way. Thus, it is easier to find a stabilizer feed-

back control policy for the system around these trajectories. We implement a linear

time-varying Model Predictive Control policy over the linearized system dynamics

to stabilize the system around generated trajectories. In the MPC formulation, we

impose the requirement of staying inside the funnels to the system, to successfully

reach to goal configuration. We know that, as long as the MPC problem is feasible, it

is guaranteed that the system stays within the obstacle free region of the workspace.

3.1 Receding Horizon Trajectory Optimization on Sparse Neighborhood Graphs

In this study, after generating the waypoints using the SNG algorithm, we used a

receding horizon trajectory optimization method using the nonlinear dynamics to find

the nominal speed and input trajectories inside the nodes along the shortest path.

Using a receding horizon approach in the trajectory optimization, we can look ahead

the next node while planning for the current node, resulting in smoother trajectories

and decreasing the computational burden on the controller. Note that, in this study,

we only considered the next node during the receding horizon planning, but it can be
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generalized for more than one consecutive node. Using such a method, we are able

to find single and smooth state and input trajectories that connects the starting con-

figuration to the goal configuration inside the obstacle free region of the workspace.

In this study, we selected the underactuated system for this method as USV, so, we

formulated the trajectory optimization in the domain of USV’s with the convention

given in Section 2.6. For this purpose, at each node, we iteratively solved the opti-

mization problem given in (3.1) that minimizes the input effort for the nodes along

the shortest path, i.e., for Nodei starting from i = 1 to i = N .

min
u(.)

∫ t0,i+Tpr,i

t0,i

uT (τ)Ru(τ) dτ (3.1a)

s.t. ẋ = f(x, u), (3.1b)

η(t) ∈ Nodei, t ∈ [t0,i, t0,i + Tpl,i], (3.1c)

η(t) ∈ Nodei+1, (3.1d)

t ∈ [t0,i + Tpl,i, t0,i + Tpr,i],

vmin ≤ v(t) ≤ vmax, (3.1e)

t ∈ [t0,i, t0,i + Tpr,i],

umin ≤ u(t) ≤ umax, (3.1f)

t ∈ [t0,i, t0,i + Tpr,i],

x(t0,i) = x0,i, (3.1g)x(t0,i + Tpl,i)

y(t0,i + Tpl,i)

 = qi, (3.1h)

x(t0,i + Tpr,i)

y(t0,i + Tpr,i)

 = qi+1. (3.1i)

In this formulation, (3.1b) corresponds to the nonlinear system dynamics of the un-

deractuated system. Also, Tpr is the prediction horizon and Tpl is the planning horizon

which are calculated as follows in the domain of USVs.

Tpl,i =
||qi − qi−1||2

vdes
, (3.2a)

Tpr,i =
||qi+1 − qi−1||2 + ||qi+1,i+2 − qi,i+1||2

vdes
, (3.2b)

where vdes is the desired surge speed of the USV. We multiply these horizons with

a coefficient µ ∈ [2, 3] at the starting and goal nodes to give enough time for ac-
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celeration and deceleration. Let ηi,i+1(t) and vi,i+1(t) denote the planned position

and velocity trajectories of the USV in the domain [t0,i, t0,i + Tpl,i] and t0,i is the

initial time for the planned trajectories inside Nodei of the shortest path. Then, the

following recursion occurs.

t0,i = t0,i−1 + Tpl,i−1, (3.3a)

x(t0,i) = x0,i = x(t0,i−1 + Tpl,i−1) (3.3b)

=

ηi−1,i(t0,i−1 + Tpl,i−1)

vi−1,i(t0,i−1 + Tpl,i−1)

 . (3.3c)

For i = 1 (starting node), and i = N (goal node), we have the following equalities.

t0,1 = 0, (3.4a)

x(t0,1) =


qstart

ψstart

0

 , (3.4b)

x(t0,N + Tpl,N ) = x(t0,N + Tpr,N ) (3.4c)

=


qgoal

ψgoal

0

 .
Also, we keep the time spent on each node by the nominal trajectories to use as a time

varying constraint in the MPC in the form of a piecewise constant time function.

Node(t) = Nodei, t = [t0,i, t0,i + Tpl,i]. (3.5)

After the optimization problem is solved for all the nodes along the shortest path,

the nominal state and input trajectories are obtained as the union of the individual

trajectories inside the nodes.

xnom(t) =
⋃

i=1,...,N

ηi,i+1(t)

vi,i+1(t)

 , (3.6a)

unom(t) =
⋃

i=1,...,N

ui,i+1(t). (3.6b)

The resulting nominal trajectories are smooth and continuous due to the nature of the

proposed optimization problem. Note that, we didn’t impose any initial or terminal
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constraint to the input and we assumed that the input thrusts can be changed instan-

taneously. Only in high speed applications, we constrained the rate of change of the

thrusts, to simulate the first order dynamics of the thrusters. Figure 3.2 illustrates the

receding horizon trajectory optimization approach for an example map.

Figure 3.2: Illustration of the receding horizon trajectory optimization for 2 iterations.

On the upper figures solid red lines are the planned position trajectories, red circles are

the waypoints, blue arrows are the headings of the USV at the waypoints, black solid

lines are the predicted position trajectories and green circles are the next waypoints.

Red and black crosses are the starting and goal positions, respectively, and the black

arrow is the goal heading of the USV. Plots below show the nominal velocity and input

trajectories as the output of the optimization, corresponding to the position trajectories

shown with solid red curves.

3.2 Motion Control

After we plan the nominal state and input trajectories, xnom(t), unom(t), we linearize

the nonlinear dynamics of the system around these nominal trajectories. Let,

x̃(t) = x(t)− xnom(t) (3.7a)

ũ(t) = u(t)− unom(t). (3.7b)

In these expressions, x̃(t) and ũ(t) represents the deviation of the real state and input

of the system from the nominal trajectories. After we linearize our system, we obtain,
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˙̃x(t) = A(t)x̃(t) +B(t)ũ(t) (3.8)

with

A(t) =
∂f

∂x

∣∣∣∣x(t)=xnom(t)
u(t)=unom(t)

(3.9a)

B(t) =
∂f

∂u

∣∣∣∣x(t)=xnom(t)
u(t)=unom(t)

(3.9b)

(3.9c)

Using such a formulation, if (3.8) is asymptotically stable, then the real states of the

system converges to the nominal states and it is possible follow the generated nominal

trajectories. In order to stabilize the linearized system, we use the MPC framework

described in Section 2.5.

min
ũ()

∫ TP

0

[x̃(t+ τ |t)Qx̃(t+ τ |t)

+ ũT (t+ τ |t)Rũ(t+ τ |t)] dτ (3.10a)

s.t. ˙̃x(k|t) = A(t)x̃(k|t) +B(t)ũ(k|t) (3.10b)

η̃(k|t) + ηnom(k|t) ∈ Node(k|t), k ∈ [t, t+ TP ] (3.10c)

ϵumin ≤ ũ(k|t) + unom(k|t) ≤ ϵumax, k ∈ [t, t+ TP ] (3.10d)

x̃(t|t) = x̃(t) (3.10e)

In this problem, (3.10.c) and (3.10.d) are time varying constraints ensuring the closed

loop system follows the nominal trajectories by avoiding any collision with the ob-

stacles staying within the input limits. Note that, we do not constrain the velocities

in the MPC problem since it is unlikely for the velocities to largely deviate from the

nominal velocities. The ϵ factor multiplied with the input limits of the trajectory op-

timization is a relaxation factor for the constraints of the MPC to compensate the

numerical errors and it is selected as ϵ = 1.05 for the MATLAB implementation.

For the Gazebo implementation, we simply used the Heron USV thrust limits for the

MPC input constraints.
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As mentioned earlier, the constraint (3.10.c) enforces the USV to be inside the correct

node, and hence, inside the obstacle free region for the planned trajectories. Hence, as

long as the constraint is satisfied, it is ensured that any collision with the obstacles is

avoided which enhances the robustness of our algorithm. Note that, the MPC problem

can be formulated and solved in discrete time with the convention used in Section

2.5. However, if the system dynamics are continuous, discretizing the time-varying

dynamics using the Peano-Baker series [49][50] is not computationally feasible. In

our implementation, the MATLAB model we used is continuous time model and we

solved the MPC problem in continuous time. For the Gazebo implementation, we

obtain the discrete time dynamics directly as the output of the system identification,

so, we solved the discrete time counterpart of the MPC problem.
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CHAPTER 4

IMPLEMENTATION AND RESULTS

Our algorithm starts with the generation of the Sparse Neighborhood Graph and find-

ing the nodes and waypoints along the shortest path for a given map as explained in

Section 2.2. Then, we solve the trajectory optimization problem given in Section 3.1

to generate nominal trajectories for the USV. Finally, we control the system using

LTV MPC on the linearized dynamics over the generated trajectories as explained in

Section 3.2. Figure 4.1 shows the overall structure of the algorithm.

Figure 4.1: The Overall Algorithm

The generation of the nominal trajectories for the underactuated system during the

planning phase removes a large computational cost for the real-time controller and

results in the real-time control of the underactuated USV.

In this section, the implementation of the method is explained for, first, a predefined

model implemented solely on MATLAB, second, the Clearpath Robotics Heron USV

on the Gazebo simulator. Since the method depends heavily on the system model

and the model of Heron USV does not exist in the literature, the system identification

of the Heron USV is also conducted in this chapter. Finally, the results for both the

MATLAB model and the Heron USV are shared and the results are compared with

existing studies. All the experiments are conducted on a laptop with Intel i7 2.7 GHz

processor running Ubuntu 20.04.
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4.1 MATLAB Implementation

The proof of concept implementation of our method is conducted as a MATLAB sim-

ulation with a predefined USV model. For the nonlinear equations of motion of the

simulated USV, Fossen’s equations of motion are implemented with the parameters

presented in Table 4.1.

Table 4.1: MATLAB Implementation USV Parameters

Parameter m Iz Xu Yv Yr Nv Nr Xu̇ Yv̇ Yṙ Nv̇ Nṙ Xu|u| Yv|v| Nr|r| b

Value 10 0.65 -5.61 -3.51 0 0 0 -1.09 -1.05 -1.44 -1.44 -0.10 -2.31 -3.93 -0.26 0.26

To parameterize the trajectory optimization problem, first, we define the state and

input vectors as (4.1).

x(t) =



x(t)

y(t)

ψ(t)

u(t)

v(t)

r(t)


, u(t) =

F1(t)

F2(t)

 (4.1)

Using the hydrodynamic parameters and the underactuated Fossen’s model, we obtain

42



the continuous time state space equations given in (4.2).

ẋ(t) = f(x(t),u(t)) (4.2a)

=



u(t)cos(ψ(t))− v(t)sin(ψ(t))

u(t)sin(ψ(t) + v(t)cos(ψ(t))

r(t)

−0.16r(t)2 − 1.2v(t)r(t)− 0.63u(t)

−0.26u(t)|u(t)|+ 0.11(F1(t) + F2(t))

−0.68v(t) + 2.88r(t)u(t)− 0.021u(t)v(t)

−0.13r(t)|r(t)| − 0.76v(t)|v(t)|+ 0.51(F1(t)− F2(t))

−1.79v(t) + 10.22r(t)u(t)− 0.13u(t)v(t)

−0.82r(t)|r(t)| − 2v(t)|v(t)|+ 3.2(F1(t)− F2(t))



(4.2b)

We solved the trajectory optimization problem in continuous time using the direct

collocation method described in Chapter 2 with the parameterization explained in

(2.37), (2.38), (2.39) and (2.40) with T = 0.1sec and Jc(u) = u2. After we obtain

the nominal trajectories xnom(t) and unom(t), we linearize the system to obtain A(t)

and B(t) such that
˙̃x(t) = A(t)x̃(t) +B(t)ũ(t) (4.3)

with x̃(t) = x(t)− xnom(t) and ũ(t) = u(t)− unom(t). For the MPC problem, we

again used the direct collocation method on the linearized system with T = 0.03sec

to avoid discretizing the time-varying dynamics. For the MPC controller, we used the

following cost matrices.

Q =



100 0 0 0 0 0

0 100 0 0 0 0

0 0 100 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1


(4.4)
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R =

0.1 0

0 0.1

 (4.5)

We set the MPC prediction horizon to TMPC = 0.6sec and control horizon to Tcontrol =

0.03sec for all the experiments. For the MATLAB implementation, the trajectory

optimization problem is solved using the fmincon solver of MATLAB, with the

SQP algorithm described in Chapter 2 and the MPC problem is solved using the

quadprog solver of MATLAB. After each MPC iteration, the system dynamics are

integrated using the ode45 solver of MATLAB using the thrust commands generated

by MPC and the system dynamics given in (4.2).
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4.2 Gazebo Implementation

After the proof of concept studies are conducted for the method on solely MATLAB

environment, we examined the real time performance of our algorithm on a simu-

lation environment with a physics engine. We conducted our experiments on the

Gazebo simulation of the Clearpath Robotics Heron USV. Heron is an catamaran

type underactuated USV, containing two thrusters on the differential drive configura-

tion. Its important properties are presented on the Table 4.2. Heron USV is shown in

Figure 4.2 and its gazebo environment is shown in Figure 4.3.

Table 4.2: Heron USV Properties

Dimensions [m] 1.35 x 0.98 x 0.32 Navigation IMU, GPS

Weight [kg] 29 Communication WiFi, USB, Ethernet, RS232

Rated Speed [m/s] 1.7 Rated Operation Time 2.5 Hours

Figure 4.2: Clearpath Robotics Heron USV [5].

4.2.1 Gazebo Simulator Setup

For the Gazebo simulation, we used the simulator provided by Clearpath Robotics

[5]. This simulator is based on ROS Melodic running on a Ubuntu 18.04 machine.
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{W} X

Y
Z

(a) (b)

Figure 4.3: Heron USV Gazebo simulation environment. (a) shows the isometric

view of the Heron USV in the simulation environment. (b) shows the world coordi-

nate frame of the simulation environment. {W} is the world coordinate system, with

red, green and blue arrows representing the X, Y and Z axes, respectively.

So, we prepared a Docker image containing Ubuntu 18.04, the Heron Gazebo sim-

ulator, required ROS packages and a VNC service to conduct our simulations. We

implemented our controllers and data acquisition setup on MATLAB running on the

local machine. Figure 4.4 shows the overview of the simulation setup.

Heron Gazebo

Ubuntu 18.04

ROS Melodic

noVNC

MATLAB

Ubuntu 20.04

Local Docker Container

localhost

Thruster Inputs

Odometry Data

Figure 4.4: The overview of the simulation setup. The Gazebo simulation runs on

a Docker container, containing the Heron simulator, required ROS packages and

noVNC running on Ubuntu 18.04. The simulator publishes the odometry data to

MATLAB environment running on the local machine. After the necessary computa-

tions, the MATLAB environment publishes the thrust commands to the simulator on

the closed loop.

The original odometry data provided by the simulator is based on the world frame.

However, we needed to obtain the position data on the world frame and the speed data

on the base frame of the Heron to model our system with Fossen’s equations of mo-

tion presented in Chapter 2. So we created the /odometry_transformer ROS
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node for the coordinate frame transformation which outputs the transformed odome-

try data on the /odometry/base topic. The world and base frames are shown in

Figure 4.3. The odometry topic of the Heron simulator /odometry/filtered

u

v

r

X

Y

Z

{B}

Figure 4.5: Overview of the world and base frames. {B} represents the base frame

of Heron. Vectors u and v represent the surge and sway axes of the USV respectively.

ψ is the heading angle with respect to the world X axis and r represents the positive

direction of the USV angular speed.

publishes the position and velocity of the USV with respect to the world frame pre-

sented in (4.6). In (4.6), pW and vW represents the position and velocity vector of

the USV in the world frame, respectively.

xodom =

pW

vW

 =



x

y

ψ

uW

vW

rW


(4.6)

In order to transform the published velocity vector to the base frame, at each instant

that the odometry data is received, the rotation transformation presented in (4.7) is

performed with the rotation matrix given in (4.8) that transforms the vector repre-

sented in the world frame to the base frame. Since the Heron USV is only allowed to
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move in 2D, its z-axis is always aligned with the world frame z-axis. So, the rotation

is purely with respect to the z-axis with an amount of the heading angle.

vB = RB
WvW (4.7)

RB
W =


cosψ −sinψ 0

sinψ cosψ 0

0 0 1

 (4.8)

After defining the velocity transformations, the overall transformation matrix can be

defined as (4.9). This transformation preserves the position vector in the world frame

and outputs the velocity vector represented in the base frame.

Jodom =

I3x3 0

0 RB
W

 (4.9)

After defining the overall transformation matrix, the transformed odometry vector

xtransformed is calculated as (4.10).

xtransformed = Jodomxodom (4.10a)

=



x

y

ψ

uB

vB

rB


(4.10b)

The odometry data is generated by fusing the IMU readings and the GPS data using

Extended Kalman Filter on the node ekf_localization_node.

We acquire the transformed odometry data given in (4.10) on MATLAB through

the node matlab_global_node_67379, created by the MATLAB-ROS bridge.

To publish the thrust commands to the USV, MATLAB node publishes the topics

/heron/thrusters/0/input and /heron/thrusters/1/input to the

Gazebo simulator where the former one commands the left thruster and the latter

one commands the right thruster. Each thruster of Heron has a thrust of 33.6 Newtons

on the forward direction and -19.88 Newtons on the backwards direction [51]. The

thrust commands are normalized between -1 to 1 using a spline interpolation before
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they are send to the USV. The corresponding knot points for the spline are presented

in Table 4.3.

Table 4.3: Heron USV Thrust to Input Mappings

Thrust [N] Input

-19.88 -1.0

-16.52 -0.8

-12.6 -0.6

-5.6 -0.4

-1.4 -0.2

0.0 0.0

2.24 0.2

9.52 0.4

21.28 0.6

28.0 0.8

33.6 1.0

Finally, Docker container and the local machine communicates through the localhost

of the local machine. Figure 4.6 shows the RQT graph of the Gazebo simulator of

Heron USV.

Figure 4.6: RQT graph of the Gazebo simulator of Heron USV.
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4.2.2 System Identification on Heron USV

Our method developed in this study uses the system model heavily both in the mo-

tion planning and the control phases. However, there is no dynamic model for the

Heron USV in the literature. So, we conducted system identification on Heron based

on Fossen’s equations of motion and NARMAX methods. We conduct the system

identification in discrete time since we obtain the data in discrete steps through the

Gazebo simulation. In this identification, we try to identify the overall equations of

motion, not the real hydrodynamic parameters. We can write the speed dynamics of

the USV as given in 4.11.

u[k + 1] = θ1u[k] + θ2r[k]
2 + θ3v[k]r[k] + θ4u[k]|u[k]|+ θ5(F1[k] + F2[k])

(4.11a)

v[k + 1] = θ6v[k] + θ7r[k] + θ8u[k]v[k] + θ9u[k]r[k] (4.11b)

+ θ10v[k]|v[k]|+ θ11r[k]|r[k]|+ θ12(F1[k]− F2[k])

r[k + 1] = θ13v[k] + θ14r[k] + θ15u[k]v[k] + θ16u[k]r[k] (4.11c)

+ θ17v[k]|v[k]|+ θ18r[k]|r[k]|+ θ19(F1[k]− F2[k])

After obtaining data at each sampling instant, we can compute the value of u[k + 1],

v[k + 1] and r[k + 1] in terms of parameters θ1, θ2, . . . , θ19, which makes the model

linear in the parameters NARMAX model with nx and nu being equal to 1. Assuming

we get N samples from the simulation, we can write the output vectors (4.12), (4.13)

and (4.14) that consists of the values of u[k + 1], v[k + 1] and r[k + 1] for k =

0, . . . , N − 1.

y1 =


u[1]

u[2]
...

u[N ]

 (4.12)

y2 =


v[1]

v[2]
...

v[N ]

 (4.13)
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y3 =


r[1]

r[2]
...

r[N ]

 (4.14)

Also, we can write the regressor matrices Ru, Rv and Rr that consists of the values of

nonlinear terms at each sampling instant for the state equations of u[k + 1], v[k + 1]

and r[k + 1] on their columns up to N − 1 sampling instants. These matrices are

presented in (4.15), (4.16) and (4.17).

Ru =


u[0] r[0]2 v[0]r[0] u[0]|u[0]| (F1[0] + F2[0])

u[1] r[1]2 v[1]r[1] u[1]|u[1]| (F1[1] + F2[1])
...

...
...

...
...

 (4.15)

Rv =


v[0] r[0] u[0]v[0] u[0]r[0] v[0]|v[0]| r[0]|r[0]| (F1[0]− F2[0])

v[1] r[1] u[1]v[1] u[1]r[1] v[1]|v[1]| r[1]|r[1]| (F1[1]− F2[1])
...

...
...

...
...

...
...


(4.16)

Rr =


v[0] r[0] u[0]v[0] u[0]r[0] v[0]|v[0]| r[0]|r[0]| (F1[0]− F2[0])

v[1] r[1] u[1]v[1] u[1]r[1] v[1]|v[1]| r[1]|r[1]| (F1[1]− F2[1])
...

...
...

...
...

...
...


(4.17)

We can also concatenate each output vector into vector y, each parameter into vector

θ and define the overall regressor matrix R as shown in (4.18).

y =


y1

y2

y3

 R =


Ru 0 0

0 Rv 0

0 0 Rr

 θ =


θ1

θ2
...

θ19

 (4.18)

Finally, we can write the regression equation given in (4.19).

y = Rθ (4.19)

The only unknown for this equation is the parameter vector θ and we need to search

for this vector. First, we need to define the regression error as (4.20).

e(θ) = y −Rθ (4.20)
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Then, we can write the searching problem as to minimize the W norm of the regres-

sion error e as formulated in (4.21).

min
θ

e(θ)TW (θ)e(θ) (4.21)

In this formulation, W is the diagonal weighting matrix that weights each of the error

terms during the search and it is selected as the inverse of the estimated error variances

at each sampling instant. Using such a weighting gives the optimal weighting in terms

of the maximum likelihood [52]. SinceW also depends on the parameters, an iterative

optimization algorithm should be used to find the value of W at each iteration. We

used the SQP algorithm to solve this problem.

To conduct this system identification, we used the MATLAB System Identification

Toolbox [53]. Using the toolbox, we first create a idnlarx object with the sim-

ulation input and output data. After that, we define the regressor terms configuring

the idnlarx.Regressors property of the created object. We obtain the data at

a sampling period of 0.1 seconds from the Gazebo simulation, so, we configure the

idnlarx.Ts property to 0.1 seconds. Finally, we conduct the system identification

with the nlarx function of the toolbox. We select the solver properties as given in

Table 4.4 to conduct the system identification as explained before.

Table 4.4: nlarx Options

nlarxOptions.Focus simulation

nlarxOptions.SearchMethod fmincon

nlarxOptions.SearchOptions.Algorithm sqp

We obtain the identified model through the properties of the output of the nlarx

function. Assuming model is the output of the nlarx function, we get the model

from the property model.OutputFcn.LinearFcn. To identify Heron USV

model, we used the input and output sequences shown in Figure 4.7.

For the identification, we changed the input sequence every 60 seconds. First, we

started with chirp inputs with an amplitude of 33.6 Newtons on the forward direction.

At each sequence, we increased the phase difference on the right thruster with 30 de-

grees, up to 180 degrees. After that, we changed the chirp sequence to the backwards

direction, with an amplitude of -19.88 Newtons. We made the same phase difference
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Figure 4.7: Input and output sequences used for the system identification.

change for every chirp sequence. After, we commanded 33.6 Newtons for the left

thruster and -19.88 Newtons for the right thruster to further examine the sway dy-

namics of the USV. Then, we set 15 Newtons to left and -15 Newtons to right thruster

to further examine the rotational velocity dynamics. After that, we set 15 Newtons

to both thrusters to further examine the surge dynamics. Finally, we set 30 Newtons

to both thrusters to further examine the dynamics near the forward saturation limit.

After conducting the system identification, we obtained the fit to the simulation data

given in Figure 4.8 and the percentage fit to the simulation data is given in Table 4.5.

Table 4.5: Percentage Fit of the Identified System

State Fit

Surge u 96.53%

Sway v 82.13%

Rotational Velocity r 94.78%

Also, we obtained a Mean Square Error of MSE = 0.005851 for the overall simula-

tion. After the system identification, we obtained the parameters for surge, sway and

rotational velocity dynamics given in Tables 4.6, 4.7 and 4.8, respectively.

Table 4.6: Resulting Parameters for Surge Dynamics

Regressor u[k] r[k]2 v[k]r[k] u[k]|u[k]| F1[k] + F2[k]

Parameter 0.9468 0.0020 0.906 -0.0069 0.0030
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Figure 4.8: Fit to the simulation data.

Table 4.7: Resulting Parameters for Sway Dynamics

Regressor v[k] r[k] u[k]v[k] u[k]r[k] v[k]|v[k]| r[k]|r[k]| F1[k]− F2[k]

Parameter 0.9327 0.0117 0.0060 -0.1016 0.0009 -0.0076 -0.0001

Table 4.8: Resulting Parameters for Rotational Velocity Dynamics

Regressor v[k] r[k] u[k]v[k] u[k]r[k] v[k]|v[k]| r[k]|r[k]| F1[k]− F2[k]

Parameter -0.0019 0.9692 0.0048 0.0046 0.0018 -0.0582 0.0032

After the identification, we validated our model in three different cases. First, we

tried to give a step input at the forward saturation limit. The input sequence is shown

in Figure 4.9. The validation data and the simulated response of the system are shown

in Figure 4.10.
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Figure 4.9: Input sequences for the first validation.
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Figure 4.10: Output of the first validation.

Secondly, we tried to give a sinusoidal input to the thrusters with the amplitude of

forward saturation limit. We set a phase difference between the thrusters. The input

sequence is shown in Figure 4.11. The validation data and the simulated response of

the identified system are shown in Figure 4.12.
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Figure 4.11: Input sequences for the second validation.
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Figure 4.12: Output of the second validation.

Finally, we tried to give a step input to the thrusters at 17 Newtons to drive the USV

at a medium speed. The input sequence is shown in Figure 4.13. The validation data
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and the simulated response of the identified system are shown in Figure 4.14.

5 10 15 20 25 30

Figure 4.13: Input sequences for the third validation.
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Figure 4.14: Output of the third validation.
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Our validation shows that near the saturation limits and very low speeds, the iden-

tified system deviates the real system’s response a small amount. Also, we can see

that the noise on the sway and rotational velocity dynamics create a small bias for

the identified system in these axes. Finally, we can see that the damping in the sway

axis is overestimated as a result of this identification. We conduct the system identi-

fication based on the Fossen’s equations of motion presented in Chapter 2, which is a

simplified model. If we add more regressor terms in the identification process, we can

get a more accurate result. However, we will use this model to test our algorithm and

all these deviations will manifest themselves as a process noise during the operation.

This way, we will test the robustness of our method against the process noise.

4.2.3 Implementation of the Method

After we identify our system, we obtain a discrete time nonlinear system represent-

ing the dynamics of Heron USV. Since the direct transcription method presented in

Chapter 2 is an easier parameterization for discrete time systems, we will use this

parameterization for the receding horizon trajectory optimization problem. Since we

conducted our system identification with a sampling period of Ts = 0.1sec, we will

use that period to solve the trajectory optimization and MPC problems. For the tra-

jectory optimization problem, first, define the input vector.

u =



F1[k0]

F1[k0 + 1]
...

F1[k0 +Npr,i − 1]

F2[k0]

F2[k0 + 1]
...

F2[k0 +Npr,i − 1]



(4.22)

Here, Npr,i is the prediction horizon of the planner and it is calculated as given in

(4.23).

Npr,i =
Tpr,i
Ts

(4.23)
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For the system dynamics, we use the identified model for the speed dynamics and the

Euler discretization of the position dynamics as given in (4.24).

f(x[k],u[k]) =



x[k] + Ts(u[k]cos(ψ[k])− v[k]sin(ψ[k]))

y[k] + Ts(u[k]sin(ψ[k]) + v[k]cos(ψ[k]))

ψ[k] + Tsr[k]

θ1u[k] + θ2r[k]
2 + θ3v[k]r[k]

+ θ4u[k]|u[k]|+ θ5(F1[k] + F2[k])

θ6v[k] + θ7r[k] + θ8u[k]v[k] + θ9u[k]r[k]

+ θ10v[k]|v[k]|+ θ11r[k]|r[k]|+ θ12(F1[k]− F2[k])

θ13v[k] + θ14r[k] + θ15u[k]v[k] + θ16u[k]r[k]

+ θ17v[k]|v[k]|+ θ18r[k]|r[k]|+ θ19(F1[k]− F2[k])



(4.24)

with θ1, . . . , θ19 being the identified parameters and the definitions given in (4.25).

x[k] =



x[k]

y[k]

ψ[k]

u[k]

v[k]

r[k]


, u[k] =

F1[k]

F2[k]

 , x[k+ 1] = f(x[k],u[k]) (4.25)

Using these definitions, we can use (2.26) to parameterize the state equations. The

position constraints are the box constraints consisting of four line inequalities and to-

gether with the speed constraints, they can be generated using (2.29). After we obtain

the nominal trajectories xnom[k] and unom[k], we linearize the system to obtain A[k]

and B[k] such that

x̃[k+ 1] = A[k]x̃[k+ 1] +B[k]ũ[k] (4.26)

with x̃[k] = x[k] − xnom[k] and ũ[k] = u[k] − unom[k]. For the MPC problem,

we use the direct shooting method on the linearized system since it is lightweight and
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computationally efficient due to the reduced number of decision variables. For the

MPC controller, we used the following cost matrices.

Q =



50 0 0 0 0 0

0 50 0 0 0 0

0 0 150 0 0 0

0 0 0 0.1 0 0

0 0 0 0 0.1 0

0 0 0 0 0 0.1


(4.27)

R =

0.1 0

0 0.1

 (4.28)

During the planning phase, we try to minimize the input effort to reach the goal. We

set the MPC prediction horizon to NMPC = 40 (4 seconds) and control horizon to

1 time-step for all the experiments. We solved the trajectory optimization problem

using the interior-point algorithm of MATLAB fmincon solver and MPC problem

using MATLAB quadprog solver. Finally, Before the start of each experiment, we

align the Gazebo initial configuration to the MATLAB initial configuration. This way,

we make the Gazebo model of the USV to run in a virtual environment, i.e., as if there

are obstacles in the Gazebo environment even if there is not. Figure 4.15 shows the

mentioned virtual environment.

(a) (b)

Figure 4.15: The virtual environment created for Gazebo simulation. (a) shows the

map created in MATLAB. (b) shows the Gazebo simulation of the USV.
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4.3 MATLAB Implementation Results

4.3.1 Results Without Process Noise

To test our algorithm, we first conducted simulations on two different maps without

any process noise included. Note that these maps are the same maps used in [2] to

better compare and contrast our algorithm. Figures 4.17 and 4.16 shows these maps

and the planned trajectories connecting the starting point to the goal location. We

conducted the simulation using the parameter sets given in Table 4.9.

(a)

Figure 4.16: Trajectory planning on Map (a). Upper plot shows the map and red solid

curve is the planned trajectory. Red circles are the waypoints. Lower figures show

the nominal speed and thrust trajectories for map (b).

In the planning phase of the MATLAB implementation, we did not constrained the

sway speed v of the USV. The simulation results for closed loop control on the nomi-

nal trajectories are given in Figures 4.19 and 4.18. From the results, the real trajecto-

ries follow closely the nominal trajectories.
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(b)

Figure 4.17: Trajectory planning on Map (b). Upper plot shows the map and red solid

curve is the planned trajectory. Red circles are the waypoints. Lower figures show

the nominal speed and thrust trajectories for Map (a).

Table 4.9: The Parameter Sets for the Test Simulations.

Map a b

vdes 6 2
u

v

r


min


−4

−∞
−10



−0.5

−∞
−3



u

v

r


max


12

∞
10



4

∞
3


F1

F2


min

−40

−40

 −10

−10


F1

F2


max

80
80

 20
20
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(a)

(c) (d)

(b)

Figure 4.18: Simulation results for Map (a). Figure (a) shows the nominal position

trajectory and the real closed loop trajectory. Solid black curve is the nominal trajec-

tory and dashed green curve is the real trajectory. (b) (c) and (d) shows the nominal

and real velocity and thrust trajectories as the output of the MPC. In (b), the nomi-

nal and real USV velocities are shown. Bold blue, red and yellow curves show the

nominal USV velocities u, v and r, respectively. Thin purple, green and light blue

curves show the real velocities on top of the nominal ones. In Figure (c) and (d), blue

curves are the nominal thrust inputs F1 and F2, respectively. Red curves are the real

thrust trajectories. Real trajectories closely follow the nominal trajectories within the

constraints.
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Figure 4.19: Simulation results for Map (b). Figure (a) shows the nominal position

trajectory and the real closed loop trajectory. Solid black curve is the nominal trajec-

tory and dashed green curve is the real trajectory. (b) (c) and (d) shows the nominal

and real velocity and thrust trajectories as the output of the MPC. In figure (b) and (c),

blue curves are the nominal thrust inputs F1 and F2, respectively. Red curves are the

real thrust trajectories. In (d), the nominal and real USV velocities are shown. Bold

blue, red and yellow curves show the nominal USV velocities u, v and r, respectively.

Thin purple, green and light blue curves show the real velocities on top of the nominal

ones. Real trajectories closely follow the nominal trajectories within the constraints.

4.3.2 Results in the Presence of Process Noise

After the tests without process noise, we tested the robustness of the method with

Monte Carlo experiments in two different maps. The nominal trajectories for the

first map is generated as Figure 4.20 using the same parameter set for map (b) of

the Table 4.9, except, we changed the desired speed to the vdes = 1. We set the

prediction horizon as 0.6 seconds and the control horizon as 0.03 seconds. We added

the process noise to the input thrusts with SNR = 1 (signal-to-noise ratio). We

conducted 500 experiments and only 1 of the Monte Carlo runs failed to reach the

goal region with 99.8% success for the given set of parameters. The average CPU

time of the MPC iterations is measured as tCPU = 0.0057 seconds. Figure 4.21 shows

the resulting position trajectories and an example MPC solution for the velocity and
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thrust trajectories in the presence of the process noise.

Figure 4.20: Nominal trajectories for the Monte Carlo experiments.

(a)
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Figure 4.21: Results of the Monte Carlo experiments for the first map. (a) shows

the closed loop position trajectories in the presence of process noise. (b), (c) and (d)

shows the nominal and real velocity and thrust trajectories for an example run in the

presence of the process noise.

In Figure 4.21(a), red traces are the USV trajectories during the tests. Solid black

curve is the nominal position trajectory. In Figure 4.21(b), the nominal and real USV
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velocities are shown. Bold blue, red and yellow curves show the nominal USV veloc-

ities u, v and r, respectively. Thin purple, green and light blue curves show the real

velocities on top of the nominal ones. In Figures 4.21(c) and 4.21(d), blue curves are

the nominal thrust inputs F1 and F2, respectively and red curves are the real thrust

trajectories.

For the second map, the nominal trajectories are generated as Figure 4.22 using the

planning parameters presented in 4.10.

Figure 4.22: Nominal trajectories for the Monte Carlo experiments.

Table 4.10: The Parameter Set for the Monte Carlo Experiment in the Second Map.

vdes

[
u v r

]T
min

[
u v r

]T
max

[
F1 F2

]T
min

[
F1 F2

]T
max

1


−0.6

−∞
−2



3

∞
2


−10

−10

 20
20



In this experiments, we set the prediction horizon as 0.6 seconds and the control

horizon as 0.03 seconds. We added the process noise to the input thrusts with SNR =

1 (signal-to-noise ratio). We conducted 500 experiments and 6 of the Monte Carlo

runs failed to reach the goal region with 98.8% success for the given set of parameters.

The average CPU time of the MPC iterations is measured as tCPU = 0.0053 seconds.
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Figure 4.23: Results of the Monte Carlo experiments for the second map. (a) shows

the closed loop position trajectories in the presence of process noise. (b), (c) and (d)

shows the nominal and real velocity and thrust trajectories for an example run in the

presence of the process noise.

In Figure 4.23(a), red traces are the USV trajectories during the tests. Solid black

curve is the nominal position trajectory. In Figure 4.23(b), the nominal and real USV

velocities are shown. Bold purple, cyan and yellow curves show the nominal USV

velocities u, v and r, respectively. Thin blue, orange and red curves show the real

velocities on top of the nominal ones. In Figures 4.23(c) and 4.23(d), blue curves are

the nominal thrust inputs F1 and F2, respectively and red curves are the real thrust

trajectories.

The results show that, our algorithm shows high robustness against external distur-

bances in the presence of perfect system model and the USV is able to follow the

nominal trajectories even in the presence of high process noise. Also, the CPU time

of the MPC iterations shows real time performance for the underactuated USV model.
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4.4 Gazebo Implementation Results

For the Gazebo implementation, we tested our algorithm in four different maps. For

these maps, during the planning phase, we used the following parameters.

Table 4.11: The Parameter Sets for the Gazebo Implementation Planning Phase.

Map 1 Map 2 Map 3 Map 4

vdes 1.5 1 1 1
u

v

r


min


−0.9

−0.5

−1.5



−0.9

−0.5

−1.5



−0.8

−∞
−1.5



−0.8

−∞
−1.5



u

v

r


max


2

0.5

1.5




2

0.5

1.5




2

∞
1.5




2

∞
1.5


F1

F2


min

−15

−15

 −15

−15

 −15

−15

 −15

−15


F1

F2


max

28
28

 28
28

 28
28

 28
28



For the motion control, we do not impose any velocity constraint on the solver and

set the input limits as the Heron USV thurster saturation limits, i.e., a maximum of

33.6 Newtons and a minimum of -19.88 Newtons.

4.4.1 Map 1

The first map, generated nodes and waypoints are shown in Figure 4.24.

Figure 4.24: The first map for the Gazebo implementation. Grey rectangles are the

generated nodes along the shortest path and the red dots are the waypoints. Red cross

shows the initial position and blue arrow is the initial heading direction of the USV.

Blue dot and arrow are the goal position and orientation, respectively.
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After the trajectory optimization, we obtained the position, velocity and input nominal

trajectories as given in Figure 4.25.

(a)

(b) (c)

Figure 4.25: Trajectory optimization in map 1. In (a), the red curve is the nominal

position trajectories. (b) shows the nominal velocity trajectories and (c) shows the

nominal input trajectories.

After the nominal trajectories are generated, the Heron USV is controlled on these

trajectories using MPC in the Gazebo environment. Figures 4.26 and 4.27 shows the

resulting position and heading angle trajectories, Figures 4.28, 4.29 and 4.30 shows

the resulting velocity trajectories, and 4.31 and 4.32 shows the resulting input trajec-

tories, respectively.

Figure 4.26: Heron USV position trajectory for map 1. Orange curve is the nominal

position trajectory and blue curve is the real position trajectory of Heron.
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Figure 4.27: Heron USV heading angle trajectory for Map 1. Nominal trajectory is

the planned trajectory and the real trajectory is Heron’s trajectory during operation.

Figure 4.28: Heron USV surge velocity trajectories for Map 1.

Figure 4.29: Heron USV sway velocity trajectories for Map 1.
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Figure 4.30: Heron USV rotational velocity trajectories for Map 1.

Figure 4.31: Heron USV left thruster input trajectories for Map 1.

Figure 4.32: Heron USV right thruster input trajectories for Map 1.

In the trajectory optimization problem, we try to optimize the input effort of the sys-

tem over the trajectories. To see the effect of the input effort optimization, we cal-
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culated and presented the instantaneous mechanical power and cumulative energy

consumption of the Heron USV. We calculated the instantaneous power and cumu-

lative energy as given in (4.29). In this calculation, we included both the linear and

rotational motion power consumption. For the rotational motion, we assumed the dis-

tance between Heron’s thrusters is one meter. Also, the numerical results for map 1

are presented in Table 4.12.

P (t) = |u(t) (F1(t) + F2(t)))|+ |r(t) (F1(t)− F2(t))| (4.29a)

E(t) =

∫ t

0

P (τ) dτ (4.29b)

Figure 4.33: Heron USV power and energy consumption for map 1. The left figure

shows Heron’s instantaneous power consumption of and the right figure shows the

cumulative energy consumption over time.

Table 4.12: Numerical Results for Map 1.

tnom 57.9 seconds

tCPU 0.0965 seconds

Etotal 1084 Joules

In Table 4.12, the nominal time tnom, average CPU time tCPU for closing the loop

in MATLAB and the total energy consumption Etotal data are presented. The CPU

time encompasses the time required to receive odometry data from Gazebo, solve the

MPC problem and publish the thrust commands back to Gazebo.
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4.4.2 Map 2

The second map, generated nodes and waypoints are shown in Figure 4.34.

Figure 4.34: The second map for the Gazebo implementation.

After the trajectory optimization, we obtained the position, velocity and input nominal

trajectories as given in Figure 4.35.

(a)

(b) (c)

Figure 4.35: Trajectory optimization in map 2. In (a), the red curve is the nominal

position trajectories. (b) shows the nominal velocity trajectories and (c) shows the

nominal input trajectories.

After the motion control, Figures 4.36 and 4.37 shows the resulting position and head-

ing angle trajectories, Figures 4.38, 4.39 and 4.40 shows the resulting velocity trajec-

tories, and Figures 4.41 and 4.42 shows the resulting input trajectories, respectively.
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Figure 4.36: Heron USV position trajectory for Map 2. Orange curve is the nominal

position trajectory and blue curve is the real position trajectory of Heron.

Figure 4.37: Heron USV heading angle trajectories for Map 2.

Figure 4.38: Heron USV surge velocity trajectories for Map 2.
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Figure 4.39: Heron USV sway velocity trajectories for Map 2.

Figure 4.40: Heron USV rotational velocity trajectories for Map 2.

Figure 4.41: Heron USV left thruster input trajectories for Map 2.
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Figure 4.42: Heron USV right thruster input trajectories for Map 2.

Heron’s instantaneous power and cumulative energy consumption over time is given

in Figure 4.43. Also, the numerical results are given in Table 4.13.

Figure 4.43: Heron USV power and energy consumption for Map 2.

Table 4.13: Numerical Results for Map 2.

tnom 28.6 seconds

tCPU 0.0989 seconds

Etotal 622 Joules
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4.4.3 Map 3

The third map, generated nodes and waypoints are shown in Figure 4.44.

Figure 4.44: The third map for the Gazebo implementation.

After the trajectory optimization, we obtained the position, velocity and input nominal

trajectories as given in Figure 4.45.

(a)

(b) (c)

Figure 4.45: Trajectory optimization in map 3. In (a), the red curve is the nominal

position trajectories. (b) shows the nominal velocity trajectories and (c) shows the

nominal input trajectories.
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After the motion control, Figures 4.46 and 4.47 shows the resulting position and head-

ing angle trajectories, Figures 4.48, 4.49 and 4.50 shows the resulting velocity trajec-

tories, and Figures 4.51 and 4.52 shows the resulting input trajectories, respectively.

Figure 4.46: Heron USV position trajectory for Map 3. Orange curve is the nominal

position trajectory and blue curve is the real position trajectory of Heron.

Figure 4.47: Heron USV heading angle trajectories for Map 3.
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Figure 4.48: Heron USV surge velocity trajectories for Map 3.

Figure 4.49: Heron USV sway velocity trajectories for Map 3.

Figure 4.50: Heron USV rotational velocity trajectories for Map 3.
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Figure 4.51: Heron USV left thruster input trajectories for Map 3.

Figure 4.52: Heron USV right thruster input trajectories for Map 3.

Heron’s instantaneous power and cumulative energy consumption over time is given

in Figure 4.53. Also, the numerical results are given in Table 4.14

Figure 4.53: Heron USV power and energy consumption for Map 3.
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Table 4.14: Numerical Results for Map 3.

tnom 197.7 seconds

tCPU 0.0748 seconds

Etotal 2752 Joules

4.4.4 Map 4

The fourth map, generated nodes and waypoints are shown in Figure 4.54.

Figure 4.54: The fourth map for the Gazebo implementation.

After the trajectory optimization, we obtained the position, velocity and input nominal

trajectories as given in Figure 4.55.

(a)

(b) (c)

Figure 4.55: Trajectory optimization in Map 4. In (a), the red curve is the nominal

position trajectories. (b) shows the nominal velocity trajectories and (c) shows the

nominal input trajectories.
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After the motion control, Figures 4.56 and 4.57 shows the resulting position and head-

ing angle trajectories, Figures 4.58, 4.59 and 4.60 shows the resulting velocity trajec-

tories, and Figures 4.61 and 4.62 shows the resulting input trajectories, respectively.

Figure 4.56: Heron USV position trajectory for Map 4. Orange curve is the nominal

position trajectory and blue curve is the real position trajectory of Heron.

Figure 4.57: Heron USV heading angle trajectories for Map 4.
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Figure 4.58: Heron USV surge velocity trajectories for Map 4.

Figure 4.59: Heron USV sway velocity trajectories for Map 4.

Figure 4.60: Heron USV rotational velocity trajectories for Map 4.
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Figure 4.61: Heron USV left thruster input trajectories for Map 4.

Figure 4.62: Heron USV right thruster input trajectories for Map 3.

Heron’s instantaneous power and cumulative energy consumption over time is given

in Figure 4.63. Also, the numerical results are given in Table 4.15

Table 4.15: Numerical Results for Map 4.

tnom 30.2 seconds

tCPU 0.1310 seconds

Etotal 393 Joules
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Figure 4.63: Heron USV power and energy consumption for Map 4. The left figure

shows Heron’s instantaneous power consumption of and the right figure shows the

cumulative energy consumption over time.

4.5 Comparion With Previous Work

The method developed in this study mainly aims to increase the performance of the

MPC-Graph method presented in [6] for the underactuated systems. Thus, we used

the underactuated version of the fully actuated USV model used in [6] for the MAT-

LAB simulations and we used the same maps presented in [6]. With MPC-Graph, it

is reported that the Monte Carlo experiments conducted with the fully actuated USV

in the map 4.20 shows 98% success. Our method shows a success rate of 99.8% even

with the underactuated USV subject to more strict input limits. Figure 4.64 shows

the result of their experiments on map 4.20 and an example solution for the thruster

inputs.

In the MPC-Graph work, it is also reported that the underactuated USV model has a

success rate of 71.2% in the map presented in Figure 4.22 for the Monte Carlo Experi-

ments. However, our method shows a 98.8% success in the presence of process noise,

which is a major improvement. Figure 4.65 shows the result of their experiments on

map 4.22 and an example solution for the thruster inputs.

For the real-time performance, the MPC-Graph study reports that the CPU time re-

quired to solve one iteration of the MPC problem is tCPU = 2.04 seconds due to the

extensive prediction horizon required to stabilize the underactuated USV, and, it does
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Figure 4.64: The Monte Carlo Experiment results presented in [6] for the fully actu-

ated USV. (a) shows the successful trials that end up at the goal position. (b) shows

the thruster commands for all four thrusters of the fully actuated USV. MPC-Graph

shows 98% success during the trials with the fully actuated USV.
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(c)

Figure 4.65: The Monte Carlo Experiment results presented in [6] for the underactu-

ated USV. (a) shows the successful trials that end up at the goal position. (b) shows

the failed trials. (c) shows the thruster commands of the underactuated USV. MPC-

Graph shows 71.2% success during the trials with the underactuated USV.
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not satisfy the real-time requirements for this reason. In our method, since we make

the predictions of trajectories offline in the planning phase, we do not require such

high prediction horizons for the MPC problem. Also, after we generate trajectories,

we use a linear MPC on the linearized dynamics where MPC-Graph uses nonlinear

MPC for the underactuated USV. For these reasons, we achieve a real-time perfor-

mance, with CPU times near the sampling rate of 0.1 seconds to close the control

loop during our experiments. Table 4.16 shows the comparison between the MPC-

Graph and our method in terms of the time complexity for real-time operation.

Table 4.16: Time Complexity Comparison with MPC-Graph.

MPC-Graph Average 2.04 seconds

Map 1 0.0965 seconds

Map 2 0.0989 seconds

Map 3 0.0748 seconds

Map 4 0.1310 seconds

Our method also has the capability of defining a desired surge speed at the planning

phase, which reduces the speed oscillations during the operation. One disadvantage of

our method is the required computational power during the planning phase. We solve

the optimization problem to generate trajectories for two full funnels, which results

in very high time horizons for the optimizer. The CPU time required to solve the

trajectory optimization problem increases exponentially with the time horizon in our

observations. So, it might be very costly to solve the trajectory optimization problem

for large funnels. On the other hand, MPC-Graph has a real-time performance in the

planning phase.

For the power and energy comparison, MPC-Graph study does not include any power

and energy analysis. However, Heron USV has a 14.4 Volts battery with a 29 Ampere-

hour capacity, which is equal to 417.6 Watt-hours capacity. So, Heron USV battery

is able to supply 417.6 Watts uninterrupted electrical power for one hour. It is also

reported that the typical operation time for Heron USV at the rated conditions is 2.5

hours. So, we can assume that Heron draws 167 Watts for a typical operation. Thus,

the maximum mechanical power dissipation of Heron USV for all four maps stays

below the typical power consumption.
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CHAPTER 5

CONCLUSIONS AND FUTURE WORK

5.1 Conclusions

In this work, we presented the method of receding horizon trajectory optimization

over Sparse Neighborhood Graphs for the control of underactuated USVs. Our method

conducts a trajectory optimization on the funnels generated by SNG algorithm to gen-

erate feasible nominal state and input trajectories to effectively control underactuated

USVs. Our method starts with the generation of SNG on a given workspace for the

USV. After we generate the graph, we conduct Dijkstra’s Algorithm to find the node

sequence along the shortest path that connects the starting configuration to the goal.

After that, we generate waypoints for our USV on the intersection of these nodes.

These waypoints serves as the local initial and final configurations for the trajectory

optimization algorithm and the union of all these nodes serves as the operation region

of the USV. After the waypoints are generated, we solve the receding horizon trajec-

tory optimization problem at each node to generate nominal trajectories inside these

nodes. The union of all these trajectories at each node along the shortest path is the

nominal trajectories connecting the starting configuration the the goal. Then, we lin-

earize the dynamics of the USV around these trajectories and drive the USV along the

nominal trajectories inside the obstacle free region using a time-varying MPC policy.

During the trajectory optimization, we enforce the generated trajectories to stay in-

side the each individual node, or funnel, and obey the speed and input limits. The use

of MPC guarantees that the USV always stays inside the obstacle free region of the

workspace of the USV since we constrain the system to stay inside the correct funnel

at correct time using MPC. As long as the MPC problem is feasible, it is guaranteed

that the USV reaches the goal configuration.
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In our method, we employed a receding horizon strategy to obtain smooth trajectories

for the USV. We observed that, if we don’t take next funnels into account during the

trajectory optimization, the configuration of the robot at the outlet of the individual

funnel might be infeasible to reach the next waypoint. Also, we observed that the

computational time required for the trajectory planning increases exponentially with

the length of the funnel, so, we only take the next node into consideration during the

trajectory optimization.

For the implementation, we used 2 different underactuated USV models, one simu-

lated in MATLAB with a pre-defined model from a previous study and other is the

Clearpath Robotics Heron USV. Since Heron has no dynamical model reported in the

current literature, we conducted a NARMAX methods based nonlinear system iden-

tification. To capture its dynamics in every axis, we used an extensive training input.

Our system identification showed nearly a perfect fit in the surge and rotational axes,

however, it overestimated the sway axis damping since we use a simplified base model

for the identification. We noticed that increasing the number of nonlinear terms in the

sway axis might give a better fit on that axis. We utilised a Docker container to run

the simulation of Heron USV and we closed the loop on MATLAB, communicating

with the docker container. During these experiments, we noticed the communication

delay between MATLAB and Gazebo environments.

We conducted two Monte Carlo experiments in the MATLAB simulations with a rel-

atively high process noise to show the robustness of our method. We also conducted

experiments on four different maps with Heron USV to show the real-time perfor-

mance of our method. Finally, we reported the mechanical power demand of Heron

during these experiments to show the power and energy consumption on optimized

trajectories. Our method showed superior results on the real-time performance and

robustness for the underactuated USV, and, the mechanical power consumption of

Heron stayed below the reported nominal electrical power consumption on its user

manual.

Even if our method shows superior results in the real-time control, the planning phase

requires a very high computational power and far away from being used for real-time

planning actions. We noticed that the reasons for the high computational time are the
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length of the funnels and the software architecture. Also, our method currently can’t

generate an alternative trajectory towards the goal if it gets out of the funnel due to

disturbances. However, these issues can be solved in the future, using a smart way to

generate shorter funnels and migrating the software from MATLAB to C++ and ROS

with a smarter software architecture, which can also decrease the communication

delay mentioned earlier. As we reach the near real-time performance for the planning,

we can use our algorithm to generate alternative trajectories for the USV on the run

if it gets out of the funnel.

5.2 Future Work

Our main task will be to implement our method on physical Heron USV to examine

its performance in real-world after this work.

Secondly, we will make the algorithmic and software architecture modifications ex-

plained in the previous section for a better planning performance.

We will also try to generalize the our receding horizon trajectory optimization method

for other sequential composition methods, in both 2D and 3D applications for various

underactuated systems in the future.
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[14] B. Açıkmeşe and L. Blackmore, “Lossless convexification of a class of opti-

mal control problems with non-convex control constraints,” Automatica, vol. 47,

no. 2, pp. 341–347, 2011.

[15] M. Chyba, T. Haberkorn, R. Smith, and S. Choi, “Design and implementation

of time efficient trajectories for autonomous underwater vehicles,” Ocean Engi-

neering, vol. 35, no. 1, pp. 63–76, 2008.

[16] K. Zheng, P. Huang, and G. P. Fettweis, “Optimal control of quadrotor at-

titude system using data-driven approximation of Koopman operator,” IFAC-

PapersOnLine, vol. 56, no. 2, pp. 834–840, 2023. 22nd IFAC World Congress.

[17] R. Bellman, “Dynamic programming,” Science, vol. 153, no. 3731, pp. 34–37,

1966.

[18] W. B. Powell, “A unified framework for stochastic optimization,” European

Journal of Operational Research, vol. 275, no. 3, pp. 795–821, 2019.

[19] J. T. Betts, “Survey of numerical methods for trajectory optimization,” Journal

of Guidance, Control, and Dynamics, vol. 21, no. 2, pp. 193–207, 1998.

[20] J. T. Betts and I. Kolmanovski, Optimal Control Preliminaries, ch. Chapter 3,

pp. 85–114. ASME, 1987.

94



[21] C. Hargraves and S. Paris, “Direct trajectory optimization using nonlinear pro-

gramming and collocation,” AIAA J. Guidance, vol. 10, pp. 338–342, 07 1987.

[22] X. Tang and J. Chen, “Direct trajectory optimization and costate estimation

of infinite-horizon optimal control problems using collocation at the flipped

legendre-gauss-radau points,” IEEE/CAA Journal of Automatica Sinica, vol. 3,

no. 2, pp. 174–183, 2016.

[23] I. M. Ross and M. Karpenko, “A review of pseudospectral optimal control: From

theory to flight,” Annual Reviews in Control, vol. 36, no. 2, pp. 182–197, 2012.

[24] P. T. Boggs and J. W. Tolle, “Sequential quadratic programming,” Acta numer-

ica, vol. 4, pp. 1–51, 1995.

[25] J. Nocedal and S. J. Wright, “Interior-point methods for nonlinear program-

ming,” Numerical Optimization, pp. 563–597, 2006.

[26] C. R. Cutler and B. L. Ramaker, “Dynamic matrix control, a computer control

algorithm,” IEEE Transactions on Automatic Control, vol. 17, p. 72, 1979.

[27] M. G. Forbes, R. S. Patwardhan, H. Hamadah, and R. B. Gopaluni, “Model pre-

dictive control in industry: Challenges and opportunities,” IFAC-PapersOnLine,

vol. 48, no. 8, pp. 531–538, 2015. 9th IFAC Symposium on Advanced Control

of Chemical Processes ADCHEM 2015.

[28] Y. Ma, Z. Liu, T. Wang, S. Song, J. Xiang, and X. Zhang, “Multi-model predic-

tive control strategy for path-following of unmanned surface vehicles in wide-

range speed variations,” Ocean Engineering, vol. 295, p. 116845, 2024.

[29] B. Zhao, X. Zhang, C. Liang, and X. Han, “An improved model predictive con-

trol for path-following of USV based on global course constraint and event-

triggered mechanism,” IEEE Access, vol. PP, pp. 1–1, 05 2021.

[30] X. Sun, G. Wang, Y. Fan, D. Mu, and B. Qiu, “Collision avoidance using finite

control set model predictive control for unmanned surface vehicle,” Applied Sci-

ences, vol. 8, p. 926, 06 2018.

[31] Z. Liu, C. Geng, and J. Zhang, “Model predictive controller design with distur-

bance observer for path following of unmanned surface vessel,” in 2017 IEEE

95



International Conference on Mechatronics and Automation (ICMA), pp. 1827–

1832, 2017.

[32] S. Karaman and E. Frazzoli, “Sampling-based algorithms for optimal motion

planning,” The International Journal of Robotics Research, vol. 30, no. 7,

pp. 846–894, 2011.

[33] E. Ege and M. M. Ankarali, “Feedback motion planning of unmanned surface

vehicles via random sequential composition,” Transactions of the Institute of

Measurement and Control, vol. 41, no. 12, pp. 3321–3330, 2019.

[34] L. Kavraki, P. Svestka, J.-C. Latombe, and M. Overmars, “Probabilistic

roadmaps for path planning in high-dimensional configuration spaces,” IEEE

Transactions on Robotics and Automation, vol. 12, no. 4, pp. 566–580, 1996.

[35] S. M. LaValle, “Rapidly-exploring random trees : a new tool for path planning,”

The annual research report, 1998.

[36] R. R. Burridge, A. A. Rizzi, and D. E. Koditschek, “Sequential composition of

dynamically dexterous robot behaviors,” The International Journal of Robotics

Research, vol. 18, no. 6, pp. 534–555, 1999.

[37] O. Arslan and U. Saranli, “Reactive planning and control of planar spring–mass

running on rough terrain,” IEEE Transactions on Robotics, vol. 28, pp. 567–579,

06 2012.

[38] D. Conner, H. Choset, and A. Rizzi, “Flow-through policies for hybrid controller

synthesis applied to fully actuated systems,” Robotics, IEEE Transactions on,

vol. 25, pp. 136 – 146, 03 2009.

[39] R. Gregg, T. Bretl, and M. Spong, “Asymptotically stable gait primitives for

planning dynamic bipedal locomotion in three dimensions,” Proceedings - IEEE

International Conference on Robotics and Automation, pp. 1695 – 1702, 06

2010.

[40] A. Rizzi, J. Gowdy, and R. Hollis, “Distributed coordination in modular preci-

sion assembly systems,” I. J. Robotic Res., vol. 20, pp. 819–838, 10 2001.

96



[41] F. Golbol, M. M. Ankarali, and A. Saranli, “Rg-trees: Trajectory-free feed-

back motion planning using sparse random reference governor trees,” in 2018

IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS),

pp. 6506–6511, IEEE, 2018.

[42] R. Tedrake, I. R. Manchester, M. Tobenkin, and J. W. Roberts, “LQR-Trees:

Feedback motion planning via sums-of-squares verification,” The International

Journal of Robotics Research, vol. 29, no. 8, pp. 1038–1052, 2010.

[43] O. Özdemir, “Feedback motion planning of a novel fully actuated unmanned

surface vehicle via sequential composition of random elliptical funnels,” De-

cember 2022.

[44] L. Yang and S. LaValle, “The sampling-based neighborhood graph: an approach

to computing and executing feedback motion strategies,” IEEE Transactions on

Robotics and Automation, vol. 20, no. 3, pp. 419–432, 2004.

[45] L. Yang and S. M. LaValle, “A framework for planning feedback motion strate-

gies based on a random neighborhood graph,” in Proceedings 2000 ICRA. Mil-

lennium Conference. IEEE International Conference on Robotics and Automa-

tion. Symposia Proceedings (Cat. No. 00CH37065), vol. 1, pp. 544–549, IEEE,

2000.

[46] T. I. Fossen, Handbook of marine craft hydrodynamics and motion control. John

Wiley & Sons, 2011.

[47] S. Billings and I. Leontaritis, “Parameter estimation techniques for nonlinear

systems,” IFAC Proceedings Volumes, vol. 15, no. 4, pp. 505–510, 1982. 6th

IFAC Symposium on Identification and System Parameter Estimation, Wash-

ington USA, 7-11 June.

[48] S. Billings, Models for Linear and Nonlinear Systems, ch. 2, pp. 17–59. John

Wiley & Sons, Ltd, 2013.

[49] H. Shiobara and N. Hori, “Numerical exact discrete-time-model of linear time-

varying systems,” in 2008 International Conference on Control, Automation and

Systems, pp. 2314–2318, 2008.

97



[50] G. D. Meena and S. Janardhanan, “Discretization of linear time-varying sys-

tems,” in 2020 International Conference on Emerging Frontiers in Electrical

and Electronic Technologies (ICEFEET), pp. 1–6, 2020.

[51] Clearpath Robotics, “Heron Simulator.” https://github.com/heron/

heron_simulator, 2022.

[52] MathWorks, “Loss Function and Model Quality Metrics.” https://www.

mathworks.com/help/ident/ug/model-quality-metrics.

html, 2024. [Accessed 21-08-2024].

[53] MathWorks, “Nonlinear ARX Models.” https://www.mathworks.com/

help/ident/nonlinear-arx-models.html, 2024. [Accessed 24-08-

2024].

98

https://github.com/heron/heron_simulator
https://github.com/heron/heron_simulator
https://www.mathworks.com/help/ident/ug/model-quality-metrics.html
https://www.mathworks.com/help/ident/ug/model-quality-metrics.html
https://www.mathworks.com/help/ident/ug/model-quality-metrics.html
https://www.mathworks.com/help/ident/nonlinear-arx-models.html
https://www.mathworks.com/help/ident/nonlinear-arx-models.html

	ABSTRACT
	ÖZ
	ACKNOWLEDGMENTS
	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	LIST OF ABBREVIATIONS
	Introduction
	Motivation and Problem Definition
	Literature Review
	Contributions and Novelties
	The Outline of the Thesis

	Preliminaries and Background
	Sequential Composition of Feedback Controllers
	Sparse Neighborhood Graphs
	Nonlinear Optimization
	Sequential Quadratic Programming (SQP)
	Interior Point Algorithm

	Parameterizations of System Dynamics for Optimization Problems
	Direct Transcription Method
	Direct Single Shooting Method
	Direct Collocation Method

	Linear Time Varying Model Predictive Control
	USV Dynamics
	NARMAX Methods

	Methodology
	Receding Horizon Trajectory Optimization on Sparse Neighborhood Graphs
	Motion Control

	Implementation and Results
	MATLAB Implementation
	Gazebo Implementation
	Gazebo Simulator Setup
	System Identification on Heron USV
	Implementation of the Method

	MATLAB Implementation Results
	Results Without Process Noise
	Results in the Presence of Process Noise

	Gazebo Implementation Results
	Map 1
	Map 2
	Map 3
	Map 4

	Comparion With Previous Work

	Conclusions and Future Work
	Conclusions
	Future Work

	REFERENCES

