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ABSTRACT

MOTION PLANNING AND CONTROL OF UNDERACTUATED SYSTEMS
OVER OPTIMIZED TRAJECTORIES

Koyuncu, Eminalp

M.S., Department of Electrical and Electronics Engineering

Supervisor: Assoc. Prof. Dr. Mustafa Mert Ankaral�

September 2024, 98 pages

In this work, we propose an optimal control strategy that is robust and capable of

running real-time for nonlinear underactuated systems. Our method combines an

optimization-based trajectory planner with the feedback motion planning methods.

We combine the local controllers created by the feedback motion planning algorithms

to generate a global trajectory with trajectory optimization, taking the underactuation

into consideration. We follow the generated trajectory using a global controller.

We �rst generate a Sparse Neighborhood Graph (SNG) in the obstacle-free region

of the con�guration space. We generate waypoints at each node intersection on the

graph, and hierarchical waypoints are identi�ed along the shortest path from start

to goal. We then run an optimization algorithm, taking the system dynamics and

constraints into account to minimize input effort and generate trajectories between

waypoints using a receding horizon optimization strategy. Finally, we use a linear

time-varying (LTV) model predictive control (MPC) policy to track the generated

trajectory, ensuring constraints are satis�ed during system operation.

We tested our algorithm on underactuated unmanned surface vehicles (USVs) to
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drive them in the presence of workspace obstacles, and input and speed constraints.

We used 2 different USV models, one implemented in MATLAB and the other is

Clearpath Robotics Heron USV on a ROS-Gazebo simulation. We compared our re-

sults with previous works, considering real-time performance and robustness. Our

work showed superior results regarding all the criterion. However, one drawback of

our method is the computational time and power required for the of�ine planning

action.

Keywords: Trajectory Optimization, Underactuated Systems, Model Predictive Con-

trol
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ÖZ

KISITLI TAHR �IKL �I S�ISTEMLER �IN OPT �IM �IZE YÖRÜNGELER
ÜZER�INDE HAREKET PLANLAMASI VE KONTROLÜ

Koyuncu, Eminalp

Yüksek Lisans, Elektrik ve Elektronik Mühendisli�gi Bölümü

Tez Yöneticisi: Doç. Dr. Mustafa Mert Ankaral�

Eylül 2024 , 98 sayfa

Bu çal�şmada, do�grusal olmayan k�s�tl� tahrikli sistemler için gürbüz ve gerçek za-

manl� bir optimal kontrol stratejisi öneriyoruz. Metodumuz, geri beslemeli hareket

planlama yöntemleri üzerine kurulu bir optimizasyon tabanl� yörünge planlay�c�s�

kullan�yor. Geri beslemeli planlay�c�lar, kon�gürasyon uzay�n� engelsiz bölgelere ay�-

rarak, her bölgede yerel kontrolcü ile sistemin sürülmesini sa�glar. Biz ise bu yerel

kontrolcüleri, giriş k�s�tlar�n� dikkate alarak, global bir yörünge oluşturmak için opti-

mizasyon yöntemleri ile kullan�yoruz. Ard�ndan, oluşturulan global yörünge bir kont-

rolcü ile takip ediliyor.

Çal�şmam�zda ilk olarak sistemin kon�gürasyon uzay�nda Seyrek Komşuluk Gra��gi

oluşturarak, başlang�çtan hedefe en k�sa yoldan ulaşan düşümlerin kesişim noktas�nda

bulunan hiyerarşik ara noktalar� belirliyoruz. Bu noktalar aras�nda, sistem dinamikleri

ve k�s�tlar�n� dikkate alarak, girdi eforunu minimize eden bir optimizasyon algorit-

mas� ile global yörüngeleri hesapl�yoruz. Son aşamada, sistemin bu yörüngeyi kapal�

döngü bir kontrolcü ile takip etmesini sa�gl�yoruz.
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Algoritmam�z�, k�s�tl� tahrikli insans�z su üstü araçlar�n� engelli alanlarda sürerek s�-

nad�k. Çal�şmam�z� MATLAB üzerinde haz�r bir model ve Clearpath Robotics Heron

insans�z su üstü arac�n�n ROS-Gazebo verileriyle oluşturdu�gumuz bir modeli kul-

lanarak denedik. Sonuçlar metodun çevrimd�ş� planlama aşamas�nda yüksek işlem

gücü gerektirmesine ra�gmen önceki çal�şmalarla karş�laşt�r�ld��g�nda sistemin çevri-

miçi olarak gerçek zamanl� performans ve gürbüzlük aç�s�ndan üstünlük gösterdi�gini

ispatlad�.

Anahtar Kelimeler: Yörünge Optimizasyonu, K�s�tl� Tahrikli Sistemler, Model Öngö-

rülü Kontrolcü
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CHAPTER 1

INTRODUCTION

1.1 Motivation and Problem De�nition

In the �eld of control theory, the control of underactuated systems has been sub-

ject to great interest due to the challenges introduced by underactuation. With such

systems, any control action taking place at some point of time greatly affects the fu-

ture trajectories of the system. That is because some modes of the system are not

directly reachable at that point of time, and they evolve respecting the past control

actions that took place. Another issue with the underactuation is that, it is proven that

the classical linear, nonlinear and continuous state feedback policies cannot stabi-

lize the underactuated systems [7]. To tackle such challenges, control theorists came

up with the idea of using optimal control methods on underactuated systems [8] to

generate a time-varying control policy. Optimal control methods simulate the sys-

tem forward in a time window to see how underactuated modes evolve over time.

Meanwhile, they decide an optimal control policy that will lead the system to reach

a desired state eventually, minimizing a speci�ed cost function and regarding con-

straints imposed on the system [9]. However, using such methods on highly dynamic

and nonlinear systems requires a high amount of computational power and might

not be feasible for real-time systems. In order to overcome this problem, the opti-

mal control methods are reinforced using of�ine motion planning techniques [10],

to decrease the computational burden on the optimal controller. In particular, with

the emergence of feedback motion planning methods, the con�guration space of the

system is divided into the obstacle-free regions and in each region, a local feedback

controller, including optimal controllers, is utilized to drive the system between these

regions hierarchically, with the goal of reaching a desired con�guration [6]. These
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methods show a great performance dealing with the nonlinearities of highly dynamic

systems, however, still fall short for underactuated systems, regarding the computa-

tional burden. In this work, we overcome these challenges with the receding horizon

trajectory optimization method applied on the Sparse Neighborhood Graphs (SNG).

With the trajectory optimization, we generate optimized trajectories over the regions

generated using SNG, taking the underactuation into consideration. By doing so, we

minimize the computational burden on the controller. We use a Model Predictive

Control (MPC) policy to create a time-varying control policy that drives the system

over these optimized trajectories in real-time.

1.2 Literature Review

Optimal control methods have been widely used in every aspect of science and robotics,

from aquaculture modelling [11], to cancer chemotherapy [12], power electronics

[13], spacecraft attitude control [14], control of underwater vehicles [15], and con-

trol of quadrotors [16] since the development of the dynamic programming concept

by Richard Bellman [17]. The dynamic programming is a search method originally

developed to solve optimal control problems, however, it suffers from the Bellman's

curse of dimensionality [18] which states that the number of decision parameters for

the search problem increases exponentially with the number of states (dimensions)

of the dynamical system. As the interest for the optimal control increase, parame-

terizations other than the dynamic programming emerged to be able to parameterize

the dynamics of the system and solve the optimal control problem effectively. Most

popular of these parameterizations are the so-called direct transcription, direct single

shooting and direct collocation methods [19, 20, 21]. There are also relatively new

parameterizations called pseudospectral methods subject to current research [22, 23].

For the nonlinear optimal control, together with these parameterizations, a nonlinear

optimizer such as sequential quadratic programming [24] or an interior-point based

optimizer [25] is utilized to solve the nonlinear optimal control problem.

One of the most popular optimal control methods is the Model Predictive Control

(MPC). This optimal control method is �rstly developed to meet the need of optimiz-

ing multi-input multi-output constrained processes of petro-chemical industry with
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the name of Dynamic Matrix Control [26, 27]. As the MPC gains popularity due

to its superior performance and ability to handle complex multi-input multi-output

systems, robotics researchers embraced the MPC and used it for various tasks, in-

cluding the motion control of unmanned surface vehicles (USVs) [28, 29, 30, 31]. In

[28, 30, 31], the authors utilize MPC for the path following problem of the USVs and

in [29], they use a �nite control set MPC for the obstacle avoidance of the USVs.

For the robots that operate in environments with obstacles, motion planning is a cru-

cial part of the robot design. The motion planning problem for robotics can be sum-

marized as �nding the collision-free trajectories that drive the robot from an initial

con�guration to a goal state which obey the constraints imposed by the environment

or the structure of the system [32]. In general, these trajectories can be generated

of�ine and as the robot starts it operation, a motion controller drives the robot along

these trajectories. This way, the most of the computational burden of the real-time

controller is undertaken during the of�ine planning phase. Sampling-based motion

planning algorithms gained popularity in the past years due to its relatively low com-

putational complexity even for robots with higher dimensional con�guration spaces

[33]. Most notable sampling based methods are the Probabilistic Roadmaps (PRM)

based planners [34] or the Rapidly Exploring Random Trees (RRT) based planners

[35]. One disadvantage of the sampling based methods is that they generate open

loop trajectories for the system that can be tracked using a motion controller later

on. This approach can create infeasible trajectories for the system, especially if the

system has complex and highly constrained dynamics, such as the underactuated sys-

tems. These problems are solved with the emergence of feedback motion planning

methods, especially sequential composition of feedback controllers, that divides the

complex con�guration space of the system into simpler regions, along with a local

feedback controller that drives the system between those regions [36]. The sequen-

tial composition method has been successfully applied to several problems in the

literature [37, 38, 39, 40]. One challenge of this method is to �nd an effective way

to divide the con�guration space into simple regions. To solve this problem, sam-

pling based sequential composition methods have emerged. These methods use the

sampling tools of the sampling based methods and create those regions around the

sampled con�gurations [41, 42, 43, 6]. Especially, in this study, we focus on increas-
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ing the performance of MPC-Graph Algorithm [6], that uses Sparse Neighborhood

Graphs to generate these regions and uses MPC as the local feedback controller for

the underactuated USVs.

1.3 Contributions and Novelties

The main contribution of our work is to enhance the performance of the sequential

composition of feedback controllers method by implementing the receding horizon

trajectory optimization inside each funnel for underactuated systems. In our method,

we �rst generate a Sparse Neighborhood Graph (SNG) on the obstacle-free region of

the con�guration space. Then, we generate possible waypoints for our system at the

intersections of each node of the graph, and we �nd hierarchical waypoints along the

shortest path, connecting the starting con�guration to the desired con�guration. After

that, we run an optimization algorithm that takes the system dynamics and constraints

into account and minimizes the input effort between each waypoint. This optimization

procedure generates optimized open-loop state and input trajectories, that connect the

starting con�guration to the goal over time. S�Ince most of the predictions of the

system trajectories carried out of�ine, the computational burden for the controller

decreases signi�cantly. Then, we drive our system along these trajectories using a

linear time varying (LTV) Model Predictive Control (MPC) policy to make sure that

the constraints are still not violated during the operation of the system.

We developed and tested our algorithm on underactuated unmanned surface vehi-

cles (USVs) to drive them in the presence of workspace obstacles, and input and

speed constraints. We used 2 different nonlinear underactuated USV models, one im-

plemented in MATLAB with a prede�ned model and other obtained by conducting

system identi�cation on Clearpath Robotics Heron USV on a ROS-Gazebo simula-

tion. For the nonlinear system identi�cation of Heron USV, we utilised the so called

NARMAX methods and identi�ed the model parameters of the USV based on Fos-

sen's equations of motion. Our method showed superior results in terms of real-time

performance, robustness and USV power consumption for the underactuated USV.
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1.4 The Outline of the Thesis

In Chapter 2, we begin with explaining the key concepts used to develop and experi-

ment with our method, namely, the sequential composition algorithm, Sparse Neigh-

borhood Graphs, nonlinear optimization, parameterizations of optimal control, MPC,

USV dynamics and NARMAX methods. After explaining these key concepts, in

Chapter 3, we give the complete description of our algorithm, the receding horizon

trajectory optimization on Sparse Neighborhood Graphs and the motion control over

the optimized trajectories. In Chapter 4, we �rst explain the implementation of our

method on two different underactuated USV models, one simulated in MATLAB en-

vironment using a pre-de�ned model and other is the Clearpath Robotics Heron USV

on a Gazebo simulation. After we explain the implementation, we give the key re-

sults of our method. Finally, we compare and contrast the results of our algorithm

with previous work and show its superior real-time performance, robustness and en-

ergy ef�ciency. In Chapter 5, we outline our work and discuss the possible future

research directions.
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CHAPTER 2

PRELIMINARIES AND BACKGROUND

2.1 Sequential Composition of Feedback Controllers

Sequential composition of feedback controllers is a feedback motion planning tech-

nique that divides the complex con�guration space of a robot into simple regions

called "funnels" [36]. At each funnel, a stabilizing feedback control policy drives the

robot from an initial state to a local goal, that connects the active funnel to the next

funnel. The funnel shapes are in general selected as the region of attraction of the

local feedback controller. Following each funnel hierarchically, a robot can be driven

from an initial state to a global goal state. Figure 2.1 illustrates the funnel analogy

used in [36].

Figure 2.1: Illustration of the funnel analogy.
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There are many studies based on sequential composition of feedback controllers dif-

fering in the funnel shape and the local control policy. In the study presented in [33],

the authors use a circular funnel shape in combination with a Lyapunov based con-

troller. Also, in [41], a square and in [43] an elliptic funnel shape are used. In [42]

the local controller is selected as a Linear Quadratic Regulator (LQR) and the funnel

shape is determined as the region of attraction of the LQR controller which is com-

puted using a sums-of-squares veri�cation of Lyapunov functions. Another study is

the MPC-Graph [6], which creates Sparse Neighborhood Graphs using rectangular

funnels that utilize Model Predictive Control (MPC) policy to constrain the system

inside these funnels with box type of constraints. Our study aims to improve the per-

formance of MPC-Graph in the presence of underactuation. The details of the Sparse

Neighborhood Graph generation are explained in the next section.

2.2 Sparse Neighborhood Graphs

In our method, we utilize Sparse Neighborhood Graphs to generate collision-free

waypoints for the trajectory optimization in a 2D workspace. The graph generation

process is explained in detail in [44, 2, 1].

In the graph generation, the set of points covered by the nodes at any time is de-

noted byB. During the process, �rst a sampleqrand is drawn and checked whether

it collides with any of the obstacles or the previously sampled regions. If there is

no collusion, a square nodeNodek is expanded aroundqrand and if there is collision

qrand is discarded. So,

B =
[

k

Nodek (2.1)

After drawingqrand , the shortest distance to any of the obstacles is calculated. If we

denote thei th obstacle byWOi and the shortest distance asqobs,
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WO =
[

i

WOi (2.2a)

qobs = arg min
q2 W O

jjq � qrand jj (2.2b)

If we let the minimum distance between theqobs andqrand by lmin , then we form the

circle shown in the Figure 2.2b, with centerqrand and radiuslmin . After forming this

circle the largest square node is placed on the circle with edge lengthlmin

p
2, and its

one edge perpendicular to the line segment connectingqobs andqrand . After placing

the square node, the node expands into a rectangular node as shown in the 2.2c, in

1 and 2 directions incrementally with growth rate
 . It means, at every iteration, the

current edge length of the rectangle is multiplied with
 in direction 1. If any collision

occurs or the node expands outside the map, the last expansion is discarded and the

same process is applied on the direction 2. The overall node generation process is

illustrated in Figure 2.2.

Figure 2.2: Node generation [1]. (a) A collision free random sample is drawn. (b) A

square node is expanded until the encapsulating circle collides with an obstacle. (c)

The node is continued to be expanded with discrete steps in 1 and 2 directions until it

collides with an obstacle.

The node generation continues untilB covers a suf�cient region in the map by sam-

pling and expanding nodes. The graph generation phase terminates when the follow-

ing inequality holds,
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m �
ln(1 � Pc)

ln�
� 1: (2.3)

In (2.3), m is the number of discarded samples after a successful node generation, and

Pc and� are the user de�ned parameters that determines the quality of the generated

graph.

After the graph is generated, for eachNodei , the center of the nodecenteri is de-

termined. Note thatcenteri differs fromqrand corresponding to the node due to the

rectangular expansion. After that, for each node, the overlapping area with each over-

lapping Nodej is calculated asA i and the centeroidqi of A i is determined. This

process is illustrated in Figure 2.3. Finally, the edge cost of the edge connecting

Nodei to Nodej for all (Nodei ; Nodej ) pair is calculated as the (2.4).

costi;j = jjcenteri � qi;j jj 2 + jjcenterj � qi;j jj 2 +


A i

(2.4)

After all the edge costs are calculated, the shortest path from givenqstart to qgoal is

calculated using the Dijkstra's algorithm, from the node containingqstart to the node

containingqgoal. Figure 2.4 shows the generated nodes and the shortest path for a

sample run of the algorithm.

Figure 2.3: Visualization of the connected nodes to construct the graph [2]. The dis-

tances between the centers andqi , and the overlapping arenaA i are used to calculate

the edge cost.qi serves as waypoint to the trajectory optimization.
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In this study, we used the rectangular nodes with the same mentality presented in the

[2], for its compatibility with linear MPC framework. In the control part, we constrain

the position of the USV to be inside the rectangular nodes, which makes four linear

inequality constraints per(x; y) Cartesian coordinate pair of the USV. There are also

studies with square [41], and circle [45] nodes, however, rectangular nodes results in

sparser graph structure than the square nodes and the position constraints emerging

from circular nodes happens to be nonlinear. Finally, we keep track of the number of

nodes in the output of the Dijkstra's algorithm to use in the trajectory optimization.

Let T be the path found by using Dijkstra's algorithm. So,N = size(T ) is the

number of nodes in the shortest path withsize(:) function returning the number of

elements in the argument. We index the nodes in the shortest path starting from the

node containing the starting point to the node containing the goal node consecutively.

So, following the nodes fromNodei for i = 1; : : : ;N , one can reach the goal node

from the starting node.

Figure 2.4: Graph generation and the shortest path after the graph search. (a) shows

the overall graph structure after the graph generation is complete. (b) shows the

shortest path. Hollow black circle is the starting point. Black cross is the goal.
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2.3 Nonlinear Optimization

In this work, nonlinear optimization methods are heavily used for the trajectory opti-

mization. In most general form, a nonlinear optimization problem can be formulated

as (2.5). Note that the methods presented in this section applies for bot the convex

and non-convex problems. However, for the non-convex problems, it is likely that the

solver converges to a local minimum instead of a global one.

min
x

f (x)

s.t. h(x) = 0

g(x) � 0

(2.5)

In this formulation,x is the vector of decision variables,f (x) is the scalar valued

nonlinear cost function,h(x) andg(x) are the vector of general nonlinear equality

and inequality constraints in the form ofh(x) =
h
h1(x) h2(x) : : : hm (x)

i T
and

g(x) =
h
g1(x) g2(x) : : : gn (x)

i T
, respectively. Here, eachhi (x) represents a

nonlinear equality constraint andgi (x) represents a nonlinear inequality constraint.

An optimal feasible solution to the optimization problem is denoted byx � . The La-

grangian of this problem is de�ned as,

L(x; � ; � ) = f (x) + � T g(x) + � T h(x); (2.6)

where� =
h
� 1 � 2 : : : � n

i T
and� =

h
� 1 � 2 : : : � m

i T
are called the Lagrange

Multipliers for inequality and equality constraints, respectively. LetD be the set of

admissible values ofx, and,

d(� ; � ) = inf
x 2D

L(x; � ; � ) (2.7)

So that,

d(� ; � ) � f (x � ) (2.8)

for all � � 0. (2.8) implies that if the equality holds, which is called strong duality,

the following optimization problem in (2.9) has the same optimal value as the problem

in (2.5), which is called the primal problem whereas (2.9) is called the dual problem.
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max
�;�

d(� ; � )

s.t. � � 0
(2.9)

A pair of primal optimal solutionx � to the problem (2.5) and dual optimal solu-

tion (� � ; � � ) to the problem (2.9) is called primal-dual optimal feasible solution, and

together they satisfy so called Karush-Kuhn-Tucker (KKT) conditions presented in

(2.10).

r f (x � ) +
nX

i= 1

� �
i r gi (x � ) +

mX

j = 1

� �
j r hj (x � ) = 0 (2.10a)

h(x � ) = 0 (2.10b)

g(x � ) � 0 (2.10c)

� � � 0 (2.10d)

� �
i gi (x � ) = 0 (2.10e)

In the given conditions, (2.10a) implies that, at the primal-dual optimal solution, the

Lagrangian is stationary, meaning, the gradients of the Lagrangian vanishes. (2.10b)

and (2.10c) represents the primal feasibility, meaning, the primal optimal solution

is feasible, obeying the constraints. Similarly, (2.10d) implies the dual feasibility,

meaning, the dual optimal solution obeys the constraints of the dual problem. (2.10e)

is called the "Complementary Slackness" and it means that, at the primal-dual optimal

point, either the constraintgi (x � ) � 0 is active withgi (x � ) = 0, or it is inactive with

gi (x � ) < 0 and� i = 0.

In the case of strong duality, KKT conditions are necessary and suf�cient for the

solution to be globally optimal. However, if the duality is weak, KKT conditions are

only necessary and not suf�cient for the global optimality and the solution might be

sub-optimal due to a local minimum or a stationary point.

In most of the cases, there is no analytical solution to the KKT system. However,

there are iterative algorithms to �nd a solution to the KKT system. Two of these

algorithms, namely, Sequential Quadratic Programming and Interior Point Algorithm

will be discussed further in this section.
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2.3.1 Sequential Quadratic Programming (SQP)

With the Sequential Quadratic Programming (SQP) algorithm, instead of directly

solving the KKT system for the given nonlinear optimization problem, we iteratively

solve it using a Newton step approach with the step direction determined by an ap-

proximate Quadratic Programming (QP) subproblem to the original problem. The

Newton step is de�ned as,

xk + 1 = xk + � k dk �

x (2.11a)

� k+1 = � k + � kdk �

� (2.11b)

� k+1 = � k + � kdk �

� (2.11c)

wheredk �

x , dk �

� anddk �

� are called the search or step direction for the decision vari-

ables, Lagrange multiplier for inequality constraint and Lagrange multiplier for equal-

ity constraint, respectively. To calculate the step direction, we �rst calculate the

second order Taylor Series approximation of the Lagrangian and the linear approx-

imations of the constraints in the vicinity ofxk . De�ning dk
x = xk + 1 � xk and

Hk = r 2
xx L(xk ; � k ; � k ),

L(xk + 1; � k ; � k ) � L(xk ; � k ; � k ) + r x L(xk ; � k ; � k )T dk
x + dk T

x Hkdk
x (2.12a)

hi (xk + 1) � hi (xk ) + r hi (xk )dk
x (2.12b)

gi (xk + 1) � gi (xk ) + r gi (xk )dk
x (2.12c)

Dh(xk ) =

2

6
6
4

r h1(xk )T

...

r hm (xk )T

3

7
7
5 (2.12d)

Dg(xk ) =

2

6
6
4

r g1(xk )T

: : :

r gn (xk )T

3

7
7
5 (2.12e)

In (2.12), (2.12a) is the approximate Lagrangian. Also, (2.12d) and (2.12e) are the

Jacobian matrix of the equality and inequality constraints, respectively. Then, we

form the QP subproblem to �nd the step directions using the approximate Lagrangian
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and constraints.

min
d k

x

L(xk ; � k ; � k ) + r x L(xk ; � k ; � k )T dk
x + dk T

x Hkdk
x

s.t. h(xk ) + Dh(xk )dk
x = 0

g(xk ) + Dg(xk )dk
x � 0

(2.13)

SinceL(xk ; � k ; � k ) is a constant term, we drop it from the QP problem. Also, as

long as the QP subproblem is feasible,r xL(xk ; � k ; � k )T dk
x term becomes equal to

f (xk )dk
x , which can be proven by calculating the expression of the gradient of the

Lagrangian, substituting the constraints in the expression and incorporating with the

KKT conditions. So, the QP subproblem can be written as,

min
d k

x

r f (xk )T dk
x + dk T

x Hkdk
x

s.t. h(xk ) + Dh(xk )dk
x = 0

g(xk ) + Dg(xk )dk
x � 0

(2.14)

Let dk �

x = dk
x ;qp , dk �

� = dk
�; qp anddk �

� = dk
�; qp be the solution to the QP subproblem

and the corresponding Lagrange multipliers. The SQP algorithm is iterated by up-

dating (2.11) with the new step directions as a result of the QP subproblem. At each

step,� k is also updated with a line search, to maximize the step size. The iterations

are terminated when the step size is dropped below a certain threshold.

The SQP algorithm is a very fast algorithm, especially when the cost function is al-

ready a quadratic cost function, which is a typical case in the optimal control. The

SQP steps are not necessarily feasible due to the QP approximations, but, it guar-

antees that the optimal solution is feasible. However, since the intermediate steps

might be non-feasible, it can diverge quickly especially when the initial guess is non-

feasible and for the large scale optimization problems, where the number of decision

variables is large. Figure 2.5 shows the general procedure for the SQP algorithm.

2.3.2 Interior Point Algorithm

Another algorithm introduced to solve the nonlinear optimization problems is the

Interior Point algorithm. The essence of the Interior Point methods is to use a so

called "Logarithmic Barrier Function" to incorporate the inequality constraints to the
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Figure 2.5: Overview of the SQP Algorithm.

cost function. The Logarithmic Barrier Function is given in (2.15).

� (x) = � (1=t)
nX

i = 1

log(� gi (x)) (2.15)

In the barrier function,t is a parameter that adjusts the accuracy, or the sharpness of

the function. As the value ofgi (x) approaches to0, the value of the barrier function

goes to in�nity, which means, as the constraint reaches the boundary, the value of the

barrier function increases rapidly. Also, it is a convex and differentiable function, so

it can be added to the cost function. Figure 2.6 shows the logarithmic barrier function

for different values oft.
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Figure 2.6: The logarithmic barrier function for different values oft [3]. Dashed line

shows the ideal case, where� (u) is equal to zero as long asu < 0 and it is equal to

1 atu = 0. As the value oft increases, the logarithmic barrier function converges to

the ideal case.

Adding the barrier function in the original optimization problem in (2.5), the follow-

ing problem is obtained.

min
x

t:f (x) �
nX

i= 1

log(� gi (x))

s.t. h(x) = 0

(2.16)

So the corresponding Lagrangian is,

L(x; � ) = t:f (x) �
nX

i= 1

log(� gi (x)) + � T h(x)

= t:f (x) + t:� (x) + � T h(x)

(2.17)

In this case, since there is no inequality constraint, the KKT conditions reduce to,

r L(x; � ) = tr f (x) + tr � (x) +
mX

i= 1

� i r hi (x) = 0 (2.18a)

h(x) = 0 (2.18b)

Again, taking the �rst order approximations of the KKT conditions aroundxk and
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lettingdk
x = xk + 1 � xk ,

r L(xk + 1; � k ) = r L(xk ; � k ) + r 2L(xk ; � k )dk
x = 0 (2.19a)

h(xk + 1) = h(xk ) + r h(xk )dk
x = 0: (2.19b)

Rearranging the approximate KKT conditions given in (2.19), the following system

of equations are formed to determine the direction of the Newton step.
2

4tr 2f (xk ) + tr 2� (x)
P m

i =1 � i r 2h(xk )

Dh(xk ) 0

3

5

2

4dk
x

dk
�

3

5

= �

2

4tr f (xk ) + t r � (xk ) +
P m

i= 1 � i r h(xk )

h(xk )

3

5

(2.20)

After the step directions are determined by solving the system of equations in (2.20),

the decision variables and Lagrange multipliers are updated in the direction of Newton

step.

xk + 1 = xk + � k dk
x (2.21a)

� k+1 = � k + � kdk
� (2.21b)

Again, the step size� k is determined by line search to maximize the step size and the

iterations can be terminated when the step size decreases below a speci�ed threshold.

Interior point algorithms require higher computational power than the SQP method,

but it is way more robust. With the interior point algorithms, each iteration is guaran-

teed to be feasible even initializing from a non-feasible point. Due to its robustness,

it can be utilized to solve large scale optimization problems with a large number of

decision variables.

2.4 Parameterizations of System Dynamics for Optimization Problems

When an optimization problem is formulated over a time window, subject to sys-

tem dynamics, the dynamics of the system is included in the problem as dynamic

constraints. In general, when the optimization problem is formulated over nonlinear

continuous time dynamics, the problem has in�nite number of decision variables at

each time instant. However, effective algorithms of nonlinear optimization presented
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in Section 2.3 are not formulated for such cases and it is impossible to use them for

in�nite dimensional optimization problems. In order to use the standard formula-

tions for the optimization problem, we need to parameterize the system dynamics.

For continuous time systems, the parameterizations enable the solver to evaluate the

dynamic and other constraints at speci�c time instants. In other words, it acts like

a discretization scheme for the continuous time dynamics. For the systems that are

already discrete time, these parameterizations create a framework that converts these

discrete time dynamic constraints to the standard form. In this section, three of these

parameterizations, namely, direct transcription, direct shooting and direct collocation

methods, will be investigated. Figure 2.7 shows the overall function of these param-

eterizations.

Figure 2.7: Parameterization of in�nite dimensional optimization problem to form

a standard form nonlinear optimization problem.J (x(t); u(t)) is the cost function

being minimized over the continuous time nonlinear dynamics_x(t) = f (x(t); u(t))

with initial conditionsx(0) = x0. X andU represents the admissible sets of the state

and input variables. After the parameterization, the original problem is converted to

the standard form optimization problem with �nite number of decision variables.

2.4.1 Direct Transcription Method

With the direct transcription method, the state variables at each time instant is also

included in the optimization problem as decision variables. First, we discretize the

system dynamics with a sampling period ofT. At each sampling period, we also keep
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the input constant such thatu(t) = u[k]; t 2 [kT; (k + 1)T].

x[k + 1] = x[k] +
Z t0 +( k+ 1)T

t0 + kT
f (x(� ); u[k])d� (2.22)

Then, we recursively construct the dynamics starting fromx(0) = x0. Assuming that

the time window that we are trying to conduct the optimization ist 2 [t0; nT ].

x[0] = x(t0) (2.23a)

x[1] = x[0] +
Z t0 + T

t0

f (x(� ); u[0])d� (2.23b)

x[2] = x[1] +
Z t0 + 2T

t0 + T
f (x(� ); u[1])d� (2.23c)

... (2.23d)

x[n] = x[n � 1] +
Z t0 + nT

t0 +( n� 1)T
f (x(� ); u[n � 1])d� (2.23e)

HerenT is called the prediction horizon for the continuous time systems andn is the

prediction horizon for the discrete time systems. Assuming we havem state andp

input variables, the vector of decision variables take the following form for a single

sampling period.

xk =

2

4x[k]

u[k]

3

5 =

2

6
6
6
6
6
6
6
6
6
6
6
4

x1[k]
...

xm [k]

u1[k]
...

up[k]

3

7
7
7
7
7
7
7
7
7
7
7
5

(2.24)

In (2.24),x i [k] anduj [k] are the value ofi th andj th state and input variables atkth

sample, respectively. So, the overall vector of decision variables become,

x =

2

6
6
6
6
6
4

x0

x1
...

xn

3

7
7
7
7
7
5

(2.25)
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with xn =
h
x1[n] : : : xm [n]

i T
, not including the input variables. After all, the equality

constraint for the nonlinear optimization problem can be written as,

h(x) =

2

6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
4

x1[0] � x1(0)
...

xm [0] � xm (0)

x1[1] � x1[0] �
Rt0 + T

t0
f 1(x(� ); u[0])d�

...

xm [1] � xm [0] �
Rt0 + T

t0
f m (x(� ); u[0])d�

...

x1[n] � x1[n � 1] �
Rt0 + nT

t0 +( n� 1)T f 1(x(� ); u[n � 1])d�
...

xm [n] � xm [n � 1] �
Rt0 + nT

t0 +( n� 1)T f m (x(� ); u[n � 1])d�

3

7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
5

= 0 (2.26)

for a system with continuous time nonlinear dynamics. For the systems that is already

discrete time, the expression for the equality constraint is straightforward.

h(x) =

2

6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
4

x1[0] � x1(0)
...

xm [0] � xm (0)

x1[1] � f 1(x[0]; u[0])
...

xm [1] � f m (x[0]; u[0])
...

x1[n] � f 1(x[n � 1]; u[n � 1])
...

xm [n] � f m (x[n � 1]; u[n � 1])

3

7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
5

= 0 (2.27)

Another issue with the parameterizations is the parameterizaton of the cost function.

For the integral cost, we de�ne the accumulating cost for the parameterization.

Jd(x) =
nX

k = 0

Jc(xk ) (2.28)

21



Finally, for the admissible values of the state and input variables, we generate the

inequality constraints as follows.

g(x) =

2

6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
4

gx 0 ;max (x[0])

gu 0 ;max (u[0])

gx 0 ;min (x[0])

gu 0 ;min (u[0])
...

gx n ;max (x[n])

gu n ;max (u[n])

gx n ;min (x[n])

gu n ;min (u[n])

3

7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
5

� 0 (2.29)

2.4.2 Direct Single Shooting Method

For a given dynamic system, we can determine the state trajectories using only the

initial conditions, input trajectory and the dynamic model. So, we don't need to im-

pose the state trajectory as a constraint and add all the state variables to the decision

variables of the nonlinear optimizer. With the Direct Single Shooting method, we

simulate forwards the system using the initial conditions and initial guess of the input

trajectory to get rid of the dynamic constraints. To utilize this method, we �rst parti-

tion the time horizon into time-stepst0 < t 1 < � � � < t k < � � � < t n . At each partition

interval, we assume that the input is constant such thatu(t) = u[k]; t 2 [kT; (k +

1)T]. Let Uk = [ u1(t0); : : : ; up(t0); u1(t1); : : : ; up(t1); : : : ; u1(tk); : : : ; up(tk)]T be

the vector of input trajectory betweent0 andtk for k 2 [0 n]. We can forward sim-

ulate the system to �nd the state values at the end of each time partition. LetX n be
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the vector of values of the state variables at the end of each time partition untiltn .

X n =

2

6
6
6
6
6
4

x(t0)

x(t1)
...

x(tn )

3

7
7
7
7
7
5

=

2

6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
4

x1(t0)
...

xm (t0)
Rt1

t0
f 1(x(� ); U0)d�

...
Rt1

t0
f m (x(� ); U0)d�

...
Rtn

t0
f 1(x(� ); Un� 1)d�

...
Rtn

t0
f m (x(� ); Un� 1)d�

3

7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
5

(2.30)

So, the cost function of the nonlinear optimization problem becomes,

Jd(x(t0); Un ) =
nX

k= 0

Jc(X n
k ; Un

k ) (2.31)

Since we formulate our cost function only in terms of initial conditionx0 and past in-

putsUk , we don't have any equality constraint in this formulation. For the admissible

values of the state and input variables,

g(x) = g(x(t0); Un� 1) =

2

4 gx (X n )

gu (Un� 1)

3

5 � 0 (2.32)

We can derive a similar expression for the discrete time systems by changing integrals

to the sums. Assuming each partition interval has the same lengthtk � tk� 1 = T, let

u[k] = u(kT ) for k 2 [0; n], and

X̂ n =

2

6
6
6
6
6
4

x[0]

x[1]
...

x[n]

3

7
7
7
7
7
5

Ûn� 1 =

2

6
6
6
6
6
4

u[0]

u[1]
...

u[n � 1]

3

7
7
7
7
7
5

(2.33)
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From the forward simulation, we obtain 2.34.

x[0] = x0

x[1] = f (x[0]; u[0])

x[2] = f (f (x[0]; u[0]); u[1])
...

x[n] = f (x[n � 1]; Un� 1) = f (f (: : : f (x[0]; u[0]); u[1]) : : : u[n � 1])

(2.34)

Again, the inequality constraints and the cost function can be calculated as 2.35 and

2.36, respectively.

g(x) = g(x[0]; Ûn� 1) =

2

4 gx (X̂ n )

gu (Ûn� 1)

3

5 � 0 (2.35)

Jd(x[0]; Un� 1) =
nX

k= 0

Jc(X̂ n
k ; Ûn� 1

k ) (2.36)

One disadvantage of this parameterization is that the �rst inputu[0] or u(t0) enters all

the terms in the formulation. Hence, the optimizer focuses more on the �rst input and

gives less attention to the preceding inputs, causing a "vanishing gradients" situation.

So, it is not suggested to use this method for very long prediction horizons. On the

other hand, the time horizon and the time partition can be dynamically adjusted in the

optimizer using this parameterization. Thus, it can be used for the systems where the

time horizon is not known a priori.

2.4.3 Direct Collocation Method

In the direct collocation method, instead of integrating the nonlinear differential equa-

tions during the optimization process, the solution of the differential equations are ap-

proximated using 3rd order splines for the state trajectories and 1st order splines for

the input trajectories. After that, the state equations are evaluated at so-called "col-

location" points. After the dynamics are evaluated, they are imposed as an equality

constraint to the optimizer. Let,x[k] andu[k] be the knot points for the state trajec-

tory and input trajectory splines, respectively. Here,k is the discretization index such

that tk = t0 + kT with T being the time step. So, the splines that approximate state
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and input trajectories can be expressed as (2.37). Figure 2.8 shows the state trajectory

spline, collocation and knot (sample) points. Finally, the dynamics satisfy (2.38).

ui (tc;k) = 1 =2(ui [k] + ui [k + 1]) ; i 2 [1; p] (2.37a)

x j (tc;k) = (1 =2)(x j [k] + x j [k + 1]) + ( h=8)( _x j [k] � _x j [k + 1]) ; j 2 [1; m]

(2.37b)

_x j (tc;k) = ( � 2=3h)(x j [k] � x j [k + 1]) � (1=4)( _x j [k] + _x j [k + 1]) ; j 2 [1; m]

(2.37c)

_x j (tc;k) = f j (x(tc;k); u(tc;k)) (2.38)

Figure 2.8: Overview of the spline �tting to the state trajectories [4]. Samplesx(t1) =

x[1], x(t2) = x[2] andx(t3) = x[3] are calculated at the knot points of the spline and

used to evaluate the cost function and any additional inequality constraint relating the

admissible values of the state and input variables. The dynamics are evaluated at the

collocation pointsx(tc;1), x(tc;2) andx(tc;3) etc.
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With this parameterization, we can de�ne our decision parameters as given in (2.39).

x =

2

6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
4

x1[0]
...

xm [0]
...

x1[n]
...

xm [n]

u1[0]
...

up[0]
...

u1[n]
...

up[n]

3

7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
5

(2.39)

Thus, we can write equality constraints for our optimization problem as given in

(2.40).

h(x) =

2

6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
4

x1[0] � x1(t0)
...

xm [0] � xm (t0)

_x1(tc;0) � f 1(x(tc;0); u(tc;0))
...

_xm (tc;0) � f m (x(tc;0); u(tc;0))
...

_x1(tc;k) � f 1(x(tc;k); u(tc;k))
...

_xm (tc;k) � f m (x(tc;k); u(tc;k))
...

_x1(tc;n) � f 1(x(tc;n); u(tc;n))
...

_xm (tc;n) � f m (x(tc;n); u(tc;n))

3

7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
5

= 0 (2.40)

From the expressions, we can see that the evaluation of the state dynamics at the
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collocation points is no longer a differential equation, it is just a nonlinear function

of several variables and can be computed just in terms ofx[k], u[k], x[k + 1] and

u[k + 1] . Also, we can evaluate any other inequality constraintg(x) � 0 at the knot

pointsx[k] andu[k]. Finally, we can compute the cost function as given in (2.41).

Jd =
nX

n=0

TJc(x[n]; u[n]) (2.41)

The direct collocation method has the same number of decision variables as the di-

rect transcription method. However, it does not involve any numerical integration

step, which signi�cantly decreases the computational cost for solving the optimiza-

tion problem. As the knot points get closer to each other (decreasing time stepT), the

approximation of the collocation method converges to the direct transcription method.

The method is developed solely to solve continuous time problems, so, there is no dis-

crete time counterpart for this problem.

2.5 Linear Time Varying Model Predictive Control

In our method, after we �nd the nominal trajectories using the trajectory optimization,

we linearize the nonlinear dynamics of the USV around the nominal trajectories, re-

sulting in the time varying dynamics. Then, we control the system over the nominal

trajectories using Model Predictive Control (MPC). For the linear time-varying (LTV)

MPC problem imposed over the continuous time dynamics, the following optimiza-

tion problem is solved at each prediction horizon.

min
u(:)

Z TP

0
[xT (t + � jt)Qx(t + � jt) + uT (t + � jt)Ru(t + � jt)] d� (2.42a)

s.t. _x(kjt) = A(kjt)x(kjt) + B(kjt)u(kjt); k = [ t; t + TP ]; (2.42b)

u(kjt) 2 U; k = [ t; t + TP ]; (2.42c)

x(kjt) 2 X ; k = [ t; t + TP ]; (2.42d)

x(tjt) = x(t): (2.42e)

Here,x(kjt) andu(kjt) denotes the predicted state and input values at prediction time

k and the starting time for the predictiont, respectively.A(kjt) andB(kjt) represents
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the linear time varying dynamics of the system starting from timet along the pre-

diction horizon. Also,X andU are the set of admissible state and input values, i.e.,

the state and input constraints, respectively. Finally,Q andR are the state and input

penalty matrices andTP is the prediction horizon. For the continuous time systems,

the MPC problem can be solved with linear counterparts of the parameterizations

described in the previous section, without the need of any discretization, and these

formulations will be explained further in the preceeding sections. For the systems al-

ready represented in discrete time, the following optimization problem can be solved,

again, by the parameterizations represented previously.

min
u[:]

NPX

kp =0

xT [k + kpjk] Q x[k + kpjk] + uT [k + kpjk] R u[k + kpjk] (2.43a)

s.t. x[kp + 1jk] = A[kpjk] x[kpjk] + B [kpjk] u[kpjk]; kp = [ k; k + NP ];

(2.43b)

u[kpjk] 2 U; kp = [ k; k + NP ]; (2.43c)

x[kpjk] 2 X ; kp = [ k; k + NP ]; (2.43d)

x[kjk] = x[k]: (2.43e)

At time t for the continuous time system andk for the discrete time system, the

optimization problems (2.42) and (2.43) are solved. After solving each problem, for

the continuous time system, �rstTc seconds of the optimal input trajectory is applied

to the system. Similarly, for the discrete time system, �rstNc steps of optimal input

sequence is applied to the system. Here,Tc andNc are called the control horizon.

After applying these inputs, the MPC problem is solved again and again for each

t + Tc andk + Nc.

2.6 USV Dynamics

To model the USV dynamics, Fossen's equations of motion for surface vehicles will

be used [46]. Letv =
h

u v r
i T

denote the velocity vector of the USV with

respect to the body frame. So, the equations of motion for the rigid body can be
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Figure 2.9: The illustration of the USV with respect to the body and global frames.

expressed as (2.44).

M _v + C(v)v + D (v)v = � (2.44)

with,

M = M A + M RB (2.45a)

C (v) = C A (v) + C RB (v) (2.45b)

D (v) = D l + D n (v) (2.45c)

and,

M RB =

2

6
6
4

m 0 0

0 m 0

0 0 I z

3

7
7
5 (2.46)

M A =

2

6
6
4

X _u 0 0

0 Y_v Y_r

0 Y_r N _r

3

7
7
5 (2.47)

C A =

2

6
6
4

0 0 Y_vv + Y_r r

0 0 � X _uu

� Y_vv � Y_r r X _uu 0

3

7
7
5 (2.48)

C RB =

2

6
6
4

0 0 � mv

0 0 mu

mv � mu 0

3

7
7
5 (2.49)
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D l =

2

6
6
4

X u 0 0

0 Yv Yr

0 Nv Nr

3

7
7
5 (2.50)

D n =

2

6
6
4

X juju juj 0 0

0 Yjvjv jvj 0

0 0 N jr jr jr j j

3

7
7
5 (2.51)

In this formulation,M RB andCRB represent the mass and inertia of the rigid body,

and the Coriolis forces due to the rigid body motion, respectively. On the other hand,

M A andCA represent the added mass and inertia, and the Coriolis forces due to the

added mass of the USV due to the hydrodynamics of the USV, respectively. Finally,

D l and D n represent the linear and nonlinear damping forces acting on the USV,

respectively. In these expressions,m is the mass andI z is the moment of inertia of the

vehicle perpendicular to the horizontal plane,f X _u; Y_v; Y_r ; N _r ; N _vg, f X u; Yv; Yr ; Nv;

Nr g and
�

X juju; Yjvjv; N jr jr

	
are added mass, linear damping and nonlinear damping

parameters, respectively. These parameters are scalar constants that do not change

over time. In order to control the position of the USV with respect to the global

reference frame, a simple coordinate transformation can be applied to the system. Let

� =
h

x y  
i T

denote the position and orientation of the USV with respect to

the global frame as shown in Figure 2.9. A simple rotational transformation dictates

(2.52) with the transformation matrix represented in (2.53).

_� = J ( )v (2.52)

J ( ) =

2

6
6
4

cos( ) � sin( ) 0

sin( ) cos( ) 0

0 0 1

3

7
7
5 (2.53)

So, the overall state space becomes as (2.54).

_� = J ( )v (2.54a)

_v = M � 1 � � M � 1(C(v)v + D (v))v (2.54b)
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Here,� represents the input thrust vector to the system and it is de�ned as 2.55.

� =

2

6
6
4

F1 + F2

0

b(F1 � F2)

3

7
7
5 (2.55)

Notice that there is no input thrust in the direction ofv due to the underactuation.

2.7 NARMAX Methods

The method developed in this work uses the model of the system heavily, during

both the motion planning and control phases. For the implementation of the method,

we selected the domain of USVs. We implemented our method for two USV models.

One of the USVs is the Clearpath Robotics Heron USV and there is no dynamic model

presented in the literature for it. So, in order to implement our method to the Heron

USV, we needed to conduct system identi�cation to the nonlinear dynamics of the

USV. To model the nonlinear dynamics, we selected the Nonlinear Auto Regressive

Moving Average with Exogenous Inputs (NARMAX) model [47]. NARMAX models

generate the system dynamics dependent on the nonlinear combination of previous

state, input and error (noise) terms as presented in (2.56).

x[k] = F(x[k � 1]; x[k � 2]; : : : ; x[k � nx ];

u[k � 1]; u[k � 2]; : : : ; u[k � nu ];

e[k � 1]; e[k � 2]; : : : ; e[k � ne])

(2.56)

In (2.56),x[k], u[k] ande[k] represents the vectors of state, input and error variables,

respectively. Also,nx , nu andne are the maximum lags for the state, input and error,

and they determine how many past terms will in�uence the next value of the state.

For convenience, we can de�ne the NARMAX model as in (2.57).

x[k] = F(X n x ; U n u ; En e ) (2.57)

In this formulation,X n x =
h
x[k � 1] x[k � 2] : : : x[k � nx ]

i T
is the delayed

state sequence up tonx , U n u =
h
u[k � 1] u[k � 2] : : : u[k � nu ]

i T
is the de-

layed input sequence up tonu andEn e =
h
e[k � 1] e[k � 2] : : : e[k � ne]

i T
is
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the delayed error sequence up tone. One particularly useful form of the NARMAX

models is the so called "Linear in the Parameters" representation. In this form, the

model parameters enter the nonlinear dynamics linearly as shown in (2.58).

x i [k] =
PX

i = 1

� i Fi (X n x ; U n u ; En e ) (2.58)

Since the parameters enter linearly to the dynamics in this representation, we can

use the powerful tools of the linear system identi�cation to identify the nonlinear

dynamics [48]. We used this representation to identify the Fossen dynamics of the

Heron USV. The details of the identi�cation process will be presented in Chapter 4.
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CHAPTER 3

METHODOLOGY

For the complex nonlinear underactuted systems, it is hard to implement the classi-

cal sequential composition method for the motion planning and control since these

systems are not controllable or even stabilizable around a single operation point. So,

it is hard to �nd a local feedback controller that will drive the system to a local op-

eration point, i.e., the outlet of the funnel, or the resulting controllers are infeasible

to use due to their computational complexity. In [42], the outlet of the funnels that

LQR-Tree algorithm generates is a time varying operating point, that serves as a pre-

planned trajectory, not a single stationary operation point. So, applying the LQR

control policy to the linearized system around these trajectories, the system is stabi-

lized and the system is successfully driven to the goal over these trajectories. In our

method, we again generate a complete trajectory on the con�guration space of the

underactuated system, using the receding horizon trajectory optimization explained

in the next section. Our method �rst generates the simple rectangular obstacle free

regions that serves as the funnels in the 2D workspace of the system using the Sparse

Neighborhood Graphs and generates the waypoints for the algorithm. Next, we con-

duct a trajectory optimization between these waypoints employing a receding horizon

strategy to generate the state and input trajectories for the system. With the receding

horizon strategy, we look ahead one node further to predict the further trajectories of

the system while generating trajectories inside the active node. By generating these

trajectories inside each node and combining these trajectories to a single trajectory

that connects the starting con�guration to the goal, we are decreasing the computa-

tional burden for the online controller. The concept of receding horizon trajectory

optimization is illustrated in Figure 3.1.
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Figure 3.1: Illustration of the trajectory optimization. (a) shows the classical sequen-

tial composition of the funnels. (b) shows the resulting trajectories as a result of

trajectory optimization inside the funnels.

The generated trajectory serves as a stabilizable trajectory for the underactuated sys-

tem. We generate these trajectories considering the system dynamics and the con�g-

uration space constraints, in an optimal way. Thus, it is easier to �nd a stabilizer feed-

back control policy for the system around these trajectories. We implement a linear

time-varying Model Predictive Control policy over the linearized system dynamics

to stabilize the system around generated trajectories. In the MPC formulation, we

impose the requirement of staying inside the funnels to the system, to successfully

reach to goal con�guration. We know that, as long as the MPC problem is feasible, it

is guaranteed that the system stays within the obstacle free region of the workspace.

3.1 Receding Horizon Trajectory Optimization on Sparse Neighborhood Graphs

In this study, after generating the waypoints using the SNG algorithm, we used a

receding horizon trajectory optimization method using the nonlinear dynamics to �nd

the nominal speed and input trajectories inside the nodes along the shortest path.

Using a receding horizon approach in the trajectory optimization, we can look ahead

the next node while planning for the current node, resulting in smoother trajectories

and decreasing the computational burden on the controller. Note that, in this study,

we only considered the next node during the receding horizon planning, but it can be
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generalized for more than one consecutive node. Using such a method, we are able

to �nd single and smooth state and input trajectories that connects the starting con-

�guration to the goal con�guration inside the obstacle free region of the workspace.

In this study, we selected the underactuated system for this method as USV, so, we

formulated the trajectory optimization in the domain of USV's with the convention

given in Section 2.6. For this purpose, at each node, we iteratively solved the opti-

mization problem given in (3.1) that minimizes the input effort for the nodes along

the shortest path, i.e., forNodei starting fromi = 1 to i = N .

min
u(:)

Z t0;i + Tpr;i

t0;i

uT (� )Ru(� ) d� (3.1a)

s.t. _x = f (x; u ) ; (3.1b)

� (t) 2 Nodei ; t 2 [t0;i ; t0;i + Tpl;i ]; (3.1c)

� (t) 2 Nodei +1 ; (3.1d)

t 2 [t0;i + Tpl;i ; t0;i + Tpr;i ];

vmin � v(t) � vmax ; (3.1e)

t 2 [t0;i ; t0;i + Tpr;i ];

u min � u (t) � u max ; (3.1f)

t 2 [t0;i ; t0;i + Tpr;i ];

x (t0;i ) = x 0;i ; (3.1g)
2

4x(t0;i + Tpl;i )

y(t0;i + Tpl;i )

3

5 = qi ; (3.1h)

2

4x(t0;i + Tpr;i )

y(t0;i + Tpr;i )

3

5 = qi +1 : (3.1i)

In this formulation, (3.1b) corresponds to the nonlinear system dynamics of the un-

deractuated system. Also,Tpr is the prediction horizon andTpl is the planning horizon

which are calculated as follows in the domain of USVs.

Tpl;i =
jjqi � qi � 1jj 2

vdes
; (3.2a)

Tpr;i =
jjqi +1 � qi � 1jj 2 + jjqi +1 ;i +2 � qi;i +1 jj 2

vdes
; (3.2b)

wherevdes is the desired surge speed of the USV. We multiply these horizons with

a coef�cient � 2 [2; 3] at the starting and goal nodes to give enough time for ac-
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celeration and deceleration. Let� i;i +1 (t) andv i;i +1 (t) denote the planned position

and velocity trajectories of the USV in the domain[t0;i ; t0;i + Tpl;i ] andt0;i is the

initial time for the planned trajectories insideNodei of the shortest path. Then, the

following recursion occurs.

t0;i = t0;i � 1 + Tpl;i � 1; (3.3a)

x (t0;i ) = x 0;i = x (t0;i � 1 + Tpl;i � 1) (3.3b)

=

2

4� i � 1;i (t0;i � 1 + Tpl;i � 1)

v i � 1;i (t0;i � 1 + Tpl;i � 1)

3

5 : (3.3c)

For i = 1 (starting node), andi = N (goal node), we have the following equalities.

t0;1 = 0; (3.4a)

x (t0;1) =

2

6
6
4

qstart

 start

0

3

7
7
5 ; (3.4b)

x (t0;N + Tpl;N ) = x (t0;N + Tpr; N ) (3.4c)

=

2

6
6
4

qgoal

 goal

0

3

7
7
5 :

Also, we keep the time spent on each node by the nominal trajectories to use as a time

varying constraint in the MPC in the form of a piecewise constant time function.

Node(t) = Nodei ; t = [ t0;i ; t0;i + Tpl;i ]: (3.5)

After the optimization problem is solved for all the nodes along the shortest path,

the nominal state and input trajectories are obtained as the union of the individual

trajectories inside the nodes.

x nom (t) =
[

i =1 ;:::;N

0

@

2

4� i;i +1 (t)

v i;i +1 (t)

3

5

1

A ; (3.6a)

u nom (t) =
[

i =1 ;:::;N

u i;i +1 (t): (3.6b)

The resulting nominal trajectories are smooth and continuous due to the nature of the

proposed optimization problem. Note that, we didn't impose any initial or terminal
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constraint to the input and we assumed that the input thrusts can be changed instan-

taneously. Only in high speed applications, we constrained the rate of change of the

thrusts, to simulate the �rst order dynamics of the thrusters. Figure 3.2 illustrates the

receding horizon trajectory optimization approach for an example map.

Figure 3.2: Illustration of the receding horizon trajectory optimization for 2 iterations.

On the upper �gures solid red lines are the planned position trajectories, red circles are

the waypoints, blue arrows are the headings of the USV at the waypoints, black solid

lines are the predicted position trajectories and green circles are the next waypoints.

Red and black crosses are the starting and goal positions, respectively, and the black

arrow is the goal heading of the USV. Plots below show the nominal velocity and input

trajectories as the output of the optimization, corresponding to the position trajectories

shown with solid red curves.

3.2 Motion Control

After we plan the nominal state and input trajectories,x nom (t), u nom (t), we linearize

the nonlinear dynamics of the system around these nominal trajectories. Let,

~x (t) = x (t) � x nom (t) (3.7a)

~u(t) = u(t) � u nom (t): (3.7b)

In these expressions,~x (t) and~u(t) represents the deviation of the real state and input

of the system from the nominal trajectories. After we linearize our system, we obtain,
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