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ABSTRACT

THE ATOMKI ANOMALY IN THE FRAMEWORK OF EXTENDED
TWO-HIGGS-DOUBLET MODELS

Sarı, Zozan
M.S., Department of Physics

Supervisor: Prof. Dr. İsmail Turan

September 2024, 55 pages

In 2016, the ATOMKI collaboration observed an anomaly in the decay of the excited

beryllium atoms. This anomaly indicates the possible existence of a 17 MeV parti-

cle. Even though there has been no independent verification of the results yet, it is

still worthwhile to discuss possible scenarios explaining the Atomki anomaly, which

might put further constraints on the so-called hidden/dark sector physics. In this the-

sis, an extended two-Higgs-doublet model will be examined, incorporating existing

constraints from various other experiments to address this anomaly.

Keywords: 2HDM, ATOMKI, Beryllium Anomaly, X17, BSM
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ÖZ

GENİŞLETİLMİŞ İKİ HİGGS DUBLET MODELLERİ ÇERÇEVESİNDE
ATOMKI ANOMALİSİ

Sarı, Zozan
Yüksek Lisans, Fizik Bölümü

Tez Yöneticisi: Prof. Dr. İsmail Turan

Eylül 2024 , 55 sayfa

2016 yılında ATOMKI işbirliği uyarılmış berilyum atomlarının bozunumunda bir

anomali gözlemledi. Bu anomali olası bir 17 MeV kütleli parçacığın varlığına işaret

ediyor. Her ne kadar sonuçlar henüz bağımsız olarak doğrulanmamış olsa da gizli/ka-

ranlık sektör fiziğine getireceği ilave sınırlar sebebiyle ATOMKI anomalisini tartış-

mak faydalı olacaktır. Bu tezde, bu anomali genişletilmiş iki Higgs dublet modeliyle,

diğer çeşitli deneylerden elde edilen mevcut kısıtlamalar da dikkate alınarak incele-

necektir.

Anahtar Kelimeler: 2HDM, ATOMKI, Berilyum Anomalisi, X17, SMÖ
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CHAPTER 1

INTRODUCTION

The Standard Model (SM) is a highly successful theory that accurately explains the

fundamental building blocks of our universe. Nevertheless, it remains incomplete in

addressing many fundamental questions. For instance, there are too many free pa-

rameters in SM that are determined solely through experiments. SM cannot answer

why there is a predominance of matter over antimatter, the nature of dark energy

and the composition of dark matter. Also, gravity is not included in the SM. It also

fails to explain the strong CP problem and neutrino oscillations, and it cannot ac-

count for observed anomalies such as the muon anomalous magnetic moment. Such

unresolved questions motivate physicists to explore the physics beyond the Standard

Model (BSM).

In the quest to discover what is beyond SM, there are essentially three approaches: in-

vestigating heavy BSM particles at high energies using accelerators, known as energy

frontier research; searching for lighter particles in low-energy, high-intensity experi-

mental setups, referred to as intensity frontier research; and studying natural cosmic

sources to uncover new, unknown particles, known as cosmic frontier research. An

unidentified particle was detected in 2016 through intensity frontier research at a Hun-

garian accelerator facility.

In 2016, the ATOMKI collaboration reported an anomaly[6] now referred as the

ATOMKI anomaly, Beryllium anomaly, or X17 anomaly. This anomaly was observed

in the decay of the excited Beryllium atoms. They created excited beryllium atoms

through the proton capture process; later, this excited state decays into its ground state

by emitting an electron-positron pair. Their observation revealed a bump in the open-

ing angle and the invariant mass of e+e- pair, showing a 6.8σ deviation in the angular

1



correlation. It was concluded that this anomaly is highly unlikely to be explained by

the current understanding of nuclear physics. However, it could potentially be ex-

plained by introducing a new boson with a mass around 17 MeV. Later they improved

their set-up and repeated their measurements using 4He [9] [10] and 12C [11] nuclei.

Despite the improvements and use of different nuclei, the anomalous bump was still

observed. To explain this anomaly, many theories have been proposed since it was

observed.

In this thesis, this anomaly will be investigated and an explanation for it will be

sought. A new abelian U(1) symmetry will be introduced to the SM symmetry group,

and the scalar part of the SM will be extended by an additional Higgs doublet and a

singlet. Right-handed neutrinos will also be introduced in the model to ensure it is

anomaly-free. There are a number of two-Higgs-Doublet Models (2HDM) [12]. The

specifics of our model will be provided.

The discovery of the Higgs boson was a significant success for the SM. However, the

SM Higgs is a minimal theory and can be extended in various ways. 2HDMs offer

a rich environment for the vacuum structure, providing many motivations to study

2HDMs. The most recognized motivation is supersymmetry [13], which incorporates

two Higgs doublets in the Minimal Supersymmetric Standard Model. Other motiva-

tion arise from axion models [14][15] and baryogenesis[16].

In the Chapter 2, a summary of the SM is provided. The essential theoretical back-

ground needed to construct the model is presented in that chapter. In Chapter 3, the

model is constructed, and the necessary parameters are calculated. In Chapter 4, the

ATOMKI experiment is explained in detail, constraints from other experiments are

listed, and a final analysis is conducted.
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CHAPTER 2

THE STANDARD MODEL

The Standard Model (SM) is currently our most successful theory explaining the

building blocks of matter and the forces of the universe. In this theory, the fundamen-

tal particles are classified into two categories: Spin half fermions, which constitute

matter, and spin integer bosons, which mediate the forces. Fermions are also divided

into two groups: quarks and leptons. There are six quarks and six leptons divided into

three generations. Each generation differs only by their masses. Bosons are the par-

ticles exchanged between particles with non-zero quantum numbers, resulting in the

forces we observe. Photons are exchanged in electromagnetic interactions between

particles with electric charge; gluons are exchanged between coloured charges, which

is the charge of the strong force; W± and Z bosons are involved in weak interactions;

and finally, Higgs boson is what gives the mass of the particles. Table 2.1 summarizes

these classifications.

In SM, interactions between quarks and leptons carried by bosons are described by

the gauge group: SU(3)C × SU(2)L × U(1)Y . The strong interactions are described

Table 2.1: The Standard Model particle content.

BOSONS

FERMIONS Vector Scalar

Quarks
u c t γ H

d s b g

Leptons
e µ τ W±

νe νµ ντ Z

3



by SU(3)C group, and the electroweak interactions as a unified theory described by

SU(2)L × U(1)Y group.

The model considered in this thesis is an extension to SU(2)L × U(1)Y and does

not affect the strong interactions. Therefore, before introducing the framework of our

model, the electroweak theory with spontaneous symmetry breaking will be elabo-

rated in this chapter.

2.1 Quantum Electrodynamics

Quantum Electrodynamics (QED) is the quantum field theory of electromagnetic in-

teractions, and electromagnetism is the easiest and the most familiar interaction of

the SM. Therefore, it is a good starting point. This interaction arises from the abelian

local U(1) gauge invariance. The invariance of the Lagrangian of a free Dirac particle

LDirac = ψ̄(iγµ∂µ −m)ψ (2.1)

transforming under local U(1) symmetry,

ψ → ψ′ = eiqα(x)ψ (2.2)

requires the introduction of the covariant derivative,

Dµ ≡ ∂µ + iqAµ(x). (2.3)

Aµ = (V (x),A(x)) is the electromagnetic vector potential where E = −∇V − ∂tA

and B = ∇×A, q is the electric charge. Finally, transforming the vector potential,

Aµ → A′
µ = Aµ − ∂µα(x) (2.4)

ensures the gauge invariance of LDirac. After the introduction of the gauge field,

which is the vector potential for the electromagnetic interaction, the Lagrangian be-

come gauge invariant, but an extra term arises. It turns out this excess term defines the

electromagnetic interactions between charged particles mediated by the gauge field.

Thus, an invariant Lagrangian for QED can be written in the following form,

LQED =LDirac + LMaxwell + Linteraction

=ψ̄(iγµ∂µ −m)ψ − 1

4
F µνFµν − qψ̄γµψAµ

(2.5)
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where F µν = ∂µAν − ∂νAµ is the field strength tensor. The equations of motion for

the vector field Aµ will now give us the inhomogeneous Maxwell equations.

∂µF
µν = qJν

em (2.6)

Jν
em = ψ̄γνψ is the electromagnetic current density. The equation of motion of the

Dirac field ψ gives the Dirac equation.

(iγµDµ −m)ψ = 0 (2.7)

2.2 The Electroweak Theory

Electromagnetic and weak forces are combined by S. L. Glashow [17], and the Higgs

mechanism [18] is incorporated into the theory by Weinberg[19] and Salam [20] to

generate the masses of the fermions and the gauge bosons.

The electroweak theory is a chiral theory, meaning that the theory distinguishes the

left- and right-handed particles. Left-handed particles form SU(2) doublets, but right-

handed particles do not carry a weak charge; thus, they are SU(2) singlets.

Left-handed doublets:

Qi =

u
d


L

,

c
s


L

,

t
b


L

; Li =

νe
e


L

,

νµ
µ


L

,

ντ
τ


L

(2.8)

Right-handed singlets:

ei = eR, µR, τR; ui = uR, cR, tR; di = dR, sR, bR (2.9)

For simplicity, the subscript i is removed for the rest of the thesis.

Any Dirac field can be written as a combination of left- and right-handed states,

ψ = ψL + ψR =
(1− γ5

2

)
ψ +

(1 + γ5

2

)
ψ. (2.10)

Fields transform under SU(2) gauge group with isospin operator t,

ψL → ψ
′

L = e−it·α(x)ψL = e−
i
2
σ·α(x)ψL,

ψR → ψ
′

R = e−it·α(x)ψR = ψR

(2.11)

5



where σ is the pauli matrices and t is 0 for singlets and σ/2 for doublets. The gauge

field of the SU(2) group is Wµ(x) = (W 1
µ(x),W

2
µ(x),W

3
µ(x)) and the covariant

derivative is

Dµ = ∂µ − igt.Wµ (2.12)

where g is the coupling constant, the gauge field transformed accordingly,

t ·Wµ → t ·Wµ +
1

g
σ · (∂µα)− t · (α×Wµ). (2.13)

The problem here is that all three of the SU(2)L gauge bosons only interact with left-

handed fermions. However, it is experimentally established that the neutral current

interacts with both left- and right-handed particles. The problem is solved by mixing

this interaction with another symmetry that couples to both chiral fermions. The g′ is

the coupling constant of Bµ field.

Dµ = ∂µ − ig′Y Bµ , (2.14)

ψ → eiY β(x)ψ , (2.15)

Bµ → Bµ +
1

g′
∂µβ . (2.16)

The charge of Bµ field is called the weak hypercharge, denoted with Y , and it is

determined by Nishijima-Gell-Mann’s law:

Q = I3 + Y. (2.17)

Q is the electric charge and I3 is the third component of the isospin. Fermion quantum

numbers are listed in Table 2.2.

Table 2.2: The quantum number assignments of the fermions in the SM.

I3 Y Q I3 Y Q

uL
1
2

1
6

2
3

uR 0 2
3

2
3

dL −1
2

1
6

−1
3

dR 0 −1
3

−1
3

eL −1
2

−1
2

−1 eR 0 −1 −1

νL
1
2

−1
2

0
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Bµ field interacts with all fermions but Wµ field only interacts with left handed

fermions. Interaction terms in the Lagrangian are in the below form,

ψ̄Liγ
µDµLψL = ψ̄Liγ

µ(∂µ − igt.Wµ − ig′Y Bµ)ψL

= ψ̄Liγ
µ(∂µ −

ig

2
(σ1W

1
µ + σ2W

2
µ + σ3W

3
µ)− ig′Y Bµ)ψL,

ψ̄Riγ
µDµRψR = ψ̄Riγ

µ(∂µ − ig′Y Bµ)ψR.

(2.18)

Looking closer at the above equations, one will notice that W 3
µ and Bµ fields act on

the same fermions. Since neutrinos have no electric charge, they do not interact with

the photon field Aµ, a known fact from QED. Therefore, if we look at electron and

neutrino interactions with gauge fields

1

2

[
¯νeLγ

µνeL(gW
3
µ − g′Bµ)− ēLγ

µeL(gW
3
µ + g′Bµ)− 2ēRγ

µeRg
′Bµ

]
, (2.19)

it can be seen that W 3
µ mix with Bµ field and become the neutral weak boson Zµ ∝

(gW 3
µ − g′Bµ) and the photon Aµ ∝ (gW 3

µ + g′Bµ). This mixing can be expressed as

a rotation. Zµ

Aµ

 =

cos θW − sin θW

sin θW cos θW

W 3
µ

Bµ

 (2.20)

where θW is the Weinberg angle or weak mixing angle. This angle is defined as a

relation between the coupling constants,

cos θW =
g√

g2 + g′2
, sin θW =

g′√
g2 + g′2

(2.21)

and the other two components of Wµ mix to give

W±
µ =

1√
2
(W 1 ∓ iW 2

µ). (2.22)

However, there is a problem. Introducing a mass term to the gauge bosons will break

the gauge invariance of the Lagrangian, but it is known experimentally that W±
µ and

Zµ bosons are massive. Therefore, there must be another mechanism that gives mass

to the weak gauge bosons.

7



2.3 Spontaneous Symmetry Breaking

An illustrative example of getting familiar with SSB is considering a real scalar field

with the Lagrangian below:

L =
1

2
(∂µϕ)

2 − V (ϕ). (2.23)

This is a familiar ϕ4 theory where the potential is

V (ϕ) = +
1

2
m2ϕ2 +

λ

4!
ϕ4 (2.24)

and the ground state is located at ϕ0 = 0 if m2 is positive. An interesting case arises

when m2 → −µ2.

V (ϕ) = −1

2
µ2ϕ2 +

λ

4!
ϕ4 (2.25)

Now, the solution has two minima at

ϕ0 = ±v = ±µ
√

6

λ
. (2.26)

In the beginning, the Lagrangian 2.23 with potential 2.24 has the discrete symmetry

ϕ → −ϕ. Now, when the potential is in the form 2.25, the system will choose one of

the minima. A small perturbation from that minima

ϕ(x) = v + ξ(x) (2.27)

will result in the below Lagrangian

L =
1

2
(∂µξ)

2 − 1

2
(2µ2)ξ2 −

√
λ

6
µξ3 − λ

4!
ξ4 (2.28)

and it is apparent that the symmetry of the ground state ϕ0 → −ϕ0 is broken. From

that Lagrangian, we can read the field ξ has mass
√
2µ.

2.3.1 The Higgs Mechanism

Higgs field is introduced as a SU(2)L doublet with 4 real components

ϕ =

ϕ+

ϕ0

 =
1√
2

ϕ3 + iϕ4

ϕ1 + iϕ2

 (2.29)
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where

ϕ†ϕ = (ϕ+)∗ϕ+ + (ϕ0)∗ϕ0 =
1

2
(ϕ2

1 + ϕ2
2 + ϕ2

3 + ϕ2
4) =

v2

2
(2.30)

Unlike in Section 2.3 here, there are infinitely many different ways to choose the field

values, resulting in an infinitely degenerate vacuum. A configuration that works best

can be freely chosen. Hence, three of the fields in their vacuum configurations can be

set to zero (ϕ2)0 = (ϕ3)0 = (ϕ4)0 = 0 and (ϕ1)0 = v can be chosen. This selection

of the vacuum also ensures the conservation of charge.

Any excitation around the vacuum can now be written as

ϕ =
1√
2

 (ξ2 + iξ1)/2

v + h− iξ3/2

 (2.31)

when v ≫ |h|, |ξ| the equation can rewritten as

ϕ = ei
ξ
v
·σ
2

 0

v+h√
2

 . (2.32)

Now, it can be realized that the above equation defines a gauge transformation, and

the three fields ξ have disappeared if the following transformation is applied

ϕ→ ϕ′ = e−i ξ
v
·σ
2 ϕ (2.33)

and the gauge field W µ also transform as

W ′
µ · t = W µ −

1

gv
∂µξ · t. (2.34)

The field ξ reappears in the gauge field as a longitudinal component. These three

fields are known as Goldstone bosons. They are generated by the Higgs doublet, but

they are absorbed into the longitudinal components of three massive gauge bosons.

The Higgs field contribution to the SM Lagrangian is written as follows:

L = |Dµϕ|2 + µ2ϕ†ϕ− λ(ϕ†ϕ)2. (2.35)

If the steps outlined in Section 2.3 are followed for the Higgs doublet, the mass of the

Higgs field can be calculated as mh = µ
√
2 = v

√
2λ.
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2.3.2 The Gauge Boson Masses

The mass of the gauge bosons comes from the covariant derivative that acts on the

Higgs field, i.e., the kinetic term for the Higgs field. The Higgs field has isospin

1/2 and hypercharge 1/2. The covariant derivative acts on the Higgs field, as shown

below:

Dµϕ = (∂µ − igt.Wµ − ig′Y Bµ)ϕ

=
1√
2

∂µ − ig
2
W 3

µ − ig
′

2
Bµ −ig

2
(W 1

µ − iW 2
µ)

−ig
2
(W 1

µ + iW 2
µ) ∂µ + ig

2
W 3

µ − ig
′

2
Bµ

 0

v + h(x)


=

1√
2

 − ig√
2
W+

µ (v + h(x))

∂µh+ i(v + h)(g
2
W 3

µ − g′

2
Bµ)

 .

(2.36)

Mass terms arise from products such as W+W−. These terms can be seen in the

Lagrangian given in equation 2.35.

(Dµϕ)
†(Dµϕ) ⊃ 1

4
g2W µ−W+

µ (v+h)2+
1

2
∂µh∂µh+

1

8
(v+h)2(gW 3

µ−g′Bµ)
2 (2.37)

Therefore, the Lagrangian consisting of the mass terms of the gauge bosons will be

written as

Lmass =
1

4
(gv)2W µ−W+

µ +
1

8
v2
(
W µ3 Bµ

) g2 −gg′

−gg′ g
′2

W 3
µ

Bµ

 . (2.38)

It is seen that the mass of the charged bosons is mW± = 1
2
gv. However, the second

term contains off-diagonal elements. To obtain the physical bosons, the mass matrix

must be diagonalized. The 2× 2 matrix has eigenvalues λ1 = 0 and λ2 = (g2 + g′2),

which yields the following mass matrix for the neutral bosons:

Lneutral bosons =
1

2

(
Aµ Zµ

)0 0

0 v2

4
(g2 + g′2)

Aµ

Zµ

 . (2.39)

This transformation is the transformation carried out in Section 2.2 to obtain the phys-

ical bosons, where a rotation involving the Weinberg angle was applied. After this

transformation, the mass matrix will take a diagonal form and the mass of the photon

and the Z boson can be determined as mA = 0 and mZ = 1
2
v
√
g2 + g′2.
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2.3.3 Fermion masses

Every fermion can be written in left- and right-handed components as in equation

2.10. Given the Dirac Lagrangian, the fields are projected into left- and right-handed

components

L =ψ̄Liγ
µ∂µψL + ψ̄Riγ

µ∂µψR + ψ̄Liγ
µ∂µψR + ψ̄Riγ

µ∂µψL

− ψ̄LmψL − ψ̄RmψR − ψ̄LmψR − ψ̄RmψL.
(2.40)

By applying (1− γ5)(1 + γ5) = 0 and {γ5, γµ} = 0 to the Lagrangian, several terms

will be canceled.

L = iψ̄Lγ
µ∂µψL + iψ̄Rγ

µ∂µψR −m(ψ̄LψR + ψ̄RψL) (2.41)

Now it is clear that to obtain the mass, terms of the form ψ̄LψR and ψ̄RψL should

be sought. These terms arise from the interactions of fermions with the Higgs field,

known as the Yukawa terms. In the most general form these interactions are in the

form below:

Lyukawa = −Y (ψ̄LϕψR + ψ̄Rϕ̃ψL). (2.42)

For further details of this sector as well as the other sectors covered in this chapter,

the following sources may be consulted: [21] [22] [23] .
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CHAPTER 3

THE THEORETICAL FRAMEWORK

Discovery of the Higgs particle is one of the greatest successes of the SM. Having

one Higgs doublet is a minimal theory, but theoretically, there are no upper bounds

in the number of doublets we can add to the theory. Introducing new doublets can

explain some of the enigmatic phenomena in the SM.

In this thesis, we expand the scalar and the gauge sectors of the SM by adding an extra

Higgs doublet and an abelian U(1)D group, respectively. Furthermore, to ensure the

theory is anomaly-free, the introduction of right-handed neutrinos is necessary. The

Lagrangian of the model is

L = Lfermion + Lscalar + Lgauge + Lyukawa − Vscalar (3.1)

and each term will be explained further. The construction of the theory begins with

the inclusion of the scalar doublet in Section 3.1, followed by the introduction of the

new boson in Section 3.2. Subsequently, in Section 3.2.3, we perform calculations

to determine the couplings of the new boson to SM fermions, which are going to be

essential for our further analysis of the ATOMKI anomaly.

From this chapter on, the fermion fields are denoted by capital letters: Q and L for

quark and lepton doublets, and U,D,E, and N for right-handed up, down, electron,

and neutrino singlets, respectively. The lowercase letters denote their dark charges

under the gauge group U(1)D.

3.1 The Two Higgs Doublet Model

The first constraint to the model comes from the ρ parameter [1] [12].
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ρ =

n∑
i=1

[Ii(Ii + 1)− Y 2
i ]vi

n∑
i=1

2Y 2
i vi

(3.2)

Ii, Yi and vi are weak isospin, weak hypercharge and vev of the neutral components

of n scalar multiples, respectively. Experimentally the parameter ρ =
m2

W

m2
zcos

2θW
is

observed to be close to unity [24], imposing a crucial constraint on the models con-

struction.

The specific model under consideration is type-I 2HDM, where fermions only couple

to one of the Higgs doublet (ϕ2). Both doublet have hypercharge Y = 1/2 and their

U(1)D charges are h1 and h2 respectively. The CP-conserving neutral doublets are:

⟨ϕ1⟩ =
1√
2

 0

v1

 , ⟨ϕ2⟩ =
1√
2

 0

v2

 (3.3)

where v2 = v21 + v22 = (246 GeV )2. Following the SSB, three of the fields are

absorbed by the W± and Z0 bosons. The remaining five of the eight fields become

physical Higgs fields, consisting of a charged Higgs pair, two neutral scalars, and one

pseudoscalar.

The general form of the potential in the 2HDM models, being gauge invariant and

renormalizable can be written as below [1]:

V (ϕ1, ϕ2) = m2
11ϕ

†
1ϕ1 +m2

22ϕ
†
2ϕ2 − (m2

12ϕ
†
1ϕ2 + h.c.) +

λ1
2
(ϕ†

1ϕ1)
2

+
λ2
2
(ϕ†

2ϕ2)
2 + λ3(ϕ

†
1ϕ1)(ϕ

†
2ϕ2) + λ4(ϕ

†
1ϕ2)(ϕ

†
2ϕ1)

+

[
λ5
2
(ϕ†

1ϕ2)
2 + λ6(ϕ

†
1ϕ1)ϕ

†
1ϕ2 + λ7(ϕ

†
2ϕ2)(ϕ

†
1ϕ2) + h.c.

]
.

(3.4)

2HDMs, in general, suffer from flavour-changing neutral currents (FCNC)[25] at

three level. To overcome this problem, one can introduce a Z2 discrete symmetry,

known as the natural flavour conservation (NFC) criterion, as suggested by Glashow

and Weinberg [26]. This symmetry ensures each fermion field interacts with only one

Higgs doublet, thereby eliminating the FCNCs.

14



Table 3.1: Z2 Parities of particles in each 2HDM type [1].

Model ϕ1 ϕ2 U D E Q,L

Type I - + + + + +

Type II - + + - - +

Lepton-specific - + + + - +

Flipped - + + - + +

Different 2HDMs can be defined by Z2 charges, as shown in Table 3.1. All possible

Z2 charge assignments that eliminate FCNCs are listed here. In each model, fermions

couple to the Higgs field with the same Z2 charge. In type I model, SM fermions

couple exclusively to ϕ2 only.

The Type-I model is realized through the following symmetry,

ϕ1 → −ϕ1, ϕ2 → ϕ2 , (3.5)

which requires m12 = λ6 = λ7 = 0. If m12 ̸= 0 then Z2-symmetry is softly broken.

Thus, the potential is now in the form below:

V (ϕ1, ϕ2) = m2
11ϕ

†
1ϕ1 +m2

22ϕ
†
2ϕ2 −m2

12(ϕ
†
1ϕ2 + ϕ†

2ϕ1) +
λ1
2
(ϕ†

1ϕ1)
2

+
λ2
2
(ϕ†

2ϕ2)
2 + λ3(ϕ

†
1ϕ1)(ϕ

†
2ϕ2) + λ4(ϕ

†
1ϕ2)(ϕ

†
2ϕ1)

+
λ5
2

[
(ϕ†

1ϕ2)
2 + (ϕ†

2ϕ1)
2
]
.

(3.6)

However, this symmetry can be replaced by introducing a new U(1) symmetry [27].

U(1)D symmetry forbids the terms ϕ†
1ϕ2 or square of this term if h1 ̸= h2. Thus

m2
12 = 0 and λ5 = 0. If a singlet scalar ϕs is introduced, and as will be shown in

Section 3.2.1, the dark charge of the singlet is hs = h1 − h2. In this case, the term

ϕ†
1ϕ2ϕs is gauge invariant, leading to additional terms in the potential:

V (ϕs, ϕ1, ϕ2) =m
2
ϕ + ϕ†

sϕs +
λs
2
(ϕ†

sϕs)
2 + (µϕ†

1ϕ2ϕs + h.c.)

+ µ1ϕ
†
1ϕ1ϕ

†
sϕs + µ2ϕ

†
2ϕ2ϕ

†
sϕs.

(3.7)

Upon a closer inspection, the µ term resembles the m2
12 term when the singlet devel-

ops a vev. Thus, the origin of the Z2 symmetry has been identified. Additionally,
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when there is an exact Z2 symmetry and λ5 = 0 in usual 2HDMs an additional

Peccei-Quinn symmetry emerges [28]. The spontaneous breaking of the U(1)D sym-

metry by the singlet scalar does not result in massless axions, which are associated

with Peccei-Quinn symmetry [29].

Now, the scalar part of the Lagrangian can be written with two doublets and a singlet

as shown below:

Lscalar = (Dµϕ1)
†(Dµϕ1) + (Dµϕ2)

†(Dµϕ2) + (Dµϕs)
†(Dµϕs) (3.8)

where the covariant derivative is,

Dµ = ∂µ − igtaW a
µ − ig′Y Bµ − igDqDXµ. (3.9)

ta = 1
2
σa, σ is the Pauli matrices, hypercharges are given in Table 2.2 and the dark

charges will be calculated in Subsection 3.2.1.

Dµ⟨ϕi⟩ =∂µ − ig
2
W 3

µ − ig′YiBµ − igDqDiXµ
−ig
2
(W 1

µ − iW 2
µ)

−ig
2
(W 1

µ + iW 2
µ) ∂µ +

ig
2
W 3

µ − ig′YiBµ − igDqDiXµ

0

vi


(3.10)

where i = 1, 2. If the Higgs singlet only couples to right-handed neutrinos with vev

vs, the covariant derivative will transform as follows:

Dµ⟨ϕs⟩ = (∂µ − igDhsXµ)vs. (3.11)

As discussed in Section 2.3.3, writing a mass term requires both left- and right-handed

projections of a particle. Since there are no right-handed neutrinos in the SM, a

mass term for neutrinos cannot be formulated. The addition of right-handed neutrinos

enables the formulation of a Dirac mass term for neutrinos. Thereby, a new term is

added to the Yukawa Lagrangian. The singlet scalar also contributes to explaining

neutrino masses and introduces an additional term to the Yukawa Lagrangian. The

effect of these additional terms on our model is discussed in Section 3.2.1.

Apart from explaining the origin of the Z2 symmetry, this singlet can also provide an

explanation for the smallness of neutrino masses via the seesaw mechanism [30],[31],

16



[32]. Neutrino masses in the type-I 2HDM model are discussed in this article [1].

There may be different explanations for neutrino masses, but only the vev of the

singlet is relevant to our work. Consequently, further discussion of neutrino masses

is irrelevant to our study and will not be addressed.

3.2 Extending the 2HDM with U(1)D symmetry

The new field Xµ corresponding to U(1)D symmetry is allowed to mix with SM Bµ

field. U(1)Y and U(1)D symmetries can form a renormalizable kinetic mixing term

between them. When the mixing parameter is taken as sin ϵ, and it is small, the related

part of the Lagrangian is given below.

Lgauge = −1

4
BµνB

µν − 1

4
XµνX

µν − 1

2
sin ϵXµνB

µν (3.12)

Here Bµν = ∂µBν − ∂νBµ and Xµν = ∂µXν − ∂νXµ are the field-strength tensors.

Before proceeding further, it is essential to determine the potential new dark charges

of the particles. These new fields must satisfy the anomaly-free conditions, imposing

constraints on possible charge assignments. These constraints will be calculated in the

following Section 3.2.1, then the gauge mixing situation will be addressed in Section

3.2.2 and the mass of Z and A′ bosons will be calculated. In Section 3.2.3, couplings

of the bosons to the SM fermions will be calculated.

3.2.1 U(1)D charge assignment of 2HDM fields

The SM is an anomaly-free theory. Consequently, when extending our model, it is

important to ensure that the new extension is also anomaly-free. The anomaly occurs

when the currents of the SM are not conserved, which is also referred to as current

non-conservation. The conservation of currents implies that ⟨∂µJµ⟩ = 0 for any

SM forces. However, this conservation equation may not hold in general for triangle

diagrams. Specifically, the couplings described below lead to anomalies:

1. U(1)× U(1)× U(1)

2. SU(3)× SU(3)× U(1)
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3. SU(2)× SU(2)× U(1)

4. U(1)− gravity2

Although the equations do not initially vanish, they will be shown to disappear when

the SM charges are assigned to them, thus confirming that the SM is anomaly-free.

Upon closer examination, it will be noted that each of these couplings involves at

least one U(1) field. Therefore, when an additional U(1) field is introduced into the

SM, conditions must be imposed to ensure that the new model remains anomaly-free.

To understand this better, the process by which anomalies are cancelled in the SM

will first be examined, focusing on the first generation of fermions for simplicity.

Figure 3.1: A generic triangle diagram. Three legs are representing any SM gauge

fields.

For a non-Abelian theory the current can be written as follows:

jµa = ψ̄γµ
1− γ5

2
T aψ. (3.13)

Here T ’s are the group generators.γ5 term leads to the relation,

⟨p, ν, b; k, λ, c|∂µjµa|0⟩ =
g2

8π2
ϵανβλpαkβ · Tr[T a{T b, T c}]. (3.14)

Therefore, unless the trace in the equation vanishes, the current is not conserved. Left-

handed doublets L and Q are assigned hypercharges of −1/2 and 1/6 respectively,

and right-handed singlets E,U,D are given hypercharges of −1, 2/3 and, −1/3 re-

spectively. The calculations for each of these cases for the SM are detailed below.

1. U(1)3Y :
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The non-abelian scenario can be generalized here where the group generator is

the hypercharge Tr[T a] = Tr[Y ] = Y .

⟨∂µjµ⟩ ∝ Tr[Y 3] =
∑
f

(Y 3
L − Y 3

R) (3.15)

Left and right-handed particles contribute with an opposite sign. The summa-

tion now becomes;

2(−1)3 + 2× 3

(
1

3

)3

−

(
(−2)3 + 3

(
4

3

)3

+ 3

(
−2

3

)3
)

(3.16)

which equals zero. Taking into account that two particles are in doublets, and

each quark has three colour states and inserting the weak hypercharge values

of each of these fields (listed in Table 2.2) results in a vanishing combina-

tion. Summing over all these states yields the coefficients that appear before

the parentheses.

2. SU(3)2 × U(1)Y :

⟨∂µjµ⟩ ∝ Tr[Y {τ b, τ c}] (3.17)

=
∑
f

(YL − YR)Tr[{τ b, τ c}] (3.18)

Here, the equation can vanish if either the first or the second term is zero. Con-

sider the first term and remember this interaction only affects quarks.Thus,

2× 3

(
1

6

)
−
(
3× 2

3
+ 3×

(
−1

3

))
= 0 (3.19)

3. SU(2)2 × U(1)Y :

Calculations are similar here;

⟨∂µjµ⟩ ∝ Tr[Y {tb, tc}] = 1

2
Tr[Y ]δbc (3.20)

This time, only left-handed particles contribute to this interaction∑
YL = 2×

(
−1

2

)
+ 2× 3

(
1

6

)
= 0 (3.21)

4. U(1)Y×gravity2:
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Lastly, this anomaly has to be cancelled. It appears to have a similar structure to

the previous couplings. Since gravity couples to all fermions, one final equation

is obtained,∑
f

(YL−YR) = 2×(−1)+2×3

(
1

3

)
−
(
−2 + 3

(
4

3

)
+ 3

(
−2

3

))
(3.22)

and it is also seen that this last equation equals zero.

In case of U(1)D extension, the following anomaly equations will be obtained:

1. SU(3)× SU(3)× U(1)D

2. SU(2)× SU(2)× U(1)D

3. U(1)× U(1)× U(1)D

4. U(1)× U(1)D × U(1)D

5. U(1)D × U(1)D × U(1)D

6. U(1)D-gravity2

Where doublets L and Q have the new dark charges l and q respectively and sin-

glets E,N,U,D have dark charges e, ν, u and d respectively, similar calculations are

carried to get the below equations:

2q − u− d = 0

l + 3q = 0

3l + q − 6e− 8u− 2d = 0

q2 − l2 + e2 − 2u2 + d2 = 0

2l3 + 6q3 − e3 − ν3 − 3e3 − 3d3 = 0

2l + 6q − e− ν − 3u− 3d = 0

(3.23)

However, those are not the only constraints. The extended Lagrangian should be

gauge invariant under U(1)D symmetry. Other constraints are coming from this in-

variance. If the fields are transformed as follows,
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L→ L′ = exp[ilα(x)]L,

Q→ Q′ = exp[iqα(x)]Q,

E → E ′ = exp[ieα(x)]E,

U → U ′ = exp[iuα(x)]U,

D → D′ = exp[idα(x)]D,

ϕ1 → ϕ′
1 = exp[ih1α(x)]ϕ1,

ϕ2 → ϕ′
2 = exp[ih2α(x)]ϕ2,

ϕs → ϕ′
s = exp[ihsα(x)]ϕs.

(3.24)

The SM Yukawa Lagrangian,

LY ukawa
SM = yu2 Q̄ϕ̃2U + yD2 Q̄ϕ2D + ye2L̄ϕ2E + h.c. (3.25)

along with the newly added right-handed neutrino component,

LY ukawa
N = ylsL̄ϕ̃2N + yνs N̄ϕsN (3.26)

will be gauge invariant if the following conditions are satisfied:

ν − l − ϕ2 = 0,

2ν + ϕs = 0.
(3.27)

One last condition comes from the scalar potential,

Vs = m2
sϕ

†
sϕs+

λs
2
(ϕ†

sϕs)
2+µ1ϕ

†
1ϕ1ϕ

†
sϕs+µ2ϕ

†
2ϕ2ϕ

†
sϕs+(µϕ†

1ϕ2ϕs+h.c.) (3.28)

The invariance of this part yields:

−ϕ1 + ϕ2 + ϕs = 0. (3.29)

By solving the anomaly equations, the U(1)D charges of particles are determined in
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Table 3.2: Possible U(1)D charge assignments of fields [2].

U D Q L E N ϕ2 ϕ1

Model A 1
2

−1
2

0 0 −1
2

1
2

1
2

−1
2

Model B −1
2

1
2

0 0 1
2

−1
2

−1
2

1
2

Model C 1
4

−1
2

−1
8

3
8

0 3
4

3
8

−9
8

Model D 1
2

0 1
4

−3
4

−1 −1
2

1
4

5
4

Model E 0 1
2

1
4

−3
4

−1
2

−1 −1
4

7
4

Model F 2
3

1
3

1
2

−3
2

−5
3

−4
3

1
6

17
6

Model G −1
6

1
3

1
12

−1
4

0 −1
2

−1
4

3
4

Model B-L 1
6

1
6

1
6

−1
2

−1
2

−1
2

0 1

Minimal B-L 1
6

1
6

1
6

−1
2

−1
2

−1
2

0 -

terms of the charges of the right-handed up and down quarks:

u = u, d = d,

e = −(2u+ d), ϕ1 =
1

2
(5u+ 7d),

ν = −(u+ 2d), ϕ2 =
1

2
(u− d),

l = −3

2
(u+ d), ϕs = 2(u+ 2d),

q =
1

2
(u+ d).

(3.30)

There are two free parameters; thus, various different scenarios can be found. Some

of representative charge assignments are given in Table 3.2.

3.2.2 Diagonalization of Mass Squared Matrix of the Gauge Bosons

To remove the mixing between Bµ & Xµ from eqn 3.12 we apply the following trans-

formation 
B̃µ

W3µ

X̃µ

 =


1 0 sin ϵ

0 1 0

0 0 cos ϵ



Bµ

W3µ

Xµ

 ≡ V1


Bµ

W3µ

Xµ

 . (3.31)

After this transformation, the Lagrangian in eqn 3.12 will be free of mixing terms,
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L′
gauge = −1

4
B̃µνB̃

µν − 1

4
X̃µνX̃

µν . (3.32)

Next, we rotate the Wµ and B̃ fields by Weinberg angle θW . While this angle di-

agonalizes the mass matrix in the SM case, the transformation does not result in a

diagonal mass matrix due to the modifications made to the SM.


Aµ

W̃3µ

X̃µ

 =


cos θW sin θW 0

− sin θW cos θW 0

0 0 1



B̃µ

W3µ

X̃µ

 ≡ V2


B̃µ

W3µ

X̃µ

 (3.33)

Therefore, we apply one last transformation to obtain the diagonal mass matrix:


Aµ

Zµ

A′
µ

 =


1 0 0

0 cos τ sin τ

0 − sin τ cos τ



Aµ

W̃3µ

X̃µ

 ≡ V3


Aµ

W̃3µ

X̃µ

 . (3.34)

Considering an abelian vector boson, there is another mechanism, the Stueckelberg

mechanism, that can give mass to them without spoiling the gauge invariance and

renormalizability [33]. In this mechanism, the abelian vector boson is coupled to

an axionic scalar field. The neutral electroweak gauge bosons can gain mass via

both the axionic field and the Higgs field in a scenario where the SM is extended

by Stueckelberg mechanism[34][35]. There is also a study where a Stueckelberg

extension of the 2HDM is discussed [36]. In this thesis, the mass of the U(1)D boson

will be acquired via both Higgs and Stueckelberg mechanisms. The first term of

equation 3.35 corresponds to Stueckelberg mass mS , which will contribute to overall

A′ and Z boson masses.

1

2
m2

SXµX
µ + (Dµϕs)

†(Dµϕs) +
2∑

i=1

(Dµϕi)
†(Dµϕi) → Lmass + · · · (3.35)

Recalling equations 3.10 and 3.11, the above part of the Lagrangian will lead to the

mass matrix after transforming the initial fields to the physical ones by reversing the

transformations given in equations 3.31, 3.33, and 3.34.
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
Bµ

W3µ

Xµ

 = (V3V2V1)
−1


Aµ

Zµ

A′
µ

 (3.36)

=


cos θW − cos τ sin θW − sin τ tan ϵ sin θW sin τ − cos τ tan ϵ

sin θW cos θW cos τ − cos θW sin τ

0 sec ϵ sin τ cos τ sec ϵ



Aµ

Zµ

A′
µ


(3.37)

Here, a new variable is defined tan β ≡ v2/v1. When the last transformation satisfies

the below relation

tan 2τ =

a− 2mZSM v gD b

m2
ZSM(b2 − 1) + sec2 ϵ

[
m2

S + g2Dv
2(cos2 β h21 + sin2 β h22) + g2Dv

2
sh

2
s

]
− ab sin ϵ

a = 2mZSMvgD(cos
2 β h1 + sin2 β h2) , b = tan ϵ sin θW ,

(3.38)

the Lagrangian corresponding to the boson masses will be in the given diagonal form,

Lmass =
1

2

(
Aµ Zµ A′

µ

)
0 0 0

0 M2
Z 0

0 0 M2
A′



Aµ

Zµ

A′
µ

 . (3.39)

Therefore, square of the Z and A′ masses are found as shown below respectively:

M2
Z =m2

S sin
2 τ sec2 ϵ+ g2D sin2 τ sec2 ϵ(v2(cos2 βh21 + sin2 βh22) + v2sh

2
s)

− 2mZSMvgD sin τ sec ϵ(cos2 βh1 + sin2 βh2)(cos τ + sin θW sin τ tan ϵ)

+m2
ZSM(cos τ + sin θW sin τ tan ϵ)2

(3.40)
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M2
A′ =m2

S cos
2 τ sec2 ϵ+ g2D cos2 τ sec2 ϵ(v2(cos2 βh21 + sin2 βh22) + v2sh

2
s)

+ 2mZSMvgD cos τ sec ϵ(cos2 βh1 + sin2 βh2)(sin τ − sin θW cos τ tan ϵ)

+m2
ZSM(sin τ − sin θW cos τ tan ϵ)2

(3.41)

3.2.3 Calculation of the Relevant Coupling Constants

When the covariant derivative 3.9 acts on the fermionic fields,

Lfermion =
∑
i

ψ̄ii /Dψi (3.42)

we obtain the interaction terms between fermions and bosons. Those interactions

between SM fermions with Z and A′ bosons have vector and axial parts in general.

Linteraction =
∑
i

ψ̄iγ
µ(CV

i + CA
i γ5)ψiZµ + ψ̄iγ

µ(εVi + εAi γ5)ψiA
′
µ (3.43)

if we define a new variable here which is related to the third component of the isospin,

λ is 1 for u, ν and -1 for d, e. The covariant derivative will act on the fermionic fields.

But it will act differently to the left- and right-handed fermions. But for each fermion

we can write ψ = ψL + ψR where ψL = 1−γ5

2
and ψR = 1+γ5

2
. Finally, changing the

interaction basis to the physical one by applying equation 3.37 will give the result.
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Dψi ⊃[
(
−iλg
4

sin θW − −ig′

2
(Y i

L + Y i
R) cos θW

+

(
iλg

4
sin θW +

ig′

2
(Y i

L − Y i
R) cos θW

)
γ5
]
Aµψ

i+[(−iλg
4

cos θW cos τ +
ig′

2
(Y i

L + Y i
R)(cos τ sin θW + sin τ tan ϵ)

− igD
2

(qiL + qiR) sec ϵ sin τ
)
+
(iλg

4
cos θW cos τ+

ig′

2
(Y i

R − Y i
L)(cos τ sin θW + sin τ tan ϵ) +

igD
2

(qiL − qiR) sec ϵ sin τ
)
γ5
]
Zµψ

i+[(iλg
4

cos θW sin τ − ig′

2
(Y i

L + Y i
R)(sin θW sin τ − cos τ tan ϵ)−

igD
2

(qiL + qiR) cos τ sec ϵ
)
+
(−iλg

4
cos θW sin τ+

ig′

2
(Y i

L − Y i
R)(sin θW sin τ − cos τ tan ϵ) +

igD
2

(qiL − qiR) cos τ sec ϵ
)
γ5
]
A′

µψ
i

(3.44)

Here YL, YR and qL, qR are the hyper-charges and dark charges of the given left-

and right-handed fields respectively. The axial part of Aµ in the covariant derivative

vanishes, and the vector part gives the SM electromagnetic current. Using this co-

variant derivative in equation 3.42, applying the relation g sin θ = g′ cos θ = e and

comparing the terms with equation 3.43 will give the coupling strengths. One by one,

the coupling of each fermion to Z and A′ bosons are calculated and given in Table

3.3 and Table 3.4, respectively. Superscripts V denotes vector, and A denotes axial

coupling.
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Table 3.3: Vector and axial couplings of fermions to Z boson. Here u and d are the

free dark charges of the right-handed u and d quark fields.

CV
u = e(3 cos τ−8 sin2 θW cos τ−5 sin θW sin τ tan ϵ)

12 sin θW cos θW
+ gD(3u+d) sec ϵ sin τ

4

CA
u = − e(cos τ+sin θW sin τ tan ϵ)

4 sin θW cos θW
− gD(d−u) sec ϵ sin τ

4

CV
d = − e(3 cos τ−4 sin2 θW cos τ−sin θW sin τ tan ϵ)

12 sin θW cos θW
+ gD(u+3d) sec ϵ sin τ

4

CA
d = e(cos τ+sin τ tan ϵ)

4 sin θW cos θW
+ gD(d−u) sec ϵ sin τ

4

CV
e = − e(cos τ−4 sin2 θW cos τ−sin θW sin τ tan ϵ)

4 sin θW cos θW
− gD(7u+5d) sec ϵ sin τ

4

CA
e = e(cos τ+sin θW sin τ tan ϵ)

4 sin θW cos θW
+ gD(d−u) sec ϵ sin τ

4

CV
ν = e(cos τ+sin θW sin τ tan ϵ)

4 sin θW cos θW
− gD(5u+7d) sec ϵ sin τ

4

CA
ν = − e(cos τ+sin θW sin τ tan ϵ)

4 sin θW cos θW
− gD(d−u) sec ϵ sin τ

4
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Table 3.4: Vector and axial couplings of fermions to A′ boson. Here u and d are the

free dark charges of the right-handed u and d quark fields.

εVu = − e(3 sin τ−8 sin2 θW sin τ+5 sin θW cos τ tan ϵ)
12 sin θW cos θW

+ gD(3u+d) cos τ sec ϵ
4

εAu = e(sin τ−sin θW cos τ tan ϵ)
4 sin θW cos θW

+ gD(u−d) cos τ sec ϵ
4

εVd = e(3 sin τ−4 sin2 θW sin τ+sin θW cos τ tan ϵ)
12 sin θW cos θW

+ gD(u+3d) cos τ sec ϵ
4

εAd = − e(sin τ−sin θW cos τ tan ϵ)
4 sin θW cos θW

− gD(u−d) cos τ sec ϵ
4

εVe = e(sin τ−4 sin2 θW sin τ+3 sin θW cos τ tan ϵ)
4 sin θW cos θW

− gD(7u+5d) cos τ sec ϵ
4

εAe = − e(sin τ−sin θW cos τ tan ϵ)
4 sin θW cos θW

− gD(u−d) cos τ sec ϵ
4

εVν = − e(sin τ−sin θW cos τ tan ϵ)
4 sin θW cos θW

− gD(5u+7d) cos τ sec ϵ
4

εAν = e(sin τ−sin θW cos τ tan ϵ)
4 sin θW cos θW

+ gD(u−d) cos τ sec ϵ
4
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CHAPTER 4

THE ATOMKI EXPERIMENT AND OTHER CONSTRAINTS

Searching for heavier particles around 9 MeV was the idea of Boer and van Dantzig

[37], [38]. They began their investigation using an e+e− spectrometer at the Uni-

versity of Frankfurt and conducted a series of experiments till the spectrometer was

shutdown [39], [40]. After the shutdown, it was relocated to the ATOMKI acceler-

ator facilities in Debrecen, Hungary [4]. The ATOMKI collaboration subsequently

upgraded the spectrometer, enhancing its sensitivity, and have since conducted exper-

iments involving 8Be [6][41], 4He [9] [10] and 12C [11] nuclei. In the experiment,

a target nucleus is excited by using the proton capture process. The excited nucleus

then decays into a lower energy state by releasing an electron-positron pair. This

process is called internal pair creation or conversion (IPC). The spectrometer used in

the 2016 experiment can be seen in Figure 4.2, and the process is pictured in Figure

4.1. In 2016, decay of excited 8Be was observed, and the collaboration announced

that they found a notable bump in the distribution of the opening angles and invari-

ant masses of e+e− pairs [6], illustrated in Figure 4.3. They reported a deviation of

6.8σ. Despite subsequent improvements to the experiment, the anomaly persisted,

consistently showing deviations exceeding 6σ.

Figure 4.1: Simple illustration of the ATOMKI experiment [3].
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Figure 4.2: The ATOMKI spectrometer used in 2016 measurement [4].

Since 2016, there has been no independent verification of the observed anomaly, rais-

ing concerns about its reliability. Although this anomaly was only observed in the

Hungarian experiment, there are compelling reasons to believe it may be an authentic

effect [4]:

• Observed standard deviation is always greater than 6σ.

• The set-up was improved from five arms to six. Nevertheless, the anomaly was

observed anyway.

• They have used different position-sensitive detectors, but the anomaly didn’t

disappear.

• The anomaly was also observed with different proton beam energies as seen in

Figure 4.3.

• The bumps show up at different angles with 8Be and 4He. Nevertheless, it is

consistent with the theoretical expectation of 17 MeV particles. See Figure 4.4.

• No anomaly was observed with calibration atoms.
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Figure 4.3: Bumps in the angular correlation of e+e- pairs at different proton energies.

This figure is taken from [5], which is adapted from [6].

• No anomaly was observed in events when the momentum of e+e− pairs is not

symmetric.

Thus, the chances of the anomaly being just a systematic error are not high.

In the ATOMKI experiment, angular correlations of electron-positron pairs from the

decay of beryllium atoms with excitation energies 17.6 MeV (isovector transition)

and 18.15 MeV (isoscalar transition) are observed (Jπ = 1+ → 0+). The unexpected

bump was observed in the 18.15 MeV resonance.

Best fit to X particle mass is 17.01(16) MeV and the branching ratios compared to

the γ-decay is [42]

Br(8Be* → X + 8Be)
Br(8Be* → γ 8Be)

×Br(X → e+e−) = 6(1)× 10−6. (4.1)

If the X boson couples to the current Jµ = εpp̄γ
µp + εnn̄γ

µn, where εp = 2εu + εd

and εn = εu + 2εd, with the NA48 data (equation 4.4) the ratio between the neutron

and proton is found,

−0.09 < εp/εn < 0.11 (4.2)
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when mX is taken 17 MeV. This condition indicates the photophobic nature of the X

boson. Even though the axial vector scenario is also considered a possible solution

to the problem, there are significant uncertainties in the nuclear matrix elements that

make it challenging to calculate the desired couplings.

The X boson decays to electron-positron pairs before it leaves the detectors; there-

fore, it gives a lower bound to electron coupling,

|εVe | ≳ 1.3× 10−5
√
Br(X → e+e−) (4.3)

Although the X boson can decay to νν̄ and γγγ assuming no other invisible decay

channels, the decay to photons is negligible, and to neutrinos are assumed to be highly

suppressed. Therefore, the branching ratio Br(X → e+e−) is assumed to be unity.

This unknown X particle can be a vector, an axial vector or a pseudoscalar mediator.

But it cannot be a scalar particle. In the scalar case, the initial state is parity-even
8Be*→8Be + X : 1+ → 0+0+, but considering the angular momentum conservation

final state turns out to be parity-odd. Due to parity conservation, the scalar case is

excluded. The pseudoscalar scenario is excluded by experiments [43].

Currently, the anomaly has only been observed at the ATOMKI facilities, making

independent confirmation of the X17 boson 1 crucial. At a 2023 workshop [4], new

experiments aimed at observing X17 particles were discussed. These efforts seek first

to replicate and then to enhance the ATOMKI experiment. The MEGII collaboration

claims they can improve the geometric acceptance and the invariant mass resolution.

Another experiment, under construction at the Czech Technical University in Prague,

involves a spectrometric system based on a time projection chamber. Additionally,

the n_TOF facility at CERN proposes to investigate the X17 boson through a neutron-

induced reaction. Lastly, the INFN Legnaro National Laboratories have proposed a

cost-effective design to repeat the Hungarian experiment, expecting to detect electron-

positron pairs with kinetic energies reaching up to 20 MeV and an angular resolution

of under one degree.

1 A X boson with 17 MeV mass is sometimes called X17.
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Figure 4.4: Contours are obtained by the relation θmin
e+e− ≈ 2 arcsin(mX/(mN∗−mN))

where N∗ → NX [7]. Retrieved from [8].

4.1 Constraints from Other Experiments

To make a comprehensive analysis of the X17 particle, the constraints from other

experiments need to be considered. Constraints listed below are taken from [44] and

[3].

• The most confining constraint to quark couplings comes from neutral pion de-

cay. The NA48/2 [45] experiment observes the rare pion decay, π0 → γX . For

the following decay X → e+e− this experiment gives the strongest bound [3]:

|2εu + εd| = |εp| ≲
1.2× 10−3√
Br(X → e+e−)

. (4.4)

• NA64 [46] the beam dump experiment has established a lower bound on the

electron coupling constant:

√
(εVe )

2 + (εAe )
2 ≳ 3.6× 10−5 ×

√
Br(X → e+e−). (4.5)
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• The upper bound to electron coupling comes from the KLOE experiment [47]:√
(εVe )

2 + (εAe )
2 ≲ 6.1× 10−4/

√
Br(X → e+e−). (4.6)

If the electron coupling is lower, the X particle will escape the detector before

decaying to an electron-positron pair [48]. However, a study [49] suggests that

the nonexistence of electromagnetic signals from the decay of an X particle

near the surface of a supernova progenitor star imposes stringent limits on the

electron coupling constant. This leads to |εe| < 10−12/
√
Br(X → e+e−) [8]

implying another potential region for electron coupling constant.

• Moller scattering puts a boundary on the product of the vector and axial part of

the electron. Measurements from SLAC E158 [50] give the following bounds

[51]: ∣∣εVe × εAe
∣∣ ≲ 10−8. (4.7)

• TEXONO [52] constraints the electron and neutrino couplings in the following

way [3]: √∣∣εVe εVνe∣∣ < 7× 10−5, for εVe ε
V
ν > 0√∣∣εVe εVνe∣∣ < 3× 10−4, for εVe ε
V
ν < 0.

(4.8)

First line for constructive interference and second line for destructive interfer-

ence scenario.

• Atomic parity violation observed in 133
55 Cs [53] atoms with SM prediction [54]

[55] gives a constraint in the following form:∣∣εAe ∣∣ ∣∣∣∣188399
εVu +

211

399
εVd

∣∣∣∣ ≲ 1.8× 10−12 . (4.9)

4.2 Numerical Analysis

In this section, the constraints will be checked to determine if the unknownX particle

can be the A′ boson that was introduced in Chapter 3.

The first constraint on the unknownX particle is that it has a mass of around 17 MeV.

Therefore, any model proposed to explain the anomaly must first satisfy this mass
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requirement. A Stueckelberg mass was introduced in our model to provide additional

flexibility within the theory. If desired, it can be simply set to zero, and the value of

gD will be solely determined by vs and the dark charge assignment. It was observed

that the graphs are insensitive to the values of tan β and sin ϵ. The behaviour of the

graphs remains unchanged regardless of these values. Additionally, it can be observed

that the largest possible gD value is achieved when vs takes the smallest value.

Ultimately, we have demonstrated that we can achieve the desired mass value with

various combinations of charge assignments, vs and gD values. In Figure 4.5, graphs

of vs vs gD are plotted. The effects of different model charges and the singlet vev can

be inferred from the graphs.

Figure 4.5: The dark photon mass in the Stueckelberg mass and the dark coupling

parameter gD plane for various models and singlet vev choices. In each curve, the

dark photon mass mA′ = 17 MeV is demanded.

After it is determined that the desired mass value can be achieved for the A′ parti-

cle, other constraints on the couplings must be checked. For this purpose, constraints

from Section 4.1 are plotted in the following graphs. The part of the A′-fermion-
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fermion couplings proportional to gD, as shown in Table 3.4, is observed to be the

dominant part of the equation. Consequently, the graphs are found to be scale invari-

ant for almost all cases considered. In the following logarithmic plots (both axes are

logarithmic), any gD value in the power of ten will just repeat the same pattern. For

this reason, the dark charge axes are multiplied by gD, introducing redefined free dark

charges, ũ ≡ u gD and d̃ ≡ d gD. Clearly, this redefinition can be made because gD

and dark charges always appear together in the same terms in equation 3.4, and due

to scale invariance, one variable is reduced in the plots. Additionally, no significant

dependence on tan β is observed. Values of tan β = 2, 10, & 50 are checked, and

each result in the exact same graph in the chosen values of the other parameters. This

can be seen in Figure 4.7 and Figure 4.8.

Looking at the graphs from Figure 4.7 to Figure 4.14, it is observed that the allowed

mass region is larger for small vs values. Apart from the mass region, vs does not have

a significant effect on other constraints. The atomic parity conservation constraints

cover a larger area for smaller sin ϵ values. For values of sin ϵ bigger than 10−3,

the region disappears from the graphs. The sin ϵ value also appears to determine

the placement of the neutron-proton coupling ratio region. However, even though

overlapping areas can be observed in other regions, this neutron-proton ratio does

not coincide with the electron coupling region in any scenario studied. The atomic

parity constraint is also very restrictive, and it coincides with other regions only in

very small areas.

Searching through the parameter space and finding an overlapping area for all the

regions may be possible, but chances appear to be remote based on the analysis con-

ducted.
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Figure 4.6: The allowed regions by various data in the plane of the redefined dark

charges ũ = ugD and d̃ = dgD for the dark photon A′. The region interior to the red,

blue and brown lines represents the allowed parameter spaces for the mass, product

of vector and axial couplings of the electron, and the proton couplings, respectively.

The green-shaded region, outlined at its boundaries, defines the allowed region for

electron coupling. The purple region outlined only at its outer boundary, along with

the blue region with no outlines, represent the allowed region for electron and neutrino

couplings in the constructive and destructive interference scenarios, respectively. The

grey dashed area indicates the region where the atomic parity constraint is satisfied.

Finally, the orange area corresponds to the ratio of proton to neutron couplings. The

various fat dots on the graph correspond to the model points listed in Table 3.2, the

charges multiplied by gD value which are chosen 10−6 and 10−4 for the black and blue

dots, respectively. In this graph, vev of the singlet is set to zero, the mixing parameter

is sin ϵ = 10−4, and the ratio between vevs of the Higgs doublets is tan β = 2.
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Figure 4.7: The allowed regions by various data in the plane of the redefined dark

charges ũ = ugD and d̃ = dgD for the dark photon A′. The region interior to the red,

blue and brown lines represents the allowed parameter spaces for the mass, product

of vector and axial couplings of the electron, and the proton couplings, respectively.

The green-shaded region, outlined at its boundaries, defines the allowed region for

electron coupling. The purple region outlined only at its outer boundary, along with

the blue region with no outlines, represent the allowed region for electron and neutrino

couplings in the constructive and destructive interference scenarios, respectively. The

grey dashed area indicates the region where the atomic parity constraint is satisfied.

Finally, the orange area corresponds to the ratio of proton to neutron couplings. The

various fat dots on the graph correspond to the model points listed in Table 3.2, the

charges multiplied by gD value which are chosen 10−6 and 10−4 for the black and

blue dots, respectively. In this graph, vev of the singlet is set to 1 TeV, the mixing

parameter is sin ϵ = 10−4, and the ratio between vevs of the Higgs doublets is tan β =

2.
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Figure 4.8: The allowed regions by various data in the plane of the redefined dark

charges ũ = ugD and d̃ = dgD for the dark photon A′. The region interior to the red,

blue and brown lines represents the allowed parameter spaces for the mass, product

of vector and axial couplings of the electron, and the proton couplings, respectively.

The green-shaded region, outlined at its boundaries, defines the allowed region for

electron coupling. The purple region outlined only at its outer boundary, along with

the blue region with no outlines, represent the allowed region for electron and neutrino

couplings in the constructive and destructive interference scenarios, respectively. The

grey dashed area indicates the region where the atomic parity constraint is satisfied.

Finally, the orange area corresponds to the ratio of proton to neutron couplings. The

various fat dots on the graph correspond to the model points listed in Table 3.2, the

charges multiplied by gD value which are chosen 10−6 and 10−4 for the black and

blue dots, respectively. In this graph, vev of the singlet is set to 1 TeV, the mixing

parameter is sin ϵ = 10−4, and the ratio between vevs of the Higgs doublets is tan β =

10.
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Figure 4.9: The allowed regions by various data in the plane of the redefined dark

charges ũ = ugD and d̃ = dgD for the dark photon A′. The region interior to the red,

blue and brown lines represents the allowed parameter spaces for the mass, product

of vector and axial couplings of the electron, and the proton couplings, respectively.

The green-shaded region, outlined at its boundaries, defines the allowed region for

electron coupling. The purple region outlined only at its outer boundary, along with

the blue region with no outlines, represent the allowed region for electron and neutrino

couplings in the constructive and destructive interference scenarios, respectively. The

grey dashed area indicates the region where the atomic parity constraint is satisfied.

Finally, the orange area corresponds to the ratio of proton to neutron couplings. The

various fat dots on the graph correspond to the model points listed in Table 3.2, the

charges multiplied by gD value which are chosen 10−6 and 10−4 for the black and blue

dots, respectively. In this graph, vev of the singlet is set to zero, the mixing parameter

is sin ϵ = 10−5, and the ratio between vevs of the Higgs doublets is tan β = 2.
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Figure 4.10: The allowed regions by various data in the plane of the redefined dark

charges ũ = ugD and d̃ = dgD for the dark photon A′. The region interior to the red,

blue and brown lines represents the allowed parameter spaces for the mass, product

of vector and axial couplings of the electron, and the proton couplings, respectively.

The green-shaded region, outlined at its boundaries, defines the allowed region for

electron coupling. The purple region outlined only at its outer boundary, along with

the blue region with no outlines, represent the allowed region for electron and neutrino

couplings in the constructive and destructive interference scenarios, respectively. The

grey dashed area indicates the region where the atomic parity constraint is satisfied.

Finally, the orange area corresponds to the ratio of proton to neutron couplings. The

various fat dots on the graph correspond to the model points listed in Table 3.2, the

charges multiplied by gD value which are chosen 10−6 and 10−4 for the black and

blue dots, respectively. In this graph, vev of the singlet is set to 1 TeV, the mixing

parameter is sin ϵ = 10−5, and the ratio between vevs of the Higgs doublets is tan β =

2.
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Figure 4.11: The allowed regions by various data in the plane of the redefined dark

charges ũ = ugD and d̃ = dgD for the dark photon A′. The region interior to the red,

blue and brown lines represents the allowed parameter spaces for the mass, product

of vector and axial couplings of the electron, and the proton couplings, respectively.

The green-shaded region, outlined at its boundaries, defines the allowed region for

electron coupling. The purple region outlined only at its outer boundary, along with

the blue region with no outlines, represent the allowed region for electron and neutrino

couplings in the constructive and destructive interference scenarios, respectively. The

grey dashed area indicates the region where the atomic parity constraint is satisfied.

Finally, the orange area corresponds to the ratio of proton to neutron couplings. The

various fat dots on the graph correspond to the model points listed in Table 3.2, the

charges multiplied by gD value which are chosen 10−6 and 10−4 for the black and blue

dots, respectively. In this graph, vev of the singlet is set to zero, the mixing parameter

is sin ϵ = 10−6, and the ratio between vevs of the Higgs doublets is tan β = 2.
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Figure 4.12: The allowed regions by various data in the plane of the redefined dark

charges ũ = ugD and d̃ = dgD for the dark photon A′. The region interior to the red,

blue and brown lines represents the allowed parameter spaces for the mass, product

of vector and axial couplings of the electron, and the proton couplings, respectively.

The green-shaded region, outlined at its boundaries, defines the allowed region for

electron coupling. The purple region outlined only at its outer boundary, along with

the blue region with no outlines, represent the allowed region for electron and neutrino

couplings in the constructive and destructive interference scenarios, respectively. The

grey dashed area indicates the region where the atomic parity constraint is satisfied.

Finally, the orange area corresponds to the ratio of proton to neutron couplings. The

various fat dots on the graph correspond to the model points listed in Table 3.2, the

charges multiplied by gD value which are chosen 10−6 and 10−4 for the black and

blue dots, respectively. In this graph, vev of the singlet is set to 1 TeV, the mixing

parameter is sin ϵ = 10−6, and the ratio between vevs of the Higgs doublets is tan β =

2.
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Figure 4.13: The allowed regions by various data in the plane of the redefined dark

charges ũ = ugD and d̃ = dgD for the dark photon A′. The region interior to the

red and brown lines represents the allowed parameter spaces for the mass and the

proton couplings, respectively. The green-shaded region, outlined at its boundaries,

defines the allowed region for electron coupling. The dashed lavender-shaded region

represents the allowed product of vector and axial couplings of the electron. The

purple region outlined only at its outer boundary, along with the blue region with

no outlines, represent the allowed region for electron and neutrino couplings in the

constructive and destructive interference scenarios, respectively. The grey dashed

area indicates the region where the atomic parity constraint is satisfied. Finally, the

orange area corresponds to the ratio of proton to neutron couplings. The various

fat dots on the graph correspond to the model points listed in Table 3.2, the charges

multiplied by gD value which are chosen 10−6 and 10−4 for the black and blue dots,

respectively. In this graph, vev of the singlet is set to zero, the mixing parameter is

sin ϵ = 10−3, and the ratio between vevs of the Higgs doublets is tan β = 2.
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Figure 4.14: The allowed regions by various data in the plane of the redefined dark

charges ũ = ugD and d̃ = dgD for the dark photon A′. The region interior to the

red and brown lines represents the allowed parameter spaces for the mass and the

proton couplings, respectively. The green-shaded region, outlined at its boundaries,

defines the allowed region for electron coupling. The dashed lavender-shaded region

represents the allowed product of vector and axial couplings of the electron. The

purple region outlined only at its outer boundary, along with the blue region with

no outlines, represent the allowed region for electron and neutrino couplings in the

constructive and destructive interference scenarios, respectively. The grey dashed

area indicates the region where the atomic parity constraint is satisfied. Finally, the

orange area corresponds to the ratio of proton to neutron couplings. The various

fat dots on the graph correspond to the model points listed in Table 3.2, the charges

multiplied by gD value which are chosen 10−6 and 10−4 for the black and blue dots,

respectively. In this graph, vev of the singlet is set to 1 TeV, the mixing parameter is

sin ϵ = 10−3, and the ratio between vevs of the Higgs doublets is tan β = 2.
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CHAPTER 5

CONCLUSIONS

In 2016, the ATOMKI collaboration observed an anomaly with a high significance.

Since then, their set-up has been improved, and the experiment has been repeated,

with the anomaly continuing to be observed. The anomaly suggests the possible exis-

tence of a 17 MeV boson. Although independent verification of the anomaly has not

yet been achieved, there are reasons to believe that what has been observed is a gen-

uine effect. Various attempts to replicate the experiment are ongoing; if confirmed,

this observation would be a big step forward for BSM physics.

In this thesis, an extended 2HDM model is scrutinised. The observed X17 particle is

explained through the introduction of a new Abelian gauge symmetry, with a second

Higgs doublet and a new singlet implemented into the SM. The model also includes

a Stueckelberg mass term to provide additional freedom in the model. The exper-

imental data is very constraining, resulting in the exclusion of a large area for the

coupling constants. However, the allowed region has been significantly widened by

the introduction of the Stueckelberg term. Nevertheless, no overlapping area for all

the constraints was observed. The tension is not high and is primarily between the

electron coupling and the ratio of proton-neutron couplings.

Comparing the theory with the experiments, some challenges are encountered. First,

the nuclear matrix element for the axial vector case has large uncertainties. To en-

able more sensitive analyses, further study of the axial nuclear matrix element is

required. Second, throughout the analyses, the X boson was assumed to decay only

to electron-proton pairs. Therefore, to improve the sensitivity of the analysis, other

decay channels should be considered.
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In this thesis, only the beryllium case is studied, but the ATOMKI collaboration ob-

served the anomaly in both the helium and carbon decays. These cases can be ex-

plored in further research.
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