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ABSTRACT

WEAPON-TARGET ASSIGNMENT FOR AIR DEFENSE OF NAVAL
FORCES: MODELS AND HEURISTICS

Arslan, Caner
Ph.D., Department of Industrial Engineering

Supervisor: Prof. Dr. Ömer Kırca

Co-Supervisor: Prof. Dr. Orhan Karasakal

September 2024, 140 pages

Air defense in maritime environment is the protection of friendly naval assets against

aerial threats. The objective of minimizing the threat to the defended assets requires

optimal allocation of scarce defense resources to the targets. Flexible command and

control functionality is necessary to handle the dynamic nature of events in air de-

fense. Coordination and automation should be ensured between sensors and weapons

in single ship or task group air defense environment. To provide effective decision

support on the automation of the decisions, fast and efficient algorithms are needed

in the command-and-control systems of ships.

The naval air defense planning (NADP) problem consists of maneuvering decisions

of the ships and assigning/scheduling weapons and sensors to threats so that the to-

tal expected survival probability of friendly units is maximized. The NADP problem

can be defined as a specific version of the Weapon Target Assignment (WTA) prob-

lem, which has been extensively studied in the literature since 1950s. Compared

to other studies, the NADP problem includes new features that makes the problem

definition more realistic and applicable. It also deals with sensor assignment require-

v



ments, weapon/sensor blind sectors, sequence dependent setup times and ship’s radar

signature.

In this thesis work, the development of exact/heuristic solution approaches that pro-

vide fast and efficient decision support on the automation of the NADP decisions

is aimed. A mixed-integer nonlinear programming (MINLP) model of the NADP

problem is presented and heuristic solution approaches are developed for both Static

and Dynamic problem. The computational results demonstrate that these heuristic

approaches are both fast and efficient in solving the NADP problem.

Keywords: Naval Air Defense, Weapon Target Assignment, Engagement Scheduling,

Combat Management, Decision Support Automation, Military Operations Research
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ÖZ

DENİZ KUVVETLERİNİN HAVA SAVUNMASI İÇİN SİLAH-HEDEF
ATAMA: MODELLER VE SEZGİSEL YÖNTEMLER

Arslan, Caner
Doktora, Endüstri Mühendisliği Bölümü

Tez Yöneticisi: Prof. Dr. Ömer Kırca

Ortak Tez Yöneticisi: Prof. Dr. Orhan Karasakal

Eylül 2024 , 140 sayfa

Deniz görev gruplarının hava savunması, dost deniz unsurlarının hava tehditlerine

karşı korunmasıdır. Savunulan unsurlara yönelik tehdidi en aza indirme hedefi, kıt

savunma kaynaklarının hedeflere optimum şekilde tahsis edilmesini gerektirir. Hava

savunma harbinde olayların dinamik yapısını ele almak için esnek komuta ve kontrol

işlevselliği esastır. Tek bir gemi veya görev grubu hava savunma ortamında sensörler

ve silahlar arasında koordinasyon ve otomasyon sağlanmalıdır. Kararların otomas-

yonu konusunda etkin karar desteği sağlamak için gemilerin komuta kontrol sistem-

lerinde online olarak hızlı ve etkin algoritmalara ihtiyaç duyulmaktadır.

Deniz hava savunma planlaması (NADP) problemi, dost unsurlara yönelik tüm düş-

man tehditlerinin imha edilme olasılığının maksimize edilmesi için gemilerin ma-

nevra kararları ile silah/sensör atama/çizelgeleme faaliyetlerini içerir. NADP prob-

lemi, 1950’lerden beri literatürde yoğun olarak çalışılan Silah Hedef Atama (WTA)

probleminin özel bir versiyonu olarak tanımlanabilir. Diğer çalışmalarla karşılaştı-

rıldığında, NADP problemi, problem tanımını daha gerçekçi ve uygulanabilir hale
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getiren yeni özellikler içermektedir. Bu problemde sensör atama gereksinimleri, si-

lah/sensör kör sektörleri, sıra bağımlı hazırlık süreleri ve geminin radar kesit alanı

hususları da ele alınmaktadır.

Bu tez çalışmasında, NADP kararlarının otomasyonu konusunda hızlı ve etkin ka-

rar desteği sağlayan kesin/sezgisel çözüm yaklaşımlarının geliştirilmesi amaçlanmış-

tır. NADP probleminin matematiksel modellenmesi sunulmuş ve Statik ve Dinamik

problem için heuristik çözüm yaklaşımları geliştirilmiştir. Sonuçlar geliştirilen he-

uristik yaklaşımların NADP problemini çözmede hem hızlı hem de etkili olduğunu

göstermektedir.

Anahtar Kelimeler: Deniz Hava Savunma, Silah-Hedef Atama, Angajman Çizelge-

leme, Savaş Yönetim, Karar Destek Otomasyonu, Askeri Yöneylem Araştırması
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This thesis is dedicated to a future where "Peace at Home, Peace in the World", as

envisioned by Mustafa Kemal Atatürk, becomes a guiding principle for global

prosperity. As we tackle the complex challenges of military operations, our mission

remains constant: to ensure deterrence and uphold peace.
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CHAPTER 1

INTRODUCTION

1.1 Motivation and Problem Definition

Air defense in the maritime environment is protection of the friendly naval assets

against aerial threats. With recent advancements in air threat technologies, including

improvements in range and speed, the risk to naval platforms has increased signif-

icantly. In a maritime combat scenario, neutralizing the threat to defended assets

requires optimal allocation of scarce defense resources to targets. In this thesis study,

we define and address the Naval Air Defense Planning (NADP) problem, which con-

sists of maneuvering decisions of the ships and scheduling weapons and sensors to

the threats in order to maximize the total expected survival probability of friendly

units.

Traditionally, NADP decisions were made by task group commanders and executed

by combat system operators of ships. However, the effectiveness of these decisions

relies on experience, training, and cognitive competency of the commanders. As the

maritime combat environment becomes more complex and sophisticated, the task of

making the right decisions on time becomes more challenging for decision-makers.

Especially with the emergence of supersonic/hypersonic missiles in naval warfare, the

necessity of making these decisions within seconds has become crucial. As a result,

real-time decision support tools are essential for modern navies.

As a recent example, the conflicts between Israel and Iran can be highlighted. On

April 13, 2024, Iran launched more than 300 unmanned aerial vehicles and missiles

towards Israel [1]. Such attacks, involving multiple threats simultaneously, under-

score the critical importance of having fast decision-support algorithms in the back-
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ground to enable air defense systems to respond effectively and in coordination.

As an example for modern naval command and control systems, the ADVENT Com-

bat Management System (CMS) that is being used in the MILGEM project (national

warship program) of the Turkish Navy can be given. ADVENT CMS has an archi-

tecture that facilitates the user to make fast and correct decisions and aims a flexible

structure in the use of weapons and sensors.

The air defense of naval ships or task groups follows the principle of layered defense

by employing friendly air sorties, long/medium-range surface-to-air missiles, point

defense missile systems, naval guns, Close-In Weapons Systems (CIWS), and Elec-

tronic Warfare (EW) systems. The dynamic nature of events in anti-air warfare re-

quires flexible command and control functionality, with coordination and automation

between sensors and weapons in a single ship or task group air defense environment.

To provide effective decision support on the decisions, fast and efficient algorithms

are needed online and embedded in the command and control systems of the ships.

The fundamental goal of NADP is to find an allocation plan that assigns available

weapons and sensors in the task group against incoming threats. The problem in-

cludes maneuvering decisions of the ships and scheduling the defense resources to

enemy threats so that the total expected survival probability of the friendly units is

maximized.

The NADP problem can be defined as a specific version of the Weapon Target As-

signment (WTA) problem, which has been extensively studied in the literature since

1950s. Compared to other studies, the NADP problem includes new features that

make the problem definition more realistic and applicable. It also deals with sen-

sor assignment requirements, weapon/sensor blind sectors, sequence-dependent setup

times, and the ship’s infrared/radar signature.

In summary, this research aims to address the increasingly complex and challenging

nature of air defense in the maritime environment by developing fast and efficient al-

gorithms for the NADP problem, which optimizes the allocation of defense resources

to minimize threats to friendly naval assets.
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1.2 Contributions and Novelties

This study introduces, for the first time in the literature, a realistic mathematical mod-

eling of the naval air defense planning problem. Aimed at practical applicability in

combat management systems, the model incorporates factors such as weapon/radar

inventory constraints, setup times, blind sectors of systems, and the RCS/IR signa-

tures of ships. In the model, routing (heading of the ships) and engagement planning

(against which threat, with which weapon and when) decisions are made, considering

all these factors. In addition, various objective functions are modeled and compared

to further explore the problem features.

It is crucial not only to solve the problem optimally, but also to provide a solution in

a short time, ensuring practical usability. Therefore, the focus is on achieving both

near-optimal and computationally efficient solutions to address the critical need for

quick decision-making in air defense.

Acknowledging the computational challenges of the nonlinear MINLP model, this

research introduces a linearized model as an approximation. The linearized model

proves successful in providing effective solutions within a reasonable time for a sig-

nificant number of scenarios. To further decrease solution times, the research applies

a decomposition approach to the mathematical model. While this process effectively

reduces solution times, it is still insufficient to reach a level suitable for real-time

applications. Therefore, heuristic algorithms are developed to efficiently solve the

NADP problem.

Experiments conducted on both the static and dynamic problems have shown that the

algorithms developed for the NADP problem provide fast and effective solutions as

aimed. In addition, this study demonstrates that machine learning models can con-

tribute to solving this problem effectively. Thus, through this thesis study, a novel for-

mulation and effective solution approaches for the naval air defense planning problem

have been developed.
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1.3 The Outline of the Thesis

The outline of the thesis is as follows:

The findings obtained from the review of literature are explained in Chapter 2, pro-

viding context for NADP problem addressed in this study. This review highlights

significant methodologies and the evolution of the WTA problem, emphasizing the

need for a problem definition and solution specific to the naval air defense problem.

Chapter 3 describes the NADP problem, distinguishing between the static and dy-

namic versions. The mathematical formulation (MINLP) of the Static NADP prob-

lem is detailed in Chapter 4, including key assumptions underlying the model and

four different objective functions.

Chapter 5 of the thesis focuses on solution approaches for the Static NADP prob-

lem. It begins with the linearization of the model and introduces a Greedy Algorithm

for obtaining initial solutions swiftly. A thorough comparison between the exact and

linearized models is presented, followed by an exploration of the decomposition ap-

proach for the solution of the mathematical model. Additionally, the results obtained

using the three different objective functions are compared and reviewed. In this chap-

ter, heuristic solutions to the problem are discussed in detail, and Two and Three-

Stage Heuristic Algorithms are introduced. The performance of these heuristics is

analyzed, providing valuable insights into their efficiency in addressing the Static

NADP problem.

Chapter 6 of the thesis is dedicated to the Dynamic NADP problem. The chapter

begins with an introduction that describes the dynamic nature of the problem. Mathe-

matical formulation of the dynamic problem is provided in Section 6.2. A simulation

structure designed for the Dynamic NADP Problem is presented in Section 6.3, out-

lining the steps involved in simulating the dynamic environment. The chapter then ex-

plores heuristic solution approaches tailored for the Dynamic NADP Problem in Sec-

tion 6.4, including the DHAGA+EN+DP (dynamic version of the Three-Stage Heuris-

tic Algorithm) Algorithm, and MHAEN+DP (myopic approach) Algorithm. Section

6.5 presents the computational experiments conducted to evaluate the performance of

these solution approaches. In Section 6.6, implementation of a modified-SLS firing

4



policy and computational results are discussed. Additionally, a method for utilizing

machine learning models in the threat prioritization step of the MHAEN+DP Algo-

rithm is proposed and tested in Section 6.7. This chapter contributes valuable insights

into addressing the challenges posed by the dynamic nature of air defense scenarios

in maritime environments.

Chapter 7 discusses the implementation of the NADP Decision Support Automation

and proposes a methodology for the central use of the dynamic NADP Algorithm in

combat management systems.

Finally, conclusions and planned future work are discussed in Chapter 8.

5
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CHAPTER 2

REVIEW OF LITERATURE

In literature, it is observed that research in this area is gathered under the topic of the

WTA problem. We can consider defense resources in the NADP problem as weapons

and incoming threats as targets. The WTA problem aims to minimize the probability

of destruction of the friendly assets by allocating the weapons in the inventory to the

threats in the most appropriate way.

Relevant studies is reviewed to see the general features, assumptions, objectives, and

solution methods of the WTA problem in literature. In terms of the available infor-

mation regarding the problem environment (number of threats, number of weapons,

routes and the final destination of the threats, probabilities of kill, and any other in-

puts needed to define the scenario), the articles on the WTA problem can be divided

into two distinct groups; static and dynamic.

In the Static WTA (SWTA), all information regarding the environment is available and

the problem is solved for a single decision instance. In this type of problem, possible

subsequent developments in the environment are not taken into account. Whereas in

the Dynamic WTA (DWTA) problem, the decisions taken in one stage may affect the

decisions in the next time stage. In addition, some problem parameters may change

over time and the solution of the problem may need to be updated by taking these

changes into account.

There are various formulations of both SWTA and DWTA problems in the literature.

A recent survey paper on the WTA problem presented by Kline et al. (2019) [2]

summarizes the different formulations and exact/heuristic algorithms used to solve

the problem.

7



In the earliest static formulation of the WTA problem defined by Manne (1958) [3],

a scenario with m different weapon types and n targets is considered. There are dj

available inventory from weapon type j and each weapon type j kills the target i with

probability pij . vi represents the value of the target i. This problem is formulated as:

min
n∑

i=1

vi

m∏
j=1

(1− pij)
xij

s.t.
n∑

i=1

xij ≤ dj,∀j = 1, ..,m

xij ≥ 0,∀i = 1, .., n, j = 1, ..,m

where xij is the decision variable indicating the number of weapon type j assigned to

target i. This is one of the simplest formulations of the WTA problem.

Figure 2.1 shows the most common features that help to classify articles into different

groups in order to explain the assumptions of the studied WTA problem.

Figure 2.1: General Features to Group WTA Articles

It is seen that the formulation of the WTA problem changes according to the different

ways of handling those features. As another feature that makes a difference in the

problem formulation, the decisions considered in the studies are generally divided

8



into two as assignment and assignment with scheduling. In some studies, besides the

decision of which weapon will be allocated to which target, the decision of when the

weapons will be fired is also made.

The presence of an offensive or defensive approach in the definition of the problem

causes differentiation in the objective functions of the models. The maximum protec-

tion of friendly forces is aimed at the defensive version. In the offensive version, the

maximum destruction of the targets is desired.

In terms of weapon-target relationship, studies can be analyzed in four different

groups as one-to-one, one-to-many, many-to-one, and many-to-many. For instance,

the formulation of Manne (1958) [3] presented above has a many-to-many weapon-

target relationship. In this problem definition, weapon systems may be assigned to

many targets and each target may be assigned by more than one weapon system.

The reviewed articles on the WTA problem are summarized in terms of these features

and the solution approaches in Table 2.1.

The objective functions seen in the reviewed WTA studies are listed in Table 2.2.

"Minimization of the value-weighted total survival probability of the targets" is the

most commonly used objective in the literature.

Air defense problem for a naval task group was first studied by Karasakal (2004)[46].

"Maximization of the probability of no-leaker" objective is generally used in the ar-

ticles (Karasakal et al. (2008)[11], Karasakal et al. (2011)[15], Taghavi and Ran-

jbar (2015)[17], Silav et al. (2019)[38], Silav et al. (2021)[41], Karasakal et al.

(2021)[42]) on this problem. In Silav et al. (2019)[38] and Silav et al. (2021)[41],

a bi-objective model is presented for this problem that maximizes the probability of

no-leaker and minimizes the overall deviation from the initial schedule.

As a different approach from other WTA studies, Kwon et al. (1997) [4] and Kwon

et al.(2007) [9] use "minimization of the overall firing cost" as the objective function

and include in the model a constraint that ensures the probability of destroying targets

be greater than or equal to the minimum desired level.

Lloyd and Witsenhausen (1986) [47] proved the NP-completeness of the WTA prob-

9
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Table 2.2: List of the Objective Functions in Literature

Objective Articles

Minimization of the

value-weighted total survival

probability of the targets

Khosla (2001) [29], Lee et al. (2002)[5],

Lee et al. (2003)[6], Zeng et al. (2006)[7],

Ahuja et al. (2007) [8], Wu et al. (2008) [12],

Madni and Andrecut (2009) [13], Cha and Kim (2010) [14],

Ahner and Parson (2015) [34], Davis et al. (2017) [35],

Gülpınar et al. (2018) [36], Andersen et al. (2019) [20],

Li et al. (2019) [37], Lu and Chen (2019) [21],

Zhao et al. (2019) [19], Summers et al. (2020) [39],

Sonuc (2020)[22], Acar et al. (2023) [25]

Maximization of the

probability of no-leaker

Karasakal et al. (2008) [11], Karasakal et al. (2011)[15],

Zhu et al. (2014)[16], Leboucher et al. (2013b)[33],

Taghavi and Ranjbar (2015)[17], Silav et al. (2019)[38],

Silav et al. (2021)[41], Karasakal et al. (2021)[42]

Maximization of the expected total

damage value of the targets

Arslan et al. (2007)[10], Zhengrong et al. (2020)[40]

Luo et al. (2021) [23], Kong et al. (2021) [43]

Liu et al. (2023) [45], Zhang et al. (2023) [24]

Zou et al. (2024) [28]

Maximization of the expected total

value of the remaining assets
Xin et al. (2010a)[30], Xin et al. (2010b)[31]

Maximization of the safety margin Leboucher et al. (2013b) [32]

Minimization of the overall firing cost

Kwon et al. (1997)[4], Kwon et al. (2007)[9]

Li et al. (2019)[37], Zou et al. (2024) [28]

Kong et al. (2021) [43], Chang et al. (2023) [27]

Minimization of the initial

schedule disruption
Silav et al. (2019)[38], Karasakal et al. (2021)[42]

Maximization of allocation of same

air targets into the schedule of weapons
Silav et al. (2021)[41]

Maximizing the damage effect per unit cost Li et al. (2023)[44]

lem in its simplest form. Getting the optimal solution requires long running times

even for small-size problems. Therefore, most of the WTA studies in literature focus

on developing efficient heuristic solution methods.

In recent years, advancements in artificial intelligence have led to the incorporation

of machine learning models into the solution approaches for this problem. Luo et al.

(2021) [23] designs a data-driven policy optimization model with deep reinforcement

learning. Liu et al. (2023) [45] applies a reinforcement learning proximal policy op-

13



timization algorithm to the dynamic WTA problem. A reinforcement learning-based

multi-agent Q-learning model is proposed in Li et al. (2023) [44] for the multi-stage

WTA problem. Zou et al. (2024) [28] presents a multi-objective evolutionary algo-

rithm for the WTA problem that utilizes a deep Q-network-based adaptive mutation

operator and a greedy-based crossover operator.

Some studies address sensor-target assignment decisions in addition to the WTA de-

cisions. Bogdanowicz et al. (2007) [48] propose a model that aims to maximize the

total value of assigning weapons and sensors to targets considering both independent

and dependent weapon-sensor pairings. Chen et al. (2012) [49] construct the prob-

lem definition based on the benefit matrix for sensor-weapon-target pairings. Xin et

al. (2018)[50] define the likelihood of successful engagement as the product of the

weapon’s probability of kill and the sensor’s chance of detection.

Studies on the air defense problem for a naval task group have been scrutinized. The

missile allocation problem (MAP) is introduced by Karasakal (2004) [46] to maxi-

mize air defense effectiveness of a naval task group. In Karasakal et al. (2008) [11],

two integer linear programming models, which impose Shoot-Look-Shoot (SLS) en-

gagement policy are developed for MAP. Karasakal et al. (2011) [15] present a dis-

crete model to create optimal missile engagement schedule obeying SLS or a variant

policy. Taghavi and Ranjbar (2015) [17] develop a branch and bound based heuristic

algorithm to schedule missiles of a single weapon system. In Silav et al. (2019) [38],

Silav et al. (2021) [41] and Karasakal et al. (2021) [42], air defense problem for a

naval task group in dynamic environment is studied. A bi-objective missile reschedul-

ing model is developed to update the engagement plan in case of disruptions in the

initial schedule such as emergence of a new threat, failure of a SAM system, or de-

struction of an incoming threat. Karasakal et al. (2021) [42] proposes an artificial

neural network solution approach that includes an adaptive learning algorithm to in-

corporate the decision maker’s preferences into the model in order to get autonomous

decision support.

Besides the academic articles, there are some technical reports on combat resource

allocation planning in naval engagements in literature. In Benaskeur et al. (2007)

[51], a metaheuristic algorithm based on Tabu search is presented for the coordination
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of anti-air warfare hardkill and softkill weapon systems for one warship. Blodgett et

al.(2002) [52] use a naive Bayes method to decide the positioning of the ship to be

able to use the hardkill and the softkill weapons most effectively.

Table 2.3 summarizes the assumptions of the studies on the naval WTA problem. The

NADP problem studied in this article is also included in the table.

Table 2.3: List of Reviewed Articles on the Naval WTA Problem
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C2 Capability
Full

Coordination

Full

Coordination

One

Ship

Full

Coordination

Full

Coordination

Full

Coordination

One

Ship

One

Ship

Full

Coordination

Simultaneous

Engagement

Capacity

Unlimited
Unlimited &

Limited
- Unlimited Unlimited Unlimited

Two

Concurrent

Two

Concurrent
Limited

Missile

Allocation

Policy

SLS
SLS

SSL
SLS SLS SLS SLS - - SLS

Setup Time Fixed Fixed No Fixed Fixed Fixed - -
Sequence

Dependent

Sensor

Illumination

Requirements

No No No No No No - No Yes

Weapon-Sensor

Blind Sectors
No No No No No No No Yes Yes

Maneuvering

of the Ship
No No No No No No No Yes Yes
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CHAPTER 3

DESCRIPTION OF THE NADP PROBLEM

A naval task group (TG) is a formation of various types of warships deployed to-

gether to accomplish a specific task or activity. Ships in the TG may possess different

types of defense systems. Some ships, such as frigates and destroyers, may have area

defense systems together with self-defense systems, whereas some ships may have

no defense systems or only self-defense systems. Short-range surface-to-air missiles

(SAM), close-in weapon systems (CIWS), naval guns, and softkill systems such as

jammers, decoys, and flares can be considered as self-defense systems. Area defense

systems such as medium- or longer-range SAMs can cover other ships within their

effective range. Detailed explanation regarding the air defense systems of warships is

presented in Appendix A.

When considering the planning of self-defense systems, it may be possible to reduce

the problem to a single-ship-level problem. However, under the assumption of full

coordination, self-defense systems need to be considered in order to determine the

distribution of area defense systems and provide efficient air defense for all of the

ships in the task group.

The emergence of new technologies, such as supersonic/hypersonic air-to-surface

missiles (ASM) and unmanned combat aerial vehicles (UCAV), in threat environ-

ments has hardened the problem of air defense. The air threat faced by naval plat-

forms worth billions of dollars has led to great advances in both quality and quantity

in the last 20 years. The speed of ASMs has increased up to 5 to 6 Mach levels, while

their range has reached nearly 1000 km.

In particular, types that can fly at low altitudes pose the greatest threat to naval plat-
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forms. Sea-skimming missiles can be detected at an average range of 20–25 km

depending on the radar performance. If the speed of the threat missile is assumed to

be 4 Mach, it will take a maximum of 15–18 seconds for the missile to reach the plat-

form from this distance. The case that the enemy attack is carried out simultaneously

in salvos or with sequential shots makes the situation much more complicated and

pushes the limits for the coordination of the defense.

Figure 3.1: Seaskimming Missiles

In the context of naval warfare, fire channels are commonly used to engage airborne

threats. A fire channel is a combination of a fire control radar and a weapon system

that is used to engage and destroy targets. A fire control radar is used to track the tar-

get and provide accurate information about its position, velocity, and trajectory. This

information is then used to aim the weapon system and fire at the target. Additionally,

a fire control radar may provide illumination besides its primary function of tracking

targets.

The time utilization plan of the fire control system radar is one of the main factors

affecting the "maximum number of simultaneous engagements", which is perhaps the

most important criterion for the combat performance of the naval platforms. The radar

track and illumination requirements vary according to the guidance type of missiles.

Air defense missiles can have active homing (fire-and-forget), semi-active homing, or

passive homing guidance. Active homing missiles are fired after the threat data are

loaded, and they head towards the target by breaking all connections with the platform

from which it is fired. This type of missiles carry a source of radiation onboard, as

depicted in Figure 3.2.

In the case of semi-active guidance, the missile receives target information from the
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Figure 3.2: Guidance Types

illuminating sensor on the platform and is directed to the target using methods such

as home-all-the-way (HAW) or mid-course-guidance (MCG). In the HAW method,

the target is illuminated from the beginning of the engagement to the end, whereas

in the MCG method, the missile is locked onto the target by illuminating only at the

terminal stage. Unlike others, the passive guidance system is designed to detect the

target through natural radiation, such as heat waves, light waves, or sound waves. In

summary, SAM systems may have different radar illumination requirements.

Figure 3.3: Semi-Active Guidance Types
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Some SAM systems have retargeting capabilities. Retargeting capability provides the

opportunity to direct the missile to a new target during flight. For instance, if the

targeted threat ASM is destroyed before or a new higher-priority threat emerges, the

SAM in flight can be retargeted.

Threat missiles can apply waypoints so that the eventual targets of the threats cannot

be predicted at the beginning.

Another aspect that complicates the problem is that weapons and sensor systems may

have blind sectors, as shown in Figure 3.4. Especially during the engagement of semi-

active SAM systems, the threat ASM must be constantly in the coverage area of the

sensors.

Figure 3.4: Blind Sector Example

Platforms must provide their defense by using their limited resources effectively. Tak-

ing into account possible future threats in engagement planning and the efficient

use of defense resources is a critical issue that affects the final survival of a ship.

Therefore, other defense systems, such as Naval Gun, point defense weapon systems,

and soft-kill systems (jammer, chaff, flare, and decoys) need to be considered in the

NADP problem.
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In addition, there may be interactions among defense resources [53]. Therefore, it

is necessary to coordinate the hardkill and softkill systems in order to have feasible

plans.

The maneuvering of a ship can also be regarded as a defense resource that can be used

to increase the ship’s probability of survival. The ship can turn to expose its minimum

radar cross-section (RCS) or IR signature to the incoming ASM. RCS is called the

electromagnetic signature of an object, and it indicates radar detectability. Figure 3.5

shows an example radar cross section of a warship[54]. Objects with larger RCS can

be detected more easily. Therefore, the NADP problem includes ship maneuvering

decisions to increase the probability of survival.

Figure 3.5: Example Radar Cross Section of a Warship

3.1 Static NADP Problem

In this thesis work, we studied both the static and the dynamic versions of the NADP

problem. In the Static NADP problem, it is assumed that all the information about

the threats that will appear in the future are known at time period 0 and the engage-

ment planning is made accordingly. This includes information such as the detection

and the hit times of the threats, possible engagement alternatives, and probability of

kill values. Consequently, we plan for the entire scenario duration based on these
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known parameters. The decisions are made in a single decision instance without con-

sidering possible subsequent developments in the environment. It is assumed that

the platforms and the weapon/sensor systems on these platforms are alive and usable

throughout the scenario duration. The Static NADP problem involves making opti-

mal decisions based on the determined initial conditions, but the ability to respond to

changes in the war environment is limited.

Static NADP does not represent a realistic warfare environment; however, dealing

with the static version first helped us to understand the problem and enabled us to

construct valuable solution approaches. In addition, the fact that in the dynamic ver-

sion, each new situation can be handled as a static problem with the data at hand,

motivated us to start with the static problem first.

3.2 Dynamic NADP Problem

The Dynamic NADP problem extends the scope to address changing situation and

evolving threats in real-time. Unlike the static version, the dynamic problem con-

siders the fact that decisions made in one stage may impact decisions in subsequent

stages. This dynamic nature of the problem requires continuous updates to the de-

cision support system to adapt to evolving conditions such as the emergence or dis-

appearance of threats, breakdowns in weapons or radar systems, changes in threat

directions, and adjustments to other problem parameters in the maritime environment.

In a realistic naval warfare, threats appear one by one sequentially starting from a zero

threat environment and the NADP decisions need to be updated in the face of every

changing situation. Therefore, the renewed decisions have to be figured out in a feasi-

ble time to have an applicable decision support system. The Dynamic NADP problem

involves making decisions on the allocation of defense resources while considering

factors such as the emergence or disappearance of threats, breakdowns in weapons or

radar systems, changes in threat directions, and adjustments to other problem param-

eters. The probability of platforms and weapon/sensor systems being destroyed by

the threats at some point during the scenario also needs to be taken into account.

The goal remains the same, to maximize the total expected survival probability of
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friendly naval units. The decision support tools for the Dynamic NADP Problem need

to operate in real-time, providing efficient algorithms embedded in the command and

control systems of naval ships.

In summary, both the Static and Dynamic NADP Problems are integral parts of ad-

dressing the increasingly complex nature of air defense in the maritime environment.

The Static version focuses on a single decision instance, while the Dynamic version

incorporates real-time updates to adapt to the ever-changing conditions of naval war-

fare.
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CHAPTER 4

MATHEMATICAL FORMULATION OF THE STATIC NADP PROBLEM

The NADP problem described in the previous chapter can be modeled as a mixed-

integer nonlinear programming (MINLP) problem. In this chapter, assumptions and

the mathematical formulation developed for the problem is presented.

4.1 Assumptions of the Model

The assumptions used to develop the NADP model are described below:

• The NADP problem considers a TG composed of multiple ships, which may

be outfitted with weapon systems that can serve as either self-defense or area-

defense system. It is possible that ships within the group have different weapon

and sensor systems.

• It is assumed that all the information about the threats that will appear in the

future are known at time period 0 and the engagement planning is made accord-

ingly.

• For each weapon system, there is a limited number of available rounds.

• Full coordination is assumed between the ships in the TG.

• SAM systems may have different guidance (active, semi-active, passive hom-

ing, etc.) systems. Consequently, SAM systems may have different radar as-

signment requirements.

• Ships may have limited concurrent fire channels. Therefore a fire control sys-

tem can handle a limited number of simultaneous engagements.
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• Radar (track/illumination starting time) and weapon (time between two consec-

utive firings) setup times are considered in the model.

• Engagement duration to a threat is assumed to be the sum of the solution time

of the fire control problem, launch delay, flight time, and look-up time.

• SLS firing policy is implemented.

• Ship positions are taken as stationary. The velocity of the ships is assumed to

be negligible compared with the high speed of the threat ASMs.

• It is assumed that the threat missiles follow a straight trajectory and that the

eventual targets of the threats are known.

• Radar and weapons systems may have blind sectors. Ships can change their

headings in order to keep the threat in the coverage area.

• It is assumed that the combat management system’s threat evaluation algo-

rithms determine the single-shot kill probabilities for each engagement alter-

native.
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4.2 Indices and Sets

i ∈ A set of incoming threats (ASMs, UCAVs, etc.)

j ∈ S set of available weapon systems (SAMs, naval guns, CIWS,

chaff, etc.)

r ∈ R set of radar systems

n ∈ N set of friendly platforms

b ∈ BS set of blind sectors of the sensor systems

f ∈ F set of fire channels (weapon-radar system combination)

f ∈ Fj set of fire channels that uses weapon system j

f ∈ Fr set of fire channels that uses radar system r

f ∈ Fn set of fire channels on ship n

t ∈ T set of time slots {1, 2, 3, .., ts}

α ∈ Φ set of angles {0,1,2,..,359}

(i, f) ∈ G set of valid combinations of threats and fire channels

t ∈ Tif set of time slots that fire channel f can start engagement to

threat i, {t ∈ T : (i, f) ∈ G and [t, t+△ift] ⊆ [qif , rif ]}
t ∈ TRif set of time slots that the radar in fire channel f can be as-

signed to threat i (threat i is within the radar’s minimum and

maximum distances for tracking)

(f, ρ) ∈ Jit set of combinations of (f, ρ) that time slot t for threat i

will be blocked (if an engagement is started by fire chan-

nel f against threat i at time ρ, then no engagement can

be started at time t against the same threat) , {(f, ρ) :

(i, f) ∈ G, {t, ρ} ∈ Tif , and t ⊆ [ρ, ρ+△ifρ]}
ρ ∈ Uift set of time slots that fire control radar will be blocked if an

engagement is started by fire channel f against threat i at

time t (illumination time requirement for the engagements,

including radar setup times), {ρ ∈ TRif : (i, f) ∈ G ,t ∈
Tif , and ρ ⊆ [t− sr, t+△ift − 1]}
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4.3 Parameters

qif earliest beginning time of first engagement between threat i

and fire channel f

lif latest ending time of last engagement between threat i and

fire channel f

[qif , lif ] engageability interval for (i, f) ∈ G

△ift engagement duration of (i, f) pair if engagement starts in

time slot t

dj available rounds on weapon system j

sj setup time between two consecutive fires from weapon j

vi threat value of ASM i

vn value of ship n

rti time that threat i reaches its target

tgi target ship of threat i

sr radar r’s setup time needed for tracking and illumination

µif upper bound on number of engagements from fire channel

f against threat i when using the SLS firing policy

µ′
if upper bound on number of engagements from fire channel

f against threat i when using the modified SLS firing policy

pift single shot kill probability of the engagement from fire

channel f against threat i at time slot t

hn0 initial heading (true) of the ship n

mrn maximum maneuvering turn rate (degree per time period)

of the ship n

θint bearing (true) of the threat i from the ship n at time slot t

[bssfb, bsefb] fire channel f ’s starting-ending blind sector angles, (bssfb:

starting angle of the blind sector b of fire channel f , bsefb:

ending angle of the blind sector b of fire channel f )

rcsiα miss probability of threat i when bearing from the target

ship is α just before the hit

ts scenario duration (the hit time of the latest threat)
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4.4 Decision Variables

Yift =


1, if the weapon system of fire channel f is scheduled to start

engagement against threat i at time slot t
0, otherwise

Zift =

 1, if the radar of fire channel f is assigned to threat i at time
slot t

0, otherwise

Hnt = heading of the ship n at time slot t, positive variable within

[000− 359]

HInt = auxiliary heading variable of the ship n at time slot t, free

variable within [(−mrn), (359 +mrn)]

HLnt =


1, (auxiliary variable) if heading of the ship n is between

[−(mrn),−1] at time slot t
0, otherwise

HGnt =


1, (auxiliary variable) if heading of the ship n is between

[360, 359 + (mrn)] at time slot t
0, otherwise

FAnit =


1, (auxiliary variable) if bearing of the threat is greater than

the heading of the ship n at time slot t
0, otherwise

Bnit = relative bearing of the threat i from the ship n at time slot t,

positive variable within [000− 359]

FGifbt =


1, (auxiliary variable) if bearing of the threat is greater than

starting angle of the fire channel f ’s blind sector at time
slot t

0, otherwise

FSifbt =


1, (auxiliary variable) if bearing of the threat is smaller than

ending angle of the fire channel f ’s blind sector at time slot
t

0, otherwise

BRiα =

 1, if relative bearing of the threat i from its target ship is α just
before the hit

0, otherwise

PKi = hit probability of threat i determined by the target ship’s

RCS or Infrared signature just before the hit
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4.5 Objective Functions

Having various objective functions may give decision makers the chance to choose

the most suitable alternative according to their preferences. Therefore, four different

objective functions are modeled and compared in this study.

OBJ-1: Maximization of the probability of no-leaker for the entire TG.

max
∏
i∈A

(
1− PKi

∏
t∈T,f∈F

(1− pift)
Yift

)

or in other way;

max
∏
i∈A

(
1− PKi

∏
t∈T,f∈F

(1− piftYift)

)

OBJ-2: Minimization of the maximum hit probability of the threats.

min W

subject to

PKi

∏
t∈T,f∈F

(1− pift)
Yift ≤ W ∀i ∈ A

OBJ-3: Minimization of the value-weighted hit probability of the threats.

min
∑
i∈A

vi

(
PKi

∏
t∈T,f∈F

(1− pift)
Yift

)
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OBJ-4: Maximization of the value-weighted survival probability of the friendly units.

max
∑
n∈N

vn
∏

i∈A:tgi=n

(
1− PKi

∏
t∈T,f∈F

(1− pift)
Yift

)

Comparison results of the objective functions are given in Section 5.4.

4.6 Constraints

Weapon System Scheduling Constraints:

∑
t∈T,i∈A,f∈Fj

Yift ≤ dj ∀j ∈ S, (4.1)

∑
t∈Tif

Yift ≤ µif ∀(i, f) ∈ G, (4.2)

∑
(f,ρ)∈Jit

Yifρ ≤ 1 ∀i ∈ A, t ∈ T, (4.3)

∑
i∈A,f∈Fj ,t∈{t,..,t+sj−1}

Yift ≤ 1 ∀j ∈ S, t ∈ T, (4.4)

• Constraint set (4.1) provides the number of allocated munitions from a weapon

system can not exceed the available inventory.

• Considering the engagement intervals, constraint set (4.2) limits the number of

firings from each fire channel that can be scheduled to each threat.

• Constraint set (4.3) enforces the SLS policy. The allocation of weapon systems

to a threat is prevented before the previous engagement finishes. Constraint sets

(4.1-4.3) is first appeared in Karasakal et al. (2011) [15].

• Constraint set (4.4) enforces the setup time requirement between two consecu-

tive firings from a weapon system.
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Radar Illumination Requirement Constraints:

Yift ≤ Zifρ ∀(i, f) ∈ G, t ∈ Tif , ρ ∈ Uift,

(4.5)

Zift + Zi′f ′t ≤ 1 ∀i ∈ A, f ∈ F, t ∈ TRif , i
′ ∈ A \ {i}, f ′ ∈ Fr : f ∈ Fr,

(4.6)

• Constraint set (4.5) provides that fire control radars are assigned to engaged

threats during the required illumination time periods. The setup time needed

for radars to start tracking and illumination is also considered in this constraint.

If a fire channel is previously assigned to a threat, the engagement can be started

immediately without considering the radar setup time.

• Constraint set (4.6) indicates that at most one threat can be simultaneously il-

luminated by each radar. No radar setup time is required between the two en-

gagements from different fire channels with the same radar.

Ship Heading Constraints:

Hn0 = hn0 ∀n ∈ N, (4.7)

HInt ≥ Hn(t−1) −mrn ∀n ∈ N, t ∈ T, (4.8)

HInt ≤ Hn(t−1) +mrn ∀n ∈ N, t ∈ T, (4.9)

HInt ≤ 359 +mrnHGnt ∀n ∈ N, t ∈ T, (4.10)

HInt ≥ 360HGnt −mrnHLnt ∀n ∈ N, t ∈ T, (4.11)

HInt ≥ −mrnHLnt ∀n ∈ N, t ∈ T, (4.12)

HInt ≤ −1 + (360 +mrn)(1−HLnt) ∀n ∈ N, t ∈ T, (4.13)

HLnt +HGnt ≤ 1 ∀n ∈ N, t ∈ T, (4.14)

Hnt = HInt + 360HLnt − 360HGnt ∀n ∈ N, t ∈ T, (4.15)

• Constraint sets (4.7-4.15) provide the following inequality without disrupting

the linearity and ensure the ship’s maneuvering to happen obeying the maxi-

mum turning limits.
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Hn(t−1) −mrn ≤ Hnt ≤ Hn(t−1) +mrn ∀n ∈ N, t ∈ T,

• Heading is the direction in which a ship points at any given moment. It is

described as the angular distance relative to north. 000 (or 360) indicates true

north, and it goes clockwise through 359.

• Constraint set (4.7) sets the initial heading of the ship.

• The maximum turning limit requirement and the ship’s allowable heading in-

terval for the next time period can be defined using (4.8-4.14).

• The heading of the ship n at time t is determined using the auxiliary decision

variables HLnt, HGnt and HInt in the constraint set (4.15).

Fire Channel Blind Sector Constraints:

Bnit = θnit −Hnt + 360(1− FAnit) ∀i ∈ A, n ∈ N, t ∈ T, (4.16)

Bnit −
bssfb + bsefb

2
≤ bssfb − bsefb

2
− 1 + 360FGifbt

∀(i, f) ∈ G, n ∈ N : f ∈ Fn, b ∈ BS, t ∈ T, (4.17)

Bnit −
bssfb + bsefb

2
≥ bsefb − bssfb

2
+ 1− 360FSifbt

∀(i, f) ∈ G, n ∈ N : f ∈ Fn, b ∈ BS, t ∈ T, (4.18)

Zift ≤ 2− (FSifbt + FGifbt) ∀(i, f) ∈ G, b ∈ BS, t ∈ T, (4.19)
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• Fire Channel Blind Sector Constraints prevent the assignment of fire channels

to threats in blind areas.

• Constraint set (4.16) calculates the relative bearing (Bnit) of the threats from

the ships.

• Constraint sets (4.17-4.18) check whether the relative bearing of the threats is

within the defined blind sector starting-ending angle values, and constraint set

(4.19) prevents radar assignment if the threat is in the blind sector.

Ship RCS/IR Signature Constraints:

∑
α∈Φ

BRiα = 1 ∀i ∈ A, (4.20)

B(tgi)i(rti) =
∑
α∈Φ

αBRiα ∀i ∈ A, (4.21)

PKi =
∑
α∈Φ

(1− rcsiα)BRiα ∀i ∈ A, (4.22)

• Showing minimum IR/RCS against the incoming threat can be seen as a defense

resource since it can increase the survivability.

• The relative bearing of the threat from its target immediately before the hit

(B(tgi)i(rti)) is determined by constraint sets (4.20-4.21).

• The hit probability of threat (PKi) is calculated using constraint set (4.22) ac-

cording to the RCS or Infrared signature in the final aspect of the target ship

from the threat.

Variable Constraints

And finally constraint sets (4.23-4.34) are the variable constraints.

Yift ∈ {0, 1} ∀(i, f) ∈ G, t ∈ T, (4.23)

Zift ∈ {0, 1} ∀(i, f) ∈ G, t ∈ T, (4.24)

Hnt ∈ [0, 359] ∀n ∈ N, t ∈ T, (4.25)

34



HInt ∈ [−mrn, 359 +mrn] ∀n ∈ N, t ∈ T, (4.26)

HLnt ∈ {0, 1} ∀n ∈ N, t ∈ T, (4.27)

HGnt ∈ {0, 1} ∀n ∈ N, t ∈ T, (4.28)

FAnit ∈ {0, 1} ∀i ∈ A, n ∈ N, t ∈ T, (4.29)

Bnit ∈ [0, 359] ∀i ∈ A, n ∈ N, t ∈ T, (4.30)

FSifbt ∈ {0, 1} ∀(i, f) ∈ G, b ∈ BS, t ∈ T, (4.31)

FGifbt ∈ {0, 1} ∀(i, f) ∈ G, b ∈ BS, t ∈ T, (4.32)

BRiα ∈ {0, 1} ∀i ∈ A,α ∈ Φ, (4.33)

PKi ≥ 0 ∀i ∈ A, (4.34)

During the modeling development process, run-time comparison is conducted for dif-

ferent modeling alternatives for Fire Channel Blind Sector and Ship Heading Con-

straints. As a result of these analyses, the model has taken its final form with the

constraints described above.

4.7 Validation/Verification Tests of the Model

The NADP problem given in this chapter is solved using MATLAB and GAMS ver-

sion 24.1. Scenario parameters are created using MATLAB and data exchange be-

tween MATLAB-GAMS is established with the GDXMRW tool included in GAMS.

BARON is used as Mixed-Integer Nonlinear Programming (MINLP) solver.

Ten example scenarios are created in order to perform Validation/Verification tests

and to see the performance of the model. The results are presented in Appendix B. It

is seen that the model accurately represents the NADP problem.
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CHAPTER 5

SOLUTION APPROACHES FOR THE STATIC NADP PROBLEM

The mathematical model proposed in the previous section is a mixed-integer non-

linear programming (MINLP) problem. As Lloyd and Witsenhausen (1986) [47]

demonstrated the NP-completeness of the simpler form (WTA) of the NADP problem,

it can be computationally expensive to solve exactly, even for small scenario sizes. A

common approach for addressing this issue is to linearize the nonlinear equations in

the model and obtain approximate solutions. After the linearization, decomposition

of the mathematical model is applied as the first step toward developing a solution

method. This process is observed to effectively reduce the previously high solution

times, yet it still cannot reach a level sufficient for real-time applications. There-

fore, heuristic solution methods have been developed based on the decomposition of

the mathematical model. In this chapter, we present linearized model formulations,

propose heuristic approaches for solving the static NADP problem, and examine the

computational results.

5.1 Linearization of the Model

In the first trials, it is seen that the MINLP formulation of the NADP problem takes a

very long time even for small problems. For this reason, linearization of the problem

is needed in order to evaluate the success of the heuristic algorithms to be developed

in the following process. The nonlinear parts of the objective function 1,2 and 3

models can be linearized using logarithms and piecewise linear functions. The details

of the linearization processes are given in the Appendix C. The resulting linearized

models are given below (plus the Constraint Sets 4.1-4.21,4.23-4.33):
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Objective Function-1: Maximization of the probability of no-leaker for the entire

TG.

max
∑
i∈A

(c1b1i + c2b2i + c3b3i + c4b4i ) (5.1)

s.t.− lnPKi +
∑

t∈T,f∈F

aiftYift ≥ b1i + b2i + b3i + b4i , ∀i ∈ A (5.2)

lnPKi =
∑
α∈Φ

ln(1− rcsiα)BRiα ∀i ∈ A, (5.3)

0 ≤ b1i ≤ Z1, ∀i ∈ A (5.4)

0 ≤ b2i ≤ Z2 − Z1, ∀i ∈ A (5.5)

0 ≤ b3i ≤ Z3 − Z2, ∀i ∈ A (5.6)

0 ≤ b4i ≤ Z4 − Z3, ∀i ∈ A (5.7)

Objective Function-2: Minimization of the maximum hit probability of the threats.

min lnW (5.8)

s.t. lnPKi −
∑

t∈T,f∈F

aiftYift ≤ lnW ∀i ∈ A (5.9)

lnPKi =
∑
α∈Φ

ln(1− rcsiα)BRiα ∀i ∈ A (5.10)

Objective Function-3: Minimization of the value-weighted total hit probability of

the threats.

min
∑
i∈A

vi(c
1b1i + c2b2i + c3b3i ++c4b4i ) (5.11)

s.t.− lnPKi +
∑

t∈T,f∈F

aiftYift ≥ b1i + b2i + b3i + b4i , ∀i ∈ A (5.12)

lnPKi =
∑
α∈Φ

ln(1− rcsiα)BRiα ∀i ∈ A, (5.13)
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0 ≤ b1i ≤ Z1, ∀i ∈ A (5.14)

0 ≤ b2i ≤ Z2 − Z1, ∀i ∈ A (5.15)

0 ≤ b3i ≤ Z3 − Z2, ∀i ∈ A (5.16)

0 ≤ b4i ≤ Z4 − Z3, ∀i ∈ A (5.17)

5.2 A Greedy Algorithm for Getting An Initial Solution

As the problem size increases, even the linearized model cannot produce a solution

within a reasonable time. Therefore, a simple Greedy Algorithm (GA) is developed

to obtain an initial solution for the linearized models. This algorithm is our first

heuristic solution approach to the NADP problem. The pseudocode for the algorithm

is presented in Algorithm-1.

In this approach, threats are prioritized according to their values and hit probabilities.

Then, the highest priority threat is selected, and the highest hit probability engage-

ment to this threat within ts seconds1 is chosen. All other engagement options that

conflict with this selected engagement are then eliminated. If there is a weapon inven-

tory and a possible engagement option left, this cycle continues. After determining

the engagement decisions, heading decisions are made using a backward recursion

dynamic programming approach (details are given in Section 5.6.2) in a way that

will satisfy blind sector constraints and minimize the hit probabilities of the threats

considering the IR/RCS signature at the time of hit.

1 As a result of the experiments conducted on k, best greedy algorithm results are obtained when k = ts.
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Algorithm 1 Greedy Algorithm for Getting An Initial Solution
Generate problem parameters

V : set of valid {i, f, t} combinations of threat, fire channel and engagement time

dj: remaining rounds on weapon system j

Initialize all decision variables as zero

while |V | > 0 and
∑

j∈J dj > 0 do

Order the threats according to their priority values where

priorityi = vi
∏

t∈T,f∈F (1− pift)
Yift

Select the highest priority threat i that there is an engagement alternative in the

V set against it

Select the engagement against threat i ({i, f, t} combination from the V set)

which has the highest Pk value among the engagement alternatives within k = ts

seconds

Yift = 1

Zifρ = 1,∀ρ ∈ Uift ; (illumination requirement of selected engagement)

dj = dj − 1 where f ∈ Fj

Update V set

-Delete {i, f, t} combinations that violates SLS policy

-Delete {i, f, t} combinations that violates weapon/radar setup times

-Delete {i, f, t} combinations with overlapping illumination requirements

-Delete {i, f, t} combinations if dj = 0 where f ∈ Fj

end while

Determine H decision variables using a backward recursion DP Approach

Determine all other auxiliary decision variables

5.3 Comparison of the Exact and the Linearized Models

In this section, we present the computational results of the comparison between the

exact and the linearized models. MATLAB is used to set up the scenario data, and

GAMS version 24.1 is used to solve the nonlinear and linearized optimization mod-

els. The models are solved using a workstation with an Intel Xeon E-2246G CPU,

a 3.6 GHz processor, and 16 GB of RAM. Experimentation scenarios are generated

randomly using the parameter generation structure described in Appendix D.
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Given that the NADP problem is NP-complete, it is unlikely that an exact solution can

be obtained within a reasonable running time. Therefore, it is needed to linearize the

nonlinear model. In our first experiment, we sought to assess the performance of the

linearized model. We used BARON as the solver for the MINLP models and CPLEX

as the solver for the linearized models. OBJ-1 models are used in this experiment.

The running time limit is taken as 500 seconds for the linearized models and 1000

seconds for the MINLP models. We tested the models in 30 scenarios ranging from

small to large.

As seen in Table 5.1, the MINLP model fails to produce even a feasible solution

within the given time limit for 25 out of the 30 scenarios. The linearized model could

not reach a feasible solution within the time limit for 5 scenarios, and reached the

optimum solution for 14 scenarios. The primary goal of developing the greedy algo-

rithm is to provide an initial solution for the nonlinear and linear models. As seen in

Table 5.1, it can be said that the greedy algorithm produces good enough starting so-

lutions in short period of time. When initializing with a hot start, the linearized model

can achieve the optimal solution within the time limit for 21 scenarios. To evaluate

the performance of the linearized model, we used the linearized model solution to

initialize the nonlinear model. The results show that the nonlinear model cannot im-

prove the linearized solutions within the time limit for any of the 30 scenarios. It is

also observed that the linearized model finds the optimal solution for three scenarios

(scenarios 1,2, 5), where the MINLP model can produce the optimal solution.

Table 5.2 shows the comparison results for smaller (1-3 ships, 1-2 threats, 1-6 weapon

systems, and 1-5 radar systems) scenarios that MINLP model obtained optimal solu-

tions. According to the results, the MINLP model reaches the optimum solution in

138 of the 500 scenarios within the time limit of 1000 seconds. The comparison

results are calculated considering only these 138 scenarios. The linearized model

successfully reached the optimal solution in 136 of these scenarios, with an approxi-

mation gap of only 0.004096%.

Based on these results, we can observe that the MINLP model solution takes too

long even for small-sized problems, and the linearized model provides a successful

approximation for the exact solution. Therefore, the linearized model is decided to be
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used for the comparison of the heuristic approaches in the subsequent experiments.

Table 5.1: Comparison Results of the Exact and the Linearized Model Solutions

Linearized

Model

MINLP

Model

Greedy

Algorithm

Linearized Model

with Greedy

Hot Startb

MINLP Model

with Linearized Solution

Hot Startc

Scenario
Number

of Ships

Number

of Threats
Pnoleaker Run Timea Pnoleaker Run Time Pnoleaker Run Time Pnoleaker Run Time Pnoleaker Run Time

S-1 1 1 0.6115 0.10 0.6115 8.45 0.6115 0.10 0.6115 0.09 0.6115 0.69

S-2 1 1 0.7334 0.09 0.7334 5.21 0.7334 0.07 0.7334 0.09 0.7334 0.44

S-3 1 2 0.3365 0.12 0.3365 1000.45 0.3365 0.16 0.3365 0.11 0.3365 1000.17

S-4 1 3 0.2018 500.36 - 1000.47 0.1901 0.30 0.2018 500.36 0.2018 1001.00

S-5 2 1 0.5272 0.12 0.5272 5.15 0.5272 0.17 0.5272 0.12 0.5272 1.10

S-6 2 2 0.4687 0.21 0.4279 1000.28 0.4687 0.42 0.4687 0.20 0.4687 1000.31

S-7 2 3 0.4641 4.84 - 1000.28 0.4526 0.39 0.4641 4.40 0.4641 1000.59

S-8 2 4 0.0802 21.02 - 1000.35 0.0735 0.57 0.0802 7.39 0.0802 1000.71

S-9 3 2 0.7808 10.18 - 1000.47 0.7116 0.69 0.7808 3.01 0.7808 1001.01

S-10 3 3 0.7789 500.48 - 1000.73 0.5966 0.75 0.7915 500.48 0.7915 1001.62

S-11 3 4 0.5098 8.62 - 1000.61 0.1781 0.49 0.5098 8.08 0.5098 1001.18

S-12 3 5 0.1425 7.28 - 1000.39 0.1322 0.38 0.1425 6.83 0.1425 1000.85

S-13 4 3 0.8001 501.28 - 1001.44 0.6856 1.99 0.8121 465.42 0.8121 1003.36

S-14 4 4 0.2874 34.60 - 1000.57 0.2124 1.00 0.2874 55.20 0.2874 1001.24

S-15 4 5 0.0452 2.61 - 1001.07 0.0327 0.86 0.0452 3.07 0.0452 1002.26

S-16 4 6 0.1074 500.60 - 1000.76 0.0522 0.71 0.1115 338.94 0.1115 1001.75

S-17 5 4 0.6522 501.34 - 1001.43 0.5128 1.36 0.6587 501.32 0.6587 1003.47

S-18 5 5 0.3162 500.90 - 1001.06 0.2656 1.19 0.3163 500.89 0.3163 1002.47

S-19 5 6 0.2268 53.92 - 1000.96 0.1495 0.67 0.2268 54.08 0.2268 1002.27

S-20 5 7 0.4430 502.98 - 1145.60 0.2895 1.40 0.4517 502.96 0.4517 1145.10

S-21 6 5 0.4296 4.95 - 1001.06 0.2650 1.23 0.4296 5.32 0.4296 1002.47

S-22 6 6 0.2191 502.08 - 1001.83 0.0968 1.58 0.2231 80.73 0.2231 1005.05

S-23 6 7 0.2121 502.51 - 1002.07 0.2117 1.38 0.2280 172.40 0.2280 1006.01

S-24 6 8 - d 502.48 - 1287.60 0.0767 1.42 0.2639 503.37 0.2639 1287.37

S-25 7 6 0.3334 502.05 - 1001.97 0.2130 1.66 0.3587 125.89 0.3587 1005.16

S-26 7 7 - 501.75 - 1002.07 0.3723 1.89 0.5231 502.48 0.5231 1005.89

S-27 7 8 - 502.35 - 1007.64 0.0187 1.66 0.0525 502.99 0.0525 1007.30

S-28 8 6 0.2732 503.45 - 1001.23 0.2029 2.23 0.2752 168.58 0.2752 1003.57

S-29 8 8 - 504.21 - 3018.43 0.2343 2.73 0.2940 505.39 0.2940 3008.02

S-30 8 10 - 504.22 - 4987.21 0.1435 2.16 0.1435 506.05 0.1435 4984.20

Average - 272.72 - 1116.23 0.3016 1.05 0.3783 217.54 0.3783 1116.22

a Time in seconds.
b Greedy Algorithm solution is used as the initial solution.
c Linearized model solution is used as the initial solution.
− In this case, the solver could not reach a feasible solution within the time limit.
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Table 5.2: Comparison Results of the Exact and the Linearized Model Solutions-2

OBJ-1
Prob. of No Leaker

Run Time
(seconds)

Average Values

Linearized Model 0.6463530 0.17
MINLP Model 0.6463794 51.76

Percent Deviation % From
the Optimal Solution (Average)

Linearized Model 0.004096%
Number of Optimal Solutions

Linearized Model 136/138

5.4 Comparison of the Objective Functions

In this section, the results obtained using the three different objective functions (given

in Section 4.5) are compared. The experiments are conducted using the linearized

model with hot start using the greedy algorithm solutions. Linearization of OBJ-4

could not be performed; hence, that objective function is not used in the experiments.

However, the values of the solutions obtained using the other three objective functions

are also calculated in terms of the OBJ-4. The running time limit is set to 500 seconds

for the 30 scenarios used in the previous experiment. The results of the comparison

of objective functions are depicted in Table 5.3.

Since the OBJ-2 model provides the exact linearization of the original nonlinear

model, it can be seen in the results that the linearized OBJ-2 model obtains the best

solution in all of the scenarios in terms of objective function-2. However, it gives

worse results than OBJ-1 and OBJ-3 models in terms of the other objective functions.

When OBJ-1 and OBJ-3 model results are compared, it is seen that both model so-

lutions are quite close and it can be said that the models do not have a significant

advantage over each other. Considering all objective functions, the OBJ-3 model

provides slightly better results. This is expected since OBJ-1 does not consider the

weights while OBJ-3 does. In terms of the running times of the models, the OBJ-3

model is slightly faster than the OBJ-1 model. Thus, the OBJ-3 model is decided to
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be the main model in the subsequent computational experiments.

Table 5.3: Comparison of the Objective Functions

OBJ-1

Probability of

No Leaker

OBJ-2

Min of

Max Hit Prob.

OBJ-3

Value Weighted

Threat Hit Prob.

OBJ-4

Value Weighted

Ship Surv. Prob.

Run Time

(seconds)

Average Values

Linearized Model (OBJ-1) 0.3783 0.3477 a 0.2380 0.7278 216.8606

Linearized Model (OBJ-2) 0.3355 0.3315 0.2645 0.7035 136.5292

Linearized Model (OBJ-3) 0.3747 0.3662 0.2301 0.7378 210.7127

Percent Deviation (%) From the Best Solution (Average)

Linearized Model (OBJ-1) 0.74 7.35 5.15 1.89 -

Linearized Model (OBJ-2) 17.69 0.00 18.07 5.65 -

Linearized Model (OBJ-3) 3.20 13.82 0.00 0.11 -

Percent Deviation (%) From the Best Solution (Standart Deviation)

Linearized Model (OBJ-1) 0.02 0.10 0.07 0.06 -

Linearized Model (OBJ-2) 0.19 0.00 0.16 0.08 -

Linearized Model (OBJ-3) 0.07 0.21 0.00 0.01 -

Percent Deviation (%) From the Best Solution (Max)

Linearized Model (OBJ-1) 0.08 0.31 0.20 0.34 -

Linearized Model (OBJ-2) 0.73 0.00 0.57 0.41 -

Linearized Model (OBJ-3) 0.34 0.82 0.00 0.03 -

Number of Best Solutions

Linearized Model (OBJ-1) 24 16 14 14 -

Linearized Model (OBJ-2) 6 30 5 5 -

Linearized Model (OBJ-3) 19 14 29 29 -
a The objective function values of the corresponding model solution are calculated in terms of each of the four objectives. For

instance, this value represents the objective function 2 value of the solution of the linearized model with objective function 1.
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5.5 Decomposition Approach for the Solution of the NADP Problem

Following the linearization of the model, our second step was to attempt the de-

composition of the NADP model in pursuit of finding a solution method. The deci-

sions within the NADP problem inherently fall into two primary categories: engage-

ment planning, encompassing weapon scheduling (Yift) and sensor-threat allocations

(Zift), and the management of ship headings. The decomposition of these activities

into two sequential stages may have the potential to expedite the solution of the math-

ematical model. Figure 5.1 illustrates the bifurcation of the problem into two stages,

elucidating which constraints should be considered in each respective phase.

STAGE 1:
Engagement Planning Decisions
(Weapon Scheduling Yift and Sensor-Threat Allocation Zift)
- Weapon System Scheduling Constraints
- Radar Illumination Requirement Constraints

STAGE 2:
Heading Hnt Decisions
Fix Yift and Zift decisions of Stage 1 and solve the model with;
- Ship Heading Constraints
- Fire Channel Blind Sector Constraints
- Ship RCS Constraints

Figure 5.1: Decomposition of the NADP Problem

In Stage 1, the mathematical model solution yields engagement planning decisions

(Yift and Zift), aiming to eliminate threats with maximum probability. The Zift vari-

able is not included in the objective function; therefore, in some cases, it can be set to

1 in the solution even if no engagement is planned. Setting the Zift variable to 1 when

it is not necessary can hinder finding the best solution in Stage 2. To prevent this, the

Zift decisions are redefined based on the Yift decisions in the Stage 1 solution.

In Stage 2, maneuvering decisions (Hnt) are determined to ensure that these planned

engagements are carried out without being affected by the blind sectors of the weapon/sen-

sor systems and that the ship follows the heading in a way that will show minimum

IR/RCS trace to the threat. Note that in this decomposition of the problem, we expect

to obtain the optimal solution of the linearized model if there are no fire channel blind

sector limitations overlapping with Stage 1 decisions. There may be some cases in

which the ship cannot maneuver to its optimal heading due to blind-sector limitations.
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Comparison results for the linearized model with decomposition are presented in Ta-

ble 5.4. This experiment is conducted using the scenarios described in Table 5.1. As

can be seen from the results, the decomposition approach can obtain solutions very

close to those of the linearized model in terms of the objective function value in a

remarkably shorter run time. Considering the scenarios that are completed within the

time limit (20 out of 30), the decomposition approach mostly (15 out of 20) obtains

the optimal solution. Only in a few scenarios, there is a minor deviation from the

optimum due to the non-alignment of Stage 1 decisions with the fire channel blind

sector limitations.

Table 5.4: Comparison Results of the Linearized Model with Decomposition

Linearized Model
Linearized Model with Decomposition

(Stage 1 + Stage 2)

OBJ-3 Run Time OBJ-3
Stage 1

Run Time
Stage 2

Run Time
Total

Run Time
Scenarios with

optimal solution
(20 out of 30)

0.2571 52.13 0.2573 3.02 3.25 6.27

Scenarios halted
due to the time limit

(8 out of 30)
0.1935 504.31 0.1880 94.51 8.63 103.13

All scenarios a 0.2390 181.32 0.2375 29.16 4.78 33.95
a Except for scenarios in which the linearized model could not reach a feasible solution within the time limit (2 out of

30). The decomposition approach achieved a feasible solution in all the scenarios. There is only one scenario in which the
decomposition approach cannot be completed within the specified time limit.

As the scenario size increases, the speed performance of the decomposition approach

can be observed. For scenarios in which the linearized model is halted due to the time

limit, the decomposition approach is still able to complete within the time limit, thus

resulting in better solutions. However, with an average run time of 103.13 seconds for

these scenarios, the decomposition approach is not sufficiently fast to be applicable

in real-world applications.

Note that the decomposition approach achieves these results in a single iteration.

While optimal or near-optimal solutions can be obtained in a single iteration, this

approach can be further enhanced by employing methods such as Dantzig-Wolf or
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Benders Decomposition. In this case, we need to iterate between Stage 1 and Stage

2 solutions multiple times. However, as observed in the results, the decomposition

approach in a single trial already exceeds our acceptable time limits for finding a

solution.

At first glance, it may seem that Stage 1 can be further divided into two separate

sub-stages in which Yift and Zift decisions can be determined sequentially. However,

upon closer examination, it becomes apparent that this division is not feasible. Sensor

threat allocation Zift decisions cannot be allocated independently to the initial sub-

stage because they are not featured in the objective function. An alternative approach

could be to determine the Yift decisions in the first sub-stage (Stage 1.1) using the

weapon system scheduling constraint set. Subsequently, these decisions can be fixed,

and the radar illumination requirement constraint set can be used to ascertain the

Yift decisions. However, in this case, it is observed that the maximum number of

simultaneous firing channel limits are generally violated during Stage 1.1, leading to

the generation of infeasible solutions in Stage 1.2. For instance, in the experiments

conducted using the scenarios outlined in Table 5.1, 23 out of 30 scenarios resulted

in infeasible solutions. Therefore, it is concluded that in the mathematical model

solution, it is necessary to simultaneously determine the Yift and Zift decisions in

Stage 1.

As a result, these findings underscore the need for a heuristic solution method that can

produce solutions as swiftly and effectively as required in real-world applications. To

achieve this goal, we draw upon the decomposition approach presented here as a

starting point.

5.6 Heuristic Solution Approaches

5.6.1 Solution of the Stage 1 (Engagement Planning) Problem

In this subsection, we start with one fire channel - one threat scenario, which is the

simplest version of the NADP problem. Subsequently, studies are continued by in-

creasing the complexity step-by-step as multiple fire channels to one threat, one fire
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channel to multiple threats, and multiple fire channels to multiple threats.

5.6.1.1 One Fire Channel - One Threat (1x1 NADP) Problem

In this scenario case, there is one threat coming toward a single ship having one

weapon/sensor system. The ship can plan its engagement by allocating all its defense

resources only to this threat.

Following the detection of the threat, the combat management system first determines

all the engagement alternatives (V set) that can be employed against this threat. The

decisions to be made at this stage are which of these engagement alternatives will

be chosen to eliminate the threat with the highest probability. While making these

decisions, constraints such as SLS policy, setup times, illumination requirements,

and inventory levels specified in Section 4 are taken into account.

In the solution approach, an engagement network is constructed by considering the

problem constraints of these engagement alternatives. The graph created for an exam-

ple scenario is shown in Figure 5.2. For this scenario, there are 5 different engagement

alternatives to be fired between the time periods 3 to 7 against the incoming threat us-

ing the weapon system with 2 available inventories. Y116 and Y117 engagements can

also be made after the Y113 engagement, while only Y117 engagement can be made

after the Y114 engagement. In the optimal solution of this example scenario, the first

engagement is started at time period 3 and the second one is started at time period 7.

The objective function of 1x1 NADP problem is given below:

min

(
PK1

∏
t∈T,f∈F

(1− p1ft)
Y1ft

)

Note that this equation can represent our four objective function alternatives exactly

since there is only one ship and one threat. Taking the logarithm of the objective

function does not change the optimal solution:
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Figure 5.2: Network Representation of an Example 1x1 NADP Engagement Planning
Scenario

min

(
lnPK1︸ ︷︷ ︸
stage2

+
∑

t∈T,f∈F

ln(1− p1ft)Y1ft︸ ︷︷ ︸
stage1

)

In the engagement graph, each node represents an engagement alternative. Suppose

the cost of the edges leaving the nodes is the natural logarithm of the probability of

failure of the respective engagement (ln(1−pift)). As can be seen in the equation we

reached above, when we solve the shortest path problem between the start and end

nodes over the network created in this way, we find the solution that minimizes the

survival probability of the threat.

Note that, the engagement network is a directed acyclic graph with negative edge

weights. Since cost values of the edges are negative, the Bellman-Ford Algorithm

[55] can be used to find the shortest path in the network. This solution approach

provides the optimal weapon scheduling.
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5.6.1.2 Multiple Fire Channels - One Threat (Mx1 NADP) Problem

In the Mx1 NADP scenario case, there are multiple fire channels that can be allocated

to one incoming threat. Note that there may be multiple ships or a single ship having

multiple weapon/sensor systems in this scenario category. Since there is one incom-

ing threat as in the 1x1 NADP scenario case, the same solution approach (finding

the shortest path over the engagement network) explained above can be applied to

the Mx1 NADP problem. And this solution approach provides the optimal weapon

scheduling also for the Mx1 NADP scenario case.

The graph created for a Mx1 NADP example scenario is shown in Figure-5.3. For this

scenario, there are 5 different engagement alternatives to be fired between the time

periods 3 to 7 against the incoming threat using the weapon systems with 2 available

inventories. Y127 engagement can also be made after the Y113 engagement, while no

additional firing can be made after the Y114, Y125, Y126, and Y127 engagements. In

the optimal solution of this example scenario, the first engagement is started by fire

channel-1 at time period 3 and the second one is started by fire channel-2 at time

period 7.

Figure 5.3: Network Representation of an Example Mx1 NADP Engagement Plan-
ning Scenario
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5.6.1.3 One Fire Channel - Multiple Threats (1xN NADP) Problem

In this case, there is only one fire channel (single ship) and multiple incoming threats.

Therefore, one fire channel has to counter multiple threats in the 1xN NADP problem.

Different from 1x1 and Mx1 NADP cases, both weapon scheduling (Yift) and sensor-

threat allocation (Zift) decisions need to be determined in this scenario case.

In a complex problem such as NADP, finding a feasible solution for sensor allocation

and weapon scheduling is a challenging process. It is needed to find a solution that

satisfies many constraints while exploring a vast solution space. To solve this prob-

lem in this scenario case, we developed a genetic algorithm (GA) approach. The GA

approach can be highly beneficial in this case as it provides an effective way to search

through the solution space and finds a solution that complies with the problem’s con-

straints. By utilizing selection, crossover, and mutation operators, the algorithm can

generate and evaluate numerous potential solutions while ensuring they satisfy all the

constraints.

To successfully complete an engagement, tracking radars must be assigned to the en-

gaged threats during the required illumination time periods. Considering the problem

constraints, the GA is applied to determine sensor-threat allocation decisions. An

initial population is generated using the greedy algorithm and candidate solutions are

improved using crossover and mutation operators iteratively. The fitness function is

used to estimate the objective value of the solution.

A chromosome in this algorithm represents the threat assignments of the sensors for

each time period. Figure 5.4 shows the chromosome representation of the GA. In this

approach, there are sensors in rows and time periods in columns. Sensors can be allo-

cated to threats for each time period. Note that, this solution approach is developed to

address the sensor-threat assignment problem effectively in scenarios with multiple

sensors, as well as those with a single sensor.

In the GA crossover operator, the offspring chromosome matrices are generated by

mixing the rows of the parent chromosome matrices. For each offspring, a subset of

rows from one parent matrix is combined with the remaining rows from the other par-

ent matrix. This generates new sensor-to-threat assignment solutions by preserving
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Figure 5.4: Chromosome representation of Sensor-Threat Allocation Solution

the structure. The new offspring inherit the characteristics of both parents, potentially

leading to better allocation strategies.

The mutation operator works by altering the sensor-threat allocation decisions rep-

resented on the chromosomes. In the mutation process, an engagement alternative

is selected randomly. The corresponding sensor-threat allocations are then modified

to ensure that the selected engagement becomes part of the alternative engagements

considered by the algorithm. This process allows the mutation operator to introduce

diversity into the population.

Vi set (engagement alternatives for threat i) for each threat can be determined using

the sensor-threat allocations coded in the solution chromosome. In the fitness func-

tion, engagements are selected in a similar way as in the greedy algorithm. Threats are

prioritized, and the earliest possible engagement option is chosen against the selected

threat. This process continues in a loop until there are no remaining engagement alter-

natives. The objective function value, calculated based on these engagements, serves

as the fitness value of the solution.

Finally, the best solution of the GA provides sensor-threat allocation and weapons

scheduling decisions for the Stage 1 problem. The pseudocode of the algorithm is

given in Algorithm 2. The parameter set used in the GA is given in Appendix E.
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Algorithm 2 Stage 1 Genetic Algorithm
Generate initial population

- Use Greedy Algorithm with different k values and generate solutions

- If the initial population size is not provided using the Greedy Algorithm, then

generate random solutions (select random engagements and allocate sensors to

threats accordingly)

for niteration = 1 to Max Number of Iterations do
for nCrossover = 1 to Number of Crossovers do

- Select two solutions randomly from the population

- Create two offsprings (take allocation plans randomly from parents)

- For each offspring, change some sensor-threat allocation decisions using

the mutation rate

- Calculate the fitness value of the offsprings

- Add offsprings to the population if not duplicate

end for
- Generate random new solutions and add to the population if not duplicate

- Sort the individuals according to their fitness values and keep the population

size number of individuals

- If there is no improvement in the best fitness value for the convergence limit

number of iterations, then stop.

end for

Fitness Function:
Order the threats ascending in terms of HitT imei

V aluei

for ∀i ∈ A do
Determine the engagement alternatives (Vi set) using the chromosome (sensor-

threat allocation decisions)

while Vi set is not empty do
- Select the earliest starting engagement in the Vi set and delete conflicting

engagements from V and Vi sets considering all problem constraints such as SLS

policy, setup times, illumination requirements, and inventory levels.

end while
end for
- Calculate obj-3 (weighted average hit probability of the threats) value
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5.6.1.4 Multiple Fire Channels - Multiple Threats (MxN NADP) Problem

As in the 1xN NADP problem, both sensor-threat allocation and weapon scheduling

decisions need to be determined in this scenario case. In the GA solution approach,

the chromosome structure is designed to handle scenarios with multiple sensors with-

out requiring additional modifications for a MxN NADP scenario. Therefore, the GA

solution approach presented for the 1xN NADP problem can be used for the MxN

NADP problem.

5.6.2 Solution of the Stage 2 Problem

In Stage 2 of the algorithm, maneuvering decisions (Hnt) are made to minimize the

probability of being hit by showing the least IR/RCS trace to the incoming threat,

without hindering the planned engagements of the ship due to the blind-sector limita-

tions. A dynamic programming (DP) approach with backward recursion can be used

to solve this problem. The heading that the ship will take throughout the scenario time

(ts) is determined by calculating the gain value of all heading alternatives backward

from the hit time of the threat. The DP formulation for this problem is as follows:

Let L(α)t be the maximum survival probability of the ship that can be obtained if the

ship’s heading is α at time period t.

State space, S: {0, 1, 2, ..., 358, 359}

Action space, D: {−mrn,−mrn + 1, ..,mrn} degree of change in heading.

Backward recursion:

L(α)t =

(∏
i∈A

(1−HIT t
i (α))

)
maxθ∈D

(
L(α + θ)t+1

)
Ot(α) (5.18)

HIT t
i (α) =

 MISSi(1− rcsiα), rti = t

1, otherwise
(5.19)

MISSi =
∏

t∈T,f∈F

(1− pift)
Yift (5.20)
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And the boundary condition:

L(α)ts+1 = 1 (5.21)

where rti is the hit time of threat i, rcsiα is the miss probability of threat i when the

target ship’s heading is α immediately before the hit, MISSi denotes the survival

probability of threat i after all engagements, and HIT t
i (α) is the overall hit probabil-

ity of threat i if the ship’s heading is α at time period t. Ot(α) takes the value of 0

if there is an obstruction in one of the active engagements because of a blind sector

when the ship’s heading is α at time period t.

When problem stages (Stage 1 and Stage 2) are handled separately in one-threat sce-

narios, both proposed solution approaches can provide optimal solutions for their own

problem cases. However, considering both stages together, the proposed heuristic al-

gorithm does not guarantee an optimal solution. There may be some cases in which

the ship cannot maneuver to its optimal heading due to blind-sector limitations. In

the engagement planning stage, the blind sector limitations of ship routing are not

considered. Therefore, there may be infrequent cases where this algorithm does not

reach the optimal solution.

For multiple threat scenarios, an optimal solution cannot be guaranteed in Stage 1

since a heuristic algorithm is being used. However given the engagement decisions,

the proposed backward recursion DP algorithm can determine the optimal heading

solution for both one-threat and multiple-threats scenarios.
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5.6.3 Two and Three-Stage Heuristic Algorithms

Thus, we have explained our solution approaches for the static NADP problem, which

we decomposed into two main stages: engagement planning and heading. By utilizing

the proposed methods, a three-stage heuristic algorithm (HAGA+EN+DP ) is created.

The pseudo-code of the HAGA+EN+DP algorithm is presented in Algorithm 3.

Algorithm 3 Heuristic Algorithm with Genetic Algorithm + Engagement Network +
Dynamic Programming (HAGA+EN+DP )

Generate problem parameters

V : set of valid {i, f, t} combinations of threat, fire channel and engagement time

Initialize all decision variables as zero

Stage 1.1: Sensor-Threat Allocation Decisions

if |A| > 1 then
-Determine Z decision variables using the Genetic Algorithm

-Determine Vi set according to Z decisions

end if

Stage 1.2: Weapon Scheduling Decisions

Order the threats ascending in terms of HitT imei
V aluei

for ∀i ∈ A do
-Create Engagement Graph using Vi set

-Solve Shortest Path Problem using Bellman-Ford Algorithm

-Determine Y decision variables using the shortest path solution

end for

Stage 2: Heading Decisions

for ∀n ∈ N do
-Determine H decision variables using a backward recursion DP Approach

end for

As discussed in Section 5.5, dividing Stage 1 into two sub-stages in the mathematical

model solution does not prove useful for our purpose. However, in a heuristic solu-

tion approach, addressing sensor-threat allocation and weapon scheduling decisions

sequentially can yield effective solutions.
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After the allocation of the sensors to the threats by the GA, the engagement network

approach can be employed to determine weapon scheduling decisions. After deter-

mining the Zift decisions, we can always find a feasible Yift set, but otherwise, this

is not guaranteed. There may not be a feasible Zift solution for all Yift decisions. In

this algorithm, Stage 1 is decomposed into two sequential sub-stages for the NADP

scenarios with multiple threats. Stage 1.1 GA solution approach provides Vi set for

each threat by using the sensor-threat assignments of the genetic algorithm’s best so-

lution. For the scenario cases with single threat, Stage 1.1 is not needed and weapon

scheduling decisions can be determined using Stage 1.2.

In the GA, the sensor-threat allocations and the engagements are being determined

using a fitness function that evaluates the objective function value of the solutions.

Therefore skipping the engagement network approach in the Stage 1.2 of the algo-

rithm and using the fast engagement planning procedure of the fitness function could

be an alternative way to determine the engagement decisions. Thus our third heuristic

algorithm for the NADP problem is given in Algorithm 4:

Algorithm 4 Heuristic Algorithm with Genetic Algorithm + Dynamic Programming
(HAGA+DP )

Generate problem parameters

V : set of valid {i, f, t} combinations of threat, fire channel and engagement time

Initialize all decision variables as zero

Stage 1.1: Sensor-Threat Allocation Decisions

- Determine Z decision variables using the Genetic Algorithm

- Determine Vi set according to Z decisions

Stage 1.2: Weapon Scheduling Decisions

- Use the GA fitness value calculation procedure and determine weapon schedul-

ing decisions using Vi set

Stage 2: Heading Decisions

for ∀n ∈ N do
- Determine H decision variables using a backward recursion DP Approach

end for
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5.6.4 Performance of the Heuristic Algorithms

We first present the results for 1x1 NADP scenarios, which represent the simplest and

the most basic case of the NADP problem. In these scenarios, there is only one incom-

ing threat that needs to be intercepted by one available fire channel. Experimentation

results on 50 different scenarios are presented in Table 5.5.

Table 5.5: Comparison of the Heuristic Algorithms in 1 Fire Channel 1 Threat (1x1
NADP) Scenarios

OBJ-1

Prob. of

No Leaker

OBJ-2

Min of

Max Hit Prob.

OBJ-3

Value Weighted

Threat Hit Prob.

OBJ-4

Value Weighted

Ship Surv. Prob.

Run Time

(seconds)

Average Values

Greedy Algorithm 0.7678 0.2322 0.2322 0.7678 0.16

Linearized Model 0.7755 0.2245 0.2245 0.7755 0.18

Decomposition Approach 0.7755 0.2245 0.2245 0.7755 1.01

HAGA+EN+DP 0.7755 0.2245 0.2245 0.7755 0.20

HAGA+DP 0.7669 0.2331 0.2331 0.7669 0.58

Percent Deviation % From the Best Solution (Average)

Greedy Algorithm 0.93 10.91 10.91 0.93

Linearized Model 0.00 0.00 0.00 0.00

Decomposition Approach 0.00 0.24 0.24 0.00

HAGA+EN+DP 0.00 0.02 0.02 0.00

HAGA+DP 1.08 10.79 10.79 1.08

Number of Best Solutions

Greedy Algorithm 31 31 31 31

Linearized Model 50 50 50 50

Decomposition Approach 48 48 48 48

HAGA+EN+DP 48 48 48 48

HAGA+DP 37 37 37 37

The running time limit is taken as 500 seconds for the linearized model and decom-

position approach GAMS solutions. As seen in the results, the running times for each

model and algorithm are under one second on average. Due to the small size of the

scenarios, the GAMS solutions are also very fast. Our analysis reveals that the de-

composition approach and the HAGA+EN+DP algorithm provide the best solution in

48 out of the 50 scenarios, with the average objective values being very close to the
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linearized model GAMS solutions. Since all resources can be allocated to the single

incoming threat, Stage 1.1 is not needed for these scenarios. Stage 1.2 can provide

optimal engagement planning decisions if Stage 2 heading decisions are not con-

sidered. However, since the decomposition approach and HAGA+EN+DP algorithm

handle all stages separately, there may be small deviations from the optimal solutions

infrequently. They can provide optimal solutions for 1x1 NADP scenarios if there

are no fire channel blind sector limitations after the Stage 1 decisions. In this par-

ticular experiment, we encountered two scenarios where the blind sector limitations

of the fire channels resulted in negligible deviations from the optimal solution. The

slightly higher percent deviation in the decomposition approach is due to an approxi-

mation error in one of the scenarios. In summary, we can say that the HAGA+EN+DP

algorithm mostly achieves optimal results for 1x1 NADP scenario cases.

We also tested the HAGA+DP algorithm, which provides engagement plans using the

GA. This solution approach provides the best results in 37 out of 50 scenarios. The

average of the objective values is close to the average of the best objective values

(with an absolute deviation of only 0.0086). Our findings also reveal that the greedy

algorithm produces good solutions for this problem scenario.

The results for the Mx1 NADP scenarios are presented in Table 5.6. In these scenario

cases, there is a single threat to be countered by multiple fire channels. Just like in

the 1x1 NADP experiment, there is no need to have Stage 1.1 in the HAGA+EN+DP

algorithm since all resources can be allocated to a single target.

We observe similar outcomes in the Mx1 NADP scenarios as well. The HAGA+EN+DP

algorithm and the decomposition approach can achieve the best results in all scenar-

ios. The HAGA+DP algorithm can also provide close results with a small margin of

error.

When it comes to the single fire channel against multiple threat scenarios, the problem

starts to become more complex. In this case, time period assignments of the available

single weapon-radar option need to be divided among incoming threats. The results

of the 1xN NADP scenario experiment are presented in Table 5.7.

The running times of the GAMS solutions for these scenarios start to increase as
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Table 5.6: Comparison of the Heuristic Algorithms in Multiple Fire Channels 1
Threat (Mx1 NADP) Scenarios

OBJ-1

Prob. of

No Leaker

OBJ-2

Min of

Max Hit Prob.

OBJ-3

Value Weighted

Threat Hit Prob.

OBJ-4

Value Weighted

Ship Surv. Prob.

Run Time

(seconds)

Average Values

Greedy Algorithm 0.7853 0.2147 0.2147 0.9221 0.49

Linearized Model 0.8154 0.1846 0.1846 0.9328 0.27

Decomposition Approach 0.8154 0.1846 0.1846 0.9328 0.97

HAGA+EN+DP 0.8154 0.1846 0.1846 0.9328 0.74

HAGA+DP 0.8140 0.1860 0.1860 0.9324 1.12

Percent Deviation % From the Best Solution (Average)

Greedy Algorithm 3.47 37.50 37.50 1.13

Linearized Model 0.00 0.00 0.00 0.00

Decomposition Approach 0.00 0.00 0.00 0.00

HAGA+EN+DP 0.00 0.00 0.00 0.00

HAGA+DP 0.16 2.46 2.46 0.04

Number of Best Solutions

Greedy Algorithm 21 21 21 21

Linearized Model 50 50 50 50

Decomposition Approach 50 50 50 50

HAGA+EN+DP 50 50 50 50

HAGA+DP 44 44 44 44

expected. The average run time of the linearized model significantly increases to

48.17 seconds in the 1xN NADP scenarios. The decomposition approach, with an

average runtime of 3.49 seconds, achieves the same average objective function value

as the linearized model and even better results in terms of average percent deviation.

The reason for the decomposition approach outperforming the linearized model on

average is due to the fact that in some scenarios, the linearized model fails to reach

the optimal solution within the runtime limit of 500 seconds.

It is observed that the heuristic algorithms exhibit a more reasonable increase in ex-

ecution times. Furthermore, when considering the objective function value, it can

be observed that the heuristic algorithms produce results that are close to the results

of the GAMS models, with an average deviation of 2.89% for HAGA+EN+DP and
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Table 5.7: Comparison of the Heuristic Algorithms in 1 Fire Channel Multiple
Threats (1xN NADP) Scenarios

OBJ-1

Prob. of

No Leaker

OBJ-2

Min of

Max Hit Prob.

OBJ-3

Value Weighted

Threat Hit Prob.

OBJ-4

Value Weighted

Ship Surv. Prob.

Run Time

(seconds)

Average Values

Greedy Algorithm 0.2534 0.5367 0.3939 0.2534 0.25

Linearized Model 0.2927 0.4674 0.3618 0.2927 48.17

Decomposition Approach 0.2934 0.4648 0.3618 0.2934 3.49

HAGA+EN+DP 0.2847 0.4725 0.3671 0.2847 1.25

HAGA+DP 0.2839 0.4724 0.3680 0.2839 1.23

Percent Deviation % From the Best Solution (Average)

Greedy Algorithm 17.04 23.36 11.62 17.04

Linearized Model 0.19 2.51 0.14 0.19

Decomposition Approach 0.22 1.00 0.09 0.22

HAGA+EN+DP 2.11 4.44 2.89 2.11

HAGA+DP 2.45 4.35 3.38 2.45

Number of Best Solutions

Greedy Algorithm 7 21 6 7

Linearized Model 46 39 46 46

Decomposition Approach 42 34 42 42

HAGA+EN+DP 24 34 25 24

HAGA+DP 23 34 24 23

3.38% for HAGA+DP . This demonstrates the effectiveness of heuristic algorithms in

providing solutions that closely approximate the solutions obtained from the GAMS

model.

The results for multiple fire channels and multiple threats scenarios can be seen in

Table 5.8. Detailed results are presented in the Appendix F.

The GAMS average running time increases to 174.21 seconds for the linearized model

and 61.85 seconds for the decomposition approach, whereas the heuristic algorithm’s

running time reaches up to approximately 7 seconds. Meanwhile, the Greedy al-

gorithm consistently maintains an average running time of around 1 second. As ob-

served in the results of 1xN NADP, the linearized model obtains slightly worse results

than the decomposition approach due to the 500-second runtime limit. It is notewor-
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Table 5.8: Comparison of the Heuristic Algorithms in Multiple Fire Channels Multi-
ple Threats (MxN NADP) Scenarios

OBJ-1

Prob. of

No Leaker

OBJ-2

Min of

Max Hit Prob.

OBJ-3

Value Weighted

Threat Hit Prob.

OBJ-4

Value Weighted

Ship Surv. Prob.

Run Time

(seconds)

Average Values

Greedy Algorithm 0.3209 0.4187 0.2520 0.7017 1.07

Linearized Model 0.4084 0.3172 0.2084 0.7477 174.21

Decomposition Approach 0.4087 0.3139 0.2075 0.7459 61.85

HAGA+EN+DP 0.3986 0.3239 0.2122 0.7452 7.39

HAGA+DP 0.3969 0.3243 0.2135 0.7442 7.34

HAGA+EN+DP (1 sec limit) 0.3892 0.3314 0.2184 0.7362 2.33

Percent Deviation % From the Best Solution (Average)

Greedy Algorithm 28.32 43.19 29.55 7.63

Linearized Model 1.25 1.13 0.88 0.34

Decomposition Approach 0.88 1.96 0.18 0.13

HAGA+EN+DP 4.59 4.66 3.26 0.64

HAGA+DP 5.19 4.81 4.01 0.78

HAGA+EN+DP (1 sec limit) 9.11 6.29 7.31 1.36

Number of Best Solutions

Greedy Algorithm 6 15 6 6

Linearized Model 33 38 31 31

Decomposition Approach 38 39 41 39

HAGA+EN+DP 22 34 22 22

HAGA+DP 19 33 19 20

HAGA+EN+DP (1 sec limit) 16 29 16 16

thy that the objective function values between the heuristic algorithms and the GAMS

solutions do not exhibit a notable difference, indicating that close solutions can be ob-

tained in a much shorter time frame using heuristic algorithms.

Additionally, we wanted to assess the performance of the HAGA+EN+DP algorithm

when limiting Stage 1.1 to 1 second in this experiment. As the scenario size increases,

it may be necessary to restrict the runtime of the heuristic algorithms. The iterations

of the GA in Stage 1.1 can be dynamically constrained based on the threat status and

urgency of countermeasures. According to the results, when Stage 1.1 is constrained

to 1 second, the HAGA+EN+DP algorithm produces solutions with an average percent

62



deviation of 7.31 in average runtime of 2.33 seconds.

These results highlights the efficiency and effectiveness of heuristic algorithms in

quickly generating comparable solutions without compromising solution quality for

the NADP problem. Therefore, the small deviation observed in the objective func-

tion values further emphasizes the value of heuristic algorithms as valuable tools for

addressing and solving this complex problem.
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CHAPTER 6

DYNAMIC NADP PROBLEM

6.1 Introduction

In the dynamic NADP problem, which represents the war environment more realisti-

cally than the static version, the need for the first engagement planning arises when

the first threat is reported, while the friendly units are in a zero-threat environment. In

this study, it is assumed that all friendly units have the capability of full coordination

and data sharing. In other words, it is accepted that the detection of a threat by a

sensor of a platform is instantly learned by all other platforms in the task group via

the link.

After the detection of the first threat and the generation of an engagement plan against

this threat, the solution needs to be updated in the case of any change in the war envi-

ronment. These are the situations that may require an update in the current assignment

and schedule plan:

• Detection of a new threat

• Miss/destruction of the threat after a weapon-threat engagement

• Disappearance of a threat

• Destruction of a friendly unit

• Breakdown of a weapon/radar system

• Change in the direction of a threat

• Change in other problem parameters
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When a new situation that requires a solution update is encountered, the engagements

in the current plan that need to be executed immediately or in a very short call are

fixed, and the solution is updated accordingly.

Unlike the static NADP problem, in a dynamic problem, it is assumed that if a friendly

ship is hit during the scenario, the weapon/sensor systems onboard become unusable,

better reflecting the actual situation. This assumption acknowledges that the func-

tionality of weapon and sensor systems may be compromised if a friendly ship is

targeted and hit within the scenario. This dynamic aspect introduces a more practical

perspective, emphasizing the evolving nature of the naval air defense environment. In

contrast, the static problem overlooks these implications, assuming a constant state of

system readiness, regardless of the unfolding events within the scenario. The static

problem considers all threats and plans for the entire scenario period under the as-

sumption that weapon/sensor systems will never be hit.

In the static problem, consideration of ship damage is impractical because these sce-

narios depict a single moment in time, lacking the evolution of events. Thus, the

dynamic model provides a more comprehensive and realistic representation of the

challenges faced in the naval air defense planning. For example, if the first arriving

threat hits its target, the ship will be out of combat, and any engagements that can be

made by the ship will be canceled.

To gain a better understanding of the dynamic NADP problem, we can examine Fig-

ure 6.1. In this representation, the development of events and engagement planning

processes can be observed second by second, providing detailed insight into the dy-

namics of the scenario.

The deviation from the current plan may not be taken into account since the new en-

gagement plan is generated using only the possible engagement alternatives. There-

fore, in this work, a bi-objective version of this problem is not studied. Our effective-

ness objective function is used as a single objective function in the model. Feasible

planning is made by taking into account all problem limitations such as weapon setup

time and radar illumination requirements. Since threat ASM systems can move very

fast, counter-engagement must be initiated without delay. Therefore, renewed de-

cisions must be determined in a feasible time frame to have an applicable decision
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Figure 6.1: Example Development of Events in Dynamic NADP Problem

support.

6.2 Mathematical Formulation of the Dynamic NADP Problem

In this section, our aim is to elucidate the dynamic NADP problem by presenting

the mathematical formulation. Thus, differences compared to the static problem for-

mulation can be highlighted. As the first modification, it is needed to track the sta-

tus of platforms’ survival throughout the scenario’s progression within the dynamic
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problem formulation. Therefore, the inclusion of the following additional decision

variable and constraint set in the formulation is necessary.

Additional Decision Variable:

PSift = Probability of the platform, on which the firing channel f is lo-

cated, not being damaged until the time period that is required to

complete the engagement {i,f,t}

Additional Constraint Set:

PSift =
∏

i ∈ A : {f ∈ Fn : tgi = n,

rti <= max(ρ) : ρ ∈ Uift}

(
1− PKi

∏
t′∈T,f ′∈F

(1− pif ′t′PSif ′t′)
Yif ′t′

)
,

∀(i, f) ∈ G, t ∈ T (6.1)

This constraint set calculates the survival probability of the platform until the latest

time required to complete the i,f,t engagement. To achieve this, the miss probabilities

of all threats expected to be on the platform until the last illumination time of the

engagement i,f,t are multiplied. The hit probabilities of the i,f,t engagements are

updated by multiplying them with the survival probabilities of the engaging platform.

Update in the Objective Function (OBJ-3)

min
∑
i∈A

vi

(
PKi

∏
t∈T,f∈F

(1− piftPSift)
Yift

)

The modification in the objective function-3 can be seen above. For engagements

to be carried out successfully, the platform must not be hit by any threat until the

last required illumination time for the engaging weapon. Therefore, the single shot

kill probability of the engagements is multiplied by the probability of the platforms

surviving to carry out these engagements.
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Note that, at any point in the scenario progression, previously given and immutable

engagement decisions (such as missiles already in flight or engagements that have be-

gun the firing process) can be accounted for in the mathematical formulation by fixing

the relevant decision variables. These previously fixed decisions are also considered

in the calculation of the platforms’ survival probabilities.

The introduction of a new decision variable, additional constraint set and modified ob-

jective function in the dynamic problem significantly increases the complexity of the

mathematical formulation. Due to the infeasibility of solving this formulation within

a reasonable timeframe, the mathematical formulation solution is not employed in the

computational experiments conducted for the dynamic problem.

6.3 Simulation Structure for Dynamic NADP Problem

A simulation structure is developed to test the algorithms for the dynamic NADP

problem. From the initiation of a scenario until the time on target of the last threat, all

time points of events are visited, and the progression of the naval warfare environment

is simulated. The steps of the simulation structure are as follows:
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Algorithm 5 Dynamic NADP Simulation Steps
for run = 1 to nmax_iteration do

Generate problem parameters
E: Events list that creates a change in the problem scenario
E ← {}
Add threat detection times to E

Add threat ship hit times to E

V : List of possible engagement alternatives
V ← {}
for t = 1, 2, .., ts do

for each event ∈ E at time t do
if Event: New Threat detection then

Update V

else if Event: Weapon-Threat Encounter then
Determine if the threat is destroyed by the weapon
Update V , E

else if Event: Threat-Ship Hit then
Determine if the ship is hit by the threat
Update V , E

else if Event: Breakdown of a Radar/Weapon System then
Update V , E

else if Event: Threat Route Change or Threat Disappearance then
Update V , E

else if Event: Weapon Engagement Start against a Threat then
Update E

end if
end for
if V set is updated then

Solve NADP problem and determine new solution
Update E

end if
Update the threat/SAM positions and ship headings

end for
Calculate obj3 value of the run
Calculate CI of the obj3 values

CI = obj3± tscoreα
2
,t−1

σ(obj3)√
t

if (CIupper − CIlower)/2 <= 0.05 then
Exit the runs

end if
end for
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In the simulation of the dynamic NADP problem, the V and E lists are updated, if

needed, at each step. If the V list is updated in response to a new situation, the engage-

ment plan must be updated accordingly. Consequently, a new solution is determined

at the current time based on the available data, and the new engagement plan con-

tinues to be implemented over time. Events such as the breakdown of radar/weapon

systems, threat disappearance, or threat route changes are not considered in the sim-

ulation analysis within the scope of this study. Their occurrences can be simulated

using predetermined probabilities. However, introducing stochastic parameters for

these events increases variability of the results used to determine the success of the

algorithms. Therefore, these events never occur in the experiments of this study.

Additionally, the retargeting capability, which is not considered in the static problem,

can be modeled in the dynamic problem. This means that if an airborne SAM’s target

is neutralized before impact, the SAM can be redirected to other threats according to

its current trajectory and speed. Retargeting can be introduced as a new engagement

alternative in the updated scenario. However, due to the reasons outlined above, the

retargeting capability is not considered in the experiments.

The expected objective function value achievable using the solution algorithm for a

given scenario can be obtained by evaluating all possible situations that may occur

in the scenario. Starting from time t = 0, the expected objective function value can

be computed by considering all possible situations through the decision tree analysis

approach. However, this approach is suitable for small-scale problems because the

probability space expands with the size of the problem, making it time-consuming to

find the expected value for larger scenarios. Therefore, in our analysis, while calcu-

lating the expected value for small problems, we employed a Monte Carlo simulation

approach for larger problems using multiple runs to estimate the average objective

function value.

In Monte Carlo simulation scenarios, runs are carried out for each scenario until the

mean of the objective function values fall within the + − 0.05 interval for a 95%

confidence level. The number of runs for each scenario is limited to 100.

Additionally, to track the development of events within the scenario simulation and

to validate the developed simulation environment, a visualization tool is implemented
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using MATLAB plotting tools. Figure 6.2 displays a snapshot of a scenario using this

visualization tool.

Figure 6.2: Snapshot of a Scenario in MATLAB

6.4 Heuristic Solution Approaches for the Dynamic NADP Problem

6.4.1 HAGA+EN+DP Algorithm

In the dynamic NADP environment, each new situation can be handled as a static

problem with existing information at hand. Therefore the solution approaches de-

veloped for the static problem can also be used to obtain a solution for the dynamic

NADP problem.

The first solution approach that can be employed for the Dynamic NADP problem

may be the HAGA+EN+DP algorithm, which is developed for the Static NADP prob-

lem, explained in Section 5.6.3. Since the HAGA+EN+DP algorithm provides more

successful results than the HAGA+DP algorithm and there is no significant difference

in runtime, the HAGA+DP algorithm is not used in the experiments conducted for the

dynamic problem. Additionally, because the experiments require a very long runtime,

the linearized models (GAMS solutions) are not used in the dynamic problem experi-
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ments. As a straightforward approach, the Greedy algorithm is considered among the

alternative solution approaches in the experiments conducted in this section.

6.4.2 DHAGA+EN+DP Algorithm

As previously elucidated in the preceding sections, the most significant contribution

of this study to the literature is the mathematical definition of the NADP problem,

its decomposition for more effective solutions, and the development of a three-stage

heuristic algorithm based on this decomposition. These developments made on the

static problem are largely applicable to its dynamic counterpart. In this context, the

HAGA+EN+DP algorithm proposed for the static problem is modified to achieve bet-

ter results in the dynamic scenarios. Referred to as the DHAGA+EN+DP (dynamic

version of HAGA+EN+DP ) algorithm, this algorithm incorporates the necessary ad-

justments, as outlined in Section 6.1 and 6.2, to consider the survival states of the

ships within the scenario. The pseudocode of the DHAGA+EN+DP algorithm is given

in Algorithm 6:

In this approach, the decisions made during the solution process consider the subse-

quent effects of being hit by threats. In the genetic algorithm of Stage 1, the survival

probabilities of the ships are considered when calculating the fitness value of the so-

lutions. As engagement plans are created for each threat, the kill probabilities of

subsequent engagements from the targeted ship are updated based on the survival

probability of that ship. The pseudocode for the modified fitness function calculation

procedure is provided in Algorithm 7:

Thus, compared with the static version, the modified version of the HAGA+EN+DP

algorithm is expected to provide more successful engagement decisions in a dynamic

environment.

6.4.3 MHAEN+DP Algorithm

The DHAGA+EN+DP algorithm encompasses the three-stage solution approach de-

veloped for this problem. In scenarios without time stringency, it is expected to

provide the best solutions. However, particularly for large-scale problems, the so-
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Algorithm 6 Dynamic Heuristic Algorithm with Genetic Algorithm + Engagement
Network + Dynamic Programming (DHAGA+EN+DP )

Generate problem parameters
V : set of valid {i, f, t} combinations of threat, fire channel and engagement time
Initialize all decision variables as zero

Stage 1.1: Sensor-Threat Allocation Decisions
if |A| > 1 then

-Determine Z decision variables using the Genetic Algorithm with modified
fitness function

-Determine Vi set according to Z decisions
end if

Stage 1.2: Weapon Scheduling Decisions
Order the threats ascending in terms of HitT imei

V aluei

for ∀i ∈ A do
-Create Engagement Graph using Vi set
-Solve Shortest Path Problem using Bellman-Ford Algorithm
-Determine Y decision variables using the shortest path solution
-Update pift single shot kill probabilities of the engagement alternatives that

can be fired from the target ship of threat i after HitT imei according to the hit
probability of the threat i.
end for

Stage 2: Heading Decisions
for ∀n ∈ N do

-Determine H decision variables using a backward recursion DP Approach
end for

lution time of the genetic algorithm approach, where defense resources are allocated

to threats, can be excessively high and may exceed our practical usage limits. There-

fore, to have a solution approach that can generate faster solutions for large-scale

problems, the MHAEN+DP algorithm is developed.

The pseudocode of the MHAEN+DP algorithm is presented in Algorithm 8:

In this algorithm, incoming threats are addressed one by one based on their priority,

determined by the value (V aluei) and the time on target (HitT imei) of the threats.
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Algorithm 7 Fitness Function of Stage 1 Genetic Algorithm for Dynamic NADP
Fitness Function:
-Order the threats ascending in terms of HitT imei

V aluei

for ∀i ∈ A do
-Determine the engagement alternatives (Vi set) using the chromosome (sensor-

threat allocation decisions)
while Vi set is not empty do

- Select the earliest starting engagement in the Vi set and delete conflicting
engagements from V and Vi sets considering all problem constraints such as SLS
policy, setup times, illumination requirements, and inventory levels.

end while
-Update pift single shot kill probabilities of the engagement alternatives that

can be fired from the target ship of threat i after HitT imei according to the hit
probability of the threat i.
end for
- Calculate obj-3 (weighted average hit probability of the threats) value

Accordingly, the threats that are close in time to hitting the target and have higher

values are prioritized as the top-priority threats in the algorithm. Later in Section 6.7,

threat prioritization approach using machine learning models is proposed and com-

pared. An engagement plan is sequentially formulated for each threat by considering

all resources available on friendly ships. The earliest engagement in the generated

plan is selected, and a similar planning process is conducted for the next prioritized

threat. The algorithm results in an engagement plan that consists of one engagement

for each threat. New solutions are generated based on hit or miss outcomes in subse-

quent events.

Compared with the DHAGA+EN+DP algorithm, this algorithm employs a myopic

approach, focusing on the top-priority threat. Genetic algorithm approach in Stage

1.1 is not utilized in this algorithm. Sequentially, for each threat in the priority order,

an engagement network is constructed, and the engagement plan is determined. The

earliest engagement in the solution is then selected. In contrast, the DHAGA+EN+DP

algorithm considers all threats and plans for the entire scenario period.

The major advantage of this approach is its ability to provide much faster solutions

compared to the 3-stage approach. This ensures an effective solution that can be
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Algorithm 8 Myopic Heuristic Algorithm with Engagement Network + Dynamic
Programming (MHAEN+DP )

Generate/Update problem parameters
V : set of all valid {i, f, t} engagement combinations of threat, fire channel and
engagement start time

Stage-1: Engagement Planning Decisions
Order the threats ascending in terms of HitT imei

V aluei

for ∀i ∈ A do
If there is no active engagement going towards ASM i

-Vi ∈ V : set of valid engagements against ASM i

If the previously planned engagement against ASM i is in set Vi

-Select the previously planned engagement
else

-Create Engagement Graph using Vi set
-Solve Shortest Path Problem using Bellman-Ford Algorithm
-Select the first engagement for ASM i using the shortest path solution

end if
-Delete conflicting engagement alternatives with the selected engagement

from the V set
end if
-Update pift single shot kill probabilities of the engagement alternatives that

can be fired from the target ship of threat i after HitT imei according to the hit
probability of the threat i.
end for

Stage-2: Heading Decisions
for ∀n ∈ N do

-Determine H decision variables using a backward recursion DP Approach
end for

utilized in scenarios with limited time for rapid decision making.

However, the non-allocation of resources to targets can result in inferior results in

cases with limited resources compared with the DHAGA+EN+DP algorithm. In this

approach, when planning for one threat, it is possible to select a weapon/sensor that

is the sole alternative for another threat. In such cases, the number of available en-

gagement alternatives may be limited in the subsequent planning phases, and conse-
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quently, a relatively worse objective function value may be obtained.

On the other hand, generating engagement plans for targets sequentially and select-

ing the earliest engagement in this plan allows for quicker reactions ( not in terms of

the solution run-times, but about selecting early starting engagements) in some cases

compared to the DHAGA+EN+DP algorithm. This provides the opportunity to reserve

more engagement alternatives for future emerging threats. In the DHAGA+EN+DP

solution approach, a plan for the known targets is generated throughout the entire sce-

nario duration. However, potential threats that may emerge later are not considered.

In some situations, there may be instances where later engagement alternatives with

higher probabilities of success may be selected to achieve the best objective function

value. In this case, the probability of countering a subsequently emerging threat may

be reduced. In the next section, we examine the experimental results related to these

aspects.

6.5 Computational Experiments for the Dynamic NADP Problem

6.5.1 Performance of the Solution Approaches in Small-Mid Size Scenarios

The first experiment for the Dynamic NADP problem was carried out on 20 scenarios

that have appropriate parameter sizes for expected value calculation. The scenarios

involve 1-5 ships and 2-5 threats, and their parameters are generated using the param-

eter generation structure detailed in Appendix D. By evaluating all possible outcomes

in the generated scenarios, expected objective function values are computed. The pri-

mary aim of this experiment is to investigate the performances of solution approaches

on results where the confidence interval is zero. Additionally, algorithm run-times for

each stage in the scenarios are recorded.

Table 6.1 and 6.2 present the average OBJ-3 objective function values for the sce-

narios and the average percent deviations from the best solution. In addition to the

static/dynamic three-stage (GA+EN+DP) and myopic approaches described in Sec-

tion 6.4, the Greedy Algorithm mentioned in Section 5.2 is also tested.

The results in Table 6.1 demonstrate that modifying the three-stage algorithm for a dy-
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Table 6.1: Dynamic NADP Computational Experiments on Small-Mid Size
Scenarios-1 (Expected Values)

Average OBJ-3 Value Weighted
Threat Hit Probability

Average Percent Deviation %
From the Best Solution

Number
of Ships

Number
of Threats

HAGA+EN+DP DHAGA+EN+DP HAGA+EN+DP DHAGA+EN+DP

S-1 1 2 0.148 0.148 0.00% 0.00%
S-2 1 3 0.526 0.412 27.64% 0.00%
S-3 1 4 0.626 0.604 3.54% 0.00%
S-4 2 2 0.172 0.172 0.00% 0.00%
S-5 2 3 0.415 0.415 0.00% 0.00%
S-6 2 3 0.298 0.255 16.65% 0.00%
S-7 2 4 0.346 0.346 0.00% 0.00%
S-8 2 5 0.113 0.108 4.74% 0.00%
S-9 3 2 0.120 0.120 0.00% 0.00%

S-10 3 3 0.224 0.224 0.00% 0.00%
S-11 3 4 0.498 0.498 0.00% 0.00%
S-12 3 4 0.409 0.406 0.69% 0.00%
S-13 3 5 0.447 0.439 1.84% 0.00%
S-14 4 2 0.104 0.095 9.22% 0.00%
S-15 4 3 0.106 0.106 0.00% 0.00%
S-16 4 4 0.168 0.168 0.12% 0.00%
S-17 4 5 0.165 0.165 0.00% 0.00%
S-18 5 3 0.230 0.204 13.01% 0.00%
S-19 5 4 0.073 0.076 0.00% 3.97%
S-20 5 5 0.153 0.152 0.59% 0.00%

Average OBJ-3 Value 0.2670 0.2556 3.90% 0.20%
Number of Best Solution 10 19

Average Run Time (s) 1.83 1.92

namic environment has enhanced its performance. The DHAGA+EN+DP algorithm

achieved an average OBJ-3 value of 0.2556, providing the best solutions in 19 out of

20 scenarios. In comparison, the HAGA+EN+DP algorithm produced solutions with

an average OBJ-3 value of 0.2670, deviating by 3.90% from the best solutions on

average. These results indicate that the dynamic version, DHAGA+EN+DP , is more

effective in making engagement decisions in dynamic environment compared to its

static counterpart, HAGA+EN+DP .

Further, Table 6.2 illustrates the comparison of the DHAGA+EN+DP algorithm with

the myopic solution approach and the greedy algorithm. For the 20 scenarios tested,

the DHAGA+EN+DP algorithm achieved the best solution in 18 instances. The MHAEN+DP

algorithm achieved the best solution in 11 scenarios, with an average OBJ-3 value of

0.2591 and an average deviation of 3.52% from the best solutions. The Greedy al-
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Table 6.2: Dynamic NADP Computational Experiments on Small-Mid Size
Scenarios-1 (Expected Values)

Average OBJ-3 Value
Weighted Threat Hit Probability

Average Percent Deviation %
From the Best Solution

Number
of Ships

Number
of Threats

DHAGA+EN+DP MHAEN+DP Greedy
Algorithm

DHAGA+EN+DP MHAEN+DP Greedy
Algorithm

S-1 1 2 0.148 0.148 0.149 0.00% 0.00% 0.81%
S-2 1 3 0.412 0.412 0.482 0.00% 0.00% 16.76%
S-3 1 4 0.604 0.605 0.613 0.00% 0.05% 1.37%
S-4 2 2 0.172 0.172 0.195 0.00% 0.00% 13.57%
S-5 2 3 0.415 0.415 0.415 0.00% 0.00% 0.00%
S-6 2 3 0.255 0.274 0.314 0.00% 7.45% 23.00%
S-7 2 4 0.346 0.346 0.395 0.00% 0.00% 13.98%
S-8 2 5 0.108 0.151 0.145 0.00% 40.61% 34.39%
S-9 3 2 0.120 0.120 0.120 0.00% 0.00% 0.00%

S-10 3 3 0.224 0.224 0.224 0.00% 0.00% 0.18%
S-11 3 4 0.498 0.498 0.510 0.00% 0.00% 2.53%
S-12 3 4 0.406 0.406 0.409 0.00% 0.00% 0.69%
S-13 3 5 0.439 0.442 0.488 0.00% 0.59% 11.11%
S-14 4 2 0.095 0.098 0.137 0.00% 3.14% 43.82%
S-15 4 3 0.106 0.088 0.117 19.34% 0.00% 32.58%
S-16 4 4 0.168 0.167 0.189 0.72% 0.00% 13.48%
S-17 4 5 0.165 0.169 0.207 0.00% 2.00% 24.98%
S-18 5 3 0.204 0.204 0.215 0.00% 0.29% 5.65%
S-19 5 4 0.076 0.085 0.122 0.00% 11.59% 60.74%
S-20 5 5 0.152 0.159 0.222 0.00% 4.75% 46.41%

Average OBJ-3 Value 0.2556 0.2591 0.2833 1.00% 3.52% 17.30%
Number of Best Solution 18 11 2

Average Run Time (s) 1.92 0.68 0.66

gorithm, however, yielded solutions with an average OBJ-3 value of 0.2833 and an

average deviation of 17.30% from the best solutions.

Note that, despite being the most comprehensive algorithm, since it is a heuristic

algorithm, there may be occasional minor deviations from the best solution. Ad-

ditionally, it is observed that the MHAEN+DP algorithm performs better than the

HAGA+EN+DP , and it is slightly inferior to the DHAGA+EN+DP .

Examining the solution times, while the DHAGA+EN+DP algorithm provides solu-

tions in an average of 1.92 seconds, the MHAEN+DP algorithm offers faster solu-

tions, approximately in 0.68 seconds, which is close to the run-time of the Greedy

algorithm.
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6.5.2 Performance of the Solution Approaches in Large Size Scenarios

In this experiment, we aim to observe the performance of DHAGA+EN+DP and

MHAEN+DP algorithms in large-size scenarios. Due to the large scenario sizes and

large number of possible outcomes from the beginning to the end of each scenario,

calculating the expected value of the objective function can take long time. There-

fore, in this experiment, multiple runs are conducted for each scenario, and at each

decision point containing different possibilities, a random number is generated to de-

termine the flow of events (such as hit or miss). Using the dynamic NADP simulation

environment, runs are carried out for each scenario until the mean of the OBJ-3 values

is within the ±0.05 intervals for a 95% confidence interval. The minimum number of

runs is set to 50. Since the scenario sizes are large, it is observed that the variances

of the results are small. Thus, it is seen that the desired confidence interval is reached

in all scenarios within 50 runs. In this experiment, a maximum time of 5 seconds has

been set for the iterations of the genetic algorithm.

When examining the results presented in Table 6.3, it is observed that the DHAGA+EN+DP

algorithm produces solutions with an average OBJ-3 objective function value of 0.278

in a total run time of 5.89 seconds. The MHAEN+DP algorithm, on the other hand,

reaches solutions with an average objective function value of 0.306 within an average

run time of 2.57 seconds. Additionally, the average percent deviation from the best

solution is observed to be 1.39% for the DHAGA+EN+DP algorithm and 12.75% for

the MHAEN+DP algorithm.

It can be said that the DHAGA+EN+DP algorithm is more successful than the MHAEN+DP

algorithm in terms of the average objective function values in these scenarios. How-

ever, when examining the run times, it is noticed that the solution times of the DHAGA+EN+DP

algorithm may not be practical. For a real combat environment where rapid decisions

are crucial, an average solution time of 5.89 seconds may be considered an exces-

sively long duration. Detailed results on solution times are presented in Table 6.4:

In Table 6.4, the average and maximum duration values for each sub-stage in algo-

rithm solutions are presented. When we look at the DHAGA+EN+DP Algorithm,

for Stage 1.1, while the average time required to generate the initial population of the
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genetic algorithm is 1.69 seconds, the average of the maximum times observed in sce-

narios is 4.37 seconds. For example, for the largest scenario, Scenario-10, the initial

population is generated on average in 3.76 seconds, and in the worst-case scenario,

it can take up to 9.74 seconds just for this task. It is also observed that the iteration

process of the genetic algorithm takes an average of 2.04 seconds. After the sensor

allocation decisions using the genetic algorithm in Stage 1.1, it is seen that engage-

ment planning decisions are made very quickly in Stage 1.2. The construction of the

engagement network and then solving the shortest path problem takes an average of

0.004 seconds for each threat. These operations for each threat in this stage cannot be

performed in parallel but are done sequentially in order of priority. Finally, in Stage

2, determining heading decisions using dynamic programming takes an average of

0.36 seconds per ship. Unlike Stage 1.2, this stage’s solution process is independent

for each ship and can be run in parallel as simultaneous processes. In other words,

Stage 2 can be applied independently by each ship solving its own heading solution.

This ensures that after the engagement decisions are distributed to the ships, deciding

which route to go throughout the scenario time takes an average of 0.36 seconds.

In terms of solution times, the situation is much more encouraging for the MHAEN+DP

algorithm. In line with the purpose of this algorithm, especially Stage 1 is being

solved quickly. It takes 0.07 seconds to create the engagement network and 0.03 sec-

onds to solve the shortest path problem for each threat. In some scenarios, when there

are too many engagement alternatives for a threat, building the engagement network

can take a little longer due to the large number of possible outcomes. For example,

in Scenario 9, it is seen that this process is completed in a maximum of 3.52 sec-

onds. Similarly, as the network is created larger, the stage of solving the shortest path

problem can take a bit longer accordingly. Again, in Scenario 9, it is observed that

the worst-case solution time for the SP problem is 1.36 seconds. At this point, as the

scenario size grows, simple measures can be taken (such as eliminating some repet-

itive or low-pk alternatives) to ensure that the size of the engagement network does

not become too large. Thus, rare elongations in solution times can be prevented. The

solution time of Stage 2 is similar to Stage 2 of DHAGA+EN+DP algorithm.

Additionally, parameter tuning experiments can be conducted for the Stage 1.1 GA in

DHAGA+EN+DP , potentially compromising a bit on the effectiveness of the objective
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function to reduce the solution time to a practical level for real-world applications.

In conclusion, when the results for large-size scenarios are evaluated, it is seen that

the DHAGA+EN+DP algorithm provides the best solutions, but in terms of feasible

solution times, the MHAEN+DP algorithm is more advantageous.

6.5.3 Comparison of the Solution Approaches in Close Distance Threats Case

In this experiment, the algorithms are compared for the scenario environment in

which threats start approaching to the ships from a closer distance (20 NM) and there

is limited time for counter-engagement. The results for small size scenarios are pre-

sented in Table 6.5. When examining the results, it is observed that the success of the

MHAEN+DP algorithm is increased compared to its normal distance version, and

the DHAGA+EN+DP and the MHAEN+DP algorithms achieve close objective func-

tion averages. Among the scenarios, the largest difference between MHAEN+DP

and DHAGA+EN+DP algorithms is observed in Scenario-17. Detailed examination

of the solutions for Scenario-17 reveals that the DHAGA+EN+DP algorithm starts

engagements a bit later than the MHAEN+DP algorithm in the engagement plans

generated against incoming threats. Therefore, fewer alternatives remain available

against newly emerging threats. Although rare, in such situations, the success of the

DHAGA+EN+DP algorithm can decrease because it does not consider future threats.

In Table 6.6, the experimentation results for larger scenarios are presented. In this

experiment, a simulation environment simulating a swarm attack from close range

against the ships is created. While the DHAGA+EN+DP algorithm can achieve an

average OBJ-3 value of 0.361, the MHAEN+DP algorithm yields a value of 0.389. In

larger scenarios, where resource allocation is critical, it is observed that the DHAGA+EN+DP

algorithm achieves better results. When compared to the results at normal distances

(Table 6.3), the average percent deviation of the MHAEN+DP algorithm decreases

from 12.75% to 9.11%.

The solution time of the DHAGA+EN+DP algorithm in this experiment remains above

the applicable level, with an average of 3.01 seconds for Stage 1.1. The average

solution time for the MHAEN+DP Algorithm Stage 1 is 0.35 seconds. For Scenario-
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9, average solution time is 3.24 seconds which is relatively long compared to the

others. When examining the details for this scenario, it is observed that the process

of constructing the engagement network during a solution update operation takes a

very long time (69 seconds) due to the large number of engagement alternatives. As

mentioned earlier, measures to reduce the number of alternatives can be taken to

prevent such extreme situations.

6.5.4 The Value of Having Future Threat Information

For the same scenarios as in Table 6.5, further experimentations are conducted using

the DHAGA+EN+DP algorithm in a simulated environment where all threat informa-

tion is assumed to be available from the beginning of the scenario. The aim is to

reveal the value of having future threat information. When examining the results, it is

observed that with all threat information available from the beginning of the scenario,

and the defense planning is conducted accordingly, the average objective function

value can be reduced to 0.2489. For this scenario, it is observed that an average im-

provement of 3.82% (4.26% − 0.44%) in the objective function value is achieved.

Particularly, it can be seen that having future threat information contributes to im-

proving the solution for scenarios 12, 16, and 20. Thus, it has been demonstrated that

possessing advanced intelligence and long-range surveillance systems contributes to

more effective defense planning.

86



Ta
bl

e
6.

6:
D

yn
am

ic
N

A
D

P
C

om
pu

ta
tio

na
lE

xp
er

im
en

ts
on

L
ar

ge
Si

ze
Sc

en
ar

io
s

(C
lo

se
D

is
ta

nc
e

T
hr

ea
ts

C
as

e)

N
um

be
r

of
Sh

ip
s

N
um

be
r

of
T

hr
ea

ts
D
H
A

G
A
+
E
N
+
D
P

M
H
A

E
N
+
D
P

Av
er

ag
e

Pe
rc

en
tD

ev
ia

tio
n

%
Fr

om
th

e
B

es
tS

ol
ut

io
n

O
B

J-
3

N
um

be
r

of
R

un
s

C
I

R
un

Ti
m

e
St

ag
e

1.
1

R
un

Ti
m

e
St

ag
e

1.
2

R
un

Ti
m

e
St

ag
e

2
O

B
J-

3
N

um
be

r
of

R
un

s
C

I
R

un
Ti

m
e

St
ag

e
1

R
un

Ti
m

e
St

ag
e

2
D

yn
am

ic
H
A

G
A
+
E
N
+
D
P

M
yo

pi
c

H
A

E
N
+
D
P

S-
1

5
10

0.
28

5
50

.0
0

0.
04

5
1.

80
0.

00
1.

08
0.

27
4

50
.0

0
0.

04
0

0.
01

1.
12

4.
02

%
0.

00
%

S-
2

5
12

0.
24

7
50

.0
0

0.
04

6
2.

81
0.

00
0.

80
0.

28
1

50
.0

0
0.

04
6

0.
04

0.
78

0.
00

%
13

.7
7%

S-
3

5
15

0.
44

5
50

.0
0

0.
03

9
3.

07
0.

00
0.

90
0.

49
1

50
.0

0
0.

04
3

0.
01

0.
91

0.
00

%
10

.3
3%

S-
4

6
12

0.
24

8
50

.0
0

0.
04

3
3.

19
0.

00
0.

88
0.

28
5

54
.0

0
0.

05
0

0.
05

0.
86

0.
00

%
14

.7
1%

S-
5

6
15

0.
37

6
50

.0
0

0.
04

6
3.

64
0.

01
1.

18
0.

43
6

50
.0

0
0.

03
8

0.
09

1.
24

0.
00

%
15

.8
3%

S-
6

6
18

0.
41

3
50

.0
0

0.
04

0
2.

77
0.

00
1.

18
0.

47
4

50
.0

0
0.

03
0

0.
02

1.
18

0.
00

%
14

.7
0%

S-
7

7
14

0.
36

9
50

.0
0

0.
04

7
2.

68
0.

00
2.

14
0.

36
3

50
.0

0
0.

04
4

0.
01

2.
11

1.
57

%
0.

00
%

S-
8

7
21

0.
48

0
50

.0
0

0.
03

3
2.

68
0.

00
1.

28
0.

51
0

50
.0

0
0.

03
3

0.
01

1.
30

0.
00

%
6.

34
%

S-
9

8
16

0.
27

4
50

.0
0

0.
03

7
3.

73
0.

01
1.

84
0.

31
6

50
.0

0
0.

04
1

3.
24

1.
81

0.
00

%
15

.4
1%

S-
10

8
24

0.
47

6
50

.0
0

0.
04

3
3.

70
0.

00
1.

89
0.

46
4

50
.0

0
0.

03
0

0.
01

1.
86

2.
41

%
0.

00
%

Av
er

ag
e

0.
36

1
50

.0
0

0.
04

2
3.

01
0.

00
1.

32
0.

38
9

50
.4

0
0.

03
9

0.
35

1.
32

0.
80

%
9.

11
%

87



Table 6.7: Computational Experiments on the Value of Having Future Threat Infor-
mation

Average OBJ-3
Value Weighted

Threat Hit Probability

Percent Deviation %
From the Best Solution (Average)

Number
of Ships

Number
of Threats

DHAGA+EN+DP

DHAGA+EN+DP

(With Future
Threat Information)

DHAGA+EN+DP

DHAGA+EN+DP

(With Future
Threat Information)

S-1 1 2 0.216 0.216 0.00% 0.00%
S-2 1 3 0.326 0.334 0.00% 2.61%
S-3 1 4 0.617 0.617 0.00% 0.00%
S-4 2 2 0.277 0.276 0.11% 0.00%
S-5 2 3 0.303 0.303 0.00% 0.00%
S-6 2 3 0.532 0.532 0.00% 0.00%
S-7 2 4 0.333 0.331 0.54% 0.00%
S-8 2 5 0.494 0.494 0.02% 0.00%
S-9 3 2 0.011 0.011 0.00% 0.00%

S-10 3 3 0.215 0.214 0.28% 0.00%
S-11 3 4 0.257 0.257 0.00% 0.00%
S-12 3 4 0.100 0.081 23.83% 0.00%
S-13 3 5 0.141 0.142 0.00% 0.64%
S-14 4 2 0.122 0.122 0.00% 0.00%
S-15 4 3 0.240 0.240 0.00% 0.00%
S-16 4 4 0.205 0.198 3.28% 0.00%
S-17 4 5 0.178 0.133 33.68% 0.00%
S-18 5 3 0.040 0.042 0.00% 5.49%
S-19 5 4 0.223 0.223 0.00% 0.00%
S-20 5 5 0.261 0.212 23.37% 0.00%

Average 0.2545 0.2489 4.26% 0.44%

6.5.5 The Value of Having Full Coordination in the Task Group

The developed algorithms assume a full coordination among friendly ships, where

detected threat information are shared, and counter engagement planning is collabo-

ratively conducted by all ships. If full coordination capability is absent among ships,

and each ship independently plans its defense against incoming threats, the results

shown in Table 6.8 emerge.

In the case where the DHAGA+EN+DP algorithm is used, and all weapons are consid-

ered area-defense systems, the average OBJ-3 value is observed as 0.1572. However,

when the weapons are considered only as self-defense systems, this value increases

to 0.2689. Thus, when the same solution approach is used, the contribution of using

weapons in full coordination is seen as 0.1117 (0.2689−0.1572) in the average OBJ-3

value. Additionally, if the Greedy Algorithm is used instead of the newly developed
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Table 6.8: Computational Experiments on the Value of Having Full Coordination in
the Task Group

DHAGA+EN+DP

(All weapons are
area-defense systems.)

DHAGA+EN+DP

(All weapons are
self-defense systems.)

Greedy
Algorithm

(All weapons are
self-defense systems.)

Number
of Ships

Number
of Threats

Average
OBJ-3

Average
OBJ-4

Average
OBJ-3

Average
OBJ-4

Average
OBJ-3

Average
OBJ-4

s-1 3 6 0.0627 0.9000 0.1494 0.7644 0.3060 0.6017
s-2 3 9 0.2710 0.4211 0.3378 0.3100 0.4051 0.2515
s-3 4 4 0.2067 0.8895 0.3190 0.8473 0.3325 0.8414
s-4 4 8 0.1375 0.7692 0.1870 0.7220 0.2400 0.6800
s-5 5 10 0.1079 0.7983 0.3514 0.5567 0.3876 0.6204

Average 0.1572 0.7556 0.2689 0.6401 0.3342 0.5990

algorithm, the loss in the average objective function value is calculated as 0.1770

(0.3342 − 0.1572). This experiment clearly demonstrates the significance of having

full coordination capability and using efficient algorithms in naval combat scenarios.

Similarly, Table 6.9 presents the results when threats are distributed according to the

sectors from which they approach, as shown in Figure 6.3, where 3 ships face 9 threats

approaching from 3 different sectors. In the DHAGA+EN+DP algorithm solution,

full coordination among ships is assumed, while in the Greedy Algorithm solution,

sectors are assigned to ships, and each ship can engage only the threats coming from

its assigned sectors.

Figure 6.3: Example Sector Allocation Scenario

According to the results, having full coordination capability and employing an effec-
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Table 6.9: Computational Experiments on the Value of Having Full Coordination in
the Task Group-2

DHAGA+EN+DP

(Full Coordination)

Greedy Algorithm
(Engage Only in

the Assigned Sector )
Number
of Ships

Number
of Threats

OBJ-3 OBJ-4 OBJ-3 OBJ-4

S-1 3 9 0.189 0.574 0.339 0.359
S-2 3 9 0.394 0.340 0.515 0.320
S-3 3 9 0.322 0.351 0.474 0.172
S-4 3 9 0.331 0.573 0.489 0.283
S-5 3 9 0.418 0.210 0.508 0.130
S-6 3 9 0.459 0.336 0.500 0.243
S-7 3 9 0.495 0.184 0.503 0.174
S-8 3 9 0.461 0.171 0.602 0.067
S-9 3 9 0.360 0.364 0.523 0.129

S-10 3 9 0.528 0.122 0.594 0.040
Average 0.396 0.323 0.505 0.192

tive solution method increase the average OBJ-3 by 0.109 (0.505 − 0.396). In terms

of OBJ-4, it increases the weighted survival probabilities of friendly ships by 0.131

(0.323− 0.192).

6.6 Implementation of a Modified-SLS Firing Policy

The Shoot-Look-Shoot (SLS) firing policy is a conventional strategy employed in

naval air defense systems. This policy is designed to optimize the use of interceptors

by minimizing their expenditure and maximizing their effectiveness per engagement,

thereby reducing the overall cost of defense given the high price of each interceptor.

However, during combat, preserving the ship’s integrity becomes paramount, and

sometimes, more aggressive firing policies may be required to ensure the survival of

the platform.

In the mathematical model of the NADP problem defined in this study, the SLS firing

policy is the standard approach. This policy restricts engagements to at most one per

target at any given time. A modified version of the SLS policy can be utilized to

enhance the flexibility and effectiveness of air defense operations. This new policy
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relaxes the constraint of at most one engagement per target, allowing up to two si-

multaneous engagements for a single target. Although this approach can increase the

probability of successfully neutralizing threats, it also accelerates the consumption of

resources, potentially leaving the defense vulnerable to possible subsequent threats.

To implement the modified-SLS firing policy in the mathematical model, the right-

hand side of the Constraint Set (4.3) (Section 4.6) can be increased to 2 as presented

below. And the value of the parameter µif , upper bound on the number of engage-

ments from fire channel f against threat i being used in the Constraint Set (4.2),

should be determined according to the firing policy. These adjustments allow for the

representation of the modified-SLS firing policy.

∑
t∈Tif

Yift ≤ µ′
if ∀(i, f) ∈ G, (6.2)

∑
(f,ρ)∈Jit

Yifρ ≤ 2 ∀i ∈ A, t ∈ T (6.3)

Table 6.10 shows the results of the experiment comparing the conventional SLS and

the modified-SLS firing policies. For the solution approach, the dynamic GA+DP

method is utilized. Due to the potentially large number of nodes in the engagement

network when using the modified-SLS approach, creating this network becomes time-

consuming. Therefore, in this experiment, DHAGA+DP algorithm (dynamic version

of Algorithm 4, DHAGA+EN+DP without Stage 1.2) is used.

When the constraint of one engagement per target is increased to two, the average

OBJ-3 value for 30 scenarios decreases from 0.2529 to 0.2059, indicating a 0.05

reduction in the weighted average probability of threats hitting the friendly ships.

However, as expected, the modified-SLS policy consumes more ammunition, with

ships having 15% less ammunition remaining at the end of the scenario compared to

the SLS policy. In scenarios 2, 3, and 23, all ammunition was depleted by the end

of the engagements, likely resulting in some threats not being intercepted, leading to

poorer OBJ-3 values compared to the SLS policy.

The SLS firing policy and the modified-SLS firing policy offer distinct advantages
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Table 6.10: Comparison of the SLS vs. Modified-SLS Firing Policies

DHAGA+DP DHAGA+DP with Mod-SLS policy

Number

of Ships

Number

of Threats
OBJ-1 OBJ-3 OBJ-4

Run

Time

Inv Left

Average

Inv Left

Percentage
OBJ-1 OBJ-3 OBJ-4

Run

Time

Inv Left

Average

Inv Left

Percentage

S-1 1 2 0.815 0.148 0.815 1.68 2.449 40.8% 0.889 0.070 0.889 1.85 1.011 16.8%

S-2 1 3 0.161 0.412 0.161 1.37 0.000 0.0% 0.079 0.501 0.079 1.43 0.000 0.0%

S-3 1 4 0.035 0.604 0.035 1.08 0.000 0.0% 0.020 0.577 0.020 1.25 0.000 0.0%

S-4 2 2 0.686 0.172 0.828 1.50 2.360 39.3% 0.783 0.117 0.883 2.45 0.925 15.4%

S-5 2 3 0.221 0.415 0.568 1.24 6.353 63.5% 0.449 0.248 0.750 1.61 3.164 31.6%

S-6 2 3 0.382 0.255 0.688 1.27 1.027 20.5% 0.402 0.260 0.657 1.61 0.000 0.0%

S-7 2 4 0.049 0.346 0.675 1.31 1.150 28.8% 0.052 0.318 0.715 1.59 0.732 18.3%

S-8 2 5 0.640 0.108 0.790 3.84 7.225 45.2% 0.745 0.091 0.837 4.14 4.296 26.8%

S-9 3 2 0.788 0.120 0.949 1.32 10.600 75.7% 0.944 0.028 0.988 1.76 8.948 63.9%

S-10 3 3 0.395 0.224 0.777 1.43 4.969 55.2% 0.514 0.124 0.876 2.26 3.219 35.8%

S-11 3 4 0.125 0.498 0.583 1.85 7.522 57.9% 0.103 0.445 0.590 2.19 6.609 50.8%

S-12 3 4 0.148 0.406 0.502 1.57 1.142 19.0% 0.183 0.348 0.535 1.90 0.000 0.0%

S-13 3 5 0.042 0.439 0.516 1.97 3.418 42.7% 0.051 0.394 0.561 2.30 1.674 20.9%

S-14 4 2 0.814 0.099 0.950 2.41 12.687 74.6% 0.949 0.027 0.986 3.17 11.495 67.6%

S-15 4 3 0.721 0.106 0.930 1.39 17.918 81.4% 0.929 0.025 0.983 1.83 15.133 68.8%

S-16 4 4 0.626 0.168 0.888 3.99 13.381 66.9% 0.800 0.089 0.941 4.60 10.489 52.4%

S-17 4 5 0.469 0.166 0.835 1.95 12.458 62.3% 0.775 0.057 0.934 3.47 8.131 40.7%

S-18 5 3 0.506 0.204 0.859 3.25 13.821 76.8% 0.557 0.174 0.880 3.05 11.151 61.9%

S-19 5 4 0.733 0.076 0.927 4.33 10.280 60.5% 0.757 0.065 0.936 4.91 8.177 48.1%

S-20 5 5 0.440 0.154 0.843 3.97 10.860 54.3% 0.427 0.162 0.831 3.89 9.376 46.9%

S-21 2 6 0.080 0.442 0.222 1.77 0.941 10.5% 0.040 0.445 0.166 1.69 0.309 3.4%

S-22 2 7 0.032 0.455 0.197 1.04 1.881 20.9% 0.015 0.365 0.187 1.22 0.432 4.8%

S-23 2 8 0.000 0.378 0.280 2.07 0.361 5.2% 0.000 0.418 0.230 1.85 0.001 0.0%

S-24 3 6 0.780 0.058 0.915 4.74 5.041 26.5% 0.800 0.057 0.903 5.26 3.341 17.6%

S-25 3 7 0.360 0.158 0.790 3.72 4.461 24.8% 0.540 0.071 0.873 4.15 2.421 13.4%

S-26 3 8 0.080 0.309 0.475 1.72 4.261 28.4% 0.040 0.296 0.445 1.92 0.741 4.9%

S-27 3 9 0.000 0.378 0.353 1.73 4.629 28.9% 0.020 0.363 0.413 2.58 2.241 14.0%

S-28 4 6 0.482 0.151 0.815 2.06 4.616 25.6% 0.480 0.133 0.836 2.39 4.901 27.2%

S-29 4 7 0.000 0.380 0.426 3.36 3.230 19.0% 0.043 0.359 0.484 3.77 1.088 6.4%

S-30 4 8 0.118 0.265 0.565 2.50 10.845 49.3% 0.180 0.184 0.743 2.48 8.261 37.6%

Average 0.4398 0.2559 0.7059 2.14 6.98 48.3% 0.5203 0.2059 0.7435 2.56 5.23 33.3%

and disadvantages, which present a trade-off between resource conservation and en-

gagement effectiveness. The SLS policy is advantageous in conserving resources and

reducing costs but may fall short in scenarios where threats are more persistent or

difficult to neutralize with a single interceptor. On the other hand, the modified-SLS

policy enhances the probability of successful engagements by allowing multiple in-

terceptors per target, but this comes at the cost of faster resource depletion and higher

defense costs.

This experiment provides an important insight into the characteristics of NADP prob-

lem solution approaches. Strategic decisions on which firing policy to adopt must

consider the specific combat environment, including the anticipated volume and per-

sistence of threats, the availability of resupply, and the overall mission objectives. An
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intelligent decision support system could dynamically adapt firing policies based on

real-time assessments of these factors, optimizing both the immediate and long-term

effectiveness of the naval defense.

Meanwhile, when engaging the same target simultaneously with different weapon

systems, there is a risk of interference between the weapons based on their character-

istics. While the SLS firing policy does not encounter this issue, the modified SLS

policy must account for this potential interference. In practical implementations, this

factor can be incorporated into the solution by considering interference risks in the

scheduling of engagements. This can be achieved through adjustments in the genetic

algorithm’s fitness value calculation or during the construction of the engagement

network, ensuring that interference is avoided.

In the air defense literature, various engagement policies exist in addition to the SLS

policy, such as the Shoot-Shoot-Look (SSL) policy. The SSL policy is typically em-

ployed by launching two SAMs simultaneously, particularly to increase the survival

probability of the ship during the last engagement opportunity against a threat. In our

study, the modified-SLS policy allows for two simultaneous engagements, similar to

SSL, if doing so improves the objective function value. To fully implement the SSL

policy, an additional constraint can be introduced in the model, requiring two engage-

ments on the same target within a specific time frame. However, when comparing the

SSL policy to our modified-SLS approach, we can assert that the SSL policy would

lead to higher ammunition consumption and, due to the additional constraint, poten-

tially resulting worse objective function values.

6.7 Threat Prioritization Using Machine Learning Models

In the MHAEN+DP Algorithm, threats are prioritized based on the calculated ratio

(HitT imei
V aluei

) which considers the hit time and the value of threats, and engagement

plans are determined one by one according to this priority order. This ratio ensures

that threats with shorter time to hit and higher value are prioritized. In this section,

the aim is to demonstrate the potential improvement in the objective function value

when threat priorities are determined using machine learning models based on a set
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of attributes describing the naval air defense warfare environment. This approach can

enable a more appropriate allocation of defense resources by analyzing the changing

threat environment.

In other words, this section attempts the use of machine learning models trained on

a dataset generated through simulation, as an alternative to comparing a simple ratio

for the threat prioritization problem that can be expressed with much more complex

relationships. The pseudocode of the MHAEN+DP Algorithm with modified threat

prioritization is presented in Algorithm 9 (changes are highlighted):

In this algorithm, the machine learning model determines the priority order of the

incoming threats by conducting pairwise comparisons between the threats that need

a solution update. The machine learning model identifies which of the two threats

should be prioritized and thus creates a priority order through pairwise comparisons.

To train the models, a dataset consisting of 2700 instances is created using the dy-

namic NADP simulation environment developed in Section 6.3. Note that, increasing

the number of instances can help improve the model’s performance. Each row of this

dataset contains features related to the threats and the defense resources in a randomly

generated scenario. For the generation of the dataset, feature data characterizing the

current environment are recorded during the simulation flow at the moment when a

solution is needed for at least two threats.

The feature set used to train the machine learning models is listed below. The fea-

tures representing the severity of the threats and the adequacy of defense resources

available against these threats are selected for the model setup.

The feature set of the model:

1. Difference in the threat values (vASM1 − vASM2)

2. Difference in time remaining until the threat hit times

3. Difference in the number of possible engagement alternatives against the threats

4. Difference in the number of different fire channels available against the threats

5. Difference in the sum of Pift probabilities of engagements that can be made by
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Algorithm 9 MHAEN+DP Algorithm with Modified Threat Prioritization
Generate/Update problem parameters
V : set of all valid {i, f, t} engagement combinations of threat, fire channel and
engagement start time

Stage-1: Engagement Planning Decisions
Order the threats using the machine learning model

-Make pairwise comparisons between the threats that need solution update

for ∀i ∈ A do
If there is no active engagement going towards ASM i

-Vi ∈ V : set of valid engagements against ASM i

If the previously planned engagement against ASM i is in set Vi

-Select the previously planned engagement
else

-Create Engagement Graph using Vi set
-Solve Shortest Path Problem using Bellman-Ford Algorithm
-Select the first engagement for ASM i using the shortest path solution

end if
-Delete conflicting engagement alternatives with the selected engagement

from the V set
end if
-Update pift single shot kill probabilities of the engagement alternatives that

can be fired from the target ship of threat i after HitT imei according to the hit
probability of the threat i.
end for

Stage-2: Heading Decisions
for ∀n ∈ N do

-Determine H decision variables using a backward recursion DP Approach
end for

the target ship after the threat hit time

6. Difference in the maximum number of engagements that can be made against

the threats

7. Difference in the earliest possible engagement end time against the threats
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8. Difference in the earliest possible engagement start time against the threats

9. Difference in (HitT imei
V aluei

) ratios of the threats

10. Earliest engagement end time for Threat-1 minus earliest engagement start time

for Threat-2

11. Difference in minimum engagement durations that can be made against the

threats

12. Difference in the intersection rates of engagements that can be made against the

threats

13. Difference in the survival probabilities of threats (quick estimate calculation)

14. Difference in the weighted survival probabilities of threats (quick estimate cal-

culation)

15. Difference in the inventory levels that can be used against the threats

16. Difference in total ammunition inventory of the target ship of the threats

17. Difference in the objective function values that can be obtained when the threats

are prioritized (quick estimate calculation)

For each pair of threats, expected values of the objective function are calculated

assuming each threat is prioritized in turn. The difference between these values

(OBJ3(ASMab) − OBJ3(ASMba)) is recorded as a penalty/reward score. Here,

OBJ3(ASMab) represents the objective function value achievable when threat ASMa

is prioritized over ASMb. This approach allows for a quantitative assessment of the

impact of prioritizing one threat over another.

In this section, the primary focus is not extensively on the intricate processes of fea-

ture selection and model parameter tuning. Although these elements are critical for

optimizing the performance of machine learning models, the primary aim of this sec-

tion is to demonstrate the potential contribution of machine learning approaches to

solving the NADP problem, rather than to dive deeply into the nuances of model

optimization.
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The selection of the feature set is driven by the need to effectively represent the com-

plexity of the naval air defense environment. The features are chosen based on their

relevance in describing the threat scenario and the capabilities of defense systems.

This approach ensures that the machine learning model can make informed predic-

tions about threat prioritization, which is crucial for effective defense planning. How-

ever, comprehensive refinement of the feature set is not the main focus; instead, the

chosen features are intended to sufficiently capture the scenario dynamics to test the

feasibility of machine learning applications in this field.

Similarly, parameter tuning in machine learning is often a meticulous process that

involves adjusting various settings that control the learning process of the models

(such as the learning rate, the number of trees in a forest model, or the depth of

the trees). These parameters significantly affect the model’s accuracy and efficiency.

However, for the purposes of this study, the standard parameter settings are used to

establish a baseline for the machine learning models. This approach allows for an

initial assessment of the effectiveness of the models without the need for extensive

tuning.

In this study, the following machine learning models, which are readily available as

built-in functions in MATLAB [56] [57], are used with default parameters:

1. Support Vector Regression (SVR)

- Statistics and Machine Learning Toolbox (fitrsvm)

2. Support Vector Machine (SVM)

- Statistics and Machine Learning Toolbox (fitcsvm)

3. Linear Regression (LR)

- Statistics and Machine Learning Toolbox (fitlm)

4. K-Nearest Neighbors (KNN)

- Statistics and Machine Learning Toolbox (fitcknn)

5. Decision Trees (DT)

- Statistics and Machine Learning Toolbox (fitrtree)
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6. Random Forest (RF)

- Statistics and Machine Learning Toolbox (TreeBagger)

7. Pattern Recognition Neural Networks (PRNN)

- Deep Learning Toolbox (patternnet)

8. Multilayer Perceptron (MLP)

- Deep Learning Toolbox (fitnet)

The dataset consisting of 2700 instances is used to train these models.

6.7.1 The Contribution of Using Machine Learning Models for the Threat Pri-

oritization

The data set used in this study is generated based on randomly created scenarios, with

the number of ships ranging from 1 to 4 and the number of threats ranging from 2 to

4. The first computational experiment to assess the performance of machine learning

models is initially conducted on 50 scenarios of these dimensions. The results of this

experiment is presented in Table 6.11. The MHAEN+DP Algorithm is used as the

solution method, and comparisons are made using nine different threat prioritization

approaches: the basic calculated ratio of hit time to threat value, and eight machine

learning models listed above. These nine approaches are compared to evaluate the

threat prioritization process.

Upon examining the results, it can be observed that the eight machine learning mod-

els trained with default parameters perform better than the simple ratio approach in

threat prioritization. The baseline algorithm using the simple ratio shows an average

deviation of 2.58% from the best solution, lagging behind in 16 out of 50 scenarios.

On the other hand, the best-performing model, Decision Trees model, achieves the

best solution in 41 scenarios with a deviation of only 0.75%.

In terms of the run times, it can be observed that using the approach with machine

learning models results in an increase in Stage 1 solution time ranging from 0.01 to

0.07 seconds on average compared to the baseline algorithm. The use of machine

learning models requires the preparation of the feature set and making the pairwise
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Table 6.11: Computational Experiments-1 on the Contribution of Using Machine
Learning Models for the Threat Prioritization

Average
OBJ-3

Average Percent
Deviation (%)

# of
Best Solutions

Run Time
Stage 1

Ratio 0.2402 2.58% 34 0.07

DT 0.2361 0.75% 41 0.14

RF 0.2360 0.78% 40 0.14

KNN 0.2366 0.98% 38 0.09

SVM 0.2372 1.35% 37 0.10

SVR 0.2376 1.46% 35 0.13

MLP 0.2375 1.52% 35 0.14

PRNN 0.2381 1.79% 37 0.10

LM 0.2379 1.96% 38 0.08

comparisons. Since the model training is already completed, it is assumed that the

machine learning model is readily available. When we input the feature set consisting

of 17 feature values, the result (which threat is prioritized) can be determined very

quickly by the model.

To replicate this analysis on larger scenarios, the DT model and the simple ratio ap-

proach are compared in 25 scenarios, generated with 4 ships and 4 threats, as seen in

Table 6.12. The DT model, which yielded the best results in the previous analysis,

continues to perform successfully compared to the simple ratio approach. The DT

model produces the best solutions in nearly all scenarios, achieving a deviation of

only 0.06%. The simple ratio approach gets an average deviation of 2.91%.

The average Stage 1 run time, which is 0.10 seconds in the baseline algorithm, is

observed to increase to an average of 0.24 seconds for the algorithm with the machine

learning approach. According to these results, it is observed that the machine learning

approach does not render the algorithm’s solution time unfeasible, but rather leads to

an improvement in the objective function with an acceptable increase in time.

These results indicate that machine learning models in threat prioritization can pro-

vide improvements over the basic ratio approach, even when using default model

configurations. By demonstrating that, the study aims to highlight the potential for

more detailed future research that could focus on optimizing these models to achieve

even greater efficiencies.
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Table 6.12: Computational Experiments-2 on the Contribution of Using a Machine
Learning Model (DT Approach) for the Threat Prioritization

Average
OBJ-3

Average Percent
Deviation (%)

Run Time
Stage 1

Ratio DT Ratio DT Ratio DT
S-1 0.1776 0.1776 0.00% 0.00% 0.01 0.27
S-2 0.0626 0.0626 0.00% 0.00% 0.27 0.41
S-3 0.1870 0.1870 0.00% 0.00% 0.02 0.16
S-4 0.0516 0.0524 0.00% 1.55% 0.10 0.27
S-5 0.1169 0.1169 0.00% 0.00% 0.00 0.13
S-6 0.1701 0.1701 0.00% 0.00% 0.01 0.20
S-7 0.1657 0.1657 0.00% 0.00% 0.01 0.20
S-8 0.0828 0.0828 0.00% 0.00% 0.05 0.22
S-9 0.1371 0.1371 0.00% 0.00% 1.43 1.50

S-10 0.0781 0.0781 0.00% 0.00% 0.04 0.19
S-11 0.0443 0.0351 26.21% 0.00% 0.08 0.26
S-12 0.3278 0.3227 1.58% 0.00% 0.01 0.17
S-13 0.1386 0.1362 1.76% 0.00% 0.03 0.22
S-14 0.1412 0.1412 0.00% 0.00% 0.02 0.13
S-15 0.1964 0.1761 11.53% 0.00% 0.03 0.14
S-16 0.0764 0.0764 0.00% 0.00% 0.01 0.14
S-17 0.0958 0.0958 0.00% 0.00% 0.02 0.11
S-18 0.1294 0.1292 0.15% 0.00% 0.05 0.14
S-19 0.2534 0.2534 0.00% 0.00% 0.01 0.14
S-20 0.4757 0.4757 0.00% 0.00% 0.00 0.10
S-21 0.0463 0.0352 31.53% 0.00% 0.05 0.23
S-22 0.2889 0.2889 0.00% 0.00% 0.02 0.08
S-23 0.2540 0.2540 0.00% 0.00% 0.01 0.14
S-24 0.1808 0.1808 0.00% 0.00% 0.00 0.13
S-25 0.0903 0.0903 0.00% 0.00% 0.18 0.36

Average 0.1588 0.1569 2.91% 0.06% 0.10 0.24
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CHAPTER 7

IMPLEMENTATION OF THE NADP DECISION SUPPORT AUTOMATION

The NADP solution algorithm is developed to be used in combat management sys-

tems to effectively protect naval task group platforms from aerial threats. The NADP

algorithm can optimize and automate maritime air defense planning. It encompasses

the rapid planning of defense resources, including ships’ maneuvering decisions and

the allocation and timing of weapons and sensors against threats.

In this study, the NADP problem is expressed as a "Mixed-Integer Nonlinear Pro-

gramming (MINLP) Model" that includes constraints considering weapon/sensor as-

signments, sequence-dependent setup times, weapon/sensor blind sectors, and the in-

frared/radar signatures of ships, aimed at minimizing the hit probabilities of threats.

This problem, belonging to the NP-hard complexity class, takes impractically long

time even in small scenarios to solve exactly. Hence, obtaining a quick and effective

solution that can meet real-time operational needs in the rapidly evolving maritime

warfare environment is of critical importance.

The centralized use of the NADP algorithm in combat management systems can sig-

nificantly enhance the air defense capabilities of naval task groups. The results of

the simulation analysis shown in previous chapters demonstrate the contribution of

the developed algorithm in effectively protecting ships from threats, improving the

coordination between the friendly forces, and providing a fast defense response in the

dynamic threat environment.

In the face of air attacks involving simultaneous and numerous threats (as can be

seen in the recent conflicts between Israel and Iran, on April 12, 2014 [1]), it is

critically important to have fast solution algorithms that can provide decision support
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automation and enable air defense systems to demonstrate a coordinated and effective

defensive response.

With recent advancements in communication/link capabilities, naval platforms have

begun to possess network-enabled operational capabilities, and the need to solve this

problem has become significant. In the past (or still for platforms without network-

enabled operational capabilities), threat allocation in naval task groups usually in-

volved methods based on self-defense or sector allocation as shown in Figure 6.3.

However, such methods do not ensure effective utilization of defense resources.

Our study offers a solution approach to the increasingly complex and challenging

nature of air defense in the maritime warfare environment. This algorithm can be

integrated into the naval ships’ combat management systems to enhance the effec-

tiveness of air defense operations, providing quick and flexible decision support to

meet operational needs.

In a network-enabled naval task group, all friendly platforms can demonstrate a fully

coordinated air defense reaction. Thus, the overall defense effectiveness of the task

group can be increased. As seen in Figure 7.1, platforms in a network-enabled task

group can share data/information/orders and demonstrate a coordinated defensive re-

action against threats. Data sharing can be facilitated using satellite or radio commu-

nication systems.

The central use of the dynamic NADP Algorithm in combat management systems can

be performed through the steps shown in Figure 7.2.

1. Data Collection Related to the Warfare Environment: Data from radars,

sonars, and other sensors located on all friendly air/land/sea platforms are col-

lected.

2. (Decision) New Solution Required?: After the data collection, it is determined

whether a new solution is needed. A new solution is required when one of the

conditions explained in Section 6.1 is encountered.

3. Creation of the Algorithm Input Parameters: The central combat manage-

ment system integrates data from all connected air/land/sea platforms and its
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Figure 7.1: Network-Enabled Naval Task Group

own sensors. The collected data are converted into a format that can be used

by the NADP Algorithm to create input parameters for the solution approach.

At this point, an evaluation of all defense resources and threats within the task

group is carried out to create the model parameters. This parameter set is con-

tinuously updated by the combat management system. Steps related to data

collection and algorithm parameter creation are presented in Figure 7.3.

4. Problem Solution and Engagement Planning (NADP Algorithm Stage-1):

The algorithm assigns current defense resources (guided missiles, naval gun

systems, electronic warfare tools, etc.) to threats in a way that optimizes the

objective function and schedules timing. Detailed steps involve threat alloca-

tion to sensors using a genetic algorithm-based solution approach in Stage 1.1

of the algorithm, and engagement scheduling decisions are determined by cre-

ating an engagement network and solving the shortest path problem in Stage

1.2.

5. Problem Solution and Maneuver Decisions (NADP Algorithm Stage-2): In

Stage 2, the algorithm plans the maneuvering decisions of the ships using a re-

cursive backward dynamic programming approach. During this stage, it aims to

ensure that engagements are not obstructed by weapon and sensor blind sectors

and maneuvers are conducted to minimize the sensor signatures against threats.
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Figure 7.2: A Dynamic NADP DSS Implementation Steps

6. Distribution of Defense Plan Commands: After the algorithm solution, en-

gagement plans and maneuvering decisions are distributed to the relevant de-

fense resources and ships in the task group. This process is carried out both

locally (for systems on the central ship) and over the network (for other ships

in the task group).

7. Execution of Defense Plan Commands: Platforms implement defensive reac-

tions. The war environment is dynamic, and the combat environment continu-

ously changes. The NADP solution is constantly updated with new information

about the warfare environment.
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CHAPTER 8

CONCLUSION

In this study, we addressed the NADP problem, which involves protecting friendly

naval assets from aerial threats in a maritime environment. In the first part of the

thesis, we focused on the static version of the problem. We developed a MINLP

model for the static NADP problem and proposed heuristic solution approaches to

overcome its computational complexity.

The computational results obtained from our study provide valuable insights and con-

clusions regarding the NADP problem and the effectiveness of the proposed heuristic

algorithms. The NADP problem is a challenging and complex optimization problem

due to its NP-completeness and the inclusion of various realistic features such as sen-

sor assignment requirements, weapon and sensor blind sectors, sequence-dependent

setup times, and ship’s infrared/radar signature. Solving the problem exactly using

the MINLP model is computationally expensive, even for small scenario sizes. There-

fore, we firstly linearized the nonlinear model to obtain approximate solutions. The

linearized model proved to be a successful approximation, providing effective solu-

tions within a reasonable time for a significant number of scenarios.

Following the linearization, our initial step in developing a solution method was ap-

plying the decomposition of the mathematical model. While this process effectively

reduces the solution times, it still falls short of reaching a level suitable for real-time

applications. Therefore, we developed the heuristic algorithms to solve the NADP

problem efficiently utilizing the decomposition of the mathematical model. The

Greedy Algorithm produced good initial solutions for the linearized models, while

the HAGA+EN+DP and HAGA+DP algorithms provided fast and effective solutions

for most NADP scenarios. The heuristic algorithms demonstrated their ability to gen-
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erate solutions that closely approximated the solutions obtained from the linearized

model, with small deviations in the objective function values. The heuristic algo-

rithms also significantly reduced the computation time compared to the linearized

model, making them practical and efficient tools for solving the NADP problem in

real-life situations.

In the second part of the study, we investigated the NADP problem in a dynamic war-

fare environment. Unlike the static version, the dynamic NADP problem accounts for

real-world implications such as the loss of functionality in weapon/sensor systems if

a friendly ship is hit. This chapter introduces heuristic solution approaches, includ-

ing the DHAGA+EN+DP algorithm, to address the need for rapid decision-making in

evolving naval warfare scenarios. Computational experiments reveal that while this

algorithm provides superior solutions, the MHAEN+DP algorithm proves to be more

efficient in terms of solution times for larger scenarios. The importance of full coordi-

nation among friendly ships and the value of possessing future threat information are

underscored through comprehensive experiments, shedding light on effective naval

air defense planning strategies.

Comparison of SLS firing policy and modified-SLS firing policy provided an im-

portant insight into the NADP solution characteristics. The trade-off between the

SLS and modified-SLS firing policies highlights the critical balance between con-

serving resources and maximizing engagement effectiveness. While the SLS policy

ensures efficient use of interceptors and cost savings, it may fall short against persis-

tent threats. Conversely, the modified-SLS policy enhances the probability of neu-

tralizing targets but at the expense of accelerated resource depletion and higher costs.

These findings underscore the importance of adaptive firing strategies that consider

real-time combat conditions, resupply opportunities, and anticipated threat levels to

optimize naval defense operations.

Additionally, it is proved that machine learning models can enhance the threat pri-

oritization process by analyzing a set of attributes that describe the naval air defense

warfare environment, leading to improved allocation of defense resources. Compu-

tational experiments indicate that machine learning models outperform the simple

ratio method, demonstrating the potential benefits of integrating machine learning
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into NADP solution approaches.

Lastly, the implementation of the NADP Decision Support Automation topic is ad-

dressed, and steps are outlined for how NADP solution approaches can be applied

into a Network-Enabled Naval Task Group. Thus, this study sheds light on how a

real-world implementation can be achieved.

Overall, this study contributes to addressing the increasingly complex and challeng-

ing nature of air defense in the maritime environment. The proposed heuristic algo-

rithms provide fast and efficient solutions for the NADP problem by optimizing the

allocation of defense resources to minimize threats to friendly naval assets. These

algorithms can be embedded into the command and control systems of naval ships,

providing decision support and enhancing the effectiveness of air defense operations.

Future research can focus on extending the use of machine learning models in the

NADP solution to include engagement planning decisions alongside threat prioriti-

zation. Methods can be developed to integrate real-time adjustments to engagement

schedules based on evolving threat environments and operational defense resource

statuses. Exploring machine learning algorithms may provide optimal engagement

strategies through iterative learning. Also, developing the modified-SLS policy with

advanced resource allocation rules that consider various factors such as threat priori-

tization, ammunition type, resupply capability and future threat expectation may lead

to more resilient and efficient naval defense operations.

Furthermore, the findings and methodologies developed in this study for naval air

defense can be extended to various other defense scenarios. For instance, the solution

approach can be adapted to protect a naval task group from asymmetric surface threats

or to safeguard a land base against aerial and ground threats.
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[36] N. Gülpınar, E. Çanakoğlu, and J. Branke, “Heuristics for the stochastic dy-

namic task-resource allocation problem with retry opportunities,” European

Journal of Operational Research, vol. 266, no. 1, pp. 291–303, 2018.

[37] J. Li, B. Xin, P. M. Pardalos, and J. Chen, “Solving bi-objective uncertain

stochastic resource allocation problems by the cvar-based risk measure and

decomposition-based multi-objective evolutionary algorithms,” Annals of Op-

erations Research, pp. 1–28, 2019.

[38] A. Silav, O. Karasakal, and E. Karasakal, “Bi-objective missile rescheduling for

114



a naval task group with dynamic disruptions,” Naval Research Logistics (NRL),

vol. 66, no. 7, pp. 596–615, 2019.

[39] D. S. Summers, M. J. Robbins, and B. J. Lunday, “An approximate dynamic

programming approach for comparing firing policies in a networked air defense

environment,” Computers & Operations Research, vol. 117, p. 104890, 2020.

[40] J. Zhengrong, L. Faxing, and W. Hangyu, “Multi-stage attack weapon target

allocation method based on defense area analysis,” Journal of Systems Engi-

neering and Electronics, vol. 31, no. 3, pp. 539–550, 2020.

[41] A. Silav, E. Karasakal, and O. Karasakal, “Bi-objective dynamic weapon-target

assignment problem with stability measure,” Annals of Operations Research,

pp. 1–19, 2021.

[42] O. Karasakal, E. Karasakal, and A. Silav, “A multi-objective approach for dy-

namic missile allocation using artificial neural networks for time sensitive deci-

sions,” Soft Computing, vol. 25, no. 15, pp. 10153–10166, 2021.

[43] L. Kong, J. Wang, and P. Zhao, “Solving the dynamic weapon target assignment

problem by an improved multiobjective particle swarm optimization algorithm,”

Applied Sciences, vol. 11, no. 19, p. 9254, 2021.

[44] S. Li, X. He, X. Xu, T. Zhao, C. Song, and J. Li, “Weapon-target assignment

strategy in joint combat decision-making based on multi-head deep reinforce-

ment learning,” IEEE Access, 2023.

[45] C. Liu, J. Li, Y. Wang, Y. Yu, L. Guo, Y. Gao, Y. Chen, and F. Zhang, “A

time-driven dynamic weapon target assignment method,” IEEE Access, vol. 11,

pp. 129623–129639, 2023.

[46] O. Karasakal, Optimal air defense strategies for naval task group. PhD thesis,

Middle East Technical University, 2004.

[47] S. P. Lloyd and H. S. Witsenhausen, “Weapons allocation is np-complete,” 1986

summer computer simulation conference, pp. 1054–1058, 1986.

[48] Z. Bogdanowicz, N. Coleman, et al., “Sensor-target and weapon-target pairings

115



based on auction algorithm,” Proceedings of the 11th WSEAS international con-

ference on applied mathematics, pp. 92–96;, Citeseer, 2007.

[49] H. Chen, Z. Liu, Y. Sun, and Y. Li, “Particle swarm optimization based on ge-

netic operators for sensor-weapon-target assignment,” vol. 2 of 2012 Fifth Inter-

national Symposium on Computational Intelligence and Design, pp. 170–173;,

IEEE, 2012.

[50] B. Xin, Y. Wang, and J. Chen, “An efficient marginal-return-based constructive

heuristic to solve the sensor–weapon–target assignment problem,” IEEE Trans-

actions on Systems, Man, and Cybernetics: Systems, vol. 49, no. 12, pp. 2536–

2547, 2018.

[51] A. Benaskeur, É. Bossé, and D. Blodgett, “Combat resource allocation plan-

ning in naval engagements,” TR 2005-486, Defence Research and Development

Canada Valcartier (Quebec), 2007.

[52] D. E. Blodgett, B. Chaib-draaa, P. Plamondon, P. Kropf, and E. Bossé, “A

method to optimize ship maneuvers for the coordination of hardkill and softkill

weapons within a frigate,” 7th International Command and Control Research

Technology Symposium, pp. 1–15, 2002.

[53] A. Benaskeur, É. Bossé, and D. Blodgett, “Multi-agent coordination techniques

for naval tactical combat resources management,” TR 2006-784, Defence Re-

search and Development Canada Valcartier (Quebec), 2008.

[54] M. Cerruti, M. Pastorino, A. Randazzo, F. Perra, and A. Guagnano, “A radar

cross section and radar performance evaluation tool for the early stage ship de-

sign (essd) phase,” OCEANS 2015 - Genova, pp. 1–5, 2015.

[55] R. Bellman, “On a routing problem,” Quarterly of applied mathematics, vol. 16,

no. 1, pp. 87–90, 1958.

[56] MathWorks, MATLAB Statistics and Machine Learning Toolbox User’s Guide.

The MathWorks, Inc., Natick, MA, USA, 2024. Accessed: 2024-05-11.

[57] M. H. Beale, M. T. Hagan, and H. B. Demuth, MATLAB Deep Learning Toolbox

User’s Guide. The MathWorks, Inc., Natick, MA, USA, 2024. Accessed: 2024-

05-11.

116



APPENDICES

A Air Defense Systems of a Warship

In order to describe the problem better, Air Defense Systems of some warships will be

explained briefly in this appendix. Figure A.1 shows an Ada class corvette of Turkish

Navy.

Figure A.1: A Milgem Class Corvette

This ship has surveillance radar systems. Radars are used for the detection of the

threats.

EW systems is used to detect and identify the threats. Depending on their capabilities,

these systems can also disrupt the threat ASM’s track on the ownship and lead the

threat to destroy itself. EW systems can work as jamming systems.

This ship has a Chaff countermeasure system. Chaff is deployed at a position be-

tween the ownship and the incoming threat and it can distract radar-guided-missiles

by creating a false target. EW systems and chaff countermeasure systems are named
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as soft kill systems.

Fire Control Systems are used for tracking and illumination. Some of the weapon

systems are guided by fire control radars to perform the engagements.

Naval gun is artillery mounted on warships.

This ship has a short range missile system. Hence it can be said that this ship has only

self defense weapon systems.

And CMS is the brain of the ship. It integrates all of the ship’s weapons, data, sen-

sors and other equipment into a single system and it enables fast and correct combat

management decisions.

A Gabya class frigate can be seen in Figure A.2. Different from the previous Ada

class corvette, she has CIWS and Medium range missile systems.

Figure A.2: A Gabya Class Frigatte

CIWS is a self-defense system. It has a very short range. It provides an ultra-high fire

rate of shells and it represents the “last chance” protection against missiles.

Medium range missile systems can cover other friendly units within their effective

ranges. Gabya Class Frigates can provide area defense for other ships.

Platforms have to provide their defenses by using their limited resources effectively.

Efficient use of defense resources is critical and that would affect the final survival of
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the ship. Therefore, all defense systems in the task group, Soft Kill or Hard Kill, need

to be considered in the NADP problem.

B Example Scenarios

In the first scenario described in Figure B.1, there are two incoming ASMs and one

ship. The ship has one SAM system with 2 available inventory and one radar system.

The solution obeys the radar/weapon setup times, radar illumination, and all other

requirements.

Figure B.1: Scenario-1

As can be seen in the tables above, first engagement starts against ASM-1 at time slot

4 and second engagement starts against ASM-2 at time slot 15. Ship’s heading is 358

throughout the scenario. The radar is assigned to ASM-1 between time slots 1-11 and

to ASM-2 between time slots 12-22. OBJ-1 is used as the objective function of the

model.
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In the second scenario, the available inventory increases to 3. However, the ship can

not use the third ASM since there is not enough time to complete engagement before

the ASMs enter the SAM minimum engagement range.

Figure B.2: Scenario-2

In the third scenario, the radar system has blind sectors. As can be seen in the so-

lution, the ship maneuvers toward the port side (below 350) to be able to make an

engagement to ASM-1.
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Figure B.3: Scenario-3

In the fourth scenario, the weapon system’s minimum engagement range is decreased

to 1 kilometer. In this case, the ship has enough time to use the third SAM.

Figure B.4: Scenario-4

In the fifth scenario, the radar system has more blind sectors. She needs to have

heading exactly 349 degrees. And this can be seen in the solution.
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Figure B.5: Scenario-5

In the sixth scenario, the ship has two radar systems and 4 available SAM inventory.

The solution obeys the radar/weapon setup times, radar illumination, and all other

requirements.

Figure B.6: Scenario-6

In the seventh scenario, the ship has 5 available SAM inventory. The solution obeys
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the radar/weapon setup times, radar illumination, and all other requirements.

Figure B.7: Scenario-7

In the eighth scenario, there are 3 incoming ASMs and the ship has 7 available SAM

inventory. The solution obeys the radar/weapon setup times, radar illumination, and

all other requirements.

Figure B.8: Scenario-8

123



In the ninth scenario, there are 1 incoming ASM and two ships. Both ships have two

available SAM inventory. The solution obeys the shoot-look-shoot policy.

Figure B.9: Scenario-9

In the tenth scenario, the ship’s RCS data is also included in the parameters. There are

2 incoming ASMs and one ship. The ship has 2 available SAM inventory. In order to

increase its survivability, the ship has to show its 40-degree aspect to the ASMs. The

ship’s maneuvering that provides this can be seen in the solution.
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Figure B.10: Scenario-10

C Linearization of the Model

In the following subsections, the formulations of the linearized NADP problem for 3

different objective functions are given.

C.1 Objective Function-1: Maximization of the probability of no-leaker for the

entire TG

The only nonlinear part of the model is the objective function given below:

max
∏
i∈A

(
1− PKi

∏
t∈T,f∈F

(1− pift)
Yift

)

The nonlinearity in the model can be linearized by using logarithms and piecewise

linear functions. Let us define hi as the probability of no-leaker for ASM i.

hi =

(
1− PKi

∏
t∈T,f∈F

(1− pift)
Yift

)
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The objective function can be restated as:

max
∏
i∈A

hi

And a new set of constraint can be added into the model as follows:(
1− PKi

∏
t∈T,f∈F

(1− pift)
Yift

)
≥ hi,∀i ∈ A

Taking the logarithms of the objective function and both sides of the constraint does

not change the optimal solution since ln(a) ≤ ln(b) if and only if a ≤ b:

max
∑
i∈A

ln(hi)

−ln(PKi)−
∑

t∈T,f∈F

ln(1− pift)Yift ≥ −ln(1− hi),∀i ∈ A

ln(PKi) term creates non-linearity in the above inequality. With a modification in the

decision variable PKi in the constraint set 4.22, this non-linearity can be eliminated.

Let us define lnPKi as new decision variable to replace ln(PKi). In the right-hand

side of constraint set 4.22, (1− rcsiα) part can be written as ln(1− rcsiα) since BRiα

decision variable takes the value of 1 for only one angle α. lnPKi can be calculated

as the same value of ln(PKi) in this way. Modified version of the constraint set 4.22

is given below:

lnPKi =
∑

α∈[0,359]

ln(1− rcsiα)BRiα ∀i ∈ A,

And the new constraint set can be restated as:

−lnPKi +
∑

t∈T,f∈F

aiftYift ≥ bi,∀i ∈ A

where aift = −ln(1− pift) and bi = −ln(1− hi).
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Further simplification procedure is presented by Karasakal (2004)[46] using piece-

wise linearization and the relationship between ln(h) in the objective function and

−ln(1− hi) in the right hand side of the new constraint.

The resulting model is given below:

max
∑
i∈A

(c1b1i + c2b2i + c3b3i + c4b4i )

s.t.− lnPKi +
∑

t∈T,f∈F

aiftYift ≥ b1i + b2i + b3i + b4i , ∀i ∈ A (8.1)

0 ≤ b1i ≤ Z1, ∀i ∈ A (8.2)

0 ≤ b2i ≤ Z2 − Z1, ∀i ∈ A (8.3)

0 ≤ b3i ≤ Z3 − Z2, ∀i ∈ A (8.4)

0 ≤ b4i ≤ Z4 − Z3, ∀i ∈ A (8.5)

and Constraint Sets 1-34. Here c1, c2, c3, c4, Z1, Z2, Z3, Z4 values 1 are determined

according the relationship between ln(hi) and −ln(1− hi) seen in the Figure C.1.

Figure C.1: Relationship between ln(hi) and −ln(1− hi)

Note that this is not the exact linearization of the nonlinear model. However this
1 c1 = 17.761 c2 = 2.848 c3 = 0.979 c4 = 0.332 c5 = 0.053 Z1 = 0.163
Z2 = 0.478 Z3 = 0.968 Z4 = 1.897 Z5 = 4.6052
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provides an approximation for the nonlinear model and helps to find good enough

solutions.

C.2 Objective Function-2: Minimization of the maximum hit probability of the

threats

The nonlinear part in the objective function-2 formulation is the maximum hit proba-

bility constraint given below:

PKi

∏
t∈T,f∈F

(1− pift)
Yift ≤ W ∀i ∈ A

Taking the logarithms of the objective function and both sides of the constraint does

not change the optimal solution:

min ln(W )

subject to

lnPKi +
∑

t∈T,f∈F

ln(1− pift)Yift ≤ ln(W ) ∀i ∈ A

However, ln(W ) still creates nonlinearity in the above formulation. Let us define

lnW as a new decision variable to replace ln(W ). This operation does not change

the optimal solution because both the objective function and the right hand side of the

constraint has ln(W ). The resulting model is given below:

min lnW
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subject to

lnPKi −
∑

t∈T,f∈F

aiftYift ≤ lnW ∀i ∈ A (8.6)

and Constraint Sets 4.1-4.34.

This formulation provides exact linearization of the objective function-2 nonlinear

model.

C.3 Objective Function-3: Minimization of the value-weighted total hit proba-

bility of the threats

The nonlinear part of the model is the objective function given below:

min
∑
i∈A

vi

(
PKi

∏
t∈T,f∈F

(1− pift)
Yift

)

Let us define hi as the hit probability of ASM i.

hi = PKi

∏
t∈T,f∈F

(1− pift)
Yift

The objective function can be restated as:

min
∑
i∈A

vihi

And a new set of constraint can be added into the model as follows:

PKi

∏
t∈T,f∈F

(1− pift)
Yift ≤ hi,∀i ∈ A

Taking the logarithms of the both sides of the constraint does not change the optimal
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solution:

−lnPKi −
∑

t∈T,f∈F

ln(1− pift)Yift ≥ −ln(hi),∀i ∈ A

And nonlinear part can be linearized using piecewise linear functions and the rela-

tionship between hi in the objective function and−ln(hi) in the right hand side of the

new constraint. The resulting model is given below:

min
∑
i∈A

vi(c
1b1i + c2b2i + c3b3i ++c4b4i )

s.t.− lnPKi +
∑

t∈T,f∈F

aiftYift ≥ b1i + b2i + b3i + b4i , ∀i ∈ A (8.7)

0 ≤ b1i ≤ Z1, ∀i ∈ A (8.8)

0 ≤ b2i ≤ Z2 − Z1, ∀i ∈ A (8.9)

0 ≤ b3i ≤ Z3 − Z2, ∀i ∈ A (8.10)

0 ≤ b4i ≤ Z4 − Z3, ∀i ∈ A (8.11)

and Constraint Sets 4.1-4.34. Here c1, c2, c3, c4, Z1, Z2, Z3, Z4 values 2 are determined

according the relationship between hi and −ln(hi) seen in the Figure C.2.

Figure C.2: Relationship between hi and −ln(hi)

2 c1 = −0.864 c2 = −0.612 c3 = −0.387 c4 = −0.178 c5 = −0.036
Z1 = 0.288 Z2 = 0.693 Z3 = 1.204 Z4 = 2.303 Z5 = 4.6052
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Similar to the linearization of the objective function-1 nonlinear model, this formula-

tion does not provide exact linearization of the objective function-3 model.

D Generation of the Scenarios

The parameter generation structure specified in the Table D.1 is utilized in order to

create the scenarios to be used in the computational experiments.

In the computational experiments, these parameters listed in the table are determined

randomly within the specified intervals. Then other model parameters (Jit, Uift, µif ,

pift, θint, etc.) are calculated and GAMS input file is prepared by MATLAB. GAMS

or the developed algorithm solves the problem using this input file, and then MAT-

LAB reports the result. Figure-D.1 summarizes the structure of how computational

experiments are carried out.

Figure D.1: Using MATLAB and GAMS in the Experiments

It may be useful to explain the approach of determining the hit probabilities of friendly

weapon systems used in the scenario creation structure. It is assumed that a threat

whose initial position, speed and route is known will not change its route and speed

during its operation. In real case, ASMs can make waypoints during their courses

toward the target. Therefore, any change in the threat parameters will be considered

as a new scenario for the NADP problem.

A meeting point is determined where the weapon system will have the maximum

kill probability for a given threat. Then, kill probabilities are determined using the
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Table D.1: List of parameters for scenario generation

Parameter Value Interval
Number of Ships {1, 2, ..., 8}
Maximum Turn Rate of Ships {2, 3, ..., 9} degree per second
Initial position of the ships [−10, 10] nautical miles (NM) x-y coord.
Initial heading of the ships {0, 1, ..., 359} degree
Number of Weapon Systems on Each Ship {1, 2}
Initial Inventory for Each Weapon System {1, 2, .., 5}
Speed of the Weapon Systems [0.8, 4] Mach per hour
Minimum Distance for Engagements [1, 5] NM
Maximum Distance for Engagements [10, 40] NM

Illumination Type of the Weapon Systems
(All weapons are type 1 for now)

1 - Semi Active HAW-CWI
2 - Semi Active MCG-CWI
3 - Semi Active MCG-ICWI
4 - Fire and Forget

Launch Delay of the Weapon Systems {1, 2, 3} seconds
Max Efficiency Range of the Weapon Systems [Min Dist,(Min Dist+Max Dist)/2] NM
PK Value in the Max Efficiency Range [0.4, 0.7] probability
Kill Probability Change per Km Range [0.005, 0.01] probability
Setup Time Between Two Consecutive Fires {1, 2, 3, 4} seconds

Weapon System’s Defense Capability
1 - Self Defense
2 - Area Defense

Number of Radar Systems on each ship {1, 2}
Radar Maximum Distance for Tracking [25, 50] NM
Radar Setup Time for Tracking the Threat {1, 2, 3} seconds

Radar/Weapon Blind Sectors
For each weapon or radar system;
With equal probabilities, no blind sector
Or randomly selected 30 degrees

Number of the Threats {1,2,..., 4 x Number of Ships}
Initial position of the Threats [−50, 50] excluding [−10, 10] NM x-y coord.
Speed of the Threats [0.8, 4] Mach per hour
Value of the Ships [0, 1] (weights are normalized)
Value of the Threats [0, 1] (target ship’s value is taken)
Radar Cross Section Probability Values [0.1, 0.3]

assumption that the kill probability decreases linearly as the distance to this point

increases. In real case, threat/engagement assessment is done by much more complex

algorithms on the ship’s combat management systems. Modeling the kill probability

involves considering various factors, such as target distance, attack angle, weapon and

threat’s technical capabilities. However, detailed modeling of these factors is beyond

the scope of this work. We assumed that this structure is sufficient for this study.
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E Parameters of the Stage 1.1 Genetic Algorithm

Many experiments have been carried out to develop the best algorithm implementa-

tion and to select the most suitable parameters in order to increase the performance

of the genetic algorithm. Some tested values for the parameters are presented below.

The final versions of the parameters used in the algorithm are marked in bold.

A complete design of experiments for parameter setting optimization was not per-

formed due to the complexity and the potential for significantly increased study time.

Optimizing the GA’s parameters can often be an exhaustive process, requiring nu-

merous trials and fine-tuning. Therefore, it was decided that a complete design of the

experiments was not within the scope of this study. Instead, best-practice values from

the trials were adopted to keep the parameters at reasonable levels.

Table E.1: Parameters of the Stage 1.1 Genetic Algorithm

Population Size

20, 30, 40, 50, 60
Start with a number and increase it by 1 at each iteration
max(8(|S|+ |R|), 50)
min (5(|A||F |), 50)
max(10|S|+ 10|R|, 50)
min(max(20, 4|A||N |), 40)

Initial Population Size
max(Population Size, min(10|A||F |,500))
max(Population Size, min(20|A||F |,500))
50, 60, 70, 80, 90, 100, 200, Population Size

Number of Crossovers in each iteration 15, 20, 25, 30, 35, 40, 45, 50
Crossover Selection rule Random
Mutation rate 0.15, 0.20, 0.25, 0.30, 0.35, 0.40, 0.50, 0.60, 0.70
Number of new solutions to be added
to the population at each iteration

0, 3, 5, 8, 10

Convergence Criterion
20, 30, 40, M iterations without improvement
(big M, it means this criterion is not used)

Maximum number of iterations 100, 200

F Detailed Comparison Results of the Heuristic Algorithms in MxN NADP

Scenarios

Detailed results of Table 5.8 are presented in this appendix.
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Table F.1: MxN NADP Scenario Comparison Results (OBJ-1)

Number
of Ships

Number
of Threats

OBJ-1 Prob. of No Leaker
Greedy

Algorithm
Linearized

Model
Decomposition

Approach HAGA+EN+DP HAGA+DP HAGA+EN+DP

(1 sec limit)
S-1 1 1 0.6115 0.6115 0.6115 0.6115 0.6115 0.6115
S-2 1 1 0.7334 0.7334 0.7334 0.7334 0.7334 0.7334
S-3 1 2 0.3365 0.3365 0.3365 0.3365 0.3365 0.3365
S-4 1 2 0.4035 0.4045 0.4019 0.4027 0.4027 0.4027
S-5 1 3 0.1875 0.4370 0.4370 0.4370 0.4370 0.4370
S-6 1 3 0.0410 0.0492 0.0492 0.0492 0.0492 0.0492
S-7 1 4 0.1769 0.4255 0.4538 0.4366 0.4359 0.4396
S-8 2 1 0.8806 0.8806 0.8806 0.8806 0.8806 0.8806
S-9 2 2 0.6438 0.7374 0.7374 0.7374 0.7374 0.7374

S-10 2 2 0.2951 0.2951 0.2951 0.2951 0.2951 0.2951
S-11 2 3 0.6273 0.7266 0.7291 0.7313 0.7313 0.7313
S-12 2 3 0.4038 0.4817 0.4817 0.4817 0.4817 0.4631
S-13 2 4 0.4316 0.6622 0.6625 0.6397 0.6397 0.6388
S-14 2 5 0.0424 0.0563 0.0563 0.0563 0.0563 0.0563
S-15 3 1 0.7562 0.7562 0.7562 0.7562 0.7385 0.7562
S-16 3 2 0.8125 0.8187 0.8187 0.8187 0.8108 0.8187
S-17 3 3 0.2873 0.4656 0.4656 0.4656 0.4656 0.4656
S-18 3 4 0.3780 0.5955 0.5955 0.5955 0.5955 0.5874
S-19 3 4 0.1048 0.1226 0.1226 0.1226 0.1226 0.1226
S-20 3 5 0.0679 0.1685 0.1685 0.1685 0.1685 0.1685
S-21 3 6 0.0748 0.1626 0.1657 0.1381 0.1381 0.1431
S-22 4 2 0.5373 0.6175 0.6175 0.6175 0.6175 0.6175
S-23 4 3 0.6453 0.7626 0.7626 0.7591 0.7373 0.7453
S-24 4 3 0.6052 0.7538 0.7538 0.7538 0.7538 0.7537
S-25 4 4 0.3178 0.4408 0.4518 0.4408 0.4408 0.4314
S-26 4 5 0.2090 0.3154 0.3154 0.3142 0.3142 0.3100
S-27 4 6 0.0382 0.0819 0.0819 0.0780 0.0636 0.0780
S-28 4 7 0.1385 0.1502 0.1432 0.1710 0.1710 0.1697
S-29 5 3 0.4493 0.6643 0.6568 0.6558 0.6558 0.6482
S-30 5 4 0.4315 0.4872 0.4880 0.4849 0.4834 0.4550
S-31 5 4 0.4595 0.5063 0.5063 0.5083 0.5077 0.4889
S-32 5 5 0.3906 0.5440 0.5441 0.5440 0.5440 0.5429
S-33 5 6 0.2833 0.3614 0.3617 0.3091 0.3074 0.2995
S-34 5 7 0.0951 0.2760 0.2720 0.2555 0.2555 0.2320
S-35 5 8 0.0221 0.0574 0.0587 0.0550 0.0550 0.0296
S-36 6 4 0.5874 0.7547 0.7456 0.7126 0.7126 0.7488
S-37 6 5 0.2658 0.4556 0.4556 0.4433 0.4433 0.4455
S-38 6 6 0.3395 0.3964 0.4028 0.3059 0.3054 0.3059
S-39 6 7 0.1200 0.2259 0.2259 0.2170 0.2170 0.1866
S-40 6 7 0.1660 0.2219 0.2263 0.2212 0.2202 0.1768
S-41 6 8 0.0534 0.1147 0.1075 0.1105 0.1104 0.0862
S-42 6 9 0.0959 0.1240 0.1287 0.1272 0.1272 0.1208
S-43 7 5 0.4296 0.5714 0.5446 0.5340 0.5340 0.5294
S-44 7 6 0.2096 0.2680 0.2959 0.2473 0.2473 0.2527
S-45 7 7 0.1190 0.2364 0.2364 0.2364 0.2364 0.2022
S-46 7 8 0.2320 0.3891 0.3668 0.3229 0.3066 0.2622
S-47 7 9 0.0148 0.0692 0.0841 0.0633 0.0631 0.0633
S-48 7 10 0.0155 0.0294 0.0294 0.0222 0.0222 0.0145
S-49 8 6 0.1502 0.2449 0.2300 0.1930 0.1930 0.1369
S-50 8 8 0.3284 0.3745 0.3825 0.3322 0.3320 0.2543

Average 0.3209 0.4084 0.4087 0.3986 0.3969 0.3892
Percent Deviation % From
the Best Solution (Average) 28.32 1.25 0.88 4.59 5.19 9.11

Number of Best Solutions 6 33 38 22 19 16
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Table F.2: MxN NADP Scenario Comparison Results (OBJ-2)

Number
of Ships

Number
of Threats

OBJ-2 Min of Max Hit Prob.
Greedy

Algorithm
Linearized

Model
Decomposition

Approach HAGA+EN+DP HAGA+DP HAGA+EN+DP

(1 sec limit)
S-1 1 1 0.3885 0.3885 0.3885 0.3885 0.3885 0.3885
S-2 1 1 0.2666 0.2666 0.2666 0.2666 0.2666 0.2666
S-3 1 2 0.4350 0.4350 0.4350 0.4350 0.4350 0.4350
S-4 1 2 0.4073 0.4043 0.3880 0.3851 0.3851 0.3851
S-5 1 3 0.7034 0.3170 0.3170 0.3170 0.3170 0.3170
S-6 1 3 0.7077 0.7077 0.7077 0.7077 0.7077 0.7077
S-7 1 4 0.7036 0.2971 0.2642 0.2629 0.2629 0.2629
S-8 2 1 0.1194 0.1194 0.1194 0.1194 0.1194 0.1194
S-9 2 2 0.3452 0.2424 0.2424 0.2424 0.2424 0.2424

S-10 2 2 0.5358 0.5358 0.5358 0.5358 0.5358 0.5358
S-11 2 3 0.2252 0.1027 0.1101 0.1147 0.1147 0.1147
S-12 2 3 0.3189 0.2640 0.2640 0.2640 0.2640 0.2561
S-13 2 4 0.2495 0.1391 0.1395 0.1371 0.1371 0.1371
S-14 2 5 0.5498 0.5498 0.5498 0.5498 0.5498 0.5498
S-15 3 1 0.2438 0.2438 0.2438 0.2438 0.2615 0.2438
S-16 3 2 0.1382 0.1366 0.1366 0.1366 0.1366 0.1366
S-17 3 3 0.4914 0.3143 0.3143 0.3143 0.3143 0.3143
S-18 3 4 0.3232 0.1405 0.1405 0.1405 0.1405 0.1461
S-19 3 4 0.7021 0.7021 0.7021 0.7021 0.7021 0.7021
S-20 3 5 0.7008 0.3506 0.3506 0.3506 0.3506 0.3506
S-21 3 6 0.7015 0.4084 0.4386 0.4724 0.4724 0.4475
S-22 4 2 0.3973 0.3079 0.3079 0.3079 0.3079 0.3079
S-23 4 3 0.2113 0.1313 0.1313 0.1330 0.1330 0.1313
S-24 4 3 0.2357 0.1485 0.1485 0.1485 0.1485 0.1487
S-25 4 4 0.3484 0.2715 0.2258 0.2715 0.2715 0.2789
S-26 4 5 0.3351 0.3383 0.3383 0.3383 0.3383 0.3383
S-27 4 6 0.7003 0.5019 0.5019 0.5019 0.5019 0.5019
S-28 4 7 0.4429 0.4429 0.4429 0.4429 0.4429 0.4429
S-29 5 3 0.3438 0.1817 0.2120 0.1935 0.1935 0.1937
S-30 5 4 0.2523 0.2521 0.2521 0.2543 0.2543 0.2599
S-31 5 4 0.2420 0.1880 0.1880 0.1855 0.1855 0.1855
S-32 5 5 0.3503 0.2319 0.2319 0.2319 0.2319 0.2319
S-33 5 6 0.4421 0.3483 0.3436 0.4421 0.4421 0.3483
S-34 5 7 0.5283 0.2547 0.2462 0.2558 0.2558 0.2602
S-35 5 8 0.7006 0.3746 0.3746 0.3746 0.3746 0.5798
S-36 6 4 0.2543 0.0999 0.1426 0.1947 0.1947 0.1010
S-37 6 5 0.3409 0.2823 0.2823 0.2872 0.2872 0.2872
S-38 6 6 0.3109 0.2634 0.2566 0.2620 0.2620 0.2620
S-39 6 7 0.3852 0.3852 0.3852 0.3852 0.3852 0.3852
S-40 6 7 0.4020 0.2853 0.2853 0.2853 0.2853 0.4028
S-41 6 8 0.7303 0.7303 0.7303 0.7303 0.7303 0.7303
S-42 6 9 0.3822 0.3228 0.3228 0.3228 0.3228 0.3228
S-43 7 5 0.3125 0.1579 0.1579 0.1579 0.1579 0.1579
S-44 7 6 0.2981 0.3065 0.2981 0.3358 0.3358 0.2981
S-45 7 7 0.4659 0.3168 0.3168 0.3168 0.3168 0.3760
S-46 7 8 0.3161 0.2190 0.2190 0.2190 0.2190 0.3161
S-47 7 9 0.7153 0.3668 0.3529 0.3668 0.3668 0.3668
S-48 7 10 0.5422 0.5422 0.5422 0.5422 0.5422 0.5422
S-49 8 6 0.4422 0.3156 0.3750 0.3750 0.3750 0.4422
S-50 8 8 0.2482 0.2285 0.2274 0.2482 0.2482 0.3114

Average 0.4187 0.3172 0.3179 0.3239 0.3243 0.3314
Percent Deviation % From
the Best Solution (Average) 43.19 1.13 1.96 4.66 4.81 6.29

Number of Best Solutions 15 38 39 34 33 29
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Table F.3: MxN NADP Scenario Comparison Results (OBJ-3)

Number
of Ships

Number
of Threats

OBJ-3 Average Value Weighted Hit Prob.
Greedy

Algorithm
Linearized

Model
Decomposition

Approach HAGA+EN+DP HAGA+DP HAGA+EN+DP

(1 sec limit)
S-1 1 1 0.3885 0.3885 0.3885 0.3885 0.3885 0.3885
S-2 1 1 0.2666 0.2666 0.2666 0.2666 0.2666 0.2666
S-3 1 2 0.4197 0.4197 0.4197 0.4197 0.4197 0.4197
S-4 1 2 0.3633 0.3626 0.3657 0.3651 0.3651 0.3651
S-5 1 3 0.3669 0.2390 0.2390 0.2390 0.2390 0.2390
S-6 1 3 0.6452 0.6134 0.6134 0.6134 0.6134 0.6134
S-7 1 4 0.2901 0.1868 0.1766 0.1846 0.1849 0.1833
S-8 2 1 0.1194 0.1194 0.1194 0.1194 0.1194 0.1194
S-9 2 2 0.1810 0.1345 0.1345 0.1345 0.1345 0.1345

S-10 2 2 0.4501 0.4501 0.4501 0.4501 0.4501 0.4501
S-11 2 3 0.1579 0.1014 0.1005 0.0992 0.0992 0.0992
S-12 2 3 0.2589 0.2153 0.2153 0.2153 0.2153 0.2259
S-13 2 4 0.1870 0.0973 0.0972 0.1055 0.1055 0.1058
S-14 2 5 0.4765 0.4512 0.4512 0.4512 0.4512 0.4512
S-15 3 1 0.2438 0.2438 0.2438 0.2438 0.2615 0.2438
S-16 3 2 0.0774 0.0730 0.0730 0.0730 0.0799 0.0730
S-17 3 3 0.2831 0.1935 0.1935 0.1935 0.1935 0.1935
S-18 3 4 0.1941 0.1149 0.1149 0.1149 0.1149 0.1196
S-19 3 4 0.3289 0.3124 0.3124 0.3124 0.3124 0.3124
S-20 3 5 0.3993 0.3171 0.3171 0.3171 0.3171 0.3171
S-21 3 6 0.2707 0.2384 0.2328 0.2357 0.2357 0.2551
S-22 4 2 0.2047 0.1745 0.1745 0.1745 0.1745 0.1745
S-23 4 3 0.1562 0.0970 0.0970 0.0982 0.1037 0.1014
S-24 4 3 0.1308 0.0713 0.0713 0.0713 0.0713 0.0714
S-25 4 4 0.2462 0.1820 0.1787 0.1820 0.1820 0.1864
S-26 4 5 0.2724 0.2049 0.2049 0.2053 0.2053 0.2072
S-27 4 6 0.3723 0.3152 0.3152 0.3244 0.3530 0.3244
S-28 4 7 0.2094 0.1890 0.1938 0.1957 0.1957 0.1966
S-29 5 3 0.2294 0.1265 0.1286 0.1299 0.1299 0.1334
S-30 5 4 0.2175 0.1958 0.1957 0.1973 0.1976 0.2071
S-31 5 4 0.1763 0.1581 0.1581 0.1575 0.1578 0.1653
S-32 5 5 0.1712 0.1261 0.1261 0.1261 0.1261 0.1265
S-33 5 6 0.1454 0.1234 0.1233 0.1286 0.1294 0.1552
S-34 5 7 0.2633 0.1659 0.1672 0.1757 0.1757 0.1865
S-35 5 8 0.3529 0.2845 0.2824 0.2891 0.2891 0.3032
S-36 6 4 0.0982 0.0524 0.0495 0.0531 0.0531 0.0580
S-37 6 5 0.2019 0.1330 0.1330 0.1357 0.1357 0.1366
S-38 6 6 0.1458 0.1301 0.1254 0.1584 0.1586 0.1584
S-39 6 7 0.2634 0.1971 0.1971 0.2021 0.2021 0.2191
S-40 6 7 0.2182 0.1916 0.1898 0.1924 0.1929 0.2103
S-41 6 8 0.1845 0.1439 0.1428 0.1483 0.1484 0.1662
S-42 6 9 0.1956 0.1675 0.1703 0.1676 0.1676 0.1876
S-43 7 5 0.1201 0.1129 0.1052 0.1067 0.1067 0.1090
S-44 7 6 0.2436 0.2193 0.2100 0.2358 0.2358 0.2256
S-45 7 7 0.2643 0.1907 0.1907 0.1907 0.1907 0.2046
S-46 7 8 0.1603 0.1120 0.1115 0.1270 0.1312 0.1611
S-47 7 9 0.2972 0.2390 0.2314 0.2514 0.2518 0.2514
S-48 7 10 0.3358 0.2975 0.2975 0.3163 0.3164 0.3468
S-49 8 6 0.2211 0.1775 0.1761 0.2049 0.2049 0.2307
S-50 8 8 0.1327 0.1046 0.1020 0.1224 0.1224 0.1416

Average 0.2520 0.2084 0.2075 0.2122 0.2135 0.2184
Percent Deviation % From
the Best Solution (Average) 29.55 0.88 0.18 3.26 4.01 7.31

Number of Best Solutions 6 31 41 22 19 16
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Table F.4: MxN NADP Scenario Comparison Results (OBJ-4)

Number
of Ships

Number
of Threats

OBJ-4 Value Weighted Ship Surv. Prob.
Greedy

Algorithm
Linearized

Model
Decomposition

Approach HAGA+EN+DP HAGA+DP HAGA+EN+DP

(1 sec limit)
S-1 1 1 0.6115 0.6115 0.6115 0.6115 0.6115 0.6115
S-2 1 1 0.7334 0.7334 0.7334 0.7334 0.7334 0.7334
S-3 1 2 0.3365 0.3365 0.3365 0.3365 0.3365 0.3365
S-4 1 2 0.4035 0.4045 0.4019 0.4027 0.4027 0.4027
S-5 1 3 0.1875 0.4370 0.4370 0.4370 0.4370 0.4370
S-6 1 3 0.0410 0.0492 0.0492 0.0492 0.0492 0.0492
S-7 1 4 0.1769 0.4255 0.4538 0.4366 0.4359 0.4396
S-8 2 1 0.9523 0.9523 0.9523 0.9523 0.9523 0.9523
S-9 2 2 0.7150 0.7899 0.7899 0.7899 0.7899 0.7899

S-10 2 2 0.6475 0.6475 0.6475 0.6475 0.6475 0.6475
S-11 2 3 0.7431 0.8303 0.8318 0.8336 0.8336 0.8336
S-12 2 3 0.5231 0.5854 0.5854 0.5854 0.5854 0.5705
S-13 2 4 0.6645 0.8154 0.8156 0.8001 0.8001 0.7995
S-14 2 5 0.3315 0.3418 0.3418 0.3418 0.3418 0.3418
S-15 3 1 0.9512 0.9512 0.9512 0.9512 0.9477 0.9512
S-16 3 2 0.9381 0.9416 0.9416 0.9416 0.9361 0.9416
S-17 3 3 0.7718 0.8318 0.8318 0.8318 0.8318 0.8318
S-18 3 4 0.7896 0.8732 0.8732 0.8732 0.8732 0.8679
S-19 3 4 0.5838 0.5920 0.5920 0.5920 0.5920 0.5920
S-20 3 5 0.5171 0.5845 0.5845 0.5845 0.5845 0.5845
S-21 3 6 0.6979 0.7201 0.7279 0.7309 0.7309 0.7065
S-22 4 2 0.8635 0.8836 0.8836 0.8836 0.8836 0.8836
S-23 4 3 0.9293 0.9541 0.9541 0.9535 0.9507 0.9519
S-24 4 3 0.9390 0.9661 0.9661 0.9661 0.9661 0.9661
S-25 4 4 0.8165 0.8642 0.8669 0.8642 0.8642 0.8609
S-26 4 5 0.6772 0.7439 0.7439 0.7434 0.7434 0.7408
S-27 4 6 0.4956 0.5887 0.5887 0.5807 0.5511 0.5807
S-28 4 7 0.6626 0.6600 0.6581 0.6808 0.6808 0.6799
S-29 5 3 0.8427 0.9041 0.9019 0.9017 0.9017 0.8995
S-30 5 4 0.8271 0.8434 0.8436 0.8425 0.8422 0.8346
S-31 5 4 0.8709 0.8827 0.8827 0.8826 0.8825 0.8783
S-32 5 5 0.8520 0.8912 0.8912 0.8912 0.8912 0.8908
S-33 5 6 0.8036 0.8363 0.8366 0.8244 0.8233 0.7951
S-34 5 7 0.7946 0.8692 0.8690 0.8562 0.8562 0.8435
S-35 5 8 0.4966 0.6031 0.6063 0.5960 0.5960 0.5945
S-36 6 4 0.9387 0.9671 0.9687 0.9661 0.9661 0.9634
S-37 6 5 0.8233 0.8821 0.8821 0.8797 0.8797 0.8789
S-38 6 6 0.9300 0.9363 0.9389 0.9251 0.9251 0.9251
S-39 6 7 0.6525 0.7004 0.7004 0.6954 0.6954 0.6823
S-40 6 7 0.7545 0.7867 0.7886 0.7863 0.7858 0.7612
S-41 6 8 0.8435 0.8631 0.8709 0.8589 0.8589 0.8599
S-42 6 9 0.7549 0.7908 0.7869 0.7905 0.7905 0.7682
S-43 7 5 0.9270 0.9292 0.9347 0.9339 0.9339 0.9323
S-44 7 6 0.8201 0.8362 0.8436 0.8263 0.8263 0.8343
S-45 7 7 0.7369 0.8057 0.8057 0.8057 0.8057 0.7907
S-46 7 8 0.8473 0.8821 0.8807 0.8633 0.8594 0.8497
S-47 7 9 0.6347 0.7044 0.7147 0.6880 0.6877 0.6880
S-48 7 10 0.5444 0.5910 0.5910 0.5718 0.5717 0.5447
S-49 8 6 0.8071 0.8588 0.8597 0.8452 0.8452 0.8021
S-50 8 8 0.8828 0.9041 0.9059 0.8925 0.8925 0.8745

Average 0.7017 0.7477 0.7491 0.7452 0.7442 0.7395
Percent Deviation % From
the Best Solution (Average) 7.63 0.34 0.13 0.64 0.78 1.36

Number of Best Solutions 6 31 39 22 20 16
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Table F.5: MxN NADP Scenario Comparison Results (Run Times)

Number
of Ships

Number
of Threats

Run Time (seconds)
Greedy

Algorithm
Linearized

Model
Decomposition

Approach HAGA+EN+DP HAGA+DP HAGA+EN+DP

(1 sec limit)
S-1 1 1 0.1026 0.0920 0.4300 0.1176 0.5465 0.1503
S-2 1 1 0.0710 0.2250 0.9340 0.0802 0.4294 0.0804
S-3 1 2 0.1597 0.1120 0.8470 0.6290 0.5225 0.8632
S-4 1 2 0.1483 0.3170 1.1570 0.8889 0.8429 1.0728
S-5 1 3 0.1970 2.5800 3.5530 0.9220 0.7682 0.9905
S-6 1 3 0.1770 0.2330 0.8110 0.5799 0.5800 0.6193
S-7 1 4 0.4613 500.4360 13.4540 1.9932 1.9278 1.5240
S-8 2 1 0.2162 0.1190 0.7930 0.2035 0.6948 0.2345
S-9 2 2 0.8341 2.1440 2.1030 4.5271 2.6736 2.5838

S-10 2 2 0.2982 0.2140 1.0410 0.8048 0.8338 0.8674
S-11 2 3 0.2303 4.1970 2.5120 1.5997 1.6211 1.2465
S-12 2 3 0.2821 15.2240 13.2290 2.4178 2.3580 1.2853
S-13 2 4 0.4212 500.4440 31.4410 2.7327 2.9774 1.5026
S-14 2 5 0.3640 57.9770 8.2920 1.8808 1.7950 1.3710
S-15 3 1 0.2201 0.1220 1.0160 0.2121 0.6001 0.2244
S-16 3 2 0.3094 0.2810 2.1800 1.0025 1.0195 1.0724
S-17 3 3 0.4871 2.9600 5.6850 1.8425 1.8110 1.5386
S-18 3 4 0.8255 2.6470 5.1000 6.5027 6.5912 1.9705
S-19 3 4 0.7669 0.8120 2.1040 1.5954 1.6325 1.5814
S-20 3 5 0.9068 1.1770 3.3490 1.9662 1.9916 1.9530
S-21 3 6 0.8339 500.7490 507.4240 5.9150 5.9578 1.9490
S-22 4 2 0.9016 0.5480 1.6230 1.7853 1.7837 1.8822
S-23 4 3 1.2376 5.9300 7.6900 8.0239 8.0191 2.3549
S-24 4 3 1.2855 7.5080 3.7710 6.8564 6.9398 2.3348
S-25 4 4 0.7376 0.8150 2.1240 4.5605 4.5696 1.8693
S-26 4 5 0.5575 10.8040 4.5240 4.0723 3.9923 1.6178
S-27 4 6 0.9228 3.6630 5.5610 2.7329 2.7626 2.0443
S-28 4 7 1.9260 503.0420 29.3360 28.3305 24.8214 4.5568
S-29 5 3 0.6708 500.4510 7.6410 4.6267 4.6075 1.7778
S-30 5 4 0.5969 500.5020 6.7060 5.1657 5.2693 1.6400
S-31 5 4 0.6548 4.5970 2.8330 4.2057 4.3245 1.7210
S-32 5 5 1.6196 1.4280 14.2910 5.7656 6.1262 2.7340
S-33 5 6 1.0798 501.2940 12.6390 10.2289 10.5603 2.5096
S-34 5 7 1.3451 579.8650 276.7050 13.0861 13.3507 3.1298
S-35 5 8 1.1507 502.0490 64.7680 9.3588 9.5697 2.3838
S-36 6 4 1.7107 9.6360 16.0680 10.5886 10.6135 2.9638
S-37 6 5 1.0580 3.1160 6.9800 7.4202 7.3403 2.1740
S-38 6 6 3.5930 505.5630 60.5300 11.2621 10.9628 4.8943
S-39 6 7 2.4810 15.0820 15.0910 6.3008 6.2595 2.3441
S-40 6 7 1.3336 48.9160 23.9210 12.8163 12.9801 3.0223
S-41 6 8 1.7622 435.5990 89.9990 14.2960 14.1165 3.7028
S-42 6 9 1.5332 56.1670 78.1260 13.1627 13.2923 3.3551
S-43 7 5 1.8052 501.4360 21.4190 12.4705 12.6100 3.6540
S-44 7 6 2.3142 502.9380 44.5470 18.7697 18.4843 5.0155
S-45 7 7 1.8950 5.1030 18.2580 11.9162 11.8906 3.7043
S-46 7 8 2.6052 506.6130 1451.6690 36.5189 35.5453 7.6803
S-47 7 9 1.4899 502.4740 37.8250 6.3870 6.4607 3.4859
S-48 7 10 2.2000 385.2400 31.9460 17.2931 17.3335 4.7636
S-49 8 6 1.2197 9.1720 6.7580 6.4035 7.8416 2.4941
S-50 8 8 3.5174 507.8930 141.8570 36.8625 36.1582 5.8150

Average 1.0703 174.2101 61.8532 7.3936 7.3352 2.3261

138



CURRICULUM VITAE

Surname, Name : Arslan, Caner

EDUCATION

M.S. in Industrial and Operations Research, University of Michigan, Ann Arbor, MI,

USA, 2015

B.S. in Operations Analysis, Naval Academy, İstanbul, Turkey, 2010
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