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ABSTRACT

POWER SPECTRAL DENSITY OF MULTI-LEVEL CONSTRAINED
SEQUENCES WITH APPLICATIONS

Atak, Seral Buse
M.S., Department of Electrical and Electronics Engineering

Supervisor: Assist. Prof. Dr. Ahmed Hareedy

August 2024, 94 pages

In various data storage and transmission systems, certain data patterns are likely to

result in errors when stored or transmitted. In order to enhance reliability in these sys-

tems, constrained coding is used to forbid such error-prone data patterns. Analyzing

the power spectral density (PSD) of constrained sequences as random processes re-

veals important properties such as the average power at DC and the bandwidth. In this

work, a new method is proposed to theoretically derive closed-form expressions for

the PSD of multi-level constrained sequences, where the number of possible levels is

greater than two, via their binary counterparts that share specific properties in regard

to the constraint itself with the multi-level sequences. Constrained sequences asso-

ciated with constrained codes used in modern two-dimensional magnetic recording

(TDMR) and Flash memory systems are focused on. It is shown that the theoretical

PSD derived matches the experimental PSD obtained via extensive Monte-Carlo sim-

ulations. Additionally, an approximation method for obtaining the PSD is proposed

for codes that have more complex state diagrams. It is shown that the approximate

PSD derived has a quite low mean squared error (MSE) compared to the experimental

PSD obtained via Monte-Carlo simulations.
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ÖZ

ÇOK SEVİYELİ KISITLI DİZİLERİN GÜÇ SPEKTRAL YOĞUNLUĞU VE
UYGULAMALARI

Atak, Seral Buse
Yüksek Lisans, Elektrik ve Elektronik Mühendisliği Bölümü

Tez Yöneticisi: Dr. Öğr. Üyesi. Ahmed Hareedy

Ağustos 2024 , 94 sayfa

Çeşitli veri depolama ve iletim sistemlerinde, belirli veri örüntülerinin saklanması

veya iletilmesi sırasında hataların ortaya çıkması muhtemeldir. Bu sistemlerde güve-

nilirliği artırmak amacıyla, bu tür hataya açık veri örüntülerini engellemek için kısıtlı

kodlama kullanılır. Kısıtlanmış dizilerin güç spektral yoğunluğunun (PSD) rastgele

süreçler olarak analiz edilmesi, DC’deki ortalama güç ve bant genişliği gibi önemli

özellikleri ortaya çıkarır. Bu çalışmada, olası seviyelerin sayısının ikiden büyük ol-

duğu çok seviyeli kısıtlı dizilerin PSD’lerinin kapalı form ifadelerini, bu çok seviyeli

dizilerin kısıtlamalarıyla belirli özellikleri paylaşan ikili karşılıkları aracılığıyla teorik

olarak üretmek için yeni bir yöntem önerilmektedir. Modern iki boyutlu manyetik

kayıt (TDMR) ve Flash bellek sistemlerinde kullanılan kısıtlı kodlarla ilişkili kısıtlı

dizilere odaklanılmaktadır. Ürettilen teorik PSD’nin, kapsamlı Monte-Carlo simülas-

yonları yoluyla elde edilen deneysel PSD ile eşleştiği gösterilmektedir. Ek olarak,

daha karmaşık durum diyagramlarına sahip kodlar için PSD elde etmek amacıyla bir

yaklaşım yöntemi önerilmektedir. Önerilen yaklaşık PSD’nin, Monte-Carlo simülas-

yonlarıyla elde edilen deneysel PSD ile karşılaştırıldığında oldukça düşük ortalama
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karesel hataya (MSE) sahip olduğu gösterilmiştir.

Anahtar Kelimeler: Kısıtlı Kodlar, Çok Seviyeli Kısıtlı Diziler, Güç Spektral Yoğun-

luğu, Flaş Bellek, Manyetik Kayıt
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pecially Doğukan Özbayrak, who always answers my questions patiently. Lastly, I

would like to thank TUBITAK for being a sponsor for our research team.

xi



TABLE OF CONTENTS

ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

ÖZ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

ACKNOWLEDGMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x

TABLE OF CONTENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xii

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiv

LIST OF ABBREVIATIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . xvii

CHAPTERS

1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

2 PRELIMINARIES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1 A Brief Overview of Constrained Coding . . . . . . . . . . . . . . . 5

2.2 Power Spectral Density of Constrained Codes . . . . . . . . . . . . . 7

2.2.1 Deriving the PSD for Binary Sequence Constrained Codes . . 8

2.3 Constrained Coding for Multi-Level Flash Memory and Two-Dimensional
Magnetic Recording Devices . . . . . . . . . . . . . . . . . . . . . . 12

2.3.1 Constrained Coding for Multi-Level Flash Memory . . . . . . 12

2.3.2 Constrained Coding for Two-Dimensional Magnetic Record-
ing Devices . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3 PSD FOR MULTI-LEVEL CONSTRAINED CODES: SP-LOCO CODES . 17

3.1 SP-LOCO Codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

xii



3.2 Theoretical Derivation of PSD for SP-LOCO Codes . . . . . . . . . 21

3.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4 PSD FOR MULTI-LEVEL CONSTRAINED CODES: QA-LOCO CODES 37

4.1 QA-LOCO Codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4.2 Theoretical Derivation of PSD for QA-LOCO Codes . . . . . . . . . 38

4.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4.3.1 Results for MLC . . . . . . . . . . . . . . . . . . . . . . . . . 49

4.3.2 Results for TLC . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.3.3 Results for QLC . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.3.4 Comparative Results for SLC, MLC, and TLC . . . . . . . . . 56

5 APPROXIMATE PSD FOR MULTI-LEVEL CONSTRAINED CODES:
OP-LOCO CODES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

5.1 OP-LOCO Codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

5.2 Approximation Method . . . . . . . . . . . . . . . . . . . . . . . . . 64

5.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

6 CONCLUSION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

xiii



LIST OF FIGURES

FIGURES

Figure 2.1 An FSTD for infinite-length S1-constrained sequence. . . . . . . 6

Figure 2.2 A Flash cell memory structure showing the source, drain, and

substrate layers, including the control and floating gates. . . . . . . . . 13

Figure 2.3 PIS patterns in a 3× 3 TDMR grid. . . . . . . . . . . . . . . . . 16

Figure 3.1 FSTD for SP-LOCO codes that have infinite length, defined over

GF(8) and prevent PIS patterns. . . . . . . . . . . . . . . . . . . . . . 30

Figure 3.2 (a) An FSTD that represents an SP-LOCO constrained sequence,

(b) The same FSTD with transition probabilities on the edges. . . . . . 30

Figure 3.3 (a) OSTD that is formed considering the FSTD of SP-LOCO

codes where the numbers represent the run-lengths, (b) OSTD with

transition probabilities on the edges for infinite-length SP-LOCO con-

strained sequence where pi,j(t) as represented in (2.4) and p2,1(3) =

v2,3 · v0,1, p2,1(4) = v2,3 · v0,1 · v0,0, p2,1(5) = v2,3 · v0,1 · v20,0. . . . . . . 31

Figure 3.4 PSD for SP-LOCO, all the physical levels are the same. . . . . . 32

Figure 3.5 PSD for SP-LOCO, the physical levels are 1 level apart. . . . . . 32

Figure 3.6 PSD for SP-LOCO, the physical levels are 2 levels apart. . . . . 33

Figure 3.7 PSD for SP-LOCO, the physical levels are 4 levels apart. . . . . 34

Figure 3.8 PSD for SP-LOCO, the physical levels are 4 levels apart, a1 > a2. 34

Figure 3.9 PSD for SP-LOCO, the physical levels are 4 levels apart, a2 > a1. 35

xiv



Figure 3.10 PSD for SP-LOCO, the physical levels are 4 levels apart, a2 > a1. 36

Figure 4.1 FSTD for infinite-length Qq
x-constrained sequence. Here, δi ∈

GF(q)\{αq−2} for any i and δi = δ for simplicity. Note that the symbol

αq−2 represents the highest level. Dashed lines imply that the transition

may be more than one state in length. Specifically, the diagonal dashed

edges leaving state Fi contain x− i states. . . . . . . . . . . . . . . . . 46

Figure 4.2 FSTD with maxentropic transition probabilities on the edges for

infinite-length Qq
1-constrained sequence. . . . . . . . . . . . . . . . . . 46

Figure 4.3 FSTD with maxentropic transition probabilities on the edges for

infinite-length Qq
2-constrained sequence. . . . . . . . . . . . . . . . . . 47

Figure 4.4 Binary FSTD with symbols 0 and 1 on the edges for infinite-

lengthQq
x-constrained sequence. Dashed lines imply that the transition

may be more than one state in length. Specifically, the diagonal dashed

edges leaving state Fi contain x− i states. . . . . . . . . . . . . . . . 48

Figure 4.5 Continuous part of the PSD for q = 4, x = 1. . . . . . . . . . . . 50

Figure 4.6 Continuous part of the PSD for q = 4, x = 2. . . . . . . . . . . 50

Figure 4.7 Continuous part of the PSD for q = 4, x = 3. . . . . . . . . . . 51

Figure 4.8 Continuous part of the PSD for q = 8, x = 1. . . . . . . . . . . . 52

Figure 4.9 Continuous part of the PSD for q = 8, x = 2. . . . . . . . . . . . 53

Figure 4.10 Continuous part of the PSD for q = 8, x = 3. . . . . . . . . . . . 53

Figure 4.11 Continuous part of the PSD for q = 16, x = 1. . . . . . . . . . 54

Figure 4.12 Continuous part of the PSD for q = 16, x = 2. . . . . . . . . . . 55

Figure 4.13 Continuous part of the PSD for q = 16, x = 3. . . . . . . . . . 55

Figure 4.14 Continuous part of the PSDs for q = 2 for all x. . . . . . . . . . 56

Figure 4.15 Continuous part of the PSDs for q = 4 for all x. . . . . . . . . . 57

xv



Figure 4.16 Continuous part of the PSDs for q = 8 for all x. . . . . . . . . . 58

Figure 5.1 FSTD for OP-LOCO codes that have infinite length, defined

over GF(8) and prevent PIS patterns. . . . . . . . . . . . . . . . . . . 62

Figure 5.2 (a) A binary FSTD that represents the approximation method

for infinite length OP-LOCO codes, (b) The same FSTD with transition

probabilities on the edges. . . . . . . . . . . . . . . . . . . . . . . . . . 78

Figure 5.3 (a) OSTD that is formed considering the binary FSTD of OP-

LOCO codes where the numbers represent the run-lengths, (b) OSTD

with transition probabilities on the edges for infinite-length OP-LOCO

constrained sequence. . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

Figure 5.4 PSD of OP-LOCO codes where all the physical levels are the

same. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

Figure 5.5 PSD of OP-LOCO codes where the physical levels are 1 level

apart. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

Figure 5.6 PSD of OP-LOCO codes where the physical levels are 2 levels

apart. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

Figure 5.7 PSD of OP-LOCO codes where the physical levels are 4 levels

apart. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

Figure 5.8 PSD of OP-LOCO codes, the physical levels are 4 levels apart,

a1 > a2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

Figure 5.9 PSD of OP-LOCO codes, the physical levels are 4 levels apart,

a2 > a1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

xvi



LIST OF ABBREVIATIONS

ABBREVIATIONS

A-LOCO Asymmetric LOCO

BER Bit error rate

FER Frame error rate

FSM Finite state machine

FSTD Finite state transition diagram

GF Galois field

ICI Inter-cell interference

ISI Inter-symbol interference

ITI Inter-track interference

LOCO Lexicographically-ordered constrained

MLC Multi-level cell

MR Magnetic recording

MSE Mean squared error

NRZ Non-return-to-zero

NRZI Non-return-to-zero inverted

ODMR One-dimensional magnetic recording

OP-LOCO Optimal plus LOCO

OSTD One-step state transition diagram

OSTM One-step state transition matrix

OT-LOCO Optimal-T LOCO

PIS Plus isolation

PLC Penta-level cell

xvii



PSD Power spectral density

QA-LOCO Q-ary asymmetric LOCO

QLC Quad-level cell

RLL Run-length limited

SIS Square isolation

S-LOCO Symmetric LOCO

SLC Single-level cell

SNR Signal-to-noise ratio

SP-LOCO Simple plus LOCO

TDMR Two-dimensional magnetic recording

TD Two-dimensional

TLC Triple-level cell

WSS Wide-sense stationary

xviii



CHAPTER 1

INTRODUCTION

In the growing age of information, data storage and transmission remain important

concepts, and researchers have to keep up with the latest demand in terms of trans-

mission rate, efficiency, and reliability [1]. Flash devices [2] and magnetic recording

devices [3] are still in popular use for this purpose. Consequently, the development

of more efficient coding schemes that can handle higher data volumes and rates con-

tinues to be a significant area of research [4].

The performance and characteristic properties of these coding schemes need to be

measured, with one crucial performance criterion being the power spectral density

(PSD) of the scheme [5]. PSD helps in analyzing how power is distributed across

different frequency components [6, 7], which can impact the efficiency and reliability

of data storage systems. PSD reveals crucial properties of the signal, like the average

power at zero frequency, the bandwidth of the signal, and the discrete power com-

ponents [8]. Therefore, obtaining and understanding the PSD of a coding scheme is

essential for optimizing the performance of data storage devices. In the field of data

transmission, the power spectra of coded streams produced by an FSM and trans-

mitted over digital repeatered lines were discussed in [9] and [10]. For wireless

communications, both numerical [11] and analytical [12] approaches to obtain the

spectra of FSM-generated coded streams were explored. The power spectrum of a

block-coded modulated signal using a multi-dimensional constellation was examined

in [13]. Regarding data storage, the power spectra of specific FSM-based codes in

MR systems were derived in [14], and spectral null analysis of (d, k) RLL codes in

MR and magneto-optic systems was presented in [15]. The influence of asymmetry

in coded data with non-return-to-zero (NRZ) signaling, which encodes data by repre-
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senting 1 and 0 with two distinct signal levels without returning to a baseline between

bits, on the power spectrum was outlined in [16]. Gallopoulos et al. [7] introduced a

method for determining the power spectra of RLL codes associated with NRZI sig-

naling for storage and transmission. Lastly, Centers et al. [8] proposed a method for

obtaining the power spectrum of a binary constrained stream that is associated with

level-based signaling and extends the method on finite-length constrained codes.

Constrained coding is a widely used coding scheme for Flash and magnetic recording

devices [17, 18, 19, 20]. The main idea of constrained coding is preventing erroneous

patterns from happening in the device with the developed encoding algorithm [21]. In

1948 [21], Shannon introduced constrained codes for preventing erroneous patterns

from happening in the device with the developed encoding algorithm and defined the

capacity for an input-constrained noiseless channel as the maximum information rate

given the channel input constraints. Ideally, a good channel code should approach

a code rate close to the constrained channel’s Shannon capacity, use a simple im-

plementation, and avoid the propagation of errors at the decoding process [22]. In

real-life applications, this ideal becomes a compromise between these competing at-

tributes according to the application requirements [22].

Researchers began utilizing constrained codes in magnetic recording devices employ-

ing peak detection to enhance data density [23]. These codes, known as (d, k) binary

run-length-limited (RLL) codes, regulate the minimum and maximum distances be-

tween consecutive transitions, with the parameter d controlling the minimum spac-

ing to reduce inter-symbol interference (ISI), which occurs when symbols overlap

and interfere with each other during transmission, and the parameter k managing the

maximum spacing to improve self-clocking [24]. RLL codes are linked to transition-

based signaling, specifically in the binary case with bipolar non-return-to-zero in-

verted (NRZI) signaling where the absence of a transition indicates a ’0’, while a

transition indicates a ’1’.

Constrained codes are also commonly employed in various data transmission systems

since they help reduce cross-talk between wires carrying the data [25] and ensure

DC balance, meaning zero average power at zero frequency [26]. While the Run

Length Limited (RLL) codes in [24] were originally designed using lexicographic
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indexing, the focus of the coding community soon shifted to codes based on finite-

state machines (FSMs) [27]. However, designing FSM-based constrained codes that

approach capacity is a challenging task, and it becomes even harder for high-rate

codes [28]. Constrained codes using lexicographic indexing were reintroduced in

[29], drawing on the guidance from [30]. Recently, the basics of constrained coding

have been revisited, and the family of lexicographically-ordered constrained (LOCO)

codes is introduced [31], which are known to be capacity-achieving, generalizable,

and reconfigurable [31].

There has been considerable work on theoretically obtaining the PSD of constrained

codes, particularly for binary-level codes as mentioned above. However, there is a

lack of research focused on obtaining the PSD for constrained codes with non-binary

levels. Non-binary codes offer several advantages over binary codes, such as higher

data density and improved error correction capabilities [32].

By extending the analysis for obtaining the PSD of a constrained code theoretically to

non-binary constrained codes, this research addresses the specific challenges posed by

their more complex state diagrams. The results of the proposed method are compared

against those of Monte Carlo simulations, showing a perfect match.

This thesis also suggests a method for obtaining the PSD plots of multi-level con-

strained codes with more complex state diagrams approximately using a probabilistic

manner. The results from this approximation technique are also compared against

Monte Carlo simulations, with the mean squared error (MSE) found to be very low,

indicating that the approximation works with minimal error. This thesis illustrates

the theoretical derivations for multi-level constrained codes on Flash and magnetic

recording devices that use LOCO codes [19]. With the derivations and verifications

provided on LOCO codes, this work aims to suggest a generic framework for obtain-

ing PSD for multi-level constrained codes.

The thesis organization is as follows. In Chapter 2, a detailed background is pro-

vided to the reader, including the basics of constrained codes, Flash devices, mag-

netic recording devices, and the properties of PSD and LOCO codes, and the liter-

ature review is presented. The literature review discusses the recent related work

on obtaining the PSD of constrained codes. It highlights the yet undiscovered parts

3



and the theoretical derivation of the PSD offered for binary-constrained codes, which

is explained in detail and constructs the base of this work. In Chapter 3, the sug-

gested idea for mapping the binary theoretical work to multi-level constrained codes

is demonstrated, and the application of this idea on magnetic recording devices with

simple plus LOCO (SP-LOCO) codes is given. Chapter 4 extends the idea for the

application on Flash memory devices that use Q-ary asymmetric LOCO (QA-LOCO)

codes. Chapter 5 gives the approximation technique for multi-level constrained codes

with more complex state diagrams. Lastly, Chapter 6 gives this thesis’s conclusion

and future directions.
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CHAPTER 2

PRELIMINARIES

This chapter presents the background knowledge necessary for understanding the re-

search presented in this thesis. Firstly, a comprehensive review of constrained codes

in general is offered. Then, the work of Gallopoulos et al. [7] and Centers et al. [8]

are explained in detail, which lay the foundations of the work conducted in this the-

sis. Lastly, the physical grounds for Flash and two-dimensional magnetic recording

devices are illustrated to better understand the principles of constrained coding.

2.1 A Brief Overview of Constrained Coding

Constrained codes aim to avoid recording the sequences whose retrieval may cause

an erroneous read by the system [21]. These error-prone patterns are likely to be

caused by various factors that depend on the physical characteristics of the storage

medium. For instance, deficiencies in the reading technology may cause such errors

in magnetic recording devices [23, 27], while for Flash memories, the primary source

of errors is the charge propagation in adjacent Flash cells [33]. Even though the im-

provements on the physical recording channel can help reduce some of the errors, it

may not be the perfect solution since there exist some error-prone patterns that are

unavoidable with enhancements due to the system medium [34, 35]. Another crucial

reason for the increase of the errors in the device is aging [33]. Therefore, analyz-

ing the spatial properties of the system and introducing system-dependent restrictions

may help improve the system’s overall data retrieval and reliability. Since the con-

straints chosen are system-dependent, they can be introduced in different forms, such

as limitations on run lengths [24], transition counts [22], and the presence of specific
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patterns [19].

Constrained coding has a wide application area other than magnetic recording de-

vices, including Flash memory [23], optoelectronics devices [23], and even DNA

data storage [36]. As mentioned in Chapter 1, the majority of the history of con-

strained codes focuses on FSM-based codes, which generally lack the qualities of

generalizability and reconfigurability. LOCO codes that are introduced in [19] are

very promising, considering the advantages of reconfigurability, scalability, and low

encoding-decoding complexity. This thesis proposes exact and approximate meth-

ods for obtaining the PSD of multi-level constrained codes and applies the method

to codes from the LOCO family. The following example gives the definition of a

member from the LOCO family, namely symmetric-LOCO (S-LOCO) codes [31],

and demonstrates how to find the Shannon capacity [21] for the described case.

A maxentropic binary Sx-constrained code is defined as the set of all possible infinite-

length binary codewords that do not contain any pattern in Sx. Sx-constrained codes

forbid ISI patterns, which are the most error-prone data patterns in magnetic record-

ing systems [31]. Sx-constrained codes are also used in specific data transmission

standards and are often linked with level-based signaling [31].

Let Sx = {010, 101, 0110, 1001, . . . , 01x0, 10x1} with |Sx| = 2x. The code achieves

maximum entropy in the sense that it is not strictly contained in any other binary

code satisfying the same constraint. An infinite length S1-constrained code forbids

the patterns in the forbidden pattern set T ,

T = S1 ≜ {010, 101}. (2.1)

F1 F0

F2 F3

0
1

1

1
0

0

Figure 2.1: An FSTD for infinite-length S1-constrained sequence.

A finite state transition diagram (FSTD) representing an infinite length S1-constrained

6



sequence can be seen in Figure 2.1. The adjacency matrix A can be formed based on

the FSTD shown in Figure 2.1 as follows:

A =


1 1 0 0

0 0 1 0

0 0 1 1

1 0 0 0

 . (2.2)

Let the maximum real positive eigenvalue of A be λmax(A). Then the capacity C,

which is the maximum achievable rate at which information can be transmitted reli-

ably over a communication channel [21], for the infinite-length S1-constrained code

can be calculated as:

C = log2(λmax(F)) = log2

(
1

2
(1 +

√
5)

)
≈ 0.6942. (2.3)

2.2 Power Spectral Density of Constrained Codes

PSD shows the distribution of a signal’s power content on different frequencies [37].

It is widely used in various fields of research in order to have a quantitative measure

of the characteristics of the signal [38, 39]. Deriving the PSD is also an important

performance metric in data storage and transmission systems[5]. Since the PSD re-

veals to the system designer how power is distributed across different frequencies,

the system designer becomes able to identify pivotal properties of the system, such as

the average power of the stream at DC and the frequency range in which most of the

power is allocated, i.e., the stream bandwidth and the discrete power components if

they exist [6, 7].

There have been comprehensive studies about how power spectra can be obtained and

utilized in data storage and transmission systems, which are represented in Chapter

??. The most relevant work for this thesis is Gallopoulos et al.’s [7] and Centers et

al.’s work [8], as it is primarily built on these two papers theoretically, which deal

with constrained codes on binary sequences and can be considered an extension of

their work to multi-level sequence constrained codes.

Gallopoulos et al.’s work [7] focuses on deriving a closed-form mathematical ex-
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pression for the PSD of RLL codes. The method begins with finding the finite state

transition diagram (FSTD) for the code, followed by deriving a suitable state dia-

gram using state splitting and merging techniques. The main theorem is then applied

based on this state diagram. The process of finding a suitable state diagram is rather

complex, and the signaling method used in this work is NRZI.

In the work of Centers et al. [8], the theoretical foundations are equation-wise the

same, but they are applied to LOCO codes [31], which use level-based signaling and

can be considered more general than RLL codes in terms of their application area.

A key contribution of this work is simplifying the process of finding the initial state

diagram. Rather than using the more complicated state splitting and merging process,

the creation of the state diagram is explicitly described. For LOCO codes that forbid

sequences with k binary bits, all possible and allowed combinations of the last k − 1

bits are written as states. The states are named according to the binary combination,

and states that end with the binary bit ’1’ are selected. From these states, a reduction

is applied, and a one-step state transition diagram (OSTD) is constructed. Finally, the

necessary one-step state transition matrix (OSTM) is obtained, and the conversion to

a closed mathematical formula of the PSD is achieved using a theorem analogous to

the one proposed in [7]. A more detailed discussion of the theoretical derivation in

this work will be given shortly.

2.2.1 Deriving the PSD for Binary Sequence Constrained Codes

Gallopoulos et al. [7] developed a method for calculating the power spectrum of RLL

codes using NRZI signaling and involves an intermediate step for finding the initial

state diagram that will be used in the theorem. Centers et al. [8] streamlines this

approach by eliminating the intermediate sequence and presents a more direct method

tailored for level-based signaling, making it more applicable to a broader range of

constrained codes, such as LOCO codes. Given that the focus of the applications in

this thesis is on LOCO codes, the steps and methodology of the main reference and

steps will be taken from [8].

The FSTDs discussed in this method represent each state as a fixed number of the

most recently generated bits. For notation, matrices will be represented with bold

8



and uppercase letters, while vectors, by default row vectors, will be represented as

bold and lowercase vectors. Power spectral densities will be denoted by S(·), and

one-step state transition matrices will be denoted by G(·). These notations will also

be adopted throughout the thesis.

First, an FSTD that shows how a sequence of binary data of 0s and 1s, namely {Xn},
is generated while following the system constraints. Each transition in the diagram

should generate a single symbol, either a 1 or a 0, and the probability of each transition

should be recorded. Also, all transitions leading to a state must have the same symbol

generated.

Next, the one-step state transition diagram (OSTD) should be derived from the FSTD.

In OSTD, only the states where the most recent bit is 1 are shown. The transitions in

this diagram indicate the number of steps or symbols needed to move from one state

to another based on the initial system FSTD. The probabilities for these transitions

should also be noted. The sequence created by this diagram is referred to as {Ti},
where Ti represents the number of consecutive 0’s plus the ending 1 of the ith run in

{Xn}.

After the OSTD is created, the one-step transition matrix (OSTM) noted as Gi,j(D)

is created using the edge probabilities and run lengths from the OSTD.

Define the probability of transitioning from state i to state j in the OSTD as pi,j(t)

and the run length characterizing that transition as t. The general entry Gi,j(D) is

given as follows where pi,j(t) is the probability of transitioning from state i to state j

in the OSTD and t is the run length characterizing that transition:

Gi,j(D) =
∞∑
t=1

pi,j(t)D
t. (2.4)

Then, the closed-form expression for the PSD of a written or transmitted sequence

using the OSTM will be derived where the following signal generation scheme is

adopted:

Code
{Xn}

NRZ−−−−→
signaling

Modulation sequence

{Yn}
Pulse−−−→

shaping

Write signal

W (t) . (2.5)

The PSD function of a wide-sense-stationary (WSS) discrete-time process {Xn} is

9



given as follows, where RX(k) is the auto-correlation function with time lag k and D

is defined as the complex exponential ei2πfT for some frequency f and bit interval T :

SX(D) =
∞∑

k=−∞

RX(k)D
k =

∞∑
k=−∞

E[X0Xk]D
k. (2.6)

Then, the fundamental result analogous to [7] can be found. Assuming the Markov

chain describing the code sequence generation is at equilibrium, the power spectrum

SX(D) of the process {Xn} is given as:

SX(D) = p(1)π
[
(I−G(D))−1 + (I−G(D−1))−1 − I

]
uT, (2.7)

where u is an all-one vector, p(1) = P[Xn = 1] for arbitrary n is the equilibrium

probability of a 1 in {Xn}, I is the identity matrix of the same size as G(D), and

π is the stationary distribution of the OSTD states represented by G(1). The proof

regarding the result in (2.7) can be found in [8]. Observe that the independent variable

in (2.7) is actually f since D = ei2πfT . Therefore, the equation for power spectra will

be notated as SX(f) from now on in this chapter to eliminate confusion.

Note that the stationary distribution π satisfies πuT = 1 and πG(1) = 1. It follows

from the definition of {Ti} and (2.4) that,

E[Ti] =
1

p(1)
= πG′(1)uT. (2.8)

A more detailed discussion about the proof regarding the result in (2.8) can be found

in [7].

Consider {Yn} as an example modulation sequence with Yn = 2Xn − 1. Thus, for

any k ∈ Z,

RY (k) = E[Y0Yk] = E[(2X0 − 1)(2Xk − 1)]

= 4E[X0Xk]− 4p(1) + 1. (2.9)

Therefore, the PSD SY (f) of {Yn} is as follows where δ(·) is the Dirac delta function
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and D = ei2πfT :

SY (f) =
∞∑

k=−∞

Dk · E[Y0Yk]

= 4SX(f) + [1− 4p(1)]
∞∑

k=−∞

Dk

= 4SX(f) + [1− 4p(1)] δ(f). (2.10)

Note that both the sequences {Xn} and {Yn} are WSS since they are irreducible

constrained systems and represented by strongly connected graphs. Their station-

ary distributions are independent of the starting points, and they are ergodic Markov

chains. Additionally, all sequences described in this thesis will have the same proper-

ties. This examination is valid except for the cyclo-stationarity induced by the writing

signal W (t), which will be discussed shortly.

The modulation pulse function PT (t) is chosen as a rectangular pulse in the context

of the work with bit interval T ,

PT (t) =

1, 0 ≤ t < T,

0, otherwise.
(2.11)

Then, the write signal W (t) which is represented in (2.5) is given by:

W (t) =
∞∑

n=−∞

YnPT (t− nT ). (2.12)

Even though the sequence {Yn} is WSS, the resultant signal becomes cyclo-stationary

after it is convoluted with the writing signal W (t). Therefore, the auto-correlation

function RY (k) needs to be averaged over the period T . The PSD SW (f) of the write

signal W (t) is given as follows:

SW (f) =
1

T
sinc2(πfT )T 2SY (f) = sinc2(πfT )TSY (f). (2.13)

Note that the result of the expression in (2.13) becomes as follows for f = 0:

SW (0) = TSY (0) = T (4SX(0) + [1− 4p(1)] δ(0)) . (2.14)
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For the following discussions, both the paper [8] and the work on this thesis consider

f to be the normalized frequency, i.e., T is set to 1.

Overall, the steps needed to be followed to obtain the PSD of a binary constrained

sequence {Xn} are FSTD→OSTD→OSTM→ applying the formula given in (2.7).

This fundamental result links the PSD to the transition matrix derived from the FSTD

of the code by applying matrix operations and leveraging the stationary distribution of

the code’s state diagram. With this relationship between the code’s transition structure

and its spectral properties, a precise analysis of the power distribution in both infinite

and finite-length constrained codes is enabled, and a framework for analyzing how

the power in the signal is distributed across frequencies is provided, which is crucial

for understanding the performance of constrained codes in terms of bandwidth and

signal integrity.

2.3 Constrained Coding for Multi-Level Flash Memory and Two-Dimensional

Magnetic Recording Devices

This section will provide detailed physical illustrations for Flash memory and mag-

netic recording devices. The presented background will be helpful in understanding

the constraints used in the codes that will be studied later in this work. Fundamen-

tals about the non-binary world of Flash and magnetic recording devices will also be

mentioned.

2.3.1 Constrained Coding for Multi-Level Flash Memory

Toshiba introduced Flash memory in the 1980s as a type of non-volatile electronic

storage [40]. Unlike volatile memory such as DRAM, Flash memory retains stored

data even when power is lost, which makes it suitable for long-term data storage ap-

plications [41]. Over time, this new kind of storage of Flash memory changed how

mass data was stored because electronic storage is much faster, although it costs more

than magnetic storage [42]. Flash memory devices are currently ahead of magnetic

recording devices in terms of storage density [43]. Also, it is widely used in ap-

plications ranging from consumer electronics like USB drives and smartphones to
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enterprise-level storage solutions such as data centers and SSDs [44, 45, 46].

There are two main types of Flash memory: NAND and NOR. NAND Flash is com-

monly used in high-density storage applications like SSDs and memory cards due to

its fast write and erase speeds, while NOR Flash is used in embedded systems and

firmware storage, offering fast read speeds and random access capabilities [43, 47].

The architecture of Flash memory is based on floating-gate transistors, where data

is stored as electrical charges trapped in an insulated gate [48]. Figure 2.2 shows

an illustration of the Flash cell memory. Memory organization is hierarchical and

structured into blocks and pages. Each block contains multiple pages, and data is

written to or erased from memory at the block level. However, while data can be read

at the page level, any modification, such as rewriting data, requires the entire block

to be erased first. This erase-before-write characteristic is a core limitation of Flash

memory that affects both its performance and longevity [49].

Tunnel Oxide
Floating Gate

Interpoly Dielectric
Control Gate

Substrate

Source Drain

Figure 2.2: A Flash cell memory structure showing the source, drain, and substrate

layers, including the control and floating gates.

In Flash memory systems, unwanted capacitances in and between floating-gate tran-

sistors cause charge movement during the programming process [50]. This movement

of charge leads to inter-cell interference (ICI), which is a significant source of errors in

Flash memory systems [51]. Some studies, such as [33] and [52], introduced special

codes that prevent data patterns where an unprogrammed or erased cell is surrounded

by two cells with the highest charge level. More recent studies such as [51] and [53]

have shown that even patterns where the middle cell is programmed to be less than the

highest level in the same arrangement should also be avoided. On top of these con-
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cerns, as Flash devices age, the number of patterns that need to be avoided increases

because charges can move across cells that are not next to each other [54, 28].

Constrained codes for Flash memories usually work with level-based signaling, where

each symbol in a codeword is matched to a physical level in the system, such as

a charge level in Flash memory [28, 55]. Constrained codes can help improve the

performance and lifespan of Flash memory devices [51, 28].

2.3.2 Constrained Coding for Two-Dimensional Magnetic Recording Devices

The intense competition for higher storage density between magnetic and solid-state

products has sparked creativity in various fields like physics, architecture, and data

processing to create new storage technologies [56]. One of the most advanced mag-

netic technologies is two-dimensional magnetic recording (TDMR), which has shown

the potential to reach storage densities of up to 10 terabits per square inch since its

introduction [57, 58, 59].

TDMR is especially appealing because it increases storage density beyond what one-

dimensional magnetic recording (ODMR) products can achieve by using architectural

methods like track squeezing and shingled writing [58, 60] as well as advanced data

processing techniques [61, 62] without needing new magnetic materials.

The write head in TDMR systems is typically larger than the individual tracks, leading

to overlapping tracks during writing. This process is known as shingled writing,

where new data partially overwrites the previously written track. This overlapping

process introduces interference across tracks, which must be managed through signal

processing [63].

The read head is responsible for detecting the magnetization of the grains. In TDMR,

the read head produces a signal by sensing magnetization and convolving it with the

response of the read head, followed by sampling at the center of the bit locations [63].

In TDMR, inter-track interference (ITI) is a significant challenge due to the overlap-

ping nature of tracks caused by the shingled writing process. In traditional magnetic

recording systems, each track is well-separated, minimizing ITI, with ISI mainly oc-
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curring along individual tracks. However, in TDMR, as tracks are densely packed, the

read head, which is larger than the individual tracks, picks up signals from adjacent

tracks, resulting in severe ITI. This interference not only happens along a track but

also across neighboring tracks, making the signal detection process more complex

[63]. For more detailed information about TDMR, you can refer to a comprehensive

survey in [63].

In the early ODMR devices, special codes were used to control the distance between

transitions, which significantly helped increase storage density [27, 24]. These codes

are still used today to improve the reliability of modern ODMR devices [17, 54].

In TDMR, certain data patterns where a bit is surrounded by opposite bits both hor-

izontally and vertically are prone to errors [60, 64]. Since the channel’s impulse

response in TDMR is usually 3× 3, grids of this size are typically used. These error-

prone patterns can look like a square, where the bit in the center is surrounded by

eight opposite bits on the 3× 3 grid, called square isolation (SIS) patterns [65]. They

can also look like a plus sign, where the bit in the center is surrounded by four oppo-

site bits at a distance of 1, called plus isolation (PIS) patterns [60, 64, 66]. Figure 2.3

shows possible PIS patterns. When a TDMR system uses a wide read head, which

reads three adjacent tracks at the same time [58, 61], the two-dimensional (TD) bi-

nary constraints can be changed into one-dimensional 8-ary constraints. This allows

for non-binary coding schemes, such as OP-LOCO codes that forbid PIS patterns

[31].

Research that explores the capacity of TD-constrained codes and suggests TD bit-

stuffing techniques can be found in [66], [67] and [68]. There are also signal pro-

cessing methods, such as TD equalization and TD detection schemes, that can help

reduce media noise [61, 63]. It is important to note that the choice of which scheme

to use is usually made by the TDMR system designer based on the balance between

complexity and performance.
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0 1 0

0·

··

·

(a) PIS pattern where the center bit is 1.

1

1 0 1

1·

··

·

(b) PIS pattern where the center bit is 0.

Figure 2.3: PIS patterns in a 3× 3 TDMR grid.
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CHAPTER 3

PSD FOR MULTI-LEVEL CONSTRAINED CODES: SP-LOCO CODES

This chapter presents power spectra derivation for simple plus LOCO (SP-LOCO)

codes [35]. Section 3.1 will provide a detailed discussion for SP-LOCO codes, Sec-

tion 3.2 will show the step-by-step derivation for the PSD and Section 3.3 will present

the results as a comparison between the theoretical derivation and experimental re-

sults obtained by Monte Carlo (MC) simulations.

3.1 SP-LOCO Codes

In the ongoing battle between Flash memory and magnetic recording devices, the

recent improvements in magnetic recording devices based on the new TDMR tech-

nology caused a striking increase in the data storage density for magnetic recording

devices [57, 58, 59]. One of the advantages of this new regime is that it uses the

already-existing magnetic materials rather than the new ones [61]. Therefore, devel-

oping new coding schemes that can provide advanced signal processing algorithms is

essential to achieve this beneficial system’s potential [69].

In 2022, rate-wise optimal LOCO codes named OP-LOCO [31] and in 2024, named

optimal-T LOCO (OT-LOCO) [34] were created to prevent specific error-prone TD

patterns and enhance the functionality of a TDMR device that uses a wide read head

to access three down tracks at once. Rate-wise optimization refers to minimal redun-

dancy, achieved by building the code so that the average number of coding digits per

message is kept to a minimum [70].

For designing codes for TDMR, usually, a two-dimensional binary-constrained cod-
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ing problem is converted into a one-dimensional non-binary constrained coding prob-

lem [34, 31, 65], which makes the alphabet size for a 3×3 grid eight since there exist

2 × 2 × 2 = 8 unique combinations. These ideal LOCO codes, OP-LOCO [31] and

OT-LOCO [34], are more complex in terms of design, and they are more prone to

codeword-to-message error propagation because of their large alphabet size, which is

eight [35]. At the cost of some rate loss, constrained coding schemes that use alphabet

sizes smaller than eight can help to reduce these issues, and they can also enable some

uncoded tracks or data streams to be processed independently, which helps speed up

reading in TDMR systems [35].

In July 2024, SP-LOCO codes were introduced [35], which prohibits plus isolation

(PIS) patterns to provide lower complexity, lower error propagation, complete track

separation, and better performance at the expense of a limited rate loss compared to

its rate-optimal counterpart, OP-LOCO. Denoting a Galois field of size q by GF(q),

where q ≥ 2 is a prime power, SP-LOCO codes are defined over GF(2) instead of

GF(8) as it is the case in OP-LOCO codes. With this modification, SP-LOCO codes

allow the separation of uncoded streams [35], where the idea originated from their

work in Flash memory systems where page separation was adopted [71].

ISI and inter-track interference (ITI) are two types of interference that can occur in

TDMR devices. The former is caused by neighboring bits in the same track and the

latter by nearby bits in adjacent tracks [58, 61]. ISI on the same down track and ITI

on the same cross-track can cause the level at any 3 × 3 TD grid’s center location to

change sign, which if this level is isolated, results in an error when read [60].

When the central level on the TD grid is surrounded by four levels at Manhattan

distance 1 with the complementary sign, the corresponding 3 × 3 binary pattern is

called a plus isolation pattern [64, 66]. SP-LOCO codes intend to prevent the writing

of any PIS patterns [35] similar to its rate-optimal counterpart, OP-LOCO codes [31].

For the following discussions, let GF(2) = {0, 1} and GF(8) = {0, 1, α, α2, . . . , α6},
where α is a primitive element of GF(8). The following standard mapping-demapping

from the binary 3×1 pattern to the GF symbol is used for OP-LOCO as in the GF(8)

column and SP-LOCO codes as in the GF(2) column, where a symbol in GF repre-

sents a column with 3 bits to be written on three adjacent down tracks in the same
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group:

3−Tuple GF(8) GF(2)

[0 0 0]T ←−−−→ 0 ←−−−→ 0,

[0 0 1]T ←−−−→ 1 ←−−−→ 0,

[0 1 0]T ←−−−→ α ←−−−→ 1,

[0 1 1]T ←−−−→ α2 ←−−−→ 1,

[1 0 0]T ←−−−→ α3 ←−−−→ 0,

[1 0 1]T ←−−−→ α4 ←−−−→ 0,

[1 1 0]T ←−−−→ α5 ←−−−→ 1,

[1 1 1]T ←−−−→ α6 ←−−−→ 1. (3.1)

Let T be a finite set of forbidden patterns. PIS patterns are eliminated by forbidding

the GF(2) 3-tuple patterns in T = {010, 101} on the middle track [35].

The SP-LOCO coding scheme is introduced for each group of three down tracks as

follows: firstly, applying a GF(2) constrained code on the middle track such that all

PIS patterns are eliminated, and then leaving the data on the upper and lower tracks

uncoded [35].

The critical point here is that the GF(2) code that is applied on the middle track is the

S-LOCO code itself [31], which was discussed in Section 2.1.

An S-LOCO code of length m and parameter x, the set of forbidden patterns T =

{010, 101} and the code is denoted as SC2m,1 [31]. Therefore, an SP-LOCO code of

length m, which is denoted by SPC2m, actually has SC2m,1 applied on the middle track,

and uncoded data on the upper and lower tracks, which leads to track separation [35].

For SP-LOCO, the enumerating of the codewords, the encoding-decoding rule for-

mulation, bridging, and self-clocking are also achieved via the instructions defined

for SC2m,1 [35].

As calculated in Section 2.1, the capacity in input bits per coded symbol of an SC2m,1

code is C = 0.6942. For SP-LOCO, SPC2m, coding is applied only on the middle

track, and SC2m,1 code capacity can directly be used for the middle track. Since the
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upper and lower tracks are uncoded for SPC2m, capacity is 1. Therefore, the normal-

ized capacity Cn of an SPC2m code is Cn = (0.6942 + 2)/3 = 0.8981. Hence, the

code SPC is capacity-achieving under such constraint setup [35].

The capacity for OP-LOCO codes is calculated as 0.9710 in [31]. The capacity loss of

SP-LOCO compared to OP-LOCO resulted by forbidding more patterns than needed

[35], which will be demonstrated in detail shortly.

The forbidden pattern set for OP-LOCO codes that are defined over GF(8) is as fol-

lows:

T = OP8 ≜
{
β̄1αβ1, β̄2α

4β2,∀β̄1, β1 ∈ {0, 1, α3, α4}

and∀β̄2, β2 ∈ {α, α2, α5, α6}
}
. (3.2)

The forbidden pattern set for SP-LOCO codes that are defined over GF(2) and their

GF(8) equivalent symbols are as follows:

T = SPC2m ≜ {010, 101},

=
{
β̂1β2β̄1, β̂2β̄1β̄2,∀β̂1, β̄1, β1 ∈ {0, 1, α3, α4}

and ∀β̂2, β̄2, β2 ∈ {α, α2, α5, α6}
}
. (3.3)

It can be seen from (3.2) that the number of forbidden patterns in OP-LOCO codes is

(4 × 4) + (4 × 4) = 32, while it is (4 × 4 × 4) + (4 × 4 × 4) = 128 for SP-LOCO

codes. Defining SP-LOCO codes over GF(2) creates a more simplistic design while

forbidding more patterns than needed, ultimately resulting in some capacity loss.

In [35], the probability analysis of the transition rates on the TDMR grid is inves-

tigated for different coding schemes. It is seen that the average transition rate of

SP-LOCO codes is lower than OP-LOCO codes’ [35]. This analysis gives insights

into how the coding schemes can be adjusted as the TDMR device ages, benefiting the

reconfigurability characteristic of the LOCO codes [35]. Since the OP-LOCO coding

scheme has higher rates, it can be utilized in the earlier times of the device, and the

coding scheme might be changed to SP-LOCO at an intermediate point in the device

lifespan to improve performance [35].

OP-LOCO codes, which are defined over GF(8), need large adder sizes that result
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in high complexity. In contrast, SP-LOCO codes have significantly lower complex-

ity, error propagation, and processing latency through the complete track separation

achieved by two tracks having uncoded data that enables the use of a smaller-size

field GF(2) [35].

3.2 Theoretical Derivation of PSD for SP-LOCO Codes

This section will provide the theoretical derivation for obtaining the PSD for SP-

LOCO codes. SP-LOCO codes are finite-length codes. However, the derivation will

be for infinite-length SP-LOCO codes. From now on, SP-LOCO codes will mean

infinite-length SP-LOCO codes. Observe that (3.1) and (3.3) still apply to infinite

length SP-LOCO codes since the results do not change with codeword length m.

Also, note that normalized frequency is used for all sequences described here, which

makes the period T = 1.

In the TDMR setup [34], level-based signaling is adopted before writing the binary

data to the tracks. Each 0 is converted into level −A, while each binary bit 1 is

converted into level +A.

The TDMR medium is characterized by a wide read that reads 3 bits of data from the

adjacent down tracks simultaneously, where the center of the read head is always at

the middle track in each group of 3 down tracks [58]. As a result, the middle track

of each 3 × 1 down track suffers from the highest interference, and the middle track

level dominates the overall level of each 3× 1 down track [34].

Each 3× 1 down track read is mapped to a physical level. There exist 2× 2× 2 = 8

combinations and they can be defined over GF(8), which will later be mapped to

GF(2) as SP-LOCO codes suggest. With the symmetry due to level-based signaling

by−A and +A, it can be concluded that the dual 3-tuples will be mapped to the same

physical level in magnitude with +/− changing. 3-tuples having all bits as the same

sign will have the highest magnitude level, and this applies to 2 combinations, [0 0 0]T

and [1 1 1]T. Considering the middle track domination, 3-tuples having the first and

the third track bits in the complementary sign with respect to the middle track will

have the lowest magnitude level, and this also applies to 2 combinations, [0 1 0]T
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and [1 0 1]T. Lastly, 3-tuples having the first or the third track bits in complementary

sign with respect to the middle track will have a magnitude in between the highest

and lowest levels, and this applies to all 4 combinations that were left because there

will be no difference between the physical levels read by the magnetic read head. A

more detailed discussion about data-dependent readback amplitude distributions for

various input data patterns can be found at [62].

Let the symbol corresponding to each physical level be as follows, where a0 > a1 =

a2 > a3 > 0 using the discussion above:

3−Tuple GF(8) Level

[0 0 0]T ←−−−→ 0 ←−−−→− a0,

[0 0 1]T ←−−−→ 1 ←−−−→− a1,

[0 1 0]T ←−−−→ α ←−−−→+ a3,

[0 1 1]T ←−−−→ α2 ←−−−→+ a2,

[1 0 0]T ←−−−→ α3 ←−−−→− a2,

[1 0 1]T ←−−−→ α4 ←−−−→− a3,

[1 1 0]T ←−−−→ α5 ←−−−→+ a1,

[1 1 1]T ←−−−→ α6 ←−−−→+ a0. (3.4)

Let the sequence of the physical levels be {Yn} where Yn ∈ {±a0,±a1,±a2,±a3}.
Since the code is symmetric, the probability for each 8 physical level is equivalent.

P[Yn = a0] = P[Yn = a1] = P[Yn = a2] = P[Yn = a3] = 0.125,

P[Yn = −a0] = P[Yn = −a1] = P[Yn = −a2] = P[Yn = −a3] = 0.125,

P[Yn = yn] = 0.125, yn ∈ {±a0,±a1,±a2,±a3}. (3.5)

Observe that 3-tuples having their middle bit as 0 are mapped to negative physical

levels while 3-tuples having their middle bit as 1 are mapped to positive physical

levels in (3.4). Let the binary mapping sequence be {Xn} where Xn ∈ {0, 1}:

Xn =

1, if Yn ∈ {a0, a1, a2, a3},

0, else.
(3.6)
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Also, it can be observed from (3.6) that,

P[Xn = 0] = P[Xn = 1] = 0.5. (3.7)

In order to simplify the expressions and improve the readability of the equations, the

following notations will be used throughout the derivation:

p00 = P[X0 = 0, Xk = 0],

p01 = P[X0 = 0, Xk = 1],

p10 = P[X0 = 1, Xk = 0],

p11 = P[X0 = 1, Xk = 1]. (3.8)

Then, the auto-correlation function of the sequence {Xn} can be written as:

RX(k) = E[X0Xk] = 0 · 0 · p00 + 0 · 1 · p01 + 1 · 0 · p10 + 1 · 1 · p11 = p11. (3.9)

Since SP-LOCO codes are symmetric, it can be concluded that:

p11 = p00,

p10 = p01. (3.10)

The unit measure axiom of probability theory allows to write,

p00 + p01 + p10 + p11 = 1. (3.11)

Using equations (3.9) and (3.10) in (3.11) leads to:

2p11 + 2p10 = 1.

2p10 = 1− 2p11

p10 = 0.5− p11. (3.12)

For the auto-correlation function of {Yn} where k ̸= 0, am, an ∈ {a0, a1, a2, a3} and
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m,n ∈ {0, 1, 2, 3}:

RY (k) = E[Y0Yk] =
3∑

m=0

3∑
n=0

amanP[Y0 = am, Yk = an]

−
3∑

m=0

3∑
n=0

amanP[Y0 = am, Yk = −an]

−
3∑

m=0

3∑
n=0

amanP[Y0 = −am, Yk = an]

+
3∑

m=0

3∑
n=0

amanP[Y0 = −am, Yk = −an], k ̸= 0. (3.13)

Using the symmetric property of SP-LOCO codes on Yn probabilities:

E[Y0Yk] = 2 ·
3∑

m=0

3∑
n=0

amanP[Y0 = am, Yk = an]

− 2 ·
3∑

m=0

3∑
n=0

amanP[Y0 = am, Yk = −an], k ̸= 0. (3.14)

Define the first probability that has same signed physical levels P[Y0 = am, Yk = an]

as pS, where am, an ∈ {a0, a1, a2, a3}, m,n ∈ {0, 1, 2, 3} and k ̸= 0. Using results

from (3.5), (3.7) and (3.9),

pS = P[Y0 = am, Yk = an]

=
∑
x0

∑
xk

P[Y0 = am, Yk = an | X0 = x0, Xk = xk] · P[X0 = x0, Xk = xk]

= P[Y0 = am, Yk = an | X0 = 1, Xk = 1] · p11

= P[Y0 = am | X0 = 1] · P[Yk = am | Xk = 1] · p11

=

(
0.125

0.5

)2

· p11

=
p11
16

. (3.15)

Define the second probability that has different signed physical levels P[Y0 = am, Yk =

−an] as pS, where am, an ∈ {a0, a1, a2, a3}, m,n ∈ {0, 1, 2, 3} and k ̸= 0. Using
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results from (3.5), (3.7) and (3.12),

pD = P[Y0 = am, Yk = −an]

=
∑
x0

∑
xk

P[Y0 = am, Yk = −an | X0 = x0, Xk = xk] · P[X0 = x0, Xk = xk]

= P[Y0 = am, Yk = −an | X0 = 1, Xk = 0] · p10

= P[Y0 = am | X0 = 1] · P[Yk = −an | Xk = 0] · p10

=

(
0.125

0.5

)
·
(
0.125

0.5

)
· (0.5− p11)

=
(0.5− p11)

16
. (3.16)

Now, using equations (3.15) and (3.16) in (3.14) gives the result of:

E[Y0Yk] = 2
3∑

m=0

3∑
n=0

aman ·
p11
16
− 2

3∑
m=0

3∑
n=0

aman ·
(
0.5− p11

16

)

=
1

16
·

3∑
m=0

3∑
n=0

aman · (4E[X0Xk]− 1) , k ̸= 0. (3.17)

Define the multiplier term as S, then (3.17) becomes:

S =
1

16
·

3∑
m=0

3∑
n=0

aman,

E[Y0Yk] = S · (4E[X0Xk]− 1) ,

RY (k) = S (4RX(k)− 1) , k ̸= 0. (3.18)

Note that the result in 3.18 is found by using the total probability theorem, and since

the symbol probabilities are equivalent, the operation applied here is just averaging.

After obtaining E[Y0Yk] in terms of E[X0Xk], Discrete Fourier Transform can be

applied to auto-correlation functions to obtain the power spectrum as follows where

RY (k) is the auto-correlation function with time lag k, frequency f and period 1:

SY (f) =
∞∑

k=−∞

RY (k) · ei2πfk =
∞∑

k=−∞

E[Y0Yk] · ei2πfk. (3.19)

However, the expression given in (3.19) requires RY (0) term also. The expression

found for RY (k) in (3.17) is for k ̸= 0, and the relation becomes incorrect for the
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case of k = 0. Because when k = 0, Y0 and Yk become the same. This problem will

also occur in the later chapters since the method of mapping a non-binary sequence

to a binary sequence and derivations for expressing one in terms of the other will be

used. Therefore, a general solution for this problem will be introduced so that it will

be easier to obtain correct PSDs in all chapters.

First, the Kronecker delta function is denoted as δ[k], where:

δ[k] =

1 if k = 0

0 if k ̸= 0.
(3.20)

Assume the auto-correlation function for {Xn} is given as RX(k). Also, assume

that the following relation is given between RY (k) and RX(k) where a and b are

real-valued constants and k ̸= 0. Note that this relation might not give the true auto-

correlation value for k = 0.

RY (k) = aRX(k) + b, k ̸= 0. (3.21)

Then, the following auto-correlation function can be written for {Yn},

E[Y0Yk] = RY (k) =

aRX(k) + b, if k ̸= 0,

RY (0), if k = 0.

= aRX(k) + b+ (RY (0)− (aRX(0) + b)) δ[k]. (3.22)

Applying the formula given in (3.19) for turning the auto-correlation function to

power spectra using (3.22) and (3.21) gives the following result where SX(f) is the

power spectra of {Xn}:

SY (f) =
∞∑

k=−∞

(
aRX(k) + b+

(
RY (0)− (aRX(0) + b)

)
δ[k]

)
ei2πfk

= aSX(f) + bδ(f) +
(
RY (0)− (aRX(0) + b)

)
. (3.23)

Observe that the above offset
(
RY (0) − (aRX(0) + b)

)
is a constant in the PSD

SY (f), ∀f , it is not the Dirac delta function δ(·).
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For ease of notation for the later derivations, the following naming convention will be

used for deriving SY (f) where RY (k) is defined as in (3.22):

Addition = RY (0) = E[Y 2
n ],

Subtraction = aRX(0) + b,

Correction = Addition− Subtraction,

SY (f) = aSX(f) + bδ(f) + Correction. (3.24)

Another general conclusion that will be useful for this and the later chapters will

be provided using RY (k) defined as in (3.22) regarding the Dirac delta functions

existence in SY (f). Remember that all sequences that will be considered in this

thesis work will be wide sense stationary (WSS) processes, as discussed earlier in

Subsection 2.2.1, and WSS processes have time-invariant mean and auto-correlation

functions.

The auto-correlation function given for {Yn} in (3.22) can be rewritten as follows

where CX(k) represents the auto-covariance function of {Xn}:

RY (k) = aRX(k) + b+
(
RY (0)− (aRX(0) + b)

)
δ[k]

= a
(
RX(k)− E2[Xn] + E2[Xn]

)
+ b+

(
RY (0)− (aRX(0) + b)

)
δ[k]

= a
(
RX(k)− E2[Xn]

)
+ aE2[Xn] + b+

(
RY (0)− (aRX(0) + b)

)
δ[k]

= aCX(k) + aE2[Xn] + b+
(
RY (0)− (aRX(0) + b)

)
δ[k] (3.25)

Now, the Fourier transform will be applied to RY (k) to obtain power spectra where

F{ ·} represents the Fourier transform.

SY (f) =
∞∑

k=−∞

(
aCX(k) + aE2[Xn] + b+

(
RY (0)− (aRX(0) + b)

)
δ[k]

)
ei2πfk

= aF{CX(k)}+
(
aE2[Xn] + b

)
δ(f) +

(
RY (0)− (aRX(0) + b)

)
(3.26)

From (3.26), it can be observed that aF{CX(k)} term will not result in a delta func-

tion and
(
RY (0) − (aRX(0) + b)

)
term is a constant offset. Therefore, in SY (f)

there exists a delta function with an area of (aE2[Xn] + b). It can also be concluded

that for a sequence {Yn} which has an auto-correlation function defined as in (3.22),
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a discrete component in SY (f) exists only if (aE2[Xn] + b) is non-zero. Also, ob-

serve that this term equals E2[Yn]. Hence, if E2[Xn] = − b
a
, it can be concluded that

SY (f) is continuous and does not involve a delta function. For readers’ convenience

for later derivations, these conclusions will expressed as follows where Sc
Y (f) and

Sd
Y (f) represent the continuous and discrete parts of SY (f) respectively:

SY (f) = Sc
Y (f) + Sd

Y (f),

Sd
Y (f) = E2[Yn]δ(f) =

(
aE2[Xn] + b

)
δ(f),

E2[Xn] = −
b

a
=⇒ Sd

Y (f) = 0. (3.27)

Note that equations from (3.27) to (3.34) were provided for a general RX(k). Now,

the derivation of PSD for SP-LOCO codes will be continued. Using (3.18), RY (k)

can be written as follows:

RY (k) =

S (4RX(k)− 1) , if k ̸= 0,

RY (0), if k = 0.
(3.28)

Since RY (k) found for SP-LOCO codes in (3.28) is in the shape of general RY (k)

which is defined in (3.22), respective a and b constants in (3.21) can be written as

follows:

a = 4S,

b = −S. (3.29)

Using the definitions in (3.24), the following expressions can be written:

Addition = RY (0) = E[Y 2
n ]

=
1

8
·

[
3∑

n=0

a2n +
3∑

n=0

(−an)2
]
=

1

4

3∑
n=0

a2n, (3.30)

Subtraction = aRX(0) + b

= 4SE[X2
n]− S

= 4S
1

2
− S = S, (3.31)
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Correction = Addition− Subtraction,

=
1

4

3∑
n=0

a2n − S, (3.32)

SY (f) = aSX(f) + bδ(f) + Correction

= 4S · SX(f)− Sδ(f) +
1

4

3∑
n=0

a2n − S. (3.33)

Now, using the second general conclusion in (3.27), the existence of the Dirac delta

function will be inspected.

Sd
Y (f) =

(
aE2[Xn] + b

)
δ(f)

=
(
4S

(
1

2

)2

− S
)
δ(f)

= 0. (3.34)

The result in (3.34) shows that SY (f) has no discrete component at f = 0 and it is a

continuous function of f as it was expected due to symmetry in SP-LOCO codes.

Since SY is written in terms of SX , the only thing left is converting the sequence into

the writing signal W (t) as it was explained in (2.13).

SW (f) = sinc2(πf)SY (f). (3.35)

After obtaining SW in terms of SX , the method given in [8] and described in detail in

Subsection 2.2.1 can be applied.

The first step is creating an FSTD. The non-binary FSTD representation is given in

Figure 3.1. As discussed, SP-LOCO codes are actually SC2m,1 constrained codes,

which were described in detail in Section 2.1. Therefore, the binary FSTD given

before applies here also. Note that the states represent the last generated 2 binary

bits, and grey-colored states are the ones where the latest bit is a 1 in Figure 3.2.

The probabilities given on the edges of Figure 3.2 represent the maxentropic proba-

bilities. The computation details can be found in [72]. The computed values are as
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F0

F1

F2

F3

0, 1, α3, α4

α, α2, α5, α6α, α2, α5, α6

α, α2,α5, α6

0, 1, α3, α4 α, α2, α5, α6

Figure 3.1: FSTD for SP-LOCO codes that have infinite length, defined over GF(8)

and prevent PIS patterns.

0001

11 10

0
1

1

1
0

0

(a)

F0F1

F2 F3

v0,0
v0,1

1

v2,2
v2,3

1

(b)

Figure 3.2: (a) An FSTD that represents an SP-LOCO constrained sequence, (b) The

same FSTD with transition probabilities on the edges.

follows:

V =


v0,0 v0,1 v0,2 v0,3

v1,0 v1,1 v1,2 v1,3

v2,0 v2,1 v2,2 v2,3

v3,0 v3,1 v3,2 v3,3

 =


0.618 0.382 0 0

0 0 1 0

0 0 0.618 0.382

1 0 0 0

 (3.36)

Observe that v0,0 = v2,2 and v0,1 = v2,3. Now, the FSTD needs to be converted into

an OSTD as explored in detail in Subsection 2.2.1.

Then, using the OSTD given in Figure 3.3, OSTM can be constructed as follows using

(2.4):

G(D) =

0 D

α β

 , (3.37)
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F1 F2

1

1

3, 4, 5, . . .

(a)

F1 F2

1

v2,2

p2,1(3), p2,1(4), p2,1(5), . . .

(b)

Figure 3.3: (a) OSTD that is formed considering the FSTD of SP-LOCO codes where

the numbers represent the run-lengths, (b) OSTD with transition probabilities on the

edges for infinite-length SP-LOCO constrained sequence where pi,j(t) as represented

in (2.4) and p2,1(3) = v2,3 · v0,1, p2,1(4) = v2,3 · v0,1 · v0,0, p2,1(5) = v2,3 · v0,1 · v20,0.

α = v2,3v0,1D
3

∞∑
k=0

(v0,0D)k =
v20,1D

3

1− v0,0D
, (3.38)

β = v2,2D = v0,0D. (3.39)

Finally, with (3.37) obtained above, the PSD SX(D) can be obtained through the

method defined in (2.7).

3.3 Results

This section compares the theoretical result obtained for the PSD from the above

discussion with the actual non-binary sequence’s PSD, which is calculated conven-

tionally. The non-binary sequences are generated via extensive MC simulations with

107 elements.

It is seen from Figure 3.4 that the theoretical results match the experimental results

perfectly, which is the expected result since 2 distinct levels exist, making the problem

binary. Nonetheless, this result serves as a trivial check for the theorem developed.

Further inspection at different physical levels is also presented.

It is seen from Figure 3.5 that the theoretical results match the experimental results

perfectly with 1 physical level differentiation. The magnitude increase compared to

Figure 3.4 was expected since the voltage levels are increased.
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Figure 3.4: PSD for SP-LOCO, all the physical levels are the same.

Figure 3.5: PSD for SP-LOCO, the physical levels are 1 level apart.
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Figure 3.6: PSD for SP-LOCO, the physical levels are 2 levels apart.

It is seen from Figure 3.6 that the theoretical results match the experimental results

perfectly with 2 physical level differentiation. The magnitude decrease compared to

Figure 3.4 was expected since the voltage levels are decreased.

It is seen from Figure 3.7 that the theoretical results match the experimental results

perfectly with 4 physical level differentiation. These different voltage read levels

presented in Figure 3.5, Figure 3.6, and Figure 3.7 show that the theoretical derivation

is correct and can be applied with any voltage level considering the baseline properties

of the physical level mapping from the GF(8) symbols, which are a0 > a1 > a2 >

a3 > 0.

Now, the possible effects of the assumption made for the equivalence between the

symbols belonging to the same set, 3-tuples having the first or the third track bits in

complementary sign with respect to the middle track, will be inspected by setting a1

and a2 levels differently in two possible cases.

It is seen from Figure 3.8 that the theoretical results match the experimental results
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Figure 3.7: PSD for SP-LOCO, the physical levels are 4 levels apart.

Figure 3.8: PSD for SP-LOCO, the physical levels are 4 levels apart, a1 > a2.
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perfectly when different physical levels are defined for a1 and a2.

Figure 3.9: PSD for SP-LOCO, the physical levels are 4 levels apart, a2 > a1.

It is seen from Figure 3.9 that the theoretical results match the experimental results

perfectly when different physical levels are defined for a1 and a2 in the reverse direc-

tion.

In another setting where the inference is not restricted in the 3 × 3 grid alone and

further detrimental patterns are considered, infinite SP-LOCO codes with x = 2 can

be used where the forbidden set T is defined as follows:

T ≜ {010, 101, 0110, 1001},

=
{
β̂1β2β̃2β̄1, β̂2β̄1β̃1β̄2, ∀β̂1, β̄1, β̃1, β1 ∈ {0, 1, α3, α4}

and ∀β̂2, β̄2, β̃2, β2 ∈ {α, α2, α5, α6}
}
. (3.40)

As the TDMR device ages, horizontal transitions should be further separated to give

the read head enough time to respond and mitigate interference even more. This is not

necessarily the typical case in TDMR systems as the focus is mostly on 3 × 3 grids

[34], but the results of such a case are offered for the interested reader. The details
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Figure 3.10: PSD for SP-LOCO, the physical levels are 4 levels apart, a2 > a1.

of finding the power spectra of SP-LOCO codes with x = 2, which are actually S2
constrained codes, can be found in [8].
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CHAPTER 4

PSD FOR MULTI-LEVEL CONSTRAINED CODES: QA-LOCO CODES

This chapter introduces the mapping concept for the theoretical derivation of multi-

level constrained codes. It demonstrates its application to QA-LOCO codes, where

the multi-level sequence is first mapped into three distinct binary sequences. Through

algorithmic manipulations, its power spectral density (PSD) is represented in terms

of these binary sequences, utilizing the derivation from Chapter 4 directly.

4.1 QA-LOCO Codes

With the recent advancements in physics, Flash devices can store more than one bit

per cell, and the advancements in signal processing have helped the effect of physical

instabilities [28]. These improvements laid the groundwork for the growth of the use

of the multi, triple, quad, and penta-level cell (M/T/Q/P-LC) Flash memory devices,

which can be considered a necessity in this age of information [28].

Hareedy et al. [28] introduce simple constrained codes for Flash memory devices

named QA-LOCO codes, that are suitable for the non-binary physical gates in the

M/T/Q/P-LC Flash memory devices and any future Flash memory that has q levels

per cell. QA-LOCO codes belong to the general family of LOCO codes, which was

introduced to the reader in the preliminaries section. They subsume the previously de-

signed asymmetric LOCO (A-LOCO) codes for SLC Flash memory devices and ex-

tend the application to the non-binary world in parallel with the recent developments

in technology while preserving the important features of the family of LOCO codes

such as capacity-achieving rates, affordable encoding-decoding complexity, and ease

of reconfigurability [28]. The main objective of designing the codes for Flash mem-
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ory devices is to mitigate inter-cell inference since it is a massive source of error in

Flash devices [33]. It is also known that as the device ages, the number of error-prone

patterns increases [33]. While the reconfigurability of a coding scheme is a desirable

quality in general [4], it becomes even more crucial for Flash devices, making the

usage of QA-LOCO codes in Flash devices more desirable.

The definition of QA-LOCO codes will be given, directly referencing the work of

Hareedy et al. [28]. Denote a Galois field of size q by GF(q) where α is a primitive

element of the field.

GF(q) ≜ {0, 1, α, α2, . . . , αq−2}. (4.1)

Even though the analysis for QA-LOCO codes works for any GF of size q, q can be

particularized as 2v where v ≥ 1 because, for a Flash device that has v bits per cell,

there exist q = 2v levels [28].

Define δ and δi for any i, as elements in GF(q)\{αq−2} and define δrd ≜ δr−1δr−2 · · · δm
as a sequence in [GF(q) \ {αq−2}]r, with δ1d = δm = δ.

Then, for a QA-LOCO QCq
m,x with q ≥ 2, m ≥ 1, and x ≥ 1 that has its symbols in

GF(q), the set of forbidden patterns, T , can be defined as [31]:

T = Qq
x ≜ {αq−2δταq−2, ∀δτd ∈ [GF(q) \ {αq−2}]τ | 1 ≤ τ ≤ x}. (4.2)

For the following discussions, charge levels are directly translated to threshold volt-

age levels that are defined by their indices for simplicity [28]. Defining the set of

charge levels equivalent to GF(q) is 0, 1, 2, . . . , q−1 , the set of charge-level patterns

equivalent to Qq
x becomes:

{(q − 1)µ0(q − 1), (q − 1)µ1µ0(q − 1), . . . , (q − 1)µx−1µx−2 · · ·µ0(q − 1)}. (4.3)

where µi ∈ {0, 1, . . . , q − 2}. Note that charge levels will be used to represent the

symbols for the sake of simplicity.

4.2 Theoretical Derivation of PSD for QA-LOCO Codes

A QA-LOCO code [28], QCq
m,x, is a finite length constrained code with length m.

However, the PSD derivation will be provided for infinite-length QA-LOCO codes.
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From now on, infinite length QA-LOCO codes will be simply referred to as QA-

LOCO codes, and they will be denoted as Qq
x with q ≥ 2, and x ≥ 1 and the set of

forbidden patterns given in (4.2) still applies. Also, note that QA-LOCO codes also

use level-based signaling, making it possible to apply the method given in [8] to the

binary signal derived after necessary mapping.

The main idea behind the derivation is connecting the binary problem solution to the

non-binary problem setup. Considering the forbidden set of patterns given in (4.2), it

can be observed that the first and last symbols are αq−2, the highest level symbol. The

symbols in between the two highest level symbols are grouped together and belong

to the set GF(q) \ {αq−2} and no matter which one they are, they are treated as

equally important to forbid, which will eventually lead each symbol having the same

probability of being generated. In short, it can be claimed that for the non-binary

problem, there also exist two sets of symbols which are named as the highest level

symbol, αq−2, and the low-level symbols, δ ∈ GF(q) \ {αq−2}. In terms of charge

levels and the simplification mentioned, the highest charge level becomes (q−1), and

the low charge levels become µi ∈ {0, 1, . . . , q − 2}.

Remember that in the binary case with A-LOCO codes [54], the high-level symbol

was represented as a 1, and the low-level symbol was represented as a 0, which led to

the forbidden pattern set:

T = Ax ≜ {101, 1001, . . . , 10x1} (4.4)

Since the two sets of levels and charges in the non-binary problem are analogous

to the binary problem as discussed, the highest level charge (q − 1) can be mapped

to 1, and any member from the low-level charges, µi ∈ {0, 1, . . . , (q − 2)}, can be

mapped to 0. Hence, the problem is reduced to an algebraic manipulation for this

binary mapping.

Let {Yn} be the stream of charge levels of the symbols, which is the original charge

level sequence that Yn ∈ {0, 1, . . . , (q − 1)}.

Then, let {Xn} be the stream of bits mapped according to the charge levels of the

symbols, which is the baseline mapping, and Xn ∈ {0, 1}. The sequence {Xn} can
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be defined as follows:

Xn =

1, if Yn = (q − 1),

0, else.
(4.5)

In order to simplify the expressions and improve the readability of the equations, the

following notations will be used throughout the derivation:

p00 = P[X0 = 0, Xk = 0],

p01 = P[X0 = 0, Xk = 1],

p10 = P[X0 = 1, Xk = 0],

p11 = P[X0 = 1, Xk = 1]. (4.6)

The auto-correlation function of {Xn} can be written as follows:

R(X) = E[X0Xk] = 0 · 0 · p00 + 0 · 1 · p01 + 1 · 0 · p10 + 1 · 1 · p11 = p11. (4.7)

Before exploring the auto-correlation function of {Yn}, the charge level probabilities

of Yn will be inspected using the total probability theorem.

Define am, an ∈= {0, 1, . . . , q−2} and x0, xk ∈ {0, 1}. The charge level probabilities

will be derived case by case.

pLL = P[Y0 = am, Yk = an]

=
∑
x0

∑
xk

P[Y0 = am, Yk = an | X0 = x0, Xk = xk] · P[X0 = x0, Xk = xk]

= P[Y0 = am, Yk = an | X0 = 0, Xk = 0] · p00

= P[Y0 = am | X0 = 0] · P[Yk = an | Xk = 0] · p00

=
p00

(q − 1)2
(4.8)

pLH = P[Y0 = am, Yk = (q − 1)]

=
∑
x0

∑
xk

P[Y0 = am, Yk = an | X0 = x0, Xk = xk] · P[X0 = x0, Xk = xk]

= P[Y0 = am, Yk = (q − 1) | X0 = 0, Xk = 1] · p01

= P[Y0 = am | X0 = 0] · P[Yk = (q − 1) | Xk = 1] · p01

=
p01

(q − 1)
(4.9)
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pHL = P[Y0 = (q − 1), Yk = an]

=
∑
x0

∑
xk

P[Y0 = am, Yk = an | X0 = x0, Xk = xk] · P[X0 = x0, Xk = xk]

= P[Y0 = (q − 1), Yk = an | X0 = 1, Xk = 0] · p10

= P[Y0 = (q − 1) | X0 = 1] · P[Yk = an | Xk = 0] · p10

=
p10

(q − 1)
(4.10)

pHH = P[Y0 = (q − 1), Yk = (q − 1)]

=
∑
x0

∑
xk

P[Y0, Yk = (q − 1) | X0 = x0, Xk = xk] · P[X0 = x0, Xk = xk]

= P[Y0, Yk = (q − 1) | X0 = 1, Xk = 1] · p11

= P[Y0 = (q − 1) | X0 = 1] · P[Yk = (q − 1) | Xk = 1] · p11

= p11 (4.11)

Now, the auto-correlation function of {Yn} can be written as for k ̸= 0:

R(Y ) = E[Y0Yk] =

q−2∑
am=0

q−2∑
an=0

am · an · pLL +

q−2∑
am=0

am · (q − 1) · pLH

+

q−2∑
an=0

(q − 1) · an · pHL + (q − 1)2 · pHH

=

q−2∑
am=0

q−2∑
an=0

am · an ·
p00

(q − 1)2
+

q−2∑
am=0

am · (q − 1) · p01
(q − 1)

+

q−2∑
an=0

(q − 1) · an ·
p10

(q − 1)
+ (q − 1)2 · p11

=

(
q − 2

2

)2

· p00 +
(q − 1)(q − 2)

2
· (p01 + p10) + (q − 1)2 · p11.

(4.12)

Since the ultimate goal is to express (4.12) in terms of (4.7), the probabilities p00

and (p01 + p10) also needs to be expressed in terms of (4.7). For this purpose, the

sub-signal {Zn} is defined as follows:

Zn =

0, if Zn = (q − 1),

1, else.
(4.13)
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Notice that Zn is defined in an antagonistic manner, and the following observations

can be made about Zn:

P[Z0 = 0, Zk = 0] = P[X0 = 1, Xk = 1] = p11,

P[Z0 = 0, Zk = 1] = P[X0 = 1, Xk = 0] = p10,

P[Z0 = 1, Zk = 0] = P[X0 = 0, Xk = 1] = p01,

P[Z0 = 1, Zk = 1] = P[X0 = 0, Xk = 0] = p00. (4.14)

Using (4.14), the auto-correlation function of {Zn} can be written as follows:

E[Z0Zk] = 0 · 0 · p11 + 0 · 1 · p10 + 1 · 0 · p01 + 1 · 1 · p00 = p00. (4.15)

Benefiting, Zn = 1 − Xn, which is a linear relation, Zn and Xn will be related

together. Denoting the equilibrium probability of a 1 in {Xn} as p(1), the following

expression is obtained:

E[Z0Zk] = E[(1−X0)(1−Xk)] = E[X0Xk]− 2p(1) + 1 = p00. (4.16)

Now, the only term left to be expressed in terms of (4.7) is (p01 + p10). For this, the

unit measure axiom of the probability can be used:

∑
x0

∑
xk

P[X0 = x0, Xk = xk] = p00 + p01 + p10 + p11 = 1. (4.17)

Using (4.7), (4.16) and (4.17),

p01 + p10 = 1− p00 − p11

= 1− (E[X0Xk]− 2p(1) + 1)− E[X0Xk]

= 2p(1)− 2E[X0Xk]. (4.18)

With all the needed terms expressed in terms of E[X0Xk], the main equation E[Y0Yk]
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can be rewritten and rearranged using (4.7), (4.12) and (4.16) where k ̸= 0 as follows:

E[Y0Yk] =

(
q − 2

2

)2

· p00 +
(q − 1)(q − 2)

2
· (p01 + p10) + (q − 1)2 · p11

=

(
q − 2

2

)2

· (E[X0Xk]− 2p(1) + 1)

+
(q − 1)(q − 2)

2
· (2p(1)− 2E[X0Xk])

+ (q − 1)2 · E[X0Xk]

=
q2

4
E[X0Xk] +

1

2
q(q − 2)p(1) +

1

4
(q − 2)2, k ̸= 0. (4.19)

Note that the result in 4.19 is found by using the total probability theorem. The high

symbol gives the value of itself, and the low symbols give the average value of them

since they are equiprobable.

The theoretical derivation given step by step above treats any lag k as equivalent and

computes the necessary probabilities accordingly. However, lag at 0, k = 0, should

be handled differently. Without discrediting the original derivation since it is true

for k ̸= 0 and it is described this way from the start, via performing subtraction

and addition for the term at lag 0, the true result can be achieved. The reason for

this difference is, for any k, it is assumed that the charge levels Y0 and Yk could be

different, and a joint probability would be considered. This is not the case for k = 0

since Y0 and Yk becomes the same charge level, and only the probability of P[Y0]

should be considered.

From the sum of probabilities defined in (4.6) only the manipulations involving p00

is erroneous for the term at lag 0. Because for p01 and p10, Y0 and Yk are already

defined as different charge levels, and for p11, Y0 and Yk are already defined as the

same charge level, which is (q − 1).

The general conclusions given in Section 3.2 apply here also since RY (k) is defined

as follows, which can be considered analogous to (3.22):

RY (k) =


q2

4
RX(k) +

1

2
q(q − 2)p(1) +

1

4
(q − 2)2, if k ̸= 0,

RY (0), if k = 0.

(4.20)

Then, respective a and b constants for (4.20) can be written considering (3.21) as
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follows:

a =
q2

4
,

b =
1

2
q(q − 2)p(1) +

1

4
(q − 2)2. (4.21)

Then, using the definitions in (3.24) the following expressions can be written:

Addition = RY (0) = E[Y 2
n ]

= p(1)(q − 1)2 +

(
1− p(1)

)
(q − 1)

q−2∑
yn=0

y2n

= p(1)(q − 1)2 +

(
1− p(1)

)
(q − 1)

q−2∑
yn=0

y2n

= p(1)(q − 1)2 +

(
1− p(1)

)
(q − 2)(2q − 3)

6

=
p(1) · (4q2 − 5q)

6
+

(2q2 − 7q + 6)

6
, (4.22)

Subtraction = aRX(0) + b

=
q2

4
E[X2

n] +
1

2
q(q − 2)p(1) +

1

4
(q − 2)2

=
q2

4
p(1) +

1

2
q(q − 2)p(1) +

1

4
(q − 2)2,

=
p(1) · (3q2 − 4q)

4
+

(q − 2)2

4
, (4.23)

Correction = Addition− Subtraction,

=
p(1) · (4q2 − 5q)

6
+

(2q2 − 7q + 6)

6
− p(1) · (3q2 − 2q)

4
− (q − 2)2

4

=
p(1) · (−q2 + 2q)

12
+

(q2 − 2q)

12

=

(
1− p(1)

)
q(q − 2)

12
, (4.24)

SY (f) = aSX(f) + bδ(f) + Correction

=
q2

4
· SX(f) +

(
2q(q − 2)p(1) + (q − 2)2

4

)
· δ(f) +

(
1− p(1)

)
q(q − 2)

12
.

(4.25)
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Note that the correction term in (4.25) is a constant, not a Dirac delta function. The

reason why it was simply added is that it covers the zero lag’s effect when multiplied

with ei2πkf , which is 1 for k = 0.

Now, the second general conclusion obtained in (3.27) can be inspected as follows

for finding the area of the Dirac delta function in SY (f) where Sd
Y (f) represents the

discrete part of the spectra:

Sd
Y (f) = E2[Yn]δ(f)

=

[
p(1)(q − 1) +

(1− p(1))

(q − 1)

q−2∑
yn=0

yn

]2

δ(f)

=

[
p(1)(q − 1) +

(
1− p(1)

)
(q − 2)

2

]2

δ(f)

=

[
qp(1) + (q − 2)

2

]2
δ(f) (4.26)

Remember that according to (3.27), in order to have a zero discrete part in power

spectra, the area of the Dirac delta function computed in (4.26) should be equal to

zero. Since the resultant term is a squared expression, only the nominator can be

inspected. For the nominator to be zero p(1), the steady state probability of obtaining

a 1 in {Xn}, should be equal to − q−2
q

. Remember that q here represents the number

of levels in a Flash cell, which is known as q ≥ 2. For q = 2, p(1) should also be

equal to zero to satisfy the condition. Note that for q = 2 there exists 2 levels as

0 and 1, which makes the actual sequence {Yn} equal to {Xn}. This choice is not

applicable since p(1) = 0 implies that the generated sequence will be a stream of 0’s,

and there will be no clue to distinguish if a coded symbol is a 0 or 1. For q > 2,

the expression will be equal to a negative number between −1 and 0, and this case is

also improbable since any probability is greater than or equal to 0. Therefore, there

exists a discrete component in SY (f) with an area of
[
qp(1)+(q−2)

2

]2
at f = 0 as it was

expected since QA-LOCO codes are not symmetric.

Now that SY (f) is represented in terms of SX(f), the writing signal needs to be

formed as suggested in (2.13):

SW (f) = sinc2(πf)SY (f) (4.27)

45



F0F1F2Fx
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δ
αq−2αq−2
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αq−2

δ δ δ

δ
δ δ δ

Figure 4.1: FSTD for infinite-length Qq
x-constrained sequence. Here, δi ∈ GF(q) \

{αq−2} for any i and δi = δ for simplicity. Note that the symbol αq−2 represents the

highest level. Dashed lines imply that the transition may be more than one state in

length. Specifically, the diagonal dashed edges leaving state Fi contain x− i states.

F0F1

F2 F3

v0,0
v0,1

v1,2

v2,3
v2,2

v3,0
v1,3

Figure 4.2: FSTD with maxentropic transition probabilities on the edges for infinite-

length Qq
1-constrained sequence.

Now that the sequence is formed into its latest shape, and SW is written in terms of

the binary sequence SX , the method described in Section 2.2 can be applied to Sx in

order to obtain its PSD. For this purpose, first, an FSTD should be constructed for the

non-binary problem, and its binary counterpart should be found. Then, the respective

OSTD should be formed, after which the OSTM entries need to be written. However,

for different values of x, the FSTD, OSTD, and OSTM size changes. Therefore, a

parametric discussion and examples for x = 1 and x = 2 will be provided for the

related steps.

Figure 4.1 shows a non-binary FSTD constructed for QA-LOCO codes with different

x values. The maxentropic transition probabilities on the edges can be computed

using the adjacency matrix of the FSTD given in Figure 4.1 and the method given in

[72].

Instead of providing a parametric adjacency matrix for the FSTD in Figure 4.1, the
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v3,3
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v1,5
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Figure 4.3: FSTD with maxentropic transition probabilities on the edges for infinite-

length Qq
2-constrained sequence.

cases for x = 1 and x = 2 will be shown. Figure 4.2 shows the FSTD constructed for

x = 1 case. The corresponding adjacency matrix is as follows:

A =


a0,0 a0,1 a0,2 a0,3

a1,0 a1,1 a1,2 a1,3

a2,0 a2,1 a2,2 a2,3

a3,0 a3,1 a3,2 a3,3

 =


q − 1 1 0 0

0 0 1 q − 1

0 0 1 q − 1

q − 1 0 0 0

 (4.28)

Figure 4.3 shows the FSTD constructed for x = 2 case. The corresponding adjacency

matrix is as follows where the first element is a0,0 and the last element is a6,6:

A =



q − 1 1 0 0 0 0 0

0 0 1 0 0 q − 1 0

0 0 0 1 q − 1 0 0

0 0 0 1 q − 1 0 0

0 0 0 0 0 0 q − 1

0 0 0 0 0 0 q − 1

q − 1 0 0 0 0 0 0


(4.29)

Using the FSTD given for non-binary sequence in Figure 4.1, the binary FSTD can

be constructed using the same maxentropic transition probabilities. The maxentropic

probabilities matrix V starts with element v0,0 and the total size of the matrix is de-

pendent on x. Note that the grey-colored states are the ones where the incoming

transition is caused by the high-level symbol, which is αq−2. The binary FSTD is
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Fx+1 Fx+2 D D

0
11
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1

1
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0
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Figure 4.4: Binary FSTD with symbols 0 and 1 on the edges for infinite-length Qq
x-

constrained sequence. Dashed lines imply that the transition may be more than one

state in length. Specifically, the diagonal dashed edges leaving state Fi contain x− i

states.

shown in Figure 4.4. It is important to note that the FSTD presented is not minimal

in the number of states since a fixed number of symbols are considered for a state.

Therefore, maxentropic probabilities v1,2 = v2,3 = v3,4 = . . . = vx,x+1 = vx+1,x+1.

Then, an OSTD is constructed using 4.4, which would have x + 1 number of states.

Finally, an OSTD of size (x+1)×(x+1) is formed with variables α and β as follows

where Ix is the identity matrix of size x× x:

G(D) =


α
...

βDIx

α 0 · · · 0 β

 , (4.30)

α = v0,1v1,x+2D
x+2

∞∑
k=0

(v0,0D)k =
v0,1v1,x+2D

x+2

1− v0,0D
, (4.31)

β = v1,2D. (4.32)

Finally, with (4.30) obtained above, the PSD SX(D) can be obtained through the

method defined in (2.7).

4.3 Results

In this section, the theoretical result derived is plotted and compared with Monte

Carlo simulations, where the sequence has 107 elements.
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It is observed that the PSD expression obtained involves a delta function, which is

placed at the frequency 0. In the following figures, this delta function will not be

shown in the plots. However, the area of this discrete component at frequency 0 is

equal to E2[Yn] and will be given in the discussion.

In a general sense, the parameter x in QA-LOCO represents the number of low volt-

age level symbols in between two high voltage level symbols in the forbidden pattern

set [28]. Therefore, depending on the number of levels q and parameter x, the number

of forbidden patterns changes.

4.3.1 Results for MLC

Results are as follows for multi-level cells that have 2 bits per cell and have a total of

q = 4 levels per cell.

The discrete part of the PSD for Figure 4.5 is a Dirac delta function at f = 0 with

an area of E2[Yn] = 1.928. It is seen from Figure 4.5 that the theoretical results

match the experimental results perfectly. In Figure 4.5, a different pattern is observed

compared to an uncoded sequence’s PSD, which would be the sinc function. Since

q = 4, the overall shape of the PSD is distinct and observable.

The discrete part of the PSD for Figure 4.6 is a Dirac delta function at f = 0 with

an area of E2[Yn] = 1.7429. It is seen from Figure 4.6 that the theoretical results

also match the experimental results perfectly. In Figure 4.6, the number of forbidden

patterns is increased. Therefore, the pattern of the plot deviates more from one of an

uncoded sequence’s shape, and the shape is differed compared to Figure 4.5, and it

is observable. Also, it can be observed that the peak of the graph has moved towards

the left compared to Figure 4.5, which will be explained in detail later.

The discrete part of the PSD for Figure 4.7 is a Dirac delta function at f = 0 with an

area of E2[Yn] = 1.622. It is seen from Figure 4.7 that the theoretical results again

match the experimental results perfectly. In Figure 4.7, the number of forbidden pat-

terns is further increased. Therefore, compared to Figure 4.6, the plot has a different

pattern and it is still observable. Also, it can be observed that the peak of the graph

has moved towards left further compared to Figure 4.5 and Figure 4.6.
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Figure 4.5: Continuous part of the PSD for q = 4, x = 1.

Figure 4.6: Continuous part of the PSD for q = 4, x = 2.
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Figure 4.7: Continuous part of the PSD for q = 4, x = 3.

4.3.2 Results for TLC

Results are as follows for multi-level cells that have 3 bits per cell and have a total of

q = 4 levels per cell.

The discrete part of the PSD for Figure 4.8 is a Dirac delta function at f = 0 with an

area of E2[Yn] = 11.6896. It is seen from Figure 4.8 that the theoretical results match

the experimental results perfectly. For a TLC, three bits exist per cell makes the total

number of levels 8. With the increase in q, the probability of a forbidden pattern

happening decreases compared to MLC since their number is increased. Since less

coding is applied, Figure 4.8 is closer to the pattern of the uncoded stream compared

to Figure 4.5.

The discrete part of the PSD for Figure 4.9 is a Dirac delta function at f = 0 with

an area of E2[Yn] = 11.3041. It is seen from Figure 4.9 that the theoretical results

also match the experimental results perfectly. In Figure 4.9, the number of forbidden

patterns is increased. Therefore, the pattern deviates more from one of an uncoded
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sequence’s shape, and the shape is differed compared to Figure 4.8.

Discrete part of the PSD for Figure 4.10 is a Dirac delta function at f = 0 with an

area of E2[Yn] = 11.0211. It is seen from Figure 4.10 that the theoretical results again

match the experimental results perfectly. In Figure 4.10, the number of forbidden

patterns is further increased. Therefore, compared to Figure 4.8 and 4.9, the pattern

has a different pattern again, more damped. As x increases, the maximum power

density point shifts to the left.

Figure 4.8: Continuous part of the PSD for q = 8, x = 1.
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Figure 4.9: Continuous part of the PSD for q = 8, x = 2.

Figure 4.10: Continuous part of the PSD for q = 8, x = 3.

53



4.3.3 Results for QLC

Results are as follows for multi-level cells that have 4 bits per cell and have a total of

q = 16 levels per cell.

Figure 4.11: Continuous part of the PSD for q = 16, x = 1.

The discrete part of the PSD for Figure 4.11 is a Dirac delta function at f = 0 with

an area of E2[Yn] = 55.5080. It is seen from Figure 4.11 that the theoretical results

match the experimental results perfectly. For a QLC, four bits exist per cell, which

makes the total number of levels sixteen. With this exponential increase in q, the

probability of a forbidden pattern happening decreases so significantly that Figure

4.11 becomes almost a sinc function.

The discrete part of the PSD for Figure 4.12 is a Dirac delta function at f = 0 with an

area of E2[Yn] = 54.9152. It is seen from Figure 4.12 that the theoretical results match

the experimental results perfectly. The increase in the forbidden patterns changes the

shape, as discussed earlier. However, for Figure 4.12, the difference with Figure 4.11

is not clear.
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Figure 4.12: Continuous part of the PSD for q = 16, x = 2.

Figure 4.13: Continuous part of the PSD for q = 16, x = 3.
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The discrete part of the PSD for Figure 4.13 is a Dirac delta function at f = 0 with

an area of E2[Yn] = 54.4296. It is seen from Figure 4.13 that the theoretical results

match the experimental results perfectly. For Figure 4.13, bare-eye cannot rationalize

the change since it seems there is not any compared to Figure 4.11 and 4.12.

4.3.4 Comparative Results for SLC, MLC, and TLC

This subsection plots x levels from 1 to 5 for SLC, MLC, and TLC.

Figure 4.14: Continuous part of the PSDs for q = 2 for all x.

For Figure 4.14, the changes in the shape when x increases are seen clearly, and the

shape is too different from a sinc function. As x increases, the overall bandwidth

of the signal decreases. This is a result of the increase in forbidden patterns. When

x increases, the sequence generates more 0’s in between the 1’s, which makes rapid

transitions less and the higher frequency components in the signal lessens. This also

causes the peak of the plot to shift left as the majority of the signal components lay

on lower frequencies.

56



Figure 4.15: Continuous part of the PSDs for q = 4 for all x.

For Figure 4.15, the lines for different x are closer compared to Figure 4.14. However,

the shift in the peak of maximum power density is still clear since a similar discussion

to the binary case is also valid here, with the overall effect is lower due to the increased

q.

For Figure 4.16, all the lines for different x values are close since the increase in x

is linear while the increase in q is exponential. The shift of the peak point to the left

and the smaller bandwidth discussion is valid here also but the overall effect is nearly

unobservable due to the much increased q.

57



Figure 4.16: Continuous part of the PSDs for q = 8 for all x.
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CHAPTER 5

APPROXIMATE PSD FOR MULTI-LEVEL CONSTRAINED CODES:

OP-LOCO CODES

In this chapter, an approximate method for deriving the power spectra for OP-LOCO

codes [31] will be presented. Section 5.1 will provide preliminary background for

OP-LOCO codes, Section 5.2 will show the approximation method for the PSD step-

by-step, and Section 5.3 will present the results that are plotted approximation against

MC simulations.

5.1 OP-LOCO Codes

As discussed in Section 2.3.2 and Section 3.1, TDMR is a technology that allows

magnetic storage to remain competitive regarding storage density [57, 58, 61]. In

TDMR, horizontal tracks are compressed and not separated from one another [61],

enabling a storage density of 10 terabits per square inch [57, 59].

Considering a 3 × 3 grid in the TDMR system, data patterns that result in the iso-

lation of the bit at the center of this grid should be forbidden [60]. Additionally,

data patterns where the central bit is surrounded by 4 complementary bits in both

upwards and downwards directions, excluding the 4 corner bits, should also be for-

bidden since they significantly increase two-dimensional interference along both the

horizontal and vertical track directions and likely to change the sign of the center bit

[31]. It is important to note that the bits at the corners cause less interference than

bits at positions with Manhattan distance 1 from the center [60, 64]. This data pattern

is the PIS pattern, as discussed in Section 3.1. The prevention of PIS patterns is also

named the no-isolated-bit (NIB) constraint [60, 64].
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The literature includes studies on both two-dimensional RLL codes [64, 66] and two-

dimensional codes with NIB constraints [60, 62, 65]. In the former case, the 2D

(d, k)-RLL constraint is composed of all binary arrays where every row and column

of the one-dimensional (d, k)-RLL constraint is satisfied when the square lattice is

used, and the appropriate range of parameters in both dimensions is 0 ≤ d < k ≤ ∞
[66]. It is seen that the codes with NIB constraints offer significantly higher code

rates, which highlights the importance of creating coding schemes that forbid PIS

patterns upon writing.

In 2022, Hareedy et al. [31] introduced novel rate-wise optimal LOCO codes, where

rate-wise optimization refers to minimal redundancy [70]. These codes are named

OP-LOCO codes and explicitly designed to prevent error-prone PIS patterns from

being written onto the TDMR medium [31]. These non-binary codes are associated

with level-based signaling, significantly increasing the system reliability and device

performance [31]. OP-LOCO codes are capacity-achieving as the rates approach the

system’s maximum capacity even at moderate lengths [31]. OP-LOCO codes also

offer minimal redundancy, simplicity, and reconfigurability like the other codes from

the LOCO family [31].

In their work [31], they adopt a practical Voronoi TDMR channel model, which treats

the distribution of grain centers as a point process [60]. The model is characterized

by a wide read head that simultaneously reads data from three adjacent down tracks

[58, 61, 65]. In this model [60], down tracks in the TD grid are indexed sequentially

from 0 to D − 1, where D is the total number of down tracks and is divisible by

3. Thus, this setup allows the down tracks to be partitioned into groups of three,

such as (0, 1, 2), (3, 4, 5), . . . , (D − 3, D − 2, D − 1). Interference from one group

of tracks to another in the cross-track direction is negligible [58, 65]. Consequently,

the coding problem transitions from a two-dimensional binary-constrained problem

to a one-dimensional non-binary constrained problem [31]. In this new framework, a

symbol in GF(8) represents a column of three bits to be written across three adjacent

down tracks within the same group [31]. It can be observed that three symbols from

GF(8) together create a 3 × 3 grid pattern, which will help define the error-prone

patterns.
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For OP-LOCO codes [31], the following standard mapping-demapping from binary

patterns to GF(8) symbols is used:

[0 0 0]T ←−−−→ 0,

[0 0 1]T ←−−−→ 1,

[0 1 0]T ←−−−→ α,

[0 1 1]T ←−−−→ α2,

[1 0 0]T ←−−−→ α3,

[1 0 1]T ←−−−→ α4,

[1 1 0]T ←−−−→ α5,

[1 1 1]T ←−−−→ α6. (5.1)

Denoting an OP-LOCO code of length m by OPCm8 , the formation of the code fol-

lows the definition of a generic LOCO code with q = 8, Cm
q = OPCm8 [31]. In

addition, the index of the codewords, the cardinality, and the encoding-decoding rule

are derived in the same way [31].

The set of forbidden patterns, denoted by T is as follows:

T = OP 8 ≜
{
β̄1αβ1, β̄2α

4β2,∀β̄1, β1 ∈ {0, 1, α3, α4}

and∀β̄2, β2 ∈ {α, α2, α5, α6}
}
. (5.2)

A critical discussion is the structure of forbidden patterns. Following from (5.1),

symbols α and α4 are mapped to [0 1 0]T and [1 0 1]T respectively, and they appear

as the middle track of the forbidden pattern as it is seen from (5.2). Therefore, it can

be observed that the middle bits from symbols α and α4 are the central bits of a 3× 3

grid and also have their upper and lower bits in the complementary sign. It can be

said that having the symbol α or α4 in the central position is risky and makes the 3×3

grid a candidate for forbidden patterns.

The first and third symbols in T from (5.2) will also be closely inspected. For symbol

α, symbols β̄1 and β1 belong to the set {0, 1, α3, α4}. By looking at the symbols’ cor-

responding binary representation from (5.1), it can be observed that all the symbols in

this set have their center bit as 0. Having these symbols as the first and third symbols,
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the center bit of the second symbol α, which is also the central bit of the 3 × 3 grid,

becomes surrounded by complementary bits from the left and right directions. Since

the center bit of symbol α was surrounded by complementary bits already with this

addition to the first and third tracks, the 3 × 3 grid becomes a forbidden PIS pattern.

Analogously, for symbol α4, symbols β̄2 and β2 belong to the set {α, α2, α5, α6} and

it can be observed that all the symbols in this set have their center bit as 1 in their

corresponding binary representation from (5.1). Having these symbols as the first

and third symbols, the center bit of the second symbol, α4, becomes surrounded by

complementary bits from the left and right directions, with the center bit of symbol α4

surrounded by complementary bits already, this addition by the first and third tracks

makes the 3 × 3 grid become the other forbidden PIS pattern. In addition, referring

to (5.2), there exists (4× 4) + (4× 4) = 32 configurations possible for a PIS pattern.

F1 F2

F3

F4

0, 1, α3, α4

α2,α5,α6

α

α4

0, 1, α3

α,α2,α5,α6

0, 1, α3, α4

α,α2,α5,α6

Figure 5.1: FSTD for OP-LOCO codes that have infinite length, defined over GF(8)

and prevent PIS patterns.

An FSTD of an infinite 8 − ary constrained sequence defined over GF(8) in which

32 PIS patterns in (5.2) are prevented in is shown in above Figure 5.1.

Let the corresponding adjacency matrix be F and the maximum real positive eigen-

value of F be λmax(F).

F =


4 3 0 1

3 4 1 0

4 0 0 0

0 4 0 0

 (5.3)
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The capacity C, in input bits per coded symbol, and the normalized capacity Cn can

be calculated as [21]:

C = log2(λmax(F)) = log2 7.5311 = 2.9129,

Cn =
1

3
C = 0.9710. (5.4)

Moreover, OP-LOCO codes achieve substantial frame error rate (FER) and bit error

rate (BER) improvements despite the absence of traditional error-correcting codes

[31]. This is due to the inherent capability of OP-LOCO codes to conduct error

correction analogous to LOCO codes [19]. The mechanism involves examining the

encoded 8 − ary sequence of length m for constraint violations. If a violation is

detected, the bit corresponding to the value nearest to zero within the 3 × m grid

of the codeword is altered [31]. Subsequently, the sequence is converted back using

GF(8), and the constraint is re-evaluated [31]. If the constraint is now satisfied, this

indicates successful one-symbol error correction [31]. The reader is referred to [19]

for more information.

An essential factor that distinguishes OP-LOCO codes from other NIB constraint TD

codes is that it achieves rate gain by focusing only on PIS patterns within the same

group of down tracks, as interference between groups in the cross-track direction

is of less importance [31]. As a result of this methodology, the highest achievable

normalized rate for OP-LOCO codes is 0.9710, as shown in (5.4), while the highest

achievable rate in [60] is 0.9238.

To elaborate the comparison in greater detail, codes that use the technique of stuffing

bits into a TD grid to forbid PIS patterns [60, 62] are not customized for a TDMR

system with a wide read head such as the one OP-LOCO codes adopt [58, 61] even

though wide read heads offer the advantage of higher speeds in reading. It is also vital

to mention that codes in [60, 66] which utilize bit-stuffing techniques, lack explicit

ways to convert unconstrained input messages into codewords, or vice versa, while

OP-LOCO codes offer simple systematic mapping-demapping for conversion via the

integer index [31].
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5.2 Approximation Method

This section will present an approximation method to obtain the PSD for OP-LOCO

codes as closely as possible. It is important to note that OP-LOCO codes are finite-

length codes. However, in this thesis, the approximation method will be developed

for infinite-length OP-LOCO codes. From now on, referring to OP-LOCO codes will

mean infinite-length OP-LOCO codes. The fundamental properties of the OP-LOCO

codes still apply, and the forbidden set T is defined in the same way. Also, OP-LOCO

codes use level-based signaling, making it possible to apply the method for obtaining

the PSD for binary sequences in [8].

Before delving into the derivation, why an approximation method was needed in the

first place will be discussed. A summary of work conducted so far will be given to

highlight the essential steps.

The method for obtaining a PSD introduced in [7] and [8] requires a binary sequence.

Thus, the steps taken so far for the cases of SP-LOCO and QA-LOCO codes were

finding a way to introduce a fundamental binary mapping for the symbols in the

alphabet and expressing the non-binary signal in terms of the binary signal. For SP-

LOCO, the symbols in GF(8) were mapped to GF(2), as was already the case for

the configuration of the code. For QA-LOCO, the symbols in GF(q) are mapped to

GF(2) by considering the highest level symbol as a 1 and the lower level symbols as

a 0, benefiting the equal treatment for each low-level symbol. Therefore, the main

idea is to divide the symbols in the non-binary alphabet into two groups, depending

on the code’s fundamental properties.

Considering the forbidden pattern set T for OP-LOCO codes, which is given in (5.2),

it can be seen that the variables β1 and β̄1 belong to one set and β2 and β̄2 belong to

another set where these two sets are mutually exclusive, which indicates two groups.

However, the symbols in the middle of the forbidden patterns cannot be any element

in the respective sets. In fact, if an element is considered from the respective sets,

the element is the middle symbol that creates the forbidden pattern with a certain

probability, which will create the essence in the approximation method that will be

suggested. So, the symbols in the middle divide the defined groups of sets into half
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again, which creates another step and complicates the analysis. It is logical to deduce

that the FSTD of OP-LOCO is more complex, and applying the same idea of dividing

all symbols into half that is used until now would not work or at least would not work

easily. Therefore, a solution is offered by creating an analysis based on the two sets

mentioned above in the first step blindly as if it is correct to assume all the members

in the sets would cause a forbidden pattern, then closely examining if that random

element in the set would actually create a forbidden pattern. Lastly, these two steps

are realized in an FSTD. It is important to note that the probability analysis involved

makes the method an approximate solution.

For the approximation method presented in this section to obtain the PSD for OP-

LOCO codes, the maxentropic symbol probabilities are needed for the theorem appli-

cation of the binary sequence and the method.

Using the method proposed in [21], maxentropic symbol probabilities are calculated

as follows, where V represents the maxentropic transition probabilities and π rep-

resents the steady state distribution of maxentropic Markov chain. The calculation

method will not be shown here, and the reader is referred to [72].

V =


v1,1 v1,2 v1,3 v1,4

v2,1 v2,2 v2,3 v2,4

v3,1 v3,2 v3,3 v3,4

v4,1 v4,2 v4,3 v4,4

 =



0.5311 0.3983 0 0.0705

0.3983 0.5311 0.0705 0

1 0 0 0

0 1 0 0


(5.5)

π =
[
π1 π2 π3 π4

]
=

[
0.4671 0.4671 0.0329 0.0329

]
(5.6)

Let {Sn} represent the stream of symbols where Sn ∈ {0, 1, α, α2, α3, α4, α5, α6}.
Using the FSTD presented in Figure 5.1 and the results from (5.6) and (5.5), the

symbol probabilities for symbols 0 and α in the equilibrium state can be calculated as

follows:

P[Sn = 0] = π1 · v1,1 ·
1

4
+ π2 · v2,1 ·

1

3
+ π3 · v3,1 ·

1

4
= 0.13227, (5.7)

P[Sn = α4] = π1 · v1,1 ·
1

4
+ π2 · v2,3 · 1 + π3 · v3,1 ·

1

4
= 0.10319. (5.8)
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Notice that the results in (5.7) and (5.8) are not the same. Hence, the probability of

each symbol is not the same for OP-LOCO codes.

Now, the mapping-demapping given in (5.1) will be extended to physical levels. Note

that the discussion about the relations between the physical levels was provided in

Section 3.2 applies, and the result will be used directly.

Let GF(8) = {0, 1, α, α2, α3, α4, α5, α6} represent the symbols and ak, k ∈ {0, 1, 2, 3}
represent the physical levels where a0 > a1 = a2 > a3 > 0. The extended mapping-

demapping for 3-tuple binary down-track patterns, their GF(8) symbols and physical

levels are as follows:

3− Tuple GF(8) Level

[0 0 0]T ←−−−→ 0 ←−−−→− a0,

[0 0 1]T ←−−−→ 1 ←−−−→− a1,

[0 1 0]T ←−−−→ α ←−−−→+ a3,

[0 1 1]T ←−−−→ α2 ←−−−→+ a2,

[1 0 0]T ←−−−→ α3 ←−−−→− a2,

[1 0 1]T ←−−−→ α4 ←−−−→− a3,

[1 1 0]T ←−−−→ α5 ←−−−→+ a1,

[1 1 1]T ←−−−→ α6 ←−−−→+ a0. (5.9)

Let the sequence of the physical levels be {Yn} where Yn ∈ {±a0,±a1,±a2,±a3}.
Let the binary sequence be {Xn} where Xn ∈ {0, 1}, then the binary mapping se-

quence is defined as follows:

Xn =

1, if Yn ∈ {a0, a1, a2, a3},

0, else.
(5.10)

The positive physical levels are mapped to 1 in Xn, while the negative physical levels

are mapped to 0. Looking at the mapping-demapping presented in (5.9), it can be

observed that the physical levels that are mapped to 1 have a 1 in the middle position

of the binary 3-tuple and the physical levels that are mapped to 0 have a 0 in the
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middle position of the binary 3-tuple, considering this relation, two families will be

defined. Define the family of 1’s as a set F1 that has the GF(8) symbol mappings of

the positive physical levels and the family of 0’s as a set F0 that has the GF(8) symbol

mappings of the negative physical levels as follows:

F1 = {α, α2, α5, α6},

F0 = {0, 1, α3, α4}. (5.11)

Referring back to T given in (5.2), the forbidden patterns have the middle symbols

as α and α4. Thus, it appears that α is the detrimental symbol in F1 while α4 is the

detrimental symbol in F0.

Because of the symmetry in OP-LOCO codes, the detrimental symbol from a family

of 1’s, α, and the detrimental symbol from a family of 0’s, α4 have equal probabilities.

P[Sn = α] = P[Sn = α4] = 0.10319 (5.12)

Non-detrimental symbols from both families have equal probabilities among each

other, and because of the symmetry, this probability is the same for all non-detrimental

symbols.

P[Sn = 0] = P[Sn = 1] = P[Sn = α3] = 0.13227,

P[Sn = α2] = P[Sn = α5] = P[Sn = α6] = 0.13227

(5.13)

Note that the symbol probabilities from both sets F1 and F0 individually sum up to

0.5 as expected due to symmetry.

P[Sn = 0] + P[Sn = 1] + P[Sn = α3] + P[Sn = α4] = 0.5,

P[Sn = α] + P[Sn = α2] + P[Sn = α5] + P[Sn = α6] = 0.5 (5.14)

Given the sequences {Sn} and {Yn}, the mapping-demapping relationship in (5.9)

is defined by a bijective function such that each symbol is uniquely mapped to a

corresponding physical level and vice versa. Thus, this bidirectional mapping ensures

that the probability of Sn taking a specific value is equal to the probability of Yn
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taking the corresponding physical level. Results found in (5.12), (5.13) and (5.11)

can be rewritten as follows with introducing p3, p012, pF1 and pF0 :

p3 = P[Yn = a3] = P[Yn = −a3] = 0.10319, (5.15)

p012 = P[Yn = −a0] = P[Yn = −a1] = P[Yn = −a2]

= P[Yn = a0] = P[Yn = a1] = P[Yn = a2]

= 0.13227, (5.16)

pF1 = P[Yn = a0] + P[Yn = a1] + P[Yn = a2] + P[Yn = a3]

pF0 = P[Yn = −a0] + P[Yn = −a1] + P[Yn = −a2] + P[Yn = −a3]

= 0.5. (5.17)

In order to simplify the expressions and improve the readability of the equations, the

following notations will be used throughout the derivation:

p00 = P[X0 = 0, Xk = 0],

p01 = P[X0 = 0, Xk = 1],

p10 = P[X0 = 1, Xk = 0],

p11 = P[X0 = 1, Xk = 1]. (5.18)

The auto-correlation function of {Xn} can be written as follows:

RX(k) = E[X0Xk] = 0 · 0 · p00 + 0 · 1 · p01 + 1 · 0 · p10 + 1 · 1 · p11 = p11. (5.19)

Since the code is symmetric, the following can be written,

P[X0 = 1, Xk = 1] = P[X0 = 0, Xk = 0] = p11,

P[X0 = 1, Xk = 0] = P[X0 = 0, Xk = 1] = p10. (5.20)

Using the unit measure axiom of probability,

2 · p11 + 2 · p10 = 1,

p10 =
1

2
− p11,

p10 =
1

2
− E[X0Xk]. (5.21)

68



For the sequence {Yn}, the auto-correlation function can be written as follows where

am, an ∈ {a0, a1, a2, a3}, m,n ∈ {0, 1, 2, 3} and k ̸= 0:

RY (k) = E[Y0Yk] =
3∑

m=0

3∑
n=0

am · an · P[Y0 = am, Yk = an]

−
3∑

m=0

3∑
n=0

am · an · P[Y0 = am, Yk = −an]

−
3∑

m=0

3∑
n=0

am · an · P[Y0 = −am, Yk = an]

+
3∑

m=0

3∑
n=0

am · an · P[Y0 = −am, Yk = −an]. (5.22)

Because of the symmetry, (5.22) can be rewritten as follows:

E[Y0Yk] = 2 ·
3∑

m=0

3∑
n=0

am · an · P[Y0 = am, Yk = an]

− 2 ·
3∑

m=0

3∑
n=0

am · an · P[Y0 = am, Yk = −an] (5.23)

Since OP-LOCO codes do not have the same probability for each symbol, each of the

16 combinations of physical levels will have different probabilities. Remember that

the detrimental symbol in F∞ is α while the detrimental symbol in F′ is α4 and their

corresponding physical levels are a3 and −a3 respectively.

Now, the probability P[Y0 = am, Yk = an] will be closely inspected case by case

where am, an ∈ {a0, a1, a2, a3}. Define y0, yk ∈ {a0, a1, a2} so that they represent

the physical levels that belong to the non-detrimental symbols in F1. Also note that

pF1 = 0.5 as showed in (5.17) and use the notation given in (5.15) and (5.16).
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Case 0: Y0 = y0 and Yk = yk

pS0 = P[Y0 = y0, Yk = yk]

=
∑
x0

∑
xk

P[Y0 = y0, Yk = yk | X0 = x0, Xk = xk] · P[X0 = x0, Xk = xk]

= P[Y0 = y0, Yk = yk | X0 = 1, Xk = 1] · p11

= P[Y0 = y0 | X0 = 1] · P[Yk = yk | Xk = 1] · p11

=

(
p012
pF1

)2

· p11

= 4 · p2012 · p11 (5.24)

Case 1: Y0 = y0 and Yk = a3

pS1 = P[Y0 = y0, Yk = a3]

=
∑
x0

∑
xk

P[Y0 = y0, Yk = a3 | X0 = x0, Xk = xk] · P[X0 = x0, Xk = xk]

= P[Y0 = y0, Yk = a3 | X0 = 1, Xk = 1] · p11

= P[Y0 = y0 | X0 = 1] · P[Yk = a3 | Xk = 1] · p11

=
p012
pF1
· p3
pF1
· p11

= 4 · p012 · p3 · p11 (5.25)

Case 2: Y0 = a3 and Yk = yk

pS2 = P[Y0 = a3, Yk = yk]

=
∑
x0

∑
xk

P[Y0 = a3, Yk = yk | X0 = x0, Xk = xk] · P[X0 = x0, Xk = xk]

= P[Y0 = a3, Yk = yk | X0 = 1, Xk = 1] · p11

= P[Y0 = a3 | X0 = 1] · P[Yk = yk | Xk = 1] · p11

=
p3
pF1
· p012
pF1
· p11

= 4 · p3 · p012 · p11 (5.26)
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Case 3: Y0 = a3 and Yk = a3

pS3 = P[Y0 = a3, Yk = a3]

=
∑
x0

∑
xk

P[Y0 = a3, Yk = a3 | X0 = x0, Xk = xk] · P[X0 = x0, Xk = xk]

= P[Y0 = a3, Yk = a3 | X0 = 1, Xk = 1] · p11

= P[Y0 = a3 | X0 = 1] · P[Yk = a3 | Xk = 1] · p11

=

(
p3
pF1

)2

· p11

= 4 · p23 · p11 (5.27)

Notice that results in (5.25) and (5.26) are the same since the code is symmetric. Now

that all probabilities are inspected case by case and all the cases are expressed in terms

of p3, p012 and p11, the first sum in (5.23) can be rewritten using (5.24), (5.25), (5.26)

and (5.27) where am, an ∈ {a0, a1, a2, a3} and m,n ∈ {0, 1, 2, 3}.

S =
3∑

m=0

3∑
n=0

am · an · P[Y0 = am, Yk = an]

=
2∑

m=0

2∑
n=0

am · an · P[Y0 = am, Yk = an] +
2∑

m=0

am · a3 · P[Y0 = am, Yk = a3]

+
2∑

n=0

a3 · an · P[Y0 = a3, Yk = an] + a3 · a3 · P[Y0 = a3, Yk = a3]

= pS0 ·
2∑

m=0

2∑
n=0

am · an + pS1 · a3 ·
2∑

m=0

am + pS2 · a3 ·
2∑

n=0

an + pS3 · a23

= 4 · p2012 · p11 ·
2∑

m=0

2∑
n=0

am · an + 4 · p0 · p3 · p11 · a3 ·
2∑

m=0

am

+ 4 · p3 · p012 · p11 · a3 ·
2∑

n=0

an + 4 · p23 · p11 · a23

= 4 · p11 ·

[
p2012 ·

2∑
m=0

2∑
n=0

am · an + 2 · p3 · p012 · a3 ·
2∑

n=0

an + p23 · a23

]
(5.28)

The term P[Y0 = am, Yk = −an] will be inspected in a similar manner where y0, yk ∈
{a0, a1, a2}.
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Case 0: Y0 = y0 and Yk = −yk

pD0 = P[Y0 = y0, Yk = −yk]

=
∑
x0

∑
xk

P[Y0 = y0, Yk = −yk | X0 = x0, Xk = xk] · P[X0 = x0, Xk = xk]

= P[Y0 = y0, Yk = −yk | X0 = 1, Xk = 0] · p10

= P[Y0 = y0 | X0 = 1] · P[Yk = −yk | Xk = 0] · p10

=
p012
pF1
· p012
pF0
· p10

= 4 · p2012 · p10 (5.29)

Case 1: Y0 = y0 and Yk = −a3

pD1 = P[Y0 = y0, Yk = −a3]

=
∑
x0

∑
xk

P[Y0 = y0, Yk = −a3 | X0 = x0, Xk = xk] · P[X0 = x0, Xk = xk]

= P[Y0 = y0, Yk = −a3 | X0 = 1, Xk = 0] · p10

= P[Y0 = y0 | X0 = 1] · P[Yk = a3 | Xk = 0] · p10

=
p012
pF1
· p3
pF0
· p10

= 4 · p012 · p3 · p10 (5.30)

Case 2: Y0 = a3 and Yk = −yk

pD2 = P[Y0 = a3, Yk = −yk]

=
∑
x0

∑
xk

P[Y0 = a3, Yk = −yk | X0 = x0, Xk = xk] · P[X0 = x0, Xk = xk]

= P[Y0 = a3, Yk = −yk | X0 = 1, Xk = 0] · p10

= P[Y0 = a3 | X0 = 1] · P[Yk = −yk | Xk = 0] · p10

=
p3
pF1
· p012
pF0
· p10

= 4 · p3 · p012 · p10 (5.31)

72



Case 3: Y0 = a3 and Yk = −a3

pD3 = P[Y0 = a3, Yk = −a3]

=
∑
x0

∑
xk

P[Y0 = a3, Yk = −a3 | X0 = x0, Xk = xk] · P[X0 = x0, Xk = xk]

= P[Y0 = a3, Yk = −a3 | X0 = 1, Xk = 0] · p10

= P[Y0 = a3 | X0 = 1] · P[Yk = −a3 | Xk = 0] · p10

=
p3
pF1
· p3
pF0
· p10

= 4 · p23 · p10 (5.32)

Notice that results in (5.30) and (5.31) are also the same since the code is symmetric.

Now that all the cases are expressed in terms of p3, p012 and p10, the second sum

in (5.23) can be rewritten using (5.29), (5.30), (5.31) and (5.32) as follows where

am, an ∈ {a0, a1, a2, a3} and m,n ∈ {0, 1, 2, 3}:

D = −
3∑

m=0

3∑
n=0

am · an · P[Y0 = am, Yk = −an]

= −
2∑

m=0

2∑
n=0

am · an · P[Y0 = am, Yk = −an]−
2∑

m=0

am · a3 · P[Y0 = am, Yk = −a3]

−
2∑

n=0

a3 · an · P[Y0 = a3, Yk = −an]− a3 · a3 · P[Y0 = a3, Yk = −a3]

= −pD0 ·
2∑

m=0

2∑
n=0

am · an − pD1 · a3 ·
2∑

m=0

am − pD2 · a3 ·
2∑

n=0

an − pD3 · a23

= −4 · p2012 · p10 ·
2∑

m=0

2∑
n=0

am · an − 4 · p012 · p3 · p10 · a3 ·
2∑

m=0

am

− 4 · p3 · p012 · p10 · a3 ·
2∑

n=0

an − 4 · p23 · p10 · a23

= −4 · p10 ·

[
p2012 ·

2∑
m=0

2∑
n=0

am · an + 2 · p3 · p012 · a3 ·
2∑

n=0

an + p23 · a23

]
.

(5.33)

Notice that the results in (5.28) and (5.33) have the same term in brackets. Call this

term W .

W = p2012 ·
2∑

m=0

2∑
n=0

am · an + 2 · p3 · p012 · a3 ·
2∑

n=0

an + p23 · a23 (5.34)
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Thus, the expression for the auto-correlation of Yn found in (5.23) becomes:

E[Y0Yk] = 2 · S + 2 ·D

= 8 · p11 ·W − 8 · p10 ·W

= 8 ·W · (p11 − p10) . (5.35)

Since p10 was already written in terms of p11 in (5.21), (5.35) can be further simplified.

E[Y0Yk] = 8W (p11 − p10)

= 8W (E[X0Xk]− (0.5− E[X0Xk]))

= 8W (2E[X0Xk]− 0.5)

= 4W (4E[X0Xk]− 1) , k ̸= 0. (5.36)

Note that the result in 5.36 is found by using the total probability theorem and since

the symbols in both families are not equiprobable, a weighted average is found for

this case. Also, observe that the results for E[Y0Yk], k ̸= 0 in (5.36) for OP-LOCO

codes and (3.18) for SP-LOCO codes are the same except the value of the constants.

Now, it is achieved to have the auto-correlation function of {Yn} in terms of the auto-

correlation function of {Xn} for k ̸= 0. Then, RY (k) can be written as follows:

RY (k) =

4W (4RX(k)− 1) , if k ̸= 0,

RY (0), if k = 0.
(5.37)

Observe that RY (k) defined in (5.37) is analogous to the generic RY (k) defined in

(3.22). Therefore the conclusions obtained for (3.22) apply here also.

Then, respective a and b constants for (5.37) can be written considering (3.21) as

follows:

a = 16W,

b = −4W. (5.38)

Also, using the definitions in (3.24) the following expressions can be written for
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(5.37):

Addition = E[Y 2
n ]

=
3∑

m=0

a2mP[Yn = am] +
3∑

m=0

(−am)2P[Yn = −am]

= 2
3∑

m=0

a2mP[Yn = am]

= 2
(
a20 · p012 + a21 · p012 + a22 · p012 + a23 · p3

)
= 2

(
p012 · (a20 + a21 + a22) + p3 · a23

)
(5.39)

Subtraction = aE[X2
n] + b

= 16W · 1
2
− 4W = 4W, (5.40)

Correction = Addition− Subtraction

= 2
(
p012 · (a20 + a21 + a22) + p3 · a23

)
− 4W (5.41)

SY (f) = aSX(f) + bδ(f) + Correction

= 16WSX(f)− 4Wδ(f) + 2
(
p012(a

2
0 + a21 + a22) + p3a

2
3

)
− 4W (5.42)

Note that the correction term in (5.42) is a constant offset, not a Dirac delta function.

Now, the second general conclusion obtained in (3.27) can be inspected as follows

for finding the area of the Dirac delta function in SY (f) where Sd
Y (f) represents the

discrete part of the spectra for OP-LOCO codes:

Sd
Y (f) = E2[Yn]δ(f)

=

[
3∑

m=0

amP[Yn = am] +
3∑

m=0

(−am)P[Yn = −am]

]2

δ(f)

=

[
3∑

m=0

amP[Yn = am]−
3∑

m=0

amP[Yn = −am]

]2

δ(f)

= 0 (5.43)

Since OP-LOCO codes are also symmetric, the expected value of the physical level

sequence is zero. Therefore, SY (f) does not involve any Dirac delta function as

shown in (5.43). Now, the writing signal needs to be applied to SY .

SW (f) = sinc2(πf) · SY (f). (5.44)
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After obtaining SW in terms of SX , the method given in [8] and described in Subsec-

tion 2.2.1 can be applied for finding SX . The first step is creating an FSTD for OP-

LOCO codes and finding the maxentropic probabilities accordingly using the method

described in [72], which was already done. Figure 5.1 shows an FSTD for infinite

length OP-LOCO codes with maxentropic transition probabilities given in (5.5), from

which a binary FSTD should be constructed. Remember the discussion given earlier

on why an approximation method was needed instead of an exact solution, the exis-

tence of more than two groups of symbols in the forbidden patterns set. The method

offered is making two transitions from each state in the binary FSTD considering the

actual maxentropic symbol probabilities. Observe that having two transitions from

each state would not strictly forbid any pattern but it would generate a lower proba-

bility for some patterns to form, which makes this method an approximation.

First, observe the transitions in the non-binary FSTD given in Figure 5.1. The states

F1 and F2 allow all 8 symbols to be generated because no immediate action needs to

be taken to forbid any symbol from being generated. However, states F3 and F4 only

allow 4 specific symbols to be generated so that forbidden patterns would not occur.

Since there will be no real restrictions on any symbol to be generated in the binary

FSTD, the transition probabilities from states F1 and F2 will be used.

Note that states F1 and F2 are symmetric and consider state F1 for now. All incoming

transitions are from the symbols that belong to family of 0’s. So, if the detrimental

symbol from the family of 1’s, which is α, gets generated from an outgoing transition

of state F1, it would be dangerous. This transition probability is represented as v1,4

in V, which is named as pd, referring to the danger. Another outgoing transition

probability from state F1 is v1,1, and this transition would not change the current status

since the resultant state is again F1 with a symbol from a family of 0’s generated. Let

this transition probability be named pn, which refers to neutral. The last outgoing

transition probability is v1,2, creating one of the non-detrimental symbols from the

family of 1’s. Since incoming transitions to state F1 generated a symbol from the

family of 0’s, symbol α is dangerous, and this transition would make sure to move on

safely. Let this transition probability be named ps, which refers to safe. Also, note

that state F2 can be inspected in detail symmetrically. The probabilities renamed so
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far are as follows:

pd = v1,4,

pn = v1,1,

ps = v1,3. (5.45)

Create a binary FSTD where each state represents lastly generated 2 bits. The sym-

bols from GF(8) will be mapped to 1 if they belong to F1 which is defined in (5.11)

and will be mapped to 0 otherwise. The state 00 is not at risk of producing a forbid-

den pattern with one transition. Hence, it will return to itself with probability pn and

will go to state 01 with probability ps + pd. Symmetrically, state 11 will return to

itself with probability pn and will go to state 10 with probability ps + pd. The state

01 may generate a forbidden pattern if the last bit 1 was the result of an α. In order to

reduce the chances of creating a forbidden pattern, pd should be directed to state 11

combined with the probability of pn. So, state 01 goes to state 11, generating a 1 with

probability of pd+pn. The probability ps that represents the non-detrimental symbols

in a family will be directed to state 10 with generating a 0. Again, symmetrically, state

10 will go to state 00 with generating a 0 with probability pd + pn and will go to state

01 with generating a 1 with probability ps. The discussed binary FSTD can be seen

in Figure 5.2. For ease of notation for the later derivations, define the probabilities as

follows:

a = ps + pd,

b = pn + pd,

c = pn,

d = ps. (5.46)

Now, the binary FSTD given in Figure 5.2 needs to be converted into an OSTD,

as explored in Section 2.2. Note that the gray-colored states in Figure 5.2 represents

the states that will be used in the OSTD since all incoming transitions are with bit 1.

Then, using the OSTD given in Figure 5.3, OSTM can be constructed as follows:

G(D) =

β bD

α cD

 , (5.47)
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(a)

00 11

01

10

c

a

c

a

b

d

b

d

(b)

Figure 5.2: (a) A binary FSTD that represents the approximation method for infi-

nite length OP-LOCO codes, (b) The same FSTD with transition probabilities on the

edges.

01 11

1

1
2, 3, 4, 5, . . .

2, 3, 4, 5, . . .

(a)

01 11

b

c

ad, a2b, a2bc, a2bc2 . . .

d2, dba,
dbca, dbc2a, . . .

(b)

Figure 5.3: (a) OSTD that is formed considering the binary FSTD of OP-LOCO codes

where the numbers represent the run-lengths, (b) OSTD with transition probabilities

on the edges for infinite-length OP-LOCO constrained sequence.

β = d2D2 + dbaD3 + dbcaD4 + dbc2aD5 + . . .

= d2D2 + dbaD3

∞∑
k=0

(cD)k = d2D2 +
dbaD3

1− cD
(5.48)

α = adD2 + a2bD3 + a2bcD4 + . . .

= adD2 + a2bD3

∞∑
k=0

(cD)k = adD2 +
a2bD3

1− cD
(5.49)

Finally, with (5.47) obtained above, the PSD SX(D) can be obtained through the

method defined in (2.4).
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5.3 Results

This section will apply the approximation method provided and the conventional

methods to the randomly generated sequences using MC simulations where a se-

quence is 107 elements. The difference between the theoretical and experimental re-

sults will be calculated using the mean square error (MSE) formula among all points.

Figure 5.4: PSD of OP-LOCO codes where all the physical levels are the same.

Figure 5.4 shows that the approximation is nearly the same as experimental results,

and the MSE is 0.0219. However, this low MSE was expected since 2 distinct levels

exist, +1 and −1. Further inspection at more distinct physical levels is needed to

confirm that the approximation method works well.

Figure 5.5 shows that the approximation versus the experimental results give an MSE

of 0.0203 with 1 level apart physical levels. In fact, MSE decreases compared to

Figure 5.4 even though the physical levels are increased in magnitude. So far, the

error magnitude seems unrelated to the magnitudes of the physical levels.

Figure 5.6 shows that the approximation is very close to the experimental results
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Figure 5.5: PSD of OP-LOCO codes where the physical levels are 1 level apart.

with 2 physical level differentiation also, creating an MSE of 0.0223. The magnitude

increase in error compared to Figure 5.5 is very slight even though the magnitude in

physical levels is decreased. Therefore, this increase in error should result from the

physical level difference, which is 2.

Figure 5.7 shows that the approximation is still close to the experimental results

enough that the characteristic shape of the PSD is preserved in the case of 4 phys-

ical level differentiation. However, the MSE is 0.0461. Although it is still very low

compared to Figures 5.4, 5.5 and 5.6, the MSE is nearly double. Physical level mag-

nitudes are similar compared with 5.6. Thus, it can be said that as the differentiation

magnitude between physical levels increases, MSE also increases.

So far, results show that the approximation method works well in different magnitude

levels, whether high or low, or the difference between consecutive physical levels is

high or low. Thus, the approximation method can be applied with any voltage level

considering the baseline properties of the physical level mapping from the GF(8)

symbols, which are a0 > a1 > a2 > a3 > 0.
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Figure 5.6: PSD of OP-LOCO codes where the physical levels are 2 levels apart.

The possible effects of the assumption made for the equivalence between the symbols

belonging to the same set, 3-tuples having the first or the third track bits in com-

plementary sign with respect to the middle track, was inspected in Section 3.3. The

conclusion was that the assumption was logical and did not affect the results. While

this conclusion is still expected for the approximation method for OP-LOCO codes,

different mapping for symbols a1 and a2 will be inspected by setting their physical

levels differently in two possible cases for complete justification of the method.

Figure 5.8 shows that the approximation versus experimental results give an MSE

of 0.0472 when different physical levels are defined for a1 and a2, where a1 > a2.

Compared with the MSE in Figure 5.7, the increase is very slight.

It is seen from Figure 5.9 that the approximation versus the experimental results gives

an MSE of 0.0471 when different physical levels are defined for a1 and a2, where

a1 > a2. Compared with the MSE in Figure 5.7, the increase is again very slight.

Compared with the MSE in Figure 5.8, the results are nearly identical. Thus, it can

be said that the assumption of a1 = a2 did not alter the results, and even if they are

81



Figure 5.7: PSD of OP-LOCO codes where the physical levels are 4 levels apart.

set differently in both settings, the MSE is not affected. Therefore, the approximation

method proposed in this chapter can be applied to any physical-level mapping as

demonstrated in (5.9).
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Figure 5.8: PSD of OP-LOCO codes, the physical levels are 4 levels apart, a1 > a2.

Figure 5.9: PSD of OP-LOCO codes, the physical levels are 4 levels apart, a2 > a1.
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CHAPTER 6

CONCLUSION

Analyzing the PSD for constrained codes is crucial for optimizing the performance

of data storage and communication systems. In this thesis, novel methods for ob-

taining the PSD theoretically for multi-level constrained codes are developed, which

address a significant gap in current research. By comparing the theoretical derivation

and Monte Carlo simulations, it is demonstrated that the suggested approaches pro-

vide accurate PSD calculations. An approximation method for obtaining the PSD for

multi-level constrained codes with more complex state diagrams is also introduced,

which achieves a strong match between the theoretical and simulated PSD with low

MSE. The main idea of mapping the multi-level sequence to binary sequences and us-

ing a probabilistic approximation method shows that these derivations can be further

applied to the multi-level constrained codes of interest. This work contributes to both

theoretical advancements and practical applications in Flash memory and magnetic

recording devices. By addressing the challenge of obtaining the PSD theoretically by

multi-level constrained codes, this thesis lays the foundation for future research. It

broadens the chance of optimization in coding theory, which will ultimately enhance

the efficiency and reliability of modern data storage technologies. Future work in-

cludes extending the methods provided for finite length codes and how the PSD can

help the designer identify the device’s status in terms of aging and dilapidation.
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