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ABSTRACT

QUANTUM RANDOM WALK SIMULATION USING DEPENDENT
RANDOM WALK

Ceylan, Mert Kaşif

M.S., Department of Statistics

Supervisor: Assoc. Prof. Dr. Ceren Vardar Acar

September 2024, 59 pages

Quantum computers have sparked significant interest in recent years due to their po-

tential to revolutionize various fields. One area where quantum computing shows

great promise is in the study of quantum walks, a quantum counterpart of the classi-

cal random walk algorithm that has been foundational in scientific research. While

both quantum and classical random walks involve a "walker" moving through a space

or graph, quantum walks differ fundamentally due to quantum principles such as su-

perposition, leading to unique behaviors like linear spreading and localization.

This thesis investigates the quantum walk simulation, with a particular focus on

the Quantum-Walk-Replicating-Random-Walk (QWRW) model. Unlike traditional

quantum walks, which sum over all possible paths with complex interference effects,

the QWRW approach models the walk as a series of distinct, classical-like steps. This

trajectory-based perspective offers a novel way to analyze the walker’s position and

movement, avoiding the complexities of quantum interference.

The QWRW model is particularly valuable in understanding key phenomena of quan-

tum walks, such as linear spreading and localization, by providing insights into the
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directional properties of quantum walkers. By defining transition probabilities in both

space and time, the QWRW model offers a detailed framework for examining the spa-

tial and temporal characteristics of quantum walks, enhancing our understanding of

their behavior and potential applications. This study aims to bridge the gap between

classical and quantum walks, contributing to the broader field of quantum computing

and its practical implications.

Keywords: Quantum, Random Walk, Quantum Random Walk, Simulation
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ÖZ

BAĞIMLI RASTGELE YÜRÜYÜŞ KULLANILARAK KUANTUM
RASTGELE YÜRÜYÜŞ SİMÜLASYONU

Ceylan, Mert Kaşif

Yüksek Lisans, İstatistik Bölümü

Tez Yöneticisi: Doç. Dr. Ceren Vardar Acar

Eylül 2024 , 59 sayfa

Kuantum bilgisayarlar, çeşitli alanlarda devrim yaratma potansiyelleri nedeniyle son

yıllarda büyük ilgi uyandırmıştır. Kuantum bilişimin umut vaat ettiği alanlardan biri,

bilimsel araştırmalarda temel bir rol oynayan klasik rastgele yürüyüş algoritmasının

kuantum karşılığı olan kuantum yürüyüşleridir. Hem kuantum hem de klasik rastgele

yürüyüşler, bir "yürüyüşçünün" bir alan veya grafik üzerinde hareket etmesini içerir-

ken, kuantum yürüyüşler süperpozisyon gibi kuantum ilkeleri nedeniyle temel olarak

farklılık gösterir ve bu da lineer yayılma ve yerelleşme gibi benzersiz davranışlara yol

açar.

Bu tez, Kuantum-Yürüyüş-Replikasyonlu-Rastgele-Yürüyüş (QWRW) modeli üze-

rinde odaklanarak kuantum yürüyüş simülasyonunu incelemektedir. Geleneksel ku-

antum yürüyüşlerinin karmaşık girişim etkileriyle tüm olası yolları toplamasının ak-

sine, QWRW yaklaşımı yürüyüşü, belirgin ve klasik benzeri adımlar dizisi olarak

modellemektedir. Bu yörünge temelli bakış açısı, yürüyüşçünün pozisyonunu ve hare-

ketini analiz etmek için yenilikçi bir yol sunar, kuantum girişiminin karmaşıklıklarını

ortadan kaldırır.
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QWRW modeli, kuantum yürüyüşlerin yönsel özellikleri hakkında içgörüler sunarak

lineer yayılma ve yerelleşme gibi kuantum yürüyüşlerin kilit fenomenlerini anlamada

özellikle değerlidir. Hem uzayda hem de zamanda geçiş olasılıklarını tanımlayarak,

QWRW modeli kuantum yürüyüşlerin mekansal ve zamansal özelliklerini incelemek

için ayrıntılı bir çerçeve sunar ve davranışlarını ve olası uygulamalarını daha iyi an-

lamamızı sağlar. Bu çalışma, klasik ve kuantum yürüyüşler arasındaki boşluğu dol-

durmayı amaçlayarak, kuantum bilişim alanına ve pratik yansımalarına katkıda bu-

lunmaktadır.

Anahtar Kelimeler: Kuantum, Rastgele Yürüyüş, Kuantum Rasgele Yürüyüş, Benze-

tim
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CHAPTER 1

INTRODUCTION

1.1 Quantum Random Walk

Quantum mechanics explains the behavior of matter and energy in terms of super-

position and entanglement. It serves as the fundamental basis for different branches

of physics, especially in quantum information science and quantum chemistry [10].

While classical physics effectively describes numerous aspects of nature at both ev-

eryday macroscopic and microscopic scales, it falls short at the extremely small

submicroscopic (atomic and subatomic) levels. Quantum mechanics, however, can

account for these small-scale phenomena. Many classical physics theories can be

derived as approximations of this phenomenon, valid at larger (macroscopic/micro-

scopic) scales [12]. Quantum computers leverage superposition and entanglement

principles in quantum mechanics to create states that expand exponentially with in-

crease in number of qubits (quantum bits), [1]. Superposition is a key principle in

quantum physics, where a quantum system can simultaneously exist in several states

until it is measured. Unlike classical mechanics where a particle occupies a definite

state, a quantum particle can be described by a wave function representing a dis-

tribution across various possible states and entanglement is a quantum phenomenon

where two or more particles become interconnected, regardless of distance separat-

ing them. This means that the state of one particle instantaneously influences state

of the other, a correlation that defies classical physics. Classical computers have

been utilized extensively over many years and have made substantial contributions

to scientific progress. On the other hand, quantum computing has shown promise in

addressing extensive and intricate problems [5]. Integrating principles from quantum

mechanics with classical random walks introduces a new paradigm: quantum walks.
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Quantum walk first introduced by Aharanov [3], which established the groundwork

for a theory of quantum walks on graphs, which generalizes random walks on finite

graphs to quantum domain. This theory was first proposed by them. These quantum

walks possess remarkable computational capabilities and find extensive applications

across many fields, [13]. For instance, In cryptology, a new double medical image

encryption algorithm designed to address potential vulnerabilities in medical image

cryptosystems due to advancement of quantum random walks [2]. Their technique

involves splitting each medical image into two separate images: one containing the

high 4 bits of each pixel, and the other containing the low 4 bits. The high-bit image,

which carries most of the information, is encrypted using quantum walks, while the

low-bit image, which carries less information, is encrypted using logistic mapping.

The effectiveness of this encryption method is demonstrated and results indicate the

proposed technique’s efficiency in securely encrypting medical images. In engineer-

ing domain, in the study of [24], a quantum walk framework was developed for one-

and two-dimensional spaces where potentials affect the quantum walker’s "charge,"

with the walk’s evolution influenced by both constant and time-varying potentials.

In their work, they reproduce phenomena like tunneling through a barrier and ana-

lyze the quantum walk’s behavior in spaces with different potential distributions. It is

demonstrated that practical applications by using their model to simulate maze navi-

gation and vehicle movement in urban environments, where curbs and buildings are

represented as impenetrable potential barriers and traffic lights as time-varying po-

tential barriers. This formulation suggests that quantum walks in potential-applied

spaces can be a foundation for applied quantum computing, potentially leading to

new quantum algorithms where inputs are introduced as potential profiles. Another

study in computer science [9], quantum walk used to explore new quantum algo-

rithms that have potential to outperform classical computation in manner of complex-

ity. Instead of focusing on the well-known non-Abelian hidden subgroup problem,

they extend Shor factoring algorithm’s solution by proposing a different approach:

detecting hidden nonlinear structures over finite fields. They provide two instances

of such issues that quantum computers can efficiently solve, unlike classical comput-

ers. Additionally, promising results were provided about quantum query complexity

associated with the detection of these hidden nonlinear structures. İt is shown that

quantum algorithms can significantly outperform classical algorithms in this domain.
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Lastly in biology, Irwin Huang and Yu-Ping Huang [11] address the challenge of

decoherence and disorder in quantum systems, which typically hinder their perfor-

mance in practical applications. The potential for these two factors to counteract each

other was explored, thereby preserving some of the systems’ quantum characteris-

tics. The optimal level of disorder that mitigates effects of decoherence in one- and

two-dimensional quantum random walks was explored. This approach significantly

increases the mean walking distance across various decoherence strengths, indicating

a promising strategy for developing practical quantum systems that are resilient to

both decoherence and disorder. Based on principles of quantum mechanics, quantum

random walk emerges as a potential tool to address uncertainties and complexities

in financial markets. Quantum walk may offer an approach beyond traditional meth-

ods to solve financial problems such as portfolio optimization and derivatives pricing

[18].

1.2 Classical Random Walk

A random walk is a stochastic process, describing a path composed of a series of

random steps. This concept is useful for analyzing and simulating randomness of

objects and calculating correlations among them, making it valuable for practical

problem-solving across many fields [25]. Random walk term was first introduced by

Karl Pearson in 1905 [20]. Spitzer [19] provides a thorough review of random walks

for mathematical researchers, clearly explaining the fundamental principles behind

them. Random walks are also, commonly used in computer science to approximate

the size of World Wide Web, [5].

In financial economics, random walk serves as a fundamental framework for model-

ing various aspects, including share prices. However, empirical investigations have

uncovered deviations from this theoretical model, particularly regarding short-term

and long-term correlations. These findings suggest that while random walk hypoth-

esis provides a valuable starting point, it may not fully capture complexities of real-

world financial dynamics [15]. Random walks are used in physics as simplified mod-

els for phenomena such as Brownian motion and diffusion. These models illustrate

random movement of molecules in liquids and gases. In quantum field theory, ran-
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dom walks and specific self-interacting walks hold great importance [4]. A Simple

random walk model in mathematics refers to the movement of a point on a regular

lattice. At each step, the point moves to a new place depending on a distribution.

Quantum walks, which are analogous to classical random walks in quantum mechan-

ics, primarily vary in their lack of convergence to limiting distributions [3]. Quantum

walks have the ability to spread at significantly different speeds compared to classical

walks, according to the phenomenon of quantum interference. Quantum walk-based

algorithms frequently demonstrate reduced time complexity and have the potential to

reach exponential acceleration compared to classical algorithms [6].

1.3 One Dimensional Quantum Random Walk

Quantum random walks (QRWs) in one dimension represent an extension of classi-

cal random walks, introducing unique behaviors due to quantum mechanics. David A.

Meyer [17] introduced the concept of one dimensional quantum walks to demonstrate

the potential of quantum computing to perform certain computational tasks more ef-

ficiently than classical computing. Specifically, he wanted to show that a quantum

particle automaton, described as a lattice gas formulation with left and right mov-

ing particles, could achieve faster mixing and spreading than classical random walks.

This difference arises because quantum walks leverage the principles of superposi-

tion and interference, which are fundamental to quantum mechanics. Unlike classical

random walks where a particle moves left or right based on a coin flip, QRWs in-

volve a particle that not only moves on a one-dimensional lattice but also possesses

an extra internal state called chirality, which can be left or right. This internal state

influences the particle’s movement, ensuring the process remains unitary, which is

essential in quantum mechanics. A notable example is the Hadamard walk, where

the chirality undergoes a Hadamard transformation at each step, followed by move-

ment according to the new chirality state. This unitary evolution allows for quantum

interference, where different paths can cancel each other out, creating a distribution

markedly different from classical random walks. QRWs are not just of theoretical in-

terest; they hold promise for developing new quantum algorithms and advancing our

understanding of quantum processes, potentially offering powerful tools for the field
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of quantum computing [1]. In an example study [16], the Hadamard walk, driven

by a Hadamard coin, was applied to identify crucial edges in undirected complex

networks. The model assigned importance scores to edges based on the observed

probabilities between node pairs, allowing for effective ranking of edge significance.

Experimental results demonstrated that the Hadamard walk model outperformed ex-

isting algorithms by 4.59% to 20.03% in static networks. Furthermore, the model was

tested in a dynamic network scenario involving UAV swarms, where it successfully

selected significant nodes. The simulations indicated that the Hadamard walk model

excelled in verifying epidemic dynamics models, showcasing its potential utility in

both static and dynamic network applications. In another study [7], a novel approach

was used to correlate a quantum walk, influenced by a Hadamard coin, with birth and

death process.

1.4 Motivation and Problem Definition

In contemporary technology, the potential roles of quantum computers are actively

discussed and debated. The classical random walk algorithm, extensively studied and

widely used across various scientific fields, has been essential in the advancement of

theories and literature. In this study, we examine the combination of random walk

algorithm with quantum mechanics, resulting in the quantum walk. In this thesis, the

quantum walk simulation is examined. Distinct nature of quantum walks compared

to classical random walks, despite being often considered their quantum counterpart.

While both processes involve a walker moving through a space or graph, underlying

mechanics of quantum walks differ significantly due to quantum principles such as

superposition. These differences give quantum walks unique properties, leading to

behaviors not observed in classical random walks. Quantum walks have been exten-

sively studied for their unique structure, establishing them as a key area of focus in

both theoretical and applied research [26]. The quantum walk demonstrate flexible

nature that varies based on the specific time and space conditions or settings.

In quantum walks, linear spreading and localization are two fundamental phenomena

that distinguish them from classical random walks. Linear spreading refers to the

rapid expansion of the distribution over time, with the standard deviation of walker’s
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position increasing proportionally to time, contrasting with slower
√
t spread char-

acteristic of classical walks. This accelerated spreading arises from quantum super-

position and interference. In contrast, localization describes the phenomenon where

quantum walker remains confined to a specific region of the space, despite the pas-

sage of time. Alternatively, various modified versions of classical random walks are

commonly explored, such as correlated random walks [22] and Lévy walks [8]. In a

Simple random walk, as number of steps increases, the distribution of walker’s po-

sition tends to resemble a normal (Gaussian) distribution due to the Central Limit

Theorem. This predictable pattern is useful for modeling certain types of random

processes. However, when dealing with modified random walks, such as correlated

random walks or Lévy walks, the distribution of the walker’s position does not nec-

essarily follow a normal distribution. These modifications introduce dependencies

between steps or allow for step sizes that deviate from the usual, leading to more

complex and varied distributions. This complexity is why researchers across various

fields find modified random walks valuable as they can better capture and describe

the intricate transitions and behaviors seen in real-world phenomena, where simple

assumptions of a normal distribution may not apply.

Our main objective is to simulate and analyze a quantum walk using its trajectories,

similar to a random walk. The introduction of quantum-walk-replicating-random-

walk (QWRW) [26] aligns perfectly with this purpose. In traditional quantum walks,

finding the walker’s probability at a specific position is determined by summing up all

possible paths the walker could have taken, taking into account the phase or coherence

of each path. This coherent sum means that probability amplitudes (complex numbers

representing both the likelihood and phase of each path) can interfere with each other,

leading to constructive or destructive interference. As a result, the overall distribution

is influenced by quantum interference effects of all possible paths.

In contrast, a quantum-walk-replicating-random-walk (QWRW) approach focuses on

individual trajectories or paths that the walker might take to reach a position, similar

to how paths are treated in classical random walks. Instead of summing over all pos-

sible paths, QWRW models walk as a series of distinct steps, each with its own proba-

bility, leading to a more classical-like understanding of the walker’s movement. This

approach avoids complex interference effects seen in conventional quantum walks,
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providing a more straightforward, trajectory-based way to analyze the walker’s posi-

tion.

Instead of using coherent summation, quantum-walk-replicating-random-walk (QWRW)

calculates walker’s probability being at a particular position by analyzing the statisti-

cal behavior of individual walkers over time. This transforms the problem into one of

transition probabilities, focusing on how walkers move step-by-step through space,

which reveals the characteristic directionality of their movement.

While previous studies have explored classical analogs of quantum walks, the litera-

ture has not extensively examined how linear spreading and localization in quantum

walks might be understood from this trajectory-based perspective. The quantum-

walk-replicating-random-walk (QWRW) approach offers a unique advantage: it tracks

the trajectory of each individual walker, providing new insights into the directivity of

quantum walks.

Specifically, quantum-walk-replicating-random-walk (QWRW) model helps to ana-

lyze how future directions of quantum walkers are determined, shedding light on ef-

fects of linear spreading and localization in a novel way. Additionally, since quantum-

walk-replicating-random-walk (QWRW) defines transition probabilities in both space

and time, it provides a detailed framework for studying spatial and temporal char-

acteristics of quantum walks, offering deeper understanding into their behavior and

properties.

1.5 The Outline of the Thesis

This thesis is organized as follows: Chapter 1 provides an introduction, starting with

an overview of quantum random walks, a fundamental concept in quantum comput-

ing and physics, followed by a review of classical random walks, which serve as the

basis for understanding the quantum variant. The chapter continues with a discussion

of one-dimensional quantum random walks, focusing on their unique properties and

applications. It concludes with the motivation behind the study and a clear definition

of the problem, along with an outline of thesis structure. Chapter 2 delves into classi-

cal random walks, beginning with the Simple random walk model, which is essential
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for understanding the behavior of particles in a probabilistic framework. This chap-

ter also covers the expectation and variance of random walks, providing a detailed

analysis of these statistical measures and their implications. Chapter 3 shifts focus to

quantum random walks, offering a comprehensive examination of this quantum phe-

nomenon. This chapter explores mathematical underpinnings and distinctive features

of quantum random walks, contrasting them with their classical counterparts to high-

light their significance in various applications. Chapter 4 is dedicated to simulation,

where practical aspects of the study are explored. It begins with computations related

to quantum walks, detailing algorithms and numerical methods used. The chapter

then presents the simulation of quantum walks, discussing results and their relevance

to the research questions posed. Finally, Chapter 5 concludes the thesis, summarizing

key findings, discussing their broader implications, and suggesting potential avenues

for future research. This chapter provides a reflection on study’s contributions to the

field and its limitations.
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CHAPTER 2

CLASSICAL RANDOM WALK

2.1 Simple Random Walk

Determining the position of a walker’s distribution in space after a given number of

step is the purpose of modelling a RW. The probability mass function (Pr(x = i, t))

indicates walker’s probabilityarriving at point x = i after tth steps.

Let us consider a walker that is originally situated at the real line’s x = 0. To dis-

cretize this axis, define x = il for a constant l. Then, assign integer values of i to the

points that the walker can access. To simplify, we will operate with a unit of length

where l = 1. Similarly, divide the walker’s motion over time into N distinct time

intervals by defining t = Nτ by adjusting τ accordingly.

Each phase of the process begins with the toss of a coin. At each time step, the walker

can go right or left. If it comes up heads, the walker moves to right, advancing from

position x = i to i + 1. If it comes up tails, the walker moves to left, going from i

to i− 1. Now, define a fixed value pr to denote walker’s probability moving to right,

and a constant pl = 1− pr denotes walker’s probability moving to left. This enables

the coin to be biased towards either heads or tails.

After the tth iteration, the walker has moved nl steps left and nr steps right, under the

condition that nr + nl = t. This relationship allows for expressing nl in terms of nr

and N .

The objective is to determine a function Pr(i, t) that, after the t-th step, gives walker’s

probabilitybeing at position x = i. Each movement to right or left increases the over-

all chance that the walker will be at position x = i after the tth step by a multiplicative

9



factor, pl = 1− pr since each step is independent. As a result, the probability that

pnr
r (1− pr)

N−nr (2.1)

the walker will end up at the location x = i after taking nr rightward steps and nl

leftward steps, irrespective of the sequence in which the steps are taken. The factor

pnr
r (1 − pr)

t−nr indicates the contribution of each unique path, which consists of nl

movements to left and nr movements to right, to the overall probability of the walker

reaching position x = i, at the tth step. Number of ways to choose nr rightward steps

from t total steps is represented by the binomial coefficient
(

t
nr

)
. This calculates num-

ber of different paths that the walker can take to arrive at x = i. The total probability

the the walker is at position x = i after the t-th step, given that all sequences are

equally likely, is given by

Pr (R = nr) = f (nr) =

(
t

nr

)
pnr
r (1− pr)

t−nr (2.2)

Let R represent a random binomial variable, which represents count of steps is taken

in rightward direction. The probability mass function f(nr), which aids in using com-

puter software to display the distribution of the walker’s location, has been defined.

Having a function that determines the probability of a walker arriving at x = i is

usually more helpful than using nr as the input for the function. To accomplish this,

Equation (2.2) is expressed in terms of the walker’s final position x = i, rather than

using the number of rightward steps R = nr.

To determine the walker reaching position x = i probability on i at tth step, modify

Equation (2.2) by introducing a parameterization nr(x) for the variable nr and then

substituting this parameterization into Equation (2.2).

To determine the expression nr = nr(x), observe that the walker reaches position

x = nr − nt = 2nr −N after completing N steps. Rearranging this equation gives:

nr =
1

2
(i+ t) (2.3)

By substituting this value into Equation (2.2), walker’s probability being at position

10



x = i is determined by following the tth step.

Prob(x = i) =

0 if 1
2
(i+ t) mod 1 ̸= 0

f
(
1
2
(i+ t)

)
otherwise

(2.4)

The probability of x being equal to i is zero if the condition 1
2
(i + t) mod 1 ̸= 0 is

not satisfied. This constraint is crucial for visualizing the distribution as a function

Prob : Z → R, where i 7→ f
(
1
2
(i+ t)

)
. If this condition is not met, it may result in

a non-zero probability for positions that are half-integers.

Figure 2.1: The distribution of a RW after t = 100 steps is illustrated, with the prob-

ability of a rightward step being pr = 1
2
. The distribution shows that the probability

mass points with zero mass are evenly distributed along the x-axis at odd values of

x. This is because the walker always lands on even or odd x-values depending on

whether N is even or odd. Since t = 100 is even, the chance of the walker ending up

on an odd x-value is exactly zero.

To verify consistency, it can be effectively demonstrated using computational soft-

ware that
100∑

i=−100

Pr(x = i, t = 100) = 1 (2.5)

which gives the probability mass function explicitly in terms of N to make it clear

that the walker has taken 100 steps in total.
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2.2 Expectation

The anticipated position of the walker following N steps is given by

E[X] =
t∑

i=−t

i · Pr(x = i) (2.6)

The summation removes points outside the interval [−t, t] since the chance of the

absolute value of x being greater than t is zero.

By utilizing the equation x = nr − nl and applying the principle of linearity in the

calculation of the expected value,

E[X] = µ(nr)− µ(nl)

=
t∑

i=0

i · Pr (nr = i)−
t∑

j=0

j · Pr (nl = j)

=
N∑
i=1

i ·
(
t

i

)
pr

i (1− pr)
t−i −

t∑
j=1

j ·
(
t

j

)
pl

j (1− pl)
t−j

(2.7)

The final expression is derived by incorporating Equation (2.2) into the subsequent

line of Equation (2.6) and modifying the starting point of both summations from 0 to

1, since the initial term in each summation is zero. Note that in Equation (2.6), each

summation is evaluated for i and j ranging from 0 to t, whereas in Equation (2.5), the

summation is performed for i ranging from −t to t. This difference arises because nr

and nl denote the number of steps in a single direction (right or left) along the x-axis,

whereas x accounts for the cumulative count of steps taken in both directions. By

applying the first summation from Equation (2.6) and factoring out a term of t from(
t
i

)
= t!

i!(t−i)!

t∑
i=1

i ·
(
t

i

)
pir (1− pr)

t−i =
t∑

i=1

i · t(t− 1)!

i!(t− i)!
pr

i (1− pr)
t−i

= tpr

t−1∑
i=1

(t− 1)!

(i− 1)![(t− 1)− (i− 1)]!
pi−1
r (1− pr)

t−i

= tpr

t−1∑
i=1

(
t− 1

i− 1

)
pi−1
r (1− pr)

t−i

(2.8)
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Transforming the summation on right side of the Equation (2.7) by changing M to

t− 1 and k to i− 1, and then applying the binomial theorem,

t∑
i=1

i ·
(
t

i

)
pir (1− pr)

t−i = tpr

M∑
k=0

(
M

k

)
pr

k (1− pr)
M−k

= tpr [pr + (1− pr)]
M

= tpr

(2.9)

By replacing this value in Equation (2.6) and following the same steps for the second

term in Equation (2.6),

E[X] = t (pr − pl) (2.10)

is obtained. As a brief consistency check, it is crucial to note that (2.9) matches

−t, 0, t for the specific cases where pr equals 0, 1
2
, and 1, as expected.

2.3 The Variance

Finding the variance σ2 = E[X2]− E[X]2 requires E[X2],

E[X2] = µ (nr − nl)
2

= µ (2nr − t)2

= 4µ(n2
r) + t2 − 4tµ(nr)

(2.11)

where

µ(n2
r) =

t∑
i=0

i2 · Pr (nr = i) (2.12)

By substituting Equation (2.2) into Equation (2.11) and applying the same procedures

as in Equation (2.7), but excluding the additional i factor from the adjustments:

µ(n2
r) = tpr

t−1∑
i=1

i ·
(
t− 1

i− 1

)
pi−1
r (1− pr)

t−i (2.13)
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is derived Using M = t− 1, j = i− 1 into (2.13) gives,

µ(n2
r) = tpr

M∑
j=0

(j + 1) ·
(
M

j

)
pjr (1− pr)

M−j

= tpr

M∑
j=0

(j + 1) ·
(
M

j

)
pr

j (1− pr)
M−j

= tpr

M∑
j=0

j ·
(
M

j

)
pr

j (1− pr)
M−j + tpr

M∑
j=0

(
M

j

)
pr

j (1− pr)
M−j

(2.14)

The expression on right-hand side, represented by
∑M

j=0

(
M
j

)
pjr(1− pr)

M−j , is equal

to 1, as it is necessary for the total sum of probabilities to be one. The second term in

the expression is equal to the product ofN and pr. When examining the summation in

the initial phrase on right side of Equation (2.14) and comparing it to Equation (2.8),

it becomes apparent that both represent the expected value of a binomial random

variable with parameters M and pr. Consider that M = t − 1, the summation in the

initial phrase simplifies to (t− 1)pr. Thus,

µ(n2
r) = tpr [(t− 1)pr + 1] (2.15)

By substituting Equation (2.15) into Equation (2.10) and thereafter organizing the

terms based on powers of t.

E[X2] = 4
(
N2pr

2 −Npr
2 +Npr

)
+N2 − 4Nµ(nr)

=
(
4p2r − 4pr + 1

)
N2 + 4pr (1− pr)N

(2.16)

By utilizing the equation ⟨nr⟩ = Npr to substitute terms in Equation (2.16) simply

replacing pl = 1 − pr into the term proportional to t, and then making use of the

linearity attribute of the anticipated value to simplify the formula, one obtains the

results that are directly proportional to t2.

µ(n2
r) =

(
(2µ(nr)e)

2 − 2 (2pr) + t
)
+ 4tprpl

=
(
2µ(n2

r)− t
)2

+ 4tprpl

= µ(2nr − t)2 + 4tprpl

= E[X]2 + 4tprpl

(2.17)

The transition between the third and fourth lines occurs when the value of x is equal

to nr − nl, which may be expressed as 2nr − t. Given that σ2 is equal to the average
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of x2 minus the square of the average of x, the square of the average of x is removed

from both sides of Equation (2.17) to obtain

σ2 = 4tprpl (2.18)

The variance of the distribution is an important metric since it gives insight on;

σ ∼
√
t (2.19)

This implies that, in a classical RW, the walker is expected to be at a distance of

O(
√
t) from the origin. By the law of large numbers and the Central Limit Theorem,

as t increases the distribution of the simple RW at time t converges to normal distri-

bution with mean 0 and standard deviation
√
t, N(0,

√
t) by using Equations (2.10),

(2.19).
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CHAPTER 3

QUANTUM WALK

3.1 Quantum Walk

Quantization is the typical method used to develop quantum models and formulate

their equations. The operators that act on a HS reflect both momentum and energy,

the dimension of which is determined by the number of degrees of freedom. A vector

defined in a HS denotes the quantum system’s state, and a unitary operation deter-

mines how it evolves, as long as the system remains completely unaffected by inter-

actions. When the system is composed of many components, the tensor product of

the HSs of each individual component is used to generate a HS. Systems built under

quantum mechanics, which are not completely isolated from their surroundings may

exhibit elements of randomness. Furthermore, a measurement on the quantum system

at a certain moment is performed to gather information regarding it. This technique

produces a distribution.

The tensor product of HSs is a pivotal concept in functional analysis and quantum

mechanics, particularly in the study of composite quantum systems. Given two HSs

H1 and H2, their tensor product, denoted as H1 ⊗ H2, forms a new HS that encap-

sulates the combined structure of the two spaces. This construction is essential for

describing systems where each subsystem is associated with a distinct HS, and the

total system is represented by their tensor product.

İf {|ei⟩} and {|fj⟩} are orthonormal bases of the HSs H1 and H2, respectively, then

the set {|ei⟩ ⊗ |fj⟩} constitutes an orthonormal basis for the tensor product space

H1 ⊗H2. Any vector |ψ⟩ in H1 ⊗H2 can thus be expressed as a linear combination
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of these basis elements:

|ψ⟩ =
∑
i,j

cij|ei⟩ ⊗ |fj⟩, (3.1)

where cij are complex coefficients that describe the contribution of each basis element

to the overall vector |ψ⟩.

The inner product onH1⊗H2 is defined in a manner consistent with the inner products

on the constituent spaces. Specifically, for vectors |ψ⟩ =
∑

i,j cij|ei⟩ ⊗ |fj⟩ and

|ϕ⟩ =
∑

k,l dkl|ek⟩ ⊗ |fl⟩ in H1 ⊗H2, the inner product is given by:

⟨ψ|ϕ⟩ =
∑
i,j,k,l

c∗ijdkl⟨ei|ek⟩⟨fj|fl⟩, (3.2)

where c∗ij denotes the complex conjugate of cij . This inner product structure ensures

that H1 ⊗H2 inherits the properties of a HS, such as completeness and the ability to

define orthonormal bases.

In quantum mechanics, the tensor product is particularly significant for describing

composite systems. If two quantum systems are represented by the HSs H1 and H2,

respectively, the total system is described by the tensor product spaceH1⊗H2. States

in this combined space that can be written as simple tensor products |ψ1⟩⊗|ψ2⟩, where

|ψ1⟩ ∈ H1 and |ψ2⟩ ∈ H2, are called separable states. Conversely, states that cannot

be decomposed into such a form are referred to as entangled states, which play a

crucial role in quantum information theory.

Furthermore, operators on the tensor product space H1 ⊗H2 can often be expressed

as tensor products of operators on H1 and H2. If A is an operator on H1 and B is an

operator on H2, the operator A⊗B acts on the product space H1⊗H2 and is defined

by its action on basis elements as (A⊗B)(|ei⟩ ⊗ |fj⟩) = (A|ei⟩)⊗ (B|fj⟩).

In quantum computing, a qubit is the basic unit of quantum information, represented

by a vector in a two-dimensional HS, typically denoted as C2. The standard basis for

this space is {|0⟩, |1⟩}, where:

|0⟩ =

1

0

 , |1⟩ =

0

1

 . (3.3)

Now, consider two qubits, with the first qubit in a state |ψ1⟩ and the second qubit in a
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state |ψ2⟩. Suppose:

|ψ1⟩ = α|0⟩+ β|1⟩, |ψ2⟩ = γ|0⟩+ δ|1⟩, (3.4)

where α, β, γ, δ are complex coefficients such that |α|2+ |β|2 = 1 and |γ|2+ |δ|2 = 1,

ensuring that |ψ1⟩ and |ψ2⟩ are normalized.

The combined state of the two qubits is represented by the tensor product of their

individual states:

|ψ1⟩ ⊗ |ψ2⟩ = (α|0⟩+ β|1⟩)⊗ (γ|0⟩+ δ|1⟩). (3.5)

Applying the distributive property of the tensor product, this expands to:

|ψ1⟩ ⊗ |ψ2⟩ = αγ|0⟩ ⊗ |0⟩+ αδ|0⟩ ⊗ |1⟩+ βγ|1⟩ ⊗ |0⟩+ βδ|1⟩ ⊗ |1⟩. (3.6)

In the standard computational basis for the two-qubit system, |0⟩ ⊗ |0⟩, |0⟩ ⊗ |1⟩,
|1⟩ ⊗ |0⟩, and |1⟩ ⊗ |1⟩ are typically written as |00⟩, |01⟩, |10⟩, and |11⟩, respectively.

Therefore, the combined state can be expressed as:

|ψ1⟩ ⊗ |ψ2⟩ = αγ|00⟩+ αδ|01⟩+ βγ|10⟩+ βδ|11⟩. (3.7)

Suppose:

|ψ1⟩ =
1√
2
|0⟩+ 1√

2
|1⟩, |ψ2⟩ = |0⟩. (3.8)

Here, |ψ1⟩ is an equal superposition of |0⟩ and |1⟩, and |ψ2⟩ = |0⟩.

The tensor product state is:

|ψ1⟩ ⊗ |ψ2⟩ =
(

1√
2
|0⟩+ 1√

2
|1⟩

)
⊗ |0⟩ = 1√

2
|0⟩ ⊗ |0⟩+ 1√

2
|1⟩ ⊗ |0⟩. (3.9)

This simplifies to:

|ψ1⟩ ⊗ |ψ2⟩ =
1√
2
|00⟩+ 1√

2
|10⟩. (3.10)

This state is now a vector in the four-dimensional HS C2 ⊗ C2 corresponding to the

two-qubit system. The coefficients 1√
2

indicate that there is an equal probability of

measuring the system in either the |00⟩ or |10⟩ state, and zero probability for the states

|01⟩ and |11⟩.
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The walker’s position, denoted by n, represented as a HS vector HP that has an

infinite number of dimensions. HS’s computational basis is given by the set {|n⟩ :

n ∈ Z}. Iteration of the process depends on the "quantum coin." If the result of

flipping the "quantum coin" is "heads" and the current position is represented by the

vector |n⟩, in the next iteration, |n+1⟩ will be next position. If the outcome is "tails,"

it will be represented by the state |n− 1⟩. Consider a particle as a "random walker".

The particle’s state is determined by both its position in the one-dimensional lattice

and its spin, which can be either up or down. Therefore, the spin value has the ability

to discern the direction of motion. If the particle is in the state represented by the

position |n⟩ and its spin is in the up direction, it will transition to the state represented

by |n+1⟩ while maintaining the same spin orientation. When the spin is in the down

state, it should transition to the state |n − 1⟩. System’s HS can be defined as the

tensor product of two HSs, denoted as HC and HP . Specifically, H = HC⊗HP . The

HS HC is a two-dimensional space that represents the "coin," and its computational

basis is given by the states |0⟩ and |1⟩. The term "quantum coin" can be defined as a

2-dimensional unitary matrix, denoted as C, that operates on vectors in the HS HC .

The term used to refer to "coin operator."

The shift operator describes transitions between different quantum states. In this

context, a system where transitions occur between the states |n⟩, |n+ 1⟩, and |n− 1⟩
is considered. How the shift operator S operates on the states |n⟩ can be formally

defined in terms of its effects:

S|0⟩|n⟩ = |0⟩|n+ 1⟩,

S|1⟩|n⟩ = |1⟩|n− 1⟩.
(3.11)

Equation (3.11) provides a detailed description of the shift operator S by specifying

its action on the computational basis states of the HS H. It demonstrates that S can

be decomposed into two components: one that shifts states forward (associated with

the |0⟩ term) and one that shifts states backward (associated with the |1⟩ term). This

comprehensive characterization enables us to understand how S operates on any state

within the HS. Thus,

S = |0⟩⟨0| ⊗
∞∑

n=−∞

|n+ 1⟩⟨n|+ |1⟩⟨1| ⊗
∞∑

n=−∞

|n− 1⟩⟨n| (3.12)

By applying S to the states, the Equation (3.11) can be recovered. In QWs, the
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process begins by applying C on selected initial state, much as how a coin is tossed in

classical walks. Each phrase inside this superposition will induce a shift in a distinct

path. To achieve a symmetrical distribution over the starting location, a fair coin

should be used. For this purpose, the selected coin state is |0⟩, and the walk starts at

position |n = 0⟩.
|ψ(0)⟩ = |0⟩|n = 0⟩, (3.13)

The symbol |ψ(0)⟩ represents the initial state, while |ψ(t)⟩ represents the state of the

position quantum walker at time t.

The Hadamard operator is commonly used as the coin in the majority of one-dimensional

QWs.

H =
1√
2

 1 1

1 −1

 (3.14)

A single step involves applying the H operator to the state of the coin, specifically

applying H ⊗ I , where I identity operator of HS HP , and then applying S.

|0⟩ ⊗ |0⟩ H⊗I−−→ |0⟩+ |1⟩√
2

⊗ |0⟩ S−→ 1√
2
(|0⟩ ⊗ |1⟩+ |1⟩ ⊗ | − 1⟩).

(3.15)

The particle can be in either n = 1 or n = −1 since the particle in a superposition.

This superposition arises from Hadamard Operator (Coin Operator). The Hadamard

operator H produces an unbiased result when acting on |1⟩ and |0⟩, as it produces

equal amplitudes for both right and left positions. However, when H is applied to |1⟩,
the amplitudes for right and left positions have different signs. Despite this, the sign

difference does not affect the probability of finding the particle at a specific position,

so H can be referred as a non-biased coin.

To determine the particle’s position, the state given by (3.15) is measured. Measuring

in the computational basis of HP will yield a 1/2 probability of finding the particle

at n = 1 and a 1/2 probability at n = −1. This outcome mirrors the result of the first

step in a classical RW. If H and shift operator, and measure are repeatedly applied

at each step, behavior characteristic of a classical RW will be observed. The main

objective is to leverage quantum properties to achieve outcomes that are not possible

in the classical physics. Quantum correlations between distinct locations, which are
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common in quantum systems, are disrupted when the particle’s position is measured

after the initial step. By not measuring and instead applying the coin and shift op-

erators successively, the quantum correlations are preserved, leading to constructive

interference and resulting in behavior distinct from classical walks. Consequently,

the standard deviation will not be
√
t and will not converge to normal distribution.

The QW involves iteratively applying the unitary operator several times without doing

measurements. U defined as,

U = S(H ⊗ I). (3.16)

Then, the position state of quantum walker will be after one step iteration,

|ψ(t+ 1)⟩ = U |ψ(t)⟩. (3.17)

In our case, the walk start at position n = 0 with coin state |0⟩ given in (3.13). The

position state of the QW after one step iteration becomes,

|ψ(1)⟩ = U |ψ(0)⟩. (3.18)

After t step, the position state is described by

|ψ(t)⟩ = U t|ψ(0)⟩. (3.19)

Let us start by accurately calculating the initial stages in order to have a comprehen-

sive comparison with the traditional RW. To calculate the first step, use the formula

|ψ(1)⟩ = U |ψ(0)⟩ and continue this procedure for following stages.

|ψ(1)⟩ = 1√
2
(|1⟩| − 1⟩+ |0⟩|1⟩)

|ψ(2)⟩ = 1

2
(−|1⟩| − 2⟩+ (|0⟩+ |1⟩)|0⟩+ |0⟩|2⟩)

|ψ(3)⟩ = 1

2
√
2
(|1⟩| − 3⟩ − |0⟩| − 1⟩+ (2|0⟩+ |1⟩)|1⟩+ |0⟩|3⟩)

(3.20)

By following these preliminary calculations, it can be seen that, the QW and simple

RW differ in many ways throughout the path. For example, although an unbiased

coin is used in our experiment, the quantum state |ψ(3)⟩ does not display symmetry

around the origin. In Figure 3.1, the distribution of the process was shown without
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Figure 3.1: Chance of finding the walker at position n at time t, starting from origin

with coin in "heads" state and without any intermediate measurements, can be deter-

mined. This involves applying the operator U once. The operator U is repeatedly

applied without making any measurements in between. At a specific time t, the state

describes the distribution of position of particle.

any intermediate measurements. Besides its asymmetry property, the location of the

distribution is not at the origin. This can be clearly illustrated by comparing it with

the table given in Figure 3.1.

Our aim is to determine the distribution of a process with large number of steps. How-

ever, the current method used is not suitable for manual calculations. For instance, to

find p(100, n), which represents the distribution at the hundredth step, compute the

absolute value of the wave function at position 100, |ψ(100)⟩ needs to be computed.

Yusuf Karli [14], has shown analytical solution for QW in this purpose. In order to

generalize, σ symbol will be used to represent the coin state. If the shift operator S is

adjusted with respect to σ, we have,

S =
1∑

σ=0

∞∑
n=−∞

|σ, n+ (−1)σ⟩ ⟨σ, n| (3.21)

A QW is considered a non-Markovian process because its evolution is inherently de-

pendent on the initial state of the quantum coin, which differentiates it from classical

RWs. In classical Markovian processes, the future state depends only on the present

state and not on the sequence of events that preceded it. However, in a QW, the su-

perposition and entanglement of the quantum states introduce memory effects where

the entire history of the system’s evolution, particularly the initial coin state, influ-

ences the probabilities of future outcomes. This memory dependency makes QWs
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non-Markovian, allowing for more complex and rich dynamics compared to their

classical counterparts. The position state of the walk at tth-step can be described with

probability amplitudes. Thus, the position state can be represented as,∣∣∣ψσ′
(t)

〉
=

∑
n,σ

Aσ′

nσ(t)|n⟩|σ⟩, (3.22)

Where, the probability amplitude coefficients satisfy the normalization condition.∑
z

∣∣∣Aσ′

x0(t)
∣∣∣2 + ∣∣∣Aσ′

1
x1(t)

∣∣∣2 = 1 (3.23)

Now, the distribution for walker at position n and time t can be calculated using the

formula,

Pr(n, t) =
∑
σ

∣∣∣Aσ′

xσ(t)
∣∣∣2 . (3.24)

To find the analytical solution for the distribution of the walk, given the initial coin

state σ = 0, we refer to Equation (3.13). It can be shown as,

|ψ(t+ 1)⟩ =
∑
n

S (Az,0(t)C|0, n⟩+ Az,1(t)C|1, n⟩) . (3.25)

Where C represents the coin operator, which is used to manipulate the coin states in

the QW. Specifically, in this case, the coin operator C is the Hadamard operator. The

Hadamard operator H is a quantum operation that acts on the coin states, which are

typically represented as |0⟩ and |1⟩.

When the Hadamard operator is applied, it maps the coin states into a superposition

state. This means that the state of the coin is no longer just |0⟩ or |1⟩; instead, it

becomes a combination of both states with equal probability amplitudes. This can be

expressed as follows:

H|0⟩ = 1√
2
(|0⟩+ |1⟩) (3.26)

H|1⟩ = 1√
2
(|0⟩ − |1⟩) (3.27)

This operation creates a balanced superposition, where the coin has an equal proba-

bility of being in either state |0⟩ or |1⟩. This superposition is a key aspect of QWs, as
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it introduces quantum interference effects that influence the walk’s distribution.∑
n

1√
2
(An,0(t) + An,1(t))S|0, n⟩+

1√
2
(An,0(t)− An,1(t))S|1, n⟩ (3.28)

By using definition given in Equation (3.21), the shift operator S determines the

walker’s movement based on the selected coin state.∑
n

1√
2
(An,0(t) + An,1(t)) |0, n+ 1⟩+ 1√

2
(An,0(t)− An,1(t)) |1, n− 1⟩ (3.29)

By regrouping terms with the same indices, the probability amplitudes are expressed

for n + 1. Then,

An,0(t+ 1) =
1√
2
(An−1,0(t) + An−1,1(t))

An,0(t+ 1) =
1√
2
(An+1,0(t)− An+1,1(t))

(3.30)

using Fourier transform,

Ãk,σ(t) =
∞∑

n=−∞

e−iknAn,σ(t) (3.31)

Then |k⟩ can be defined in terms of |n⟩,

|k⟩ =
∑
n

eikn|n⟩. (3.32)

Thus, at time t, the position state of the walk can be rewritten as,

|ψ(t)⟩ =
∫ π

−π

dk

2π

∑
σ

Ãk,σ|σ, k⟩. (3.33)

After arranging the position state, unitary operator U can be applied starting with by

applying S operator to the |σ, k⟩.

S|σ, k⟩ =
∑
n

eiknS|σ, n⟩

S|σ, k⟩ =
∑
n

eikn |σ, n+ (−1)σ⟩
(3.34)

By modifying the indices n′ = n+ (−1)σ, n = n′ − (−1)σ. Thus„

S|σ, k⟩ =
∑
n′

eik(x
′−(−1)σ)S |σ, n′⟩ . (3.35)
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The vector |k⟩ can be written as eikn′ |n′⟩.Thus,

S|σ, k⟩ =
∑
n′

eik(−(−1)σ)S|σ, k⟩ (3.36)

It is seen that the phase of the position state is altered by the shift operator. The

evolution operator can be defined for each k with following equation:

Ũk =

 e−ik 0

0 eik

C. (3.37)

C is representing Hadamard coin. To diagonalize the matrix Ũk, start by deriving its

characteristic polynomial. The matrix Ũk is defined as follows:

Ũk =
1√
2

 e−ik e−ik

eik −eik

 (3.38)

The first step in diagonalization involves finding the eigenvalues of Ũk. This requires

calculating the characteristic polynomial, which is obtained by subtracting λ, a scalar

corresponding to an eigenvalue, from the diagonal elements of Ũk and subsequently

determining the determinant of the resulting matrix. Thus, the matrix Ũk −λI , where

I denotes the identity matrix, is given by,

Ũk − λI =

 e−ik
√
2
− λ e−ik

√
2

eik√
2

− eik√
2
− λ

 (3.39)

The next step involves calculating the determinant of the matrix Ũk−λI to formulate

the characteristic polynomial. The determinant of a 2 × 2 matrix,

 a b

c d

, is

computed as ad− bc. Applying this to our matrix:

det(Ũk − λI) =

(
e−ik

√
2
− λ

)(
− eik√

2
− λ

)
− e−ik

√
2
· e

ik

√
2

(3.40)

Expanding the first product,(
e−ik

√
2
− λ

)(
− eik√

2
− λ

)
= −1

2
− λ

e−ik

√
2
+ λ

eik√
2
+ λ2 (3.41)
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is ontained. The determinant thus simplifies to:

det(Ũk − λI) = −1

2
− λ

e−ik

√
2
+ λ

eik√
2
+ λ2 − 1

2
(3.42)

Then, combining the constant terms yields the characteristic polynomial:

det(Ũk − λI) = −1 + λ2 − λ
e−ik

√
2
+ λ

eik√
2

(3.43)

The roots of the characteristic polynomial, corresponding to the eigenvalues λ, are es-

sential for the diagonalization of Ũk. Once the eigenvalues are determined, they can

be used to transform Ũk into its diagonal form, thereby elucidating its spectral prop-

erties. To diagonalize the matrix Ũk, start by expressing the characteristic polynomial

using the exponential form of the sine function. Given:

sin k =
eik − e−ik

2i
, (3.44)

the characteristic polynomial simplifies to:

λ2 +
√
2λi sin k − 1. (3.45)

By substituting the exponential form of sin k into the polynomial,

λ2 +
√
2λi

eik − e−ik

2i
− 1. (3.46)

is obtained.

Simplifying, this results in the characteristic polynomial:

λ2 +
√
2λ
eik − e−ik

2
− 1. (3.47)

In order to find the eigenvalues, this quadratic equation is solved and the eigenvalues

are:

a1 = e−iωk , a2 = ei(π+ωk), (3.48)

where ωk is a phase angle derived from the parameters of the problem. Next, the

eigenvectors associated with these eigenvalues are determined.
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For the eigenvalue a1 = e−iωk , the corresponding eigenvector is:

|a1⟩ =
1√
c−

 e−ik

√
2e−iωk − e−ik

 , (3.49)

where c− is a normalization constant ensuring that |a1⟩ is properly normalized.

Similarly, for the eigenvalue a2 = ei(π+ωk), the eigenvector is:

|a2⟩ =
1√
c+

 e−ik

−
√
2eiωk − e−ik

 , (3.50)

where c+ is another normalization constant.

Using definitions,

ωk = arcsin

(
1√
2
sin k

)
, (3.51)

1

c±
=

1

2

(
1∓ cos k√

1 + cos2 k

)
, (3.52)

The unitary operator can be rewritten as,

U t =

∫ π

−π

dk

2π
e−iωkt |a1⟩ |k⟩

〈
k
∣∣〈a1 ∣∣+ei(π+ωk)t

∣∣ a2〉∣∣ k〉 ⟨k| ⟨a2| (3.53)

Where |k⟩ is,

|k⟩ =
∞∑

n=−∞

eikn|n⟩. (3.54)

The position state after t step iteration will be,

|ψ(t)⟩ = U t |ψ(0)⟩ . (3.55)

Since our initial state is |ψ(0)⟩ = |σ = 0⟩|x = 0⟩, the position state at tth-step is,

|ψt⟩ =
[∫ π

−π

dk

2π
e−iωkt |a1⟩ |k⟩

〈
k
∣∣〈a1 ∣∣+ei(π+ωk)t

∣∣ a2〉∣∣ k〉 ⟨k |⟨a2|] | σ = 0⟩ |x = 0⟩
(3.56)

Using the eigenvectors given in (3.48) and (3.49), the position state |ψ(t)⟩ will be,

|ψt⟩ =
[∫ π

−π

e−iωkt
eik√
c−

|a1⟩+ ei(π+ωk)t
eik√
c+

|a2⟩
]
|k⟩dk

2π
(3.57)
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|ψ(t)⟩ =
[∫ π

−π

e−iωkt+ik 1

c−

(
e−ik

√
2e−iωk − e−ik

)
+ei(π+ωk)t+ik 1

c+

(
e−ik

−
√
2eiωk − e−ik

)]
|k⟩dk

2π

(3.58)

Finally, the probability amplitudes for the selected initial coin state σ = 0 are,

A0
k0(t) =

1

c−
e−iωkt +

1

c+
ei(π+ωk)t (3.59)

A0
k1(t) =

1

c−
e−iωkt+ik

(√
2e−iωk − e−ik

)
− 1

c+
ei(x+ωk)t+ik

(√
2eiωk + e−ik

)
(3.60)

The probability amplitudes in real space can be found by taking inverse Fourier trans-

form as follows:

Aσ′

nσ(t) =

∫ π

−π

dk

2π
eiknAσ′

kσ(t) (3.61)

A different strategy involves directly calculating matrix U , [21]. The tensor product

is essential for constructing shift operator, as described in Equation (3.21). These

operators manipulate vectors in an infinite vector space. However, the number of

non-zero elements is restricted. Therefore, it is imperative for these arrays to possess

dimensions that exceed slightly the size of 200 × 200. After calculating the value

of U , U100 can be calculated and multiply it by the initial condition |ψ(0)⟩, which

is represented as a column vector with an appropriate number of components. The

result is the state vector |ψ(100)⟩. Finally, we are able to calculate the distribution.

Figure 3.2: Frequency plot for initial condition |ψ(0)⟩ = |1⟩|n = 0⟩. [21]
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Using previously mentioned methods, one can acquire plot shown in Figure (??).

Like the simple RW, the probability values that are equal to zero should be ignored.

At time t = 100, the probability is zero for every odd value of n. The presence of

asymmetry in the distribution is clearly apparent. The chance of locating the particle

to right of the origin is greater than the chance of locating it to left. More precisely,

when the value of n is about equal to 100/
√
2, the probability is considerably higher

compared to when it is at the starting point. It is not restricted to the particular value

of t = 100 as the method is suitable for every t. This shows the QW has a ballistic

behavior. Walker can be situated at a distance from the origin, appearing to move

uniformly in rightward direction. Therefore, one can question whether this pattern

would remain consistent if the distribution was symmetrically centered around the

origin.

Figure 3.3: Frequency plot after 100 steps for symmetric QW. [21]

In order to attain a symmetrical distribution, it is imperative to understand the under-

lying cause for the observed rightward tendency in the prior instance. Applying the

Hadamard coin to state |1⟩ results in the introduction of a negative sign. This suggests

that there is a higher frequency of cancellations for states that have a coin state of |1⟩
compared to terms with a coin state of |0⟩. As the coin state |0⟩ causes movement to

right and |1⟩ causes movement to left, the result is an asymmetry with a considerably

larger probability on right side. In order to verify the effectiveness of this method, we
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can calculate the resulting distribution based on the original condition.

|ψ(0)⟩ = −|1⟩|n = 0⟩. (3.62)

In this scenario, the quantity of negative terms will exceed that of positive terms,

resulting in a greater number of term cancellations involving the coin state |0⟩. The

ultimate outcome will be the symmetrical distribution depicted in figure (3.3) with re-

spect to the vertical axis. In order to achieve a symmetrical distribution, it is necessary

to overlay the QWs that arise from these two beginning conditions. The superposition

should not eliminate terms prior to calculating the distribution. To obtain the desired

result, one needs to multiply the complex i by the second initial condition and then

add it to the first initial condition, as shown below:

|ψ(0)⟩ = |0⟩ − i|1⟩√
2

|n = 0⟩. (3.63)

Hadamard operator consist of real numbers. Using the evolution operator does not

convert terms involving the imaginary unit into real terms, nor does it convert real

terms into terms involving the imaginary unit. There will be no simplification of terms

between rightward walk and leftward walk. Finally, the distributions are combined.

The outcome is the visual representation depicted in Figure (3.3)

Note that, whenever QW distribution shows symmetry, the position’s expectation will

be zero, denoted as µ(n) = 0.
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Following R code perform simulation by calculating matrix U . However, MATLAB

code for analytical solution can be found in [14].
1 QRW function(steps,initialstate)

2 line steps 2 + 1

3 I diag(line)

4 H cbind(c(1/sqrt(2),1/sqrt(2)),c(1/sqrt(2), 1/sqrt(2)))

5 U kronecker(H,I)

6 S1 matrix(0,ncol = line,nrow = line)

7 for (i in line:2)

8 S1 as.matrix(I[,i 1]) t(as.matrix(I[,i])) + S1

9 S1 as.matrix(I[,line]) t(as.matrix(I[,1])) + S1

10 S1 kronecker(matrix(c(0,1),ncol=1) matrix(c(0,1),nrow =1),S1)

11 S2 matrix(0,ncol = line,nrow = line)

12 for (i in 1:(line 1))

13 S2 as.matrix(I[,i+1]) t(as.matrix(I[,i])) + S2

14 S2 as.matrix(I[,1]) t(as.matrix(I[,line])) + S2

15 S2 kronecker(matrix(c(1,0),ncol=1) matrix(c(1,0),nrow =1),S2)

16 S S1 + S2

17 Y S U

18 initial kronecker(matrix(initialstate,ncol=1),as.matrix(I[,steps+1]))

19 state Y initial

20 if (steps 1)

21 for (i in 2:steps)

22 state Y state

23

24

25 prob as.matrix(state[1:line,] 2+state[(line+1):dim(state)[1],]2 )

26 colnames(prob) "prob"

27 return(prob)

28

29 k 0

30 j k

31 l c(k)

32 for (i in 1:100)

33 prob QRW(i,c(1,0))

34 while((j 1) != k k != (j+1))

35 k sample( i:i,1,replace = TRUE,prob = as.vector(prob))

36

37 l[i+1] k

38 j k

39

40 plot(l)

41 lines(l)

42 l2 c()

43 for (t in 1:1000)

44 k 0

45 j k

46 l c(k)

47 for (i in 1:100)

48 prob QRW(i,c(1,0))

49 while((j 1) != k k != (j+1))

50 k sample( i:i,1,replace = TRUE,prob = as.vector(prob))

51

52 l[i+1] k

53 j k

54

55 l2[t] l[101]

56 print(l[101])

57

58 hist(l2,breaks = 100)
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CHAPTER 4

SIMULATION

4.1 Computations Regarding Quantum Walk

In this chapter, the study primarily builds upon concepts discussed in [26].

First, an unitary matrix is defined for x ∈ Z,

Cx =

 ax bx

cx dx

 , (4.1)

where ax, bx, cx, dx ∈ C and axbxcxdx ̸= 0. It is calledCx coin operator (Coin Matrix)

for the QW. Decomposition of C is done by using two vectors; |L⟩ =
[
1 0

]⊤
and

|R⟩ =
[
0 1

]⊤
. By using these,

Px = |L⟩ ⟨L |Cx, Qx =|R⟩ ⟨R|Cx. (4.2)

Then, the decomposition of Cx

Cx = Px +Qx. (4.3)

Px and Qx representing left and right or transition probabilities in relation to classic

RWs, respectively.

The vector Ψn(x) is a probability amplitude vector, which means it contains infor-

mation about the quantum walker’s state at position x at time n. (n, x) ∈ N0 × Z

indicates that n is a non-negative integer corresponding to the time step of the QW,
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and x is an integer representing the position on a one-dimensional lattice. The com-

ponents of Ψn(x) are complex numbers that describe the likelihood (amplitude) of

the walker being at position x at time n, along with the phase information, which is

crucial for understanding quantum interference effects, [26]. The walk over time is

iterated by using equation,

Ψn+1(x) = Px+1Ψn(x+ 1) +Qx−1Ψn(x− 1), (4.4)

This is similar to the method used to calculate the probability of a walker’s existence

in classical RWs.

µn(x) = ∥Ψn(x)∥2 , (4.5)

The symbol µn(x) denotes the probability of measuring the particle at point x at time

n.

The transition probabilities in a RW are defined by a specific quantity for each pair

(n, x) in N0 × Z, with the condition that µn(x) is greater than zero, [26].

pn(x) =
∥PxΨn(x)∥2

µn(x)
, qn(x) =

∥QxΨn(x)∥2

µn(x)
. (4.6)

In [26], they gave definitions for pn(x) and qn(x) which is crucial for constructing the

distributions.

Given a pair (n, x) where n is a non-negative integer (N0) and x is an integer (Z), the

measure µn(x) is positive. Additionally, the probabilities pn(x) and qn(x) are both

restricted within the interval [0, 1].

0 ≤ pn(x) ≤ 1 and 0 ≤ qn(x) ≤ 1 (4.7)

The non-negativity of pn(x), follows directly from the properties of norms and the

assumption µn(x) > 0, [26]. This ensures that
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0 ≤ pn(x). (4.8)

To demonstrate the upper bound, introduce the vector ⟨PL| = [ax, bx], leading to the

relation ∥PΨn(x)∥2 = |⟨PL | Ψn(x)⟩|2. By invoking the Cauchy-Schwarz inequality,

|⟨PL | Ψn(x)⟩|2 ≤ ∥PL∥2 · ∥Ψn(x)∥2 . (4.9)

is obtained.

Since the coin operator C is unitary, it follows that ∥PL∥2 = 1, leading to the inequal-

ity ∥PΨn(x)∥2 ≤ µn(x). Consequently, the probability pn(x), defined as the ratio
∥PΨn(x)∥2

µn(x)
, is bounded above by 1, i.e., pn(x) ≤ 1. Thus, combining results for non-

negativity and the upper bound, it is concluded that pn(x) lies within interval [0, 1],

[26].

A similar argument can be applied to qn(x), utilizing same reasoning based on norm

properties, Cauchy-Schwarz inequality, and unitarity of coin operator. Hence, both

pn(x) and qn(x) are probabilities, properly bounded between 0 and 1.

Lemma 2,[26]. A QW at a given time n and position x where µn(x) > 0, the sum of

probabilities pn(x) and qn(x) equals 1, i.e., pn(x) + qn(x) = 1.

Proof. Due to unitarity of coin operator C, the norm of quantum state is preserved un-

der its action. Specifically, for a quantum walker’s state Ψn(x), the measure µn(x) is

given by the squared norm ∥Ψn(x)∥2, which remains unchanged when coin operator

is applied:

µn(x) = ∥Ψn(x)∥2 = ∥CxΨn(x)∥2 = ∥PxΨn(x) +QxΨn(x)∥2 . (4.10)

The projection operators Px and Qx project onto orthogonal states | L⟩ and | R⟩,
respectively. Given that ⟨L | R⟩ = ⟨R | L⟩ = 0, cross terms vanish, allowing us to

simplify the norm as follows:

∥PxΨn(x) +QxΨn(x)∥2 = ∥PxΨn(x)∥2 + ∥QxΨn(x)∥2 . (4.11)

Therefore, the total norm µn(x) is the sum of squared norms associated with projec-
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tions onto | L⟩ and | R⟩:

∥PxΨn(x)∥2 + ∥QxΨn(x)∥2 = µn(x). (4.12)

Dividing by µn(x) yields:

∥PxΨn(x)∥2

µn(x)
+

∥QxΨn(x)∥2

µn(x)
= 1, (4.13)

which simplifies to pn(x) + qn(x) = 1.

Based on the above lemmas, The Quantum-Walk-Replicating Random Walk can be

defined as follows:

The QW {Ψn}n∈N0 is defined by a specific recurrence relation that governs its time

evolution. At each time step n, the state of quantum walker at position x is given by

Ψn+1(x), which is determined as a linear combination of the quantum walker’s state

from neighboring positions at previous time step,[26]. Specifically, the state Ψn+1(x)

is formed by the sum of projections of the state Ψn(x + 1) from position x + 1 and

Ψn(x− 1) from position x− 1 under operators Px+1 and Qx−1, respectively.

Ψn+1(x) = Px+1Ψn(x+ 1) +Qx−1Ψn(x− 1). (4.14)

The initial condition is provided by Ψ0(x) = δ0(x)φ0, where δ0(x) is Dirac delta

function centered at x = 0 and φ0 is a normalized initial state with ∥φ0∥ = 1.

The Quantum-Walk-Replicating Random Walk (QWRW): {Sn}n∈N0 is a classical

RW that replicates the behavior of QW by using probabilities derived from the QW’s

state. The transition probabilities for QWRW are defined as follows: at each time step

n and position x, walker’s probability moving to position x+ 1 or x− 1 at next time

step n + 1 is given by qn(x) or pn(x), respectively. These probabilities are derived

from squared norms of the projection of quantum state at position x under operators

Px and Qx, normalized by the total probability amplitude µn(x):
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P(Sn+1 = x+ ξ | Sn = x) =


pn(x) if ξ = −1

qn(x) if ξ = +1

0 otherwise.

(4.15)

Here, pn(x) =
∥PxΨn(x)∥2

µn(x)
and qn(x) =

∥QxΨn(x)∥2
µn(x)

, ensuring that transition probabili-

ties are consistent with the underlying QW.

The distribution νn(x) represents the likelihood of finding the QWRW particle at po-

sition x at time n. This distribution evolves according to a recurrence relation similar

to that of QW, where the probability at a given position x at time n+ 1 is determined

by probabilities of being at neighboring positions x + 1 and x − 1 at previous time

step, weighted by corresponding transition probabilities pn(x) and qn(x):

νn+1(x) = pn(x+ 1)νn(x+ 1) + qn(x− 1)νn(x− 1). (4.16)

This equation captures how distribution shifts over time as the QWRW particle moves

through different positions on the integer line, [26].

Finally, the distribution of QWRW across all possible positions at time n is encapsu-

lated in the vector νn, which is defined as:

νn = [· · · , νn(−1), νn(0), νn(1), · · · ]⊤. (4.17)

This vector contains probabilities of the QWRW particle being at each integer posi-

tion on the line Z at time n, providing a comprehensive view of the particle’s distri-

bution across space as RW progresses.

Lemma 4, [26]. For any non-negative integer n, the probability amplitude µn+1(x) at

time n+ 1 and position x can be expressed as a linear combination of the probability

amplitudes from neighboring positions x + 1 and x − 1 at previous time step n,

weighted by transition probabilities pn(x+ 1 and qn(x− 1), respectively.

µn+1(x) = pn(x+ 1)µn(x+ 1) + qn(x− 1)µn(x− 1). (4.18)
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Proof. Recalling that µn+1(x), which represents the probability amplitude at position

x at time n+ 1, is the squared norm of the quantum state Ψn+1(x):

µn+1(x) = ∥Ψn+1(x)∥2. (4.19)

According to QW’s evolution equation, Ψn+1(x) is the sum of projections of quantum

states from neighboring positions x+1 and x−1 at time n, transformed by operators

Px+1 and Qx−1, respectively:

Ψn+1(x) = Px+1Ψn(x+ 1) +Qx−1Ψn(x− 1). (4.20)

To find µn+1(x), take the squared norm of this sum:

µn+1(x) = ∥Px+1Ψn(x+ 1) +Qx−1Ψn(x− 1)∥2. (4.21)

This squared norm can be expanded using linearity of inner products:

µn+1(x) = ∥Ψn+1(x)∥2 = ∥Px+1Ψn(x+ 1) +Qx−1Ψn(x− 1)∥2

=
(
⟨Ψn(x+ 1)|C∗

x+1|L⟩⟨L|+ ⟨Ψn(x− 1)|C∗
x−1|R⟩⟨R|

)
× (|L⟩⟨L|Cx+1|Ψn(x+ 1)⟩+ |R⟩⟨R|Cx−1|Ψn(x− 1)⟩)

= ∥Px+1Ψn(x+ 1)∥2 + ∥Qx−1Ψn(x− 1)∥2.

(4.22)

Given that inner products ⟨L | R⟩ and ⟨R | L⟩ are zero (orthogonality of left and right

states), this expression simplifies to:

µn+1(x) = ∥Px+1Ψn(x+ 1)∥2 + ∥Qx−1Ψn(x− 1)∥2. (4.23)

By recognizing that pn(x+1) and qn(x−1) are defined as normalized squared norms

of these projections (i.e., pn(x+ 1) = ∥Px+1Ψn(x+1)∥2
µn(x+1)

and qn(x− 1) = ∥QxΨn(x−1)∥2
µn(x−1)

),

the lemma’s equation is derived:

µn+1(x) = pn(x+ 1)µn(x+ 1) + qn(x− 1)µn(x− 1). (4.24)
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This result highlights how the probability amplitude at a given position in a QW is

determined by contributions from neighboring positions, consistent with the proba-

bilistic nature of quantum state evolution.

Theorem 5, [26]. If initial distributions of both processes are identical, then their dis-

tributions remain identical at all subsequent times. distributions νn and µn of QWRW

and QW will be identical at all steps n if and only if their initial distributions ν0 and

µ0 are the same.

ν0 = µ0 ⇐⇒ νn = µn for all n ∈ N0. (4.25)

Proof. By assuming that distributions νn and µn are equal at some arbitrary time n.

Under this assumption, next step is to examine how these distributions evolve to next

time step n + 1. The evolution of distribution νn+1(x) is governed by a recurrence

relation, which can be written as:

νn+1(x) = pn(x+ 1)µn(x+ 1) + qn(x− 1)µn(x− 1), (4.26)

where pn(x+1) and qn(x−1) are transition probabilities or coefficients that describe

dynamics of the system at time n. This equation is derived from the assumption that

νn = µn, thus substituting µn(x) into the equation for νn+1(x).

In Lemma 4, which likely establishes a relationship between distributions νn+1 and

µn+1 under the given assumptions. By applying Lemma 4 to the recurrence relation,

it follows that:

νn+1(x) = µn+1(x), (4.27)

for all x ∈ Z. This result demonstrates that if distributions are identical at some time

n, then they will remain identical at next time step n + 1. By induction, it follows

that distributions νn and µn will be identical for all n provided that they start from the

same initial distribution, ν0 = µ0.
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4.2 Simulation of Quantum Walk

In the context of a quantum RW, the coin operator Cx is given by:

Cx =
1√
2

1 1

1 −1

 , (4.28)

which is applied to the quantum state at each step. The initial state Ψ0(0) is defined

as:

Ψ0(0) =
1√
2

1
i

 . (4.29)

This initial state represents a superposition of two basis states with complex coeffi-

cients.

The coin matrix Cx can be decomposed into projections Px and Qx which are associ-

ated with specific outcomes of the measurement:

Px = |L⟩⟨L|Cx =
1√
2

1 1

0 0

 =: P, (4.30)

Qx = |R⟩⟨R|Cx =
1√
2

0 0

1 −1

 =: Q. (4.31)

Here, P and Q are projection matrices corresponding to left (|L⟩) and right (|R⟩)
movement directions, respectively.

At n = 0, probabilities for finding the walker in respective positions are:

ν0(0) = µ0(0) = 1, (4.32)

where µ0(0) is the normalization constant. Given this, probabilities p0(0) and q0(0)

of measuring the walker at position x = 0 after applying P and Q respectively are:

p0(0) =
∥PΨ0(0)∥2

µ0(0)
=

1

2
, (4.33)

q0(0) =
∥QΨ0(0)∥2

µ0(0)
=

1

2
. (4.34)
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To find existence probabilities at n = 1,

ν1(−1) = p0(0)ν0(0) =
1

2
, (4.35)

is used.

ν1(1) = q0(0)ν0(0) =
1

2
. (4.36)

Similarly, probabilities p1(±1) and q1(±1) are:

p1(−1) =
∥PΨ1(−1)∥2

µ1(−1)
=

∥P 2Ψ0(0)∥2

∥PΨ0(0)∥2
=

1

2
, (4.37)

q1(−1) =
∥QΨ1(−1)∥2

µ1(−1)
=

∥QPΨ0(0)∥2

∥PΨ0(0)∥2
=

1

2
, (4.38)

p1(1) =
∥PΨ1(1)∥2

µ1(1)
=

∥PQΨ0(0)∥2

∥QΨ0(0)∥2
=

1

2
, (4.39)

q1(1) =
∥QΨ1(1)∥2

µ1(1)
=

∥Q2Ψ0(0)∥2

∥QΨ0(0)∥2
=

1

2
. (4.40)

Thus, existence probabilities at n = 2 are:

ν2(−2) = p1(−1)ν1(−1) =
1

4
, (4.41)

ν2(0) = p1(1)ν1(1) + q1(−1)ν1(−1) =
1

2
, (4.42)

ν2(2) = q1(1)ν1(1) =
1

4
. (4.43)

At n = 3, existence probabilities are:

ν3(−3) = ν3(3) =
1

8
, (4.44)

ν3(−1) = ν3(1) =
3

8
. (4.45)
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The transition probabilities at n = 3 are:

p3(−3) = q3(−3) = p3(3) = q3(3) =
1

2
, (4.46)

p3(−1) = q3(1) =
5

6
, (4.47)

q3(−1) = p3(1) =
1

6
. (4.48)

The evolution of these probabilities is the same as patterns observed in simple RWs

initially but diverges since interactions between the coin and position operators come

into play, [26]. For instance, at n = 4:

ν4(−4) = ν4(4) =
1

16
, (4.49)

ν4(−2) = ν4(2) =
3

8
, (4.50)

ν4(0) =
1

8
. (4.51)

Other steps can be calculated similarly.
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Figure 4.1: Left and right probabilities for 5 time step iterated QWRW, [26]
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Figure 4.2: Probability distribution νn(x) of the QWRW at time n = 500, [26]
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Figure 4.3: 100 simulated paths for n = 500, [26]
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QWRW can be simulated using following MATLAB code:
1 function [liste] = qrw(Length,Size)

2 for z=1:Size

3 L = Length;

4 P=[1/sqrt(2) 0; 1/sqrt(2) 0] ;

5 Q=[0 1/sqrt(2); 0 1/sqrt(2)] ;

6 psi= [ 0 0; 1/sqrt(2) complex(0,1)/sqrt(2); 0 0] ;

7 condprob=(norm(Q psi(:,2)) 2)/((norm(Q psi(:,2)) 2)+(norm(P psi(:,2)) 2));

8 ksi=2 binornd(1,condprob) 1;

9 sum=ksi;

10 j=2;

11 walk(1) = sum;

12 for n=2:L

13 PS=zeros(2,n+2);

14 PS(:,n+2)=[0 0] ;

15 PS(:,1)=[0 0] ;

16

17 for i=2:n+1

18 PS(:,i)= P psi(:,i)+Q psi(:,i 1);

19 end

20 psi=PS;

21 if ksi==1

22 j = j +1;

23 end

24 condprob=(norm(Q psi(:,j)) 2)/((norm(Q psi(:,j)) 2)+(norm(P psi(:,j)) 2));

25 ksi=2 binornd(1,condprob) 1;

26 sum=sum+ksi;

27 walk(n) = sum;

28 end

29 liste(:,z)= walk;

30 end

31 end
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Figure 4.4: Sample path generated with provided MATLAB code for n = 500
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CHAPTER 5

LONGEST HEAD RUN IN QUANTUM RANDOM WALK

This chapter primarily expands upon the concepts discussed in [23].

The length of the longest run of heads in a sequence of coin tosses, denoted as Rn,

is a fundamental concept in probability theory, particularly in the study of random

sequences. To analyze this, we define the cumulative distribution function Fn(x) =

Pr(Rn ⩽ x), which gives the probability that the longest consecutive sequence of

heads in n tosses is less than or equal to x.

The function Fn(x) is calculated in terms of the number of favorable outcomes,

An(x), which represents the number of sequences of length n in which the longest run

of heads does not exceed x. The probability is then given by normalizing the number

of favorable outcomes by the total number of possible sequences of length n, which

is 2n for n independent tosses of a fair coin. Formally, we express this relationship

as:

Fn(x) =
An(x)

2n
(5.1)

where 2n accounts for the total number of possible sequences, since each toss can

result in either heads (H) or tails (T).

The computation of An(x), which is the number of sequences of length n where the

longest run of heads does not exceed x, can be tackled through recursive partitioning

of the set of favorable sequences. The partitioning is based on the number of heads (if

any) that occur before the first tail appears. This method naturally leads to a recursive

relationship because shorter sequences can be appended to form longer sequences

without violating the condition that the longest run of heads is at most x.

For sequences of length n ⩽ x, any possible sequence of heads and tails is favorable
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since, by definition, the longest possible run of heads in a sequence of length n is n.

In such cases, all sequences are allowed, and therefore:

An(x) = 2n for n ⩽ x (5.2)

This is because any sequence with n ⩽ x will trivially satisfy the condition that the

longest run of heads is no greater than x.

When n > x, we need to carefully structure the sequences to ensure that no sequence

has more than x consecutive heads. A key insight is that any sequence of length

n can begin with a specific pattern of heads followed by a tail, and the remaining

sequence must adhere to the same constraint of having no more than x consecutive

heads. These initial patterns can be:

• The sequence starts with a tail (T),

• The sequence starts with one head followed by a tail (HT),

• The sequence starts with two heads followed by a tail (HHT),

• The sequence starts with three heads followed by a tail (HHHT), and so on.

Each of these patterns reduces the length of the remaining sequence and ensures that

no part of the sequence contains more than x consecutive heads. Thus, the recursive

formula for An(x) is:

An(x) = An−1(x) + An−2(x) + An−3(x) + · · ·+ An−x−1(x) for n > x (5.3)

This formula sums over all possible ways that a sequence of length n can be con-

structed by appending a valid sequence of shorter length, where the longest run of

heads does not exceed x.

To illustrate this recursive process, consider the case where x = 3. For sequences of

length n = 4, 5, 6, . . ., the recursive relation becomes:

An(3) = An−1(3) + An−2(3) + An−3(3) + An−4(3) (5.4)

We start by computing the base cases:

A0(3) = 1, A1(3) = 2, A2(3) = 4, A3(3) = 8 (5.5)
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These values correspond to all possible sequences of length n ⩽ 3, where any se-

quence is valid. Using the recursive relation, we compute further values for n > 3:

A4(3) = A3(3) + A2(3) + A1(3) + A0(3) = 8 + 4 + 2 + 1 = 15 (5.6)

A5(3) = A4(3) + A3(3) + A2(3) + A1(3) = 15 + 8 + 4 + 2 = 29 (5.7)

A6(3) = A5(3) + A4(3) + A3(3) + A2(3) = 29 + 15 + 8 + 4 = 56 (5.8)

This process continues, yielding values such as A8(3) = 208. Hence, for n = 8, the

probability that the longest run of heads does not exceed 3 is:

Pr(R8 ⩽ 3) =
208

28
=

208

256
= 0.8125 (5.9)

This implies that for 8 tosses of a fair coin, there is an 81.25% chance that the longest

run of heads will be no more than 3.

In the case of a biased coin, where the probability of heads is p and the probability

of tails is q = 1 − p, the problem becomes more complex. The number of favorable

sequences, denoted C(k)
n (x), is the number of sequences of length n with exactly k

heads, but where no run of heads exceeds x.

The probability that the longest run of heads is no greater than x is then:

Pr(Rn ⩽ x) =
n∑

k=0

C(k)
n (x)pkqn−k (5.10)

Here, the term C
(k)
n (x) represents the number of sequences with exactly k heads,

constrained such that no run of heads exceeds x.

The values of C(k)
n (x) can be computed using a similar recursive structure to the one

used for An(x). For small values of k ≤ x, C(k)
n (x) is simply given by the binomial

coefficient
(
n
k

)
, since there are no constraints on the sequence. However, for larger

values of k > x, C(k)
n (x) must account for the fact that no run of heads can exceed x.

This leads to the recursive relation:

C(k)
n (3) = C

(k)
n−1(3) + C

(k−1)
n−2 (3) + C

(k−2)
n−3 (3) + C

(k−3)
n−4 (3) (5.11)

This structure allows us to compute the probability for biased coins in a systematic

manner. The key difference from the fair coin case lies in the weight given to each
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Figure 5.1: Values of C(k)
n (3) for n ≤ 8

sequence, determined by the powers of p and q in the sum. Figure 5.1 shows

the values of C(k)
n (3) for n ≤ 8. The first four rows (k = 0, 1, 2, 3) correspond to

Pascal’s triangle. For the entries above these rows, they are determined by summing

diagonally over four adjacent values from the rows and columns below and to the

left. The ’hockey stick’ pattern exemplifies the case C(5)
7 (3) = 2 + 3 + 4 + 3 =

12. The An(3) values are the sums of the columns; for example, A8(3) = 1 + 8 +

28 + 56 + 65 + 40 + 10 = 208. In the case of tossing a biased coin eight times,

equation (3) gives the probability of obtaining no more than three consecutive heads

as 1q8 + 8pq7 + 28p2q6 + 56p3q5 + 65p4q4 + 40p5q3 + 10p6q2.

5.1 Quantum Walk Implementation

In the quantum walk case, calculating the probability of a particular outcome, such

as the longest run of heads, becomes more intricate compared to the classical case.

One key distinction arises from the non-commutative nature of the operators involved.

Specifically, matrix multiplication in quantum systems is generally non-commutative,

meaning that the product of two matrices A and B (i.e., AB) is not necessarily equal

to BA. As a result, each path in the quantum walk must be evaluated individually,

rather than relying on simplified algebraic structures like in classical random walks.

This significantly increases the complexity of quantum walk calculations.

A useful approach in quantum walks may be to exploit the relationship between the

probability of the longest run of heads being at most x and its complementary event.

Specifically, the probability that the longest run exceeds x, denoted as Pr(Rn > x),
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can be used to compute Pr(Rn ≤ x) through the equation:

Pr(Rn ⩽ x) = 1− Pr(Rn > x) (5.12)

This relationship allows for a reduction in the number of paths that need to be com-

puted, as finding the probability that the longest run exceeds x can be more tractable

for certain values of n and x.

To demonstrate this, consider the example where we calculate Pr(R4 ⩽ 3) and

Pr(R5 ⩽ 3). Using the complementary relation, we first compute the probabilities

that the longest run of heads exceeds 3 for n = 4 and n = 5.

For n = 5, the probability that the longest run exceeds 3, Pr(R5 > 3), is given by:

Pr(R5 > 3) =
∥∥(QP 4 + P 4Q+ P 5)Ψ0(0)

∥∥2 (5.13)

Here, P represents decomposed coin operator, which is responsible for advancing the

walk left given in 4.3. Q represents decomposed coin operator, which is responsible

for advancing the walk right given in 4.3. Ψ0(0) is the initial quantum state of the

walker. The terms QP 4, P 4Q, and P 5 account for the different possible paths that

lead to a run of heads exceeding 3. These terms arise because, in quantum walks,

paths can interfere, and thus each possible path must be considered separately.

Similarly, for n = 4, the probability that the longest run exceeds 3, Pr(R4 > 3),

simplifies to:

Pr(R4 > 3) =
∥∥P 4Ψ0(0)

∥∥2 (5.14)

In this case, the quantum walker evolves according to the operator P 4, corresponding

to four steps with the coin operator, and the result is applied to the initial state Ψ0(0).

The expressions for Pr(R5 > 3) and Pr(R4 > 3) are generalizable for any initial

quantum state and coin matrix. In quantum walks, the initial state Ψ0(0) can vary

depending on the specific setup of the quantum system. Additionally, the coin matrix,

which dictates the probabilities of moving left or right in the walk, can be any unitary

matrix, allowing for a wide variety of coin-flip dynamics.

In general, for any initial state Ψ0(0) and coin matrix P , the calculation of Pr(Rn >

x) involves evaluating the norm of a series of quantum operators applied to the initial
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state. The non-commutative nature of these operators requires that each possible path

in the quantum walk should be considered individually, and the final probability is

obtained by summing the contributions of each of these paths. The complementary

relation Pr(Rn ⩽ x) = 1 − Pr(Rn > x) may simplify the computation by focusing

on the less complex event, Pr(Rn > x). However, note that as n gets large, that is

considering the general case, such relations may not help with the calculations.

The longest head run quantum walk probabilities for further steps can be calculated

through Monte Carlo;
1 function [longestheadprob, totallongestheads] = qrwlongestrunprob(Length, Size, threshold)

2 longestheadcounts = zeros(Length + 1, 1);

3 totallongestheads = 0;

4 for z = 1:Size

5 L = Length;

6 P = [1/sqrt(2) 0; 1/sqrt(2) 0] ;

7 Q = [0 1/sqrt(2); 0 1/sqrt(2)] ;

8 psi = [0 0; 1/sqrt(2) complex(0,1)/sqrt(2); 0 0] ;

9 condprob = (norm(Q psi(:,2)) 2) / ((norm(Q psi(:,2)) 2) + (norm(P psi(:,2)) 2));

10 ksi = 2 binornd(1,condprob) 1;

11 sum = ksi;

12 j = 2;

13 walk(1) = sum;

14 headscount = 0;

15 longestheads = 0;

16 for n = 2:L

17 PS = zeros(2,n+2);

18 PS(:,n+2) = [0 0] ;

19 PS(:,1) = [0 0] ;

20 for i = 2:n+1

21 PS(:,i) = P psi(:,i) + Q psi(:,i 1);

22 end

23 psi = PS;

24 if ksi == 1

25 headscount = headscount + 1;

26 if headscount longestheads

27 longestheads = headscount;

28 end

29 else

30 headscount = 0;

31 end

32 condprob = (norm(Q psi(:,j)) 2) / ((norm(Q psi(:,j)) 2) + (norm(P psi(:,j)) 2));

33 ksi = 2 binornd(1,condprob) 1;

34 sum = sum + ksi;

35 walk(n) = sum;

36 end

37 longestheadcounts(longestheads + 1) = longestheadcounts(longestheads + 1) + 1;

38 if longestheads threshold

39 totallongestheads = totallongestheads + 1;

40 end

41 end

42 longestheadprob = longestheadcounts / Size;

43 end
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CHAPTER 6

CONCLUSION

In this thesis, quantum walks have been examined as an extension of classical ran-

dom walks, with a focus on the unique advantages driven by quantum phenomena

such as superposition. Although quantum walks are often considered the quantum

counterpart to classical random walks, they exhibit distinct features that do not occur

in classical walks due to these quantum principles. These characteristics underscore

the potential innovative applications of quantum walks in various fields.

Three different methods were presented and applied to analyze and understand the

behaviors of quantum walks: analytical solution, computational solution, and trajec-

tories.

• Analytical Solution: Analytical solutions were derived for quantum walks,

allowing for a theoretical understanding of the walker’s behavior over time.

These solutions provided insights into probability distributions and the effects

of quantum interference.

• Computational Solution: Numerical simulations of quantum walks were con-

ducted using computational methods, enabling the exploration of scenarios that

are difficult to solve analytically. This method played a critical role in un-

covering the behaviors of quantum walks in more complex environments and

validating theoretical predictions.

• Trajectories: The quantum-walk-replicating-random-walk (QWRW) approach

was used to examine individual trajectories, offering a more classical interpre-

tation of the walker’s movement. This approach focused on step-by-step tran-

sitions, avoiding the complexities of quantum interference and providing new
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insights into the directionality and behavior of quantum walks.

Through the combination of these methods, quantum walks were comprehensively

analyzed, and their unique characteristics were thoroughly understood. While classi-

cal random walks served as a foundational concept, it was shown that the complexities

and opportunities introduced by quantum walks, such as those enabled by superposi-

tion, are of great significance for both theoretical research and practical applications.

The QWRW approach, in particular, opens opportunities for further exploration of

trajectory-based analysis of quantum walks, potentially leading to new algorithms

and insights in the field of quantum computing. Additionally, extending simulation

methods to higher dimensions or different types of quantum walks could provide

deeper understanding and new applications in this area.
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