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ABSTRACT

IMPROVING FEAST FOR REAL SYMMETRIC STANDARD EIGENVALUE
PROBLEMS

ÖZÇOBAN, KADİR

M.S., Department of Computer Engineering

Supervisor: Prof. Dr. Murat Manguoğlu

Co-Supervisor: Assoc. Prof. Dr. Emrullah Fatih Yetkin

September 2024, 83 pages

Eigenvalue problems may arise from various application areas including Quantum

mechanics, Computational Fluid Dynamics, Power Networks, and Machine Learn-

ing. To solve these problems, several methods for computing all or a batch of eigen-

values and eigenvectors (i.e. eigenpairs) have been proposed over the years, including

both direct and iterative approaches. FEAST is a subspace-based iterative technique

that simplifies the computation by projecting the problem onto a lower-dimensional

subspace while preserving the eigenpairs. Despite its widespread use, FEAST is not

without limitations. One of the most conspicuous problems is that a crucial matrix

for the algorithm which is supposed to be orthogonal might lose its orthogonality

throughout the iterations because of the well-known floating point errors or the ap-

proximate methods used to obtain it. This possible issue could cause slower conver-

gence or even spurious eigenvalues, values that do not originally belong to the matrix.

In this thesis, new as well as existing methods to improve the stability of the FEAST

algorithm are investigated over various eigenvalue spectrum. Additionally, a novel

method in which FEAST is preceded with inverse subspace iteration to provide better
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initial guesses for the algorithm is studied. Moreover, this method is further extended

in a Hybrid manner by iterating these two alternatively.

Keywords: Eigenvalue Problem, Feast, Hybrid Approaches, Sparse Matrix Compu-

tations
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ÖZ

FEASTİN GERÇEK SİMETRİK STANDART ÖZDEĞER PROBLEMLERİ
İÇİN İYİLEŞTİRİLMESİ

ÖZÇOBAN, KADİR

Yüksek Lisans, Bilgisayar Mühendisliği Bölümü

Tez Yöneticisi: Prof. Dr. Murat Manguoğlu

Ortak Tez Yöneticisi: Doç. Dr. Emrullah Fatih Yetkin

Eylül 2024 , 83 sayfa

Özdeğer problemleri Kuantum mekaniği, Hesaplamalı Akışkanlar Dinamiği, Güç Ağ-

ları ve Makine Öğrenimi gibi çeşitli uygulama alanlarında ortaya çıkabilir. Özdeğer-

lerin ve özvektörlerin (özçiftlerin) tamamını veya bir kısmını hesaplamak adına yıllar

boyunca hem doğrudan hem de yinelemeli yöntemler önerilmiştir. FEAST, özçiftleri

korurken sorunu daha düşük boyutlu bir alt uzaya yansıtarak hesaplamayı basitleşti-

ren, alt uzay tabanlı yinelemeli bir tekniktir. Yaygın kullanımına rağmen FEASTin de

bazı problemleri bulunmaktadır. En göze çarpan sorunlardan biri, algoritmanın çalış-

ması için dik olması gereken önemli bir matrisin, kayan nokta hataları veya matrisi

elde etmek için kullanılan yaklaşık yöntemler nedeniyle yinelemeler boyunca dikli-

ğini kaybedebilmesidir. Bu olası sorun, daha yavaş yakınsamaya ve hatta orijinal ola-

rak matrise ait olmayan sahte özdeğerlerin ortaya çıkmasına neden olabilir. Bu tezde,

FEAST algoritmasının kararlılığını arttırmaya yönelik mevcut ve yeni yöntemler çe-

şitli özdeğer dağılımları üzerinde incelenmiştir. Yeni yöntem olarak algoritma için

daha iyi başlangıç tahminleri sağlamak amacıyla FEASTten önce ters altuzay iteras-

vii



yonunun koşulduğu bir kurulum üzerinde çalışılmıştır. Bu yaklaşım FEAST ve ters

altuzay iterasyonunun birbirinin ardılı olacak şekilde çalıştırıldığı hibrit bir yöntem

olarak genişletilmiştir.

Anahtar Kelimeler: Özdeğer Problemi, Feast, Hibrit Yöntemler, Seyrek Matris He-

saplamaları
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Fatih Yetkin, for their unwavering support and guidance throughout my studies. Their

valuable insights, constant encouragement, and mentorship have been instrumental in

shaping my academic development and career path.

I am grateful to have close friends with whom, especially over the past two years, I’ve

shared countless experiences and collected valuable, often wonderfully nonsensical

memories. Specifically, I would like to thank Özge Tuğcu, Onur Tuğcu, and their
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CHAPTER 1

INTRODUCTION

1.1 What are eigenvalue problems and their possible sources?

Eigenvalue problems whose further categorizations are mentioned in the following

subsections have a crucial role in various fields comprising Physics, Machine Learn-

ing, Mathematics, and Statistics [1]. The mathematical representation of the problem

could be given by the equation

Av = λv, v ̸= 0 (1.1)

where λ is called an eigenvalue and v is the corresponding eigenvector [2]. Accord-

ingly, eigenvectors, which do not change their directions when the matrix is applied

as an operator, correspond to the most informative directions of that matrix. For in-

stance, this fact is used in Principal Component Analysis (PCA) as the eigenvectors

of the covariance matrix show the spread and variance directions of the data [3].

As mentioned, various fields require the computation of the eigenpairs. For instance,

many physical systems described by differential equations lead to eigenvalue prob-

lems, or Markov chains’ steady-state behavior is analyzed using transition matrices

eigenvalues. As more examples, in the Machine Learning field, eigenvalues and

eigenvectors are used in algorithms such as PCA, spectral clustering, and manifold

learning. Even for economics, they are utilized for input and output analysis.

As it might have been guessed, the form given in Eq.(1.1), which is called the standard

eigenvalue problem, is not the only form of eigenvalue problem. In the following

subsection, the types of the problems are further detailed.
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1.1.1 Categorizations of the problem

The general representation of the linear eigenvalue problems, which is called the gen-

eralized eigenvalue problem[4], can be given by

Av = λBv, v ̸= 0.

which is denoted by the pair (A,B) that is called the pencil of the problem [5]. It

could be seen that the standard eigenvalue problem is a special case of the generalized

one where B = I . This categorization can be further extended by the non-linear

eigenvalue problems, refer to [6] for the detailed analysis.

Instead of the structure of the problem, the properties of the matrices could also be

used for categorizing. Firstly, whether the elements of the matrices are real or com-

plex is a way to split the problems. Followingly, the properties of the matrices could

be used.

1. Symmetric Generalized Eigenvalue Problem

• Matrix Structure: A and B are symmetric

• Properties: Eigenvalues are real, and eigenvectors corresponding to dis-

tinct eigenvalues are B−orthogonal

2. Hermitian Generalized Eigenvalue Problem

• Matrix Structure: A and B are hermitian (complex symmetric)

• Properties: Eigenvalues are real if B is positive definite

3. Non-symmetric Generalized Eigenvalue Problem

• Matrix Structure: A and B are non-symmetric

• Properties: Eigenvalues can be complex, and eigenvectors are not neces-

sarily orthogonal also can be defective

A complex matrix is called positive definite if the following constraint

R[vhAv] > 0, ∀v ̸= 0
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which can be directly applied to real ones, holds. Note that the matrices satisfying the

greater than equal to condition instead of greater than, are called the positive semi-

definite matrices.

In this thesis, real symmetric standard eigenvalue problems are studied; therefore, in

the following subsection further properties of them are mentioned.

1.2 Real Symmetric Eigenvalue Problem

The scope of the thesis contains the following problem:

Av = λv

where A is a real symmetric matrix, having the dimension of n. Namely, in the

following sections A ∈ Rn×n unless otherwise stated. One of the important properties

of it is that eigenvalues are real. This can be proved by the following steps.

Av = λv take complex conjugate of both sides, as A is real A = A

Av = λv take transpose of both sides, as A is symmetric AT = A

vTA = λvT multiply both sides with v, as by assumption v > 0

vTAv = λvTv by definition Av = λv

vTλv = λvTv divide both sides by v, as vTv > 0

λ = λ meaning that λ is real

Another crucial property of the problem is that eigenvectors corresponding to differ-

ent eigenvalues of the matrix are orthogonal to each other, which can be proved as

follows.
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Avi = λivi by assuming λi ̸= λj

Avj = λjvj multiply the first one with vTj

vTj Avi = vTj λivi multiply the second one with vTi

vTi Avj = vTi λjvj vTj Avi = vTi Avj as A is symmetric

vTj λivi = vTi λjvj by assumption λi ̸= λj

vTj vi = 0 meaning that vi and vj are orthogonal

As the problem has been well-known for many years, there have been various ap-

proaches to compute the eigenpairs. In the following subsection, one of the earliest is

demonstrated.

1.2.1 The relation between characteristic equation and eigenpairs

A straightforward investigation of Eq.(1.1), might suggest the solution of the follow-

ing linear system to compute eigenpairs

(A− λI)v = 0. (1.2)

The solution seems basic by letting v = 0; however, by definition, an eigenvector

is not allowed to be a zero vector, requiring an improvement. Accordingly, further

investigation shows that the null space of (A − λI) must have more than one vector,

indicating the singularity of the matrix [7]. Therefore, by considering the relation

between the determinant and null space (the determinant equals zero means that the

null space contains a vector or vectors other than zero) the equation could be enhanced

by taking the determinant as follows:

det(A− λI) = 0 (1.3)

meaning that λ values satisfying the equation, called the characteristic equation, are

eigenvalues [7]. Because if for any λ Eq.(1.3) equals zero, it means there is at least

one vector, called the corresponding eigenvector of λ, other than the zero vector sat-

4



isfying Eq.(1.2). In other words, eigenvalues are the roots of the characteristic equa-

tion given in Eq.(1.3), and eigenvectors can be computed by substituting them to

Eq.(1.2). Even though this method could be used for the eigenpair computation, as

the dimension of matrices increases solving the characteristic equation becomes com-

putationally expensive; therefore, various paradigms, some of which are provided in

the following section, have been proposed. Nevertheless, [8] can be referred to show

the relation between characteristic equations and eigenvalues.

As mentioned, in chapter 2 various methods, one of which is FEAST, are detailed.

FEAST is a subspace-based iterative eigensolver, utilizing contour integration tech-

niques, that requires solutions to linear systems, which could compute eigenpairs

lying in an interval. These features enable multiple levels of parallelism, making it

favorable for parallel architectures [9]. However, FEAST as well as other solvers

mentioned in the chapter are not perfect, having various deficiencies. These are also

mentioned in the same chapter. Followingly, the improvements that the thesis pro-

poses to overcome these possible problems are outlined in chapter 3. Afterward, the

results of various methods over both synthetic and real-life matrices are shown in

chapter 4 after which the findings of the thesis are discussed in chapter 5.
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CHAPTER 2

LITERATURE REVIEW

In this chapter, various paradigms for computing eigenpairs are mentioned. Firstly,

decomposition-based methods, which alter the structure of the matrix to compute

all eigenpairs are given. Followingly, approaches, called subspace-based methods,

that iteratively improve an initial subspace to compute a portion of eigenpairs are

explained. Afterward, methods that consider eigenpair computation as a minimization

problem are shown, followed by an extensive investigation of FEAST to conclude the

chapter.

2.1 Decomposition Based Methods

Methods explained in this section iteratively alter the input matrix by utilizing various

decompositions to transform the structure of it so that the eigenvalues are relocated at

the diagonal. Consequently, the computation of eigenpairs simplifies. These methods

are mostly used for computing all eigenvalues.

2.1.1 LU

In 1958, early stage of eigenpair computations, Rutishauser proposed an LR transfor-

mation (nowadays called LU decomposition) based method to obtain all eigenpairs

of a matrix [10]. The method includes two distinct phases: LR transformation of a

matrix and construction of a new one by the obtained triangular matrices. Initially,

the input matrix A = A1 is decomposed to an upper and a lower triangular matrix

A1 = L1R1. Subsequently, a new matrix A2 is formed by reversing the multiplica-

7



tion: A2 = R1L1. The crucial observation is that A1 and A2 have the same eigenval-

ues as A2 = R1A1R
−1
1 . Hence, A has the same eigenvalues as any Ak where Ak is the

matrix obtained at the (k − 1)th iteration of the same procedure, the pseudo-code is

given in Alg.(1). Pointing that, the method utilizes the convergence of the Ak, under

certain conditions, to an upper triangular matrix where eigenvalues lie on the diagonal

as k → ∞. Even though certain conditions that guarantee the convergence of A are

not in the scope of the thesis, it is important to note that being Hermitian and positive

definite is a sufficient condition. However, the method has not been preferred since

the LR transformation is not guaranteed to be stable [11].

Algorithm 1 LR Transformation for Eigenvalue Computation
Inputs: A, tolerance ϵ, maximum iterations max_iter

Output: λ1,2,...,n

1: A0 = A

2: for k=1,2,...,max_iter do

3: Ak−1 = LkRk ▷ Perform LR decomposition

4: Ak = RkLk ▷ Form the product

5: if ∥Ak − Ak−1∥ < ϵ then ▷ Test for convergence

6: break

7: end if

8: end for

9: Return λ1,2,...,n (the diagonal elements of Ak)

2.1.2 QR

In 1961, Francis stated that as the LR transformation is not always stable, especially

for large matrices, and the process breaks down if the pivotal element is zero, the

substitution of a unitary transformation, in his case QR transformation, is preferable

in terms of numerical stability [11]. Accordingly, by applying QR transformation

instead of LR in the same iterative process, the algorithm was enhanced. It was also

proven by Francis that if certain conditions are fulfilled, the updated matrix converges

to an upper triangular. However, it is more expensive than the LR, due to the high

computational cost of QR factorization. The improved version is given in Alg.(2).
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However, decomposition-based methods are not preferred as generally instead of all,

a batch of eigenpairs are required. Therefore, subspace-based approaches which are

given in the following subsection are generally utilized as they could compute a por-

tion of eigenpairs.

Algorithm 2 QR Factorization for Eigenvalue Computation
Inputs: A, tolerance ϵ, maximum iterations max_iter

Output: λ1,2,...,n

1: A0 = A

2: for k=1,2,...,max_iter do

3: Ak−1 = QkRk ▷ Compute the QR decomposition

4: Ak = RkQk ▷ Form the product

5: if ∥Ak − Ak−1∥ < ϵ then ▷ Test for convergence

6: break

7: end if

8: end for

9: Return λ1,2,...,n (the diagonal elements of Ak)

2.2 Subspace Based Methods

Contrary to methods that improve the structure of the matrix to ease the eigenvalue

computation explained in 2.1, this section summarizes methods that iteratively alter a

subspace to converge the eigenvectors of the matrix. The number of eigenpairs com-

puted by these methods can at most be the dimension of the initial subspace. These

methods are preferred if a part of the eigenvalue spectrum needs to be computed.

2.2.1 Single Vector Iterations

Initially, algorithms iterating over a single vector are explained. As the dimension of

the vector is one, only a single eigenpair of the matrix is computed.
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2.2.1.1 Power Method

One of the earliest and simplest methods for the single eigenpair computation is the

power method [12]. Similar to those discussed in 2.1, the method has an iterative

computational approach. However, each step only consists of a matrix-vector multi-

plication; consequently, only the dominant eigenvalue λ1 (the largest one in absolute

value) and the corresponding eigenvector v1 are converged. Initially, the method starts

with a random vector u0 and computes a new one by multiplying it with A: u1 = Au0.

The continuation of this operation yields uk = Auk−1 clearly indicating uk = Aku0.

The inspiration of the power method is that (Aku0)/||Aku0|| can be a good approxi-

mation for v1 [13]. The power method is given in Alg.(3).

Algorithm 3 Power Method
Inputs: A, initial vector u, tolerance ϵ, maximum iterations max_iter

Output: λ1, v1

1: for k=1,2,...,max_iter do

2: w = Au ▷ Compute matrix-vector product

3: u = w
∥w∥ ▷ Normalize vector

4: λ = uTAu ▷ Approximate eigenvalue

5: if ∥Au− λu∥ < ϵ then ▷ Test for convergence

6: break

7: end if

8: end for

9: Return λ, v

One might notice that the normalization process is applied at each iteration contrary

to the previous discussion. Nevertheless, the two techniques are equivalent since the

matrix-scalar multiplication commute and the two approaches result in a unit vec-

tor [13]. It is worth noting that theoretically, the initial vector could be in the null

space of A, consequently leading to a zero vector at each iteration. Nonetheless, even

in this case, because of the floating point errors, the outcome would never be exactly

zero; hence, the method converges as expected.

The convergence of the power method relies on the fact that any vector u can be

expressed by a complete set of fundamental eigenvectors of A as u = α1v1 + α2v2 +

10



...+ αnvn where |λn| ≤ ... ≤ |λ2| ≤ |λ1|. The careful investigation of the fact would

yield

u = α1v1 + α2v2 + ...+ αnvn

Aku = α1A
kv1 + α2A

kv2 + ...+ αnA
kvn

= α1λ
k
1v1 + α2λ

k
2v2 + ...+ αnλ

k
nvn

= λk
1

(
α1v1 + α2(

λ2

λ1

)kv2 + ...+ αn(
λn

λ1

)kvn

)
.

Moreover, as λ1 is the dominant one (λi/λ1)
k is zero for 2 ≤ i ≤ n as k → ∞ by

assuming λ2 < λ1. Leading that

lim
k→∞

(Aku)/||Aku|| = (α1λ
k
1v1)/||α1λ

k
1v1||.

This observation about the convergence of the power method implies two properties:

the method’s convergence rate is dependent on |λ2|
|λ1| and if the magnitude of λ1 and λ2

are the same the method can not converge as none can dominate the other.

2.2.1.2 Inverse Power Method

Previously, it was demonstrated that the power method is a tool for computing the

dominant eigenpair of a matrix. However, many problems require the smallest eigen-

pair in absolute value. In such cases, the power method is not directly applicable,

requiring a modification which is based on the well-known property that if A is an

invertible matrix having real, non-zero eigenvalues |λn| ≤ ... ≤ |λ2| ≤ |λ1|, then

the eigenvalues of A−1 are | 1
λn
| ≥ ... ≥ | 1

λ2
| ≥ | 1

λ1
|. Hence, substituting A with the

inverse in the power method as uk = A−1uk−1 is sufficient. However, if the matrix

is dense the computation of the inverse requires 8/3 n3 arithmetic operations, and the

existence of it is not always guaranteed; therefore, LU factorization, which needs 2/3

n3 arithmetic operations, is generally applied to speed up the process. Accordingly,

this observation leads to Alg(4). Alternatively, an iterative method for solving the

system in line 3 can also be used.

The same convergence analysis and properties of the power method can be applied to

the inverse power method.
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Algorithm 4 Inverse Power Iteration
Inputs: A, initial vector u, tolerance ϵ, maximum iterations max_iter

Output: λn, vn

1: A = LU ▷ LU decomposition for inverse computation

2: for k=1,2,...,max_iter do

3: w = U−1L−1u ▷ Compute matrix-vector products

4: u = w
∥w∥ ▷ Normalize vector

5: λ = uTAu ▷ Approximate eigenvalue

6: if ∥Av − λu∥ < ϵ then ▷ Test for convergence

7: break

8: end if

9: end for

10: Return λ, u

2.2.1.3 Shifted Inverse Power Iteration

In 2.2.1.1 and 2.2.1.2, methods to compute the extreme -largest and smallest- eigen-

pair of a matrix were introduced. However, these methods may not suffice, as many

problems require finding the eigenpair closest to a scalar value. Hence a shift is

required by utilizing that if λ is an eigenvalue of A, then 1
λ−σ

is an eigenvalue of

(A− σI)−1. Therefore, if λ is the closest eigenvalue to σ, then 1
λ−σ

will be the domi-

nant eigenvalue of the shifted matrix letting the method converge to the corresponding

eigenvector. This leads to the Alg.(5) for which the same analysis can be applied.

2.2.1.4 Rayleigh Quotient Iteration

The Rayleigh quotient of a vector is given in the form

σ(u) =
uTAu

uTu
.

Based on the eigenvalue definition, one can notice that σ(u) = λ is an eigenvalue if u

is an eigenvector. Hence, the formula can be derived by answering the question that

given an approximate vector u what is the best approximate σ to be its eigenvalue,

indicating the minimization of ||Au − uσ||. On the contrary to the shifted inverse

12



Algorithm 5 Shifted Inverse Power Iteration
Inputs: A, initial vector u, tolerance ϵ, maximum iterations max_iter

Output: λm, vm

1: A− σI = LU ▷ LU decomposition for inverse computation

2: for k=1,2,...,max_iter do

3: w = U−1L−1u ▷ Compute matrix-vector products

4: u = w
∥w∥ ▷ Normalize vector

5: λ = uTAu ▷ Approximate eigenvalue

6: if ∥Au− λu∥ < ϵ then ▷ Test for convergence

7: break

8: end if

9: end for

10: Return λ, u

power method in which the eigenvector of the eigenvalue that is closest to the in-

put scalar is computed, the Rayleigh quotient function computes the best scalar in

terms of being the eigenvalue of the input initial guess vector. On the nature of this

explanation, the iterative execution of these accelerates the convergence (quadratic

convergence) of the shifted inverse power method [14]. Rayleigh Quotient Iteration

is given in Alg.(6).

Indeed, the method is the same as the shifted inverse power method except the shift

scalar is dynamically computed by the Rayleigh quotient function at each iteration.

However, dynamic shifts result in the change of the coefficient matrix at the linear

system in line 3; therefore, if LU factorization is used, the matrix has to be factorized

at every iteration. Finally, it is worth noting that the method converges if the input

matrix is Hermitian, refer to [15] for further analysis.

2.2.1.5 Deflation Techniques

In certain application areas, the computation of the second λ2 (or higher) dominant

eigenpair of a matrix is required. One of the most straightforward and well-known

techniques is to utilize "deflation", for example, a rank one modification to the matrix
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Algorithm 6 Rayleigh Quotient Iteration
Inputs: A, initial vector u, tolerance ϵ, maximum iterations max_iter

Output: λm, vm

1: λ = uTAu
uTu

▷ Approximate eigenvalue by Rayleigh-quotient

2: for k=1,2,...,max_iter do

3: (A− λI)w = u ▷ Solve shifted linear system

4: u = w
∥w∥ ▷ Normalize vector

5: λ = uTAu ▷ Update eigenvalue by Rayleigh-quotient

6: if ∥Au− λu∥ < ϵ then ▷ Test for convergence

7: break

8: end if

9: end for

10: Return λ, u

so that the dominant eigenvalue λ1 is displaced while others are kept the same [12].

One of the well-known deflation techniques is Wielandt Deflation with One Vector in

which A is modified as

A = A− σv1u
T

where σ is the appropriate shift, v1 is the dominant eigenvector, and u is an arbi-

trary vector such that vT1 u = 1. After the modification, the power method is applied

to the altered matrix to compute the second dominant eigenpair. Furthermore, the

computation of higher eigenpairs requires the iterative execution of the process.

2.2.2 Subspace Iteration Methods

In 2.2.1, various algorithms to compute an eigenpair lying on the particular position

of the eigenspectrum were demonstrated. However, in most cases, more than one

eigenpair is required, necessitating the improvement of the previous methods to com-

pute other eigenpairs. Hence, in this section, methods for computing more than one

eigenpair of the input matrix by iterating a subspace are explained.
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2.2.2.1 Simple Subspace Iteration

One of the most elementary ideas to compute more than one dominant eigenpair

of a matrix is iteratively computing the current highest and deflating it to compute

others. However, this approach requires a lot of computation; hence, is not practically

applicable. Nevertheless, this can be further improved by extending the dimension of

the initial subspace, providing an m-dimensional matrix instead of a vector where m

is the number of desired eigenpairs. Although this idea leads to the power method

where the only difference is the dimension of the initial matrix, the desired eigenpairs

can not be computed as in that case, all column vectors of the initial matrix converge

to the eigenvector of the dominant eigenvalue. Therefore, applying QR factorization

to the iterated matrix, as it orthogonalizes the columns vectors, is required to ensure

convergence to all eigenvectors, leading to Alg.(7). The relation between subspace

iteration and QR/LU iterations is investigated in [16].

Algorithm 7 Simple Subspace Iteration
Inputs: A, U ∈ Rn×m, tolerance ϵ, maximum iterations max_iter

Output: Λ1,2,...,m, V1,2,...,m

1: for k=1,2,...,max_iter do

2: W = AU ▷ Compute the matrix product

3: W = QR ▷ Perform QR decomposition

4: U = Q ▷ Update subspace

5: Λ = UTAU ▷ Approximate eigenvalues

6: if ∥AU − UΛ∥ < ϵ then ▷ Test for convergence

7: break

8: end if

9: end for

10: Return Λ, U

Under a few assumptions, the subspace iteration algorithm that works on a subspace

of dimension m convergences at a rate of |λm+1|/|λm|, where λm+1 is the eigenvalue

with the (m + 1)th largest magnitude. Moreover, one possible way to reduce the

computational cost might be applying QR factorization not at each iteration but at

each k whose best possible value depends on the convergence rate [12]. Furthermore,
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the converged eigenvector can be deflated to reduce the cost per iteration.

As one might notice, this method computes the largest m eigenpairs; however, there

might be a need for computing the smallest or interior m. Therefore, in these situ-

ations, the modification of the method in a similar way to how the (shifted) inverse

power method is constructed from the power method is required. Afterward, the same

convergence analysis can be applied.

2.2.2.2 Subspace Iteration with Projection

One might recall in 2.2.1.4 the Rayleigh quotient and the power method are ensem-

bled to increase the performance. The same idea, combining two different method-

ologies, can be applied to the simple subspace iteration and Rayleigh-Ritz method

which resembles the Rayleigh quotient extended to higher dimensions, the deeper

theoretical analysis can be found in [17]. This observation leads us to Alg.(8).

Algorithm 8 Subspace Iteration with Projection
Inputs: A, U ∈ Rn×m, tolerance ϵ, maximum iterations max_iter

Output: Λ1,2,...,m, V1,2,...,m

1: for k=1,2,...,max_iter do

2: W = AU ▷ Compute the matrix product

3: W = QR ▷ Perform QR decomposition

4: Â = QTAQ ▷ Project A onto a smaller dimensional subspace

5: Â = V ΛV T ▷ Compute the eigenvalue decomposition of reduced A

6: U = QV ▷ Update subspace

7: if ∥AU − UΛ∥ < ϵ then ▷ Test for convergence

8: break

9: end if

10: end for

11: Return Λ, U

It is important that the projection step, line 4 of the algorithm, indeed yields a smaller

problem size focusing only on the dimension of the initial provided subspace. There-

fore, the computational cost of the eigenvalue problem required to be solved becomes

16



cheaper, especially for the problems where the number of the required eigenvalues

is much smaller than the dimension of the problem, even though the reduction step

causes an additional cost over the simple subspace method.

2.2.2.3 Krylov Subspaces Based Approaches

Krylov subspace methods are widely used techniques for different scientific prob-

lems, their explained construction way and usage in the section is only for eigenpair

computations. For a detailed analysis of the origin and usage areas [18] is suggested.

In the power method, a sequence of vectors Aku is computed; however, the know-

ledge of previous vectors is discarded at each iteration as only Aku/||Aku|| vector is

analyzed in terms of convergence. Therefore, one can argue that there is information

loss and all previous vectors should be considered during the eigenpair computation.

The critique leads to the following definition of Krylov subspace methods. The matrix

Km(u) = Km(u,A) = [u,Au, ..., Am−1u]

generated by the vector u is called the Krlyov matrix. Its columns span the Krylov

subspace

Km(u) = Km(u,A) = span{u,Au, ..., Am−1u}.

Indeed, it is well-established from the power method that the vectors Aku converge to

the dominant eigenvector of A. Hence, this basis tends to be extremely ill-conditioned

and unsuitable for numerical computing, necessitating orthogonalization. The re-

quirement can be fulfilled by applying the classical Gram-Schmidt orthogonalization

process to the basis vectors in their natural order.

Assuming that {q1, q2, ..., qi} is an orthonormal basis for Ki(u), qi+1 can be computed

by first orthogonalizing Aiu against q1, q2, ..., qi,

yi+1 = Aiu−
i∑

k=1

qkq
T
k A

iu

and normalizing the result vector qi+1 = yi+1/||yi+1||. As a result, {q1, q2, ..., qi, qi+1}
is an orthonormal basis for Ki+1(u).
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Moreover, a careful investigation of the Krylov subspace reveals that the orthogonal-

ization process can be performed more efficiently since

Ki+1(u) = [u,Au,A2u, ..., Aiu] (q1 = u/||u||)

= [q1, Aq1, A
2q1, ..., A

iq1] (Aq1 = αq1 + βq2, β ̸= 0)

= [q1, αq1 + βq2, A(αq1 + βq2), ..., A
i−1(αq1 + βq2)]

= [q1, q2, Aq2, ..., A
i−1q2]

...

= [q1, q2, ..., qi−1, Aqi].

Consequently, Aqi can be orthogonalized against q1, q2, ..., qi instead of Aiq1 to obtain

qi+1. The observation leads to the Alg.(9) that was proposed by Arnoldi in 1951[19]

to orthogonalize the Krylov subspace, for a non-Hermitian matrix A.

Algorithm 9 Arnoldi Iteration for Orthogonalizing the Krylov Subspace
Inputs: A, initial vector u, subspace dimension m

Output: Qm, Hm

1: q1 =
u

∥u∥ , Hm = 0 ▷ Initialize

2: for j=1,2,...,m do

3: w = Aqj

4: for i=1,2,...,j do ▷ Gram-Schmidt orthogonalization

5: Hi,j = qTi w

6: w = w −Hi,jqi

7: end for

8: Hj+1,j = ∥w∥
9: if Hj+1,j = 0 then ▷ An invariant subspace is found

10: break

11: end if

12: qj+1 =
w

Hj+1,j

13: end for

14: Return Qm, Hm

One might notice that the Arnoldi process terminates if computed w vanishes because

it means an invariant subspace is found.
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The algebraic representation of the process can also be depicted. Let

Qk =
(
q1 q2 ... qk

)
and

Hk =



h11 h12 ... h1,k−1 h1k

h21 h22 ... h2,k−1 h2k

h32
. . . h3,k−1 h3k

. . . ...
...

hk,k−1 hkk


.

Then the Arnoldi process can be expressed by

AQk = QkHk + hk+1,kqk+1e
T
k

where

QT
kQk = I and QT

k qk+1 = 0.

Accordingly, it can be inferred that the H matrix is in upper Hessenberg form. Thus,

this implies that in situations where A is a Hermitian matrix, the H matrix is also

Hermitian, leading to a tridiagonal matrix. Therefore, the orthogonalization process

of Krlyov subspace can be further improved by utilizing the structure of H , leading

to the Alg.(10) that was proposed by Lanczos [20].

Hence, the Lanczos process can be expressed by

AQk = QkTk + βkqk+1e
T
k

where Qk is as described above,

Tk =



α1 β1

β1 α2 β2

. . . . . . . . .
. . . αk−1 βk−1

βk−1 αk


,

QT
kQk = I and QT

k qk+1 = 0.
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Algorithm 10 Lanczos Iteration for Symmetric Eigenvalue Computation
Inputs: A, initial vector u, subspace dimension m

Output: Vm, Tm

1: v1 =
u

∥u∥ , β0 = 0 ▷ Initialize

2: for j=1,2,...,m do

3: w = Avj

4: αj = vTj w

5: w = w − αjvj − βj−1vj−1

6: βj = ∥w∥
7: if βj = 0 then ▷ An invariant subspace is found

8: break

9: end if

10: vj+1 =
w
βj

11: end for

12: Form tridiagonal matrix Tm with αi as diagonal elements and βi as subdiagonal

and superdiagonal elements

13: Return Vm = [v1, v2, ..., vm], Tm
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As mentioned previously, both methodologies, Arnoldi and Lanczos, discussed above

are techniques for orthogonalizing a Krylov subspace. Nevertheless, these methods

can be used in the eigenpair computation by utilizing the fact that similar matri-

ces have the same eigenpairs. Notice that A and H/T are similar matrices due to

QQT = I if the methods are iterated a number of times equal to the dimension of

A. Hence, iterating the Krylov subspace method enough times to derive a matrix

with reduced dimensions and subsequently computing its eigenpairs constitutes the

approach for computing eigenpairs from the Krylov subspace. This approach’s con-

vergence behavior has been widely investigated, refer to [21, 22, 23, 24, 25] for deeper

analysis.

Even though there have been various subspace-based approaches for the eigenpair

computation, it is not the only paradigm for the task. In the following subsection,

methods having different ways of approaching the problem are demonstrated.

2.3 Minimization Based Methods

Although the section is titled "Minimization-Based Methods," the specific objectives

of the minimization problems are different. The title has been chosen to maintain

consistency within the categorization.

2.3.1 Trace Minimization Eigensolver

TraceMin method was proposed by Sameh and Wisniewski [26] for solving the gen-

eralized symmetric eigenvalue problem and further improved in [27]. The method’s

main kernel is dependent on the following theorem.

Theorem 1 (Sameh and Wisniewski [26]) Let A and B be n × n real symmetric

matrices, with positive definite B, and let X be the set of all n × m matrices X for

which XTBX = Im, 1 ≤ m ≤ n. Then

min
X∈X

tr(XTAX) =
m∑
i=1

λi,

where λ1 ≤ λ2 ≤ ...λm < λm+1 ≤ ... ≤ λn are the eigenvalues of Ax = λBx.
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The important observation is the set of eigenvectors corresponding to the eigenvalues

of the smallest magnitude forms the block of vectors X that resolves the constrained

minimization problem. Accordingly, TraceMin algorithm can be derived by the fol-

lowing iterative scheme: assuming Xk is the approximation for the eigenvectors at a

step, the algorithm updates it to Xk+1 in a way that tr(XT
k+1AXk+1) < tr(XT

k AXk).

Hence, Xk+1 is a better approximation for the eigenvectors.

Xk is corrected by using the n × m matrix ∆k which is obtained by solving the

following constrained optimization problem

minimize tr
(
(Xk −∆k)

TA(Xk −∆k)
)

subject to XT
k B∆k = 0.

In the case of having symmetric positive definite A, this is equivalent to solving m

independent problems of

minimize (xk,i − dk,i)
TA(xk,i − dk,i)

subject to xT
k,iB∆k = 0

where subscript i corresponds to ith column.

The mentioned constrained minimization problem can be transformed into an uncon-

strained minimization problem by using Lagrange’s theorem, leading to the following

saddle point problem for ∆k A BXk

XT
k B 0

∆k

Lk

 =

AXk

0


where Lk represents the Lagrange multipliers. Alternatively, the problem can be re-

written as

 A BXk

XT
k B 0

Vk+1

L̄k

 =

 0

Im

 (2.1)

by letting Vk+1 = Xk −∆k and L̄k = −Lk. The described constrained optimization

problem leads us to Alg.(11).
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Algorithm 11 Trace Minimization Algorithm
Inputs: A, B, U ∈ Rn×m, tolerance ϵ, maximum iterations max_iter

Output: Λm,m+1,...,n, Vm,m+1,...,n

1: for k=1,2,...,max_iter do

2: U = QRB(U) ▷ B-Orthonormalize U

3: Â = UTAU ▷ Form Â

4: ÂY = ΛY ▷ Approximate all eigenpairs of Â

5: V = UY ▷ Compute Ritz vectors

6: if ∥AV −BΛV ∥ < ϵ then

7: break

8: end if

9: V ▷ Solve 2.1 approximately to obtain V

10: end for

11: Return Λ, V

For the convergence aspects and comparison with other well-known eigensolvers of

TraceMin, refer to [28]. Moreover, the possible parallelization of the method was

analyzed [29, 30].

2.3.2 Locally Optimal Block Preconditioned Conjugate Gradient Method

The locally optimal preconditioned conjugate gradient method performs an iterative

maximization (minimization) of the generalized Rayleigh quotient

r(x) = r(A,B;x) =
xTAx

xTBx

to find the largest (smallest) eigenpairs of Ax = λBx [31]. The eigenvector residual

p = Ax− r(x)Bx

is proportional to the gradient of the generalized Rayleigh quotient, the direction of

the steepest ascent. Accordingly, an iterative method can be defined as

xi+1 = xi + αiwi

where T is the preconditioner, wi = T (Axi − r(xi)Bxi) and αi is the step size. The

optimal step size can be obtained by maximizing (minimizing) the Rayleigh quotient.
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Moreover, adding one extra vector to accelerate the convergence of the method leads

to the following three-term recurrence of the method

xi+1 = argmin
y∈span{xi,wi,xi−1}

r(x) =
xTAx

xTBx
.

The solution to the problem is computed using the Rayleigh-Ritz procedure, leading

to the computation of τ and γ coefficients. The method is given in Alg.(12).

Algorithm 12 Locally Optimal Preconditioned Conjugate Gradient Method
Inputs: A,B, initial vector u, tolerance ϵ, maximum iterations max_iter

Output: λ1, v1

1: u1 = u

2: p1 = 0

3: for k=1,2,...,max_iter do

4: ρk = (uT
kBuk)/(u

T
kAuk)

5: rk = Buk − ρkAuk

6: wk = Trk

7: Run Rayleigh Ritz for (B − ρkA) on Span{wk, uk, pk}
8: uk+1 = wk + τkuk + γkpk

9: if ∥Auk − ρkBuk∥ < ϵ then

10: break

11: end if

12: pk+1 = wk + γkpk

13: end for

14: Return ρ, u

One should notice that this is only for one eigenpair computation, to obtain more

than one eigenpair, a block version of the method is required to be used. For further

implementation details, refer to [32].

The demonstration of the method concludes the literature review of approaches except

FEAST. Followingly, in the next subsection FEAST eigensolver is detailed.
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2.4 FEAST

Originally, FEAST eigensolver was proposed by Eric Polizzi in 2009 as a numeri-

cal eigensolver to find the eigenpairs of a Hermitian eigenvalue problem lying inside

an interval I = [λ−, λ+], taking its inspiration from density matrix representations

in quantum mechanics and the contour integration techniques [9]. However, this pro-

posal lacked the theoretical analysis of FEAST. Therefore, Tang and Polizzi published

another study in which they demonstrated that the FEAST algorithm can be viewed

as an accelerated subspace iteration algorithm utilizing the Rayleigh-Ritz procedure

in 2014 regarding the theoretical aspects. It is worth noting that the term acceleration

refers to filtering where a function is applied to the matrix of interest to speed up the

process. The algorithm’s novelty is that the acceleration process utilizes an approxi-

mated spectral projector for the eigenspace desired [33]. Following this explanation,

the FEAST algorithm can also be placed under "Subspace Iteration Methods" 2.2.2.

Nonetheless, as it is the main focus of the study, the algorithm is detailed in this sepa-

rate section. To have consistency with Tang and Polizzi’s work, the FEAST algorithm

is explained for the generalized Hermitian eigenvalue problems Ax = λBx. How-

ever, one should remember that this thesis focuses on symmetric standard eigenvalue

problems, meaning B = I and A is a real symmetric matrix.

2.4.1 Description

Let A and B be two n× n Hermitian matrices where B is positive definite, meaning

B = CHC for an invertible C. As B is positive definite, B−1 exists which enables

finding the eigenpairs of M = B−1A to obtain the eigenpairs of the generalized

eigenvalue problem given by (A,B) pencil.

As mentioned, the FEAST algorithm is for the generalized eigenvalue problem and

utilizes both an accelerator and Rayleigh-Ritz process. Accordingly, the subspace

iteration with projection Alg.(8) should be modified to Alg.(13) so that the skele-

ton of FEAST is constructed. It is worth noting that without an accelerator, that is

p(M) = M , the algorithm is the subspace iteration with projection for the general-

ized eigenvalue problem.
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Algorithm 13 Accelerated Subspace Iteration with Rayleigh Ritz
Inputs: A,B, U ∈ Rn×m, tolerance ϵ, maximum iterations max_iter

Output: Λ1,2,...,m, V1,2,...,m

1: for k=1,2,...,max_iter do

2: W = p(M)U ▷ Compute the matrix product

3: W = QR ▷ Perform QR decomposition

4: Â = QTAQ ▷ Project A onto subspace

5: B̂ = QTBQ ▷ Project B onto subspace

6: ÂV = B̂ΛV ▷ Compute the eigenvalue decomposition of the pencil (Â, B̂)

7: U = QV ▷ Update subspace

8: if ∥ÂU − B̂ΛU∥ < ϵ then ▷ Test for convergence

9: break

10: end if

11: end for

12: Return Λ, U

An ideal accelerator is p(M) = XIX
C
I B, the spectral projector to the invariant sub-

space spanned by the corresponding eigenvectors of interest XI . In the case of having

the ideal accelerator, the algorithm would converge in one iteration if Y1 = p(M)Q0

has full rank and the number of eigenvalues inside I is equal to the dimension of the

initial subspace. In that point, [34] could be used for efficiently estimating the number

of eigenvalues in an interval.

As indicated, having an ideal accelerator enables the algorithm to converge in one it-

eration; however, the paradoxical point is that the ideal accelerator utilizes the eigen-

vectors of the requested interval. Accordingly, the idea of the usage of the ideal

accelerator can be perceived as there is a method that requires the eigenvectors of

the requested interval to compute the eigenpairs of the interval. Consequently, one

might argue that if the eigenvectors of the requested interval are already known, why

would they be used to construct an accelerator instead of directly obtaining eigenval-

ues? This assessment inspires the novelty of the FEAST method which is the idea of

approximating p(M) instead of directly constructing it. Subsequently, the approxi-

mated p(M), call p̃(M), is used as an accelerator in Alg.(13), leading to the FEAST

algorithm.
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Following the previous explanation, a way to approximate the spectral projector is

supposed to be constructed, meaning that p̃(M) should be properly defined. As a

beginning for the construction of the approximation function, start with a rational

function that can be used in a contour integral manner and let p̃(x) = α/(β−x). Com-

monly, the function can be defined for M = B−1A as p̃(M) = α(βI−M)−1 [35]. As

M is diagonalizable it can be decomposed to the M = XΛX−1 form and followingly

p̃(M) = α(βI −M)−1

= α(βXX−1 −XΛX−1)−1

= αX(βI − Λ)−1X−1

= Xp̃(Λ)X−1

where p̃(Λ) replaces each diagonal entry λ of Λ with p̃(λ) as Λ is a diagonal ma-

trix. Therefore, it can be concluded that for each eigenpair (λ, x) of M , (p̃(λ), x) is

an eigenpair of p̃(M). Moreover, from the properties of the generalized eigenvalue

problem, it is well-known that X−1 = XHB. Accordingly,

p̃(M) = Xp̃(Λ)X−1

= Xp̃(Λ)XHB

is the exact projector XIX
H
I B if p̃ is the indicator function of the interval I.

The indicator function of the interval is given as

f(z) =

1, if z ∈ C

0, otherwise

where C is the circle centered at c = (λ+ + λ−)/2 with radius r = (λ+ − λ−)/2.

Accordingly, it can be redefined by using Cauchy’s integration formula

f(λ) =
1

2πi

∮
C

(z − λ)−1dz.

Hence, p̃ can be interpreted as the indicator function of the interval, meaning that

p̃(M) is the exact spectral projector. However, since the eigenvalues are unknown,

the integration is supposed to be approximated by numerical integration, leading to
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an approximation of the spectral projector. Also, as line 2 of Alg.(13) includes multi-

plication with a U matrix, it can be added the approximation yielding

p̃(M)U =

q∑
k=1

σk(ϕkB − A)−1BU +

q∑
k=1

σ̄k(ϕ̄kB − A)−1BU (2.2)

where (wk, tk), k = 1, 2, ..., q, are the q-point Gauss-Legendre rule of choice, ϕ(t) =

c+rei
π
2
(1+t), ϕ′(t) = iπ

2
rei

π
2
(1+t), ϕk = ϕ(tk), σk = wkϕ

′(tk)/(2πi), and the 2q poles

of p̃ are ϕk and ϕ̄k for k = 1, 2, 3, ..., q. Moreover, the computation can be further

improved as follows if A,B, and U are real-valued

p̃(M)U = 2

q∑
k=1

Re
(
σk(ϕkB − A)−1BU

)
.

Refer to [33] for the detailed derivation of the numerical integration.

Accordingly, the substitution of 2.2 to line 2 of Alg.(13) leads to the FEAST algorithm

Alg.(14). It should be noted that lines 4 and 5 of the Alg.(13) are also performed in the

FEAST algorithm; however, they are not included to provide a more concise scheme.

Algorithm 14 FEAST Eigensolver
Inputs: A, B, U ∈ Rn×m, tolerance ϵ, maximum iterations max_iter,

Cp Contour parameters

Output: Λm,m+1,...,n, Vm,m+1,...,n

1: for k=1,2,...,max_iter do

2: W = p̃(M)U ▷ Compute the contour integral based on Cp and Eq.(2.2)

3: ÂV = B̂ΛV ▷ Compute the eigenvalue decomposition of the reduced (Â, B̂)

4: U = QV ▷ Update subspace

5: if ∥ÂU − B̂ΛU∥ < ϵ then ▷ Test for convergence

6: break

7: end if

8: end for

9: Return Λ, U

Note that the eigenpairs of M lying inside the desired interval are now the (highly)

dominant eigenpairs of the p̃(M) because of the definition of the indicator func-

tion. Moreover, the ith eigenvalue of p̃(λ) converges at the rate of |p̃(λi)|/|p̃(λm+1)|
where m is the dimension of the initial subspace and λm+1 is the eigenvalue with
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the (m + 1)th largest magnitude [33]. In contrast to the subspace iteration algorithm

having |λi|/|λm+1| convergence rate which is heavily dependent on the eigenvalue

spectrum, FEAST’s convergence rate can be arbitrarily increased by either increas-

ing the number of quadrature points used in the computation of the contour integral

leading to a more accurate result or by increasing the dimension of the initial sub-

space [36].

After the description of the algorithm, further analysis, given in the following subsec-

tion, is required to express the purpose of the thesis.

2.4.2 Dissecting the Algorithm for Thesis Statements

This subsection briefly explains the parameters that must be set while employing the

FEAST algorithm and ways to determine them. One of the most apparent parameters

is the size and choice of the initial approximated subspace. The theoretical conver-

gence bound based on the initial subspace is given in [33]; moreover, the result of a

practical experiment using (I−X1:10X
T
1:10) as an initial subspace for the smallest 300

eigenvalues is illustrated in [37]. Accordingly, it could be concluded that having a

better approximation for the requested eigenvalues as an initial subspace accelerates

the process. However, the literature lacks suggestions for ways to construct better

approximations to utilize. For instance, the mentioned practical experiment uses the

first 10 eigenvalues which are apriorily not known. Another parameter to be specified

is the dimension of the initial subspace p. Assuming the number of the eigenvalues

lying inside the given interval as e, p choice having |p̃(λp+1)|/|p̃(λe)| ≪ 1 property is

desirable as it leads faster convergence. The general advice for satisfying it is to set p

as 1.5e [33]. However, generally, e is unknown complicating the decision of p. Nev-

ertheless, there is a study for counting eigenvalues inside the FEAST algorithm [38].

The type of quadrature scheme and the number of quadrature points for solving the

contour integral given in Eq.(2.2) plays a crucial role in the FEAST algorithm. Var-

ious stuides [39, 40, 41] have investigated the effects of these parameters on the

FEAST algorithm. Based on the findings it is not possible to say that one of them

is the best. Accordingly, this study uses Gauss-Legendre, the suggested one in the

original FEAST paper, as a quadrature scheme. Also, it analyzes the effects of the
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number of quadrature points.

After deciding on the quadrature scheme, a possible improvement regarding the con-

tour integral Eq.(2.2) is orthogonalizing W after the computation as it might be rank-

deficient [33]. The first suggested benefit of the application of rank-revealing QR [42]

or SVD is they can resolve the rank deficiency and be used for the dimension re-

duction of the provided initial subspace as these methods could reveal the number of

eigenvalues lying in the interval; the second one is they, also the QR factorization, can

prevent the occurrence of the spurious eigenvalues: eigenvalues that do not originally

belong to the input matrix; however, are returned as output [33, 39, 43]. Nonetheless,

the spurious eigenvalues could be detected via the residual error of computed spurious

eigenpairs as they yield relatively higher errors than expected.

A small toy example is provided in the following subsection better to demonstrate the

flow of FEAST and the above parameters.

2.4.3 Toy Example

The flow of the FEAST algorithm is demonstrated by using the matrix

A =


1.97 −0.55 −0.05 −1.06

−0.55 2.34 −0.67 −0.58

−0.05 −0.67 0.30 0.35

−1.06 −0.58 0.35 1.02


whose eigenvalues are 0.037, 0.0918, 2.655, and 2.8462, and B is an identity matrix.

The lower and upper bounds are provided as 0 and 0.1 respectively, and the smallest

2 eigenvalues are targeted. The initial matrix is given as follows

U =


0.64 0.44 0.79

0.72 0.73 0.17

0.47 0.99 0.03

0.33 0.68 0.80


meaning that it has a dimension of 3, and the number of quadrature points (Ne) is

equal to 8. In that case, after one step of the FEAST algorithm, the spectral projector
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approximation yields the matrix

p̃(M) =


0.2821 0.1841 0.0333 0.4099

0.1841 0.177 0.2496 0.2239

0.0333 0.2496 0.9153 −0.1259

0.4099 0.2239 −0.1259 0.629


having its eigenvalues as 1.0034, 1, 0, and 0 where the actual spectral projector

p(M) =


0.2816 0.1835 0.0324 0.4094

0.1835 0.1764 0.2486 0.2233

0.0324 0.2486 0.9136 −0.1269

0.4094 0.2233 −0.1269 0.6283


has eigenvalues 1, 1, 0 and 0. Hence, it can be seen that approximation has a slight

deficiency. Here, by remembering that p̃(λ) is expected to be the indicator function

of I = [λ−, λ+], the quality of approximation for the indicator function can be evalu-

ated, which maps given eigenvalues 0.037, 0.0918, 2.6550, and 2.8462 to 1, 1.0034, 0

and 0 (also the eigenvalues of p̃(M) ) respectively. Furthermore, to evaluate the sim-

ilarity between the matrices, a simple approach is to sum the absolute differences

of their corresponding elements, i.e.,
∑4

i=1

∑4
j=1 abs(p̃(M)i,j − p(M)i,j). Using this

method, a total difference of 0.0127 is obtained which can be called a similarity score.

Followingly, the reduced matrices Â and B̂ can be computed by Â = QTAQ and

B̂ = QTBQ where Q = p̃(M)U , leading

Â =


0.0968 0.1373 0.0748

0.1373 0.1973 0.0997

0.0748 0.0997 0.0743

 and B̂ =


1.0806 1.5006 0.9185

1.5006 2.1503 1.1058

0.9185 1.1058 1.2129

 .

After that, the solution of ÂV = B̂ΛV yields

V =


−0.3713 −0.3792 −0.5265

−0.0716 −0.4139 −0.5428

0.6388 −0.7110 0.2377

−0.6700 −0.4236 0.6097

 and Λ =


0.037 0 0

0 0.0918 0

0 0 0.0437
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which very importantly means that 0.0437 is returned as a spurious eigenvalue. Nev-

ertheless, the crucial observation is that these eigenpairs have their residual error, i.e,

||Av−λv||, as 2.5924×10−11, 4.8005×10−12 and 2.6258 respectively. Additionally,

another very important observation is that if QR factorization is applied to Q before

the computation, then instead of 0.0437, 2.6696 is computed as an eigenvalue which

prevents the appearance of the spurious, as it does not lie inside the search interval.

After demonstrating the flow, the importance of the number of quadrature points can

be seen in Table (2.1), which clearly shows that as the number of quadrature points

increases, the approximation gets better.

Ne

Metric
Similarity Score Eigenvalue 1 Eigenvalue 2 Eigenvalue 3 Eigenvalue 4

2 1.0289 1.012 0.7224 -0.0001 -0.0001

4 0.0781 0.9997 0.979 0 0

8 0.0127 1.0034 1 0 0

16 9.3588× 10−5 1 1 0 0

32 4.1764× 10−10 1 1 0 0

Table 2.1: Metric Comparison of Different Number of Quadrature Points

The properties of FEAST mentioned in the previous subsection combined with the

demonstration in this one provide the general perspective that is required to dive fur-

ther into questions addressed in the thesis. Accordingly, these as well as the proposed

methods are described in the following chapter.
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CHAPTER 3

PROPOSED WORK

This chapter plays a crucial role in this thesis, it starts by indicating the central ques-

tions that are aimed to be answered. Later, each subsequent section depicts the algo-

rithms obtained by improving the FEAST, and finally, the per-iteration requirements

of these methods are given.

3.1 Summary of the proposed method

The following research questions are addressed in this thesis:

1. How important the provided initial subspace is? Is having extra computational

preprocesses at the beginning of the FEAST algorithm in order to use a better

initial approximation worth it overall?

2. Does having an extra orthogonalization for the W matrix at each step of FEAST

reduce the number of iterations required for the algorithm to converge? If so,

does it shorten the overall computation time? Additionally, how does this or-

thogonalization affect the occurrence of spurious eigenvalues?

3. Does combining the FEAST algorithm with the inverse subspace iteration and

iteratively running them one after another affect the convergence?

Even though some of the questions have already been addressed by different stud-

ies as stated in the previous chapters, the main goal of the thesis is to answer these

by considering the eigenvalue spectrum. The objective is to discover when these
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modifications are required based on the spectrum. In the next sections, the proposed

methods are briefly described.

3.2 PFEAST

The suggested way for providing a better initial guess to FEAST in this work is the

usage of the (shifted) inverse subspace iteration Alg.(15) as a preprocessor, leading

to Preprocessed FEAST (PFEAST) algorithm Alg.(16).

Algorithm 15 Shifted Inverse Subspace Iteration (SISI)
Inputs: A, σ, Y ∈ Rn×m, tolerance ϵ, maximum iterations max_iter

Output: Λm,m+1,...,n, Vm,m+1,...,n

1: A− σI = LU ▷ LU decomposition for inverse computation

2: for k=1,2,...,max_iter do

3: W = U−1L−1Y ▷ Solve

4: W = QR ▷ Perform QR decomposition

5: Y = Q ▷ Update subspace

6: Λ = Y TAY ▷ Approximate eigenvalues

7: if ∥AY − Y Λ∥ < ϵ then ▷ Test for eigenvalues

8: break

9: end if

10: end for

11: Return Λ, Y

Theoretically, as explained in the previous sections, FEAST has roots in the inverse

subspace algorithm and has advanced over it. Therefore, in theoretical convergence

analysis, the proposed method does not have any superiority over FEAST; however,

as discussed in the experiment part, practically speaking, the suggested method might

offer a computationally better way to solve the eigenvalue problem since an iteration

of SISI costs less than that of FEAST.
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Algorithm 16 PFEAST Eigensolver
Inputs: A, U ∈ Rn×m, tolerance ϵ, σ, maximum iterations max_iter,

sisi iterations sisi_iter, Cp Contour parameters

Output: Λm,m+1,...,n, V

1: U = SISI(A, σ, U, ϵ, sisi_iter) ▷ PFEAST step: U is improved by SISI

2: for k=1,2,...,max_iter do

3: W = p̃(M)U ▷ Compute the contour integral based on Cp and Eq.(2.2)

4: ÂV = ΛV ▷ Compute the eigenvalue decomposition of the reduced (Â)

5: U = WV ▷ Update subspace

6: if ∥ÂU − ΛU∥ < ϵ then ▷ Test for convergence

7: break

8: end if

9: end for

10: Return Λ , U

3.3 QFEAST

As mentioned earlier, for various reasons, the W matrix obtained after approximately

computing the contour integral might lose its orthogonality, decelerating the conver-

gence of FEAST. Accordingly, several options to further orthogonalize it have been

proposed. The one used in this study to answer the second question mentioned at

the beginning of the third chapter is QR factorization which leads to the QR FEAST

(QFEAST) algorithm depicted in Alg.(17).
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Algorithm 17 QFEAST Eigensolver
Inputs: A, U ∈ Rn×m, tolerance ϵ, maximum iterations max_iter,

Cp Contour parameters

Output: Λm,m+1,...,n, Vm,m+1,...,n

1: for k=1,2,...,max_iter do

2: W = p̃(M)U ▷ Compute the contour integral based on Cp and Eq.(2.2)

3: W = QR ▷ QFEAST step: W is orthogonalized to improve stability

4: ÂV = ΛV ▷ Compute the eigenvalue decomposition of the reduced (Â)

5: U = QV ▷ Update subspace

6: if ∥ÂU − ΛU∥ < ϵ then ▷ Test for convergence

7: break

8: end if

9: end for

10: Return Λ , U

3.4 HFEAST

As also mentioned in the PFEAST section, FEAST has roots in the inverse subspace

algorithm; therefore, alternatingly employing them to compute eigenvalues is not sup-

posed to yield a numerically better algorithm. However, as a step of SISI is far less

computationally costly than FEAST, practically speaking, adding an extra step to the

end of each FEAST iteration might make the algorithm converge in a few iterations

earlier, providing a relatively small performance improvement. This assumption leads

to the Hybrid FEAST (HFEAST) algorithm Alg.(18).

Moreover, the HFEAST algorithm is further expanded by adding QR factorization

inside as it is done to convert FEAST to QFEAST.
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Algorithm 18 HFEAST Eigensolver
Inputs: A, Y ∈ Rn×m, tolerance ϵ, maximum iterations max_iter,

Cp Contour parameters

Output: Λm,m+1,...,n, Vm,m+1,...,n

1: A− σI = LU ▷ HFEAST step: LU decomposition for inverse computation

2: for k=1,2,...,max_iter do

3: W = p̃(M)Y ▷ Compute the contour integral based on Cp and Eq.(2.2)

4: ÂV = ΛV ▷ Compute the eigenvalue decomposition of the reduced (Â)

5: Y = WV ▷ Update subspace

6: if ∥ÂY − ΛY ∥ < ϵ then ▷ Test for convergence

7: break

8: end if

9: W = U−1L−1Y ▷ HFEAST step: solve

10: W = QR ▷ HFEAST step: perform QR decomposition

11: Y = Q ▷ Update subspace

12: end for

13: Return Λ, Y

3.5 Per Iteration Comparisons of Methods

The above methods require different types of linear algorithms such as QR factor-

ization, and linear system solutions because to compute Eq.(2.2) for each quadrature

point a linear system is solved instead of taking matrix inverse. Vanilla versions of

both have O(n3) complexity. Nevertheless, there are studies [44, 45] to speed up

the QR factorization, and a comprehensive overview of Sparse Linear Solvers can

be found in [46]. Accordingly, Tbl.(3.1) compares computationally costly steps that

each method requires in an iteration where Ne is the number of quadrature points. It

should be noted that even though FEAST and PFEAST have the same number of op-

erations per iteration, as PFEAST is preprocessed with SISI, in general, by assuming

that they require the same number of iterations to converge, PFEAST has an extra

cost of QR Factorization and Linear System Solution by the number of iterations that

SISI is run before it. Accordingly, the convergence behaviors of methods over various
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matrices are investigated in the following chapter.

Method

Operation
QR Factorization Linear System Solution

SISI 1 1

FEAST 0 Ne

PFEAST 0 Ne

QFEAST 1 Ne

HFEAST 1 Ne+1

HFEAST with QR 2 Ne+1

Table 3.1: Per Iteration Cost Comparisons of Methods
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CHAPTER 4

NUMERICAL EXPERIMENTS

The numerical experiments are conducted in two different setups. Firstly, methods are

tested by using Synthetic smaller-sized data. Followingly, real-life datasets, which are

sparse, from the SuitSparse Matrix Collection [47] are used for testing. The experi-

ments are performed on an AMD Opteron 6376 system with 64 cores and 64GB L2

cache PC by using Julia [48] version "1.9.1".

4.1 Synthetic Data

As explained previously, one of the objectives of this thesis is to investigate the effect

of proposed methods on a variety of eigenvalue spectrums. Hence, firstly 3 different

sets of real eigenvalues corresponding to dense, discrete, and sparse spectrums, which

will be explained shortly, are randomly generated to compare the performances of 5

different methods over finding the smallest eigenvalues. Followingly, a random real

symmetric matrix that has the provided list of real eigenvalues as its eigenvalues are

constructed by Alg.(19).

Algorithm 19 Random Real Symmetric Matrix Generator
Inputs: List of real numbers having a length of n L

Output: A real symmetric matrix having these real numbers as eigenvalues A

1: A = rand(n, n) ▷ Generate a random matrix from numbers between -1 and 1

2: Q = QR(A) ▷ Compute QR factorization

3: Â = Qdiag(L)QT ▷ Generate a matrix having the eigenvalues

4: A = 1
2
(Â+ ÂT ) ▷ Ensure symmetricity

5: Return A
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Dense Spectrum: The dense spectrum corresponds to the eigenvalue distribution in

which the eigenvalues have two clusters; for the search interval and the others, but

those two clusters are close to each other. Fig.(4.1) can depict the dense spectrum’s

abstract look.

0 1 1.11.01

Uniformly
generated 50
eigenvalue

Uniformly
generated 450

eigenvalue

Dense Spectrum

Figure 4.1: The abstract overview of the dense spectrum

Discrete Spectrum: Unlike to the dense one, the discrete spectrum represents cases

where the closest eigenvalue after the search interval is placed relatively far away.

Fig.(4.2) is an illustration of this case.
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Figure 4.2: The abstract overview of the discrete spectrum

Sparse Spectrum: Finally, the sparse spectrum is for when the closest eigenvalue is

relatively near to the boundary; however, the outside distribution is sparse which can

be demonstrated by Fig.(4.3).
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Figure 4.3: The abstract overview of the sparse spectrum

Experimental Setup: Each algorithm is executed 10 times with different initial ma-

trices to decrease the effects of randomness across all setups, and the results of these

are provided by using the box-plot explained in Fig.(4.4). In the figure, the Q1 lower

quartile is the 25th percentile of the data, meaning 25% of the data points are below

this value, and the Q3 is the 75th percentile, meaning 75% of the data points are below

this value. Accordingly, the interquartile range (IQR) is calculated by Q3-Q1. Fol-

lowing that, the points greater than the upper fence and the ones less than the lower

fence are classified as outliers.
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Interquartile
Range (IQR)

Whisker

Whisker

Upper fence = Q3 + 1.5*IQR

Maximum value before the upper fence

Q3 Upper Quartile

Q2 Median

Q1 Lower Quartile

Minimum value before the lower fence

Lower fence = Q1 - 1.5*IQR

Outliers

Outliers

Maximum value of the data

Minimum value of the data

25% of values

25% of values

25% of values

25% of values

Figure 4.4: The explanation of box-plot

In the test setup, two desired numbers of eigenvalues, 30 and 50, are used. For 50

the search interval is provided as [0, 1]. For 30 the lower bound is given as 0 too but

the upper bound is provided as the arithmetic mean of λ30 and λ31. The dimension

of the initial subspace is determined by expanding the desired number of eigenvalues

by factors of 1, 1.5, and 2, so for instance, if the desired number of eigenvalues is

30 and the factor parameter is 1.5m, then the dimension of the initial subspace is 45.

Also, 2,4,8,16, and 32 are used as the number of quadrature points, Ne, to determine

its effect over convergence. The maximum number of iterations allowed is 250. In

the figures, F corresponds to the original FEAST algorithm Alg.(14), Q corresponds

to the QFEAST algorithm Alg.(17), H corresponds to HFEAST algorithm Alg.(18),

HQ corresponds to the Hybrid FEAST with QR algorithm in which QFEAST algo-

rithm is further enhanced by applying the Hybrid approach and finally P corresponds

to the PFEAST Alg.(16). Moreover, it should be noted that the stopping criteria

for algorithms is the maximum of the residual errors of the smallest m eigenvalues
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where m is the number of eigenvalues to compute. Namely, ||Avi − viλi||2 is com-

puted for each eigenvalue and mth smallest of them is taken. If that one is less than

10−13, the algorithm stops. This approach is done to eliminate the effect of spurious

eigenvalues on the convergence of algorithms because in certain cases the suggested

stopping criteria with the appearance of the spurious eigenvalues caused algorithms

not to terminate. Nevertheless, one of the widely used techniques to detect spurious

eigenvalues is checking their residual error since errors tend to be relatively higher

than normal as they are not real members of the matrix. The essential point, which is

important for all the following figures of this chapter, is that for the number of itera-

tions of PFEAST, the (S)ISI precedence phase is not included in the plots; however,

the total duration plots of the PFEAST contains the initial phase.
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Figure 4.5: Overall test results for the synthetic data where the smallest eigenvalues

are computed and Ne is 8
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Fig.(4.5) shows the results of all tests where Ne is fixed to 8 in a comprehensive sum-

mary. Figures a part gives the number of iterations algorithms required, and b part

shows the duration of them. In the figure, the x-axis for each sub-plot corresponds to

the different methods while the y-axis indicates the number of iterations / the total du-

ration each algorithm requires to terminate. Further, the overall figure’s y-axis (called

eigNum) corresponds to the number of eigenvalues desired to compute whereas the

x-axis corresponds (called initSize) to the dimension of the initial subspace provided,

meaning that they are used to categorize the sub-plots. Finally, colors are used to

show the spectrum types.

The figure shows, which is also valid for the following experiments, in general, the

patterns of boxplots for the number of iterations and the total times are quite simi-

lar. Moreover, when eigNum is set to 30 and initSize is either m or 1.5m, there are

minimal differences in computation times across the methods. However, for other

configurations, more meaningful comparisons between the methods can be drawn.

To navigate through further observations in more detail, on the following pages same

results are depicted on more detailed figures.
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Figure 4.6: Test results of FEAST and QFEAST for the synthetic data where the

smallest eigenvalues are computed and Ne is 8
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Fig.(4.6) compares the performances of FEAST and QFEAST. The first observation

is that in certain cases QFEAST converges faster in terms of both the number of

iterations and total time than FEAST, and in others, they take the same number of it-

erations; moreover, in the setups that they required the same number of iterations, not

much time difference can be observed. Based on that, it could be safe to say that pre-

ferring QFEAST over FEAST occasionally is a better way to compute; furthermore,

as mentioned, for the setups that QFEAST is not superior, the addition of the extra QR

factorization does not significantly slow the convergence in terms of the total dura-

tion. Consequently, choosing it over FEAST might be a safer approach as sometimes

the algorithm could be speed-upped, and if not, the loss is not weighty. After that

conclusion, the cases where the speed up gained has to be identified. Note that there

is no performance improvement for the dense spectrum and in other spectrums, im-

provement happens if the dimension of the initial matrix (initSize x eigNum) is larger

than 50, the number of eigenvalues lying inside [0, 1]. As a result, if the distribution

of the first k eigenvalues where k is the dimension of the initial subspace has a gap

like in the discrete spectrum, applying the additional QR factorization leads to fewer

iterations to convergence. Moreover, by examining the gains for both sparse and dis-

crete spectrums, it could be said that as the length of the gap increases, performance

improvement also advances.
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Figure 4.7: Test results of FEAST, HFEAST, QFEAST, and Hybrid QFEAST for the

synthetic data where the smallest eigenvalues are computed and Ne is 8
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After investigating the differences between QFEAST and FEAST, the next compari-

son includes the Hybrid methods given in Fig.(4.7). An interesting observation might

be that in contrast to QFEAST, Hybrid methods seem to work better in terms of the

number of iterations for the dense spectrum in which Hybrid ones are never worse.

Even though for other spectrums in certain cases Hybrid QFEAST is better than

HFEAST, they have the same number of iterations for all dense spectrum settings.

However, in terms of the total duration, they start to be slower than others as the

dimension of the initial subspace increases. Consequently, by remembering that the

extra QR factorization does not have an observable effect on the dense spectrum, it

can be concluded that Hybrid approaches are the favorite ones in these distributions

in terms of the number of iterations as they generally converge a few iterations earlier;

however, this gain is rooted for the extra ISI step, which owns its additional computa-

tional cost, employed in them hence Hybrid ones are not the superior in terms of the

total duration which is affected by the dimension of the initial subspace.
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Figure 4.8: Test results of FEAST and PFEAST for the synthetic data where the

smallest eigenvalues are computed and Ne is 8
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The remaining comparison is the effect of performing ISI as a preprocessor, shown

in Fig.(4.8). By keeping in mind that the ISI precedence phase is not reflected in the

number of iterations figure, PFEAST can be said to converge a few iterations earlier

than FEAST; however, in terms of the total duration, unsurprisingly, it is not possible

to label one as a superior as they have the same theoretical convergence rate.

After the finalization of the per-method comparisons, the effect of Ne also has to be

investigated, which is done by evaluating FEAST and QFEAST with different Ne

values in Fig.(4.9) and Fig.(4.10) respectively. One should pay attention that the x-

axis for each subplot corresponds to the number of quadrature points. Analyzing the

FEAST figure reveals that initially, increasing the number of quadrature points accel-

erates the algorithm in terms of the number of iterations and the total computation

time. However, when the number of quadrature points reaches 16 and 32, the algo-

rithm fails to converge. Subsequently, the investigation of the QFEAST shows that the

increase of Ne does not have a negative effect on the number of iterations; whereas,

for higher quadrature points, it slows the convergence time. Possibly, the reason for

that is higher quadrature numbers cause the loss of orthogonality due to the increas-

ing number of floating point errors, which is resolved in QFEAST by the costly extra

QR factorization. Finally, even though increasing the number of quadrature points

increases the accuracy of the approximation and hence speeds up the convergence in

terms of the number of iterations, it also increases the per-iteration cost of algorithms,

making it not possible to detect the best number of quadrature points which is con-

firmed by the plots in which there is no favorite value for the number of quadrature

points.
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Figure 4.9: Test results of FEAST for the synthetic data where the smallest eigenval-

ues are computed
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Figure 4.10: Test results of QFEAST for the synthetic data where the smallest eigen-

values are computed
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Up to this point, only the smallest eigenvalues are computed; however, as mentioned,

various application areas might also require the interior ones. Therefore, to analyze

the effects of the proposed method for the cases where interior eigenvalues are sub-

ject to investigation an extra spectrum in which the [0,10] interval contains 225, the

[20,22] interval contains 50, and the [30,40] interval contains 225 eigenvalues created

and a corresponding matrix constructed in a similar way as previously done. For this

experiment, some slight changes are made. Firstly, the interval that algorithms have

to search is provided as 19.99 and 22.01, the desired number of eigenvalues always

is 50, and the tolerance for stopping is 10−12. Moreover, a shift has to be applied in

the inverse subspace algorithm because of the desired eigenvalues. 3 different shift

values, 20, 21, and 22 are used for testing. Fig.(4.11) provides a comprehensive sum-

mary of the results. It should be noted that contrary to the previous setup, colors are

used for the different methods, the x-axis of each subplot corresponds to the number

of quadrature points and the global x-axis is for the shift values.
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Figure 4.11: Test results of all methods for the synthetic data where the interior eigen-

values are computed
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In the figure, when initSize is m there does not seem much difference and the results

of quadrature numbers 2, 16, and 32 are similar, in fact for 16 and 32 methods do

not converge; therefore, the results are summarized in Fig.(4.12) and Fig.(4.13). In

contrast to previous spectrums, especially for Ne is 4, Hybrid approaches seem to

dominate others and the effect of QR factorization becomes more important when the

quadrature number is increased to 8.
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Figure 4.12: Test results of all methods for the synthetic data where the interior eigen-

values are computed, Ne is 4 and initSize is 1.5m, 2m
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Figure 4.13: Test results of all methods for the synthetic data where the interior eigen-

values are computed, Ne is 8 and initSize is 1.5m, 2m

4.2 Real-life Data

To test the methods for real-life data for Laplacian Graphs, Power Network Problems,

Computational Fluid Dynamics, and Structural Problems matrices on the SuitSparse

Matrix Collection [47] are used by each being real symmetric positive-definite and

also sparse as mentioned. In contrast to synthetic data tests, instead of checking the

residual error of the mth smallest eigenvalue where m is the number of eigenvalues

desired to compute, the residual error of all eigenvalues that are computed by the

method is checked for convergence with the aim of investigating the effects of spu-

rious eigenvalues. For all tests, the smallest eigenvalue is given as 0 and the largest

one is given as the arithmetic mean of the mth smallest and the (m + 1)th smallest,

which is not possible in real-life problems as the eigenvalues are not known apri-
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orly; however, there are methods computing the number of eigenvalues lying inside

an interval and domain experts could provide valuable guesses for the smallest eigen-

values. The desired number of eigenvalues is decided either based on the structure of

the problem or the sharp increase in the distribution. Finally, to decide the stopping

criteria, prior tests are conducted to detect where the residual error stagnates, caused

by the dynamics of the problems, and the error bound is set. It should be kept in mind

that even though these pieces of information are not available before the eigenpairs

are computed, they are used for benchmarking the proposed methods, accordingly,

experiments are conducted in the light of the problem’s details.

4.2.1 Spectral Clustering Problem

In Computer Sciences, clustering refers to the process in which data points (objects)

are assigned to different groups with the purpose of objects labeled in the same group

being more similar to each other than the ones in other groups [49]. Over the years,

various clustering algorithms have been proposed one of which is Spectral Clustering.

It is related to the Graph Theory and utilizes the Laplacian Graph, which is obtained

by L = D − A where D is the degree and A is the adjacency matrix of the graph.

By construction, L has always at least one eigenvalue equal to zero, and the num-

ber of zero eigenvalues corresponds to the number of connected components of the

Graph. Then, the second smallest eigenvalue of L, called the algebraic connectivity,

measures how well-connected the graph is. Accordingly, eigenvectors of the smallest

eigenvalues called the Fiedler vector, are used for clustering. Refer to [50] for a com-

prehensive analysis of Spectral Clustering and to [30] for parallel computation of the

Fiedler vector.

In the thesis, the "micromass_10NN" matrix, which is an adjacency matrix, belonging

to the "ML_Graph" group used in [51] is used. The matrix has a dimension of 571

with 9,668 non-zero elements. As described, the Laplacian matrix is obtained whose

smallest 50 eigenvalues are given in Fig.(4.14) part a, also the part b of the same

figure shows the sparsity pattern. Only the distribution of the smallest 50 eigenvalues

is plotted as the desired number of eigenvalues is 20, which is the number of classes

on the corresponding graph. The stopping criteria for the residual error is 10−15.
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Figure 4.14: The smallest 50 eigenvalues and sparsity pattern of the Laplacian matrix
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When the eigenvalue distribution of the Laplacian graph is investigated, it can be re-

alized that it is neither similar to a sparse spectrum nor a discrete one. Instead, it

resembles the dense one; accordingly, by transferring the gained knowledge from the

dense case, it would be expected that Hybrid approaches will be superior. To deter-

mine the validity of the conclusion, we can analyze Fig.(4.15), parts a and b. In both

parts, the global x-axis represents the variable Ne, and the global y-axis represents

initSize. Within each subplot, the x-axis corresponds to the methods being compared.

The key distinction between the two figures is the y-axis: in part a, it shows the num-

ber of iterations required, while in part b, it represents the time taken in seconds.

The first observation might be that for the smaller number of quadrature points,

namely 2,4, and 8, except for quadNum is 2 and initSize is m, Hybrid approaches

seem better than others in terms of the number of iterations they take and the time

they require to compute. Moreover, for certain cases PFEAST dominates FEAST;

whereas, the opposite is not true as there are no scenarios where FEAST is the ob-

vious favorite against PFEAST. Furthermore, the addition of extra QR factorization

does not have a clear decelerating effect, especially for the total duration, instead, it

accelerates the process for the higher number of quadrature points. To finalize these

figures, it is worth mentioning that the fastest step is where quadNum is 16 and init-

Size is m. Moreover, to conclude the discussion it is necessary to check the number of

eigenvalues obtained by algorithms, which is given in Fig.(4.16). By discarding some

exceptions, it could be concluded that the only problematic setup is when Ne and

initSize are 32 and 2m, respectively. The reasoning for this could be that increasing

dimension and quadrature numbers causes the floating point errors more pronounced.

Nonetheless, the importance of the figure is that it shows QR factorization eliminates

the appearance of spurious eigenvalues.
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Figure 4.15: Iterations and time (seconds) for all methods for the Laplacian graph
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Figure 4.16: Number of eigenvalues obtained for all methods for the Laplacian graph

4.2.2 Power Network Problems

In power networks(systems), the Bus Admittance Matrix, which explains the topol-

ogy of the system, is an n × n matrix representing the nodal admittances of the n

buses. In realistic systems, as each bus is only connected to a few buses, the matrix

tends to be quite sparse as it is in our case. The smallest eigenvalues of the matrix

could be useful for various things like stability analysis. For the thesis, the "494_bus"

matrix from the "HB" collection is used. The matrix has a dimension of 494 with

1,666 nonzero elements, and the distribution of the 50 smallest eigenvalues is given

in Fig.(4.17) part a, also the sparsity pattern is shown in part b of the same figure.
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Figure 4.17: The smallest 50 eigenvalues and sparsity pattern of the Power Network

matrix

64



In the tests, the smallest 14 eigenvalues are desired with the residual error of 10−12,

and the search interval is given as it is done for the previous test. In Fig.(4.18), in part

a, the required iteration counts for algorithms to converge, and in part b, their running

time can be seen. Accordingly, for the first three Ne’s, there is not much difference but

Hybrid approaches are never the worst in terms of the number of iterations; however,

due to their per-iteration computational costs, for the total duration, other approaches

are slightly better. Also, similar to the previous test, there is no favorite method when

comparing FEAST and PFEAST, and for the higher number of quadrature points, QR

approaches seem dominating; moreover, they are, especially QFEAST, never signif-

icantly behind FEAST. However, in contrast to the previous case, the fastest setup

is where quadNum and initSize are 2 and 1.5m respectively. Followingly, when the

number of eigenvalues obtained is checked in Fig.(4.19), it could be concluded that

the only problematic setup is where Ne equals 32. A closer look reveals that even

on it, QR factorization approaches returned exactly the desired number of eigenval-

ues, which seems to confirm one of the claims of the thesis. Moreover, it could be

seen that the PFEAST approach is more stable in terms of the number of eigenvalues

obtained.
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Figure 4.18: Iterations and time (seconds) for all methods for the Power Network

Problem

66



13.25

13.50

13.75

14.00

14.25

14.50

14.75

# 
of

 re
tu

rn
ed

 e
ig

en
va

lu
es

quadNum=2   initSize=m

13.25

13.50

13.75

14.00

14.25

14.50

14.75
quadNum=4   initSize=m

13.25

13.50

13.75

14.00

14.25

14.50

14.75
quadNum=8   initSize=m

13.25

13.50

13.75

14.00

14.25

14.50

14.75
quadNum=16   initSize=m

13.25

13.50

13.75

14.00

14.25

14.50

14.75
quadNum=32   initSize=m

13.25

13.50

13.75

14.00

14.25

14.50

14.75

# 
of

 re
tu

rn
ed

 e
ig

en
va

lu
es

quadNum=2   initSize=1.5m

13.25

13.50

13.75

14.00

14.25

14.50

14.75
quadNum=4   initSize=1.5m

13.25

13.50

13.75

14.00

14.25

14.50

14.75
quadNum=8   initSize=1.5m

13.25

13.50

13.75

14.00

14.25

14.50

14.75
quadNum=16   initSize=1.5m

14

15

16

17

18
quadNum=32   initSize=1.5m

H HQ F Q P
method

13.25

13.50

13.75

14.00

14.25

14.50

14.75

# 
of

 re
tu

rn
ed

 e
ig

en
va

lu
es

quadNum=2   initSize=2m

H HQ F Q P
method

13.25

13.50

13.75

14.00

14.25

14.50

14.75
quadNum=4   initSize=2m

H HQ F Q P
method

13.25

13.50

13.75

14.00

14.25

14.50

14.75
quadNum=8   initSize=2m

H HQ F Q P
method

13.25

13.50

13.75

14.00

14.25

14.50

14.75
quadNum=16   initSize=2m

H HQ F Q P
method

15.0

17.5

20.0

22.5

25.0

27.5

quadNum=32   initSize=2m

Figure 4.19: Number of eigenvalues obtained for all methods for the Power Network

Problem

4.2.3 Computational Fluid Dynamics

Computational fluid dynamics (CFD), is the study of utilizing computers to forecast

liquid and gas flows using the conservation of mass, momentum, and energy gov-

erning equations. For various reasons like improving the convergence of required

iterative solvers the smallest eigenvalues of a matrix might be needed in CFD ap-

plications. The matrix used in testing is "ex3" named "2D Flow Past a Cylinder in

Freestream" belonging to the FIDAP group. The dimension of the matrix is 1,821

with 52,685 nonzeros, and the distribution of the 50 smallest eigenvalues is given in

part a of Fig.(4.20) which shows the sparsity pattern in part b.
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Figure 4.20: The smallest 50 eigenvalues and sparsity pattern of the CFD matrix
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In the tests, the smallest 10 eigenvalues are desired with the residual error of 10−9,

and the search interval is given as it is done for the previous tests. In Fig.(4.21),

iteration counts of algorithms and their running times are given, which depicts an

interesting case in which almost in all setups algorithm with QR are the worst. That

might be reasoned by the fact the CFD has the most resembling distribution to the

dense one, in which QR approaches are worse. Moreover, again, none of FEAST and

PFEAST dominate each other, further, for the smaller number of quadrature points,

HFEAST is compatible with them. Further, for higher Ne’s Hybrid approaches also

do not seem preferable. Finally, these are the tests having the most total computation

time due to the dimension of the matrix, and the fastest setups are for initSize is m,

and quadNum is 2 or 4. Followingly, the investigation of the number of eigenvalues

obtained in Fig.(4.21) would lead to similar conclusions to previous ones.
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Figure 4.21: Iterations and time (seconds) for all methods for the CFD Problem
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Figure 4.22: Number of eigenvalues obtained for all methods for the CFD Problem

4.2.4 Structural Engineering Problems

In structural engineering, the smallest eigenvalues of a matrix can be important for

various analyses, such as Finite Element Model Verification, Dynamic Analysis, and

Stiffness Matrix Analysis. These eigenvalues could be utilized to understand the

natural frequencies and potential modes of vibration of a structure, which are essential

for ensuring structural stability and performance. To test the effects of methods on

this subject, the "msc01050" matrix from the "Boeing" collection is used. The matrix

has a dimension of 1,050 with 26,198 non-zero elements, and the distribution of the

50 smallest eigenvalues is given in Fig.(4.23) part a. The differentiating thing for

this interval is that it contains recurring eigenvalues. Also, the sparsity pattern of the

matrix is given in the b part of the same Figure.
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Figure 4.23: The smallest 50 eigenvalues and sparsity pattern of the Structural Engi-

neering Problem matrix
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In the tests, the smallest 24 eigenvalues are desired with the residual error of 10−9,

and the search interval is given as it is done for the previous tests. The results of the

methods can be viewed in Fig.(4.24). Compared to the previous ones, this setup is

the one where the least differences across methods are seen. A deeper investigation

would reveal that for the smaller Ne’s Hybrid approaches are preferable; however, for

the higher ones they do not produce good results. Finally, the number of eigenvalues

obtained, which are provided in Fig.(4.25), behave very similarly to the previous ones.
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Figure 4.24: Iterations and time (seconds) for all methods for the Structural Engineer-

ing Problem
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Figure 4.25: Number of eigenvalues obtained for all methods for the Structural Engi-

neering Problem
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CHAPTER 5

CONCLUSIONS

This thesis aims to investigate the convergence of FEAST eigensolver and the already

proposed improvement over it that suggests adding a QR factorization to each step,

across various eigenvalue spectrums. Furthermore, novel approaches are proposed

to enhance the algorithm, one of which is adding the inverse subspace iteration (ISI)

as a preprocessor to provide a better initial guess. The other one called the Hybrid

approach, ensembles FEAST and ISI by iterating them alternatingly, which is also

extended by either performing QR factorization or not. Their performances are also

studied over various spectrums as well as compared with vanilla and QR FEAST.

Accordingly, to compare the methods both synthetic and real-life datasets are used.

Synthetic eigenvalue spectrums are created under 3 categories: dense, discrete, and

sparse. Real-life datasets are taken from various domains: Laplacian Graphs, Power

Networks, Computational Fluid Dynamics, and Structural Engineering Problems.

Based on the numerical experiments it is not possible to label a method as superior

because their performance depends on the spectrum. In the dense spectrum, Hybrid

approaches seem to be better in terms of the number of iterations they require to con-

verge; however, when the total computation time is analyzed it is seen that as the

number of quadrature points increases, they become slower than vanilla FEAST. Af-

ter mentioning that, experiments indicate that there is no best number of quadrature

points in terms of the total computation time as their performances change based on

the spectrum type and matrix size. In other spectrum types, discrete and sparse, espe-

cially if the requested eigenvalue distribution includes a gap, QR ones are preferable

as they generally decrease both the number of iterations and the duration proportion-

ally to the width of the gap; nevertheless, even if they do not speed up the process,
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the extra cost caused by the modification they have is negligible for the total duration,

but it should be kept in mind that this is related to the matrix dimension. Besides,

selecting the best among FEAST and PFEAST is not possible by analyzing the tests.

Overall, if the eigenvalue distribution is known apriori, the better option could be

decided; however, if it is unknown, choosing one of the improvements by venturing

the extra computational cost is likely to pay off by decreasing the number of itera-

tions hence, in general, the total computation time. Besides the number of iterations,

the algorithms are evaluated for the number of eigenvalues obtained. Based on the

findings, the spurious eigenvalues do not appear for the smaller number of quadrature

points and initial sizes but this is not the case for the higher number of quadrature

points for which spurious eigenvalues are detected. Nevertheless, even for the latter,

QR factorization approaches find exactly the requested number of eigenvalues.

As future work, the proposed methods could be enabled for non-symmetric/non-real

matrices. Also, testing for higher dimensional matrices and quadrature numbers

might be useful to better talk about the performances. The theoretical analysis of

the proposed methods is the crucial step for the comparison to detect the best option.

Additionally, the experiments suggest a relationship between the eigenvalue spectrum

and the performance of the methods. Different modifications tend to perform better

on varying distributions, highlighting the potential of this connection. Identifying the

optimal setup for specific spectra will be an important focus for future work. Besides,

as mentioned previously, parallelizing the proposed methods seems possible.
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