
MACHINE LEARNING APPLICATIONS IN PORTFOLIO OPTIMIZATION

A THESIS SUBMITTED TO
THE GRADUATE SCHOOL OF APPLIED MATHEMATICS

OF
MIDDLE EAST TECHNICAL UNIVERSITY

BY

FİRDEVS NUR UYKUN

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR

THE DEGREE OF MASTER OF SCIENCE
IN

FINANCIAL MATHEMATICS

SEPTEMBER 2024

Approval of the thesis:

MACHINE LEARNING APPLICATIONS IN PORTFOLIO OPTIMIZATION

submitted by FİRDEVS NUR UYKUN in partial fulfillment of the requirements for
the degree of Master of Science in Financial Mathematics Department, Middle
East Technical University by,

Prof. Dr. A. Sevtap Kestel
Dean, Graduate School of Applied Mathematics

Prof. Dr. A. Sevtap Kestel
Head of Department, Financial Mathematics

Assist. Prof. Dr. Büşra Zeynep Temoçin
Supervisor, Actuarial Sciences, METU

Examining Committee Members:

Prof. Dr. Ali Devin Sezer
Financial Mathematics, METU

Assist.Prof.Dr. Büşra Zeynep Temoçin
Actuarial Sciences, METU

Prof. Dr. Furkan Başer
Actuarial Sciences, Ankara Uni.

Date:

iv

I hereby declare that all information in this document has been obtained and
presented in accordance with academic rules and ethical conduct. I also declare
that, as required by these rules and conduct, I have fully cited and referenced all
material and results that are not original to this work.

Name, Last Name: FİRDEVS NUR UYKUN

Signature :

v

vi

ABSTRACT

MACHINE LEARNING APPLICATIONS IN PORTFOLIO OPTIMIZATION

UYKUN, FİRDEVS NUR
M.S., Department of Financial Mathematics

Supervisor : Assist. Prof. Dr. Büşra Zeynep Temoçin

September 2024, 121 pages

This study examines the evaluation of S&P 500 trend movements and their impact
on portfolio optimization methodologies. Through the meticulous construction of
risk aversion-adjusted portfolios applicable to both single and multiple period analy-
ses, the research employs variance and Conditional Value at Risk (CVaR) for single
periods, while using Mean Absolute Deviation (MAD) for multiple periods. The
optimization process benefits from the synergistic use of Python for computational
modeling and AMPL for executing complex mathematical formulations. To accu-
rately predict risk aversion, the study utilizes six classification models integrated with
29 indicators derived from technical analysis: Logistic Regression (LR), K-Nearest
Neighbors (KNN), Support Vector Classifier (SVC), Decision Trees (DT), Random
Forest (RF), and eXtreme Gradient Boosting (XGBoost). Simultaneously, return fore-
casting leverages the predictive capabilities of four regression frameworks—Linear
Regression, LSTM, XGBoost, and LightGBM—based on various technical indica-
tors. Explainable AI (XAI) techniques, particularly LIME and SHAP, facilitate a
deeper understanding of feature importance in the decision-making processes of ma-
chine learning algorithms. The findings of this thesis demonstrate that the methods
used perform differently across various optimization problems. While DT achieves
the highest Sharpe ratio for Mean-Variance portfolios, LR performs best in the Mean-
CVaR portfolios, and SVC excels for the Mean-MAD portfolios. Additionally, the
KNN, SVC, and LR have the lowest Sharpe ratios, respectively. In the process of pre-

vii

dicting returns, Linear Regression produces the best outcomes based on the applied
comparison metric. Lastly, the XAI methods highlight the importance of incorpo-
rating the Average Directional Index (ADX) with a ten-period setting in the feature
design of the KNN and LR models.

Keywords: Portfolio Optimization, Technical Analysis, Machine Learning, Explain-
able Artificial Intelligence

viii

ÖZ

PORTFÖY OPTİMİZASYONUNDA MAKİNE ÖĞRENMESİ UYGULAMALARI

UYKUN, FİRDEVS NUR
Yüksek Lisans, Finansal Matematik Bölümü

Tez Yöneticisi : Dr. Öğr. Üyesi Büşra Zeynep Temoçin

Eylül 2024, 121 sayfa

Bu çalışma, S&P 500 eğilimlerinin değerlendirilmesi ve bu eğilimlerin portföy op-
timizasyonunda kullanılan metodolojiler üzerindeki etkilerini incelemektedir. Hem
tekil hem de çoklu dönem analizlerine uygulanabilir riskten kaçınma ayarlı portföy-
lerin titizlikle oluşturulması yoluyla, araştırma, tekil dönemlerin değerlendirilmesi
için varyans ve Koşullu Riske Maruz Değer (CVaR) kullanırken, çoklu dönemler için
Ortalama Mutlak Sapma (MAD) kullanmaktadır. Optimizasyon süreci, hesaplamalı
modelleme için Python’un ve karmaşık matematiksel formülasyonların gerçekleşti-
rilmesi için AMPL dilinin sinerjik kullanımından faydalanmaktadır. Riskten kaçınma
davranışlarını doğru bir şekilde tahmin etmek amacıyla, çalışma, teknik analizden
türetilen 29 gösterge ile entegre edilen altı sınıflandırma modelinden yararlanmak-
tadır: Lojistik Regresyon (LR), K-En Yakın Komşu (KNN), Destek Vektör Sınıflan-
dırıcı (SVC), Karar Ağaçları (DT), Rastgele Orman (RF) ve Aşırı Gradient Artırma
(XGBoost). Eşzamanlı olarak, getiri tahmini, çeşitli teknik göstergelerin analiziyle
temellendirilmiş dört regresyon çerçevesinin: Doğrusal Regresyon, LSTM, XGBo-
ost ve LightGBM öngörücü yeteneklerinden yararlanmaktadır. XAI teknikleri, özel-
likle LIME ve SHAP, makine öğrenimi algoritmalarının karar verme süreçlerindeki
özellik önemini daha derinlemesine anlamayı kolaylaştırmaktadır. Bu tezin bulguları,
kullanılan yöntemlerin çeşitli optimizasyon problemlerinde farklı performans göster-
diğini ortaya koymaktadır. DT, Ortalama-Varyans portföylerinde en yüksek Sharpe
oranına ulaşırken, LR, Ortalama-CVaR portföylerinde en iyi performansı sergiler ve

ix

SVC, Ortalama-MAD portföylerinde üstünlük sağlamaktadır. Ek olarak, KNN, SVC
ve LR sırasıyla en düşük Sharpe oranlarına sahiptir. Getirileri tahmin etme sürecinde,
uygulanan karşılaştırma metriğine göre Doğrusal Regresyon en iyi sonuçları üret-
mektedir. Son olarak, XAI yöntemleri, KNN ve LR modellerinin özellik tasarımında
on-dönemlik Ortalama Yön Endeksi’nin (ADX) dahil edilmesinin önemini vurgula-
maktadır.

Anahtar Kelimeler: Portföy Optimizasyonu, Teknik Analiz, Makine Öğrenmesi, Açık-
lanabilir Yapay Zeka

x

To my Mom & Dad

xi

xii

ACKNOWLEDGMENTS

I would like to express my profound gratitude towards my thesis advisor, Assistant
Professor Dr. Büşra Zeynep Temoçin, for her meticulous guidance, boundless enthu-
siasm, and insightful recommendations throughout the development and preparation
stages of this thesis. Her readiness to impart her knowledge and experiences has sig-
nificantly contributed to my growth and illuminated my academic journey.

I would like to express my gratitude to the members of the examining committee,
Prof. Dr. Ali Devin Sezer and Prof. Dr. Furkan Başer, for their suggestions and
insightful comments.

Throughout my life, the unwavering support influence of my parents, Şengül Uykun
and Ali Uykun, have constituted the cornerstone of my development and success.
Their unconditional love, belief in my potential, and guidance have been instrumen-
tal in shaping the individual I have become. I am eternally thankful for their endless
support and contributions to my personal and academic growth.

I also hold a special place of gratitude in my heart for my dear relatives, includ-
ing Mustafa Uykun, Serpil Okumuş and Ekrem Doğanay, whose precious memories
remind me of the importance of love and support. To Aysun Pancar, Zehra Demiray,
and Nurhan Terkan—your encouragement and presence in my life are treasures that
I will always cherish.

During the challenging periods of my journey, my friends İrem Akgönül, Eda Nur
Ünal, Ece Akansel, Rabia Çakır, Nesli Burkankulu, Betül Polat, Yeşim Girgin, Nes-
rin Ergin, Ezgi Pehlivanlı, Ezgi Canıgüzel, Fatma Zehra Erdoğan, and Harun Doğan
stood by me like pillars of strength. Their support, love, and belief in me were vital
in keeping me motivated and focused. They were the torchbearers of hope and cama-
raderie, making the arduous journey a bit easier to tread. To them, I owe a debt of
gratitude for their sincere companionship.

xiii

xiv

TABLE OF CONTENTS

ABSTRACT . vii

ÖZ . ix

ACKNOWLEDGMENTS . xiii

TABLE OF CONTENTS . xv

LIST OF TABLES . xxi

LIST OF FIGURES . xxiii

LIST OF ABBREVIATIONS . xxv

CHAPTERS

1 INTRODUCTION . 1

1.1 Problem description . 1

1.2 Proposed Method & Contributions 2

1.3 Literature Review . 4

1.3.1 Porfolio Formation 4

1.3.2 Forecasting in Stock Market Index 7

1.3.3 Forecasting in Stocks 9

1.3.4 Explainability in time series 11

xv

1.4 The Outline of the Thesis 13

2 METHODOLOGY . 15

2.1 Asset Allocation . 15

2.2 Portfolio Models . 16

2.2.1 Mean-Variance Portfolio 17

2.2.2 Mean-CVaR Portfolio 20

2.2.3 Mean-MAD Portfolio 21

2.3 Technical Indicators . 23

2.3.1 Moving Averages(MA) 24

2.3.2 Average Directional Movement Index(ADX) . . . 26

2.3.3 Relative Strength Index(RSI) 28

2.3.4 Commodity Channel Index(CCI) 28

2.3.5 Ease of Movement(EMV) 29

2.3.6 Bollinger Bands(BB) 30

2.3.7 Parabolic Stop-and-Reverse(SAR) 31

2.3.8 Money Flow Index (MFI) 32

2.3.9 Volume Weighted Average Price(WVAP) 33

2.4 Machine Learning Algorithms 34

2.4.1 Logistic Regression (LR) 37

2.4.1.1 Loss Function 39

2.4.1.2 Optimization Methods 39

xvi

2.4.1.3 Regularization 40

2.4.2 K Nearest Neighbour (KNN) 41

2.4.2.1 Distance metrics 42

2.4.2.2 Search Strategies 43

2.4.3 Support Vector Machine (SVM) 45

2.4.3.1 Kernel Functions 48

2.4.4 Decision Trees (DT) 49

2.4.4.1 Splitting criteria 49

2.4.4.2 Pruning 51

2.4.5 Random Forest (RF) 52

2.4.6 eXtreme Gradient Boosting (XGBoost) 53

2.4.6.1 Regularized Learning Objective 54

2.4.6.2 Gradient Tree Boosting 54

2.4.6.3 Shrinkage and Feature Subsampling . 56

2.4.6.4 Split Finding Algorithms 56

2.4.7 Light Gradient Boosting Machine (LightGBM) . . 58

2.4.7.1 Gradient-based One-Side Sampling . 58

2.4.7.2 Exclusive Feature Bundling (EFB) . . 59

2.4.8 Linear Regression 59

2.4.9 Long Short Term Memory (LSTM) 60

2.5 Evaluation Criteria of Classification Models 63

xvii

2.6 Evaluation Criteria of Regression Models 64

2.7 Performance Metrics of Portfolios 65

2.8 Explanation Methods . 66

2.8.1 LIME . 67

2.8.2 SHAP . 68

3 IMPLEMENTATION AND EVALUATION 73

3.1 Data and Risk-aversion Prediction 74

3.1.1 Descriptive Statistics of S&P 500 74

3.1.2 Exploratory Data Analysis of S&P 500 76

3.1.3 Technical Indicators 77

3.1.4 Preprocessing pipeline 77

3.1.5 Data Transformation Methods 78

3.1.6 Model Optimization Method 79

3.1.7 Risk-aversion estimation 80

3.2 Portfolio Optimization . 81

3.2.1 Classification Models for Single Period Portfolios . 81

3.2.2 Results of Portfolios 83

3.2.2.1 Mean-Variance Portfolios 84

3.2.2.2 Mean-CVaR Portfolios 86

3.2.2.3 Mean-MAD Portfolios 88

3.2.2.4 Return Predictions 92

xviii

3.2.2.5 Feature Importance 100

4 CONCLUSION AND FUTURE WORK 109

REFERENCES . 113

APPENDICES

A LIST OF ASSETS . 121

xix

xx

LIST OF TABLES

Table 2.1 Confusion matrix . 64

Table 3.1 The description of the OHLCV . 74

Table 3.2 The Descriptive Statistics of S&P 500 74

Table 3.3 Technical Indicators . 77

Table 3.4 The Prediction of Single Period Models 80

Table 3.5 Grid Search Results for Logistic Regression with Liblinear Solver . 82

Table 3.6 Grid Search Results for K-Nearest Neighbors (KNN) 82

Table 3.7 Grid Search Results for Support Vector Classifier (SVC) with RBF
Kernel . 82

Table 3.8 Grid Search Results for Decision Tree Classifier 83

Table 3.9 Grid Search Results for Random Forest Model 83

Table 3.10 Grid Search Results for XGBoost Model 83

Table 3.11 Out of one week returns . 84

Table 3.12 Weight Distribution of SVC . 85

Table 3.13 Sharpe Ratios of Mean-Variance Portfolios 86

Table 3.14 Out of one week returns . 86

Table 3.15 Weight Distribution of SVC . 87

Table 3.16 Sharpe Ratios of Mean-CVaR Portfolios 88

Table 3.17 Accuracy of models . 89

Table 3.18 Out of one week results . 89

Table 3.19 Out of one week results . 91

xxi

Table 3.20 Asset Symbols and Corresponding Values for Last Week 92

Table 3.21 RMSE values for test week price predictions for the assets 93

Table 3.22 RMSE values for test week price predictions for the assets 94

Table 3.23 Out of one week returns with last week prediction 94

Table 3.24 Out of one week returns with last week prediction 95

Table 3.25 Out of one week returns with last week prediction 97

Table 3.26 Out of one week returns with last week prediction 97

Table 3.27 Out of one week returns with last week prediction 98

Table 3.28 Out of one week returns with last week prediction 98

Table 3.29 Out of one week returns with last week prediction 99

Table 3.30 Out of one week returns with last week prediction 100

Table 3.31 Technical Indicators and Their Corresponding Values 102

Table 3.32 Technical Indicators and Their Corresponding Values 103

Table A.1 List of Assets . 121

xxii

LIST OF FIGURES

Figure 2.1 SMA Plot of S&P 500 . 24

Figure 2.2 WMA Plot of S&P 500 . 25

Figure 2.3 EMA Plot of S&P 500 . 26

Figure 2.4 ADX Plot of S&P 500 with 3,5,10 periods 27

Figure 2.5 RSI Plot of S&P 500 with 3,5,10 periods 28

Figure 2.6 CCI Plot of S&P 500 with 20 period 29

Figure 2.7 EMV Plot of S&P 500 with 3,5,10 periods 30

Figure 2.8 BB Plot of S&P 500 with 3,5,10 periods 31

Figure 2.9 SAR Plot of S&P 500 . 32

Figure 2.10 MFI Plot of S&P 500 with 3,5,10 periods 33

Figure 2.11 WVAP Plot of S&P 500 with 3,5,10 periods 34

Figure 2.12 Logistic Regression Structure [79] 37

Figure 2.13 Logistic Sigmoid Function[79] 38

Figure 2.14 KNN with two features[79] . 45

Figure 2.15 SVM[15] . 46

Figure 2.16 An artificial neuron[95] . 60

Figure 2.17 RNNs structure[95] . 62

Figure 2.18 LSTM[95] . 62

Figure 2.19 The classification of interpretability techniques[56] 66

Figure 2.20 SHAP values[58] . 71

Figure 3.1 Workflow . 73

xxiii

Figure 3.2 S&P 500 Weekly Returns . 75

Figure 3.3 Weekly Returns of stocks . 75

Figure 3.4 S&P 500 Weekly Prices . 76

Figure 3.5 Weekly Prices of Assets . 76

Figure 3.6 KFCV Process[69] . 79

Figure 3.7 Weight distribution of stocks for last week 85

Figure 3.8 Weight distribution of stocks for last week 87

Figure 3.9 SVC-Weight distribution of stocks for first week 90

Figure 3.10 SVC-Weight distribution of stocks for a random week 90

Figure 3.11 SVC-Weight distribution of stocks for a random week 91

Figure 3.12 LIME explanation for test sample as a "Bearish Trend" by LR Model101

Figure 3.13 LIME explanation for test sample as a "Bearish Trend" by KNN
Model . 102

Figure 3.14 LR-SHAP force plot for test sample 104

Figure 3.15 KNN-SHAP force plot for test sample 104

Figure 3.16 SHAP summary plot for training sample predictions as a "Bearish
Trend" by the KNN model . 105

Figure 3.17 The SHAP dependence plot of the ADX_10, MFI_10, ADX_3,
MFI_3, for the direction forecasting of the S&P 500 index 106

xxiv

LIST OF ABBREVIATIONS

x Vector

X Matrix

t Generic Time

T Time Horizon

R Return of Portfolio

σ2 Variance of Portfolio

ωi Relative weight of asset i

ω Vector of Portfolio weights

ω∗ Optimal vector of all portfolio weights

Σ Covariance Matrix

1 Vector of ones

MPT Modern Portfolio Theory

MVO Mean Variance Optimization

EMH Efficient Market Hypothesis

KFCV K-Fold Cross Validation

OHLCV Open High Low Close Volume

MA Moving Average

SMA Simple Moving Average

WMA Weighted Moving Average

EMA Exponential Moving Average

ADX Average Directional Movement Index

RSI Relative Strength Index

CCI Commodity Channel Index

EMV Ease of Movement

BB Bollinger Bands

SAR Parabolic Stop-and-Reverse

MFI Money Flow Index

WVAP Volume Weighted Average Price

xxv

S&P 500 S&P 500 Index

LR Logistic Regression

KNN K-Nearest Neighbors

SVM Support Vector Machine

SVR Support Vector Regression

SVC Support Vector Classification

DT Decision Trees

RF Random Forest

XGBoost eXtreme Gradient Boosting

ANN Artificial Neutral Network

RNNs Recurrent Neural Networks

LSTM Long Short Term Memory

LightGBM Light Gradient Boosting Machine

XAI eXplainable artificial intelligence

LIME Local Interpretable Model-agnostic Explanations

SHAP SHapley Additive exPlanations

RMSE Root Mean Square Error

xxvi

CHAPTER 1

INTRODUCTION

1.1 Problem description

Time series is an ordered temporal sequence from past to present. Studies on time

series analysis cover a wide range of areas, from statistics to medicine. Practition-

ers collect data in business, economics, engineering, and other scientific fields which

include both observable and unobservable components. Observable variables consist

of the past of current data, and unobservable variables make time series challenging

to evaluate the data. Time series modeling issue is especially crucial for forecasting

financial time series data. However, there is no perfect solution to address the fore-

casting challenges, particularly when considering time series data characterized by

varying intervals.

The common use of machine learning for financial market prediction has diverted

researchers’ attention away from conventional time series techniques. Different ma-

chine learning models used for predicting financial time series have gain importance.

For example, tree-based models have been used for trend and price prediction. Also,

deep learning which is a subfield of machine learning models, has recently gained

popularity and produced excellent results in multiple domains thanks to the opportu-

nity given by the big data era and computational capacity. Recurrent Neural Networks

and Convolutional Neural Networks, examples of deep learning models, have also

been used in forecasting literature. Long Short Term Memory (LSTM), a recurrent

neural network model, has been used to predict the price in time sequential form.

1

In addition to forecasting studies, machine learning can also be used to facilitate port-

folio construction. Portfolio management and finding optimal investment weight of

each asset are crucial for investors. Two sources utilized for portfolio analysis are

past returns performance and securities forecasts for the future [62]. Efficient port-

folios have been achieved by solving three types of problem which are minimizing

risk for given expected return, maximizing return for given risk and maximizing risk-

adjusted mean return. Risk-adjusted mean return equation uses risk aversion, which

is investors’ response to market fluctuations. Risk aversion is influenced by market’s

bullish and bearish signals.

The literature reviewed for the study showed that there were two problems regard-

ing stock index forecasting: the first is predicting the precise price, and the second

is predicting the direction movement of the stock index. This study aims to forecast

the direction of the stock index’s movement in order to calculate the risk aversion

coefficient, solve various optimization questions associated with risk-adjusted mean

return, and predict stock returns to improve portfolio evaluation.

1.2 Proposed Method & Contributions

Our research workflow is organized into four distinct phases. The initial phase cen-

ters on predicting risk aversion coefficient using historical S&P 500 data. This entails

generating technical analysis variables to compile an extensive set of features. Next,

we utilize six different classifiers to forecast the S&P 500 trend, evaluating their per-

formance via the accuracy metric. The study investigates how stock index movement

predictions can enhance portfolio construction solutions, explicitly defining the prob-

ability of predicting an upward movement in the S&P 500 as a risk aversion.

The study scrutinizes three pivotal elements in the formation of investment portfo-

lios: asset allocation, diversification, and portfolio rebalancing. Regarding asset allo-

cation, the methodology encompasses the selection of 24 stocks and a risk-free asset.

To attain diversification, stocks from various sectors is meticulously chosen, ensuring

2

a broad representation of industry types. For portfolio rebalancing, a rolling window

technique is employed, offering a systematic approach to adjust portfolio weights

over time.

In the second phase, the research integrates predictions of the risk aversion coeffi-

cient, which is found in the initial phase, into the mean-risk models, facilitating the

computation of optimal portfolio weights within both single and multiple-period sce-

narios. This approach allows for a nuanced understanding of how risk preferences

impact portfolio construction and adjustment strategies, thereby contributing to the

literature on efficient portfolio management under uncertainty.

In the third phase of the workflow, the research concentrates on the analysis of single-

period portfolios by forecasting asset prices over a one-week horizon. This involves

the application of four distinct regression models: Linear Regression, Long Short-

Term Memory (LSTM), XGBoost, and Light Gradient Boosting Machine (Light-

GBM). The primary objective within this phase is to derive predictions on returns

by leveraging these modeling techniques.

In the workflow’s final stage, we apply the most accurate trend classifiers, specifically

Logistic Regression and K-Nearest Neighbors. The justification and implications of

these models are further explored through Local Interpretable Model-agnostic Ex-

planations (LIME) and SHapley Additive explanations (SHAP), enhancing our un-

derstanding of the model’s predictions, as detailed in Section 2. This methodical

approach not only enables us to predict market trends with notable accuracy but also

to delve into the factors underlying these predictions, significantly enriching the field

of financial forecasting and portfolio management.

The outcomes of this workflow demonstrate that the effectiveness of different al-

gorithms in portfolio evaluation, as measured by the Sharpe ratio, results in varying

performance. Notably, the DT algorithm exhibits superior performance in terms of

the Sharpe ratio within the context of Mean-Variance portfolios, while the KNN algo-

rithm demonstrates the lowest Sharpe ratio. Furthermore, with respect to the Mean-

CVaR portfolios, the LR algorithm achieves the highest Sharpe ratio, whereas the

3

SVC manifests the lowest ratio value. In the analysis of Mean-MAD portfolios, the

SVC algorithm stands out by achieving the highest Sharpe ratio, inversely, the LR

algorithm is marked by the lowest Sharpe ratio.

During the empirical analysis, which evaluates the efficacy of various predictive

models in computing financial returns, Linear Regression is observed to yield su-

perior results. This conclusion is drawn based on the performance of these models

against the established comparison metric. Following Linear Regression, LightGBM

demonstrates strong results but does not surpass the performance of Linear Regres-

sion. LSTM, while typically effective for sequential data, also performs worse than

Linear Regression. XGBoost, despite its advanced capabilities, delivers the worst

performance among the models tested. These findings highlight that simpler models

like Linear Regression can sometimes outperform more complex ones, emphasizing

the importance of model selection and feature engineering in financial forecasting.

Additionally, the application of XAI methods underscores the significance of incor-

porating the Average Directional Index (ADX), with a designated period of ten, in

the feature design of both KNN and LR models, highlighting the critical role of this

indicator in enhancing model performance and interpretability.

1.3 Literature Review

Three related topics will be covered in the literature review. The first part of the

review will discuss research on portfolio formation problems. Research studies on

stock market trend predicting technical analysis indicators and stock price predictions

will be the main topic of the second part. The third and last portion will cover studies

on explainable artificial intelligence.

1.3.1 Porfolio Formation

The well-known economist Harry Markowitz was awarded a Nobel Prize in 1990 for

his contributions to financial economics through his article Portfolio Selection (1952).

4

He founded Modern Portfolio Theory (MPT) in 1952, a mathematical modelling ap-

proach based on statistics and theoretical presumptions. He defined future return of

an asset as random variable and defined portfolio risk measure as variance. He used

geometric analysis and the return-risk principle to demonstrate the nature of efficient

portfolio design. His work pointed out the importance of diversification in portfolios

by selecting assets in different industries [61]. Although Markowitz‘s mean variance

model is used by industry and academia, it has some limitations, some practitioners

want to calculate only down deviation and Markowitz also suggest semi-variance in

his book [62]. Using the mean return variance model’s assumptions, such as the nor-

mal distribution of returns and the quadratic utility function, becomes increasingly

difficult in finance.

Different risk measures which construct different mean-risk portfolios were also in-

vestigated in the literature. Mean Absolute Deviation (MAD), a piecewise linear risk

measure, was proposed by Konno and Yamazaki [53] in 1991 as a potential substitute

for Markowitz’s model’s drawbacks, including its inability to solve large asset port-

folios. In 1999, Rockafellar and Uryasev introduce Conditional Value at Risk (CVaR)

as a new risk measure for constructing efficient portfolios and shared how optimiza-

tion of CVaR with finite scenarios [82].

Some studies focused only on specific risk measures, while others compared mul-

tiple risk measures. A study conducted by Byrne et al. [16] analyzed five essential

risk measures, such as semi variance, minimax, and MAD rebalance portfolios, on a

quarterly basis. The objective was to determine minimum risk optimization portfo-

lios and evaluate the asset allocation of risk measures. The results demonstrated that

while MAD and semi variance’s asset allocation aligns with mean variance, minimax

deviates from this approach. In their study, Hundjra et al.[44] analyzed four different

risk measures - mean variance, semi variance, MAD, and CVaR - in the context of

minimum-risk portfolio optimization models in South Asian stock markets from 2003

to 2015. Their findings suggest that, particularly during various economic scenarios,

CVaR with a 0.95 confidence level is a dependable risk measure for optimizing single

period portfolios. As such, it is recommended that investors in the region consider

incorporating CVaR into their portfolio optimization models during these times for

5

improved results.

Research on financial investments has changed with advancements in modelling tech-

niques and financial instruments. Artificial intelligence applications evolved the port-

folio formation with many ways, machine learning and deep learning models are

used for evaluation of models and new optimization techniques are used such as neu-

ral network based approach is used in Ban et al.’s [8] study for mean-variance and

mean-CVaR models.

There has been a lack of investigation into the relationship between the trading signals

of the market and the adjustment of risk aversion in portfolio optimization despite the

various types of artificial intelligence applications that have changed portfolio forma-

tion. A study was carried out by Ji et al. [46] in 2019 which delved into multi-period

risk aversion adjusted mean-Gini portfolios. The study utilized four distinct machine

learning models, namely Logistic Regression, Neural Networks, Random Forest, and

Support Vector Machine. Over a 17-year period, 942 US companies within and out-

side the S&P 500 index were analyzed. The researchers found that logistic regression

with regularization achieved the greatest accuracy throughout the entire period. They

also considered four shorter periods to account for trend movement. To compare

market movement predictions, they used a known risk-aversion set and evaluated the

short periods based on various metrics such as out of sample weekly average return

and cumulative return. With the exception of one period, the use of dynamic changes

in risk aversion led to better results compared to the use of constant risk aversion. In

an extensive study, Ji et al. [47] explored the integration of risk aversion with machine

learning predictions for the S&P 500 market. Their research employed Logistic Re-

gression and XGBoost models, with the latter proving to have superior accuracy. The

study analyzed a portfolio of 25 companies traded in the S&P 500 market, construct-

ing various benchmark portfolios and comparing out-of-sample successes. While

machine learning models produced comparable results, XGBoost stood out with a

higher return.

In 2021, Dubach [30] utilized CVXPY to model optimization problems and Python

modeling languages to compare five portfolio optimization problems: minimum vari-

6

ance, maximum return, maximum Sharpe ratio, risk aversion, and minimum CVaR.

He then identified the challenge of implementing risk aversion. He compared the

portfolios using only the Swiss Exchange index and the 85 listed companies on the

Swiss Equity Market. His thesis compares specific problems with and without a short

selling constraint for a daily in-sample period spanning the entire eigth year, with

2018 and 2019 utilized for out-of-sample periods.

Return prediction is an another improvement for machine learning and deep learn-

ing models in portfolio researches. Return predictions are made using two methods:

before optimization for modelling assessment and after optimization for comparison

of out of samples. For the first time, Ma et al. [59] in 2020 looked into return pre-

diction for the preselection of stocks with a mean-variance model, using the classical

time series price prediction model, which is autoregressive integrated moving aver-

age as a comparison benchmark, along with machine learning models consisting of

Random Forest and Support Vector Regression and deep learning models such as

Long Short Term Memory. They evaluated the performance of different models using

49 stocks from the Chinese Securities 100 Index daily returns and 60-day historical

returns as features with sliding window approach. The mean-variance model with

random forest outperformed other models in terms of excess returns.

1.3.2 Forecasting in Stock Market Index

The Random Walk Theory is an extension of the Efficient Market Hypothesis (EMH),

which asserts that the market is capricious, and prices are arbitrary [33]. The Efficient

Market Hypothesis (EMH) posits that stock prices reflect all available information. It

comes in three variants: weak, semi-strong, and strong, which respectively encom-

pass past trading data, all public information, and all information including insider

knowledge [34]. Anomalies and the high instability of stocks refute the efficacy of

the semi-strong form [26].

Researchers use three basic assumptions when employing technical analysis method-

ologies for forecasting: market activity discounts everything; prices move in trends;

and history repeats itself [70]. The stochastic nature of the EMH precluded technical

7

analysts from accepting it.

Investors who seek stock index investment typically adhere to either a buy-and-hold

or random purchase strategy, in accordance with the principles of the weak form of

the EMH. On the other hand, technical analysts often question the applicability of the

weak form and may tend to support the validity of the semi-strong form efficiency in

financial markets [55]. They leverage technical analysis as a strategic tool to attain

superior returns. To stay ahead in the competitive market, market participants must

keep themselves informed about the stock market index trend.

In Sezer et al.‘s [89] review, trend prediction is studied with three ways, the first

method of trend prediction uses only historical pricing, the second method adds tech-

nical and fundamental analysis, and the third method uses text mining algorithms.

The literature is replete with studies that endeavor to devise more effective trading

strategies using technical analysis, machine learning and evaluate them against the

buy-and-hold approach. In their study, Chen et al. [22] employed a combination of

feature-weighted KNN and SVM models to accurately predict and classify trends in

the Shanghai Stock Exchange Composite Index and Shenzhen Stock Exchange Com-

ponent Index. By analyzing nine technical analysis variables and various time frames,

their findings offer valuable insights into the application of technical analysis in stock

market analysis. Using machine learning, Ayala et al. [7] successfully predicted stock

market indexes for Germany, Spain, and the US. After employing four different mod-

els, they discovered that the Linear Regression and Artificial Neural Network models

proved to be the most effective. Their study centered on generating clear and concise

buy or sell orders based on estimated price movements that were easily comprehensi-

ble for investors.

Despite the abundance of financial data available, there is a lack of research on the ap-

plication of technical analysis in the management of investment portfolios. A study

by Zhu et al. [101] found that no previous studies had realistically used technical

analysis and optimization models with data; they used a moving average signal in

the asset allocation problem of two assets. The study compared an all-or-nothing ap-

proach, where the moving average suggests a buy signal and the investor buys an asset

8

with all their available funds. The study considered different utility functions, such as

log-utility and power-utility, to theoretically research the moving average effect and

its lag adjustment. Through a simulation of 78 years of monthly observations on the

S&P 500, the study provided compelling evidence that utilizing the moving average

with optimization was a lucrative approach for investing.

1.3.3 Forecasting in Stocks

After forecasting the stock market index, improving forecasting of the stock prices

is another vital field for portfolio optimization. May [63] reports that researchers are

actively exploring ways to replace past returns with anticipated returns and leverage

machine learning to formulate investment portfolios based on these projections. This

field is a heavily studied aspect of machine learning, with a focus on prediction and

portfolio creation. May conducted research about XGBoost price prediction with us-

ing nine technical analysis variables and select optimal portfolio using Monte Carlo

simulations. May used two test periods and XGBoost performed better in predicting

the top 40 stocks traded on the Johannesburg Stock Exchange in 2019 than in 2020,

according to average RMSE. May compared an equal-weighted portfolio, a recom-

mended portfolio, and the Johannesburg Stock Exchange index. She suggested that

the recommended portfolio had a higher return for both test periods.

In their study, Hartanto et al. [40] compared different boosting models for the pur-

pose of predicting stock price. The models they assessed were XGBoost, AdaBoost,

CatBoost and Light Gradient Boosting Machine (LightGBM). The study examined

various time frames ranging from 1992 to 2022, all for the purpose of predicting the

stock price of Apple. According to their findings, LightGBM was the best-performing

model among the four, with the lowest RMSE value.

Kobets and Savchenko [52] investigated Markowitz portfolio models profit predic-

tion with using eleven S&P 500 companies and Vanguard 500 Index Fund and they

did close price predictions with Linear regression and LSTM models. They suggest

9

LSTM since it gives better portfolio result. They compared three portfolios: one us-

ing only historical data and two combining historical data with monthly predictions.

They found that using machine learning predictions in portfolio optimization is help-

ful for advising.

Additionally, there exist studies that uses machine learning into the stock price pre-

diction. Monikasri and Varshini[68] predicted the future of stocks with using open,

high, low and close prices from 2003 to 2021 using LSTM and they suggest LSTM is

the best for stock price prediction. Nikou et al. [71] compared four machine learning

models, including ANN, SVR, RF, and LSTM, to predict the price of an exchange

traded fund. According to their findings, LSTM achieved the best result in terms of

RMSE.

Dhokane et al. [29] conducted an empirical investigation into the predictive capa-

bilities of the LSTM model on stock prices, utilizing a dataset encompassing eight

distinct stocks. The study was distinct in its approach by integrating two technical

analysis variables, namely the Exponential Moving Average (EMA) with varying pe-

riods and the Moving Average Convergence Divergence (MACD), into the predictive

model. Their findings substantiate the hypothesis that incorporating these technical

analysis variables significantly enhances the accuracy of stock price predictions. This

is a noteworthy contribution, as the prevailing literature predominantly emphasizes

the use of open, high, low, and close values as primary features for prediction. By

demonstrating the augmented predictive power through the inclusion of EMA and

MACD, Dhokane et al. provide a compelling argument for the reevaluation of feature

selection in stock price prediction models. This research underscores the potential

benefits of integrating technical analysis variables alongside traditional features to

improve the precision of predictive models in financial markets.

In their study, Tasneem et al. [93] embarked on a comprehensive analysis of the

stock prices for Acer Ltd. and Asustek Comp. Inc. This involved the application of

various technical analysis variables, specifically the Relative Strength Index (RSI),

Simple Moving Average (SMA), Exponential Moving Average (EMA), and Moving

Average Convergence Divergence (MACD). The objective was to assess the predic-

10

tive accuracy of these techniques in forecasting stock price movements. To achieve a

thorough evaluation, the study compared several advanced machine learning and deep

learning models including XGBoost, Random Forest, LightGBM, Recurrent Neural

Network (RNN), Long Short-Term Memory (LSTM), Gated Recurrent Unit (GRU),

and a hybrid approach combining LightGBM with deep learning strategies.

1.3.4 Explainability in time series

There are two widely used ways for predicting financial time series: one uses tech-

nical analysis, which provides high interpretability, and the other includes machine

learning models, which provide high accuracy [3]. Model accuracy is crucial for

scientists when analyzing financial time series. Hybridization of classifiers is used

to improve prediction accuracy, although this method may make computation more

complex. Another option is to build a single model with trustworthy attributes, in-

creasing the model’s confidence [19]. Building trust is crucial for the development of

models using real data. There is a need for an explanation of the model’s behavior to

aid decision-making because merely assessing accuracy may not help us comprehend

the model. Regulators should get explanations before making vital choices. Conse-

quently, the research field of XAI (eXplainable Artificial Intelligence) approaches has

emerged. They aid in the constructing trust in machine learning classifiers and give

insight to researchers about trust in prediction and model issues [81].

Researchers are interested in the relationship between accuracy and explanation, and

according to the Google Trends Popularity Index, the term "Explainable Artificial

Intelligence" peaked in popularity in July 2023. Although XAI gained popularity

after the introduction of various approaches, like LIME (Local Interpretable Model-

agnostic Explanations) in 2016 and SHAP (SHapley Additive exPlanations) in 2017,

XAI is not a novel idea; it has a history spanning back several decades to when artifi-

cial intelligence systems were developed [24].

Explainability and interpretability, in accordance with the literature review, are com-

11

parable terms. There is a need for clear distinction for them; Rudin [86]said that after

the modelling process, the model explainability could be satisfied, and interpretabil-

ity could be produced for the intrinsic behavior of the model. This study follows the

Rudin viewpoint for the purpose of simplicity.

The literature on financial time series with XAI discusses two standard techniques,

LIME and SHAP. The integration of LIME with Random Forest and eXtreme Gradi-

ent Boosting (XGBoost) models for trend prediction of six daily stock indices includ-

ing S&P 500 was first presented in the literature by Çelik et al [19]. As evaluation

metrics, accuracy, precision, recall, F1-score, and ROC-AUC are used, RF outper-

forms XGBoost. For illustration, seven random samples produced by the LIME al-

gorithm are provided. In their study, Bandi et al. [9] employed technical analysis

and sentiment analysis in conjunction with LIME to gain a deeper understanding of

sentiment classification regarding the Indian stock market index. Carta et al. [18]

employed RF and LIME in the feature selection process to increase the accuracy of

the intra-day return estimates for 300 stocks from several countries. They found that

LIME performed poorly and required it to be modified to work with financial time

series data compared to other strategies for increasing model accuracy.

Deng et al. [27] compared XGBoost, SVM, RF, KNN, ANN and Ordinary Least

Squares models for direction forecasting of the Shanghai and Shenzhen composite

indexes. Index daily movements are categorized as increasing and decreasing, respec-

tively, 1 and 0. Models are compared using performance criteria like accuracy and

F1-score, and according to the average testing period, XGBoost is selected to be the

best model. Three sentiment indexes are employed as features, and the SHAP tech-

nique is used to estimate their importance. Participants in the market are informed

of SHAP results to gain an improved knowledge of directions. Mandeep et al. [3]

forecast three S&P 500 listed companies’ closing values, namely Adobe, Amazon,

and Apple, using the Random Forest and XGBoost models. Instead of using met-

rics for model comparison, they focused on LIME and SHAP explanations. Goodell

et al. [38] concentrated on XAI modelling on daily forecasts of bitcoin prices from

2016 through the end of June 2022. They examine the SHAP in the feature selec-

tion process and after the modelling. They consider Granger causality, Variational

12

mode decomposition causality, and the proposed SHAP values algorithm for choos-

ing features. After the process, they compared deep learning models, such as Deep

Learning Neural Networks and LSTM models, with machine learning models, such as

Linear Regression, SVM, RF, XGBoost, and Extra Trees Regression. The two evalu-

ation metrics they employed out of sample R2 and Root Mean Square Error. Among

all models considering both metrics, LSTM with SHAP and LSTM with Granger

causality models produce the best results. The best error for the Variational Mode

Decomposition result is discovered in a different model called Extra Trees Regres-

sion. They employed SHAP for local and global explanation and LIME for local

explanation with the Extra Trees model to further analyze the models and XAI.

1.4 The Outline of the Thesis

The study is composed of four distinct chapters. Chapter 1 includes a problem de-

scription, method and contributions and literature review. Literature review discusses

related studies in four categories, namely portfolio formation, forecasting in stock

market index, forecasting in stocks and explainability in time series. Chapter Two,

methodology, delves into portfolio models, technical indicators and machine learn-

ing algorithms. In addition, XAI is included in this chapter. Chapter Three provides

an exhaustive analysis of various machine learning models, specifically focusing on

data and risk-aversion prediction and the comparative performance of portfolio opti-

mization outcomes and return prediction. Additionally, this chapter delves into the

interpretability of machine learning algorithms by examining the SHAP and LIME

results, thereby contributing valuable insights into the underlying decision-making

processes of selected models. Chapter Four offers a comprehensive summary of the

findings and articulates succinct discussions for subsequent research endeavors.

13

14

CHAPTER 2

METHODOLOGY

This chapter consists of five parts: asset prices and returns, portfolio formation, se-

lected technical indicators for market trend, mathematical concepts of machine learn-

ing models, and explainable artificial intelligence.

2.1 Asset Allocation

The exploration of return studies occupies a fundamental position within the domain

of financial research. Simple net weekly return from holding an asset; in other words

an investor buys an asset at its closing price on day t-1 and sells at its closing price on

week t:

Rt =
Pt

Pt−1

− 1.

Simple gross return is defined as 1 +Rt. Distribution of Rt is not symmetrical. For k

periods, it can be written as multiplication of k single periods:

1 +Rt(k) = (1 +Rt)(1 +Rt−1)...(1 +Rt−1+k) =
Pt

Pt−k

Calculating return as logarithmic return is very common in the literature. The follow-

ing equation defines the logarithmic return:

rt ≡ ln(1 +Rt) = lnPt − lnPt−1

Logarithmic return also called as continuously compounded return is a special type

of compounded return. Logarithmic return has some advantageous mathematical and

15

empirical properties. First of all, it is time additive which means considering multi-

period returns, the total logarithmic return can be expressed as summation of single

period returns [17].

rt(k) = ln(1 +Rt(k)) = rt + rt−1...+ rt−k+1

Secondly, if Rt is very small rt can be decomposed into a Taylor series which implies:

rt ≈ Rt

The last benefit is that the price can not be negative if the logarithmic return has a

normal distribution [48]. We will use simple net return in this study.

2.2 Portfolio Models

Maximizing return and minimizing risk are the two objectives of risk-averse investors.

The three strategies that are most effective for bi-objective mean-risk portfolios are,

first, reduce risk while accounting for a pre-specified level of expected return; sec-

ond, maximize return while preserving a reasonable level of risk; and third, maximize

risk-adjusted mean return while justifying for adjusted risk aversion coefficient. Let

us assume we have n assets, r = (r1, . . . , rn) denote the vector of historical return of

assets, ω = (ω1, . . . , ωn) is the vector of weights in the portfolio and rit denote the

historical return of asset i in period t, i = 1, ..., n and t = 1, ...T . Our aim is con-

struct Mean-risk portfolios with varying risk measures and risk aversion parameters

which set a trade-off between return and risk. Aiming the unbiasedness we transform

all objective functions into normalized version. Portfolio return with corresponding

weights calculated as:

Rt =
n∑

i=1

ritωi

The mean return of an asset, denoted by µi, represents the average return that the

asset is expected to generate over a specified period. Furthermore, the mean return

of a portfolio is calculated by taking into account the mean returns of all the assets

contained within the portfolio:

R =
n∑

i=1

µiωi

16

Calculating the mean return of a portfolio allows investors to estimate the expected

performance of their investment portfolio, thereby facilitating more informed decision-

making concerning portfolio composition and risk management strategies.

The model that we propose in this thesis is given as follows [47]:

max ρ
R−Rmin

Rmax −Rmin

− (1− ρ)
M −Mmin

Mmax −Mmin

(2.1)

s. t. R =
n∑

i=1

µiωi (2.2)

n∑
i=1

ωi = 1 (2.3)

ωi ≥ 0 (2.4)

Within equation (2.1), the variable ρ denotes the risk aversion coefficient, which spans

between 0 and 1. If ρ is set to 0, the model prioritizes minimizing the risk measure,

operating under the assumption that the market will not increase. Conversely, if ρ is

set to 1, the model prioritizes maximizing the return, operating under the assumption

that the market will increase. To ensure consistency, both the return and risk measure

are normalized within the [0, 1] range. Constraints (2.3) and (2.4) state that all the

available money must be used and no short selling is allowed. Mmin and Rmin refer to

the minimum risk measure and expected return, respectively, obtained by minimizing

the risk measure without any constraint on the expected return. Similarly, Mmax and

Rmax refer to the maximum risk measure and expected return, respectively, obtained

by maximizing the expected return without any constraint on the risk measure. Next,

we give the mean-risk portfolio models that we consider in our analyses.

2.2.1 Mean-Variance Portfolio

Using the assets in the portfolio, investors create a feasible set of portfolios; an ef-

ficient portfolio offers the highest expected return of all feasible portfolios with the

specified risk [32]. About 70 years ago, Markowitz [61] presented Mean-Variance

structure in his paper to obtain efficient portfolios. The Markowitz model, fundamen-

tal in constructing efficient portfolios, posits that the optimization of a portfolio can

be achieved through the mean-variance framework, which utilizes expected returns

17

and standard deviation as its core parameters. Investors who are risk averse means

they select minimum risk portfolio if their expected returns are equal. Financial as-

sets are homogenous for all investors. It is possible to estimate the mean and standard

deviation of financial asset returns, which follow a normal distribution [32] .

The return of the portfolio is equal to:

R (ω) = ω⊤R

The expected return of the portfolio:

E [R (ω)] = E
[
ω⊤R

]
= ω⊤E [R] = ω⊤µ

Variance of portfolio:

σ2 (ω) = E
[
(R (ω)− E [R]) (R (ω)− E [R])⊤

]
= E

[(
ω⊤R− ω⊤µ

) (
ω⊤R− ω⊤µ

)⊤]
= E

[
ω⊤ (R− µ) (R− µ)⊤ ω

]
= ω⊤E

[
(R− µ) (R− µ)⊤

]
ω

= ω⊤Σω

Standard deviation:

σ (ω) =
√
ω⊤Σω

Markowitz describes how to construct optimizations for efficient portfolios by maxi-

mizing the expected return of the portfolio subject to a volatility constraint and min-

imizing the variance of the portfolio subject to a return constraint. Problems are the

same if strong duality holds. The efficient frontier portfolio starts with the mini-

mum variance portfolio, and ends with the maximum return portfolio. Among these

portfolios, there exist many optimal portfolios. Moreover, optimization problem can

be written as a standard quadratic programming problem optimization problem with

1 = (11, ...1n) vector of ones, subject to sum of shares invested in portfolio must be

1 is written as:

ω⋆ (γ) = argmin
1

2
ω⊤Σω − γω⊤µ

s.t. 1⊤
nω = 1

where γ = ϕ−1 is the risk and return trade-off parameter. Solution of all these prob-

lems are identical if µ is not a multiple of 1 [12]. This problem with unlimited short

18

selling allowed can be solved analytically using Lagrange multipliers.

The Lagrange function is:

L (ω;λ0) = ω⊤µ− ϕ

2
ω⊤Σω + λ0

(
1⊤
nω − 1

)
The first-order conditions are:

∂ω L (ω;λ0) = µ− ϕΣω + λ01n = 0n

∂λ0 L (ω;λ0) = 1⊤
nω − 1 = 0

From first equation:

ω = ϕ−1Σ−1 (µ+ λ01n)

Putting ω into second equation we have:

1⊤
nϕ

−1Σ−1µ+ λ0

(
1⊤
nϕ

−1Σ−11n

)
= 1

λ0 calculated as:

λ0 =
1− 1⊤

nϕ
−1Σ−1µ

1⊤
nϕ

−1Σ−11n

The solution is then:

ω⋆ (ϕ) =
Σ−11n

1⊤
nΣ

−11n

+
1

ϕ
·
(
1⊤
nΣ

−11n

)
Σ−1µ−

(
1⊤
nΣ

−1µ
)
Σ−11n

1⊤
nΣ

−11n

The set of optimum weights of global minimum variance portfolio is:

ω⋆ (∞) =
Σ−11n

1⊤
nΣ

−11n

If we add risk free asset to our risky portfolio,we get single optimum portfolio, namely

tangency portfolio. Our problem is the quadratic programming problem and which

forbids short selling, it has not analytical closed-form solution:

ω⋆ (γ) = argmin
1

2
ω⊤Σω − γ(ω⊤µ)

s.t. 1⊤
nω = 1

s.t. ω ≥ 0

The Lagrange function is:

L (ω;λ0, λ) = ω⊤µ− ϕ

2
ω⊤Σω + λ0

(
1⊤
nω − 1

)
+ λ⊤ω

19

where λ = (λ1, . . . , λn) ≥ 0n is the vector of Lagrange coefficients associated with

the constraints ωi ≥ 0 [84]. Quadratic solver must be used to compute optimal

weights of portfolio [100]. Without normalization, the following equation depicts

our optimization issue:

ω⋆ (ρ) = argmax ρ ω⊤µ− (1− ρ)ω⊤Σω

s.t. 1⊤
nω = 1

s.t. ω ≥ 0

2.2.2 Mean-CVaR Portfolio

Some scholars propose that risk metrics solely assess the negative aspects of return.

Markowitz also suggests using semivariance as a risk measure but due to compu-

tational difficulty, he builds modern portfolio theory with variance [32]. The mean-

variance model computes above and below returns dispersion in the same way. Due to

the limitations of the traditional model, additional risk measures are required. Value

at Risk (VaR) which is a percentile of a loss distribution is proposed by J.P.Morgan

[57] in 1996, it is coherent only when the underlying distribution is normal and does

not give information above the described loss level. Optimization of VaR is difficult

when historical return values are used [82]. The concept of Conditional Value at Risk

(CVaR), which aims to measure the expected value of losses that exceed the VaR, was

introduced by Rockafellar and Uryasev [82] in 2000. VaR is lower bound for CVaR,

CVaR is always greater than VaR.

For each weight, loss function represented as f(ω, r), is conceptualized as a random

variable characterized by a distribution within the real number domain, R. This con-

ceptualization stems from the consideration of the random nature of returns. Proba-

bility density function of random returns r is denoted as p(r). For fixed ω, cumulative

distribution function (CDF) of the loss:

Ψ(ω, γ) =

∫
f(ω,r)≤γ

p(r)dr

VaR is a minimum loss value with given confidence level α:

V aRα(ω) = min{γ ∈ R : Ψ(ω, γ) ≥ α}

20

Then, CVaR:

CV aRα(ω) =
1

1− α

∫
f(ω,r)≥V aRα(ω)

f(ω, r)p(r)dr

It is difficult to optimize this definition so by defining auxiliary function, we want to

write CDF as follows:

Fα(ω, γ) = γ +
1

1− α

∫
(f(ω, r)− γ)+p(r)dr

CDF has a VaR minimizer convex function and minimum value is equal to CVaR.

Since it is hard to work with random returns, historical values of returns are used.

Let us assume r = (r1, ..., rT) denote the return vector, approximation of the CDF is

given as :

F̂α(ω, γ) = γ +
1

(1− α)T

T∑
t=1

(f(ω, rt)− γ)+p(r)dr

The function F̂α(ω, γ) is convex and piecewise linear with respect to γ [82]. To solve

minimum CV aRα(ω) optimization problem with change of variables (f(ω, rt)−γ)+

with zt with defining constraints zt ≥ f(ω, rt) − γ and zt ≥ 0. Our optimization

problem as without normalization is given as:

ω⋆ (ρ) = argmax ρ ω⊤µ− (1− ρ)

(
γ +

1

(1− α)T

T∑
t=1

zt

)
s.t. 1⊤

nω = 1

s.t. ω ≥ 0

s.t. zt ≥ f(ω, rt)− γ

s.t. zt ≥ 0

In our case since loss function is linear and our problem turns up as a simple linear

programming problem, solved with linear solvers [100].

2.2.3 Mean-MAD Portfolio

The third risk measure we consider is the Mean Absolute Deviation. In 1991, Konno

and Yamazaki [53] proposed a prominent risk measure which is called mean absolute

deviation. As stated earlier, the weekly return of asset i on trading week t computed

21

as:

ri,t =
Pi,t − Pi,t−1

Pi,t−1

Mean return of asset i:

r̄i =
1

T

T∑
t=1

ri,t

The mean absolute deviation (MAD) for asset i is:

MADi =
1

T

T∑
t=1

| ri,t − r̄i |

The calculation of the initial and final values of portfolios is described by the follow-

ing two equations. Let Wt denote the initial portfolio value:

Wt =
n∑

i=1

νi,tPi,t

Wt+s =
n∑

i=1

νi,t+sPi,t+s

For the period [t, t + s), assume νi,t denote the shares of asset i, then the portfolio

return is given as:

rt+s =

∑n
i=1 νi,tPi,t+s −

∑n
i=1 νi,tPi,t

Wt

=
n∑

i=1

νi,tPi,t

Wt

ri,t+s

=
n∑

i=1

ωi,tri,t+s

where ri,t+s is return on asset i at time t+ s, and ωi,t is proportion of total wealth.

Assume we can update weights over a fixed time horizon t = 1, ..., T and have n

assets. The MAD for portfolio returns over T interval is calculated as:

1

T

T∑
t=1

∣∣∣ n∑
i=1

ωi(rt,i − r̄i)
∣∣∣

where rt,i is the return on asset i at time t, r̄i is the mean return for asset i, and ωi

is the fraction of the total portfolio that is invested in asset i. Defining two sets of

22

auxiliary variables ut and vt , decomposition of absolute deviation can be written as:∣∣∣∣∣
n∑

i=1

ωi(rt,i − r̄i)

∣∣∣∣∣ = ut + vt

This decomposition allows expressing absolute deviation linearly, making it easier

to include in a linear optimization problem, where ut represents the excess of the

portfolio return over the mean return in period t. Mathematically expressed as:

ut ≥
n∑

i=1

ωi(rt,i − r̄i)

vt represents the amount by which the mean return exceeds the portfolio return in

period t. Mathematically expressed as:

vt ≥ −
n∑

i=1

ωi(rt,i − r̄i)

Without normalization, our optimization problem—which is a linear optimization

problem—can be stated as follows:

ω⋆ (ρ) = argmax ρ ω⊤µ− (1− ρ)
1

T

T∑
t=1

(ut + vt)

s.t. 1⊤
nω = 1

s.t. ω ≥ 0

s.t. ut − vt =
n∑

i=1

ωi(rt,i − r̄i)

s.t. ut, vt ≥ 0

Deviation constraint allows us to express the deviation as the difference between two

non-negative variables. This is particularly useful in linear programming because it

linearizes the absolute value of the deviation [77, 60].

In the following section, we provide important technical indicators that will be uti-

lized in our analysis for feature construction.

2.3 Technical Indicators

To enhance the understanding of stock index trends and individual stock price move-

ments, and to facilitate improved decision-making in financial markets, the applica-

23

tion of technical analysis is deemed essential. Technical analysis encompasses a vari-

ety of indicators that can be categorized based on their primary function, such as trend

analysis, momentum measurement, and volatility assessment [83, 73]. Among these,

eleven technical indicators stand out for their efficacy in predicting future movements

of the S&P 500 index. These indicators include three different types of moving av-

erages and the Average Directional Movement Index (ADX), which are instrumental

in identifying trends. Additionally, the Commodity Channel Index (CCI) and the

Parabolic Stop And Reverse (SAR) are also utilized for trend analysis. To gauge mo-

mentum, the Relative Strength Index (RSI) is employed. For the analysis of volume,

the Ease of Movement (EMV), Money Flow Index (MFI), and the Volume Weighted

Average Price (VWAP) are utilized. Lastly, to assess volatility, Bollinger Bands (BB)

are applied. This comprehensive set of technical indicators provides a robust frame-

work for analyzing and forecasting the movements of the S&P 500 and stocks, play-

ing a crucial role in the decision-making processes of market participants.

2.3.1 Moving Averages(MA)

Moving averages can help analyze data trends effectively, Simple Moving Average
(SMA) is the most used type [70].

Figure 2.1: SMA Plot of S&P 500

In Figure 2.1, each SMA is represented by a distinctive color for clarity in visual-

ization: blue for the 3-period SMA, red for the 5-period SMA, and orange for the

24

10-period SMA. SMA can be formulated as a simple average formula for past n pe-

riods,and N is final period.

SMA =

∑n−1
i=0 Close PriceN−i

N

Instead of equally weighted approach, some technical analysts use linearly weighted

moving average (WMA) giving more weight into recent price:

WMA =

∑n−1
i=0 (n− i)Close PriceN−i∑n−1

i=0 (n− i)

Figure 2.2: WMA Plot of S&P 500

In Figure 2.2, each WMA is represented by a distinctive color for clarity in visual-

ization: blue for the 3-period WMA, red for the 5-period WMA, and orange for the

10-period WMA. Instead of WMA, some technical analysts use Exponential Moving

Average (EMA) decreasing weight exponentially:

EMA =
n−1∑
i=0

[α(1− α)iClose PriceN−i]

where α is smoothing constant, equals 2/(n+ 1) [23].

25

Figure 2.3: EMA Plot of S&P 500

In Figure 2.3, each EMA is represented by a distinctive color for clarity in visual-

ization: blue for the 3-period EMA, red for the 5-period EMA, and orange for the

10-period EMA.

2.3.2 Average Directional Movement Index(ADX)

ADX was developed by J.Welles Wilder [98], it is calculated as exponential moving

average of Directional Movement Index(DX) over timeperiod. The DX is calculated

as combining a positive directional indicator (DI+) and negative directional indicator

(DI−) which are calculated based on directional movements(DM) . ADX can be for-

mulated as step by step [91]:

DM+
t =

 max (Hight −Hight−1, 0) if Hight −Hight−1 ≥ Lowt − Lowt−1

0 if otherwise

DM−
t =

 max (Lowt − Lowt−1, 0) if Hight −Hight−1 ≤ Lowt − Lowt−1

0 if otherwise

DI+t =
DM+

t

TRN

DI−t =
DM−

t

TRN

TRN is true range prior N time period calculated as max of difference of below prices

or 0.

26

• HPt-LPt

• HPt-CPt−1

• LPt-CPt−1

where HP: High price and LP: Low price, CP: Close Price.

Then DI+t and DI−t smoothed over N time period:

DI+N = Σ
DM+

N

TRN

DI−N = Σ
DM−

N

TRN

Then DX can be calculated as:

DXt =
DI+t −DI−t
DI+t +DX−

t

Then using EMA, ADX calculated as:

ADXN = 100 ∗ EMA (DX,N)

Figure 2.4: ADX Plot of S&P 500 with 3,5,10 periods

In Figure 2.4, each ADX period is represented by distinctive boxes for clarity in

visualization: the first for the 3-period ADX, the second for the 5-period ADX, and

the third for the 10-period ADX.

27

2.3.3 Relative Strength Index(RSI)

RSI is one of the most popular momentum indicator and it was developed by J.Welles

Wilder [70]. The momentum line is smoothed by RSI, and it aids in the emergence

of boundaries ranging from 0 to 100. The term "relative strength(RS)" refers to the

proportion of average upward and downward movements [70]. For RSI formula,first

consider RS [83]:

RS =
Mean of Close− Previous Close on Up Movement

Mean of Previous Close− Current Close on Down Movement

RSI = 100− 100

1 +RS

Figure 2.5: RSI Plot of S&P 500 with 3,5,10 periods

In Figure 2.5, each RSI period is represented by distinctive boxes for clarity in visu-

alization: the first for the 3-period RSI, the second for the 5-period RSI, and the third

for the 10-period RSI.

2.3.4 Commodity Channel Index(CCI)

CCI is one of the momentum indicator and it was developed for commodities by

Donald, R [70]. It can be represented as a four-step calculation [66].

Typical Price =
N∑

n=1

High+ Low + Close

3

28

Moving Average (MA) =
Typical Price

N

Mean Deviation =

∑N
n=1 |Typical Price−MA|

N

CCI =
Typical Price−MA

L ∗Mean Deviation

where N is number of periods and L is Lambert coefficient which is equal to 0.015.

Figure 2.6: CCI Plot of S&P 500 with 20 period

In Figure 2.6, the 20-period CCI is depicted in red at the bottom of the figure.

2.3.5 Ease of Movement(EMV)

This momentum indicator assesses volume momentum by examining the midpoint

values of successive periods, and then dividing this by the volume of trades divided

by the high-low price difference [23].

Midpoints of range =
HPt + LPt

2
− HPt−1 + LPt−1

2

EMV =
Midpoints of range

V olumet/(HPt − LPt)

29

Figure 2.7: EMV Plot of S&P 500 with 3,5,10 periods

In Figure 2.7, each EMV period is represented by distinctive boxes for clarity in

visualization: the first for the 3-period EMV, the second for the 5-period EMV, and

the third for the 10-period EMV.

2.3.6 Bollinger Bands(BB)

BB uses standard deviation in its calculations and this makes them a volatility indi-

cator. As a mean value, BB employ the moving average. BB are made up of three

bands, known as the upper, middle, and lower bands.σ is standard deviation, xi is data

points, x̄ is average of data points and N is period number. BB calculation as follows:

σ =

√∑
(xi − x̄)2

N

Middle Band = SMA (N)

Upper Band = Middle Band+ 2σ

Lower Band = Middle Band− 2σ

30

Figure 2.8: BB Plot of S&P 500 with 3,5,10 periods

In Figure 2.8, each "BB" period is shown on the time series plot.

2.3.7 Parabolic Stop-and-Reverse(SAR)

J. Welles Wilder’s innovative tool has the ability to generate fresh trading signals by

analyzing market trends. With the power of two formulas, it’s a game-changing solu-

tion for investors.

For new buy signals:

RSAR = Prior SAR + Prior AF (Prior EP − Prior SAR)

For new sell signals:

FSAR = Prior SAR− Prior AF (Prior SAR− Prior EP)

where AF is Acceleration Factor ranges between 0.02 to maximum 0.2 with the in-
crement 0.02 and EP is Extreme Points [23].

31

Figure 2.9: SAR Plot of S&P 500

In Figure 2.9, SAR is shown on the time series plot.

2.3.8 Money Flow Index (MFI)

MFI is a momentum indicator calculated with four steps as follows, firsly selected

period typical price is calculated:

Typical Price =
High+ Low + Close

3

Next, Money Flow is calculated as follows:

Money flow = Typical Price ∗ V olume

Money flow =

 Positive if Typical Pricet > Typical Pricet−1

Negative if otherwise

Positive money flow is the total positive period, negative money flow is the total

negative period, and the money ratio is the division of the two[2].

Money Ratio =
Positive Money flow

Negative Money F low

Finally, MFI calculated as:

MFI = 100− 100

1−Money Ratio

32

Utilizing the MFI indicator can assist in making wise investment decisions. When the
MFI surpasses 80, it demonstrates overbought conditions. Therefore, it is advisable
to purchase before it reaches that threshold. Similarly, if the MFI dips below 20, it
indicates oversold conditions. Hence, it would be prudent to sell before it falls further
[75].

Figure 2.10: MFI Plot of S&P 500 with 3,5,10 periods

In Figure 2.10, each MFI period is represented by distinctive boxes for clarity in

visualization: the first for the 3-period MFI, the second for the 5-period MFI, and the

third for the 10-period MFI.

2.3.9 Volume Weighted Average Price(WVAP)

The calculation of WVAP involves dividing the overall trade value by its volume, as

measured over a specified timeframe [36].

Typical Price =
High+ Low + Close

3

WVAP =

∑n−1
i=0 (V olumeN−i ∗ Typical PriceN−i)∑n−1

i=0 V olumeN−i

33

Figure 2.11: WVAP Plot of S&P 500 with 3,5,10 periods

In Figure 2.11, each WVAP period is represented by distinctive boxes for clarity in

visualization: the first for the 3-period WVAP, the second for the 5-period WVAP,

and the third for the 10-period WVAP. Following the development of our technical

analysis variables, it is apparent that machine learning plays a vital role in predictive

analytics. Consequently, we elucidate the mathematical underpinnings of selected

models designed for forecasting trends in the S&P 500 in the subsequent section.

2.4 Machine Learning Algorithms

Learning is an integral component of a researcher’s journey. In earlier times, with the

help of mathematics, scientists tried to learn data with the induction method, which

was a theoretical approach. Mathematicians want to construct rules and generalize

the rule for a statement. In statistics, it was crucial to make inferences from a sample;

they wonder how they model the world. The world has many data; understanding it,

making usable models, and estimating the model parameters are attractive for statis-

ticians. Thanks to the invention of computers, mathematicians and statisticians can

automate the learning process. The mathematician Alan Turing asked the question

"Can machines think?" and discussed programming of machines in his article in 1950

34

[96]. Like Turing, scientists work to teach machines how to learn using algorithms.

Thanks to advances in machine learning, the prediction of price direction is a research

topic in the fields of finance, statistics, and computer science.

Today, with much data, we live in a significant data era. Access to data is faster

than ten years ago; every minute, new algorithms which are designed to predict the

learning process has better accuracy than old algorithms.

Three categories of machine learning algorithms can be distinguished: reinforcement

learning, unsupervised learning, and supervised learning. Classification and regres-

sion algorithms are the two categories that constitute supervised algorithms.

• Classification: It is called as discriminative analysis in statistics [65, 41] and

called as pattern recognition in computer engineering [31].

• Regression: Its objective is to forecast numerical value such as weekly price of

a stock.

Learning the class of the data is the aim of classification models. One problem that

this thesis considers is understanding the S&P 500’s up and down movements. Let us

assume two variables that affect S&P 500 trend prediction are RSI and SAR. Thus,

two features, x1 and x2, can represent each move.

x =

x1

x2

and x’s label is given as:

g =

 1 if x is UP

0 if x is DOWN

If the training set has N examples, it can be represented as X={xt,gt}N
t=1, t is different

samples in the dataset.

After further insight from finance experts if the RSI and SAR are between certain

ranges, then the movement is considered as "up", these certain ranges are given as:

IF O1 < RSI < O2 AND S1 < SAR < S2 then UP (2.5)

35

In our class, C represents upward movement with an equation of 2.5, assuming it is a

rectangle taken from the hypothesis class in the RSI-SAR price space. The learning

algorithm aims to find the most appropriate hypothesis, h(x), which is closest to C.

h(x) =

 1 if h classifies x as UP

0 if h classifies x as DOWN

The error of h(x) given X:

E(h|X) =
N∑

n=1

1(h(xt) ̸= gt)

where 1(h(xt) ̸= gt) is 1 if h(xt) ̸= gt and is 0 if h(xt) = gt.

Each (0h
1 ,0h

2 ,Sh
1 ,Sh

2) construct a hypothesis and we search for the best values of these

parameters for the hypothesis given X, which only includes upward movements.

Since RSI and SAR are real valued, there exist infinitely many hypotheses, and some

hypotheses have correct predictions for X. For any hypothesis with boundaries, the

upper boundary is called the most general hypothesis set, and the lower boundary is

called the most specific hypothesis set; these hypotheses are called consistent. X is

assumed to be large enough for unique the most specific and general hypothesis and

h is chosen for increasing margin, which is the distance between boundary and the

nearest samples to it. Margin gives insight for classification for the boundary and

data samples, there exist a need for a new version of the error function which can also

check the margin. A hypothesis with the largest margin gives the most significant

classification.

Up to this point, we have examined a basic hypothesis class. However, the pres-

ence of unobservable variables as noise would indicate that our class cannot remain

simple; it must be more complex in order to account for this. Complex hypotheses

need complex models that fit the data. The set of assumptions for the classification

are called as inductive bias, and hypothesis class is one of the inductive bias. For

the approximation of gt, we need to choose three things: inductive bias (model), loss

function, and optimization procedure. They will be shared in the following sections.

36

Apart from classification models, regression models aim to learn real-valued out-

comes. This study focuses on predicting asset prices, specifically the price of stocks

for regression models prediction.

g = Price

where Price ∈ R denotes that Price belongs to the set of real numbers [5].

2.4.1 Logistic Regression (LR)

One discriminant-based classification approach, LR, makes assumptions regarding

the discriminant between class labels. The LR, which uses the term odds, is a proba-

bilistic model. The odds related to a predicted event can be stated as the ratio of the

probability that the event will occur to the probability that it will not occur :

p

1− p

For brevity, assuming we have two classes, C1 and C2, we want to predict the con-

ditional probability of class 1 given training data as X={xt,gt}m
t=1 and probability

p := P (C1|x).

logit(P (C1|x)) = ln
P (C1|x)

1− P (C1|x)
= ln

P (x|C1)

P (x|C2)
+ ln

P (C1)

P (C2)
= z

Logit function equals z, according to Bayes’ rule usage of the equation and [0, 1], R
are the domain and codomain of the logit function, respectively.

Figure 2.12: Logistic Regression Structure [79]

In Figure 2.12, the structure of logistic regression is visualized. The mathematical

expression of input value z is a linear combination of the features (x) and the set of

37

parameters (w).

x =

x1

.

.

.

xm

,w =

w1

.

.

.

wm

z = wTx = w0x0 + w1x1 + ...+ wmxm =
m∑
i=0

wixi,

Given the significance of probability, we require the inverse of the logit function,
frequently referred to as the sigmoid function and represented as ϕ(z), which is the
activation function of logistic regression. Based on Figure 2.13, its S-shaped function
indicates the likelihood of results [79].

Figure 2.13: Logistic Sigmoid Function[79]

Predicted probability calculated with threshold function denoted as:

y = P̂ (C1|x) =

1 if ϕ(z) ≥ 0.5

0 otherwise

38

2.4.1.1 Loss Function

This method operates by learning parameters, specifically, the weight vector denoted

as w and the bias term w0, which are pivotal in delineating the decision boundary

between different classes in the feature space. For this, maximum likelihood estima-

tion is utilized, with the following definition of the likelihood function, assuming the

independence of sample data. Data as X={xt,gt}mt=1, where gt=1 if x ∈ C1 and gt=0

if x ∈ C2 and assume gt, given xt has Bernoulli distribution with probability yt. So,

the sample likelihood function is

L(w, w0)|X) =
m∏
t=1

P (yt|xt;w) =
m∏
t=1

(yt)(g
t)(1− yt)(1−gt)

The concept of log-likelihood is frequently employed in the realm of statistical analy-

sis and machine learning due to its facilitation of maximization. However, there is an

alternate approach aimed at achieving similar objectives, known as the cross-entropy

error function. This function, which can be minimized, is mathematically represented

as E = − log(L), where E denotes the cross-entropy error, and L symbolizes the log-

likelihood of the model. We can explicitly indicate it as:

E(w, w0|X) = −
m∑
t=1

gtlogyt + (1− gt)log(1− yt)

The loss function does not have an analytical solution, so we require optimization

methods to minimize it [5].

2.4.1.2 Optimization Methods

Gradient Descent

In the pursuit of optimizing convex error functions, a plethora of methodologies have

been established. Specifically, gradient descent emerges as an efficacious strategy

for resolving the cross-entropy problem. This technique involves the computation of

weight coefficients through the application of the partial derivative of cross-entropy,

as delineated below:

39

Derivative of cross-entropy error with respect to j th weight:

∆wj = −η
∂E

∂wj

=
m∑
1

(
gt

yt
− 1− gt

1− yt
)yt(1− yt)xt

j = η

m∑
1

(gt − yt)xt
j, j = 1, ...d

Derivative of cross-entropy error with respect to w0:

∆w0 = −η
∂E

∂w0

= η

m∑
1

(gt − yt)

Single update becomes:

wj = wj − η∇E(wj)

where η is called stepsize [5].

Liblinear

It is an optimization method used for linear classifiers, particularly for solving un-

constrained optimization problems in datasets with binary output. It is represented

as:

min
w

1

2
wtw + C

m∑
1

E(w, w0|X)

where C is penalty parameter. For Logistic Regression log(1 + e−yiwT xi) is error

function. This method uses an additional dimension for the solution [35].

2.4.1.3 Regularization

In order to achieve optimal data fitting, regularization techniques can be used to ad-

just model complexity and prevent issues with overfitting or underfitting.

L2 Regularization

It uses the Euclidean norm, which lessens complexity by introducing a penalty term

into the cross entropy. L2 penalty term denoted as:

λ

2
∥w∥2 =

λ

2

m∑
1

w2
j

40

The cross-entropy error equation transforms into the equation below:

E(w, w0|X) = −
m∑
t=1

gtlogyt + (1− gt)log(1− yt) +
λ

2

m∑
1

w2
j

Where λ is the tuning parameter that needs to be adjusted. As λ increases, the regu-

larization strength also increases, but if λ is too high, it makes the weights approach 0.

L1 Regularization

This regularization uses L1 norm and L1 penalty term, The L1 norm of the weight

vector w is given by:

∥w∥1 =
m∑
1

|wj|

This term is added to the loss function to penalize large coefficients in a linear model

[80]:

E(w, w0|X) = −
m∑
t=1

gtlogyt + (1− gt)log(1− yt) + λ
m∑
1

|wj|

This makes L1 regularization especially valuable for performing feature selection in

high-dimensional data.

2.4.2 K Nearest Neighbour (KNN)

KNN is a memory-based learning algorithm introduced in the 1960s for classification

[99]. It makes no assumptions about the dataset for modelling purposes and assumes

that similar inputs have similar outputs. This algorithm leverages the principle of data

memory to categorize newly introduced data, represented as xnew, by applying a sim-

ilarity metric to ascertain the most analogous data points to xnew. Since KNN is an

instance-based technique computing a new instance requires O(N) memory. When

the calculation of large instances takes a long time, and the complexity of KNN relies

on the training set , in most situations, N>d, where N is the number of samples and

d is the number of features, computational complexity is a concern for KNN [5]. A

KNN classifier with Minkowski distance takes computing time O(Nd) [25].

41

2.4.2.1 Distance metrics

This metrics serve as a fundamental determinant of similarity or dissimilarity between

data points within a given feature space. The distance metric, denoted as d, between

a training sample x and a new observation xnew, can be rigorously defined by the

following axioms which ensure its mathematical consistency and applicability:

(1)d(x, xnew) ≥ 0

(2)d(x, xnew)=0 only if x=xnew

(3)d(x, xnew)=d(xnew, x)

(4)d(x, z)≥d(x, xnew)+d(xnew, z)

Fulfilling these criterias allow for the effective functioning of KNN by accurately

modeling the distances or dissimilarities within the feature space of the dataset. The

common metrics used in the KNN model include:

Minkowski Distance

Let us call feature set as F. General formula for Minkowski Distance is denoted as

MD:

MDp(xnew, xi) = (
∑
f∈F

|xnewf
− xif |p)1/p

When p=1, it is called as Manhattan Distance and p=2 called as Euclidean distance.

When p= ∞, this special form of Minkowski distance called as Chebyshev distance:

MD∞(xnew, xi) = max
f∈F

|xnewf
− xif |

Mahalanobis Distance

dM =
√
(x− xnew)TS(x− xnew)

where S is covariance matrix of the data [25].

42

2.4.2.2 Search Strategies

The KNN model uses various strategies to determine the k nearest neighbors for its

utilization.

Brute Force Approach

The methodology under discussion is commonly identified as an exhaustive search

technique, pivotal in computing similarity distances between each query point as

xnew and various data sample points. This process involves a meticulous sorting

of the computed distances to accurately identify the k-nearest neighbours. Despite

the straightforward nature of this search mechanism, it is imperative to acknowledge

its considerable computational complexity. To elucidate, consider a scenario where

the dataset comprises n query points represented as xnew, m sample points, and d

distinctive features. In this context, the computation of distance measurements ne-

cessitates a temporal complexity of O(mnd). Concurrently, the sorting procedure is

anticipated to demand O(nmlogm) time. Thus, the cumulative time required by the

brute force approach to conclude the computation effectively aggregates to O(mnd) +

O(nmlogm). Interestingly, when each data point functions simultaneously as both the

query and reference point—thus setting n equal to m—the computational complexity

morphs into O(n2d) + O(n2 logn). This particular analysis underscores the challenges

inherent in managing substantial data volumes, especially when such calculations are

necessitated individually for each new instance. However, it also highlights the po-

tential of parallel processing as a viable strategy to mitigate computing time. Further-

more, the exploration of alternate methodologies continues to be an area of significant

interest and research within the field [6].

kD-Trees

kD-Trees refers to the k features that constitutes k dimensional space, it was first

used in the 1990s [99]. The prolonged search technique for KNN is kD-Trees [11].

The architectural design of kD-Trees is predicated on the binary tree model, wherein

the division of training data is meticulously arranged into hierarchical branches, cul-

43

minating in leaves. This structure facilitates an efficient partitioning of space, making

it adept at managing high-dimensional data. An illustrative example of this mech-

anism can be observed in a bi-dimensional dataset scenario; here, kD-Trees profi-

ciently bisect the dataset through hyperplanes that are orthogonal to either the X or

Y axis. This partitioning strategy hinges on the analysis of feature variance within

the dataset, selecting the feature with the maximal dispersion as the axis for division.

The optimal position for the hyperplane is determined by computing the mean value

of the selected feature, ensuring a balanced distribution of data points across the tree.

This process is recursively applied, with each iteration refining the search space until

the most proximate neighbors are delineated. The search time is O(dlogk) which is

increasing when k is so large, and kD-Trees passes the time of the Brute Force search

[11]. A critical examination of kD-Trees in the context of nearest neighbor searches

reveals a nuanced limitation: the employment of hyperrectangles for bounding near-

est neighbors, though effective, is not universally optimal.

Ball Trees

In n-dimensional Euclidean space, a ball is a region surrounded by a hypersphere.

In the KNN approach, a ball tree generates k-dimensional hyperspheres for training

data, and the balls are sorted as leaves of the tree. The implementation can be done

top-down or bottom-up, as it is similar to that of the hierarchical clustering problem.

Unlike kD-Trees, there is no need to partition the entire space, and the sibling regions

of ball trees can intersect [72]. These characteristics give ball trees their strength. Ball

trees are a sophisticated method that, unlike kD-trees, addresses the curse of dimen-

sionality problem by building metric trees to provide a solution for high-dimensional

data. In comparison to kD-Trees, ball trees emphasize the construction of superior

metric to the feature space. However, this great property for Ball trees restricts the

applications of Dynamic Time Warping, a similarity metric for time series data [25].

Distance metrics and the number of similar data points must be specified in the KNN

implementation. KNN obtains the final class prediction of the query by a simple ma-

jority vote of k data points. The equation provided:

44

V ote(yj) =
k∑

j=1

1

d(xnew, xc)p
1(yj, yc)

yj is prediction of neighbour xc and p is usually selected as 1 [25]. The function

1(yj, yc) is an indicator that returns 1 if the class label yc same with prediction, and 0

otherwise:

1(yj, yc) =

1 if yj = yc

0 otherwise

Figure 2.14: KNN with two features[79]

In Figure 2.14, the visualization of KNN classification with two features is provided.

2.4.3 Support Vector Machine (SVM)

SVM can be used to solve both linear and nonlinear classification problems. If SVM
is used for a classification problem, it’s known as a Support Vector Classification
(SVC) [43]. Classes are not always linearly separable in feature space; hence, SVM
uses feature transformation to achieve linear separability to deal with nonlinearity.
SVM’s main goal is to identify the hyperplane as the decision boundary that best
separates the classes. A hyperplane for each class establishes the margin, which is

45

maximized during training. Support vectors are training data points close to the hy-
perplanes, and they are crucial in determining the position of the decision boundary.
The sample is X={xt,gt}, where gt=1 if x ∈ C1 and gt=-1 if x ∈ C2. If our classes
can be linearly separated and there are two features, the SVM visualization appears
as shown in the following figure.

Figure 2.15: SVM[15]

In Figure 2.15, the visualization of SVM classification with two features is provided.

There are numerous hyperplane options, and SVMs are well-known for their ability

to learn new data by selecting a greater distance between the decision boundary and

the data point. Here is the decision boundary equation:

wTxt + b = 0

where w is the weight vector, b is a real number.

To discover the optimal hyperplane that maximizes the margin between the two classes,

SVMs enforce the following constraints:

• Hyperplane 1: wTxt+b≥+1 for gt=+1

• Hyperplane 2: wTxt+b≤-1 for gt=-1

46

Therefore, data above hyperplane one and below hyperplane two belongs to C1 and

C2, respectively. For convenience, these two inequalities can be expressed as:

gt(wTxt + b) ≥ 1

The distance between the hyperplanes is given by 2
||w|| . Maximizing this distance is

equivalent to minimizing the value of 1
2
||w||2.

min
1

2
||w||2 subject to gt(wTxt + b) ≥ 1. (2.6)

In solving for the optimal hyperplane in a quadratic programming problem, it is

important to reconsider the problem using Lagrange multipliers and Karush-Kuhn-

Tucker conditions. The final formulation can be solved using programming methods

with a set of support vectors xt, where w is expressed as the weighted sum of these

selected training instances acting as the support vectors. Support vector machine, or

SVM, is a term for calculating support vectors on average [5]. After training SVM,

the hyperplane with the largest margin is reformulated as the decision boundary:

d(xT) =
l∑

t=1

gtαtxtxT + b0

where xT is a test data; αi and b0 are numeric parameters that were determined au-

tomatically by the optimization; and l is the number of support vectors. Sign of this

equation determines the class of test data [39].

If our classes can not be linearly divided, there exist nonlinear separation problem.

Noise and inherent nonlinearity are causes of non separable classes. If there exist

noise, SVM try to find decision boundary with some misclassification error. There

exist two misclassification cases, an instance correctly classified but in the margin

area and lie in the wrong class. Equation (2.6) with penalty term:

min
1

2
||w||2 + C

∑
t

ζt subject to gt(wTxt + b) ≥ 1− ζt, ζt ≥ 0 (2.7)

C is regularization parameter between margin maximization and error minimization,

must be tuned.

When there is inherent nonlinearity, Support Vector Machines (SVM) transform the

47

samples into a higher dimensional space, denoted as xi → ϕ(xi), in order to create a

linear separation problem in this new dimension. This approach addresses the same

issue observed with noise, but the constraints are defined in the new space.

gt(wTϕ(xt) + b) ≥ 1− ζt

Equation (2.7) can be rewritten as a quadratic programming problem, transforming

the decision boundary:

d(x) =
∑
t

gtαtK(xt, x)

Where K(xt, x) is a kernel function that simplifies the decision-making process for

nonlinear functions and can operate in the original feature space [5].

2.4.3.1 Kernel Functions

There are different types of kernels for classifications, known as similarity measures.

When xt and x are more similar, their value is higher [5].

Polynomials of degree q

When q = 1, it turns a linear kernel.

K(xt, x) = (xT , xt + 1)q

Radial Basis Function

It defines a spherical kernel.

K(xt, x) = e[−
||xt−x||2

2s2
]

where xt is center and s is radius, γ = 1
s2

must be tuned [69], ||xt − x|| is Euclidean

distance between two feature vectors. The polynomial and sigmoid kernels aren’t as

adaptable as Radial Basis Function [69].

48

Sigmoidal functions

It is also known as Multi Layer Perception Kernel.

K(xt, x) = tanh(κxTxt − δ)

where κ, δ are adjustable.

2.4.4 Decision Trees (DT)

Decision trees are a type of classification learning algorithm [50, 5, 80, 69]. We have

data represented as X={xt,gt} for a binary classification problem. A decision tree

(DT) consists of three parts: the node, branch, and leaf. The DT grows its structure

recursively from the root node to the final node as a leaf by making decisions. A

branch includes the main root node and all its subsequent nodes. Each internal node,

denoted as m, implements the test function fm(x), which defines a discriminant in the

input space. Since xj ∈ X is numeric, the test function is:

fm(x) : xj > h

where h is a threshold value. The decision node’s binary split is represented by the

left and right areas Lm = x|xj > b and Rm = x|xj ≤ b, respectively. This process

continues by creating splits that are orthogonal to one another. In the feature space,

the leaf node defines a hyperrectangle. With the provided data, decision trees can

segment the training set into multiple subsets, each of which may include more than

one class.

2.4.4.1 Splitting criteria

When creating a decision tree, there is an approach to identifying the most suitable

splitting features: minimizing impurity measures or maximizing gain for each node.

This involves assessing potential features and choosing the one that yields the greatest

information gain or the least impurity. Decision trees are a crucial model in machine

learning. The induction of decision trees seeks to produce the best discriminant func-

tion and ends with all instances having the same label, called pure. A node’s purity or

49

impurity is determined using impurity metrics. An estimate of the likelihood of label

Ci provided that an instance has reached node m is also calculated.

P̂ (Ci|x,m) = pim =
Nm

i

Nm

A node is termed pure if the quantity pim is equal either to 0 or 1. The entropy mea-

surement of impurity can indeed be expressed using the formula [78]:

Im = −
K∑
i=1

pimlog2p
i
m

In two class scenarios, where p1 = p and p2 = 1 − p, a function ϕ(p, 1 − p) ≥ 0 is

considered a measure of impurity if the following conditions are met [28]:

1. ϕ(1
2
, 1
2
) ≥ ϕ(p, 1− p) for any p ∈ [0, 1]

2. ϕ(0, 1) = ϕ(1, 0) = 0

3. ϕ(p, 1− p) is increasing in p on [0,1/2] and decreasing in p on [1/2, 1]

Standard impurity functions for binary classification are as follows:

1. Entropy:

ϕ(p, 1− p) = −plog2p− (1− p)log2(1− p)

2. Gini Index [14]:

ϕ(p, 1− p) = 2p(1− p)

3. Misclassification error:

ϕ(p, 1− p) = 1−max(p, 1− p)

These three measurements are not significantly different from one another [5]. How-

ever, the classification error for tree growing models is not as good as for the others

[45].

DT must identify features for each stratum that maximize information gain denoted

as IG for attribute A :

IG(X, A) = I(X)
v∈values(A)

−
∑

(|Xv|/|X|)I(Xv)

50

where Xv = {x ∈ X|A(x) = v}, I is any impurity function [54].

For binary classification,

IG(X, A) = I(X)− Nleft

Np

I(Xleft)−
Nright

Np

I(Xright)

DT orders the features by calculating the information gain.

2.4.4.2 Pruning

The decision tree (DT) has an issue with overfitting if it performs well on the training

data but poorly on unobserved data. To address this problem, we can employ data

preprocessing or pruning techniques. In data preprocessing, decision trees simplify

sequential processes indirectly. In pruning, decision trees identify subtrees that cause

overfitting and remove them [54].

There are two methods for pruning decision trees: pre-pruning and post-pruning.

Pre-pruning involves stopping the decision tree (DT) before it is fully grown, while

post-pruning involves pruning the DT after it has achieved zero training error [5]. DT

performs post-pruning using a minimal cost-complexity algorithm. When pruning, it

is important to aim for the optimal tree size. This is because exceeding a certain point

in tree size, and limiting it too much, does not significantly reduce misclassification

errors. The process for DT pruning starts from the bottom and goes to the top. The

DT begins by constructing the largest tree for the given training data as Tmax. For any

subtree T , , the complexity, or the final number of nodes in the subtree, is denoted

as |T̃ |. Assuming α ≥ 0 is a real-valued complexity parameter, the cost-complexity

measure is denoted as:

Rα(T) = R(T) + α|T̃ |

R(T) represents the total misclassification error in the final nodes. The variable α is

adjusted to penalize complexity. If α is large, Tmax will also be large. There are finite

subtrees, and in each iteration, the complexity reduces until pruning is complete. The

cost complexity for a single node can be denoted as:

Rα(t) = R(t) + α

51

In general, the cost complexity of a single node is higher than the cost complexity of

a branch Tt, but there are specific values of α where they become equal. This means

that the subbranch is smaller than the subtree, which is desirable when adjusting the

size of the tree and the critical value of α :.

α <
R(t)−R(Tt)

|T̃ | − 1

By defining a function g1 and t ∈ T̃1:

g1(t) =

R(t)−R(Tt)

|T̃ |−1
t /∈ T̃1

+∞ ∈ T̃1

Minimal cost-complexity pruning prune the weakest link by looking for smallest

value of g1(t). This algorithm terminates when g1(t) is greater than α [14].

To enhance Decision Tree (DT) performance, ensemble learning algorithms have

been developed. Notably, Bagging and Boosting represent two distinct strategies

within ensemble methodologies.

2.4.5 Random Forest (RF)

The bagging algorithm is the foundation of the random forest algorithm. If the train-

ing set X consists of N data points, denoted as X={xt,gt}, let’s consider a predictor

φ with a sequence of learning sets represented as {Xk}, each containing N indepen-

dent samples from the same underlying distribution as X. A subset of the sample,

including replacement, is taken by each predictor to form a bootstrap sample. This

technique, known as bagging, aims to improve predictor performance. However, it

has a limitation of only working with a sequence of predictors φ(Xk).

In classification problems, aggregation is done by taking B bootstrap samples (for

each b=1,.., B) and using a majority vote method φB(x) =majority vote φB(x,X
B

).

This process is known as "bootstrap aggregation" or "bagging", where predictions are

collected in a bag before the final decision is reached through a majority vote [13].

Bagging is successful in improving accuracy if φ is unstable, meaning small changes

in the input data (X) lead to large changes in the predictions. It enhances the accuracy

52

and stability of the predictor while reducing its final variance. Classification and re-

gression trees tend to be unstable and are thus suitable candidates for bagging [5, 13].

The random forest (RF) is an ensemble of modified decision trees that uses a random

subset of input features in each split. This approach is a particular case of bagging.

[5, 80, 15]. The motivation behind selecting randomly chosen features is to create

de-correlated trees. By using sample training data and sampling on features, the trees

grow to be more uncorrelated [69]. To calculate the selected p features from d fea-

tures, the default process value is
√
d [41]. For classification, the RF algorithm works

as follows:

1. For b = 1 to B:

• Draw a bootstrap sample N* of size N from the training data.

• Produce a random forest tree to the bootstrapped data by repeating the

following steps for each leaf of the tree, until the minimum node size is

founded.

i.Randomly select p variables from d variables.

ii.Determine the optimal split among p, then divide the nodes into binary.

2. Final decision of the ensemble of trees.

For a testing data prediction, assume Ĉb is the prediction of bth tree, then ĈB
rf=majority

vote {Ĉb} [41].

2.4.6 eXtreme Gradient Boosting (XGBoost)

Boosting involves selecting random samples without replacement, evaluating each

learner’s mistake, and then incorporating low-accuracy learner implementations one

after the other. Boosting differs from bagging in the absence of sample replacement.

Gradient Boosting is a modified version of boosting that uses the gradient of loss in

its calculation [80]. In 2016, Tianqi Chen and Carlos Guestrin developed the eX-

treme Gradient Boosting method based on boosting, which uses decision trees to

create strong learners. XGBoost brings scalability and speed to the gradient boosting

53

tree technique in addition to being a newer version of the algorithm. The sparsity-

aware XGBoost algorithm also features a regularized objective function and out-of-

core processing. To address overfitting concerns, XGBoost uses column subsampling

and shrinkage [21].

2.4.6.1 Regularized Learning Objective

In the context of a dataset D = (xi, yi), where |D| = n, xi ∈ Rm, yi ∈ R uses

K-additive functions are employed to predict the yi values. This is represented by the

equation:

ŷi = ϕ(xi) =
K∑
k=1

fk(xi), fk ∈ F

where F = f(x) = wq(x)(q : Rm → T,w ∈ RT) denotes the space of regression

trees. The function q represents the structure of each tree, while T represents the

number of leaves in the tree. Each fk corresponds to an independent tree structure q

and leaf weights w. Notably, each leaf of each regression tree carries a continuous

score, denoted by wi for the i-th leaf. The function q is used as decision rules for

the classification an example and the final prediction is calculated by summing up

wi in the corresponding leaves. The learning of the model’s functions entails the

minimization of the regularized objective.

L(ϕ) =
∑
i

l(ŷi, yi) +
∑
k

Ω(fk) (2.8)

where

Ω(f) = γT +
1

2
λ||w||2

penalizes the complexity of the model and helps overfitting, l is a differentiable con-

vex loss function [21].

2.4.6.2 Gradient Tree Boosting

Equation (2.8) cannot be optimized using traditional methods in Euclidean space. The

following is how the additive training strategy helps as an alternative: It adds a new

54

function to each sample throughout each iteration [20].

ŷi
0 = 0

ŷi
1 = f1(x1) = ŷi

0 + f1(xi)

ŷi
2 = f1(xi) + f2(xi) = ŷi

1 + f2(xi)

.

.

.

ŷi
t =

K∑
k=1

fk(xi) = ŷi
(t−1) + ft(xi)

Ultimately, the regularized objective function is transformed into:

L(t) =
n∑

i=1

l(yi, ŷi
t−1 + ft(xi)) + Ω(ft)

By utilizing the second order Taylor expansion of the loss function, the objective

function can be expressed as:

L(t) ≃
n∑

i=1

[l(yi, ŷi
t−1) + gift(xi) +

1

2
hif

2
t (xi)] + Ω(ft)

where gi = ∂ŷ(t−1)l(yi, ŷi
t−1) and hi = ∂2

ŷ(t−1)l(yi, ŷi
t−1) are first and second order

gradient of the loss function, respectively. Constant terms are omitted, resulting in

the simplified objective function at step t :

L̃t =
n∑

i=1

[gift(xi) +
1

2
hif

2
t (xi)] + Ω(ft)

Define Ij = {i|q(xi) = j} as the sample set of leaf j. This is a reformulation of the

equation above:

L̃t =
n∑

i=1

[gift(xi) +
1

2
hif

2
t (xi)] + γT +

1

2
λ

T∑
j=1

w2
j

=
T∑

j=1

[(
∑
i∈Ij

gi)wj +
1

2
(
∑
i∈Ij

hi + λ)w2
j] + γT

(2.9)

Optimal weight w∗
j of a leaf j can be calculated as follows:

w∗
j = −

∑
i∈Ij gi∑

i∈Ij hi + λ

55

By substituting w∗
j into the equation (2.9), the optimal value is obtained as:

L̃t = −1

2

t∑
j=1

(
∑

i∈Ij gi)
2∑

i∈Ij hi + λ
+ γT

For the purpose of evaluating the quality, this can be utilized as the scoring function

of q.

2.4.6.3 Shrinkage and Feature Subsampling

Shrinkage and column subsampling are two methods that help prevent overfitting.

Shrinkage involves scaling new weights by a small number (η) between 0.01 and 1

after each step of boosting. This adjustment improves the tree’s structure. Feature

subsampling, used in Random Forest [14] also helps in avoiding overfitting in com-

parison with traditional row sub-sampling [20].

2.4.6.4 Split Finding Algorithms

One of the challenges in tree learning is figuring out the right split. The sets IL and

IR represent the instances in the left and right nodes after the split, and I = IL ∪ IR

represents the combined instances.

Lsplit =
1

2

[
(
∑

i∈IL gi)
2∑

i∈IL hi + λ
+

(
∑

i∈IR gi)
2∑

i∈IR hi + λ
−

(
∑

i∈I gi)
2∑

i∈I hi + λ

]
− γ

In practice, the above formula is commonly used to evaluate potential splits and cal-

culate the loss reduction, as described in [20].

Basic Exact Greedy Algorithm

Basic Exact Greedy Algorithm is a split-finding algorithm that enumerates all pos-

sible splits on all the columns. It sorts the data and calculates hi and gi in Lsplit for

continuous features. [20].

56

Approximation Algorithm

The Basic Exact Greedy Algorithm is not efficient when the data doesn’t fit well

into memory and distribution. In such cases, an Approximate Algorithm is needed.

The algorithm first suggests candidate splitting points based on percentiles of feature

distribution and then places continuous features into buckets split by these candidate

points. After that, it aggregates the statistics and selects the best option based on the

aggregated statistics. There are two types of the algorithm: the global variant and the

local variant. In the global type, all the candidate splits are proposed during the initial

phase of tree construction, and the same choices are used for split finding at all levels.

The local variant, on the other hand, reconsiders the choices after each split [20].

Weighted Quantile Sketch

In the approximate method, it is essential to suggest potential split settings. Let

multi-set D = {(x1k, h1), (x2k, h2)(xnk, hn)}, represent the k-th feature values and

second order gradient statistics of each training instance. We can define a rank func-

tion rk : R → [0,+∞) as the ratio of instances whose feature value k is smaller than

z:

rk(z) =
1∑

(x,h)∈D

∑
(x,h)∈Dk,x<z

h

The goal is to find candidate split points {sk1, sk2, skl}, such that:

|rk(sk,j)− rk(sk,j+1)| < ϵ, sk1 = minxik, skl = maxxik

where ϵ is an approximation factor. Weighted squared loss with labels gi/hi and

weights hi:
n∑

i=1

1

2
hi(fi(xi)− gi/hi)

2 + Ω(ft) + constant,

For large datasets, finding candidate splits that satisfy the criteria is a challenge. The

weighted quantile sketch approach uses a data structure that enables merge and prune

operations and is intended for weighted datasets [20].

57

Sparsity-aware Split Finding

The input variable is often sparse in real-world applications for several reasons, such

as missing values, frequent zero entries, and one-hot encoding. Creating a sparsity-

aware algorithm is crucial for identifying patterns in the data. One solution is to

assign a default direction to each tree node. Each branch has two alternatives, and the

best default direction is learned from the data.[20].

2.4.7 Light Gradient Boosting Machine (LightGBM)

After XGBoost was introduced to practitioners and scholars, Ke et al. [49] proposed

another well-known gradient boosting model called the Light Gradient Boosting Ma-

chine in 2017. This model is a fast and innovative tree-based model. When im-

plementing the decision tree algorithm, an issue arises in finding possible splits and

evaluating them for information gain. As an alternative solution, LightGBM adds two

new attributes to the gradient boosting algorithm: Gradient-based One-Side Sampling

and Exclusive Feature Bundling.

2.4.7.1 Gradient-based One-Side Sampling

In the GOSS (Gradient-based One-Side Sampling) sampling strategy, instances are

selected based on their gradients. More significant gradients are selected, while small

gradients are randomly dropped. This method has been proven to be more effec-

tive than uniform sampling. The gradient-boosting decision tree mechanism uses

these gradients to weight data instances. By identifying and discarding instances

with small gradients, which indicate minor errors, the approach can unintentionally

affect the distribution. To address this issue, GOSS offers a solution. Consider a set

of n i.i.d. training instances (x1, ..., xn). In each iteration of gradient boosting, the

residual errors of the loss function with respect to the model’s output are denoted as

(g1, ..., gn). For gradient boosting decision trees, the variance gain of splitting feature

j at pint d defined as Vj(d). GOSS organizes the training instances in descending or-

der based on the absolute values of their gradients and retains a× 100% of the largest

58

instances in a set called A. Then, GOSS randomly samples a subset B with a size of

b×|Ac|. Finally, GOSS splits by considering the estimated variance gain, Ṽj(d), over

the subset A ∪B.

Ṽj(d) =
1

n

(
∑

xi∈Al
gi +

1−a
b

∑
xi∈Bl

gi)
2

nj
l (d)

+
(
∑

xi∈Br
gi +

1−a
b

∑
xi∈Br

gi)
2

nj
r(d)

where Al = {xi ∈ A : xij ≤ d}, Ar = {xi ∈ A : xij > d}, Bl = {xi ∈ B : xij ≤ d},

Br = {xi ∈ B : xij > d} and 1−a
b

used for normalize the sum of gradients over

B. The GOSS estimation process helps decrease computation costs, and for training

accuracy, GOSS is superior to random sampling.

2.4.7.2 Exclusive Feature Bundling (EFB)

In real-world large datasets, a common problem is data sparsity, where many features

rarely have nonzero values at the same time. When certain features are mutually ex-

clusive and never have nonzero values simultaneously, Ke et al. proposes bundling

these features into a single feature called an exclusive feature bundle (EFB). The se-

lection and construction of features for bundling are two important issues for EFB.

EFB introduces an algorithm to approximately optimize bundling within polynomial

time to choose features for bundling. This algorithm converts the optimal bundling

problem into the graph coloring problem and, with the help of a greedy algorithm,

creates bundles. This algorithm strategically assigns each feature to an existing bun-

dle by minimizing conflict rates when capable of including non-mutually exclusive

features, or initiates the creation of a new bundle when necessary. This approach

results in a reduced number of bundles, significantly enhancing computational effi-

ciency. For constructing the bundle, the methodology involves adding offsets to the

original values of the features, allowing the original features to be visible within the

bundle.

2.4.8 Linear Regression

Linear regression is a statistical technique used to model the relationship between

features and a dependent variable. For a feature vector denoted as xT = (x1, ..., xN),

59

the regression model:

f(x) = β0 +
N∑
i=1

xiβi

The model includes unknown parameters represented by ’βi’ and an intercept rep-

resented by ’β0’. When a linear regression model is trained, it learns to fit a linear

function to the data. The vertical distance between the training data and the estimated

regression model is known as the residuals, which indicate the degree of prediction

error [80]. The model aims to find the best fit, so it needs to optimize its parameters

using the well-known least squares method. With the best values of parameters, it

aims to minimize error. For a training set X = {xt, yt}N1 , the residual sum of squares

for coefficients β = (β0, ..., βN)
T , denoted as [41]:

Residual sum of squares(β) =
N∑
i=1

(yi − f(xi))
2

2.4.9 Long Short Term Memory (LSTM)

In 1943, Warren McCulloch and Walter Pitts [64] published the calculus of a brain
cell, known as the McCulloch-Pitts neuron. Neurons are connected with synapses, if
a neuron surpasses its threshold it gives impulse. In 1957, Rosenblatt [85] presented
the perceptron learning rule, which utilizes the McCulloch-Pitts neuron model to de-
termine the weight of each input. This rule imitates the firing of neurons. It starts by
initializing weights and bias, then updates the weight and bias for each sample [80].
In 1986, D.E. Rumelhart, G.E. Hinton, and R.J. Williams introduced the backpropa-
gation algorithm, which revolutionized neural network training [87].

Figure 2.16: An artificial neuron[95]

60

Each neuron has following equation for n input:

y = φ(
n∑

i=1

wixi − b)

where φ is an activation function, b is bias. Common activation functions used in

deep learning include ReLU, piecewise linear, and Gaussian. During the training

process, backpropagation and the Gradient Descent Algorithm are used to minimize

the difference between predicted and actual outputs by using the gradient of the loss

function. This leads to significant improvements in accuracy and performance. The

choice of an appropriate loss function depends on the specific characteristics of the

problem. For regression problems, it is typical to use metrics such as Mean Squared

Error (MSE) to measure the difference between predicted and actual values:

MSE =
1

N

N∑
t=1

(yt − ŷt)
2

The weights were updated using backpropagation through time, which followed the

formula for iteration:

w(k + 1) = w(k)− η(
∂MSE

∂w
)

where η is learning rate. In machine learning, an epoch refers to a single complete
pass through the entire training dataset. During an epoch, the algorithm evaluates
each instance in the dataset and may adjust its parameters to minimize errors in pre-
dictions. This is important for the learning process and helps improve the model’s
accuracy over time. Additionally, in batch learning, parameter updates are not made
instantaneously with each data point, but are accumulated and applied collectively at
the end of processing the entire batch [5].

A single-layer perceptron has a limitation in capturing nonlinear behaviors due to
its linear operational framework. This limitation is addressed by feedforward net-
works with one or more hidden layers, which improve the network’s ability to model
nonlinear relationships effectively. However, feedforward networks have a unidirec-
tional operation that may not be optimal for time series data. In such cases, recurrent
neural networks (RNNs) are effective, as they can capture sequential dependencies.
RNNs maintain a hidden state, serving as a memory that is updated at each time step
and influenced by both current and previous input.

61

Figure 2.17: RNNs structure[95]

In finance, alternative models are necessary due to the challenges faced by RNNs
in handling long-term dependencies. RNNs encounter two main issues during their
training: the exploding and vanishing gradient problems. In 1997, Sepp Hochreiter
and Juergen Schmidhuber proposed a solution to these problems with Long Short-
Term Memory (LSTM) [42]. LSTM has had a significant impact on sequence model-
ing. Below is a visualization of the LSTM structure. It features a cell that is updated
with the previous time step ct−1, hidden units ht−1, and the current step data xt.

Figure 2.18: LSTM[95]

LSTM (Long Short-Term Memory) has three gates: the forget gate (ft), the input gate

(it), and the output gate (ot). These gates control the flow of information within the

cell at time t by performing matrix multiplication of their inputs and using an activa-

tion function, typically the standard sigmoid function denoted as σ, which provides

62

output values between 0 and 1.

ft = σ(Wf · [ht−1, xt] + bf)

ot = σ(Wo · [ht−1, xt] + bo)

Update the cell state by applying the hyperbolic tangent function to the input and

candidate values, providing output between -1 and 1:

it = σ(Wi · [ht−1, xt] + bi)

c̃t = tanh(Wc · [ht−1, xt] + bc)

Cell state and hidden units at time t:

ct = (ft ⊙ ct−1)⊕ (it ⊙ c̃t)

ht = ot ⊙ tanh(ct)

where ⊙ element-wise product and ⊕ element-wise summation [80, 95].

2.5 Evaluation Criteria of Classification Models

When it comes to predicting trends, there are several common strategies, but there

isn’t one specific method for testing the accuracy of the models’ classifications. This

study employs binary classification to determine the trend in the S&P 500: a value of

1 indicates that the S&P 500 is rising, while a value of 0 indicates that it remains the

same or is decreasing. Test data is utilized to assess the model’s performance. When

dealing with binary classification, where class 1 is considered the positive class and

class 0 is the negative class, there are four key terms used to calculate various metrics:

1. True Positive(TP): This refers to model predictions that are positive and are

indeed true when compared to the actual values.

2. False Positive(FP): This refers to model predictions that are positive but are

actually false when compared to the actual values.

3. True Negative(TN): This refers to model predictions that are negative and are

indeed true when compared to the actual values.

63

4. False Negative(FN): This refers to model predictions that are negative but are

actually false when compared to the actual values.

These terms are used in confusion matrix.

Table 2.1: Confusion matrix
Predicted Class
1 0 Total

Actual Class
1 TP FN TP + FN

0 FP TN FP + TN

Total TP + FP FN + TN N

This matrix illustrates the different forecast errors generated by the classification

models and the performance evaluation table used for assessing the forecasts. The

error is calculated as the sum of all false predictions divided by the total number of

predictions.

Error =
FP + FN

FP + FN + TP + TN

Accuracy is the ratio of correctly classified examples to the total number of classified

examples [80].

Accuracy =
TP + TN

FP + FN + TP + TN
= 1− Error

2.6 Evaluation Criteria of Regression Models

According to price prediction studies, there are common strategies, but no specific

way to test prediction accuracy. Root mean squared error (RMSE) is used to compare

regression model errors:

RMSE =

√√√√ 1

N

N∑
t=1

(yt − ŷt)2

where error = yt − ŷt, yt is original data value and ŷt is approximation.

64

2.7 Performance Metrics of Portfolios

The following metrics are used to evaluate and compare the performance of portfo-

lio optimization weights and their corresponding returns in an out-of-sample setting.

For simplicity, we assumed a risk-free rate of return of 0%. The metrics are used to

compare single-period portfolios:

The out-of-sample weekly return at time t+ 1:

Rt+1 =
I∑

i=1

ωitri,t+1

Sharpe ratio for a single period portfolio:

SR =
Rp

σp

Rp is the average return of the portfolio over the period. σp is the standard deviation

of the portfolio’s returns over the period. Multi-period portfolios comparison metrics:

The out-of-sample average weekly return:

Rw =
1

T − τ

T−1∑
t=τ

I∑
i=1

ωitri,t+1

The out-of-sample Standard deviation:

σout =

√√√√ 1

T − τ − 1

T−1∑
t=τ

(Rt+1 −Rw)2

The out-of-sample Sharpe ratio:

SR =
Rw

σout

The out-of-sample cumulative return:

Rc =
T−1∏
t=τ

(1 +Rt+1)− 1

The out-of-sample annualized return:

Ranu = (Rc + 1)
1

(T−τ−1)/52 − 1

65

2.8 Explanation Methods

In this work, the terms "interpreting" and "explaining" AI are used interchangeably.
This section shares the scopes of interpretability methods and several preferred tech-
niques

Figure 2.19: The classification of interpretability techniques[56]

In Figure 2.19, the classification map of interpretability methods is shown. The next

phase will provide a brief overview of classifications:

• Local vs Global

If a method explains a single instance, it is referred to as local; if it explains the

entire model, it is referred to as global.

• Data Types

There exist methods for text, image, graph, and tabular data types.

• Model Specific vs Model Agnostic

If a method describes a specific algorithm, it is considered model-specific; if it

applies to any algorithm, it is known as model-agnostic.

• Purposes of Interpretability

Four categories are identified: methods for creating white-box models ,meth-

ods for explaining complex black-box models, methods that promote fairness

and restrict the existence of discrimination, and methods for analysing the sen-

sitivity of model predictions. Post-hoc approaches frequently focus on inter-

66

pretability techniques linked to deep learning, and they have two subfields: one

for deep learning research and the other for other black-box models [56].

LIME and SHAP are both local, model-agnostic, and additive feature attribution tech-

niques. They work by using an explanation model represented by g, which sums up

the impacts of the features. The explanation model is a linear function of binary

variables.

g(z′) = ϕ0 +
M∑
i=1

ϕiz
′

i

where z
′ ∈ {0, 1}M , M is the number of simplified input features and ϕi ∈ R. Local

models work like this: they aim to explain f(x), which is the original classifier based

on a single input x. The explanation model uses simplified inputs x′ by mapping the

original inputs through a function hx(x
′), denoted as x = hx(x

′). Ultimately, the

local methods aim to ensure that g(z′) is approximately equal to f(hx(z
′)) when z′ is

approximately equal to x′ [58]. Explanations should be clear and provide a qualitative

understanding of the relationship between input variables and the response [81].

2.8.1 LIME

In 2016, LIME (Local Interpretable Model-agnostic Explanations) introduced by

Marco Ribeiro, Sameer Singh and Carlos Guestrin [81], is an interpretability method

that approximates any classifier. LIME selects an explanation model, represented as

g, from a set of potentially interpretable models, denoted as G that can be visually

presented to a decision-maker. The domain of g is {0, 1}d′ , g where g operates based

on the absence or presence of interpretable components. Since the interpretability

of the explanation model is a concern for LIME implementation, complexity can be

measured by Ω(g). In classification, a model f : Rd → R, f(x) is described where

f(x) represents the probability that x belongs to a certain class. The proximity mea-

sure πx defines neighborhood of x. L measures how g is in approximating f in the

locality defined by πx. Interpretability and local fidelity are two desired features for

an explanation. In order to ensure both features, we need to minimize L(f, g, πx)

while keeping Ω(g) low enough to be interpretable by humans. The explanation pro-

vided by LIME at a local point x can be expressed using the following formula:

67

explanation(x) = argmin
g∈G

L(f, g, πx) + Ω(g) (2.10)

For problems requiring an explanation, this formula can be used with different values

of G, L, and Ω [81].

2.8.2 SHAP

The Shapley value was introduced by Lloyd Shapley in 1951 [90]. A Shapley value

represents a player’s contribution to the game. The "value" function, denoted as

value : 2F → R is a characteristic function that maps subsets of players to nonneg-

ative real numbers. In the context of machine learning, "games" refer to predictions,

and "players" refer to features. The Shapley value is defined as the value function of

players in subset of features denoted as S.

ϕj(value) =
∑

S⊆{1,...,F}{j}

|S|!(F − |S| − 1)!

F !
(value(S ∪ j)− value(S))

where F is the number of features, S ⊆ {1, ..., F}{j} is all subsets exclude jth fea-

ture, |S|!(F−|S|−1)!
F !

is weight for each subset, (value(S ∪ j) − value(S)) is marginal

contribution of feature j to the subset S.

Let x feature values of an instance, value(S) is prediction for feature values can

be calculated as:

valuex(S) =

∫
f̂(x1, ..., xp)dPx/∈S − EX(f̂(X))

where:

• f̂ is the prediction function.

• dPx/∈S represents the integration over the distribution of the features that are not

included in the subset S.

• EX(f̂(X)) is the expected prediction over the entire feature space, serving as a

baseline or reference value.

68

Shapley values are the only additive attribution techniques that follow four axioms

[37, 67]:

1. Efficiency

The total payment for the game can be divided based on its features:

N∑
j=1

ϕj = value(F)

2. Symmetry

If two features have equal importance in the game, their Shapley values must

also be equal.

[(∀S\i, j)value(S ∪ i) = value(S ∪ j)] =⇒ ϕi = ϕj

3. Dummy

The Shapley value of feature j is equal to zero if it contributes nothing to the

coalition it is included in.

[(∀S)value(S ∪ j) = value({j})] =⇒ ϕj = 0

4. Additivity

For two different characteristic functions, value and value+, the Shapley values

of feature j preserve the addition of the games.

ϕj(value+ value+) = ϕj(value) + ϕj(value
+)

In order to calculate the Shapley value, it’s important to compute all potential com-

binations of features. As the number of features grows, this process becomes more

difficult. To address this, Strumbelj et al. [92] suggest using Monte Carlo sampling

for approximation, this approximation works as follows:

A specific instance x and a randomly selected instance from the dataset are used

to estimate the Shapley value of the jth feature. In a process consisting of M itera-

tions, a random order of features and a random instance z are generated. Two new

instances are produced: x+j after the jth feature takes on values from z, and x−j after

69

the j − 1th feature takes on values from z. These new instances are then input into

the model, and the difference between their outputs is calculated:

ϕm
j = f̂(xm

+j)− f̂(xm
−j)

The Shapley value is calculated as average:

ϕj(x) =
1

M

M∑
m=1

ϕm
j

Shapley Additive Explanations (SHAP) is an interpretability method that is not tied

to any specific model. It is based on Shapley values, which were introduced by Lund-

berg and Lee in 2017 [58]. SHAP offers a new approach to Shapley values known

as KernelSHAP, which is a kernel-based estimation method. SHAP also provides

a global interpretation by aggregating Shapley values. It’s important to note that

Shapley value explanations are represented as an additive feature attribution method,

which can be viewed as a linear model [67]. SHAP adheres to the axioms of Shapley

values and adds three properties: local accuracy, missingness, and consistency. When

estimating the original model f for an input x, consider the following axioms:

1. Local accuracy

f(x) = g(x′) = ϕ0 +
M∑
j=1

ϕjx
′

j

The explanation model g(x) matches the original model when x = hx(x),

where ϕ0 = f(hx(0)) represents the model output with all simplified inputs

missing. By defining ϕ0 = EX(f(x)) and setting all x′
j to 1, this is the same as

Shapley efficiency axiom [67].

2. Missingness

x
′

j = 0 =⇒ ϕj = 0

If missing features exist, they get a 0 Shapley value.

3. Consistency

Let fx(z
′
) = f(hx(z

′
)) and z

′
j indicates that z′

j = 0. For any two models f

and f ′, if

f
′

x(z
′
)− f

′

x(z
′

j) ≥ fx(z
′
)− fx(z

′

j)

70

for all inputs z′ ∈ {0, 1}M , then:

ϕj(f
′, x) ≥ ϕj(f, x)

SHAP values are a unique additive feature importance method that possess the three

properties mentioned above and use conditional expectations to define simplified in-

puts. They are solutions to the equation of Shapley value under the assumption:

fx(z
′
) = f(hx(z

′
)) = E[f(z)|zS]

where S is set of non-zero indexes in z
′ .

Figure 2.20: SHAP values[58]

In Figure 2.20, SHAP values depicts with a single ordering with the anticipated value

of model updates taking feature values into account. Assuming the model is non-

linear, or its features are not independent, SHAP values average ϕj for feature impor-

tance over all permutations. With various plotting techniques, SHAP values can be

applied to local and global explanation analyses. The precise computation of SHAP

values remains a complex challenge, as highlighted by Lundberg and Lee. To address

this, they have proposed model-agnostic and model-specific approximation method-

ologies, with Kernel SHAP emerging as a notable example of the model-agnostic

techniques. In these methods, feature independence and model linearity are optional.

For further details on this subject, one is encouraged to consult the paper authored by

Lundberg and Lee [58].

Kernel SHAP (Linear LIME + Shapley values)

Linear LIME uses a linear model as an explanation model; Shapley values are the

solution of the LIME objective function and satisfy local accuracy, missingness and

consistency properties. LIME made a heuristic choice of the loss function, weighting

kernel, and a regularization term, but this approach is inappropriate for the Shapley

71

values. Lundberg et al. propose the Shapley kernel for regression-based Shapley

weighting:

Ω(g) = 0

πx′ (z′) =
(M − 1)

(Mchoose|z′|)|z′|(M − |z′ |)

L(f, g, πx′) =
∑
z′∈Z

[f(hx(z
′
))− g(z

′
)]2πx′ (z′)

where Z is the training data, |z′ | is the number of non-zero elements in z
′ . The

estimated coefficients of the model, the ϕj’s, are the model agnostic Shapley values

[58, 67].

72

CHAPTER 3

IMPLEMENTATION AND EVALUATION

This chapter involved the implementation and results. Python 3.10.13 [97] was used
to develop models for time series predictions and XAI methods. Jupyternotebook
[51] downloaded, prepared and visualized the dataset for XAI explanations. Using the
Scikit-Learn package [74], machine learning models were put into practice. SHAP
[58] and LIME [81] were utilized to describe how machine learning models work.
RStudio [76] and Quantmod [88] were powerful tools utilized for visualization of the
technical analysis and S&P 500. The development of portfolio optimization models
utilized a modeling language for mathematical programming called as AMPL [77],
with mean-variance calculations executed through Gurobi solver and other models
through Highs solver. These tools provided effective means of evaluating stock mar-
ket performance, recognizing patterns, and guiding investment decisions. Extensive
testing was performed on a robust 64-bit desktop, powered by an AMD Ryzen 9
6900HS processor running at 3.30 GHz, and equipped with 16GB of RAM.

Figure 3.1: Workflow

Figure 3.1 illustrated a comprehensive workflow which was crucial for understanding

the processes and procedures outlined in the study. The detailed depiction in this

figure provided a sequential visualization, allowing for a clearer comprehension of

the steps involved and their interconnections.

73

3.1 Data and Risk-aversion Prediction

The Standard & Poor’s 500 (S&P 500), a stock market index that comprised weekly
open, high, low, close prices, and trading volumes, was downloaded from Yahoo
Finance. The prediction of upward movements of the S&P 500 was utilized as a
risk aversion coefficient. Stocks from various industries were selected to explore the
effects of diversification on portfolios. The adjusted close prices of 24 risky assets and
the 13 Week Treasury Bill, serving as a risk-free asset, were employed for portfolio
construction. The data spanned from January 2008 to January 2018, including 503
weekly returns.

Table 3.1: The description of the OHLCV
Columns Explanation
Date Time
Open Weekly Open Price of S&P 500
High Weekly Highest Price of S&P 500
Low Weekly Lowest Price of S&P 500
Close Weekly Close Price of S&P 500
Volume Weekly Transaction Amount of S&P 500

In Table 3.1, the OHLCV (open, high, low, close, volume) of the S&P 500 were

documented, along with their names and notations.

3.1.1 Descriptive Statistics of S&P 500

In Table 3.2, descriptive statistics were provided for the S&P 500. The higher mean
compared to the median suggested that the price was right-skewed. A skewness value
near zero indicated a right-tail support, but the kurtosis value far from three showed
that we could not assume a normal distribution.

Table 3.2: The Descriptive Statistics of S&P 500
Statistic Value Statistic Value
Observation 522 1st Qu. 1224.5
Mean 1613.7 3rd Qu. 2050.7
Median 1461.5 Max 2690.2
Std. Dev. 484.3 Skewness 0.243
Min 676.5 Kurtosis -1.072

In Table 3.2, the skewness value indicated an asymmetric distribution of returns, and
the kurtosis value suggested that the distribution had heavier tails than a normal dis-

74

tribution. In Figure 3.2, the return distribution of the S&P 500 was visualized with a
histogram, and a theoretical normal distribution curve was also plotted on the same
histogram for comparison.

Figure 3.2: S&P 500 Weekly Returns

It was anticipated that the data had an approximately normal distribution. The nor-
mal distribution was considered appropriate for the actual return distribution, and the
mean-variance model relied on the assumption of a normal distribution. For the pur-
pose of that study, it was assumed that the S&P 500 and assets followed a normal
distribution. The following were the weekly return distributions of selected stocks:

Figure 3.3: Weekly Returns of stocks

In Figure 3.3, we had also included the mean values for each asset.

75

3.1.2 Exploratory Data Analysis of S&P 500

Figure 3.4: S&P 500 Weekly Prices

In Figure 3.4, a time series plot of the S&P 500 from January 1, 2008, to December
26, 2017, is shown. Several factors influenced the S&P 500, including fluctuations in
global economic growth and the level of economic uncertainty following the financial
crisis. The S&P 500 reached its lowest point on March 3, 2009, and, according to the
timeline, its price peaked on December 12, 2017. The figure below depicted the
selected assets and their performance over the same period, forming a portfolio.

Figure 3.5: Weekly Prices of Assets

In Figure 3.5, time series plots of assets are shown from January 1, 2008, to December

26, 2017. The range of stock return volatility in our portfolio varied from 0.02 for

76

Johnson & Johnson (JNJ) to 0.057 for JPMorgan Chase & Co. (JPM), as shown in the

figure referenced earlier. It’s worth noting that out of the 25 assets analyzed, Treasury

bills had the highest volatility at 0.93, indicating significantly greater fluctuation in

their returns compared to other assets in the study.

3.1.3 Technical Indicators

Two Python libraries were used for technical analysis: EMV, BB, and VWAP were

generated with [73] library, while the rest were generated using [10].

Table 3.3: Technical Indicators
Indicators Name Parameter Value

SMA Number of periods to average over: 3,5,10
WMA Number of periods to average over: 3,5,10
EMA Number of periods to average over: 3,5,10
ADX Number of periods to use for DX calculation: 3, 5, 10
RSI Number of periods for moving averages: 3, 5, 10
CCI Number of periods for moving average: 20

EMV Number of periods for moving average: 3, 5, 10
BB Number of periods for moving average: 3, 5, 10

SAR Acceleration factor: 0.02 & Maximum acceleration factor: 0.2
MFI Number of periods to use: 3, 5, 10

VWAP Number of periods to average over: 3,5,10

In Table 3.3, each indicator was characterized by distinct parameters, underscoring

their utility and adaptability in various research and practical finance applications.

3.1.4 Preprocessing pipeline

Trend was determined using the following procedure: Let’s consider Pt as the weekly

closing price and the target variable as Trend.

Trend =

 1 if Pt ≥ Pt−1

0 if Pt < Pt−1

If the value of Trend was 1, it meant the market index would rise or stay the same,

and if it was 0, the market index would decrease from Pt−1 to Pt. Firstly, the data

77

columns were checked for any missing values. Missing values were present after

including technical analysis variables as variables, so missing values in the first 19

rows were deleted. Issues related to class imbalance in classification needed to be

examined. Class imbalance occurs when one class has a majority, and models tend to

favor that class [79]. There was no class imbalance in the dataset.

We employed same ten-year timeframe for both single-period and multi-period port-

folio construction methodologies. Specifically, for the construction of single-period

portfolios, we utilized a decade’s worth of historical data for training purposes, with

the final week of this dataset designated as the testing period. Conversely, in the

approach towards multi-period portfolios, we implemented a rolling horizon method-

ology. This entailed generating distinct portfolios at biennial intervals throughout the

ten-year span, with each two-year segment’s ensuing week serving as the test period

for its respective portfolio. This methodology allowed for a nuanced examination of

portfolio performance over time, catering to both short-term and long-term invest-

ment strategies.

3.1.5 Data Transformation Methods

Some models made the assumption that the feature set could be scaled; hence, the

statistical foundation of scaling strategies was explained.

1-Standardization

Some machine learning techniques required standardization, commonly referred to

as z-score standardization, as demonstrated by the formula below.

xstandardized =
xfeature − µ

σ

µ and σ represented the mean and standard deviation of the corresponding column.

Standardization was used for Logistic Regression, KNN, and SVM. There was no

need for any feature transformation for tree-based models [41].

78

2-Normalization

Min-max scaling was a normalization technique that adjusted the features to fit within

a specific range, typically between 0 and 1. Scaling was achieved by subtracting the

minimum value of the feature and then dividing by the range [80].

xscaled =
xfeature − xmin

xmax − xmin

This method was intended for use in LSTM prediction only.

3.1.6 Model Optimization Method

There were two distinct types of parameters in machine learning: primary model
variables that were learned from training data (such as the weights in LR), and tuning
parameters that needed to be adjusted or built manually [4]. Grid search was a known
and simple method for hyperparameter optimization. It methodically searched every
possible combination of tuning parameters because the model did not optimize the
tuning parameters [15]. It was recommended to use grid search with k-fold cross-
validation for the exploration of the hyperparameter space [74].

K-Fold Cross-Validation (KFCV)

When evaluating and developing a machine learning model, there were more prac-
tical options than simply splitting the data into train and test samples. Using K-Fold
Cross-Validation (KFCV) was an optimal choice. In KFCV, the training samples were
randomly divided into k equal portions called folds. KFCV then iterated through each
fold, using it as the test data while using the remaining components as training data.
Each iteration generated an error, and the final error was determined by averaging the
errors after the kth iteration [69].

Figure 3.6: KFCV Process[69]

79

In Figure 3.6, the KFCV process with 5-fold visualization was displayed. In order to

properly handle time series data, it was important to use a time series cross-validator

like Time Series Split. This method ensured that the data was not randomly divided

because the order of the data points was crucial in time series analysis. Time Series

Split worked by returning the first k folds as the training set and the (k+1)th fold as

the test set in the kth split [74]. In other cases, the value of k was chosen as 10, with

the exception of LSTM.

3.1.7 Risk-aversion estimation

The development of our investment portfolio strategy incorporated an intricate as-
sessment of risk tolerance, culminating in the deliberate construction of diverse in-
vestment portfolios. Central to this strategic formulation was the derivation of a risk
aversion coefficient, a pivotal metric aimed at gauging the propensity of investors to
avoid risk. This coefficient was extracted through the application of six sophisticated
machine learning classifiers, each selected for its proven efficacy in predicting the
S&P 500 index. The classifiers employed in this analysis comprised Logistic Regres-
sion, K-Nearest Neighbors (KNN), Support Vector Classifier (SVC), Decision Tree
(DT), Random Forest (RF), and XGBoost, representing a comprehensive spectrum of
algorithmic approaches tailored to navigate the complex dynamics of financial mar-
kets.

Table 3.4: The Prediction of Single Period Models
Models Risk-Aversion Models Risk-Aversion
LR 0.43 SVC 0.57
KNN 0.42 DT 0.56
RF 0.54 XGBoost 0.51

In Table 3.4, all models made predictions about the likelihood of the market going up.

The prediction generated by the Support Vector Classifier (SVC) exhibited a tendency

towards boldness in its forecasts, in contrast, the predictions made by the K-Nearest

Neighbors (KNN) algorithm demonstrated a more cautious approach. To assess the

accuracy of the models, a decision threshold was set at a probability value of 0.5.

If the predicted probability was 0.5 or higher, the S&P 500 was expected to go up.

Conversely, if the predicted probability was below 0.5, the market was expected to go

down.

80

3.2 Portfolio Optimization

We conducted thorough research on the composition and performance of portfolios

consisting of 24 stocks from eight different sectors in the S&P 500 index, along with

a risk-free asset. Our research analyzed the performance of portfolios over a ten-year

period, using both mean-variance and mean-Conditional Value at Risk (CVaR) strate-

gies for single-period portfolios. We maintained portfolio weights for one week and

then analyzed out-of-sample returns. For Sharpe ratio comparison, we held optimized

weights for one week and then compared the models over four weeks. Additionally,

we made stock price predictions for the same timeframe to help make better invest-

ment decisions.

During a ten-year period, we regularly adjusted our mean-Mean Absolute Deviation

(MAD) portfolios every two years using a strategic rebalancing approach. We used

a rolling window method with a window size of 104 weekly returns. As we moved

forward, we included new weekly data and dropped the oldest data point, using the

data following each week for out-of-sample testing. This process resulted in 399 out-

of-sample portfolios. This method allowed us to capture the dynamic nature of the

stock market and evaluate our portfolio strategy under real-world conditions. By con-

tinuously updating the portfolio with new data, we created a simulation of real-world

conditions, enabling us to assess the effectiveness of our strategy.

The primary goal was to clarify the effectiveness of both single-period and multi-

period portfolios, thereby making a significant contribution to the body of portfolio

management literature.

3.2.1 Classification Models for Single Period Portfolios

Data was divided into 502 weeks for training and 1 week for testing. A grid search
was implemented for each machine learning classifier using time series ten-fold cross-
validation. The model’s performance was evaluated using the test data after training.
The optimized parameter results are the same for mean-variance and mean-CVaR
problems.

81

1-LR

To find the best settings for regularization, C, and solver parameters, we thoroughly
analyzed a range of values. Our analysis showed that the LR classifier performed best
with L1 regularization and a regularization parameter of 0.1. We used the Liblinear
algorithm for the optimization process.

Table 3.5: Grid Search Results for Logistic Regression with Liblinear Solver
Regularization Type C Value Range Solver Best Performing Setting

None 10−5 to 100 Liblinear -
L1 10−5 to 100 Liblinear L1, C = 0.1

L2 10−5 to 100 Liblinear -
ElasticNet 10−5 to 100 Liblinear -

2-KNN

We carefully chose the best options for our model to achieve high accuracy and per-
formance. When we used the k-nearest neighbors algorithm, it was important to
consider factors such as the number of neighbors, the weight given to all points in the
neighborhood, the search algorithms used, and the power of the Minkowski metric.

Table 3.6: Grid Search Results for K-Nearest Neighbors (KNN)
Parameter Value Range Considered Best Performing Setting

Number of Neighbors 1 to 30 8
Weight Function Uniform, Distance Distance

Search Algorithms Auto, Ball Tree, KD Tree, Brute Auto
Minkowski Power Parameter 1 (Manhattan), 2 (Euclidean) 2 (Euclidean)

3-SVC

We had identified the optimal parameter values to improve the accuracy of predic-

tion for the SVC.

Table 3.7: Grid Search Results for Support Vector Classifier (SVC) with RBF Kernel
Parameter Value Range Considered Best Performing Setting

Regularization Parameter 0.1, 1, 10, 100, 1000 0.1
Kernel Type Radial Basis Function (RBF) RBF

RBF Kernel Coefficient 1, 0.1, 0.01, 0.001, 0.0001 1

4-DT

In conducting a decision tree analysis, it was necessary to identify the optimal values
for features, pruning, depth, and split parameters to achieve the most effective results.
These values were selected to ensure the most effective decision tree analysis.

82

Table 3.8: Grid Search Results for Decision Tree Classifier
Parameter Value Range Considered Best Performing Setting

Number of Features for Best Split
√

features, log2(features)
√

features
Complexity Parameter for Pruning 0.1, 0.01, 0.001 0.1

Maximum Depth of the Tree 5 to 9 5
Impurity Measure Gini, Entropy Gini

5-RF

The random forest (RF) model provided a variety of hyperparameters that could be
fine-tuned to improve model performance. These hyperparameters included the max-
imum tree depth, the number of features to consider for the best split, the maximum
number of leaf nodes, and the number of trees in the forest. These hyperparameters
had been identified after careful analysis and were recommended for optimal results.

Table 3.9: Grid Search Results for Random Forest Model
Parameter Value Range Considered Best Performing Setting

Maximum Tree Depth 3, 6, 9 6
Number of Features for Best Split

√
features, log2(features), None log2(features)

Maximum Number of Leaf Nodes 3, 6, 9 9
Number of Trees in the Forest 25, 50, 100, 150 25

6-XGBoost

The XGBoost model provided various hyperparameters that could be optimized to
improve model performance.

Table 3.10: Grid Search Results for XGBoost Model
Parameter Value Range Considered Best Performing Setting

Subsample Ratio of Columns 0.6 to 0.9 0.7
Minimum Loss Reduction (γ) 0.0 to 0.4 0.0

Maximum Tree Depth 6 (default) 6
Minimum Sum of Instance Weight Needed in a Child 4, 5, 6 5

Subsample Ratio of Training Instances 0.1 0.1

LR and KNN models accurately predicted test data, while others did not. LR and

KNN had 100% accuracy, whereas the other models had 0%. Hyperparameter tuning

and risk aversion estimation were the same for single-period models.

3.2.2 Results of Portfolios

In this subsection, we evaluated the returns generated by eight different portfolios for

each of the three different risk measures. These portfolios were named 1-LR, 2-KNN,

83

3-SVC, 4-DT, 5-RF, 6-XGBoost, 7-ρ=0.5, and 8-Equal weight portfolio. Our analy-

sis showed that each portfolio had unique performance characteristics, with varying

degrees of outperformance compared to the others.

Our findings contributed to the broader discussion on portfolio management strate-

gies, providing insights into the comparative performance of different investment ap-

proaches under various analytical frameworks. This analysis emphasized the impor-

tance of selecting an appropriate framework for portfolio evaluation, as the chosen

methodology significantly impacted the perceived effectiveness and risk profile of

investment portfolios.

3.2.2.1 Mean-Variance Portfolios

Among risk-aversion adjusted mean-variance portfolios with returns ranged from -

0.5286% to 1.70%.

Table 3.11: Out of one week returns
Models Returns
LR -0.003863432361643219
KNN -0.0052856644247391525
SVC 0.0170301088270511
DT 0.015173588933214636
RF 0.011465664916599339
XGBoost 0.007112445773191464
ρ = 0.5 0.004902702745847146
Equal weights 0.00006342

In Table 3.11, the risk aversion adjusted mean-variance portfolio analysis was found
to provide returns for investors who were willing to take risks, while it resulted in
losses for those investors who were risk-averse. After analyzing different investment
strategies, it was found that the support vector classification (SVC) model had the
highest return, while the K-nearest neighbors (KNN) model had the largest loss. As a
result, it became important to investigate how the SVC model is implemented, specif-
ically focusing on its risk-aversion parameter. There was a need to further examine
how this parameter affected the process of optimizing the mean-variance portfolio.
The results from last week’s assessment were summarized in the table below, show-
ing the optimal distribution of weights across different holdings. This distribution was
a direct outcome of the analytical processes mentioned, highlighting the usefulness
of the SVC model in creating a portfolio.

84

Table 3.12: Weight Distribution of SVC
Assets Allocations Assets Allocations
DIS 0.000000007779476 PG 0.000000004092733
VZ 0.000000005604903 SYY 0.000000006255391
HD 0.0000001052161 WMT 0.000000004940773
NKE 0.00000001423772 CVX 0.000000005155912
KO 0.000000005005611 JPM 0.00000001454095
MCD 0.00000001158054 XOM 0.000000003530744
AXP 0.00000001171231 JNJ 0.000000005215589
PFE 0.000000004751994 MRK 0.000000004980114
BA 0.00000001232032 WBA 0.000000005464575
CAT 0.000000007169119 MMM 0.000000006815777
AAPL 0.3494082 CSCO 0.000000004508817
IRX 0.6505915 IBM 0.000000004054405
INTC 0.00000000560477 Total 1.00000

In Table 3.12, the study presented a portfolio with minimal allocations to stocks ex-
cept for one. This strategy was visually depicted as follows:

Figure 3.7: Weight distribution of stocks for last week

From Figure 3.7, the recommended allocation was to allocate 65% of the portfolio
to a risk-free asset and 35% to Apple stock. The only considered risky asset was an
information sector company.

In this study, the financial performance was investigated using the Sharpe ratio. The
analysis focused on a specific four-week trading period from December 26, 2017,
to January 16, 2018. The portfolio returns were calculated using optimized asset
weights, which remained constant throughout this period and for each week under

85

review.

Table 3.13: Sharpe Ratios of Mean-Variance Portfolios
Models Sharpe Ratios
LR 0.9018486447556565
KNN 0.831808255665903
SVC 1.7157832748028983
DT 1.7488074992173797
RF 1.7345387582840919
XGBoost 1.562782580579704
ρ = 0.5 1.4311894392325304
Equal weights 1.4492115443467954

Table 3.13 showed a range of Sharpe ratios from 83.18% to 174.88%. It indicated

that the portfolios optimized for risk aversion using DT methodology had the highest

Sharpe ratio. On the other hand, the portfolio created using the KNN approach had

the lowest ratio in the observed range. This difference highlighted the significant

impact of predictive modeling techniques on the risk-adjusted returns of portfolios.

3.2.2.2 Mean-CVaR Portfolios

After the implementation of a confidence level as 95%, risk-aversion adjusted mean-
CVaR portfolios ranged from 0.0063% to 0.2054%

Table 3.14: Out of one week returns
Models Returns
LR 0.001604944587767839
KNN 0.002049988051708565
SVC 0.0020542292269545583
DT 0.0019870370975106234
RF 0.0020309732602152818
XGBoost 0.001972091506583323
ρ = 0.5 0.001977057562171938
Equal weights 0.00006342

Based on the Table 3.14 related to the evaluation of investment strategies, it had been
observed that the SVC algorithm displayed the most favorable return among the mod-
els under consideration. Comparative analysis among various machine learning mod-
els demonstrated that the Logistic Regression (LR) model and portfolios balanced

86

through equal-weight strategies yielded minimal financial returns over one week. The
insights from the assessment conducted the last week were summarized in the follow-
ing table, which outlined the optimal asset allocation among the different investment
holdings.

Table 3.15: Weight Distribution of SVC
Assets Allocations Assets Allocations
DIS 0 PG 0.114557
VZ 0.029191 SYY 0
HD 0 WMT 0.132165
NKE 0 CVX 0
KO 0.192442 JPM 0
MCD 0.250342 XOM 0
AXP 0 JNJ 0.198371
PFE 0 MRK 0
BA 0 WBA 0
CAT 0 MMM 0.040068
AAPL 0.024572 CSCO 0
IRX 0.018292 IBM 0
INTC 0 Total 1.00000

From Table 3.15, the mean-CVaR portfolio presented a diversified portfolio by al-

locating weights to eight different stocks. This strategy was depicted graphically as

follows:

Figure 3.8: Weight distribution of stocks for last week

The recommended portfolio diversification suggested by the Mean-CVaR model was
different from that of the Mean-Variance model, according to Figure 3.8. The Mean-

87

CVaR model suggested investing 19% in the healthcare industry, 45% in consumer
staples companies, 2% in information technology companies, 25% in McDonald’s
Corporation, 4% in 3M Company, 3% in Verizon Communications Inc., and 2% in a
risk-free asset. It was important to note that the recommended weightage for Apple
Inc. and the risk-free asset was significantly less in the Mean-CVaR model compared
to the Mean-Variance model. Additionally, the Mean-CVaR model did not include
investments in the energy and financial sectors in its recommended portfolio diversi-
fication.

The Mean-CVaR model and sharpe ratio analysis were employed analogously to the
Mean-variance approach. This exploration led to the generation of Table 3.16 de-
lineating the Sharpe ratios, which serves as a comparative metric for assessing the
risk-adjusted returns of different investment portfolios.

Table 3.16: Sharpe Ratios of Mean-CVaR Portfolios
Models Sharpe Ratios
LR 1.0929695326016386
KNN 1.0545960361550237
SVC 1.0277092097811156
DT 1.0744360161385353
RF 1.0459181627048637
XGBoost 1.04105525283206
ρ = 0.5 1.0543797069508316
Equal weights 1.4492107223766362

The analysis showed a range of Sharpe ratios from 102.77% to 144.92%. It indicated

that the portfolios optimized for risk aversion with equal weights had the highest

Sharpe ratio and LR model among machine learning models. On the other hand, the

portfolio created using the SVC approach exhibited the lowest ratio in the observed

range. This difference highlighted the significant impact of predictive modeling tech-

niques on the risk-adjusted returns of investment portfolios.

3.2.2.3 Mean-MAD Portfolios

We had 399 out-of-sample periods for machine learning predictions, and we aggre-
gated the individual prediction results into a single accuracy score.

88

Table 3.17: Accuracy of models
Models Accuracy
LR 0.418
KNN 0.611
SVC 0.418
DT 0.398
RF 0.626
XGBoost 0.365

Based on Table 3.17, the RF algorithm produced the highest overall accuracy, while
SVC and LR had the same overall accuracy. XGBoost had the lowest accuracy in all
periods. Table 3.18 displayed the performance comparisons of the eight portfolios
with respect to the performance metrics including the out-of-sample average return,
standard deviation, Sharpe ratio.

Table 3.18: Out of one week results
Models Average Return Standard Deviation Sharpe Ratios

LR 1.26% 23.30% 5.40%
KNN 2.11% 30.35% 6.96%
SVC 10.61% 72.29% 14.68%
DT 6.94% 55.04% 12.61%
RF 7.37% 51.78% 14.23%

XGBoost 6.13% 53.75% 11.40%
ρ = 0.5 8.23% 59.85% 13.74 %

Equal weights 1.11% 4.16% 26.75%

In the analysis of risk-aversion adjusted mean-MAD portfolios, with returns span-
ning from 1.11% to 10.61%, it was observed that portfolios utilizing SVC algorithms
yielded the highest average return. Conversely, equal weights portfolios had the low-
est average returns throughout 399 one-week periods. The exploration of diverse
portfolio configurations illuminated the predominant efficiency of the equal weights
portfolio strategy. This approach prescribed an allocation of 4% to each asset within
the portfolio, a method that was empirically demonstrated to outperform alternative
strategies when assessed against the criterion of out-of-sample standard deviation.
The quintessence of this configuration’s superior performance was encapsulated by its
minimization of standard deviation, which facilitated an enhancement in the Sharpe
ratio, culminating in a remarkable figure of 26.75%. The attainment of such a Sharpe
ratio not only signified the exceptional performance of the equal weights portfolio
but also established it as the most favorable strategy in terms of risk-adjusted re-
turns. When the panorama of portfolio configurations was considered, excluding the
paramount equal weights portfolio, it was observed that the SVC portfolio emerged

89

as the strategy with the subsequent highest Sharpe ratio. The LR portfolio was found
to have the lowest Sharpe ratio among all the strategies. Given that SVC boasted
the highest Sharpe ratio, an in-depth analysis was conducted on its weight distribu-
tion across 399 distinct portfolios. The research analyzed the distribution of weights
across the initial and two arbitrarily chosen investment portfolios. This approach pro-
vided insightful perspectives into the strategic allocation strategies employed across
varying portfolio constructs.

Figure 3.9: SVC-Weight distribution of stocks for first week

According to Figure 3.9, the SVC model suggested investing all capital in a risk-free
asset only.

Figure 3.10: SVC-Weight distribution of stocks for a random week

90

According to Figure 3.10, the SVC model suggested investing all capital in ten dif-
ferent stocks. It gave the highest weight to Walgreens Boots Alliance, Inc. (WBA)
stock.

Figure 3.11: SVC-Weight distribution of stocks for a random week

According to Figure 3.11, the SVC model suggested investing all capital in three

different stocks. It gave the highest weight to Exxon Mobil Corporation’s (XOM)

stock.

Table 3.19: Out of one week results
Models Cumulative Return Annualized Return

LR 13.98% 1.72%
KNN -6.85 % -0.92 %
SVC -85.40% -22.23%
DT -97.13% -37.11%
RF 2654.87% 54.22%

XGBoost -98.02% -40.09%
ρ = 0.5 171.71% 13.95%

Equal weights 5927.88% 70.84%

In Table 3.19, the performance of eight different portfolios was summarized across

out-of-sample periods, specifically focusing on their cumulative and annualized re-

turns. The data indicated that portfolios with equal weights outperformed others in

terms of cumulative returns, demonstrating their superiority over variably-weighted

strategies. Additionally, within the realm of machine learning models, the Random

Forest (RF) approach stood out, offering superior portfolio returns. When examin-

91

ing annualized returns, the performance pattern remained the same; equal-weighted

strategies across all models and the RF method within machine learning models ex-

hibited superior performance. This consistent performance in both cumulative and

annualized returns underscored the effectiveness of equal weighting and the RF tech-

nique in managing portfolio returns over the specified out-of-sample periods.

3.2.2.4 Return Predictions

Table 3.20: Asset Symbols and Corresponding Values for Last Week
Asset Symbol Actual Value Asset Symbol Actual Value

DIS 105.34 BA 281.23
VZ 38.78 CAT 134.25
HD 162.65 MMM 183.94

MCD 148.08 AAPL 41.32
NKE 59.26 CSCO 31.90
KO 37.70 IBM 108.30
PG 77.92 PFE 26.94

SYY 51.87 WBA 55.98
WMT 29.43 CVX 95.53
CVX 95.53 XOM 61.86
MRK 44.77 AXP 90.32
JPM 89.71 JNJ 118.25
INTC 39.61 ÎRX 1.30

In Table 3.20, the adjusted closing prices from the final week, which was desig-

nated as the test week for machine learning models, were presented. This data corre-

sponded to original asset price values. The study aimed to predict the out-of-sample

returns for a single period of assets by employing four models, namely Linear Re-

gression, LSTM, XGBoost, LightGBM. The comparison of the out-of-sample returns

was made by applying a specific methodology. The adjusted close of the test week

asset prices was first predicted and subsequently employed for return prediction. Ma-

chine learning models were developed and trained employing this methodology while

excluding the use of the EMV and VWAP technical indicators. The rationale behind

this exclusion lay in the observed computational inaccuracities arising during the cal-

culation of these indicators when applied to a risk-free asset. The evaluation of all

predictive models was conducted using a 10-fold cross-validation approach for time

92

series data. The exception to this methodology was the implementation for Long

Short-Term Memory (LSTM) networks, where a 3-fold cross-validation was utilized.

For the optimization of hyperparameters across the various models, a comprehensive

grid search strategy was employed, with the notable exception of the Light Gradient

Boosting Machine (LightGBM). The utilization of grid search as a prevalent method-

ology for hyperparameter tuning in regression models was deemed unsuitable for

LightGBM within the context of this study, primarily due to constraints associated

with computational memory. Consequently, this necessitated the exploration of alter-

native techniques that are more conducive to optimizing hyperparameters specifically

for LightGBM.

It was expected that this study would provide a comprehensive comparison of the
models and their respective performance in predicting out-of-sample returns for a
single period of portfolio optimization models.

Table 3.21: RMSE values for test week price predictions for the assets
Assets Linear Regression LSTM XGBoost LightGBM
Disney 0.059 2.211 2.869 0.019
Verizon 0.012 1.017 1.06 0.896

Home Depot 0.048 6.480 20.92 14.71
McDonald’s 0.026 0.376 12.738 5.469

Nike 0.031 1.5822 0.547 0.845
Coca-Cola 0.031 0.553 0.651 0.150

Procter & Gamble 0.043 1.185 1.204 0.334
Sysco 0.037 0.808 4.458 3.111

Walmart 0.013 1.412 1.444 1.433
Chevron 0.086 5.422 5.635 5.119

ExxonMobil 0.010 0.439 0.415 0.045
American Express 0.024 0.158 2.669 2.447
JPMorgan Chase 0.033 0.815 8.056 6.303

Based on the data presented in the Table 3.21 and Table 3.22, the analysis of price
prediction across various assets indicated that Linear Regression had superior perfor-
mance for twenty one stocks and a risk-free asset. Conversely, LightGBM emerged
as the optimal model for two specific stocks, namely Disney and Johnson & Johnson.
Furthermore, the LSTM model was identified as the most effective for predicting the
price of Walgreens Boots Alliance, distinguishing itself as the best choice for this
single stock.

93

Table 3.22: RMSE values for test week price predictions for the assets
Assets Linear Regression LSTM XGBoost LightGBM

Johnson & Johnson 0.015 0.435 0.699 3.341
Merck Co. 0.055 0.582 0.965 0.036

Pfizer 0.055 0.550 1.331 0.345
WBA 0.010 0.002 4.090 0.222

Boeing 0.143 9.704 31.011 26.584
Caterpillar 0.033 9.994 22.458 14.322

3M 0.034 3.496 11.645 10.507
Apple 0.019 0.413 0.971 1.453
Cisco 0.005 0.219 2.632 1.802
IBM 0.020 0.747 0.985 0.276
Intel 0.0009 0.848 2.854 1.585

13-Week Treasury Bill 0.0005 0.054 0.150 0.090

This analysis underscored the predominance of Linear Regression in terms of overall
efficacy in stock price predictions.

1-Linear Regression

According to the linear regression estimation of last week price prediction, the model
predicted that the prices of nine out of twenty-five assets would be higher than their
original price. Time series cross-validation with 10 folds and grid search were used
for hyperparameter tuning. The grid search space was designed to determine whether
to calculate the intercept for all stock prices and whether to set all coefficients to be
positive. The RMSE ranged from 0.0005 to 0.143, with the treasury bill having the
lowest RMSE. The model made the best prediction for the treasury bill. Risk-aversion
adjusted mean-variance model comparisons according to different return estimation
processes are as follows:

Table 3.23: Out of one week returns with last week prediction
Models Returns
LR -0.0037361484592123607
KNN -0.005141642671989341
SVC 0.01691149989701578
DT 0.015076832241855334
RF 0.011412545613675483
XGBoost 0.00711055801663313
ρ = 0.5 0.004926820865999038
Equal weights -0.0001812976

94

In Table 3.23, the outcomes suggested that the predicted returns oscillated within a
delineated range, notably between -0.5142% and 1.6911%. It was observed that the
KNN algorithm exhibited the largest loss, whereas the SVC demonstrated the high-
est return among the evaluated returns. Risk-aversion adjusted mean-CVaR model
comparisons according to different return estimation processes were as follows:

Table 3.24: Out of one week returns with last week prediction
Models Returns
LR 0.0014713128120319822
KNN 0.0019141552165056555
SVC 0.001931769100308993
DT 0.0018643844536794995
RF 0.0019067477729840063
XGBoost 0.0018464424336787934
ρ = 0.5 0.0018493155034222614
Equal weights -0.0001812976

In Table 3.24, the outcomes suggested that the predicted returns oscillated within
a delineated range, notably between -0.018% and 0.1931%. Comparative analysis
among various machine learning models demonstrated that the Logistic Regression
(LR) model had lowest return and portfolio balanced through equal-weight strategy
had largest loss over one week. Support Vector Classifier (SVC) demonstrated the
highest return among the evaluated returns.

2-LSTM

Keras [94] was a profound deep-learning library dependent on TensorFlow to ex-
ecute its functions. TensorFlow [1] was an open-source platform that empowered
researchers to design and develop machine-learning models using Python. So these
two libraries were used for construct LSTM.

LSTM framework commenced with the application of min-max normalization on the
dataset as a fundamental preprocessing step. Subsequently, a sliding window method-
ology waas employed to encapsulate the temporal correlation inherent in pricing data,
a pivotal aspect of our analysis. Cross-validation could be employed to determine op-
timal window lengths, or computation of errors across various window dimensions
could be used. For the purposes of our experiment, an optimal window size of four
weeks was identified. This decision was informed by the hypothesis that such a win-
dow size was adept at reflecting the temporal dynamics commonly encountered in
monthly analytical frameworks.

95

Progressing to subsequent stages of our methodology, we delineated a function capa-
ble of processing the dataset alongside the predefined window size, thereby producing
input and target data. The window size herein is indicative of the number of preced-
ing time steps utilized for the prediction of the subsequent time step. By adopting a
strategy of advancing one step at a time, we constructed four-week length windows.
Prior to model training, the dataset was partitioned into training and test subsets. The
training data was then employed to fit the model, post which the model’s performance
was appraised using the test data. To align with the preconditions for LSTM model
training, the dataset was reshaped into a 3-dimensional array encapsulating 4 times-
tamps and 23 features at each step, adhering to the LSTM model’s requirement of the
input shape [samples, time steps, features].

In the initial phase of the fitting process, weights were arbitrarily assigned, setting
the stage for the establishment of a sequential model. This model’s optimization was
rigorously pursued through the application of grid search techniques within the spe-
cific framework of time-series 3-fold cross-validation.

A critical component of the model’s architecture was the incorporation of a fifty-
node LSTM layer, chosen for its proficiency in handling sequential data. The model
compilation phase was characterized by the adoption of the Adam optimizer. This
choice was underpinned by the optimizer’s robust performance in regression-based
problems, further complemented by the selection of mean squared error as the pre-
ferred loss function. Such methodological decisions were instrumental in refining the
model’s predictive accuracy.

The subsequent model fitting procedure was meticulously designed, incorporating
grid search parameters that specified a training duration of 20 epochs. Additionally,
the model’s parameters are finely tuned, with a batch size established at 100, along-
side exploratory variations in the learning rate (0.001, 0.002) and the number of hid-
den units (16,32). This phase was pivotal in calibrating the model’s responsiveness to
the intricacies of the data it processed.

The predicted outputs underwent a transformation process, wherein their values were
inverted to facilitate a more intuitive interpretation. The evaluation of the model’s pre-
dictive precision was conducted through the computation of the root mean squared er-
rors, providing a quantitative measure of the model’s performance. This methodolog-
ical approach underscored the meticulous and iterative process of model development
and optimization, reflecting a commitment to achieving a high degree of accuracy in
predictive analytics within the realm of time-series analysis. According to the LSTM
estimations from last week, the RMSE ranged from 0.002 to 9.994. It was determined
that the 13-Week Treasury Bill had the smallest estimation error, while the Caterpillar
stock had the highest RMSE. Risk-aversion adjusted mean-variance model compar-
isons according to different return estimation processes were as follows:

96

Table 3.25: Out of one week returns with last week prediction
Models Returns
LR -0.013457085176366838
KNN -0.013923279223326496
SVC -0.006608388108209022
DT -0.0072169336040906265
RF -0.008432354915360776
XGBoost -0.009859299521260885
ρ = 0.5 -0.0105836295756067
Equal weights -0.0191789964

In Table 3.25, the outcomes suggested that the predicted returns oscillated within a
delineated range, notably between -1.917% and -0.6608%. Equal weight strategy
was identified as the one incurring the greatest loss amongst all portfolios evaluated.
It was noted that the KNN algorithm exhibited the highest degree of loss relative to
other machine learning models under consideration. Conversely, the SVC emerged as
the model demonstrating the lowest loss. Risk-aversion adjusted mean-CVaR model
comparisons according to different return estimation processes were as follows:

Table 3.26: Out of one week returns with last week prediction
Models Returns
LR -0.011960549689161151
KNN -0.012711143785358725
SVC -0.01256778138458701
DT -0.011303682539524995
RF -0.011371819065359688
XGBoost -0.011295219080157064
ρ = 0.5 -0.011282633895633052
Equal weights -0.0191789964

In Table 3.26, the outcomes suggested that the predicted returns oscillated within a de-

lineated range, notably between -1.91% and -1.128%. It was observed that the equal

weight portfolio showed the largest loss, and among the machine learning models,

KNN exhibited the largest loss, whereas portfolio with constant risk aversion demon-

strated the smallest loss among the evaluated models. It was observed that out of all

the machine learning models, XGBoost showed the lowest amount of loss.

97

3-XGBoost

Apart from predicting risk aversion, XGBoost was used to predict prices. The hy-
perparameters were chosen to align with those utilized in the classification task em-
ploying the XGBoost methodology. The RMSE ranged from 0.150 to 31.011, with
the treasury bill having the lowest RMSE. The model delivered its most accurate
forecast for the treasury bill relative to other assets. Risk-aversion adjusted mean-
variance model comparisons according to different return estimation processes were
as follows:

Table 3.27: Out of one week returns with last week prediction
Models Returns
LR 0.025350393910891764
KNN 0.021355244997715774
SVC 0.0840418182158452
DT 0.07882675418776922
RF 0.06841093297236035
XGBoost 0.056182416218239856
ρ = 0.5 0.04997510613734968
Equal weights -0.0406623456

In Table 3.27, the outcomes suggested that the predicted returns oscillated within a
delineated range, notably between -4.0662% and 8.4042%. It was observed that the
equal weights showed the largest loss, and among the machine learning models, KNN
exhibited the lowest return, whereas SVC demonstrated the highest return among the
evaluated models. Risk-aversion adjusted mean-CVaR model comparisons according
to different return estimation processes were as follows:

Table 3.28: Out of one week returns with last week prediction
Models Returns
LR -0.03344939190330786
KNN -0.034870592322850225
SVC -0.03475759145328796
DT -0.03379573089709645
RF -0.03468419730221972
XGBoost -0.034783334198867207
ρ = 0.5 -0.03414452213446066
Equal weights -0.0406623456

In Table 3.28, the outcomes suggested that the predicted returns oscillated within a

delineated range, notably between -4.0662% and -3.3449%. It was observed that the

98

equal weights showed the largest loss, and among the machine learning models, KNN

exhibited the largest loss, whereas LR demonstrated the smallest loss among the eval-

uated models.

4-LightGBM

In the process of model development, initial values for hyperparameters had been
employed as defaults. The RMSE observed varied between 0.0198 to 26.584, with
the Disney stock having exhibited the lowest RMSE. Out of all the assets we an-
alyzed, LightGBM showed the highest accuracy in predicting the performance of
Disney stock. Risk-aversion adjusted mean-variance model comparisons according
to different return estimation processes were as follows:

Table 3.29: Out of one week returns with last week prediction
Models Returns
LR 0.0007419498002562211
KNN -0.002620004123480686
SVC 0.05013129978426262
DT 0.045742769535535736
RF 0.03697776483748613
XGBoost 0.02668736494929491
ρ = 0.5 0.02146385563899879
Equal weights -0.0312013812

In Table 3.29, the outcomes suggested that the predicted returns oscillated within a
delineated range, notably between -3.1201% and 5.0131%. It was observed that the
equal weights showed the largest loss, and among the machine learning models, KNN
exhibited the largest loss, whereas SVC demonstrated the highest return among the
evaluated models.

Risk-aversion adjusted mean-CVaR model comparisons for different return estima-
tion processes are shown in Table 3.30. The outcomes suggested that the predicted re-
turns oscillated within a delineated range, notably between -3.1201% and -2.3252%.
It was observed that the equal weights showed the largest loss, and among the ma-
chine learning models, KNN exhibited the largest loss, whereas DT demonstrated the
least loss among the evaluated models.

99

Table 3.30: Out of one week returns with last week prediction
Models Returns
LR -0.024631316536776384
KNN -0.024822132872309444
SVC -0.02367457154879119
DT -0.023252547756465295
RF -0.02346457503386626
XGBoost -0.023575408267797773
ρ = 0.5 -0.023336143178965547
Equal weights -0.0312013812

3.2.2.5 Feature Importance

It was crucial for a portfolio manager to have a good understanding of the behavior of

machine learning models. This understanding helped explain to investors how their

savings were managed. When constructing portfolios, portfolio managers could use

machine learning models and explain why they had diversified their portfolios in a

certain way. This new role of the portfolio manager was to act as an explainer us-

ing machine learning models in portfolio management. There were different types

of explainers, but the SHAP (SHapley Additive exPlanations) and LIME (Local In-

terpretable Model-agnostic Explanations) explainers were ones that could be used to

explain the movement of the S&P 500. The SHAP explainer and the LIME explainer,

both of which were accessible within the Python programming environment, were

utilized to obtain interpretive insights into model predictions. Within the scope of the

current research, SHAP and LIME were employed to elucidate the rationale behind

the local test instance prediction. Additionally, SHAP was utilized to furnish global

explanations pertaining to the training dataset. These methodologies were applied

to models demonstrating the highest accuracy, specifically Logistic Regression (LR)

and K-Nearest Neighbors (KNN), for predicting the movement of the S&P 500 index.

LIME (Local Interpretable Model-agnostic Explanations) Results

The classification of market trends was named into two distinct categories: bullish

and bearish trends. To make the analysis and interpretation of tabular data more

100

comprehensible, a function known as the tabular data explainer was developed. This

innovatively designed function was crafted to accept the nomenclature of class la-

bels—specifically "bullish" and "bearish" trends—as parameters, thus enhancing the

readability and interpretability of the output. Additionally, it demanded the input

of the training dataset along with a predefined list of features to operate optimally.

LIME, a technique that perturbed features by drawing samples from a standard nor-

mal distribution, was utilized. This was followed by the inverse operation of mean-

centering and scaling, which made use of the mean and standard deviation values

derived from the training dataset. Through this permutation strategy, LIME was set

to generate a sampling size of approximately 5,000 instances by default. The sam-

ples were then adjusted in value using an exponential kernel, wherein the kernel’s

width was, by default, set at 75% of the square root of the total number of features

used. This adjustment aimed at transforming the distance metric into a measure of

similarity.

The culmination of this process was the development of an explanation model that
highlighted a maximum of ten features, providing insight into the test set. For the
construction of this model, Ridge regression was chosen as the default explanation
model. Logistic regression (LR) prediction with LIME was presented in the given
visualization:

Figure 3.12: LIME explanation for test sample as a "Bearish Trend" by LR Model

Figure 3.12 provided information about test prediction. LR predicted a bullish trend
of the S&P 500 with a 0.43 probability and a bearish trend with a 0.57 probability,
and the final model estimation was a bearish trend. According to the plot, the Aver-
age Directional Index (ADX) with ten periods had the biggest effect. LIME focused
on why the instance was classified as the more likely class. The middle of the fig-
ure delineated the top ten features which significantly influenced the decision-making
process. These features were visually represented, with their contributions explicitly
indicated. The employment of color coding, blue for technical analysis features sug-
gesting a bearish trend, and orange for those signifying a bullish trend, was noted.
Weights importance of prediction as follows:

101

Table 3.31: Technical Indicators and Their Corresponding Values
Indicators LIME Weights
ADX_10 > 0.51 -0.08250658482879819
MFI_10 > 0.68 -0.018583373772887418
SAR > 0.89 0.017677259216989864
EMA_5 > 0.89 0.0018874384414025354
WMA_3 > 0.89 0.0013308653358219727
-0.21 < EMV_3 ≤ 0.14 -0.0012934602479181853
CCI_20 > 0.73 -0.0012304407060790374
WMA_10 > 0.90 -0.0010696718620313678
BBands_10 > 0.90 -0.0010630833144003743
-0.21 < EMV_5 ≤ 0.14 0.00102999773911544

Based on Table 3.31, it was noteworthy to mention that the employment of both ADX

and the Money Flow Index (MFI), with their respective ten-period values of 2.86

and 0.77, significantly exceeded the threshold values of 0.51 and 0.68 utilized in

the explanatory framework. When the ADX and the MFI with a ten-period setting

were eliminated from the model, it was anticipated that the classifier would predict a

bullish trend. This prediction adjustment correlated with a decrement of 0.1, which

represented their cumulative weight as determined by the LIME. Furthermore, Stop

and Reverse (SAR) had the highest weight for the bullish trend probability. The right

feature table gave the original feature values. The LIME weights for each feature were

corresponding coefficients values of explanation model in our case, ridge regression.

The K-Nearest Neighbors (KNN) algorithm represented another model within our

research that demonstrated a high level of accuracy. In order to further investigate

its performance and interpretability, we employed LIME. The visualization of this

analysis was provided in the subsequent figure:

Figure 3.13: LIME explanation for test sample as a "Bearish Trend" by KNN Model

The KNN algorithm was deployed to forecast the movement trends of the S&P 500,

102

presenting a probability distribution wherein the likelihood of a bullish trend stood at
42% and that of a bearish trend at 58%. This prognostication aligned closely with the
estimations derived from LR models. In further detail, Figure 3.13 elucidated that,
consonant with the interpretations derived from LR analyses, the ADX over a span of
ten periods exerted a paramount influence on the predictive outcomes. This finding
underscored the significant role of the ADX in discerning the directional momentum
of the S&P 500. Weights importance of prediction as follows:

Table 3.32: Technical Indicators and Their Corresponding Values
Indicators LIME Weights
ADX_10 > 0.51 -0.052105842623155554
ADX_5 > 0.58 -0.04762622187351637
MFI_10 > 0.68 0.044948779444152494
CCI_20 > 0.73 -0.03786573352072073
RSI_5 > 0.74 -0.02368554837180563
SAR > 0.89 0.016402296156018962
RSI_10 > 0.75 -0.015340850332950882
MFI_5 > 0.81 -0.013978449164872966
-0.21 < EMV_5 <= 0.14 -0.013731656580025458
VWAP_5 > 0.90 0.011746843751864114

Based on Table 3.32, it was significant to highlight that the application of the ADX
characterized by its ten-period and five-period values, which stood at 2.86 and 2.89
respectively, markedly surpassed the benchmark threshold values of 0.51 and 0.58
employed within the analytical model. Upon the removal of certain indicators from
the analysis model—specifically the ADX, the Relative Strength Index (RSI) with a
ten-period setting, the Commodity Channel Index (CCI) with a 20-period setting, and
others including the MFI, and the Ease of Movement Value (EMV) adjusted to five
periods— it was anticipated that the model’s inclination would pivot towards favoring
the bullish trend classification, attributing 0.2 as their collective weight value in the
analytical process. Moreover, within the context of enhancing the model’s accuracy in
predicting bullish trend probabilities, the MFI with a ten-period was identified as the
primary feature, followed by the SAR indicator which held secondary significance.

The LIME method significantly helped in understanding the decisions made by the
KNN model. Specifically, when comparing the top 10 features influencing the model’s
output, the RSI, ADX, MFI, and VWAP stood out for their substantial contribution to
predicting bearish trends. Their contribution’s magnitude displayed a 1% difference
from the LR model, highlighting their crucial role in driving such predictions.

103

SHAP Results

Similar to the approach taken with LIME, SHAP analysis was focused on identifying
the bearish trend by selecting the model’s target variable. This part focused on eluci-
dating the outcomes of employing SHAP values to interpret the outputs generated by
Logistic Regression (LR) and K-Nearest Neighbors (KNN) algorithms. Visualization
of model-based SHAP values was important for the explanation. For single-period
optimization mean-risk models, LR and KNN provided better accuracies among the
models. The concentration was on understanding the technical indicators’ importance
for S&P 500 prediction using test data. In the study, the Kernel SHAP methodology
was employed to elucidate the predictive outcomes generated by LR and KNN algo-
rithms. SHAP local explanation of LR:

Figure 3.14: LR-SHAP force plot for test sample

Figure 3.14, the force plot, a notable visualization generated through SHAP, played a
vital role in elucidating the contributions of individual predictors to a specific forecast.
This mechanism of SHAP was notably crucial when examining singular predictions,
where it benchmarked against a baseline – in this instance, the average predicted
probability stood at 0.4602. Additionally, in the domain of technical analysis, in-
dicators such as the Money Flow Index (MFI) and the Average Directional Index
(ADX), particularly when considering ten-period features, had been identified to sig-
nificantly augment the probability of a bearish trend emergence. Conversely, the Stop
and Reverse (SAR) indicator of 2.192 showed limited effectiveness in mitigating this
increased bearish trend. The influence of ADX and SAR on the outcome was notably
significant, given their proximity to the crucial dividing boundary between the red and
blue bars. Among the three features mentioned, the magnitude of the SHAP value of
ADX was the biggest. SHAP local explanation of KNN:

Figure 3.15: KNN-SHAP force plot for test sample

In Figure 3.15, K-Nearest Neighbors (KNN) with Shapley Additive Explanations
(SHAP) force plot baseline prediction was calculated as 0.4402, the model’s score
was 1% bigger than LR’s score. ADX’s five and ten-period push prediction was bear-
ish, while SAR and VWAP’s ten-period push prediction was a bullish trend. In the
KNN-SHAP analysis, it was observed that a broader set of features significantly con-
tributed to the model’s predictive outcome. Conversely, in the LR framework, SAR
was identified as the singular feature that negatively impacted the model’s outcome.
Furthermore, within the scope of KNN, additional features such as Volume Weighted

104

Average Price (VWAP), Simple Moving Average (SMA), and Exponential Moving
Average (EMA) were also found to diminish the model’s outcome. This differential
impact of features across models suggested a nuanced understanding of feature selec-
tion and its implications on model performance was crucial for optimizing predictive
accuracy.

To gain a comprehensive understanding of the most significant features for a predic-
tive model, it was recommended to visualize the SHAP values of every feature across
all samples. This global approach served to underscore the criticality of integrating
SHAP and the KNN model when assessing the training dataset. This methodology
not only enhanced the interpretability of the model’s decision-making process but also
substantiated the relative importance of each feature within the predictive framework.
The graphical depiction provided, it was noted that the preconfigured upper limit for
the quantity of features exhibited stood at ten. Within this visual representation, in-
dividual points symbolized Shapley values, each corresponding to a distinct feature.
The structure of the graph was characterized by its vertical axis, which quantified the
variables. These variables were systematically arranged in a hierarchical sequence
according to their average absolute SHAP values. Concurrently, the horizontal axis
delineated the SHAP values themselves. Accompanying this graphical representation
was a color bar situated on the right, serving the purpose of representing the numerical
value attributed to the feature.

Figure 3.16: SHAP summary plot for training sample predictions as a "Bearish Trend"
by the KNN model

Figure 3.16 suggested that the top five variables that were most significant were ADX
(measured at two different time intervals) and MFI (measured at three different time
intervals). The ADX over a period of 10 was the most essential feature, and a longer
period of ADX and MFI were better than other periods for feature selection. In the
figure presented, it was observed that elevated levels of the features, with the excep-
tion of the MFI across three periods, were associated with an increase in the bearish
trend probability value by a maximum of 0.2. Conversely, diminished levels of these

105

features corresponded with a decrease in the predictive output by up to 0.2. Addition-
ally, in order to dissect the intricate interplay between feature values and SHAP val-
ues, the study presented dependence plots for the four paramount features—namely
ADX and MFI with 10 periods, and ADX and MFI with 3 periods. These features
had a significant impact on the predictive model for the S&P 500 index.

Figure 3.17: The SHAP dependence plot of the ADX_10, MFI_10, ADX_3, MFI_3,
for the direction forecasting of the S&P 500 index

In an analysis that employed the ADX with 10 period dependence plot, particularly

concerning the S&P 500 index, an intriguing dynamic was observed regarding the

impact of features on market trend predictions. Specifically, an augmentation of

the most critical feature from -2 to 3 was correlated with a rise in its SHAP value.

This increment signified an enhanced predictive contribution towards anticipating in-

dex movement. Concurrently, as the ADX value escalated, a notable decrease in the

SHAP value was observed, suggesting an amplification in its adverse impact on the

predicted index trajectory’s predictive accuracy. Thus, the probability of “falling” for

the index price was decreased as the ADX value was increased.

As depicted in Figure 3.17, a notable observation was the behavior of the secondary

but significant feature, denoted as MFI with 10 period. It was evidenced that this

feature exhibited a gradual escalation within the specified ranges of (-3,-2) or (1, 2).

This escalation inversely correlated with the likelihood of a decline in the index, sug-

gesting a reduction in the probability of a "falling" scenario for the index within these

106

ranges. Conversely, within the (-2,1) interval, there was an observable augmentation

in the SHAP value, which was directly related to an increased probability of a decline

in the index. This analysis suggested a nuanced interplay between the MFI feature’s

value ranges and the index’s directional movements, highlighting the importance of

considering such features in predictive models.

Furthermore, the analysis of the ADX with 3 period plot revealed a nuanced relation-

ship with the SHAP values, where up until a -1 value of ADX, the SHAP value de-

creased alongside a reduced probability of index price decreases. Beyond this point,

an escalation in the SHAP value was noted, which correlated with an increased like-

lihood of the index price decreasing. The relationship between MFI values and the

probability of a decline in index prices demonstrated a noteworthy inverse correlation.

Specifically, as the MFI value, denoted here as MFI with 3 period, increased, there

was a concomitant decrease in the likelihood of a downturn in the index price. This

observation suggested a pivotal role of the MFI in forecasting market trends, particu-

larly downturns. This investigation underscored the intricate dynamics between ADX

and MFI with 10 periods, and ADX and MFI with 3 periods and their SHAP values,

and their collective impact on S&P 500 index price movements, providing substantial

insights into predictive market analytics.

107

108

CHAPTER 4

CONCLUSION AND FUTURE WORK

The objective of this research was to analyze the performance trends of the S&P 500

and its impact on portfolio optimization methodologies. Our study primarily aimed at

diversification, incorporating 24 stocks from eight distinct industry sectors. The focus

was on crafting portfolios for both single and multiple periods that were adjusted for

risk aversion, employing various risk metrics. For the construction of single-period

portfolios, we utilized variance and Conditional Value at Risk (CVaR) as our chosen

risk measures, while the Mean Absolute Deviation (MAD) metric was employed for

the rebalancing of multi-period portfolios.

To refine our portfolio optimization process, we integrated six classification mod-

els: Logistic Regression, K Nearest Neighbors (KNN), Support Vector Classification

(SVC), Decision Trees (DT), Random Forest (RF), and eXtreme Gradient Boosting

(XGBoost). These were employed alongside 29 technical analysis indicators to pre-

dict risk aversion tendencies accurately.

Our findings indicated that the SVC model’s prediction exhibited a propensity to-

wards higher risk, whereas the KNN model’s prediction was more conservative or

risk-averse. When analyzing performance, portfolios assisted by SVC yielded the

highest return for the risk-aversion adjusted mean-variance portfolio over a one-week

period. On the other hand, portfolios assisted by KNN generated the largest loss. In

the comparison of single period Sharpe ratios, we calculated the monthly Sharpe ra-

tio. The DT model yielded the best result, while the portfolio derived using the KNN

showed the lowest Sharpe ratio. Within the mean-Conditional Value at Risk (CVaR)

109

portfolio framework, SVC achieved the highest return. Logistic Regression (LR)

model and portfolios balanced through equal-weight strategies’ portfolios had the

lowest return. In comparing Sharpe ratios, the equal-weight portfolio outperformed

all other portfolios, including the LR model which performed the best amongst other

machine learning-based portfolios. Conversely, the SVC-derived portfolio exhibited

the lowest Sharpe ratio.

In developing portfolios based on mean-MAD (Mean-Absolute Deviation) optimiza-

tion, we employed a methodological framework characterized by the utilization of a

rolling window approach. This technique involved setting the window size to encom-

pass 104 weekly returns, a decision aimed at facilitating a comprehensive evaluation

and optimization of mean-MAD portfolios. Such an approach fostered a deeper com-

prehension of our strategy’s operational efficiency in real-world market conditions.

For portfolios optimized using the MAD risk measure, the SVC model outperformed

all others across an examined period, offering superior average return for 399 mean-

MAD portfolios.

In the examination of superior portfolio construction methodologies, it is discerned,

through rigorous analysis, that a portfolio with equitably distributed weights stands

as the quintessential framework. Upon the extensive evaluation of a broad spec-

trum of portfolio strategies, with the exclusion of the previously mentioned equal

weight portfolio, the portfolio configuration predicated on SVC methodology dis-

tinctly emerges as the contender with the second highest Sharpe ratio. This finding

accentuates the predominance of the equal weights schema in the sphere of portfolio

optimization, concurrently illuminating the promising capabilities of advanced ana-

lytical techniques, such as SVC, in refining investment strategies. The LR portfolio

was found to have the lowest Sharpe ratio among all the strategies. When looking at

cumulative and annualized returns, equal-weighted strategies across all models and

the RF method within machine learning models show superior performance.

In the next phase of the study, we conducted an extensive examination of return

forecasting through the deployment of four distinct regression models: Linear Re-

gression, Long Short-Term Memory Networks (LSTM), XGBoost, and LightGBM

110

within the framework of single-period portfolios. The variables utilized across all re-

gression models were exclusively sourced from technical analysis, maintaining con-

sistency with the variables selected for classification models. Our analysis primarily

focused on the efficacy of these models in predicting the price for the test week of

our dataset. The findings of the study revealed that Linear Regression emerged as

the most efficacious predictive model, as it achieved the lowest Root Mean Square

Error (RMSE) values for twenty-two assets. This was followed by LightGBM, which

recorded the lowest RMSE values for two assets, and LSTM, which accomplished the

lowest RMSE value for an asset, respectively. Notably, XGBoost did not secure the

lowest RMSE value for any of the assets under investigation. Based on the calcula-

tions of returns, it was observed that the performance outcomes of models, in terms

of both returns and losses, exhibit variability.

This finding was particularly noteworthy as LSTM, despite its popularity in numerous

studies for stock price prediction, did not demonstrate superior performance in our in-

vestigation. The study suggested the possible overcomplexity associated with deploy-

ing deep learning methods, such as LSTM, for stock price prediction may not have

justified its benefits. This assertion was further reinforced by the work of Kobets[52],

which illustrated the potential of Linear Regression to outperform LSTM in similar

contexts. Subsequent to the model evaluation, we analyzed the returns within these

periods, supported by our optimized weights, to conduct a comparative analysis.

The investigation extended its focus to the examination of interpretation mechanisms

for achieving optimum predictive performance, specifically analyzing the K-Nearest

Neighbors (KNN) and Logistic Regression (LR) models within a defined temporal

context. The incorporation of Explainable Artificial Intelligence (XAI) played a piv-

otal role in assisting decision-makers by elucidating the intricacies of sales and pur-

chase activities via an in-depth understanding of feature relevance. For the purpose

of furnishing localized elucidations during the evaluation phase, methodologies such

as Local Interpretable Model-agnostic Explanations (LIME) and SHapley Additive

exPlanations (SHAP) were employed. Additionally, SHAP force plots were provided

for both LR and KNN models.

111

Moreover, SHAP was utilized to determine the global significance of features within

the KNN model’s training phase, and the dependency plots of the four most influential

features were also disclosed. The outcomes of this inquiry highlighted the Average

Directional Index (ADX) with a period scope of ten as the most critical and influen-

tial feature for forecasting movements in the S&P 500 index. It was proposed that

investors could benefit from the application of XAI to elucidate feature significances,

based on the insights derived from their research findings.

In forthcoming scholarly endeavors, it is paramount to consider supplementary vari-

ables, including text mining methodologies and investor sentiment, to augment the

predictive accuracy of trends within the S&P 500. The integration of lag variables

alongside data on opening and minimum prices promises to enhance the richness of

the dataset significantly. Consequently, expanded investigations into market index

forecasting are warranted to elevate predictive precision. Moreover, the adoption of

various risk assessment techniques for the construction of either single or multi-period

investment portfolios represents a promising area for future research exploration.

112

REFERENCES

[1] M. Abadi and et al. tensorflow/tensorflow: An Open Source Machine Learn-
ing Framework for Everyone. https://github.com/tensorflow/
tensorflow. [Accessed 01-03-2024].

[2] S. B. Achelis. Technical Analysis from A to Z. The MIT Press, 2001.

[3] A. Agarwal, A. Bhatia, A. Malhi, P. Kaler, H. S. Pannu, et al. Machine learning
based explainable financial forecasting. In 2022 4th International Conference
on Computer Communication and the Internet (ICCCI), pages 34–38. IEEE,
2022.

[4] C. C. Aggarwal. Linear Algebra and optimization for Machine Learning: A
textbook. SPRINGER NATURE, 2021.

[5] E. Alpaydin. Introduction to machine learning. The MIT Press, 2020.

[6] A. S. Arefin, C. Riveros, R. Berretta, and P. Moscato. Gpu-fs-k nn: A software
tool for fast and scalable k nn computation using gpus. pages 1–13, 2012.

[7] J. Ayala, M. García-Torres, J. L. V. Noguera, F. Gómez-Vela, and F. Divina.
Technical analysis strategy optimization using a machine learning approach in
stock market indices. Knowledge-Based Systems, 225:107119, 2021.

[8] G.-Y. Ban, N. El Karoui, and A. E. Lim. Machine learning and portfolio opti-
mization. Management Science, 64(3):1136–1154, 2018.

[9] H. Bandi, S. Joshi, S. Bhagat, and D. Ambawade. Integrated technical and
sentiment analysis tool for market index movement prediction, comprehensible
using xai. In 2021 International Conference on Communication information
and Computing Technology (ICCICT), pages 1–8. IEEE, 2021.

[10] J. Benediktsson. TA-Lib/ta-lib-python: Python wrapper for TA-Lib (http://ta-
lib.org/). https://github.com/TA-Lib/ta-lib-python/. [Ac-
cessed 21-02-2024].

[11] J. L. Bentley. Multidimensional binary search trees used for associative search-
ing. Communications of the ACM, 18(9):509–517, 1975.

[12] T. Bourgeron, E. Lezmi, and T. Roncalli. Robust asset allocation for robo-
advisors. pages 1–67, 2019.

113

https://github.com/tensorflow/tensorflow
https://github.com/tensorflow/tensorflow
https://github.com/TA-Lib/ta-lib-python/

[13] L. Breiman. Bagging predictors. Machine learning, 24:123–140, 1996.

[14] L. Breiman, J. Friedman, C. J. Stone, and R. A. Olshen. Classification and
regression trees. CRC press, 1984.

[15] A. Burkov. The hundred-page machine learning book. Eleven Languages,
2019.

[16] P. Byrne and S. Lee. Different risk measures: different portfolio compositions?
Journal of Property Investment & Finance, 22(6):501–511, 2004.

[17] J. Y. Campbell, A. W. Lo, A. C. MacKinlay, and R. F. Whitelaw. The econo-
metrics of financial markets. Macroeconomic Dynamics, 2(4):559–562, 1998.

[18] S. Carta, A. S. Podda, D. Reforgiato Recupero, and M. M. Stanciu. Ex-
plainable ai for financial forecasting. In International Conference on Machine
Learning, Optimization, and Data Science, pages 51–69. Springer, 2021.

[19] T. B. Çelik, Ö.İcan, and E. Bulut. Extending machine learning prediction ca-
pabilities by explainable ai in financial time series prediction. Applied Soft
Computing, 132:109876, 2023.

[20] T. Chen. Introduction to boosted trees. University of Washington Computer
Science, 22(115):14–40, 2014.

[21] T. Chen and C. Guestrin. Xgboost: A scalable tree boosting system. In Pro-
ceedings of the 22nd acm sigkdd international conference on knowledge dis-
covery and data mining, pages 785–794, 2016.

[22] Y. Chen and Y. Hao. A feature weighted support vector machine and k-nearest
neighbor algorithm for stock market indices prediction. Expert Systems with
Applications, 80:340–355, 2017.

[23] R. W. Colby. The encyclopedia of technical market indicators. McGraw-Hill,
2003.

[24] R. Confalonieri, L. Coba, B. Wagner, and T. R. Besold. A historical per-
spective of explainable artificial intelligence. Wiley Interdisciplinary Reviews:
Data Mining and Knowledge Discovery, 11(1):e1391, 2021.

[25] P. Cunningham and S. J. Delany. k-nearest neighbour classifiers-a tutorial.
ACM computing surveys (CSUR), 54(6):1–25, 2021.

[26] K. Daniel, D. Hirshleifer, and A. Subrahmanyam. Investor psychology and
security market under-and overreactions. the Journal of Finance, 53(6):1839–
1885, 1998.

114

[27] S. Deng, X. Huang, Y. Zhu, Z. Su, Z. Fu, and T. Shimada. Stock index
direction forecasting using an explainable extreme gradient boosting and in-
vestor sentiments. The North American Journal of Economics and Finance,
64:101848, 2023.

[28] L. Devroye, L. Györfi, and G. Lugosi. A probabilistic theory of pattern recog-
nition, volume 31. Springer Science & Business Media, 2013.

[29] R. M. Dhokane and S. Agarwal. Enhancing stock price prediction with macd
and ema features using lstm algorithm. In 2024 International Conference on
Emerging Smart Computing and Informatics (ESCI), pages 1–6. IEEE, 2024.

[30] P. Dubach. A python integration of practical asset allocation based on modern
portfolio theory and its advancements. pages 1–95, 2021.

[31] R. O. Duda, P. E. Hart, and D. G. Stork. Pattern classification. Wiley, 2001.

[32] F. J. Fabozzi, H. M. Markowitz, and F. Gupta. Portfolio selection. Handbook
of finance, 2, 2008.

[33] E. F. Fama. The behavior of stock-market prices. The Journal of Business,
38(1):34–105, 1965.

[34] E. F. Fama. Efficient capital markets: A review of theory and empirical work.
The Journal of Finance, 25(2):383–417, 1970.

[35] R.-E. Fan, K.-W. Chang, C.-J. Hsieh, X.-R. Wang, and C.-J. Lin. Liblinear:
A library for large linear classification. the Journal of machine Learning re-
search, 9:1871–1874, 2008.

[36] J. Fernando. Volume-Weighted Average Price (VWAP): Definition and Calcu-
lation. https://www.investopedia.com/terms/v/vwap.asp#:
~:text=VWAP%20is%20calculated%20by%20multiplying,
number%20of%20periods%20(10). [Accessed 14-02-2024].

[37] D. V. Fryer, I. Strümke, and H. D. Nguyen. Shapley values for feature selec-
tion: The good, the bad, and the axioms. CoRR, abs/2102.10936:1–8, 2021.

[38] J. W. Goodell, S. B. Jabeur, F. Saâdaoui, and M. A. Nasir. Explainable artifi-
cial intelligence modeling to forecast bitcoin prices. International Review of
Financial Analysis, page 102702, 2023.

[39] J. Han, M. Kamber, and J. Pei. Data mining concepts and techniques third
edition. University of Illinois at Urbana-Champaign Micheline Kamber Jian
Pei Simon Fraser University, 2012.

[40] A. D. Hartanto, Y. N. Kholik, and Y. Pristyanto. Stock price time series data
forecasting using the light gradient boosting machine (lightgbm) model. JOIV:
International Journal on Informatics Visualization, 7(4):2270–2279, 2023.

115

https://www.investopedia.com/terms/v/vwap.asp#:~:text=VWAP%20is%20calculated%20by%20multiplying,number%20of%20periods%20(10).
https://www.investopedia.com/terms/v/vwap.asp#:~:text=VWAP%20is%20calculated%20by%20multiplying,number%20of%20periods%20(10).
https://www.investopedia.com/terms/v/vwap.asp#:~:text=VWAP%20is%20calculated%20by%20multiplying,number%20of%20periods%20(10).

[41] T. Hastie, R. Tibshirani, J. H. Friedman, and J. H. Friedman. The elements
of statistical learning: data mining, inference, and prediction, volume 2.
Springer, 2009.

[42] S. Hochreiter and J. Schmidhuber. Long short-term memory. Neural compu-
tation, 9(8):1735–1780, 1997.

[43] C.-W. Hsu, C.-C. Chang, C.-J. Lin, et al. A practical guide to support vector
classification. pages 1–16, 2003.

[44] A. I. Hunjra, S. M. Alawi, S. Colombage, U. Sahito, and M. Hanif. Portfo-
lio construction by using different risk models: A comparison among diverse
economic scenarios. Risks, 8(4):126, 2020.

[45] G. James, D. Witten, T. Hastie, R. Tibshirani, and J. Taylor. An introduction to
statistical learning: With applications in python. Springer Nature, 2023.

[46] R. Ji, K. Chang, and p. Jiang. Risk-aversion adjusted portfolio optimization
with predictive modeling. In 2019 22th International Conference on Informa-
tion Fusion (FUSION), pages 1–8. IEEE, 2019.

[47] Z. Jiang, R. Ji, and K.-C. Chang. A machine learning integrated portfolio
rebalance framework with risk-aversion adjustment. Journal of Risk and Fi-
nancial Management, 13(7):155, 2020.

[48] P. Jorion. Value at risk: the new benchmark for managing financial risk.
McGraw-Hill, 2007.

[49] G. Ke, Q. Meng, T. Finley, T. Wang, W. Chen, W. Ma, Q. Ye, and T.-Y. Liu.
Lightgbm: A highly efficient gradient boosting decision tree. Advances in
neural information processing systems, 30:1–9, 2017.

[50] C. Kingsford and S. L. Salzberg. What are decision trees? Nature biotechnol-
ogy, 26(9):1011–1013, 2008.

[51] T. Kluyver, B. Ragan-Kelley, F. Pérez, B. E. Granger, M. Bussonnier, J. Fred-
eric, K. Kelley, J. B. Hamrick, J. Grout, S. Corlay, et al. Jupyter notebooks-a
publishing format for reproducible computational workflows. Elpub, 2016:87–
90, 2016.

[52] V. Kobets and S. Savchenko. Building an optimal investment portfolio with
python machine learning tools. pages 1–9, 2022.

[53] H. Konno and H. Yamazaki. Mean-absolute deviation portfolio optimiza-
tion model and its applications to tokyo stock market. Management Science,
37(5):519–531, 1991.

[54] S. B. Kotsiantis. Decision trees: a recent overview. Artificial Intelligence
Review, 39:261–283, 2013.

116

[55] W. Leigh, R. Purvis, and J. M. Ragusa. Forecasting the nyse composite index
with technical analysis, pattern recognizer, neural network, and genetic algo-
rithm: a case study in romantic decision support. Decision support systems,
32(4):361–377, 2002.

[56] P. Linardatos, V. Papastefanopoulos, and S. Kotsiantis. Explainable ai: A re-
view of machine learning interpretability methods. Entropy, 23(1):18, 2020.

[57] J. Longerstaey and M. Spencer. Riskmetricstm—technical document. Morgan
Guaranty Trust Company of New York: New York, 51:54, 1996.

[58] S. M. Lundberg and S.-I. Lee. A unified approach to interpreting model pre-
dictions. Advances in neural information processing systems, 30:1–10, 2017.

[59] Y. Ma, R. Han, and W. Wang. Portfolio optimization with return prediction
using deep learning and machine learning. Expert Systems with Applications,
165:113973, 2021.

[60] R. Mansini, W. ‚odzimierz Ogryczak, M. G. Speranza, and E. T. A. of Euro-
pean Operational Research Societies. Linear and mixed integer programming
for portfolio optimization, volume 21. Springer, 2015.

[61] H. Markowitz. Portfolio selection. The Journal of Finance, 7(1):77–91, 1952.

[62] H. M. Markowitz. Portfolio Selection: Efficient Diversification of Investments.
Yale University Press, 1959.

[63] K. May. Forecast Based Portfolio Optimisation Using XGBoost. PhD thesis,
University of the Witwatersrand, Johannesburg, 2022.

[64] W. S. McCulloch and W. Pitts. A logical calculus of the ideas immanent in
nervous activity. The bulletin of mathematical biophysics, 5:115–133, 1943.

[65] G. J. McLachlan. Discriminant analysis and Statistical Pattern Recognition.
John Wiley & Sons, 2005.

[66] C. Mitchell. What is the commodity channel index (cci)? how to cal-
culate. https://www.investopedia.com/terms/c/commoditychannelindex.asp.
[Accessed 14-02-2024].

[67] C. Molnar. Interpretable Machine Learning. Christoph Molnar, 2 edition,
2022.

[68] M. Monikasri and S. Varshini. Stock market price prediction using machine
learning. pages 1–6, 2021.

[69] J. P. Mueller. Machine learning for dummies. John Wiley Sons Inc, 2021.

117

[70] J. J. Murphy. Technical analysis of the financial markets: A comprehensive
guide to trading methods and applications. New York Institute of Finance,
1999.

[71] M. Nikou, G. Mansourfar, and J. Bagherzadeh. Stock price prediction using
deep learning algorithm and its comparison with machine learning algorithms.
Intelligent Systems in Accounting, Finance and Management, 26(4):164–174,
2019.

[72] S. M. Omohundro. Five balltree construction algorithms. International Com-
puter Science Institute Berkeley, 1989.

[73] D. Padial. Technical Analysis Library using Pandas and Numpy, 2018.
https://github.com/bukosabino/ta/. [Accessed 21-02-2024].

[74] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel,
M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, et al. Scikit-learn: Machine
learning in python. the Journal of machine Learning research, 12:2825–2830,
2011.

[75] L. C. M. Phuong. Investor sentiment by money flow index and stock return.
International Journal of Financial Research, 12(4):33–42, 2021.

[76] Posit team. RStudio: Integrated Development Environment for R. Posit Soft-
ware, PBC, Boston, MA, 2023.

[77] K. Postek, A. Zocca, J. Gromicho, and J. Kantor. Hands-On Mathematical
Optimization with AMPL in Python. Online, 2024.

[78] J. R. Quinlan. Induction of decision trees. Machine learning, 1:81–106, 1986.

[79] S. Raschka. Mlxtend: Providing machine learning and data science utilities
and extensions to python’s scientific computing stack. The Journal of Open
Source Software, 3(24), Apr. 2018.

[80] S. Raschka, Y. H. Liu, V. Mirjalili, and D. Dzhulgakov. Machine Learning
with PyTorch and Scikit-Learn: Develop machine learning and deep learning
models with Python. Packt Publishing Ltd, 2022.

[81] M. T. Ribeiro, S. Singh, and C. Guestrin. " why should i trust you?" explaining
the predictions of any classifier. In Proceedings of the 22nd ACM SIGKDD in-
ternational conference on knowledge discovery and data mining, pages 1135–
1144, 2016.

[82] R. T. Rockafellar, S. Uryasev, et al. Optimization of conditional value-at-risk.
Journal of risk, 2:21–42, 2000.

[83] B. Rockefeller and M. Tusing. Technical analysis for dummies. Tantor Media,
2019.

118

https://github.com/bukosabino/ta/

[84] T. Roncalli. Introduction to risk parity and budgeting. CRC Press, 2013.

[85] F. Rosenblatt and S. Papert. Perceptron, volume 9. April, 2021.

[86] C. Rudin. Stop explaining black box machine learning models for high stakes
decisions and use interpretable models instead. Nature machine intelligence,
1(5):206–215, 2019.

[87] D. E. Rumelhart, G. E. Hinton, and R. J. Williams. Learning representations
by back-propagating errors. nature, 323(6088):533–536, 1986.

[88] J. A. Ryan. https://cran.r-project.org/web/packages/
quantmod/quantmod.pdf. [Accessed 22-02-2024].

[89] O. B. Sezer, M. U. Gudelek, and A. M. Ozbayoglu. Financial time series
forecasting with deep learning: A systematic literature review: 2005–2019.
Applied soft computing, 90:106181, 2020.

[90] L. S. Shapley. A value for n-person games. In H. W. Kuhn and A. W. Tucker,
editors, Contributions to the Theory of Games II, pages 307–317. Princeton
University Press, Princeton, 1953.

[91] M. D. Sheimo. Cashing in on the dow: Using dow theory to trade and deter-
mine trends in today’s markets. John Magee, 1998.

[92] E. Štrumbelj and I. Kononenko. Explaining prediction models and individual
predictions with feature contributions. Knowledge and information systems,
41:647–665, 2014.

[93] Z. Tasneem and M. M. Rahman. Machine learning based approaches for pre-
dicting stock closing price. In 2023 26th International Conference on Com-
puter and Information Technology (ICCIT), pages 1–6. IEEE, 2023.

[94] K. Team. Keras: Deep Learning for humans — keras.io. https://keras.
io/. [Accessed 01-03-2024].

[95] L. Troiano, A. Bhandari, and E. M. Villa. Hands-On Deep Learning for Fi-
nance: Implement deep learning techniques and algorithms to create powerful
trading strategies. Packt Publishing Ltd, 2020.

[96] A. M. Turing. Computing machinery and intelligence. Mind, 59(236):433–
460, 1950.

[97] G. Van Rossum and F. L. Drake Jr. Python reference manual. Centrum voor
Wiskunde en Informatica Amsterdam, 1995.

[98] J. W. Wilder. New Concepts in Technical Trading Systems. Trend Research,
1978.

119

https://cran.r-project.org/web/packages/quantmod/quantmod.pdf
https://cran.r-project.org/web/packages/quantmod/quantmod.pdf
https://keras.io/
https://keras.io/

[99] I. H. Witten and E. Frank. Data Mining: Practical Machine Learning Tools
and techniques with Java implementations. Morgan Kaufmann, 2005.

[100] D. Würtz, Y. Chalabi, W. Chen, and A. Ellis. Portfolio optimization with R/R-
metrics. Rmetrics, 2009.

[101] Y. Zhu and G. Zhou. Technical analysis: An asset allocation perspective on
the use of moving averages. Journal of financial economics, 92(3):519–544,
2009.

120

APPENDIX A

LIST OF ASSETS

Table A.1: List of Assets

S&P 500 Sectors Company Name

Communication Services
The Walt Disney Company

Verizon Communications Inc.

Consumer Discretionary
The Home Depot, Inc.

McDonald’s Corporation
NIKE, Inc.

Consumer Staples
The Coca-Cola Company

The Procter Gamble Company
Sysco Corporation

Walmart Inc.

Energy
Chevron Corporation

Exxon Mobil Corporation

Financials
American Express Company

JPMorgan Chase Co.

Health Care
Johnson Johnson
Merck Co., Inc.

Pfizer Inc.
Walgreens Boots Alliance, Inc.

Industrials
The Boeing Company

Caterpillar Inc.
3M Company

Information Technology
Apple Inc.

Cisco Systems, Inc.
International Business Machines Corporation

Intel Corporation
- 13-Week Treasury Bill

121

	ABSTRACT
	ÖZ
	ACKNOWLEDGMENTS
	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	LIST OF ABBREVIATIONS
	INTRODUCTION
	Problem description
	Proposed Method & Contributions
	Literature Review
	Porfolio Formation
	Forecasting in Stock Market Index
	Forecasting in Stocks
	Explainability in time series

	The Outline of the Thesis

	METHODOLOGY
	Asset Allocation
	Portfolio Models
	Mean-Variance Portfolio
	Mean-CVaR Portfolio
	Mean-MAD Portfolio

	Technical Indicators
	Moving Averages(MA)
	Average Directional Movement Index(ADX)
	Relative Strength Index(RSI)
	Commodity Channel Index(CCI)
	Ease of Movement(EMV)
	Bollinger Bands(BB)
	Parabolic Stop-and-Reverse(SAR)
	Money Flow Index (MFI)
	Volume Weighted Average Price(WVAP)

	Machine Learning Algorithms
	Logistic Regression (LR)
	Loss Function
	Optimization Methods
	Regularization

	K Nearest Neighbour (KNN)
	Distance metrics
	Search Strategies

	Support Vector Machine (SVM)
	Kernel Functions

	Decision Trees (DT)
	Splitting criteria
	Pruning

	Random Forest (RF)
	eXtreme Gradient Boosting (XGBoost)
	Regularized Learning Objective
	Gradient Tree Boosting
	Shrinkage and Feature Subsampling
	Split Finding Algorithms

	Light Gradient Boosting Machine (LightGBM)
	Gradient-based One-Side Sampling
	Exclusive Feature Bundling (EFB)

	Linear Regression
	Long Short Term Memory (LSTM)

	Evaluation Criteria of Classification Models
	Evaluation Criteria of Regression Models
	Performance Metrics of Portfolios
	Explanation Methods
	LIME
	SHAP

	IMPLEMENTATION and evaluation
	Data and Risk-aversion Prediction
	Descriptive Statistics of S&P 500
	Exploratory Data Analysis of S&P 500
	Technical Indicators
	Preprocessing pipeline
	Data Transformation Methods
	Model Optimization Method
	Risk-aversion estimation

	Portfolio Optimization
	Classification Models for Single Period Portfolios
	Results of Portfolios
	Mean-Variance Portfolios
	Mean-CVaR Portfolios
	Mean-MAD Portfolios
	Return Predictions
	Feature Importance

	Conclusion and Future Work
	REFERENCES
	APPENDICES
	List of Assets

