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ABSTRACT

EXPLORING THE CAPABILITIES OF LARGE LANGUAGE MODELS IN VISUAL
QUESTION ANSWERING: A NEW APPROACH USING QUESTION-DRIVEN IMAGE

CAPTIONS AS PROMPTS

Özdemir, Övgü

M.S., Department of Modeling and Simulation

Supervisor: Assoc. Prof. Dr. Erdem Akagündüz

September 2024, 64 pages

Visual question answering (VQA) refers to the artificial intelligence task of providing natural language
answers to natural language questions based on a visual input. Due to its requirement for multimodal
processing, VQA is considered a challenging problem. It often necessitates understanding the scene
depicted in the image, extracting the relationships between objects and their attributes, and performing
multi-step reasoning. Over the past few years, numerous deep learning architectures have been pro-
posed for VQA. More recently, pre-trained vision-language models and Multimodal Large Language
Models (MLLMs) with billions of parameters have demonstrated superior performance on benchmark
tests. Nevertheless, there are still gaps for performance improvement in zero-shot VQA. Zero-shot
VQA requires adapting to tasks without input-output guidance, necessitating advanced reasoning abil-
ities. Consequently, recent research has focused on designing prompts that can elicit reasoning capa-
bilities in MLLMs. This thesis proposes a new approach aimed at improving performance in zero-shot
VQA by using LLMs and integrating context-aware image captioning as an intermediate step. Evalua-
tions and comparisons were conducted using recent MLLMs, such as CogVLM, GPT-4, and GPT-4o,
on the GQA test set, which includes structurally and semantically diverse questions that often require
multi-step reasoning. Additionally, the thesis examines the impact of different prompt designs on VQA
performance. The findings highlight the potential of using image captions and optimized prompts to
enhance VQA performance under zero-shot settings.
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ÖZ

BÜYÜK DİL MODELLERİNİN GÖRSEL SORU YANITLAMA YETENEKLERİNİN
KEŞFEDİLMESİ: SORU ODAKLI GÖRÜNTÜ ALTYAZILARINI İSTEM OLARAK

KULLANAN YENİ BİR YAKLAŞIM

Özdemir, Övgü

Yüksek Lisans, Çokluortam Bilişimi Bölümü

Tez Yöneticisi: Doç. Dr. Erdem Akagündüz

Eylül 2024, 64 sayfa

Görsel soru cevaplama (VQA), bir görsele dayanarak doğal dildeki sorulara doğal dilde yanıtların ve-
rildiği yapay zeka görevini ifade eder. Çok modlu işlemeyi gerektirmesinden dolayı VQA zorlu bir
problemdir. VQA, sıklıkla görseldeki sahneyi anlamayı, nesneler ve nitelikler arasındaki ilişkiyi çı-
karmayı ve çok adımlı muhakeme yapmayı gerektirir. Geçtiğimiz yıllar boyunca, VQA için pek çok
farklı derin öğrenme yapısı önerilmiştir. Son yıllarda ise önceden eğitilmiş görsel-dil modelleri ve mil-
yarlarca parametreli çok modlu büyük dil modelleri (MLLM) değerlendirmelerde üstün performans
göstermektedir. Buna rağmen, sıfır-atış VQA’de hala performans iyileştirmek için boşluklar vardır.
Sıfır-atış VQA, girdi-çıktı rehberliği olmadan göreve adapte olmayı ve bunun için de gelişmiş muha-
keme yeteneği gerektirir. Bu nedenle, son yıllarda araştırmalar, MLLM’ler için muhakemeyi ortaya
çıkaracak istem tasarımlarına yoğunlaşmıştır. Bu tez, LLM’leri kullanarak ve bağlama duyarlı görüntü
altyazılamayı ara bir adım olarak entegre ederek, sıfır-atış VQA’deki performansı artırmayı amaçlayan
yeni bir yaklaşım önermektedir. CogVLM, GPT-4 ve GPT-4o gibi yeni MLLM’ler kullanılarak yapısal
ve anlamsal açıdan çeşitli sorular içeren ve genellikle çok adımlı muhakeme gerektiren GQA test seti
üzerinde değerlendirme ve karşılaştırma yapılmıştır. Ayrıca, tez, farklı prompt tasarımlarının VQA
performansına etkisini incelemektedir. Bulgular, sıfır-atış ayarlarında VQA performansını artırmak
için görüntü açıklamalarının ve optimize edilmiş istemlerin kullanım potansiyelini vurgulamaktadır.

Anahtar Kelimeler: görsel soru cevaplama, büyük dil modelleri, görüntü altyazılama, istem tasarımı,
sıfır-atış VQA
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CHAPTER 1

INTRODUCTION

1.1 Background and Problem Definition

One of the excellent capabilities of the human brain is multimodal processing, which integrates infor-
mation from various sensory modalities such as audio, text, image, and video. Even though substantial
advancements have been made in Artificial Intelligence (AI), addressing multimodality remains a sig-
nificant challenge that has drawn attention from academia for the past ten years. Technical difficulties
in multimodal processing are mainly associated with the representation, alignment, and integration of
multimodal data [1].

One particularly challenging multimodal task is Visual Question Answering (VQA), which lies at
the intersection of the fields of Computer Vision (CV) and Natural Language Processing (NLP). The
VQA task is defined as providing answers to natural language questions about an image. VQA requires
understanding the question, identifying the visual details being asked in the question, and generating a
proper answer. VQA often necessitates multi-step reasoning and visual reasoning involving multiple
logical deductions based on the elements within the scene and their interrelationships [2]. From this
perspective, research on VQA [3, 4, 5, 2, 6] can help understand and reflect the key aspects of human
intelligence, specifically merging visual and linguistic information to facilitate reasoning about the
environment. VQA systems can also be exploited in various real-life applications, including assisting
visually impaired individuals, video surveillance, and educational tools [7].

Recently, Large Language Models (LLMs), developed using transformer architecture and trained on
extensive web-scale text corpora, have revolutionized the field of NLP. These models, including GPT-3
and GPT-4 [8], Llama [9], Gemini [10], have demonstrated reasoning capabilities across a wide range
of tasks, including language translation, summarization, question answering, and more. Expanding
the capabilities of LLMs to connect visual and language modalities has led to the development of
Multimodal Large Language Models (MLLMs) [11, 12, 13, 8, 14]. MLLMs indicate high performance
in various multimodal tasks, including VQA and image captioning. Although LLMs exhibit strong
performance on various tasks, it remains ambiguous whether their decision-making processes truly
amount to "reasoning" and to what degree [15]. Hallucination issues are a common problem for both
LLMs and MLLMs, impeding the models’ capacity for proper reasoning [16]. Therefore, it is still a
challenge for MLLMs to execute complex tasks requiring multi-step reasoning without prior examples.
This issue is especially evident in zero-shot VQA, where models must answer questions about images
without any guiding examples.
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LLMs have the ability to perform tasks in few-shot and zero-shot settings, where they are guided by
a few examples or only specific task instructions in a process known as "prompting" [17]. Recent
research extensively explores Chain-of-Thought (CoT) prompting [18, 17, 19, 20], an approach that
enhances reasoning by incorporating intermediate steps producing rationales for the output, applicable
to both text-only LLMs and MLLMs. Despite increasing research efforts and promising developments,
MLLMs still struggle with zero-shot VQA tasks requiring multi-step reasoning, highlighting the need
for new techniques to effectively leverage these models.

This thesis proposes a new approach aimed at improving the zero-shot performance of MLLMs in
VQA. To this aim, the study investigates the effectiveness of using context-aware image captions as
an intermediate step in the VQA pipeline by feeding them to text-only LLMs as prompts along with
the question. The proposed approach also aims to make reasoning in VQA more transparent through
the context-aware image descriptions used as rationale. The study conducts a comprehensive evalua-
tion by including various LLMs and MLLMs and using the GQA dataset, which consists of questions
involving multi-step reasoning, across different semantic and structural question categories. By lever-
aging context-aware image captions, the study seeks to bridge the gap in the current capabilities of
LLMs, enhancing their performance in complex zero-shot VQA tasks.

1.2 Motivation

The motivation for this study stems from the growing importance of developing AI systems capable
of multimodal reasoning, a key step towards achieving Artificial General Intelligence (AGI). As AI
systems become more integrated into daily life, their ability to understand and reason about multimodal
information in a human-like manner becomes crucial.

In this study, the performance of LLMs and MLLMs in zero-shot VQA containing diverse questions
requiring multi-step reasoning has been comprehensively evaluated. The purpose of this evaluation is
to identify deficiencies in the VQA capabilities of current LLMs and MLLMs and provide an analysis,
which can be considered for future improvements.

The approach proposed in this study aims to enhance zero-shot VQA performance by using context-
aware image captions as intermediate outputs and providing them as prompts to LLMs. The proposed
approach can be useful from several aspects. First, it can be applied to achieve better results in specific
question categories within zero-shot VQA. Second, it can be applied in scenarios where the image can-
not be provided directly due to privacy concerns. Furthermore, because the LLM uses image captions
as rationale, the proposed approach can also be employed in scenarios requiring more interpretable
answers.

1.3 Research Questions

This thesis will seek answers to the following research questions:

• What is the usefulness of utilizing image captions instead of images within the VQA pipeline,
particularly in achieving success in zero-shot VQA?
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• Can context-aware image captioning serve as an effective intermediary between images and
LLMs?

• Do LLMs exhibit improved performance in the question-answering phase when they rely solely
on textual input?

• Can exploiting image captions within a VQA pipeline be advantageous for answering certain
types of questions?

• Can prompt designs that encourage MLLMs to engage in multiple thinking enhance performance
in VQA?

1.4 Contributions of the Study

The primary contribution of this study is the proposal of a novel approach termed the question-driven
image captioning-integrated VQA pipeline, which aims to establish a connection between images and
LLMs for VQA in zero-shot settings.

This study evaluates various image captioning models within the proposed approach to assess their
ability to generate informative captions that sufficiently address a range of questions in terms of both
semantics and structure.

Additionally, the study examines the performance of various MLLMs on the VQA task, comparing
their effectiveness to that of image captioning-integrated VQA pipelines.

Finally, the study explores the effectiveness of various prompt designs that contain preliminary stages
within, to enhance the performance of MLLMs in the VQA task.

1.5 Organization of the Thesis

The thesis is organized into four main chapters:

Chapter 1 introduces the problem definition, outlining the primary challenges in VQA and the ob-
jectives of the study. It details the contributions of the study and presents the key research questions
guiding the investigation.

Chapter 2 provides an overview of the literature, encompassing various approaches proposed for VQA,
including both conventional and recent methods. It also reviews the datasets commonly used in VQA
research and presents an overview of LLMs and MLLMs, and different prompting strategies.

Chapter 3 details the implementation step and dataset used in this study. It introduces the proposed
question-driven image captioning-integrated VQA approach, followed by experiments that compare
the performance of the proposed method with various LLMs and MLLMs. The chapter also examines
the contribution of different prompt designs for LLMs in VQA. This chapter also presents evaluation
results and includes a discussion of the results.
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Chapter 4 highlights the conclusions drawn from experiments with LLMs and MLLMs on the GQA
dataset. The chapter highlights future research directions for improving VQA and LLM evaluation.
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CHAPTER 2

LITERATURE REVIEW

This chapter provides an overview of the Visual Question Answering (VQA) literature, examining
various architectures and datasets proposed for this multimodal task. The chapter discusses early
methods utilizing various multimodal fusion techniques, as well as more recent approaches, including
transformer-based, neuro-symbolic, and graph-based architectures. Furthermore, the chapter explores
the latest advancements in Large Language Models (LLMs), including Multimodal Large Language
Models (MLLMs) and various prompting strategies.

2.1 Visual Question Answering

Visual Question Answering (VQA) is the task of answering questions posed in natural language based
on a visual input. VQA requires handling multimodality and a wide range of skills to address various
types of questions [3]. VQA encompasses multiple computer vision sub-tasks such as object detec-
tion/recognition, counting, attribute classification, and activity recognition, and measures cognitive
abilities such as spatial, common-sense, and knowledge-base reasoning [21].

The challenge of VQA lies in the necessity of establishing a connection between language and visual
modalities. It requires understanding the question’s requirements and applying reasoning processes by
interacting between two different modalities accordingly. This complexity adds challenges to model
training, as it requires the model to effectively utilize the interactions between vision and language
modalities. Over the past years, different approaches have been proposed to address multimodality in
VQA.

A conventional VQA pipeline usually consists of three main stages: image featurization, question
featurization, and multimodal fusion [22].

In the image featurization step, the input image is processed to extract visual representations, typically
by passing the image through a pre-trained model based on a Convolutional Neural Network (CNN)
structure such as ResNet [23] or VGG [24].

In question featurization, the input question is processed to capture its semantic representation. This
involves encoding the question into a vector representation that the model can process. Models based
on Recurrent Neural Networks (RNN) structure such as Long Short-Term Memory (LSTM) [25] and
Gated Recurrent Unit (GRU) [26] are typically used to convert the question into a fixed-length vector
representation.
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During the fusion step, visual and textual features are transformed into a shared feature space and
combined using various techniques such as concatenation, element-wise summation, element-wise
multiplication, compact bilinear pooling, and cross-modal interactions.

2.1.1 Early Approaches

In early studies, CNN-based models were predominantly used for image featurization, while RNN-
based models were commonly employed for question featurization, with the main distinction between
approaches occurring at the fusion stage.

The fusion of visual and linguistic data is the key element of VQA. This requires uncovering the com-
plex and high-level interactions between the textual semantics in the question and the visual concepts
depicted in the image.

Gao et al. [27] propose a VQA model extracting visual features with CNN and language features with
LSTM, and fusing them with element-wise addition. Joint embeddings are further fed into a classifier
to predict an answer.

Kim et al. [28] introduce Multimodal Residual Networks (MRN) that learn joint representation from
vision and language representations. The fusion of two modalities is carried out using element-wise
multiplication.

Ben-younes et al. [29] introduce MUTAN using multimodal Tucker fusion to handle the fusion of
textual and visual modalities. MUTAN learns joint representations of images and questions in a shared
embedding space. The Tucker decomposition is utilized to factorize the acquired multimodal repre-
sentations into core tensors and mode-specific factor matrices. MUTAN employs attention processes
to dynamically prioritize relevant sections of the image and questions while merging them.

Feature-wise Linear Modulation (FiLM) [30] proposes a layer for conditioning the visual features
based on the input question by applying affine transformations. This process modulates the visual
feature maps using parameters derived from the question, allowing the model to focus on relevant
aspects of the image associated with the question.

Santoro et al. [31] propose Relation Networks (RN), which structure the neural network’s functionality
by considering the pairwise relationships among objects. In this approach, images are processed with
a CNN to obtain a set of objects for the RN. After calculating the relationships between all pairs of
objects, the Relation Network aggregates these features to create a global representation that encodes
relational information to answer the question.

2.1.2 Transformer-based Approaches

Transformer architecture was first introduced in the paper "Attention is All You Need" [32] in 2017
by Vaswani et al. Transformers demonstrate remarkable success in a variety of tasks in NLP, such as
text summarization, sentiment analysis, and question-answering, and become the foundation of recent
LLMs.

6



The transformer architecture comprises an encoder and a decoder which contains sub-layers with
multi-head self-attention and feed-forward neural networks. Self-attention layer, the key element of
transformers, analyzes relationships within input sequences and calculates the weights that represent
the importance of each word relative to all other words in the sequence. Self-attention allows the
model to capture long-term dependencies and relationships between different segments of the input.
Multi-headed self-attention enables the learning of different sets of self-attention weights in parallel,
with each set focusing on various aspects of the language.

The large-scale pre-training concept is essential in the success of transformer-based models. This
involves training transformer models on massive corpora using self-supervised learning techniques.
By pre-training on large-scale data, transformer models can learn rich and generalized representations
of the input data, which can then be fine-tuned on relatively small amounts of labeled data for specific
downstream tasks.

Transformers are initially used in the NLP domain, then extended to vision [33] and multimodal tasks
[34, 35, 36]. Cross-modal interactions are essential for tackling multimodality in transformers. These
interactions usually involve early summation, early concatenation, hierarchical attention, and cross-
attention techniques [37]. Multimodal pre-training is also extensively researched with the emergence
of large-scale multimodal datasets. Multimodal pre-training typically involves training with techniques
such as image-text matching and contrastive learning. Transformers with large-scale multimodal pre-
training surpass the performance of previous architectures in various downstream tasks.

LXMERT [35] is a large-scale transformer model composed of an object-relationship encoder, a lan-
guage encoder, and a cross-modality encoder that integrates textual and visual semantics. The cross-
modality encoder includes both self-attention and cross-attention layers. It processes the outputs from
the language encoder and the object-relationship encoder. Cross-attention allows the model to focus
on relevant parts of the image while processing the question and vice versa. Similar to self-attention,
cross-attention computes attention scores between pairs of tokens from different sequences to create
joint cross-modality representations.

OSCAR [36] proposes a Visual-Linguistic Pretraining (VLP) method that enhances cross-modal rep-
resentation learning by utilizing object tags detected in images as anchor points. The training samples
are constructed as triples, each consisting of a word sequence, a set of object tags, and image region
features. OSCAR uses masked token loss and contrastive loss as pre-training objectives.

MDETR [38] builds upon the principles of the object detection model DETR [39], enhancing it with
the capability to process free-form text inputs in addition to the input image. Similarly to DETR, image
features are extracted with a CNN backbone, and text features are encoded with a language transformer
RoBERTa [40]. Image and text feature vectors are concatenated and given to the transformer encoder,
which is followed by the transformer decoder taking object queries and question-answering specific
queries attended to encoder output.

2.1.3 Neuro-symbolic Approaches

Neuro-symbolic AI introduces a hybrid paradigm that seeks to combine the power of neural networks
with the structured, rule-based reasoning of symbolic systems. By integrating neural networks with
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symbolic reasoning, which can execute precise logical operations, neuro-symbolic AI holds the poten-
tial to create systems that are both highly flexible and interpretable.

In VQA research, neuro-symbolic models have garnered significant attention because their composi-
tional structure allows for transparency and interpretability. These models typically include a question
parser to generate programs from questions, a scene parser to identify relevant objects and attributes,
and a program executor to apply these programs to scene representations.

Neural Module Networks [41] proposes a dynamic structure built by decomposing questions into lin-
guistic sub-structures with a parser and combining necessary computational units, e.g., classification,
and attention, that represent the associated sub-structures. Similarly, End-to-end Module Networks
[42] proposes an end-to-end approach that learns both parsing the questions and a layout policy with
RNNs for dynamically constituting computational units.

NS-VQA [43] employs neural networks for scene parsing and decomposing questions into program
instructions. It introduces a symbolic module that executes these program instructions on the scene
representation. NS-VQA constitutes scene representations using Mask-RCNN to segment objects in
the input image, and a CNN-based model to classify the object attributes with full supervision.

An extended work NS-CL [44] constructs scene representations without fully annotated supervision,
unlike NS-VQA. Question parser training, a significant step of the reasoning process, includes the
steps of supervised learning of mapping questions to program instructions in a small data set, and then
reinforcement learning by pairing the resulting model with a deterministic program executor.

Neuro-symbolic approaches can also integrate with other neural architectures. A hybrid approach,
ProTo [45], introduces program-guided transformers that leverage both the semantic and structural
information from programs parsed from questions by a sequence-to-sequence model.

A recent approach VisProg [46] uses a language model with in-context examples to generate programs.
Programs are then executed using pre-defined modules that perform various functions, including im-
age cropping, object localization, and segmentation. VisProg stands out for its interpretability and
adaptability to various other tasks.

While neuro-symbolic models provide more transparent reasoning mechanisms in VQA systems, they
frequently require manual design of program execution steps, which limits their scalability and makes
it difficult to develop generalized solutions for diverse tasks.

2.1.4 Graph-based Approaches

In recent years, Graph Neural Networks (GNNs) have garnered significant attention from the commu-
nity due to their ability to represent interconnections and provide interpretability. GNNs enable the
construction of relationships in a scene based on the given question. Several related works employ
GNNs for visual question answering.

GraphVQA [6] proposes a language-guided graph neural network for constructing reasoning in VQA.
GNNs follow the message-passing scheme, updating each node’s feature using its local neighborhood.
The main idea of GraphVQA is to convert a natural language question into several iterations of message
passing between graph nodes. Each message passing iteration is performed by a layer of a GNN.
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An alternative graph-based approach for VQA is proposed in [47]. The method integrates a graph
learner module that generates a question-specific graph representation of the input image with graph
convolutions to capture question-specific interactions.

Language-Conditioned Graph Networks (LCGN) [48] is targeted to support relational reasoning in
VQA and Referring Expression Comprehension (REF). The model builds contextualized object repre-
sentations through iterative message passing conditioned on textual input. Each object node updates
its representation based on relationships to support relational reasoning.

2.1.5 Reasoning in VQA

Reasoning is defined as the process of deriving conclusions or inferences from information [49]. Visual
reasoning (VR) refers to the capability to create a comprehensive depiction of a visual scene and carry
out multi-step logical deductions concerning the elements within the scene and their interrelationships
[2]. As one of the tasks involving visual reasoning, VQA often requires the ability to infer relationships
between objects in a scene, recognize relational patterns, and make logical deductions considering both
visual and textual inputs. For instance, to correctly answer a question like "What color is the car next
to the tree?", the model needs to understand the spatial relationships between objects in the image,
identify the car and the tree, and deduce the color of the car through visual analysis.

As mentioned in the previous sections, numerous studies have been proposed to enhance the perfor-
mance and reasoning capability of VQA models, such as graph neural networks or neuro-symbolic
models. Several other studies have examined various aspects of reasoning in VQA, focusing on fac-
tors such as neural architecture and input uncertainties that may influence reasoning ability. Xu et
al. [50] examine what reasoning tasks a neural network can learn well. The primary concept of the
study is based on the observation that reasoning processes are similar to algorithms. Thus, their study
investigates how well a reasoning algorithm aligns with the network’s computation graph. The au-
thors introduce an algorithmic alignment framework that formalizes the interaction between neural
network structures and reasoning processes such as summary statistics, relational argmax, and dy-
namic programming. Their results highlight that GNNs succeed in various reasoning tasks because
their underlying reasoning processes resemble dynamic programming [50].

Kervadec et al. [51] investigate whether uncertainty in vision is a key obstacle to effectively learning
reasoning in vision and language problems. They define reasoning as the algebraic manipulation of
words and visual objects to predict answers to new questions and argue if reasoning becomes challeng-
ing when the visual input is noisy and uncertain, as opposed to learning from clear information about a
scene. To test this hypothesis, they trained an oracle model with perfect visual information, providing
the model with ground-truth object annotations from the GQA dataset [3]. Their observation indicates
that the model with perfect sight has more diverse attention modes, resembling a reasoning process by
predicting answers from visual information rather than relying on biases.[51].

2.1.6 Other Related Tasks

In this section, a brief overview of two tasks related to VQA is presented: image captioning and
question answering. These tasks are addressed in the application part of this thesis as modules within
the proposed VQA pipeline.
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2.1.6.1 Image Captioning

Image captioning (IC) is the task of generating captions describing the visual content in natural
language. Similar to VQA, IC requires integrating visual and language understanding. Early ap-
proaches explore retrieval-based methods that usually find the closest matching image from an exten-
sive database of images accompanied by descriptions to produce a caption [52]. Deep learning-based
IC relies on attention and encoder-decoder mechanisms [53, 54]. A typical architecture consists of a
CNN-based encoder to map visual representations in a shared embedding space and an RNN-based
decoder to produce the final caption. Moreover, transformers revolutionizing NLP and vision, are also
employed successfully in image captioning by enabling end-to-end training [55, 56].

Alternatively, scene graphs are extracted using different methods and utilized in image captioning [57].
Typically, a scene graph consists of objects, attributes, and the relationships between them. A scene
graph serves as an intermediary to bridge the gap between pure-vision and vision-language tasks [55].
Graph Convolutional Networks and Long Short-Term Memory (GCN-LSTM) [58] are combined to
model visual relationships and produce associated captions based on these relationships. Yang et al.
[59] integrate scene graphs into the encoder-decoder structure as a way of incorporating inductive bias.

Recently, MLLMs [60, 46, 12, 8, 10, 13] have significantly advanced the field of image captioning,
similar to their contributions in various other vision-language tasks. MLLMs are discussed in detail in
Section 2.2.1

2.1.6.2 Question Answering

Question-answering (QA) is the task of generating contextually appropriate responses to questions in
natural language. A traditional QA system typically consists of the steps of document retrieving and
reading [61]. The document retrieval process aims to identify sources or documents relevant to the
question, while the reading step focuses on extracting the appropriate answer, based on the related
sources.

QA research has gained significant attention in recent years, resulting in the development of numerous
deep learning-based systems. The Stanford Question Answering Dataset (SQuAD) [62] is extensively
utilized in deep learning-based QA research. Recent advancements in QA models cover transformer
architectures and large-scale pre-training on diverse datasets [63, 40, 64, 65]. Notably, LLMs such
as OpenAI’s ChatGPT [8] and Google’s Gemini [10] have demonstrated substantial improvements in
conversational question answering by effectively interacting with humans.

2.1.7 VQA Datasets

This section gives an overview of extensively researched VQA datasets.
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2.1.7.1 VQA

Antol et al. [4] propose the VQA dataset and present the concept of free-form and open-ended VQA.
The dataset contains about 204K images from the MS-COCO dataset [66], and 760K questions. Sub-
sequent studies have shown that the VQA dataset contains inherent biases where questions can often
be answered correctly without looking at the image, based purely on language patterns in the training
data.

2.1.7.2 VQA v2.0

VQA v2.0 [67] aims to reduce biases from the previous VQA dataset [4] and balance question-answer
pairs. This improvement aims to reduce the chances of models relying on language biases rather than
understanding the visual content. The VQA v2.0 dataset has roughly 1.1M image-question pairs with
13M corresponding responses [67].

2.1.7.3 CLEVR

CLEVR (Compositional Language and Elementary Visual Reasoning) [68] dataset is designed to eval-
uate visual reasoning abilities. It contains 100K synthetic images with various shapes, colors, numbers,
and materials of objects and around 853K compositional questions being generated programmatically.
These questions are designed to measure skills for counting, comparing, and querying object properties
and relationships. To aid visual reasoning research, the dataset also includes scene graph annotations
and functional representations. However, due to its synthetic origin and limited variety, character-
ized by a small number of object categories and qualities, the dataset is stated as susceptible to the
memorizing of all possible combinations [3].

2.1.7.4 Visual Genome

With an average of 35 objects, 26 attributes, and 21 pairwise relationships between objects, the Vi-
sual Genome dataset [69] comprises more than 108K images. The dataset includes scene graphs of
real-world images where objects, attributes, and their relationships are defined. Visual Genome en-
compasses a wide range of visual tasks from perception to reasoning with 1.7M questions and answers
[69].

2.1.7.5 OK-VQA

OK-VQA [70] is proposed to address knowledge-based VQA, which requires using external knowl-
edge beyond the visual content to answer a question. The OK-VQA dataset has approximately 14K
questions across several subject domains, including science and technology, history, and sports [44].
Unlike other VQA challenges, OK-VQA necessitates the use of a VQA model to determine the exter-
nal knowledge required to answer the question and then apply this information to generate an answer.
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2.1.7.6 TextVQA

TextVQA [71] aims to address the challenge of answering questions that require reading and under-
standing text embedded in images. The challenge arises in scenes where text is an important part of
the visual content, such as street signs or product labels. TextVQA comprises approximately 45K
questions across 28K images that necessitate text-based reasoning for generating answers.

2.1.7.7 GQA

GQA [3] comprises 113K real-world images and 22M questions being generated by a question engine
from scene graph structures in Visual Genome [69] dataset. The dataset evaluates performance on
a range of reasoning skills, including object and attribute recognition, tracking transitive relations,
spatial reasoning, logical inference, and comparisons [3]. Each image in the dataset is accompanied
by a scene graph, and each question is linked to a functional program that specifies the reasoning steps,
based on the scene graphs, to generate an answer.

The GQA dataset features a diverse set of questions categorized primarily by their structure and se-
mantics. The structural type of a functional program is determined by its final operation, which can
include categories such as verify, query, choose, logical, and compare. The semantic type defines
the main subject of the question and includes categories like object, attribute, category, relation, and
global. Descriptions of these question categories, along with examples, are provided in Table 1. Each
question is associated with one structural and one semantic question type. Examples from the dataset
are shown in Figure 1.

Questions in the GQA dataset often demand multiple reasoning steps. As detailed in the dataset’s
accompanying paper, 6% of the questions require one step of reasoning, 42% require two steps, 44%
require three steps, and 8% necessitate more than four steps.

Table 1: Overview of question types according to semantics and structure

Question type Description Example
verify yes/no questions Does the device under the picture frame look black?
query open questions Which kind of vehicle is waiting for the traffic light?

choose choosing from alternatives What color is the hair, gray or red?
logical logical inference Are the flags triangular and red?

compare comparison of objects Which is larger, the pasture or the horse?
object existence questions Are there both a horse and a fence in the image?

attribute object properties/position On which side of the picture are the pens?
category object identification What kind of clothing is yellow?
relation relations with objects/subjects Is the toaster to the right of a refrigerator?
global overall properties Is it an outdoors scene?

GQA is notable among the VQA datasets due to its focus on evaluating compositional and grounded
reasoning skills, as well as its comparatively varied question-answer set. Additionally, the questions in
GQA are challenging because they not only pertain to the main focus of the images but also encompass
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Figure 1: Examples from GQA dataset.

the details within the visual content. Therefore, the GQA dataset has been selected as a benchmark
dataset in the evaluation part of this study.

2.2 Large Language Models

With the development of transformers, Natural Language Processing (NLP) has reached an important
milestone. Pre-trained language models, e.g., Bidirectional Encoder Representations from Transform-
ers (BERT) [63], trained on large-scale corpora of text, and have led to remarkable progress in many
downstream tasks such as summarization, question-answering, and translation. Scaling the model size
and data in pre-trained language models has resulted in the development of Large Language Models
(LLMs) with improved capacity.

LLMs are usually pre-trained to predict the next token or fill in masked words, depending on their
specific objectives. The pre-training is conducted using self-supervised learning, aiming for the LLM
to understand the patterns and structures of the language. Recent LLMs are further fine-tuned on a
smaller instruction dataset to enhance their ability to follow instructions, which is called instruction
tuning. Unlike pre-training, instruction tuning is a supervised learning process in which labeled data,
i.e., prompt-completion pairs, are required.

A significant advancement for LLMs was the release of GPT-3 [65] by OpenAI in 2020. In-context-
learning paradigm was first utilized in the GPT-3 paper, which refers to adapting to a target task with a
given prompt in the natural language during inference. In-context learning allows the LLM to produce
the target output without the need for additional training or gradient updates. Pre-training involves
predicting the next text sequence based on context, while in-context learning predicts the correct task
solution, formatted as a text sequence similarly, using the task description and examples provided [72].

An enhanced version of the GPT-3, InstructGPT [73], was released in 2022, employing reinforcement
learning from human feedback (RLHF) as an additional fine-tuning process to prevent undesired out-
puts such as toxicity and falsehoods. Further advancements led to GPT-3.5 and ChatGPT which is a
conversation model based on GPT-3.5, that have a greater capacity than GPT-3. ChatGPT has the abil-
ity to interact with humans, demonstrating comprehensive knowledge, mathematical reasoning skills,
and contextual understanding in multi-turn conversations [72]. GPT-4 [8] was introduced in 2023,
which outperforms previous GPT models and enables multi-modal input processing. In May 2024,
the most recent model of the GPT family, GPT-4o [74], was released. GPT-4o accepts and produces
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multi-modal data such as text, image, audio, and video. OpenAI reported that GPT-4o outperforms
GPT-4 in text, reasoning, and coding intelligence benchmarks [74].

Many other LLMs with billions of parameters, such as LLaMA [9], BLOOM [75], PaLM [76],
and CogVLM [12] employ various design approaches and demonstrate remarkable performance in
benchmarks. Training LLMs with billions of parameters requires substantial computational resources.
Therefore, APIs offer a practical solution, enabling developers to access these models without exten-
sive infrastructure. OpenAI APIs for GPT-3.5, GPT-4, and GPT-4o models have been utilized in the
practical part of this thesis study.

Although LLMs demonstrate outstanding performance in a diverse set of tasks, hallucinations remain
a significant limitation and an ongoing research challenge. Hallucination refers to content that seems
fluent and natural but is nonsensical or misaligned with the source material [57]. Several factors
can lead to hallucinations such as source-reference divergence, imperfect representation learning, and
parametric knowledge bias [57]. Mitigating hallucinations is an open research problem with efforts
focused on improving model training, evaluation, and prompt engineering techniques.

2.2.1 Multimodal Large Language Models

The human brain can incorporate various inputs, including visual, auditory, and tactile signals. LLMs
were originally developed to comprehend human language and perform language-related tasks such
as translation, summarization, and text generation. Recently, there has been a significant effort in re-
search to broaden the capabilities of LLMs by integrating additional modalities, including audio and
visual inputs. This integration aims to create more versatile models capable of processing, reason-
ing, and producing multimodal information, hence advancing the progress towards Artificial General
Intelligence (AGI).

LLMs having the capability to process and produce multimodal inputs are often referred to as Mul-
timodal LLMs (MLLMs) or Large Multimodal Models (LMMs). Numerous neural architectures focus
on vision-language integration [35, 36]. Multimodal LLMs are distinguished by their vast scale, of-
ten encompassing billions of parameters, and the use of training techniques such as instruction tuning
[77]. GPT-4V [8], LLaVa [14], Gemini [10], CogVLM [12] are some of the state-of-the-art MLLMs
showcasing advanced capabilities in multimodal processing.

A standard MLLM is composed of three primary elements: a pre-trained modality encoder, a pre-
trained LLM, and a modality interface [77]. A modality encoder is usually an encoder pre-trained on
large-scale image-text pairs and used for natural language to identify visual concepts [64]. It converts
visual and language modalities into a unified representation. A modality interface is responsible for
converting information into a format that the LLM can effectively process, usually achieved by token-
level and feature-level fusion [77]. Token-level fusion converts features produced by the encoder into
tokens. In feature-level fusion, additional modules such as cross-attention layers are added to facilitate
deep interaction between text and visual features.

MLLM goes through three training stages: pre-training, instruction tuning, and alignment tuning. A
typical pre-training for MLLMs involves keeping the pre-trained modules, i.e., visual encoders and
LLMs, fixed while training a learnable modality interface. Instruction tuning focuses on enhancing the
model’s ability to comprehend user instructions. The data for instruction tuning contains instructions
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usually natural language input defining the target task, image-text pairs, and corresponding output for
the instruction. Alignment tuning is employed to meet human expectations, through techniques such
as reinforcement learning with human feedback (RLHF).

2.2.2 Prompting

The input text in natural language fed into an LLM is called a prompt. A prompt is given to the LLM
at inference time and typically includes instruction, input data, and output format for the associated
task. The process of iteratively developing and refining a prompt to achieve the desired output is called
prompt engineering.

General prompting strategies in OpenAI documentation1 are summarized as follows:

• Specifying the task and output format clearly

• Providing reference text to prevent fake answers

• Decomposing complicated tasks into simpler tasks

• Creating a chain-of-thought or allowing inner monologue to give time to LLM for reasoning

LLMs can rapidly adapt to various tasks at inference time. Zero-shot prompting refers to directly
asking the LLM to perform a task without providing any examples of input-output pairs at inference
time. This approach is required for the model’s ability to generalize to new, unseen tasks based only
on the instructions provided. One-shot prompting provides the model with just one input-output pair
as an example, similar to how humans adapt to new tasks. Few-shot prompting includes giving a few
examples of input-output pairs related to the task to guide the model during inference.

Various prompting strategies have been proposed for enhancing the reasoning capabilities of LLMs
during inference. Chain-of-though (CoT) prompting [18] is a technique that decomposes complex tasks
into several intermediate reasoning steps, inspired by the human thought process. CoT is exploited as
a few-shot prompting technique by providing input, output, and corresponding chain-of-thought pro-
cesses as exemplars. CoT is shown to be effective in enhancing LLM’s performance in tasks including
arithmetic reasoning, commonsense reasoning, and symbolic reasoning [18]. Zero-shot CoT [17] pro-
poses an alternative technique to trigger CoT in zero-shot settings by simply adding "Let’s think step
by step" in the prompt.

Chain-of-thought for language-only LLMs has been further extended with multimodal approaches.
Multimodal CoT (MM-CoT) [19] proposes a two-stage framework to incorporate both visual and
language input with chain-of-thought prompting. The proposed framework consists of rationale gener-
ation and answer inference steps. In the first stage, the model receives both language and vision inputs
to produce rationales. In the second stage, these rationales are combined with the original language in-
put. The model then uses this updated language input, along with the original vision input, to produce
the answer. Duty-distinct chain-of-thought (DD-CoT) [20] proposes a multimodal CoT prompting
approach. DD-CoT first breaks the question into sub-questions and then prompts the LLM to assess

1 https://platform.openai.com/docs/guides/prompt-engineering
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whether each sub-question can be answered without visual information. Sub-questions are then an-
swered by a VQA model to guide overall image understanding, and supplied with their corresponding
sub-answers as additional information to LLMs to engage in joint reasoning.

2.2.3 LLM Configuration

Besides the prompt, configuration parameters also play an important role for LLMs to generate the
desirable output at inference time. LLMs predict a probability distribution over the sequences of
tokens. The functions of these parameters are summarized in the following sentences.

Sampling method defines the selection process of tokens over the predicted probability distribution.
Widely used sampling methods are greedy sampling and random sampling. While greedy sampling
selects the most probable token, random sampling randomly selects the next token according to its
probability distribution.

Temperature (T) controls the level of randomness in the generation process. Increasing the temperature
adds more randomness to the output, while T=0 deterministically selects the token with the highest
probability.

Top-k limits the vocabulary size where the k defines the number of tokens with the highest probability.

Top-p, also called nucleus sampling, specifies a cumulative probability threshold that tokens whose
cumulative probabilities fall below are considered. Similar to top-k and temperature, it impacts the
output variety.

Max length defines the maximum number of tokens to be generated by the LLM. A similar parameter
to control the output size is stop sequences which defines the points at which the LLM will halt the
generation process.

Frequency penalty is a parameter that reduces the likelihood of repeated tokens in the generated text
by penalizing tokens based on their frequency of occurrence.

Presence penalty, similarly to frequency penalty, discourages repetition by penalizing tokens based on
their occurrence, regardless of how frequently they appear.
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CHAPTER 3

METHOD AND IMPLEMENTATION

In this chapter, the infrastructure of the experiments conducted in the study, the proposed methodol-
ogy, details of the experiments, and the results will be explained. The chapter includes the following
sections. In Section 3.1, the dataset, software and hardware setup, and evaluation metrics used in
the experiments will be introduced. Section 3.2 will present attention visualizations conducted at the
beginning of the study to understand reasoning in pre-trained vision-language transformers. Section
3.3 will describe the proposed image captioning-integrated VQA pipeline, detailing each stage of the
process. Section 3.4 will examine the experimental results under different headings. In Section 3.5,
the findings of the error analysis will be shared. Section 3.6 will assess the impact of different prompt
designs on VQA performance. Section 3.7 will address the limitations of the study. Finally, Section
3.8 will summarize and discuss the results.

3.1 Implementation

3.1.1 Dataset

Experiments were carried out on the GQA dataset [3], specifically using the balanced version of the
test-dev subset, i.e., test-dev-balanced, generated to eliminate question-conditional biases. The subset
includes 12,578 questions and 398 images, where each image in the dataset is linked to multiple
questions.

GQA includes various types of questions in terms of semantics and structure. Each question is associ-
ated with at least one structural and one semantic category. The number of samples in each question
type existing in the test-dev-balanced is given in Table 2. An overview of the GQA dataset is given in
Section 2.1.7.7, along with the definitions of the question types and related examples.

A detailed chart indicating the proportion of semantically and structurally different question combina-
tions in the test-dev-balanced subset is given in Figure 2.

Some findings that can be drawn from the bar chart are summarized below.

• The most frequent structure-semantic combination in the test set is query-relation with 3,887
instances. The relation category often refers to the spatial relationship between two objects.
An example of a question from the query-relation category is "What kind of meat is above the
fork?".
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Table 2: Number of samples in test-dev-balanced across question categories

Category Question Types No. Samples

Structural

verify 2252
query 6805

choose 1128
logical 1803

compare 589

Semantic

object 778
attribute 5185
category 1149
relation 5308
global 157

• Attribute semantic category is combined with all structural categories, mostly with query and
logical categories. Attribute questions often inquire about the color, size, or action of an object
in the scene. An example question from query-attribute category is "What is the material of
the chair?", while an example question from the logical-attribute is "Does the calf have brown
color and large size?".

• Another semantic category which the query structural category frequently occurs with is the cat-
egory class. Query-category questions typically ask which object possesses a certain attribute,
e.g., "What type of clothing is pink?".

• Questions in the verify class are mostly associated with the relation and attribute semantic cat-
egories. Verify-relation questions often inquire about the existence of an object, focusing on its
location relative to another object, e.g., "Is there a blender to the right of the yellow drink?".
Verify-attribute questions typically ask about the attributes of an object in relation to another
object, such as "Does the device under the picture frame look black?".

• Examples in the global semantic class are rare, with most occurring alongside the query struc-
tural category. These questions pertain to the entire scene, such as "Which place is it?" or "How
is the weather?".

• Logical-attribute and logical-object categories show notable counts, while other combinations
for the logical semantic class are missing. Logical-attribute are typical "yes/no" questions asking
whether an object related to another object possesses both attributes, such as "Are the boxes to
the right of the man full and square?". Logical-object questions generally pertain to the existence
of objects with a specific attribute in the image, such as "Are there any small refrigerators or
microwaves in the image?".

• Compare structural category only occurs with the attribute semantic category in the dataset.
These are typically "yes/no" questions about whether two different objects in the scene share the
same attribute, such as size, color, or material. For instance, "Are the sidewalk and the traffic
sign made of the same material?".
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Figure 2: Proportion of semantically and structurally different question combinations

3.1.2 Experimental Setup

Python programming language was employed in this project. For LLM/MLLM inference, OpenAI’s
APIs were utilized, specifically calling the GPT-3.5, GPT-4, and GPT-4o models with the chat com-
pletion role. Pre-trained vision-language models were sourced from HuggingFace, and executed for
inference on a computer equipped with an NVIDIA A100 GPU having 16 GB of VRAM capacity. For
quantization steps to align the models with our computational resources, the Bitsandbytes library1 was
used.

3.1.3 Evaluation Metric

Accuracy was considered as the evaluation metric throughout the experiments. Accuracy is defined
as the ratio of correct predictions to the total number of predictions. Since the answers are produced
by LLMs with open-ended generation, it is likely that predictions do not match the ground truths
even though they can be accepted as correct. Therefore, cosine similarity was employed to word
vectors to evaluate the alignment between the LLM’s predictions and the ground truth answers. Word
vectors were generated using the spaCy library with the "en_core_web_md" model. Cosine similarity
between word pairs was calculated by normalizing the dot product of their vectors. A threshold of 0.70
was set, with scores meeting or exceeding this threshold indicating semantic similarity. For example,
the prediction "couch" is accepted as correct for the ground-truth "sofa", as the semantic similarity
between the two words exceeds 0.7. It was observed that at lower thresholds, many predictions being
contextually similar but not semantically identical to the ground truth were also accepted as correct.

1 https://github.com/bitsandbytes-foundation/bitsandbytes
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For instance, the similarity between "blue" and "brown" is measured as 0.67. The evaluation was also
conducted using higher cosine similarity thresholds, such as 0.8 and 0.9, as well as for exact matching
(EM).

An alternative answer set (AAS) generated by Luo et al. [78] for GQA test-dev-balanced, which
comprises ground-truth answers and their semantically close alternatives, was also utilized for evalu-
ation. The generation of the AAS involves leveraging WordNet [79] and ConceptNet [80] knowledge
bases, as well as BERT and counter-fitting word embeddings for each ground-truth answer [78]. The
Union-AAS metric, which combines alternatives produced using these four different methods, was
also included as an evaluation metric.

3.2 Initial Analysis: Attention Visualization for Exploring Multimodal Reasoning

As an essential element of transformer architecture, attention mechanism enables the model to weigh
importance of different segments of the input elements for a given task. The visualization of attention
weights is useful for providing insights into the decision-making process of complex deep learning
models, often referred to as black-boxes. In VQA, this visualization reveals which parts of an image
the model prioritizes when generating answers to the corresponding questions. Just as humans actively
observe and reason in a step-by-step manner to accomplish a visual task, attention and reasoning are
closely linked mechanisms that shape the decision-making process [81]. The model’s focus on areas
that the human eye would concentrate on is an expected outcome when applying a reasoning process
similar to that of humans.

This section will examine how transformers handle multimodality through the attention visualization of
a pre-trained transformer model, MDETR [38]. The authors state that MDETR is pre-trained on 1.3M
text-image pairs sourced from several multimodal datasets with alignments between textual phrases
and visual objects [38]. After pre-training, the model is fine-tuned for several downstream tasks,
including VQA. The fine-tuned models are available on the GitHub repository2 of the study.

MDETR employs a convolutional backbone to capture visual features and a language model to derive
text features. These features, derived from both modalities, are combined in a shared embedding
space and fed into a transformer encoder-decoder. MDETR’s encoder processes concatenated image
and text features to learn cross-modal interactions. The decoder takes object queries and QA-specific
queries, encoded as learned embeddings, to generate predictions for the bounding boxes of the objects
referenced in the question, as well as to determine the question type and the appropriate response for
each question category. 100 object queries, 1 question-type query, and 5 answer-specific queries are
fed into the decoder.

The authors fine-tuned MDETR using the EfficientNet [82] and the ResNet-101 [23] backbones on the
GQA dataset, achieving an accuracy of 62.45% and 61.99% on the test-dev subset, respectively. In this
analysis, the MDETR model, fine-tuned on the GQA dataset with an EfficientNet-B5 backbone, has
been utilized through attention visualization. In the analysis, the attention weights from the decoder’s
final layer averaged over all heads have been extracted. Totally, six attention maps specifying the
question-type, and answers for object, relation, attribute, category, and global question types have
been visualized. Examples from attention maps are given in Figure 3.

2 https://github.com/ashkamath/mdetr
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The maps on the right of the figure display the attention weights corresponding to predictions for
the following categories: question type (q_type), object (obj), relation (rel), attribute (attr), category
(cat) and global. In this analysis, the attention weights generated while producing the answer for the
relevant question type are considered based on the predicted question type. For example, in Question
1 in Figure 3, since the question type is predicted as "attr", the attention weights in the last layer of the
decoder generated for the answer corresponding to the "attr" question type are taken into account in
the analysis.

The first 100 attention maps were manually analyzed, revealing the following results: In 50 of the
questions, the model focused on the correct parts of the image and predicted the correct answer. For
example, for Question 1 in Figure 3 about the characteristics of the tomato, the model accurately
targeted the relevant area of the image. In 18 of the questions, the model predicted the correct answer
despite focusing on irrelevant parts of the image. For example, for Question 3 in Figure 3, despite
focusing on the correct area for other question types, the model, in the "relation" map indicating the
correct question type, focused on the obscure person in the background rather than the visible girl in
the image, yet still produced the correct answer. In 21 of the questions, the model focused on the
relevant parts of the image but gave the wrong answer. In 11 of the questions, the model focused on
irrelevant parts and predicted the wrong answer, e.g., Question 2 in Figure 3. The model’s tendency
to focus on irrelevant areas in a substantial portion of correct answers suggests that instead of true
reasoning, the model might be relying on learned correlations or biases within the dataset to make
informed guesses.

While attention visualization offers insights into the model’s reasoning mechanism through local expla-
nations, it may be inadequate for fully understanding the reasoning processes of MLLMs, particularly
those with billions of parameters. In recent years, approaches like Chain of Thought (CoT) [18, 19]
have been developed to both trigger reasoning mechanisms and make reasoning more transparent in
LLMs/MLLMs. In this thesis, the goal is not only to enhance the VQA performance but also to in-
crease the transparency of reasoning by converting images into context-aware textual descriptions and
producing rationales for question-answering.

3.3 Methodology

3.3.1 Image Captioning-Integrated VQA Pipeline

This study explores the effectiveness of replacing images with descriptive captions in the VQA pipeline
and utilizing LLMs as question-answering models in zero-shot settings. The main hypothesis of this
study is that context-aware image captioning could act as a better intermediary between images and
LLMs.

Several studies [83, 84, 85] explore integrating image captions into the VQA pipeline using LLMs.
Our study diverges from these studies in several aspects. Firstly, this study proposes a new approach to
leverage image captions in the VQA pipeline using the context of the question, called question-driven
image captioning. Also, the study conducts a thorough evaluation of various image captioning and
question-answering models in the VQA pipeline across various questions in terms of semantics and
structure.
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Question 1: Are the tomatoes round and red? Type: attr Answer: yes Prediction: yes

Question 2: What vehicle is not red? Type: cat Answer: ambulance Prediction: truck

Question 3: Who is wearing the shirt? Type: rel Answer: girl Prediction: girl

Figure 3: Visualization of encoder-decoder multi-head attention weights
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Therefore, a traditional VQA pipeline has been rethought as a combination of image captioning (IC)
and question-answering (QA) phases. For the remainder of the study, this pipeline is defined as the
IC-integrated VQA pipeline. In the IC-integrated VQA pipeline, an image captioning model first trans-
forms images into informative captions. These captions are then processed by an LLM to generate an-
swers. To improve this pipeline, a new, straightforward, context-aware approach called question-driven
image captioning is introduced in this study. Throughout this thesis, the proposed image captioning
approach for VQA has been referred to as question-driven image captioning (QD-IC) or context-aware
image captioning.

The proposed approach incorporates contextual information from the question into the IC model
through the extracted keywords. This method enables the IC model to generate captions that focus
solely on the relevant parts of the image, customizing the captions according to the specific question.
The proposed VQA pipeline is given in Figure 4.

The performance of the IC-integrated VQA pipeline was evaluated using various IC models and com-
pared across different semantic and structural question categories comprising the GQA dataset.

Figure 4: VQA pipeline exploiting general and the proposed question-driven image captioning (QD-
IC) as an intermediate step.

3.3.1.1 Vision-Language Models for Caption Generation

The primary stage of the proposed pipeline is image captioning (IC). The IC stage is significant for
performing the question-answering (QA) phase with relevant and informative content. Image captions
serve as condensed summaries of the visual content, yet there is a risk of losing specific visual details
that could affect the QA performance. Hence, a review of IC models was conducted, focusing on the
models providing detailed captions while considering our computational constraints. Vision-language
models indicating high performance in IC benchmarks, including CogVLM [12], FuseCap [86], and
BLIP-2 OPT2.7b [13], and recent MLLMs GPT-4 [8] and GPT-4o [74] were selected, and incorporated
as caption generators into the VQA pipeline. The IC models were provided from HuggingFace and
open-access GitHub repositories. Only pre-trained weights provided were utilized, and no additional
training was performed. An overview of the selected models is given in the following paragraphs.

CogVLM [12] is an open-source, pre-trained vision-language model featuring 10B visual and 7B lan-
guage parameters. CogVLM integrates a trainable visual expert into the language model, enabling
each layer to leverage a new Query-Key-Value matrix and Multilayer Perceptron (MLP) layer to com-
bine image and text features. CogVLM-17B provides different downstream models among which chat
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and visual grounding variants were utilized in this study. The performance of the CogVLM-chat3

and CogVLM-visual grounding4 models was assessed according to various categories of questions.
Additionally, 4-bit quantization was applied to the CogVLM models to align with our computational
constraints.

BLIP-2 OPT2.7b [13] contains a pre-trained Querying Transformer (Q-Former) designed to leverage a
set of learnable query vectors for extracting visual features from a frozen image encoder. The language
model in this variant of BLIP-2 is OPT [87], a decoder-based LLM with 2.7B parameters. Specifically,
pre-trained BLIP-2 OPT2.7b

5 was exploited. BLIP-2 was executed in F16 precision to fit within our
computational resources.

FuseCap [86] uses a set of visual experts to augment existing image captions with more visual details.
For this purpose, it uses a BLIP-based vision-language model to generate base captions. Then, the
original caption and the outputs of several visual experts for object detection, attribute recognition, and
Optical Character Recognition (OCR) are fused by an LLM for a more descriptive caption generation.
Specifically, the open-access FuseCap6 model was utilized.

GPT-4 [8] and GPT-4o [74] are the recent MLLMs released by OpenAI in 2023 and 2024, respectively.
GPT-4 supports vision and language modalities, while GPT-4o also supports audio inputs. Technical
details of the models are not published. They are accessible only through API calls.

3.3.1.2 Caption Generation Process

Image captions were generated in two different ways. In the first approach, referred to as "general-
purpose image captioning (GP-IC)", the model takes a general prompt and the image as input to de-
scribe the scene. Although a general-purpose image caption provides a broad understanding of the
visual content, it may not contain the exact information needed to address the key aspects of the asso-
ciated question. To address this limitation, this study proposes a new approach called "question-driven
image captioning (QD-IC)" to provide contextually relevant captions for image-question pairs. In this
approach, the image captioning model utilizes both the image and context keywords embedded in the
prompt as inputs.

KeyBERT [88] was utilized to extract contextual keywords from the questions. KeyBERT first employs
BERT to extract document embeddings for a document-level representation. Then, word embeddings
are generated for N-gram words/phrases. Using cosine similarity, the words/phrases most similar to
the document are identified as the best descriptors of the document. KeyBERT was provided with each
question in the test set and the most representative keywords (unigrams) were extracted. The extracted
keywords were then embedded into the prompt and fed into the IC model along with the related image.
Table 3 provides examples of questions, with keywords underlined, alongside the corresponding image
captions.

During the experiments, initially, the BLIP-2, FuseCap, CogVLM-chat (CogVLM-C), CogVLM-
visual grounding (CogVLM-V), GPT-4, and GPT-4o models were employed for general-purpose im-

3 https://huggingface.co/THUDM/cogvlm-chat-hf
4 https://huggingface.co/THUDM/cogvlm-grounding-generalist-hf
5 https://huggingface.co/Salesforce/blip2-opt-2.7b
6 https://github.com/RotsteinNoam/FuseCap
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Table 3: Comparison of IC-integrated and VQA pipelines evaluated using GPT-4o.

Question-Keywords Image Caption
What is the man to

the left of the glasses
doing?

In the image, there are three people sitting on a bench facing the beach
and the ocean. The person on the left, who appears to be a man, is

wearing glasses and a cap. The people are shaded by two umbrellas,
one pink and one white with a floral pattern. The man on the left is
sitting and looking towards the ocean, seemingly enjoying the view.

The scene is calm and serene, with the beach and ocean in the
background under a clear blue sky.

The parked vehicles
are waiting for what?

The image shows a traffic light at an intersection, displaying a red
light. Several vehicles are waiting at the intersection, indicating they

are stopped due to the red light. In the background, there are
residential buildings with multiple floors. The road appears to be

relatively empty, with only a few vehicles visible. The scene is set in
an urban area with a mix of residential and road infrastructure.

Are the shorts large
and blue?

The image shows a person standing on a sandy beach near the ocean.
They are holding a large surfboard with a pink design featuring

flowers. The person is wearing a red shirt and blue shorts. The beach is
surrounded by hills and the sky appears to be overcast. There is also a
large white banner with blue text partially visible in the foreground.

age captioning. Subsequently, the highest-performing models, CogVLM-C, GPT-4, and GPT-4o, were
utilized for question-driven image captioning. These experiments investigate the differences between
general-purpose image captioning and question-driven image captioning, as well as evaluate the effec-
tiveness of captions generated by various vision-language models in the question-answering phase.

Furthermore, the study examines whether irrelevant portions of an image caption could cause confu-
sion or result in inaccurate answers from the QA model. Therefore, an experiment was conducted to
determine the impact of providing only the most relevant sentence of the image caption to the LLM
during the QA phase. For this purpose, Sentence-BERT [89], specifically the MiniLM-L6 model7, was
used to extract the most pertinent sentence from the image caption based on the given question. The
extracted sentence, along with the question, was then provided to the LLM in the QA phase.

3.3.1.3 Question Answering

In the proposed pipeline, the QA model is an LLM taking context-aware image captions and questions
as input and generating answers accordingly. Recently, LLMs have become state-of-the-art in various
language tasks, including text generation, translation, and question-answering. Their performance and
generalization capabilities make them effective for language processing tasks. Therefore, this study
employs LLMs during the QA phase due to their superior performance in QA benchmarks [90].

During the QA phase, OpenAI’s GPT-3.5, GPT-4, and GPT-4o models were utilized. The majority of
experiments were conducted using GPT-3.5 and GPT-4o due to their cost-effectiveness. Answers were
generated through OpenAI’s GPT APIs, with optimal performance achieved using the following con-
figuration. The temperature parameter was set to 0.1 to minimize creativity and ensure more consistent
results. Considering that the answer might be within the image caption, the presence penalty was set

7 https://huggingface.co/sentence-transformers/multi-qa-MiniLM-L6-cos-v1
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to 0 to avoid penalizing repeated words in the prompt (image captions and questions). To minimize
the repetition of a word in the answer, the frequency penalty was also set to 0. The final configuration
of these parameters was determined through manual observations.

3.3.1.4 Baseline VQA Models

To compare the performance differences between a standard VQA approach with the IC-integrated
VQA approach, several vision-language models (or MLLMs) were exploited as baseline VQA models.
The chat variation of CogVLM8 and BLIP-2 FlanT5XL

9 were employed to perform VQA. CogVLM
surpasses many other vision-language models, including InstructBLIP [91] and LlaVA-1.5 [92], in
VQA benchmarks. Similarly, BLIP-2 FlanT5XL, with 4.1B parameters, demonstrates strong perfor-
mance, exceeding BLIP-2 OPT2.7b and Flamingo [11] in VQA benchmarks. Due to resource con-
straints with 16 GB VRAM, CogVLM and BLIP-2 FlanT5XL were utilized with 4-bit quantization
and F16 precision, respectively. Additionally, APIs for the latest MLLMs, GPT-4 and GPT-4o by
OpenAI, were leveraged to perform VQA.

3.3.1.5 Prompt Details

To generate general-purpose image captions, the prompt "Describe the scene in this image" was given
to the CogVLM. To create question-driven image captions, the prompt was adapted to include "Con-
sider the keywords: [keywords]".

QD-IC was also conducted using GPT-4o. A similar prompt was fed into GPT-4o, incorporating the
image, context keywords, and instruction, as shown in Figure 5.

Figure 5: Prompt for QD-IC with GPT-4

During the open-ended answer generation in QA, the number of words produced was limited to 2 to
align with the length of the ground-truth answers in the GQA dataset. The prompt fed into GPT-3.5 for
QA is shown in Figure 6. It was observed that including an instruction to consider the question type in
the prompt helps obtain the expected output, e.g., "yes/no" for existence questions.

During the prompt engineering process for the QA step with GPT-4o, observations revealed that GPT-
4o often provides answers with specific details. To address this, an instruction was added to the prompt
to encourage broader responses rather than specific ones, as shown in Figure 7. Another issue en-
countered was that GPT-4o often provided responses other than "yes" or "no" to binary questions.
Therefore, an instruction was added to the prompt to emphasize the need for binary responses.

8 https://huggingface.co/THUDM/cogvlm-chat-hf
9 https://huggingface.co/Salesforce/blip2-flan-t5-xl
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Figure 6: Prompt for QA with GPT-3.5

Figure 7: Prompt for QA with GPT-4o

To evaluate the performance of the IC-integrated VQA pipeline in comparison to MLLMs such as
CogVLM, BLIP-2, GPT-4, and GPT-4o, standard VQA was performed utilizing the prompt depicted
in Figure 8. Experiments with different prompt strategies for VQA are provided in Section 3.6.

Figure 8: Prompt for VQA with MLLMs

3.4 Results

Table 4 presents the evaluation results for the IC-integrated VQA pipeline containing various vision-
language models for image captioning and LLMs for question-answering. In the evaluation, as detailed
in Section 3.1.3, a model’s prediction was considered correct if the cosine similarity ratio between the
label and the prediction exceeded the specified threshold, and accuracy measurement was conducted
accordingly. Table 4 compares the results at cosine similarity threshold 0.7. Results indicate that
question-driven image captioning (QD-IC) improves the accuracy in most question categories com-
pared to general-purpose image captioning (GP-IC). Results at threshold 0.8 and exact matching are
given in Appendix B.
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Table 4: Comparison of the accuracy values of various IC-integrated VQA pipelines at cosine sim-
ilarity 0.7, containing the proposed question-driven image captioning (QD-IC) and general-purpose
image captioning (GP-IC) on GQA test-dev-balanced.

Question
type

CogVLM-C
GP-IC

+ GPT-3.5
QA

CogVLM-V
GP-IC

+ GPT-3.5
QA

CogVLM-C
QD-IC

+ GPT-3.5
QA

CogVLM-C
QD-IC

+ GPT-4o
QA

FuseCap
GP-IC

+ GPT-3.5
QA

BLIP-2
GP-IC

+ GPT-3.5
QA

GPT-4
QD-IC

+ GPT-4o
QA

GPT-4o
QD-IC

+ GPT-4o
QA

GPT-4o
GP-IC

+ GPT-4o
QA

verify 63.01 58.53 66.83 64.87 53.60 55.82 69.58 74.33 64.87
query 36.91 31.08 38.34 35.53 29.61 31.87 36.84 40.08 35.59

choose 65.25 60.90 65.51 59.30 58.07 60.82 61.17 72.42 54.43
logical 59.51 60.29 59.07 63.72 57.07 56.07 68.16 71.32 64.78

compare 51.78 51.95 51.95 52.63 54.50 48.22 53.98 55.68 48.55
object 61.95 63.24 59.13 68.63 59.38 58.35 71.20 75.44 72.23

attribute 51.75 46.42 54.62 47.98 45.11 46.63 54.25 58.10 45.49
category 47.35 44.21 50.39 51.08 43.52 42.47 49.08 53.87 52.30
relation 42.56 38.32 42.97 43.89 34.98 37.23 43.65 47.96 44.32
global 49.04 45.86 45.86 43.31 43.95 45.22 40.12 43.31 48.40
total 48.06 43.83 49.50 47.75 41.58 42.99 50.23 54.35 47.33

3.4.1 Usefulness of Question-Driven Image Captions

Applying the question-driven image captioning (QD-IC) approach to the models CogVLM-C and GPT-
4o, which demonstrated the best VQA performance with general-purpose image captioning (GP-IC),
resulted in an overall improvement in VQA accuracy.

Using CogVLM for image captioning, the QD-IC approach led to improvements in all structural ques-
tion categories compared to the GP-IC approach, except for the logical category. These improvements
are particularly pronounced in the verify category which consists of "yes/no" questions, with a 3.8%
increase. Accuracy improvements among semantic classes are especially notable in category and
attribute types, with a 3% increase. The questions in these categories are mostly related to the identifi-
cation or location of a specific object or its attributes in the image. Overall, the greatest increase in cor-
rect answers was observed in questions belonging to the verify-attribute structural-semantic category.
These "yes/no" questions typically ask whether an object in the scene possesses a certain attribute,
such as "Does the clay flower pot look blue?". Examples of correct predictions from the mentioned
question categories are provided in Figure 9.

The highest performance among IC-integrated VQA pipelines was achieved with the GPT-4o QD-IC
+ GPT-4o QA configuration, where GPT-4o performed question-answering on QD image captions
generated by GPT-4o. The question-driven image captioning applied with GPT-4o increased overall
accuracy by 7.02% compared to general-purpose image captioning. The most significant performance
improvement was observed in the choose category, with a 17.99% increase. The choose category
pertains to questions asking which of the alternatives is valid for an object in the image, such as
"Does the shirt seem to be sleeveless or long-sleeved?". In this category, context words extracted
from the question include the main subject of the sentence and the alternatives being asked for chosen.
Therefore, QD image captions are usually oriented on the correct visual details and help ease the
question-answering process.
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Other notable accuracy improvements with GPT-4o were observed in the verify category with a 9.46%
increase, the attribute category with a 12.61% increase, and the compare category with a 7.13% in-
crease. Analyses suggest that the general reason for the increase in most question categories is that, in
cases where the visual details sought in the question are not the main subject of the image, the question-
driven image captioning approach draws attention to the keywords, thereby generating a caption that
includes the asked visual details. Corresponding examples can be seen in Figure 9.

A performance drop with CogVLM in the QD-IC integrated pipeline has been observed in the object
category. However, a closer look shows that inaccuracies arise due to the behavior of GPT-3.5 during
the QA, phase despite the QD image captions containing relevant information. This issue will be
discussed in the Section 3.4.4.

It was also observed that the focus of QD-IC was associated with a performance decline with both
CogVLM-C and GPT-4o in the global category, which typically involves questions about the overall
content of an image. This decline is primarily due to the limited availability of keywords that can
provide adequate context for global questions. The limitation of context keywords prevents the context
from being effectively conveyed to the image captioning model, often leading to captions that are not
sufficiently informative for questions about the entire scene. Consequently, the QD-IC approach has
had a negative impact on this type of question. Moreover, a significant portion of the predictions,
though not perfectly aligned with the labels, have still been considered acceptable. This issue has been
particularly prevalent in the global category, where questions pertain to the entire scene.

3.4.2 Effect of Image Captioning Model

By utilizing the question-driven image captioning approach to generate more descriptive captions,
GPT-4o outperformed all other IC models, including CogVLM, GPT-4, FuseCap, and BLIP-2, sig-
nificantly enhancing answer accuracy across most question categories. With GPT-4o fixed as the QA
model, performance was evaluated using QD-IC image captions generated by CogVLM-C, GPT-4, and
GPT-4o. The results showed that GPT-4o’s image captions led to an overall accuracy improvement of
6.6% over those from CogVLM and 4.12% over those from GPT-4. It was observed that GPT-4o,
particularly when compared to the closely performing GPT-4, generated more informative captions in
specific question categories. Notably, there was an 11.25% increase in the choose category, a 4.79%
increase in the category category, and a 4.75% increase in the verify category. Correct predictions
made by the GPT-4o QD-IC + GPT-4o QA configuration are illustrated in Figure 11.

Another performance difference was observed between the CogVLM-chat (CogVLM-C) and visual
grounding (CogVLM-V) variants in general-purpose image captioning. Overall, CogVLM-C demon-
strated better performance than CogVLM-V. However, CogVLM-V led to a notable performance im-
provement in the object semantic question category. This suggests that the object category involves
questions that are closely related to object detection and visual grounding tasks, e.g., "Is there any bag
that is black?", using a visual grounding model as the base improves the performance in this specific
question category.
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Figure 9: Examples of accurate predictions by CogVLM QD-IC + GPT-3.5 QA

3.4.3 Effect of Filtering Image Captions

During the experiments, the effect of filtering image captions by extracting only the most relevant
sentence, referred to as sentence-based image captioning (SB-IC), was also evaluated. The results
indicate that SB-IC, with an accuracy of 44.12%, underperformed in all question categories compared
to methods that did not narrow down the captions. This suggests that limiting the information in
the captions and providing shorter inputs to the QA model is ineffective, leading to a loss of crucial
information and a consequent decline in performance.

3.4.4 Effect of the Question-Answering Model

When using identical image captions (CogVLM-C QD-IC) within the pipeline, notable differences
in QA performance between GPT-3.5 and GPT-4o were observed. Despite GPT-4o being a signif-
icantly larger model and outperforming GPT-3.5 across numerous benchmarks, it exhibited weaker
performance on CogVLM-C image captions during the QA phase.

Throughout the experiments, it was observed that GPT-4o tended to provide more specific answers to
the questions and frequently responded with "unknown" when it could not derive a specific answer
from the image caption. In contrast, GPT-3.5 provided broader answers. For example, GPT-3.5’s
answer to the question "How tall is the chair at the bottom of the photo?" was standard height, whereas
GPT-4o’s response was unknown.

Additionally, GPT-3.5 demonstrated a tendency to utilize external knowledge beyond the provided text
to answer questions and make informed guesses. For instance, while GPT-4o answered the question
"What are the glasses made of?" with unknown, GPT-3.5 responded with glass, even though the image
caption does not include this information. Similarly, for the question "What is the phone made of?",
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GPT-3.5’s answer was plastic, which is the correct answer, while GPT-4o’s response was unknown.
This performance disparity between the two models is thought to stem from this behavioral difference.
This issue will be further explored in the error analysis in Section 3.5.

Utilizing GPT-4o as the QA model significantly boosted performance in the object category, with a
9.5% increase in accuracy. Examples of incorrect predictions of GPT-3.5 on CogVLM-C QD image
captions in the object category are shown in Figure 10. As shown in the figure, a prominent error in
the object category is responding to a "yes/no" question asking whether one of two objects is present
in the scene with the object’s name. The correct response should simply be yes if one of the objects is
indeed present. For example, in Figure 10a, GPT-3.5 incorrectly answered women to the question "Are
there glasses or women?" instead of the correct response, yes.

(a) (b) (c)

Figure 10: Examples of incorrect predictions of GPT-3.5 in the object question category during the QA
on CogVLM-C QD image captions. It is observed that GPT-4o correctly answers the same questions.

3.4.5 Predictability of Answers in the Test Set

To assess the predictability of answers in the GQA test set without visual input, the GPT-3.5 was
employed to predict answers based solely on the provided questions. The prompt provided was: "You
are an assistant, predicting the most probable answer for a given question, and the answer must be one
word only.". It was observed that 3, 745 of the answers predicted by GPT-3.5 matched the ground truth
answers, resulting in an accuracy of 29.77%. Notably, 2, 099 of these correct answers, accounting
for 56%, were in the form of "yes/no" responses. These results indicate that GPT-3.5 can predict a
significant portion of the questions even without visual input.
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Figure 11: Examples of correct predictions by GPT-4o QD-IC + GPT-4o QA
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3.4.6 Comparison with the Baseline VQA Models

Table 5 compares the best-performing IC-integrated VQA pipelines with the standard VQA perfor-
mance of various MLLMs under zero-shot settings. The results show that the GPT-4o QD-IC +
GPT-4o QA pipeline, which is the best among the IC-integrated VQA approaches, does not match
the standard VQA performance of CogVLM-C. However, generating image captions with GPT-4o
and then using them for QA with GPT-4o, rather than directly providing images and questions, led to
improvements in some question categories, albeit at the cost of overall performance.

The most notable improvement was observed in the object category, with a 9.24% increase in accuracy.
The logical and compare categories also showed accuracy gains of 2.42% and 2.88%, respectively. In
contrast, the largest declines in accuracy were noted in the choose and attribute categories. A bar
chart comparing the correct predictions across different question categories is provided in Appendix
B.2. Overall, IC-integrated pipelines with CogVLM-C and GPT-4o outperform BLIP-2 FlanT5XL in
zero-shot settings across most question categories. More examples of correct and incorrect predictions
of evaluated models are given in Appendix A.

Table 6 presents a comparison of the overall performance between IC-integrated and standard VQA
models across different cosine similarity thresholds, Exact Match (EM) rates and the metric Union-
AAS [78]. The best performance among IC-integrated approaches for all the metrics was achieved
with GPT-4o QD-IC + GPT-4o QA. Although this performance surpasses the VQA performance of
BLIP-2 and GPT-4, it remains below the overall VQA performance of GPT-4o and CogVLM. Union-
AAS metric was measured on the alternative answer set (AAS) [78] providing acceptable answers for
each ground truth answer in the GQA test-dev-balanced. Measurements conducted using this metric
were found to be consistent with those obtained from other metrics.

Overall, standard VQA with MLLMs surpasses the best-performing IC-integrated VQA pipeline.
These findings highlight the limitations of current image captioning models in fully capturing and
representing the various critical aspects of a scene, even when provided with context-aware keywords.
However, the IC-integrated VQA approach has shown potential in improving performance on ques-
tions involving object and attribute identification, especially when visual details pertain to objects that
are not the main focus of the image. Future research could enhance context keywords by making them
more informative and by utilizing bigrams and trigrams instead of unigrams.

3.4.7 VQA Evaluation using LLMs

The primary issue with the evaluation is that LLMs generate open-ended responses, which do not
always align with the ground truth. To account for synonyms and very similar words, such as sofa and
couch, woman and lady, or dark and black, previous evaluations used an accuracy metric incorporating
word similarity scores. However, this method still fails to capture other valid answers that deviate from
the exact ground truth. For instance, responses like man on skateboard or man to the question "The
woman to the right of the camera is watching who?", associated with the ground-truth skateboarder,
were not accepted correct in the prior evaluation.

To address this issue, as an alternative evaluation approach, predictions were assessed automatically
using a powerful LLM, GPT-4o. In this approach, GPT-4o was provided with the question, the ground
truth answer, and model predictions, and tasked with scoring the predictions on a scale of 0-2 con-

33



Table 5: Comparison of the performances of VQA and QD-IC + QA pipelines

Question type CogVLM-C
VQA

BLIP-2
VQA

GPT-4
VQA

GPT-4o
VQA

GPT-4
QD-IC

+ GPT-4o
QA

GPT-4o
QD-IC

+ GPT-4o
QA

CogVLM-C
QD-IC

+ GPT-4o
QA

verify 83.04 56.48 71.14 78.91 69.58 74.33 64.87
query 54.11 41.31 46.19 50.99 36.84 40.08 35.53

choose 87.32 56.91 74.82 83.51 61.17 72.42 59.30
logical 77.54 54.24 45.65 68.89 68.16 71.32 63.72

compare 62.65 46.52 55.86 52.80 53.98 55.68 52.63
object 84.45 57.07 46.27 66.20 71.20 75.44 68.63

attribute 70.45 49.33 57.78 69.16 54.25 58.10 47.98
category 63.19 53.35 53.35 59.62 49.08 53.87 51.08
relation 59.91 43.31 51.15 54.41 43.65 47.96 43.89
global 56.05 40.13 36.31 43.31 40.12 43.31 43.32
total 66.02 47.52 53.61 61.58 50.23 54.35 47.75

Table 6: Comparison of overall accuracy in IC-integrated VQA pipelines and conventional VQA
pipelines for exact matching (EM) and different cosine similarity thresholds.

Models EM sim=0.9 sim=0.8 sim=0.7 Union-AAS

CogVLM-C GP-IC + GPT-3.5 QA 36.77 38.21 43.01 48.06 -
CogVLM-V GP-IC + GPT-3.5 QA 36.21 37.51 41.21 43.83 -
CogVLM-C SB-IC + GPT-3.5 QA 34.14 35.06 39.41 - -
CogVLM-C QD-IC + GPT-3.5 QA 37.64 39.24 44.48 49.50 39.86
CogVLM-C QD-IC + GPT-4o QA 42.10 42.90 45.22 47.75 45.16
FuseCap GP-IC + GPT-3.5 QA 33.17 34.18 37.64 41.58 34.80
BLIP-2 GP-IC + GPT-3.5 QA 34.77 35.53 39.11 42.99 36.47
GPT-4 QD-IC + GPT-4 QA 35.86 39.32 43.75 - 38.14
GPT-4 QD-IC + GPT-4o QA 43.63 44.71 47.40 50.23 46.51
GPT-4o QD-IC + GPT-4o QA 47.90 49.14 51.67 54.35 51.08

CogVLM VQA 58.43 59.23 62.79 66.02 62.71
GPT-4o VQA 54.03 55.32 58.82 61.58 57.30
BLIP-2 VQA 37.82 38.57 42.33 47.52 40.17
GPT-4 VQA 42.02 45.26 49.55 53.61 44.97

sidering the question and the ground truth. A score of 2 indicates correct or acceptable answers, 1
indicates ambiguous answers, and 0 indicates incorrect or irrelevant answers. The prompt in Figure
12 was designed with the inspiration of a recent study [93]. This method of VQA evaluation can be
further enhanced by incorporating images as inputs in addition to predictions and ground truth answers
to better determine the plausibility of the answers.

The results of the LLM evaluation are summarized in Table 7. These findings align with existing
evaluations, which indicate CogVLM as the highest-performing VQA model. The LLM evaluation
appeared effective in capturing close-meaning words and phrases. For instance, sitting is considered
an acceptable answer to the question "What is the man to the left of the glasses doing?", which has the
ground-truth answer resting. Ambiguous results typically arise when the ground truth and prediction
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Figure 12: Prompt for VQA Evaluation using LLMs

do not exactly match or are interchangeable in the context of the question, but share overlapping aspects
in meaning. For example, the prediction beach for the question "What is the airplane flying above?"
with the ground-truth answer ocean was classified as ambiguous by the LLM. Manual observations
suggest that LLM evaluation may improve the judgment of predictions in open-ended generation tasks.

Table 7: Comparison of IC-integrated and VQA pipelines evaluated using GPT-4o.

Models Correct (2) Ambiguous (1) Incorrect (0)

CogVLM-C QD-IC + GPT-3.5 QA 48.38 9.89 41.74
CogVLM-C QD-IC + GPT-4o QA 47.84 9.16 43.00
FuseCap GP-IC + GPT-3.5 QA 37.95 6.45 55.60
GPT-4 QD-IC + GPT-4 QA 42.93 12.96 44.11
GPT-4o QD-IC + GPT-4o QA 52.90 9.85 37.25

CogVLM VQA 64.18 6.87 28.96
GPT-4o VQA 60.87 7.13 32.00
BLIP-2 VQA 47.03 7.31 45.67
GPT-4 VQA 49.24 10.43 40.15

3.5 Error Analysis

This section analyzes the inaccurate predictions of the best-performing IC-integrated pipeline, GPT-4o
QD-IC + GPT-4o QA, to identify potential areas for improvement. Error analysis was conducted by
evaluating the accuracy metric at the cosine similarity threshold of 0.7. The proportions of correct
and incorrect predictions across different semantic and structural question category pairs are shown in
the bar chart in Figure 13. According to the chart, the highest number of incorrect predictions, 2385,
occurred in the query-relation category. This is followed by the query-attribute category with 1099

incorrect predictions and the query-category category pair with 509 incorrect predictions.
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Figure 13: Distribution of incorrect and correct predictions of GPT-4o QD-IC + GPT-4o QA across
question categories

100 incorrect predictions were randomly selected from the query-rel, query-attr, and query-cat ques-
tion categories, and the reasons for these errors were analyzed.

The analysis revealed the following:

• 45 predictions were acceptable but did not match the label. See examples in Figure 14.

• 17 questions were answered as either "unknown" or "unclear". In 3 of these cases, the corre-
sponding image caption contained the necessary details to answer the question. However, in
the remaining 14 cases, the image captions did not include the relevant details. Among these, 2
questions involved details that were not present in the images. See examples in Figure 15.

• 29 predictions were incorrect because the associated image captions did not include the relevant
information.

• 5 predictions were incorrect even though the image captions included the necessary details.

• 4 labels that did not match the predictions were detected as incorrect.

The high proportion of acceptable answers was due to the fact that the GQA test-dev-balanced dataset
used for evaluation associates each question with only one correct answer, even though many questions
can have multiple correct answers.

A significant portion of the errors stemmed from the image captions not being sufficiently informa-
tive. Although QD-IC provides general input about the context, it can be weak in fully conveying the
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specific details asked by the questions. It was observed that the incorrectly answered questions were
often related to less noticeable details in the scene.

"Unknown" and "unclear" responses also accounted for a significant portion of the errors. As noted
in Section 3.4.4, these responses were more frequently given by GPT-4o compared to GPT-3.5. One
reason for this was that the captions did not contain enough information to answer the questions ade-
quately. To reduce the number of such "unknown" responses, it was necessary to improve the quality
and informativeness of the image captions. Additionally, another type of "unknown" response oc-
curred because GPT-4o tended to provide more specific answers; when it could not provide a precise
answer, it responded with "unknown" instead of the expected general answer. For instance, when asked
"How big?", the expected response might have been a general description such as "small" or "large."
However, GPT-4o often responded with "unknown" if it was unable to provide an exact measurement.

Figure 14: Examples of acceptable predictions that do not match the labels

3.6 Experiments with Different Prompt Designs

This section focuses on the investigation of prompt design aimed at enhancing the performance of
MLLMs in the standard VQA task. Specifically, the VQA performance of a state-of-the-art MLLM,
GPT-4o, will be assessed across various question categories with an error analysis conducted to identify
potential improvement gaps. Based on the findings from the error analysis, prompts will be modified
and their impacts on performance will be evaluated.

3.6.1 Error Analysis with GPT-4o

This section takes a closer look at the incorrect predictions of GPT-4o on the GQA test-dev-balanced
subset. Figure 16 compares the proportions of correct and incorrect predictions across semantic and
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Figure 15: Examples of predictions containing "unknown" or "unclear"

structural question categories. The chart illustrates that incorrect predictions are proportionally higher
in the query-relation (2097 instances), query-attribute (700 instances), and query-category (447 in-
stances) question category pairs compared to others.

A set of 100 examples from the categories where GPT-4o made the most incorrect predictions was
selected for error analysis. The following findings were obtained from this analysis:

• 52 answers were found to be acceptable even though they did not match the ground truth an-
swers.

• 34 questions were incorrectly answered.

• 5 answers were predicted as "unknown", "unclear", or "I don’t know."

• 7 questions had incorrect labels, for which GPT-4o mostly provided correct answers.

• 2 questions pertained to unclear elements in the image.

The analysis revealed that a significant proportion of the predictions contained acceptable answers
despite not matching the ground-truth answer, as illustrated in Figure 18. As discussed in Section
3.5, this discrepancy arises because questions in the dataset can have multiple correct answers, even
though only one is labeled as correct. As shown in Figure 19, some of these acceptable answers
are even more detailed and accurate, further highlighting the limitations of the GQA test set and the
evaluation method.
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Figure 16: Incorrect predictions vs correct predictions of GPT-4o Vision across question combinations

A total of 417 instances were observed to be answered as "unknown", "unclear" or "I don’t know", with
308 of these instances associated with the query-relation and query-attribute categories. A closer look
reveals that the corresponding questions can be easily answered by a human in most cases. GPT-4o’s
inability to answer these questions while being able to answer more complex ones suggests that the
model perceives the task as more complex than it is. As shown in the examples in Figure 17, GPT-4o
may infer that a more specific answer is expected for the question "Who is holding the racket?", such
as the name of the tennis player. In another example in Figure 17, GPT-4o may infer that more precise
answers (similar to a measurement value in meters or a specific age) to the questions "What is the
length of the train?" and "How old is the happy man?" are expected. Similar issues were encountered
with GPT-4o in the QA phase of IC-integrated VQA, as mentioned in Section 3.5.

3.6.2 Designing GPT-4o Prompts for VQA

In this section, the impact of adding preliminary preparation steps to the prompt on GPT-4o’s VQA
performance will be evaluated based on the findings from the error analysis.

3.6.2.1 Adding Object Identification and Hints to the Prompt

Based on the findings from the error analysis, the prompt was optimized to increase the performance
of GPT-4o in VQA. Therefore, the prompt given in Figure 20 was designed by applying the following
steps.
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Figure 17: Examples of predictions containing "I don’t know" or "Unknown"

Figure 18: Examples of acceptable predictions that did not match the labels

• The instruction to carefully read the question and identify objects and attributes relevant to the
question was added to minimize the incorrect predictions in attribute, category, and relation
categories. This guidance aims to help prevent GPT-4o from generating overly specific answers
by restricting its response options to the objects and attributes present in the scene.

• Instructions were divided into steps, including reading the question, identifying the objects and
attributes, and then answering the question. This step-by-step approach was designed to as-
sist the model’s reasoning process as a straightforward application of Chain of Thought (CoT)
prompting.

• A frequently encountered issue is that GPT-4o often fails to provide an expected answer to
relatively simple questions. As a result, it either gives an overly specific answer or responds
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Figure 19: Examples of predictions giving more detailed and correct answers but did not match the
labels

with "unknown" because it cannot detect sufficient specificity. Hints were provided to narrow
down GPT-4o’s response options and minimize "Unknown/I don’t know" answers in order to
obtain the expected response. Specifically, these hints include instructions for the MLLM to
answer more broadly. For example, "How tall" questions are expected to be answered with basic
categories such as "small", "medium" or "large" rather than specific measurements. Another
common mistake encountered was with "Who" questions, which the model often answered with
"Unknown" because it looked for more specificity, such as a person’s name. Thus, hints were
provided suggesting that responses to "Who" questions could relate to the person’s gender or
profession.

3.6.2.2 Adding a Vocabulary Definition Instruction to the Prompt

In another experiment, the prompt was optimized to minimize the "unknown" predictions to encour-
age the model to identify and use a targeted vocabulary of adjectives, verbs, nouns, and adverbs that
describe objects, attributes, and relationships in the scene. This aims to generate answers that are con-
textually appropriate to the image content. Additionally, the instruction "Make sure to provide broad
and general responses rather than specific ones." was added to encourage GPT-4o to avoid seeking
specific details, such as exact measurements or person identification, and provide broader responses.
The optimized prompt is shown in Figure 21.
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Figure 20: Adding object-attribute identification step and hints to the prompt

Figure 21: Adding vocabulary definition step to the prompt

3.6.3 Results of Prompt Design Experiments

Table 8 presents the results obtained with different prompt designs. In the table, P1 refers to the
standard VQA prompt demonstrated in Figure 8. P2 and P3 refer to the prompts shown in Figure
20 and Figure 21, respectively. The best performance overall and in most question categories was
obtained with the prompt P2 containing object identification step and hints limiting the answer set.
The highest performance improvement was observed in the query structural question category, with an
increase of 4.29%. This improvement was followed by a 3.84 increase in the relation, a 3.18 increase
in the global, and a 3.13% increase in the category questions. The main reason for this increase is
that GPT-4o, with the instructions added to the prompt, generates responses that are more general and
align with the elements of the scene. For example, GPT-4o initially responded to the question "Which
aircraft is heavy?" with the answer "Chinook," referring to the model of the aircraft, instead of the
correct answer, "helicopter." However, following the implementation of the P2 and P3 prompt designs,
GPT-4o provided the correct answer.

The increase in the accuracy of predictions in the global questions, particularly query-global structural-
semantic category, with the addition of the vocabulary definition stage in P3 is found to be noteworthy.
Dictionary definitions and instructions aimed at generating more general answers are helpful in this
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category. For example, in a photo depicting a state police officer riding a motorcycle on a street, GPT-
4o responds to the question "Which place is it?" with ’Mississippi,’ based on the state police badge.
In the global category, particularly for the frequently asked question "Which place is it?", GPT-4o
with the standard prompt cannot produce general answers and often relies on scene details and Optical
Character Recognition (OCR), frequently providing city and region names as responses. With the
modified prompt, more general answers related to the location, such as "park", "street" or "sidewalk"
can be obtained.

While the total number of "Unknown/I don’t know" predictions was 417 with P1, P3 containing
the vocabulary identification step helped reduce this number to 351. P2 had the most significant
impact, reducing this number to 125. The results indicate that including instructions about context and
vocabulary is helpful, but providing hints is more effective in guiding the model to produce answers in
the expected answer set.

Table 8: Comparison of the performance of GPT-4o with different prompts

Question type GPT-4o VQA
P1

GPT-4o VQA
P2

GPT-4o VQA
P3

verify 78.91 78.95 77.93
query 50.99 55.28 53.28

choose 83.51 83.33 81.82
logical 68.89 68.05 69.49

compare 52.80 54.83 54.15
object 66.20 65.55 66.32

attribute 69.16 70.08 68.94
category 59.62 62.75 60.31
relation 54.41 58.25 56.63
global 43.31 46.49 54.77
total 61.58 63.85 62.63

3.7 Limitations

The evaluation in this thesis is conducted using the GQA dataset. While it is a comprehensive dataset, it
may not cover all possible question types and scenarios in VQA. This could limit the generalizability of
the findings to other VQA datasets. Additionally, GQA contains programmatically created questions,
leading to vague question-image pairs and multiple correct answers. These ambiguities can impact the
evaluation of the models and restrict the exploration of the full potential of LLMs/MLLMs in VQA.

Furthermore, this study utilizes pre-trained models such as CogVLM and BLIP-2, along with models
like GPT-4o that are not publicly accessible. These models, which contain billions of parameters,
have been trained on extensive datasets and may have memorized patterns within commonly used
benchmark datasets like GQA. However, due to restricted access to the training data of many of these
models, a thorough investigation of these potential issues was not feasible. This limitation could
potentially affect the fairness of performance comparisons.
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3.8 Summary and Discussion

This study proposes a new approach to VQA, referred to as question-driven image captioning-integrated
(QD-IC-integrated) VQA. In this framework, context-aware image captions, which replace the images,
are provided to the LLM as prompts. The study evaluates the performance of the QD-IC-integrated
VQA approach across various types of questions that often require multi-step reasoning. The errors
produced by the proposed method were analyzed to identify its limitations and potential gaps for fur-
ther improvement. The performance of the proposed approach was compared with the standard VQA
performance of MLLMs based on various evaluation metrics including LLM-based evaluation. Addi-
tionally, the VQA performance of GPT-4o, a recently developed state-of-the-art MLLM, was assessed.
Errors generated by the model were analyzed, and prompts were optimized accordingly. The key find-
ings from the experiments, addressing multiple aspects, are summarized in the following paragraphs.

Overall performance: The analysis conducted in this study demonstrates that question-driven image
captioning offers a more contextually relevant representation of visual content in textual form com-
pared to general-purpose image captioning. The effectiveness of this approach on overall performance
highly depends on the accuracy and relevance of the image captions in representing the images to en-
sure precise answers to the questions. Although the proposed approach does not surpass the overall
VQA performance of the state-of-the-art MLLMs, it remains competitive and can serve as an effective
intermediary between images and LLMs. Overall performance can be further enhanced by customiz-
ing the image captioning models to more effectively process and utilize the contextual information
provided by the questions.

Performance across different question categories: The proposed approach may offer advantages in
providing answers to certain question categories. Experiments with GPT-4o, a state-of-the-art MLLM
that has demonstrated superior performance in benchmarks, have shown that integrating image cap-
tions into the VQA enhances performance in specific question categories. Notably, it improves re-
sponses in the object category, which involves identifying objects within an image, as well as in the
logical and compare categories. The positive impact is more pronounced in questions with a logical-
object and compare-attribute structure. In these questions, the task typically involves determining
which of two objects or attributes satisfies a given characteristic. At this point, context-aware image
captions are useful in making the subjects of the question more explicit through text, thereby facili-
tating the comparison process. Performance improvement has also been found to be associated with
questions that require details about an object that is not the main focus of the image. In such cases,
the QD-IC approach highlights key terms, generating captions that make the relevant visual details
more visible and help provide sufficient information for the QA phase. On the other hand, the analysis
found that common errors are due to insufficient details in the image captions rather than the QA phase.
While QD-IC provides general context, it might fail to fully address the specifics of the question.

Additionally, the performance of QD-IC depends on how informative the keywords extracted from the
question are. For instance, in the global category, which predominantly comprises general questions
such as "Which place is it?", the questions do not often include informative keywords. Conversely,
categories like object and logical contain more keywords that are directly related to the question being
asked. Future research could investigate the impact of using bigrams and trigrams as keywords, instead
of unigrams, on the overall performance.

44



Answer plausibility: Analysis of both IC-integrated and standard VQA pipelines revealed that a
significant portion of predictions made by LLMs/MLLMs were considered acceptable, even when they
did not match the ground-truth labels. This discrepancy highlights deficiencies within the evaluation
dataset. The study concludes that the development of more comprehensive and higher-quality datasets,
along with refined evaluation metrics, is essential for accurately assessing the VQA performance of
LLMs/MLLMs.

Interpretability: MLLMs exhibit high performance across various tasks, including VQA. However,
interpreting the decision-making processes of these models, which have millions or even billions of
parameters, poses a significant challenge. One effective strategy to enhance interpretability involves
generating intermediate outputs, such as rationales, which can help elucidate the model’s reasoning
process and pinpoint sources of potential errors. In this context, using context-aware image captions
as rationales facilitates interpretability and error analysis. This approach could be further enhanced in
future research by integrating it with methods akin to Chain-of-Thought (CoT) prompting. Alterna-
tively, interpretability could be improved by employing MLLMs exclusively for the image captioning
stage while utilizing models with more transparent structures, such as graph neural networks, for the
question-answering phase.

Effect of prompt design: Analysis indicates that MLLMs exhibit a significant dependence on prompt
design in VQA tasks. Given that MLLMs engage in open-ended generation, incorporating hints to
narrow down the output set, providing specific instructions for object identification and vocabulary
definitions, and segmenting the VQA process into distinct steps to enable the LLM to think multiple
times were found to have a positive impact on results. Future research could explore better prompt
designs that help MLLMs better understand the expected output set and generate responses according
to the desired context.

45



46



CHAPTER 4

CONCLUSION AND FUTURE WORK

This study investigates the efficacy of using image captions as an intermediary between images and
LLMs in the VQA problem. In this context, the study proposes a question-driven image captioning
approach that extracts keywords from the question and feeds them into a vision-language model to
transfer the context of the question to the image captions.

Overall, although the performance of the proposed approach is lower than the standard VQA perfor-
mance, it is competitive and has led to improvements in certain question categories. In future stud-
ies, leveraging open-source LLMs alongside question-driven image captions to analyze and visualize
changes in attention weights can yield valuable insights. Furthermore, the caption generation process
can be further improved to assist the LLM by providing a better, context-related rationale. Future work
on caption generation for VQA may involve creating captions that encompass the chain-of-thought
process required by the question.

In this thesis, experiments were conducted using LLMs and MLLMs with billions of parameters, which
served as the foundation for performance analysis. Looking ahead, it would be beneficial to investi-
gate the performance differences between standard VQA and captioning-integrated VQA in smaller-
sized LLMs. Additionally, conducting prompt engineering studies to elucidate reasoning processes in
smaller-sized MLLMs could provide valuable insights for future research.

Using image captions as an intermediary can offer various advantages beyond achieving better per-
formance in certain question categories. Image captions serve as an interpretable linkage layer in the
VQA pipeline, which facilitates error analysis during the QA phase. Additionally, separating VQA
into two distinct modules -image captioning and question-answering- can provide flexibility. Combin-
ing text-based LLMs and vision-language models leverages the strengths of each and makes it easier
to update modules with improved versions in the future.

On the other hand, within an IC-integrated VQA pipeline, the image captioning process continues
to lack interpretability. Furthermore, the capacity of the pre-trained vision-language model used in
image captioning is the most significant determinant of the pipeline’s overall performance. When a
high-performing LLM is incorporated into this pipeline alongside a weak image captioning model, it
demonstrates suboptimal performance because the intermediary outputs lack sufficient detail.

Image captioning and visual question answering are two challenging multimodal problems. Although
they are closely related tasks, they each have different dynamics. Today, MLLMs are capable of
performing these two tasks, as well as many other sub-tasks like visual grounding, in zero-shot settings.
However, each of these tasks requires the MLLM to make task-specific inferences and form different
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attention processes. When examining the IC-integrated VQA approach, it was found that most of the
incorrect answers were due to deficiencies in image captioning rather than in the question-answering
phase. The deficiencies in image captions were particularly identified in cases where the question was
related to minor details in the image rather than the main focus/subject of the image. This indicates
that current captioning models fail to fully grasp the important parts of the scene related to the question
and need improvement.

A significant observation emerging from this study is the necessity for higher quality and more com-
prehensive datasets to assess the VQA performance of LLMs/MLLMs. Although the GQA dataset
employed in this study contains semantically and structurally diverse questions that require reasoning
skills, it may be inadequate for evaluating LLMs that generate open-ended responses. This inadequacy
stems from its reliance on generalized answers (e.g., expecting "large," "small," or "medium" as an-
swers to questions about the length of an object) and the prevalence of questions that can have multiple
correct answers. Therefore, a future research topic can be to develop evaluation sets to better assess
the performance of LLMs/MLLMs in multimodal tasks encompassing VQA. Such evaluation could
consider not only the accuracy of the predictions but also the plausibility of the intermediate outputs
generated by the LLM as part of the reasoning process. Additionally, employing LLMs for evaluation
and scoring in cases where questions have multiple correct answers could also be an avenue for future
research.

Currently, as MLLMs scale, their performance and generalization capabilities are rapidly improving.
However, understanding the decision-making mechanisms of these models is becoming increasingly
difficult. As the competencies of MLLMs grow, their applications and commercial value also increase,
leading large technology companies with high resource capacities to keep this technology proprietary,
as seen with OpenAI’s GPT-4. Nevertheless, the evaluation of MLLMs can only be done using inputs
and outputs, underscoring the importance of evaluation sets. Designing evaluations based on inputs
and outputs in a way that provides insights into the model’s decision-making processes is crucial for
gaining understanding, identifying the model’s limitations, and pinpointing its weaknesses.

As the capacity of MLLMs continues to expand, their performance on benchmarks involving both
NLP and multimodal tasks also increases. Currently, challenges persist in zero-shot tasks that involve
multiple modalities and require multi-step reasoning. However, in the future, as the size of pre-training
data and the number of model parameters increase, the issues seen in current benchmarks, including
VQA, might be resolved. This could lead to the need for new, multi-task benchmarks to further explore
the advanced capabilities and future frontiers of MLLMs.
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APPENDIX A

ADDITIONAL EXAMPLES OF INCORRECT AND CORRECT
PREDICTIONS

A.1 Predictions Obtained with the QD-IC Integrated VQA Approach

A.1.1 GPT-4o QD-IC + GPT-4o QA

Figure 22: Examples of correct predictions by GPT-4o QD-IC + GPT-4o QA
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Figure 23: Examples of incorrect predictions by GPT-4o QD-IC + GPT-4o QA
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A.1.2 CogVLM-C QD-IC + GPT-3.5 QA

Figure 24: Examples of correct predictions by CogVLM-C QD-IC + GPT-3.5 QA
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Figure 25: Examples of incorrect predictions by CogVLM-C QD-IC + GPT-3.5 QA
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A.2 Predictions Obtained with the standard VQA pipeline

A.2.1 GPT-4o VQA

Figure 26: Examples of correct predictions by GPT-4o VQA
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Figure 27: Examples of incorrect predictions by GPT-4o VQA
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APPENDIX B

ADDITIONAL RESULTS

B.1 Performance Evaluation Using Cosine Similarity Threshold of 0.8 and Exact Match Crite-
ria

Table 9: Comparison of the accuracy values at cosine similarity threshold 0.8 for various IC-integrated
VQA pipelines on GQA test-dev-balanced.

Question
type

CogVLM-C
GP-IC

+ GPT-3.5
QA

CogVLM-V
GP-IC

+ GPT-3.5
QA

CogVLM-C
QD-IC

+ GPT-3.5
QA

CogVLM-C
QD-IC

+ GPT-4o
QA

FuseCap
GP-IC

+ GPT-3.5
QA

BLIP-2
GP-IC

+ GPT-3.5
QA

GPT-4
QD-IC

+ GPT-4o
QA

GPT-4o
QD-IC

+ GPT-4o
QA

GPT-4o
GP-IC

+ GPT-4o
QA

verify 63.01 58.52 67.40 64.87 53.59 55.81 69.58 74.33 31.77
query 28.40 26.78 30.16 31.22 23.07 25.40 32.02 35.79 35.59
choose 60.54 57.80 61.34 57.26 54.07 56.82 58.77 68.43 52.92
logical 59.51 60.28 59.67 63.72 57.07 56.07 68.16 71.32 64.78

compare 51.27 51.44 50.93 52.12 53.65 47.70 53.82 55.51 48.38
object 61.95 63.23 59.38 68.63 59.38 58.35 71.20 75.44 72.23

attribute 46.44 44.12 49.29 46.55 41.77 41.83 52.26 56.16 44.55
category 47.35 40.20 41.86 45.86 36.90 39.16 44.29 48.65 47.78
relation 37.37 35.30 39.03 40.46 30.48 33.53 39.92 44.64 41.07
global 46.49 42.67 41.40 39.49 42.03 45.22 40.12 42.67 45.85
total 43.01 41.21 44.83 45.22 37.64 39.11 47.40 51.67 45.12

Table 10: Comparison of the EM accuracy values for various IC-integrated VQA pipelines on GQA
test-dev-balanced.

Question
type

CogVLM-C
GP-IC

+ GPT-3.5
QA

CogVLM-V
GP-IC

+ GPT-3.5
QA

CogVLM-C
QD-IC

+ GPT-3.5
QA

CogVLM-C
QD-IC

+ GPT-4o
QA

FuseCap
GP-IC

+ GPT-3.5
QA

BLIP-2
GP-IC

+ GPT-3.5
QA

GPT-4
QD-IC

+ GPT-4o
QA

GPT-4o
QD-IC

+ GPT-4o
QA

GPT-4o
GP-IC

+ GPT-4o
QA

verify 62.87 58.52 67.18 64.87 53.60 55.81 69.58 74.33 64.87
query 17.72 18.00 18.60 25.87 15.42 18.07 25.37 29.14 26.62
choose 56.56 55.49 56.82 54.78 51.50 53.19 56.91 66.66 51.41
logical 59.23 60.23 59.01 63.72 57.01 55.96 68.16 71.32 64.78

compare 50.42 50.93 49.06 52.12 51.78 47.19 53.82 55.51 48.38
object 61.56 63.23 58.74 68.63 59.25 58.22 71.20 75.44 72.23

attribute 42.64 42.37 44.72 44.93 39.44 38.80 50.41 58.10 43.62
category 29.06 27.58 29.76 39.94 27.06 29.59 34.55 39.86 40.81
relation 29.14 28.05 30.27 35.98 24.51 28.42 34.96 39.65 36.68
global 34.39 38.21 30.57 40.12 33.75 38.21 40.12 40.76 42.03
total 36.77 36.21 37.94 42.10 33.17 34.77 43.63 47.90 42.20
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B.2 Comparison of GPT-4o QD-IC + GPT-4o QA with GPT-4o VQA in Question Categories
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Figure 28: Number of correct predictions of GPT-4o QD-IC + GPT-4o QA (blue) vs GPT-4o VQA
(yellow) across different structural-semantic question categories
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