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ABSTRACT

ELECTROMAGNETIC TARGET CLASSIFICATION BY USING

TIME-FREQUENCY ANALYSIS AND NEURAL NETWORKS

jnce, Tirker
M.S., Department of Electrical and Electronics Engineering
Supervisor: Assoc. Prof. Dr. Goéniil Turhan Sayan

Co-Supervisor: Assoc. Prof. Dr. Kemal Leblebicioglu

August 1996, 115 pages

In this thesis, the design of new electromagnetic target classification systems by
using time-frequency analysis and neural networks is presented. For extracting
the feature vectors from the time-domain input data, the Wigner distribution is
utilized in all proposed classification schemes mainly because of its distributed en-
ergy interpretation. The multilayer perceptron, the self-organizing feature map,
and the principal component analysis are employed alternatively for classifica-
tion purpose. The performance of each classification scheme is examined with

the available time-domain database of perfectly conducting spheres of different

11



diameters and perfectly conducting small scale airplanes. Also, by modifying one
of the proposed classification schemes, the feasibility of estimating the aspect
angle of a classified input data is demonstrated with simulations. The noise per-
formance of the most promising classification scheme is analyzed by using input

data with additive Gauss noise in testing phase only.

Keywords: Electromagnetic target classification system, time-frequency analysis,
the Wigner distribution, multilayer perceptron, the self-organizing feature map,

principal component analysis
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OZ

ZAMAN-FREKANS ANALIZI VE SINIR AGLARI KULLANILARAK

ELEKTROMANYETIK HEDEF SINIFLANDIRILMASI

Ince, Tiirker
Yiiksek Lisans, Elektrik ve Elektronik Muhendisligi Boliimu Bolimii
Tez Yoneticisi: Assoc. Prof. Dr. Gonul Turhan Sayan

Ortak Tez Yoneticisi: Assoc. Prof. Dr. Kemal Leblebicioglu

Agustos 1996, 115 sayfa

Bu caligmada, zaman-frekans analizi ve sinir aglari kullanilarak yeni elektro-
manyetik hedef siniflandirma sistemleri tasarimi sunulmugtur. Butun Onerilen
sistemlerde, zamandaki girig bilgisinden ozelligi olan vektorlerin elde edilmesi
icin, dogal enerji yorumuna sahip olmas: nedeniyle Wigner dagilimi kullanilmigtir.
Simflandirma amaciyla Cok Kath Algilayici, Kendiliginden Organize Olan Ozellik
Déontistiriicti ve Asil Eleman Analizi metodlarindan birisi kullanilmigtir. Onerilen
siniflandirma sistemlerinin performans analizleri degisik ¢aplara sahip tam iletken

kiireler ve tam iletken kii¢iik boyutlu ucaklara ait mevcut veritabani kullanilarak



gerceklegtirilmigtir. Ayrica, onerilen sistemlerden birisinin degisik versiyonu kul-
lanilarak yapilan simulasyonlarla siniflandirilmig hedef bilgisine ait goriiniig agisinin
tahmin edilebilirligi gosterilmistir. Onerilen sistemlerden en iyi olanina ait gurulti
performansi, girig bilgilerine sadece test agsamasinda Gauss glrtltistu katilarak,

analiz edilmigtir.

Anahtar Kelimeler: Elektromanyetik hedef siniflandirma sistemi, zaman-frekans
analizi, Wigner dagilimi, Cok Kath Algilayici, Kendiliginden Organize Olan Ozellik

Donitigtiriicii, Asil Eleman Analizi
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CHAPTER 1

INTRODUCTION

Target classification may simply be defined as the process of deciding which one
of the prespecified object classes is the most consistent with the unknown input
feature data, or target signature. The problem of identifying or classifying objects
using back-scattered signals has been of interest for a long time. Many different
target discrimination schemes have been proposed in the past decades [1]-[7].
Most of these schemes use the measured back-scattered response of a target at
a set of frequencies. The time-domain target response obtained by the inverse
fast Fourier transform (IFFT) of the measured data can also be used as the raw

input.

All target classification algorithms primarily extract various features of the
unknown object, which uniquely characterize it depending on its physical proper-
ties (size, shape and composition), in the classification process. The classification
performance is very much affected by the discriminating power of the extracted
target features. Therefore, the selection of proper feature vectors, either in time-
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domain or in frequency-domain, directly affects the success of target classification
system.

An important problem associated with using the back-scattered response of a
target is that it highly depends on the aspect angle, frequency and polarization.
One well-known measure that represents the target scattering characteristics is
the radar cross section (RCS) [8]. However, since the RCS of a target is a function
of frequency, aspect and radar polarization, it is not practicle to use it directly in
target discrimination schemes. For the back-scattered response of a target, the

definitions of monostatic and bistatic aspect angles are shown in Figure 1.1.

— .—l l _______
) monostatic
aspect angle
Transmitter
bistatic

aspect angle

Receiver

Figure 1.1: Monostatic and bistatic aspect angle definitions (top view)

In 1965, Kennaugh and Moffatt proposed the concept of natural resonance
frequencies and showed that radar returns in the resonance region provide the es-
sential information about the overall size, shape, and structure of the object [9].
This paper implies that targets in the resonance range show significant damped
oscillations in the RCS due to the zeros of the denominator of the transfer func-
tion of the object. These zeros are called the complex natural resonant (CNR)
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frequencies of the target. This idea then resulted some target discrimination
schemes which are based on the late-time natural oscillation behavior of conduct-
ing targets. In the early 1970s, Baum established the formulation of the complex
natural resonance idea as the singularity expansion method (SEM) [10]. Accord-
ing to SEM, the late-time scattering response from a conducting scatterer can be
represented as a series expansion of simple poles in frequency domain. The CNR
frequencies (or target poles) are useful characteristics of targets, since they are
uniquely determined by physical properties of an object and they are independent
of aspect angle and polarization. However, extraction of CNR frequencies from
available measurement data is extremely noise sensitive. So instead of using the
direct target pole comparison with a database of known targets in a classifica-
tion scheme, it is possible to develop different classification techniques where the
discriminating power of target poles can be utilized indirectly.

The main purpose of this thesis is to design a new electromagnetic target clas-
sification system which can be operated at a reasonably high correct decision rate
even for a modest size of database. Besides, a short response time in the decision
phase, robustness to noise and easy adaptation to practical applications are the
other important requirements expected to be met by this classification system. In
this thesis, we will propose several target classifier prototypes, which utilize vari-
ous combinations of neural networks (multilayer perceptrons and self-organizing
maps), the Wigner time-frequency distribution and the statistical principal com-
ponent analysis method. The common property of these proposed classifiers is
that they all utilize most of the useful information in the time-frequency con-
tent of the signal in feature extraction part by use of the Wigner time-frequency

3



distribution.

It is well known that the available time-domain or frequency-domain data for
an electromagnetic scatterer are aspect and polarization dependent. Using such
data directly, without any signal processing, in a target classification study re-
quires a very large database which takes a very long processing time. Instead, the
available data must be pre-processed for feature extraction or feature enhance-
ment for faster and more accurate classification. Our consideration of using the
Wigner distribution in a feature extraction part of target classification scheme is
mainly motivated by its distributed energy interpretation. The time-frequency
localized energy spectrum matrix, which is obtained from the impulse response
of a target, forms the feature vector of a target.

The neural network approach to target classification has an important role in
different methods mainly due to its powerful learning algorithms [11]. Multilayer
perceptrons (MLPs) are the most widely used neural networks especially for clas-
sification applications, whereas the natural clustering ability of self-organizing
feature maps (SOFMs) is still being studied by researchers and some successful
experiment results have been reported in the last years [12, 13]. In our classifi-
cation system we will use SOFM network, which has originally an unsupervised
learning algorithm, in a supervised manner by applying the forced winner train-
ing algorithm. On the other hand, principal component analysis (PCA) is a
well-known classical statistical method which was proved to be as a powerful
feature extraction and selection technique in many applications [14].

The organization of the thesis is as follows: Chapter 2 reviews time-frequency
signal analysis, some important time-frequency representations that have been

4



developed and their properties, and discusses the application of the WD for fea-
ture extraction. Chapter 3 presents the MLP and SOM neural networks and their
applications to target classification. Chapter 4 outlines the alternative statistical
method PCA and its application to target classification. In Chapter 5, the sim-
ulation examples with the available sphere class and aircraft class measurement
data by using the proposed classification schemes and discussion and comparison
of the results are presented. Also at the end of this chapter, some results of noise
analysis are given. Chapter 6 includes the concluding remarks and a discussion of
possible future works. In Appendix A, the algorithms of the simulation program
codes, written in C, are given. The details of generation of noisy data for noise

performance analysis are given in Appendix B.



CHAPTER 2

TIME-FREQUENCY SIGNAL ANALYSIS

2.1 Introduction

Most of real-life processes have a nonstationary nature resulting in time-varying
signal characteristics. Joint time-frequency analysis is a new signal processing
technique in which signals are analyzed in both time domain and frequency
domain simultaneously. Time-frequency representations (TFRs), such as the
spectrogram, the short-time Fourier transform, the Wavelet transform, and the
Wigner distribution, analyzing the energy content of signals simultaneously in
time and frequency, have drawn great attention for the analysis and processing
of signals in a wide variety of applications related to electromagnetics, signal

processing, communication, biomedical and geophysical systems.

In most applications, the classical techniques based on stationary spectral
analysis are inadequate in analysing the time-varying nature of nonstationary
and transient signals. For many years, Fourier transform has a wide range of

6



applications for signal processing but mainly for stationary signals. By means of
standard Fourier analysis, a signal can be decomposed into individual frequency
components with relative intensities. However, especially in case of nonstationary
signals whose spectral content is changing in time (time-varying spectrum) it is
not possible to determine when those individual frequencies existed from the
Fourier analysis output. The well-known Fourier transformation of a continuous-

time signal f(t) is defined as,

F(w) = /_ ‘: F(t)e it (2.1)

where the angular frequency w = 27 f and the associated inversion from frequency

domain to time domain is obtained as,

£(1) 1/°° Fw)e™ duw (2.2)

T 2 )
For discrete-time signals, Discrete Time Fourier Transformation (DTFT) is

defined by the pair of equations given below :
X(w) =" z(n)e " (2.3)

2(n) = - | X(@)erndw (2.4)

" 2 Jr
While each signal has a unique Fourier spectrum, a time-frequency analysis

of a signal can be done by using many different TFRs. As opposed to Fourier

analysis, a TFR maps a one-dimensional signal of time to a two-dimensional
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function of time-frequency plane to examine the variation of the frequency content

of the signal with respect to time.

Most time-frequency representations, such as the spectrogram, Wigner distri-
bution and pseudo Wigner distributions which belong to Cohen’s class [15], are
covariant to time and frequency shifts of the signal. Other time-scale distribu-
tions, among which the most popular one is the wavelet transform that belongs
to affine class [15], are covariant to time shifts and scale changes in the signal.
For a large variety of applications where time shifts, frequency shifts and scale
changes are the fundamental transformations, the joint time-frequency and time-
scale distributions are invaluable tools for data analysis and signal processing

purposes.

Main idea behind a joint function of time and frequency is to describe the
energy density of a nonstationary signal simultaneously in time and frequency.
By the use of joint time-frequency distributions it is possible to determine the
amount of energy in a specific range of time and frequency, the distribution of
frequency at a specific time, the mean frequency and its local spread by the global
and local moments of the distribution. In addition, one can synthesize signals
having desirable time-frequency characteristics and also apply certain operations

and transformations in time-frequency domain.

From a joint distribution P(t,w), the instantaneous power [s(¢)]* at a specific
time and the energy density spectrum |S(w)|? at a specific frequency can be
obtained by the following integral expressions which are called as the marginals,

8



/ P(t,w)dw = |s(t)[? (2.5)

/ P(t, w)dt = |S(w)|? (2.6)
Provided that the marginals are satisfied, the total energy E of the signal can

be found by summing up the distribution at all times and frequencies as,

E= / P(t,w)dwdl (2.7)

In this chapter, we will first review the linear TFRs such as the short-time
Fourier transform and the wavelet transform. Secondly, the quadratic (bilinear)
TFRs such as the Wigner distribution and the other distributions in the gener-
alized class of TFRs will be summarized. Finally, in this chapter, applications of

the Wigner distribution for feature extraction will be discussed.

2.2 Some Important Time-Frequency Analysis Methods
2.2.1 Short Time Fourier Spectrum and Spectrogram

A time-varying signal can be analysed by use of a sliding time window as in the
most widely used standard methods Short Time Fourier Transform (STFT) [16],
or spectrogram. STFT concept in Electrical Engineering was first introduced in
1946 by Gabor to analyze the time variation of the frequency contents of signals.
STFT is simply the result of multiplying the time series by a short time window
and thén taking DFT of it, to obtain a local spectrum of the signal around the

analysis time.



Mathematically,

o0

Y(t,w) = / y(s)y (s — t)e™"™*ds (2.8)

— 00
From equation 2.8, we can interpret the STFT as a linear filtering operation

Jwot 3

where for a fixed wq, v*(—1)e is the impulse response of the filter.

Possibly with a different window function a(u), the inverse STFT is given as,

y(t) = % I v wat - wetdude (2.9)

The action of this window is to provide localization in time so that the re-
sulting spectrum is the related local spectrum. This window is then translated
along the time axis to produce local spectra for all time which is referred to as
a spectrogram [17]. In this case, the assumption of stationarity over the window
width may cause some error depending upon the degree of actual nonstationarity
of the signal. This error is a result of the inherent tradeoff between time and
frequency resolution associated with the famous uncertainty principle which says
that the product of the time duration 6t and the frequency duration (bandwith)
éw of a window is bounded below by 1/2 [18].

The window duration and the bandwidth determine the time and frequency
resolution respectively in the short time spectra. This means that if the window
duration is too small, then the frequency resolution will be poor and if the window
duration is too long, the time resolution will be poor. For a non-stationary signal,
since spectral content is changing in time, poor time resolution can also mean
poor frequency resolution. So the length of the assumed short-time stationarity

10



determines the obtainable frequency resolution. This windowing scheme can be
described as constant width windowing. The time resolution is the same for all
spectral components. The amplitude for any given spectral component of the
DFT gives the average over the windowed time series. The choice of window size
is completely arbitrary. With the STFT, because there may be different number
of periods of each spectral component in the window, the response depends on
the frequency. Therefore it is sometimes necessary to perform two STFTs with
different window sizes to achieve adequate time and frequency resolution.

For implementation purposes, the form of STFT for discrete-time signals with

use of FFT is defined as follows,

Yo = D UkVioane TN (2.10)

k=—c0

where 0 <m <M —1,—c0o < n < o0.
The energy density spectrum or spectrogram, which is the energy density at

a specific time and frequency is defined as,

Py(t,w) = | S.(w)|? (2.11)

Actually, the spectrogram is nothing but a time-domain filtering followed by

a spectral detection at a given time.

2.2.2 The Wavelet Transform

Wavelet analysis was first introduced by J. Morlet [19] for the sysmic data anal-
ysis and then I. Daubechies [20] was the first to use wavelets in signal analysis

11



applications. There is a similarity between the FT and the wavelet transform in
the following sense: The FT is the ideal tool for stationary signals whose sta-
tistical properties are invariant over time. Actually, the FT is an infinite linear
combination of dilated cosine and sine waves. Similarly the non-stationary signals
can be represented by linear combinations of special wavelets which allow us to
extract the simple constituents of a complicated signal. The basic idea here is to
create a set of basis functions and transforms which will give a description of a

signal localized in both time and frequency (or scale).

Wavelet transformation is a powerful tool for the analysis and synthesis of
signals. Localization of signal characteristics in spatial (or time) and frequency
domains can be accomplished very efficiently with wavelets. This allows us to
simultaneously determine sharp transitions in the spectrum of the signal and in

the position (or time) of their occurrence.

Similar to the STFT, the Wavelet Transform (WT) can be interpreted as a
linear filtering operation [21]. We have seen that STFT does not have an optimal
localization in both time and frequency domains simultaneously. However the
wavelet transform has optimal localization in both domains which is achieved
by varying the length of the analysis window. Use of short basis functions at
high frequencies and long ones at low frequencies make the isolation of signal

discontinuities in both domains possible.

The continuous wavelet transform (CWT) is the decomposition of a function
over a set of wavelets which are all the translations and scalings of a prototype
function often called a mother wavelet.

12



The mother wavelet h,;(t) = ﬁh(f_—b), where a and b are parameters that

a

scale and dilate the mother function h(t) to generate wavelets, is required to

satisfy the admissibility condition which is given as,

/_oo {—Hi(Twl)lidw < o (2.12)

where H(w) is the Fourier transform of h,(%).
Then the CWT is defined in terms of inner products of the signal with the

wavelets as follows,

T—1

YdT (2.13)

Fultis) = = [ k(S

For recovery of the original signal from its continuous wavelet coefficients, the

inverse CWT is defined as,

T —1_drds

= [ [0 Fw(r,s)—lﬁh(——) L (2.14)

S

provided that [ A(7)dr =0, and c is a constant.

As can be seen from its definitions, while the WT preserves time shifts and
time scalings, it doesn’t preserve frequency shifts. In fact, The WT is very much
related to the multiresolution analysis of Mallat [22]. The basic structure of a
WT is composed of recursive filtering and decimation, both of which are relatively
easy to implement. Multiresolution signal analysis and the pyramidal algorithm
are used to obtain wavelet coefficients used in wavelet analysis and synthesis [22].

According to multiresolution analysis [22], it is possible to represent any func-
tion f(t) in L*(R) for a given scale by dilating and translating a single function

13



V() = alihai(t —277n)  where ¥y, (t) = 2/ (201) (2.15)
Here a) are expansion coefficients at successive scales and v7(¢) is an ap-
proximation of f(t) in vector space (V5;) within a scale j, and as j — oo, v/(t)

approaches to f(t). At the finest scale J, the signal is represented by 27 coefficients

as follows,
Ny
() =3 alhys o(t) =D al27 (27t —n) (2.16)
n=1 n
where Ny = 27.

The computation of the wavelet series coeflicients using filter banks was stud-
ied by Mallat [22]. Wavelet expansion coefficients, al’s, at successive scales,
called the Discrete Wavelet Transform (DWT), can be determined by a pyramid-
like structure, called the pyramid algorithm, consisting of two filtering operations

given as,

a7t =" al " h(k —2n)  for all j (2.17)
k

where h(n) is a discrete-time low-pass filter, and

Bt =S"al gk —2n) forallj (2.18)
k
where g(n) is a discrete-time high-pass filter.
In this algorithm the input signal, whose length is a power of two, is decom-

posed into a low-pass and a high-pass signal components by filters h(-n) and

14



g(-n) and then each part is subsampled by 2. In many cases, the low-pass output
contains most of the information content of the original signal, whereas the high-
pass output (usually called the detail signal) contains the difference between the
true input and the reconstructed input which is obtained using only the low-pass
outputs. Generally, higher order wavelets provide the low-pass outputs carry-
ing more information than the high-pass outputs. So according to the pyramid
algorithm for decomposition, we can represent f(t) at the finest scale J as follows,

J-1

) =S gin(t) + 3 althp n(t) (2.19)

=1

.,

The wavelet transform is of considerable use especially in signal processing
applications such as speech processing [23], image processing [24], pattern recog-
nition, edge detection, fractals etc. The kernel separability property in wavelet
transform theory is an interesting feature that renders multidimensional wavelet

transforms as a powerful tool for multidimensional signal processing.

2.2.3 The Wigner Distribution

Most of the TFRs from the Cohen class of distributions can be derived from the
Wigner distribution, the most popular one and the most widely used [15].

The Wigner distribution (WD), was first introduced in 1932 by Wigner [25]
and, it was reintroduced in 1948 by Ville for signal analysis applications [26]. The
WD is an important tool for time-frequency analysis with no time-frequency reso-
lution tradeoff. The WD satisfies many desirable mathematical properties includ-
ing time and frequency marginals, covariance of time-shift, frequency-shift and
scaling, energy conservation, realness, and Moyal’s formula. The cross-Wigner

15



distribution of time signals f{t) and g(t) is defined as [27],

W, (1, w) = /°° eITE( 4 7/2) g7 (t — 7/2)dr (2.20)

— 00

Similarly the auto-Wigner distribution of a signal f{t) is defined as [27],

Wi(t,w) = / T eI 1 [2)f(t = 7/2)dr (2.21)

— 00

A useful dual expression for the WD in terms of Fourier transforms F(w) and
G(w) of the signals f{t) and g(t), respectively can also be defined as

7

1 fo
Wrp,(w,1) = 2—/ ST (w4 £/2) G (w — £/2)de (2.22)
T J—o0
It should be noted that the WD is the only TFR which does not involve any
arbitrary window function as other transforms do.

From equations 2.20 and 2.22, a useful symmetry relation between time and

frequency domain definitions can be obtained as,

Wi, a(w,t) = Wy (¢, w) (2.23)

The cross-Wigner distribution for discrete-time signals f{n) and g(n) is defined

as [28],

Wya(m0) =2 S e f(n 4+ k)g"(n — k) (2.20)

k=—00

Similarly the auto-Wigner distribution of a discrete-time signal is defined as ,

Win,0) =2 5 e f(n +k)f*(n — k) (2.25)

k=-o00
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Also, the WD in terms of Fourier spectra of discrete-time signals can be

defined as follows,

Wr.a(0,n) = - [ emero+ 6670 - e (2.26)

s

1.2.3.1 Properties of the Wigner Distribution

The properties of WD for continuous time [27], (also for discrete time case [28])

can be summarized as follows:

Wi (t,w) = W (¢, w) (2.27)

Then it can easily be concluded that the WD of any function, whether
real or complex, is real and the WD of a real signal is an even function of

frequency as mathematically expressed below:

Wy (t, w) = W} (t, w) (2.28)

Wi (t,w) = Wpe(t, —w) (2.29)

These conclusions can be easily extended to the discrete-time case as follows:

Wf,g(nv 9) = Wg*,f(nv 0) (2'30)
W;(n,0) = Wi (n,0) (2.31)
W;(n,0) = W (n, —8) (2.32)
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The WD of time-shifted signals is also time-shifted as shown below,

Wr,g0.4( w) = Wi (8 — 7,0) (2.33)
where I',f = f(t — 7).

This property applies to the discrete-time case as

Wr,,.7 0mg(n,0) = Wy y(n — m, 0) (2.34)

The WD of signals modulated with e/ is a frequency-shifted WD as shown

below,

WMnfyMng (ta w) = Wf,g(ta w — Q) (2.3‘5)

where (Mof)(t) = e/ f(1).

This property applies to the discrete-time case as

Wisp,m50(1,0) = Wy 4 (n,0 — ) (2.36)

The WD of the signals that are both time-shifted and modulated by e/*** is,

Witar, s Mo (6 w) = WeoagromMo (1, w0) = Wy y(t — 7,0 — Q) (2.37)

After some manipulations the equality given in equation 2.38 below for the
WD at a specific time t and frequency w can be obtained,
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I/I/f’g (t, ’LU) = 2(F_tM_wf, RF_tM_wg) (238)

where (Rf)(t) = f(—1).

These properties can be expressed in the discrete-time case as follows:

W (n,0) = 2(T_,M_gf, RT_, M_gg) (2.39)

The WD for the sum of two signals is given as follows,

Witaso,g14g2 (8 0) = Wi g1 (8, w) + Wiy o (B, w) + Wy gy (8, w) + Wi 4o (2, 0)

(2.40)

and for auto-WD case,

Wf—i—y (t, w) = W; (t, w) + Wg(t, w) + QRSWf,g(t, w) (2.41)

These conclusions can be easily extended to the discrete-time case as follows:

Wirisegr4g2(n,0) = Wit 41 (7,0) + Wyt g2(n,0) + Wiz g1 (n,0) + Wys 42(n, 0)

(2.42)

The multiplication of WD by time variable ¢ or frequency variable w can be

expressed as ,
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2tWy o (t,w) = Wag 4 (t,w0) + Wi, (t,w) (2.43)

2wW; g (tv w) = Wy, (tv w) + Wi,p, (t7 w) (2'44)

where
(AF)(t) = tf(t) (2.45)
(D.f)(t) = %f’(t) (2.46)

and for the discrete-time case, we have

Qan’g(n, 0) =] WAfvg(?”L, 0) -+ Wf,Ag(n, (9) (2.47)

6j20Wf79(n70) = WF—lf,Fw(nva) (248)

e Since the standard cross-WD definition is the FT of f(t+7/2)g*(t—7/2),the

inverse Fourier transform of W} (¢, w) will produce,

1

o /_ O:o Wy 4 (L, w)dw = f(t 4 7/2)g* (t — 7/2) (2.49)

which also leads to,

ﬁw/—oo et tz)Wf,g(( 12 2 w)dw = f(t1)g" (2) (2.50)

For the special case of t; =ty =1 and f = g,
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1

= [ Wit w)dw = (1) (251)

which is the instantaneous signal power at time ¢

Also, for the special case t; = 1,13 =0,

1

[ Wi (/2 w)dw = [(2)g"(0) (2.52)

which means that f{t) can be obtained from the inverse Fourier transform

of Wy, at time t/2.

By taking the integral of both sides of equation 2.51, the energy of f(t) in

the time interval ¢, < ¢ < ¢, can be expressed in terms of the WD of f,

: /tb[/w e = fttb HOIR (2.53)

2 ta —00

The discussions in the last two properties can be applied to frequency do-
main definition of WD (in terms of spectra F(w) and G(w)) producing

similar results.

By using Moyal’s formula,

1 0 0
o /_ /_ Who (taw)Wf:m (t,w)dtdw = (fl;fz)(g1,gz)* (2,54)

where the inner product of f and ¢ is defined as, -
(f.9) = [ fygeyar (2.55)

for aspecial case i=f=p =g =f,
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1 oo poo
or | L Wit wydsdw = ]l (2.56)

If fit) and ¢(t) are time-limited then the WD is also time-limited in the

same interval i.e., if

ft)=g(t)=0, t<t,ort>1, (2.57)

then

Wi, (t,bw) =0, t<t,ort>t, Yuw. (2.58)

For discrete-time case, if

f(n)=g(n)=0, n<ngorn>n (2.59)

then

W; ,(n,0) =0, n < mngormn>ny V0. (2.60)

If f(t) and g(t) are band-limited, then the WD is also limited to the same

frequency interval i.e, if

Flw)=G(w) =0, w<w,orw>uw (2.61)

then
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Wi (t,iw) =0, w<w,orw>w,, Vi (2.62)
Since the WD for discrete-time signals is periodic with period =, If
FO)=G(#)=0, 0<8b,0r8>0, (2.63)

and 0, — 0, > = then,

W; 4(n,0) =0, for 0, <0< 6,—7 (2.64)

The WD is certainly an important tool for time-frequency analysis due to its
long list of desirable properties presented so far. However, the method has also
some drawbacks such as the cross-components that can interfere with the desired
auto-components, the negative values and the noise propagation tendency.

Because of its quadratic nature, the WD includes interference terms (ITs)
which complicates the interpretation of results. Consider two signals which are
individually localized around (¢;,w;) and (f2,w;) respectively and reaching to
almost zero levels at the point (3’#2, 3”1—'2"—%) However, the cross-WD of these two
signals will include the oscillatory cross terms (ITs) lying midway between the two
signal terms, specifically at ¢ = 842 and w = “13%2 Generally these nonzero WD
values are called cross-components which are usually undesirable. When these
cross-components interfere with the true signal components, undesired results
occur. In this case, smoothing in time or frequency (or both) domains can be
used to eliminate the undesirable cross-components at the expense of destroying
the desirable properties of the WD to some extent.
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Since the cross or interference terms of the WD are oscillatory, it is possi-
ble to attenuate them by means of smoothing in time or (and) frequency. The
pseudo-Wigner distribution (PWD) is a short-time version of the WD which does
smoothing only in the frequency direction by using a sliding analysis window [29].

The definition of the PWD for the discrete case is given as,

PW D¢(n,0) =2 _Z f(n 4+ E)f*(n — k)h?(k)e 920 (2.65)

where h(k) is a real-valued, even window of length 2L + 1.

In general, the smoothed pseudo-Wigner distribution (SPWD) does additional
smoothing in time, also to attenuate the ITs in that direction [30]. However,
the SPWD does not satisfy most of the useful properties that the WD satis-
fies, especially the time and frequency marginals and the Moyal’s formula. The

discrete-time definition of the SPWD can be given in as,

N-1 M-1
SPWD;(n,0)=2 > |hon(DI’[ D wanm(B)faln+k+0)fi(n+k—1)]e 7"
I=—N+1 k=—M+1

(2.66)
where f4 is the analytic signal of f, w, s is the time window and hgn is the
frequency window.

Since the WD of a signal satisfies the marginal properties, it can be, in some
sense, interpreted as the distribution of the signal energy over time and frequency.
However, the WD may assume negative values as well, leading to a contradiction
with the energy interpretation. De Bruijn relates this behaviour of the WD to
Heisenberg’s uncertainty principle and states that appropriately taken averages
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of the WD will always be positive [31].

As it can be easily deduced from the definition of the WD, even a small
amount of localized noise in the original signal tends to spread to a much wider
range in the resulting WD. Therefore, the noise performance of WD is poor if no

care is taken for smoothing.

2.2.4 Generalized Class of TFRs

Quadratic time-frequency distributions (TFDs) were developed to describe the
distribution of the signal energy in the time-frequency plane [15, 32]. However, it
is known by uncertainty principle that no time-frequency distribution can exactly
describe the localized time-frequency energy density, instead good approximations
can be achieved. There are many TFDs with different forms and properties, and
each TFD does satisfy the marginals and can be very useful tools for time-varying
signal analysis. Furthermore it is shown to be possible to derive an infinite number

of TFD from the general formula [15],

P(t,w) = Zj;g///e_jet_jm"'j‘?”qé(ﬁﬁ)f(y +7/2)f*(v — 7/2)dvdrdf (2.67)

where ¢(0, 7) represents the arbitrary kernel function resulting in a different dis-
tribution for each specific choice. It is also possible to express the general form

in terms of the input spectrum as follows ,

P(t,w) = ﬁ; / / / e~IH=ITURITY §(9 VB (1 + 0)2)F (v — 0)2)dvdrdd (2.68)
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The properties of each distribution depends upon the corresponding kernel. If
the kernel is independent of time and frequency, then the distribution is time and
shift invariant. If the kernel is independent of the signal, then the distributions
are bilinear.

Some of other known quadratic distributions and their kernels are given below

for completeness,

e Rihaczek distribution

This distribution, which was first derived by Rihaczek [33], gives the com-

plex energy spectrum of a signal as given below,

Eo(t,w) = ——f () F*(w)e " (2.69)

e Page distribution

This distribution, which was derived by Page in 1952 [34], uses the running
spectrum idea to indicate that the intensity at a specific frequency will be
larger if that frequency is observed more frequently up to that time. The

definition is given as,

P~ (t,w) f(r)e ™ dr|? (2.70)

-5l /.
e Choi-Williams distribution

This distribution, which was developed by Choi and Williams [35], is a
smoothed WD that achieves partial attenuation of I'Ts while retaining many
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desirable mathematical properties. Especially, it satisfies the marginals so

can be interpreted as an energy distribution. The definition is as follows,

P(t,w) = 4*;15/7//\/'f:ze“"("_w/472_j7wf(1/+7'/2)f*(1/—7'/2)d1/d7’ (2.71)

where the parameter o controls the amount of smoothing.

The cone-kernel distribution

This distribution has some characteristic properties related to IT attenua-
tion and time-frequency concentration. Since it contains significant amount
of negative terms, as compared to the standard WD, mainly due to its dif-
ferent kernel function, it is not an energy distribution. The definition is

given below as [32],

P.(t,f)= /[ bt —t, )zt +7/2)a*(t —7/2)dt e dr  (2.72)
T J!
where ¥ (t, ) is the specific weighting function.

It should be noted that for all these TFRs, given a distribution, the kernel

can be determined by Fourier inversion as [15],

_ [ [ ¥ P(t, w)dtdw
o0, 7) = Jefv+1/2)f*(v — 7/2)dv (2.73)

2.3 Application of the WD for Feature Extraction

So far, in this chapter, many important time-frequency methods for time-varying

signal analysis have been reviewed. Among them, the WD is considered to be
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more convenient to be used as a part of an electromagnetic target classification
scheme mainly because of its distributed energy interpretation. It was also pos-
sible to use the WT, as an alternative, where the scale parameter s does not
directly correspond to frequency. The WD’s energy interpretation is however
more natural and easier to apply especially for realistic systems.

We employ the standard WD for feature extraction instead of other alterna-
tives such as PWD, SPWD or Choi-Williams distribution, which are obtained by
some smoothing operations on the WD to reduce the cross-term problems. This
is because all these smoothed distributions do not satisfy the marginals and so
they do not have the distributed energy interpretation of standard WD.

It is well known that the available time-domain or frequency-domain data for
an electromagnetic scatterer are aspect (i.e. the orientation of the scatterer with
respect to transmitting and receiving antennas) and polarization dependent. Us-
ing such data directly, without any signal processing, in a target classification
study requires a very large database which takes a very long processing time. In-
stead, the available data must be pre-processed for feature extraction or feature
enhancement for faster and more accurate classification. In the resonance region,
the most fundamental feature of an electromagnetic target is its set of complex
natural resonance (CNR) frequencies (i.e. target’s system poles) which are inde-
pendent of both aspect and polarization of the available data [9]. However, ex-
traction of CNR frequencies from measurement data is extremely noise sensitive,
therefore a target classification scheme based on direct target pole comparison
does not have much chance to work properly. It is yet possible to develope some
other classification techniques where the discriminating power of target poles can
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be utilized indirectly. An example of this indirect utilization can be carried out
by using a selected subregion of the Wigner distribution output matrix. To be
more specific, in the relatively late time portion of WD output matrix, the effect
of damped natural oscillations due to target’s CNR frequencies are much more
pronounced. The effect of the forced part of the impulse response is dominant in
the early time portion on the other hand.

For the WD computations in this thesis, for the specified frequency interval,
and for all the sampled time points, the WD matrix of input impulse response
is found. Then the MxN feature matrix (M frequency points, N time bands) is
formed for each input by taking the time average of the WD data in specified
time bands. By this time averaging, we reduce the dimension of feature matrix,
which causes reduction of the complexity of neural network classifier to be used,
and also we perform some smoothing in time resulting in the reduction of the
oscillatory cross-components. However, this time averaging negatively affects the
discriminating power of resultant feature vectors by decreasing the time resolution
for the energy spectrum content of signal.

For example, for a perfectly conducting thin wire (length L. = 12m, length to
diameter ratio L/d = 2000), the backscattered impulse response data at 30° aspect
angle are plotted in Figure 2.1. This time-domain data are obtained by taking the
Inverse Fast Fourier Transformation (IFFT) of the windowed frequency domain
data generated by a computer code based on the Moment Method computations
[36]. This data were generated over the frequency range [0, 256 MHz] with 2 MHz
frequency steps. Therefore, the corresponding time-domain signal (uniformly
sampled at 2048 points) has a span of 500 nanoseconds with time steps (At)
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being about 0.24426 nanoseconds. The magnitude of the signal is normalized

such that its total energy in [0, 500nsec] equals to unity.
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Figure 2.1: Backscattered impulse response of a thin wire at 30° aspect angle

The contour plot of the WD output matrix for this time-domain signal, taking
only the positive WD outputs, is shown in Figure 2.2 where the time axis is
sampled at 2048 points in the range [0, 500nsec] and the frequency axis is sampled
at 50 points in the range [-64MHz, 64MHz).

In Figure 2.3 on the other hand, a partially time-averaged WD output is
plotted where the time span is divided into ten bands. Each band corresponds
to 204 time samples, i.e. to 50 nanoseconds. At each sample frequency, then,
the WD values over each band are averaged. Since a conducting thin wire is a
very high-Q target, its CNR frequencies are very strongly excited and are easily
identified in Figures 2.2 and 2.3. In these figures, the 26th index corresponds to
zero frequency. The first pair of CNR frequencies (approximately at 12MHz and
-12MHz) appear around the frequency indices 22 and 30. It is possible to identify
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the first five CNR frequency pair locations on Figures 2.2 and 2.3 just by looking

at the peaks of the WD output.
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Figure 2.2: The contour plot of WD of the impulse response shown in Figure 1.1
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Figure 2.3: The contour plot of time-averaged WD of the impulse response shown
in Figure 1.1
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It is also possible to concentrate on a selected part of the WD outputs for
additional feature enhancement purposes. Late time bands of the time-averaged
WD output matrix, for instance, can be used in the further steps of a target
classification system to emphasize the information carried by natural resonances
as explained earlier. The selected feature vectors for 12m wire at 30°, 60° and
90° aspect angles, where specifically the 6th, 7th and 8th time bands are selected,

are shown in Figures 2.4, 2.5 and 2.6.

As a result, the Wigner based time-localized energy spectrum data is used to
extract a feature matrix from the impulse response signal of each target, which

then will form the input of our target classification system.
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Figure 2.4: The selected feature vector for 12m wire at 30° aspect angle
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Figure 2.5: The selected feature vector for 12m wire at 60° aspect angle
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Figure 2.6: The selected feature vector for 12m wire at 90° aspect angle
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CHAPTER 3

NEURAL NETWORKS AND

CLASSIFICATION

3.1 Introduction

A neural network (NN) is a signal processing device in which the design and the
functioning structure are motivated by those of a human brain. These computing
devices are designed to realize some of the learning processes that are believed to
take place in the brain. The basic idea behind a NN is to provide a high com-
putational power by a large number of highly inter-connected parallel processing

elements which are called neurons.

Two important information processing capabilities of a neural network (NN)
[37], its massively parallel processing ability and its ability to learn and generalize,
make it very attractive for many different practical applications such as pattern
recognition, image recognition, radar target detection and classification, control,
speech processing, biomedical instrumentation and financial forecasting.
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The learning process through which a NN adapts itself by adjusting some
parameters to its environment is one of the most important features of NNs.
Usually learning is accomplished by exposing the NN to the training inputs that
are randomly drawn from the environment. After learning, the representation of
the environment is encoded by the NN into the weights and thresholds.

The flexibility of NN makes them able to discover more general relationships
in data than traditional statistical models can. Even in the case of incompletely
defined problems, the NNs are expected to produce better results as compared
to many conventional approaches, due to the fact that NNs do not need much
information about the specific problem modelling.

Generally, the network topology, neuron characteristics and learning or adap-
tation rules specify the NN type. It is possible to categorize NN classifiers by their
learning type [38]: supervised, where the classes of available training inputs are
known; or unsupervised, where no class information is provided during training.
The most popular supervised NN classifiers are multilayer perceptrons (MLP),
Hopfield networks and Hamming networks. The Carpenter-Grossberg classifiers
(ART) and the Kohonen self-organizing feature maps (SOFM) are, on the other
hand, well known examples of unsupervised NNs. In this chapter, the principles
of only MLP and SOFM techniques will be reviewed, which are utilized in this

thesis for target classification purposes.

3.2 Multilayer Perceptron

Multilayer perceptrons (MLPs), or multilayer feedforward networks, represent the
generalization of the single-layer perceptron which is the simplest form of a NN
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consisting of a single neuron with adjustable synaptic weights and a threshold
[37]. MLP consists of a set of input units (input layer), one or more intermediate
layers of processing elements (hidden layers) and an output layer of processing

clements. The graph of a MLP with two hidden layers is shown in Figure 3.1,

Input First Second Output
layer hidden hidden layer
layer layer

Figure 3.1: MLP with two hidden layers

The operation of a neuron which is the fundemental information processing
unit of a NN can be described as follows: Each possible input of a neuron is
multiplied by the connection weights and then linear combination of the weighted
inputs is compared to a certain threshold value. The result is then applied as an
input to a nonlinear activation function (generally sigmoidal function), where its
nonlinear model is shown in Figure 3.2,

Mathematically, the output of a neuron can be expressed as,

y; = %b(i wjiiz; — 0;) (3.1)
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Figure 3.2: Single neuron model

where z;s are inputs, w;;s are connection weights, 0; is the threshold and 1 is the

nonlinear activation function.

An important result was proved by Kolmogorov [39] that an MLP with a single
hidden layer with total number of N(2N + 1) neurons is able to approximate any
continuous function of N variables, i.e. it is able to form arbitrarily complex

decision regions.

The operation of MLP consists of two distinct passes through layers. In for-
ward pass, first the input signal is presented, then each neuron output is computed
and finally outputs at the output layer of the network are obtained. In backward
pass, the error at the output layer, which is the difference between the actual
output and the desired output, is computed and propagated back to the input
layer. During the propagation of errors from the output layer to input layer, the
weights at each layer are adjusted to minimize the mean squared error between

the actual output and the desired output.
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The back-propagation training algorithm [37, 40] is an iterative gradient de-
scent technique to minimize a cost function of the difference between the desired
and the actual network outputs. The least mean square (LMS) algorithm is the
special case of the back-propagation algorithm. Mathematically, the steps of the

back-propagation algorithm can be summarized as follows :

o All weights and threshold levels of the network are set to uniformly dis-
tributed small random numbers. In case of available prior information, it’s
better to use that information for guessing initial values of free parameters.
Otherwise natural choice of small random numbers prevents saturation of

neurons and may help the network to converge faster.

e At each learning iteration, a randomly selected epoch of training examples
from a training set, including the input and the desired output values, is

presented to the network

e The operation of each neuron during forward propagation is defined as

follows :

o) = 32 0l (m)of=(n) (3.2)

=0

where oz(l)(n) is the neuron output, vj(l)(n) is the summer output in a neuron

0] (

and w;; (n) is the connection weights for the Ith layer at nth iteration.

For any differentiable nonlinear activation function f

o (n) = f("(n)) (3.3)
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Error at the output neuron j is computed as,

ej(n) = dj(n) — o0j(n) (3.4)
where d; is the corresponding desired signal.

The average of sum of squared errors at the output of the network is,

B = (1/2N) 3 €2(n) (3.5)

n=1 j7=1

where q is equal to total number of output neurons.

During the back-propagation of errors, the local gradients are first computed

using equations 3.6 and 3.7, which result from the minimization of network

error with respect to weights using (= 8?),
if 0; is an output unit,
6 = (d; = 0))f; (v") (3.6)
if 0; is not an output unit,
551) = f (l) 25(l+1) (I+1) (3.7)
k

From the generalized delta rule, for the learning rate n and momentum

constant «, the weights in layer 1 of the network are adjusted as,

wil(n + 1) = wld (n) + ofwP(n) — WP (n — 1)) + 96 ()0 M (n) (3.8)
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o Continue with the second step, until the weight values stabilize and the F,,
has an acceptably small value. The learning rate parameter can be dynami-
cally adjusted during training by using the error gradient search algorithms
(such as 1-D gradient search algorithm). Generally, as the number of iter-
ations increases, the learning rate and the momentum constant need to be

decreased either linearly or being inversely proportional to time.

Generally for MLPs the error surface over weight space may include some local
minima points, and the weights are adapted in the direction of the gradient of this
error surface [37]. The use of momentum constant emphasizes the past weights
while adjusting the weights at the current step. Use of the adaptive learning rate
together with the momentum constant can prevent the network to get stuck into
a local minima.

MLPs trained with the back-propagation algorithm have been proven to have
advantages over the classical methods especially in detection and classification

applications [11, 41].

3.3 Self-Organizing Map

The self-organizing maps (SOM), which are introduced by T. Kohonen [42, 43, 44],
are one of the most important models of unsupervised learning NN class and
they can be used in applications such as vector quantization, speech processing,
robotics and control, statistical pattern recognition, radar classification and image
compression [45].

The SOM algorithm creates a mapping from a high dimensional vector space

40



of real numbers R™ onto a two-dimensional lattice of points, where in addition
to dimensionality reduction, metric ordering relations of input samples can be
visualized [46]. It is also possible to define SOM as a nonlinear projection of the
probability density function of the input data onto the two-dimensional plane.
As shown in Figure 3.3, a SOM generally has one input layer and one output

layer.

Output
Neurons

weights
w; (O

Figure 3.3: SOM Network Model

During the operation of the SOM, the similarity of the input vector and the
weight vector of a SOM unit is measured in terms of the Euclidian distance. Then
the weight vector of the winning unit, which is the closest one to the input vector,
and that of each unit in the neighborhood of the winning unit is updated in the
direction of the input. This procedure is applied iteratively for all randomly
drawn input vectors and each time the weight vectors better approximate the

input distribution. Finally all weights are stabilized and global ordering results.
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Mathematically the steps of the general SOM training algorithm is given as

follows [37]:

o First, the assignment of weight vectors to small random numbers is accom-

plished.

e Then, randomly drawn input vectors from an input distribution are itera-

tively presented to the network.

o The best matching output unit (winner) is determined by the following

equation,
a = argming)||z(t) — wi(t)|] = argming, > (z; — wi;)? (3.9)
J
where « is the index of the winner and ||.|| denotes the Euclidian norm.

o Next, the weight vectors are adapted according to

wilt + 1) = wilt) + N (D) (t) — wi(t)] (3.10)

where N;(t) is the neighborhood function around the winning unit and 7(t)

is the learning rate as a function of time.

e Continue with the second step, until the weights are stabilized.

The size of the neighborhood function N is a function of time, initially the
neighborhood includes all the output neurons, but it shrinks monotonically
with time. Similarly, the value of the learning rate 7 is a function of time
and decreases, usually linearly or inversely, with time as shown below,
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a(t) = a(0)(1 — t/mazrep) (3.11)

k

a(t) = a(0) Tl

(3.12)

where k is a constant that depends on maxrep, which is the maximum

number of iterations.

As stated by Kohonen [47], the aim of the SOM algorithm is to find the weight
vectors which simultaneously approximate the distribution of the input data and
preserve the topological ordering of input data.

Originally SOM is an unsupervised learning algorithm, however, we add some
sort of supervision to its natural clustering ability in order to use it effectively in
one of our classification schemes. This modification will be discussed in detail in

Chapter 5 while presenting the related applications.

3.4 Applications of MLP and SOM for Classification

MLPs using the back-propagation training algorithm are the most widely applied
type of NNs in the area of classification. So we first use an MLP to achieve clas-
sification using a set of synthetic data for perfectly conducting spheres of various
diameters and a set of measurement data for five different models of electroplated
small scale airplanes. To compare the classification results, in the first step only
the decimated time-domain impulse response signals (without feature extraction)
are used as the input of an MLP, in the second step the time-localized energy
spectrum feature matrices extracted from the input data are used at the input of
an MLP.
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In the first case, without using feature extraction, where the decimated (512
sample points) impulse response data of spheres make inputs of an MLP, the
parameters of the MLP trained with the backpropagation algorithm can be listed

as follows:

e MLP layer dimensions :
Number of neurons in the input layer = 512
Number of neurons in the first hidden layer = 250
Number of neurons in the second hidden layer = 75

Number of neurons in the output layer = 4

e Training phase parameters:

Learning rate (n(t)) : no = 0.2 at t=0 (for t > 0, n(¢) decreases inversely

with time)
Momentum constant (a) = 0.1

Maximum number of repetations in training = 30000

e Training and test data size :
Number of input data sets used for training = 13 (62%)

Number of input data sets used for testing = 8 (38%)

In the second case, using extracted feature matrices, the characteristics of the
MLP used in simulations, both for sphere class and plane class, are as follows,

For sphere class:
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e MLP layer dimensions :
Number of neurons in the input layer = 150
Number of neurons in the first hidden layer = 75
Number of neurons in the second hidden layer = 25

Number of neurons in the output layer = 2 (binary output)

e Training phase parameters:

Learning rate (n(t)) : no = 0.3 at t=0 (for ¢ > 0, n(¢) decreases inversely

with time)
Momentum constant («) = 0.1

Maximum number of repetations in training = 10000

e Training and test data size:
Number of input data sets used for training = 13 (62%)

Number of input data sets used for testing = 8 (38%)

For plane class:

e MLP layer dimensions :
Number of neurons in the input layer = 150
Number of neurons in the first hidden layer = 100
Number of neurons in the second hidden layer = 30

Number of neurons in the output layer = 5
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e Training phase parameters:

Learning rate (5(t)) : no = 0.35 at t=0 (for t,0, n(¢) decreases inversely

with time)
Momentum constant (a) = 0.1

Maximum number of repetations in training = 20000

e 'Training and test data size :
Number of input data sets used for training = 17 (55%)

Number of input data sets used for testing = 14 (45%)

The results of simulations and discussions for classification by MLP are pre-
sented in Chapter 5.

We propose a different classification scheme using a modified SOM to classify
the time-averaged WD feature matrices of two groups of input data.

In practice, there are two phases of SOM training: In the first phase, the
weight vectors of the SOM units are ordered and in the second phase the weight
vectors find their correct values. In our simulations, initial neighborhood in the
first phase is usually chosen to include all output neurons and initial learning
rate is generally taken near 0.1, while in the second phase initial neighborhood
is chosen to include neurons up to a distance of 2 or 3 and initial learning rate is
taken smaller than 0.05 for fine tuning of SOM output values.

During training, different classes of training data are forced to different regions
of the output map by initially setting their winning neuron positions. So by
using forced winner training algorithm, the approximate locations of clusters
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corresponding to each class are purposely set on the map. What is meant by
purposely is that training data of classes which are more difficult to classify are set
farther positions on SOM output map in order to reduce false classification rate.
In our simulations, about 60 percent of the available data are used for training
the NN and the remaining 40 percent are used for testing. The approximate class
boundaries on the SOM output map can be determined after the training stage
is completed by closely examining the clusters. Accuracy of these boundaries
depends on the absolute size of the training data set.

After determining the class to which the test data belong, we have shown that
it is also feasible to determine an aspect angle range for the data by means of
additional SOMs for each class. These new SOMs can be similarly trained by
forced winner algorithm for aspect angles between 0° (back-scattered response)
and 180° this time within each specific class.

The results of simulations and discussions for the classification scheme using
SOMs are presented in Chapter 5.

In addition to MLP-only and SOM-only classifiers, in the course of our re-
search, we have also tried using two different combinations of MLP and SOM
algorithms as follows :

In the first one, the classification system consists of the cascade of an unsu-
pervised SOM and a supervised MLP networks which is shown in Figure 3.4. In
this system, the output states of SOM after each training are sent to the MLP
block to be used as input states of the MLP together with the class information.
Then MLP is trained with the backpropagation algorithm to adjust its weights.
In testing stage, only the last sets of weights of SOM and MLP are needed.
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Figure 3.4: SOM+MLP classification system model

The second one is a slightly modified version of the first one, where a feedback
from MLP outputs to SOM inputs is provided for every input pattern excluding
the first one during the training phase. The existence of this feedback enables
the system to contribute the effect of each pattern of input to the next one.

Other than these MLP/SOM combinations, we also designed a SOM-only
classifier with internal feedback between the input data patterns during the test-
ing stage. In this case, the SOM is trained as originally by using the training
input data consisting of a fixed number of patterns. But in the testing stage, the
SOM outputs of a current pattern are increased by the amount which is equal to
a weighted sum of output values from the previous pattern if these values come
from the neurons which fall in the current neighborhood of the SOM.

The results of this SOM classifier with internal feedback as well as the results
of SOM/MLP combinations are not found satisfactory as compared to the results
of the forced winner SOM classifier for the specific electromagnetic target clas-
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sification problem that we have concentrated on in this thesis. Therefore, these
last three approaches are left as alternative ideas for some other NN applications

beyond the scope of our research.
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CHAPTER 4

PRINCIPAL COMPONENT ANALYSIS AND

CLASSIFICATION

4.1 Introduction

Principal Component Analysis (PCA) is a well-known classical statistical method
which was first introduced by Pearson in 1901 [37]. PCA, or the Karhunen-Loeve
expansion in stochastic theory [48], is an important feature extraction technique
which is based on the eigenvectors of the correlation or covariance matrices. PCA
computes the optimal description of the data sets by finding the best subspace
that maximizes the projection of the input patterns onto principal axis. This
linear transform has many applications in different scientific areas especially for
data analysis, data compression, dimensionality reduction, and feature extraction
since it is the optimum method regarding the information loss in the input signal.

The PCA method is primarily a data analysis technique which obtains lin-
ear transformations of a group of correlated variables such that certain optimal
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conditions are achieved. In addition, PCA is an effective method for feature ex-
traction especially when the input data consist of few clusters, since generally
the major principal axes found by PCA can separate these clusters well. After
feature extraction by using PCA, there are usually fewer features extracted than

the number of inputs, so in this way, data reduction can be achieved.

4.2 Principal Component Analysis

The PCA is based on the statistical representation of a random variable. Let x

be an input matrix whose rows z;, i=1,...,n are randomly selected data vectors

X = (:l:l,...,:cn)T (4.1)

where the mean of X is ux = [fis;;] Where g, = I{z;;}.
Then the covariance matrix of x is defined as the product of x — px with its

transposed form as follows [37],

Cx = E{(x — px)(x = px)"} (4.2)

The elements ¢;; of the matrix Cx represent the covariances between the ran-
dom variable components z; and z;, which indicates that a linear relationship
exists between these two variables and the strength of that relationship is rep-
resented by the correlation coefficient p;; = ¢;;/,/€iicjj. It is easily seen from its
definition that Cx is a symmetric matrix. The diagonal element ¢;; of the matrix
gives the variance of the component z;, which shows the spread of the component
values around its mean. If ¢;; = 0, then the data components z; and x; are
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uncorrelated.
For the covariance matrix Cx, an orthogonal basis can be calculated from its

eigenvalues and eigenvectors. The solutions of the equation

Cxui = )\iui, Z = 1, ey 1T (43)

gives the eigenvectors (u;’s) and the corresponding eigenvalues (A;’s).
Generally, distinct eigenvalues can be found from the solutions of the charac-

teristic equation given below,

ICx — A = 0 (4.4)

where I is the identity matrix of the same order as Cx and |.| represents the
determinant of the matrix (Cx — AI).

When the data vector has a large number of components, solving eigenvalues
and corresponding eigenvectors from Equation 4.4 becomes difficult. In this case,
one good solution is to use a PCA neural network to compute eigenvectors.

After determining the eigenvalues and the corresponding eigenvectors, it is
possible to find directions in which the input data set has the most significant
amount of energy by putting the eigenvalues in a decreasing order and construct-
ing an ordered orthogonal basis with the first eigenvector having the direction of
largest variance of the data. It is possible to know approximately how much of
the energy is concentrated along the specific eigenvector by comparing the values

of individual eigenvalues to the sum of the all eigenvalues.
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By using the matrix K, whose row vectors are the eigenvectors of the covari-
ance matrix Cy, a data matrix x can be transformed to points in the orthogonal

coordinate system of eigenvectors as [49],

y =K(x— ) (4.5)

where the data matrix x is projected onto a subspace defined by the orthogonal
basis of computed eigenvectors.

The reconstruction of the original data matrix x can be done by a linear
combination of the orthogonal basis vectors, using the property of an orthogonal

matrix K~! = KT as below,

x =Ky + p, (4.6)

The data matrix x can also be represented approximately by only some of the
eigenvectors of the orthogonal basis instead of using all the eigenvectors of the
covariance matrix. Then using the matrix Kps, which has the first M eigenvectors

as its rows, a similar transformation is defined as [49],

y = KM(X — /Lx) (47)

with a similar reconstruction rule,

x = Ky + pix (4.8)

Using equations 4.7 and 4.8, the original data matrix x can be projected
onto the coordinate axes of dimension M and then can be reconstructed with
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a minimum mean squared error between the transformed data and the original

data.

4.3

Some Useful Properties of Principal Components

Some properties of principal components, which are especially useful when using

PCA

in practical applications, are explained as follows [14]:

Let x be a vector, then

After transforming a set of variables x by a linear transformation y =
K(x — pix), whether K is orthonormal or not, it is possible to determine the
covariance matrix of the new variables, let C,, directly from the covariance

matrix of the original data set C, as follows,

C, = K'C,K (4.9)

Note that the orthonormality of K is not a sufficient condition for the trans-
formed variables to be uncorrelated. Only the characteristic vector solution
in equation 4.9 will produce a diagonal matrix C, resulting uncorrelated

new variables.

Especially in practice, there are two generalized measures giving the overall

variability of the data set.

The first measure is the determinant of the covariance matrix, |C,|, which
is called the generalized variance. The quantity 1/|C,| is proportional to
the area or volume generated by the data set.
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The second measure is the sum of the variances of the variables, which is

called the trace of C,, as

T(C,) =zt +zi+ ...+ 22 (4.10)

An important property of PCA is that the variability determined by either
measure is preserved. For the first measure this property means that the de-
terminant of the original covariance matrix C, is equal to the product of the
characteristic roots, which are the variances of the principal components,

as below,

Also for the second measure, this property means that the sum of the orig-

inal variances is equal to the sum of the characteristic roots as follows,

ettt =h+ b+ .+, (4.12)

Another useful measure is the correlation of each principal component with
each of the original variables. For example, the correlation of the i’th prin-

cipal component y; with the j’th original variable z; is given as,

kiiv/li
v/ Cii

where kj; is constant. So, the principal component corresponding to higher

(4.13)

Pyz =

eigenvalue is more highly correlated with the original variables.
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We have seen that by chosing a fixed number of eigenvectors and the corre-
sponding eigenvalues a consistent representation of the input data, which pre-
serves varying amount of energy of the original input data depending on the
chosen number of eigenvectors, can be obtained. Alternatively, it is possible to
fix the amount of energy and vary the number of eigenvectors used in transfor-
mation. So there is a trade-off between the reduction of input data dimension
and preserving much more of the information content of the original data. By
using PCA this trade-off can be adaptively controlled.

In practical cases, generally two methods are applied. The first one employs
nonlinear iterative partial least squares algorithm and the second one employs
successive average orthogonalization algorithm. Both of these methods sequen-
tially finds the individual principal components from the largest to the smallest.

The PCA approach has important applications in discriminant analysis, clas-
sification and clustering [50]. Since the PCA can reduce a system of correlated
variables to a system of smaller number of new variables, the desired features of

the available row data can be emphasized by means of this process.

4.4 Applications of PCA for Classification

In Chapter 2 and Chapter 3, we shortly discussed the applications of TFRs as
well as two important neural network methods to the problem of feature selection
and classification of radar data. Our purpose here is to apply also the well-known
classical statistical method PCA to this same problem and then we will able to
compare the results obtained by three different methods using neural networks
and the theory of statistics.
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After obtaining the time-frequency localized energy spectrum matrix of each
input data to be classified in a preprocessing stage as explained in Chapter 2, it’s
possible to apply PCA to this feature matrix to find its principal components in
the eigenspace.

From the results of PCA analysis, we decided to extract only the major eigen-
vector corresponding to the most dominant eigenvalue since all the other eigen-
values are found negligible compared with the leading one. Here, the choice of
eigenvectors from the result of PCA analysis depends on the construction of a
time-averaged WD matrix whose independent features specify the number of dom-
inant principal components . In using PCA, our aim is to decompose a feature
matrix data set into a simpler data set by using the largest principal component
which explains most of the variance in the feature matrix data set.

As an example, the PCA approach is applied to feature matrix data of three
conducting spheres of diameters 7 inches, 10 inches and 20 inches. (These fea-
ture matrix data were obtained from the Wigner transformation of the impulse
responses of these spheres at 120° aspect angle.) As indicated above, only the
most dominant eigenvalues are taken into account in the PCA method to obtain
the resulting dominant eigenvectors plotted in Figures 4.1 through 4.3 for these
three spheres.

Then for classification, we simply compute the Euclidian distance between the
new test vector and the known vectors of database.

The results of simulations and discussions for the classification scheme using

PCA and these two different classification measures are presented in Chapter 5.
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Figure 4.1: PCA output for 7 inch dia. sphere at 120° aspect angle
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Figure 4.3: PCA output for 20 inch dia. sphere at 120° aspect angle
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CHAPTER 5

APPLICATIONS OF TARGET

CLASSIFICATION

5.1 Introduction

The main objective of this thesis is to design a new electromagnetic target classi-
fication system which can be operated at a reasonably high correct decision rate
even for a modest size of database. Besides, a short response time in the decision
phase and robustness to noise are the other important requirements expected to

be met by this classification system.

As a result of our studies, several target classifier prototypes are shown to be
feasible as demonstrated in the simulation examples of this chapter. In these al-
ternative classifiers, various combinations of neural networks (MLPs and SOMs),
the Wigner TFD and the PCA method are utilized. The advantages and/or dis-
advantages of these candidate classification systems are going to be discussed in

the simulation examples.
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5.2 Preliminary Information on the Classes and the Database

Basically two classes of electromagnetic scatterers are used in the applications:
Perfectly conducting spheres of different diameters and perfectly conducting small

scale airplanes.

The sphere class consists of four perfectly conducting spheres with diameters
of 7 inches, 10 inches, 15 inches and 20 inches. Within this class, all the targets
have obviously the same geometrical features but different sizes. Therefore, clas-
sification within such a class may become quite tough especially for those spheres

whose diameter values are close to each other.

The time-domain database used for the sphere class simulations is composed
of impulse response waveforms at various bistatic angles. The original frequency
domain data were generated by a computer program using the Mie series over the
frequency band [0.05 GHz - 10 GHz] with 0.05 GHz frequency steps. Therefore,
the period of the signal after the inverse fast Fourier transformation (IFFT) is 20
nanoseconds over which the time signal is sampled at 2048 equally spaced points
[36].

The model airplane class, on the other hand, consists of five small scale elec-
troplated commercial aircraft models: Boeing 707, Boeing 727, Boeing 747, Con-
corde and DC-10. The original geometrical details of these aircrafts are preserved
in the small scale models. The vertically polarized frequency domain data for all
five targets were measured at the Ohio State University compact RCS measure-
ment range over the frequency band [1 GHz - 8 GHz] with 0.05 GHz steps. The
impulse response waveforms obtained by taking the IFFT of the windowed fre-
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quency domain data are sampled at 4096 points over a period of 20 nanoseconds in
time domain [36]. The resulting time domain database is utilized in the airplane

class simulation examples.

5.3 Simulation Results for the Sphere Class

In this section, mainly four different classification schemes will be demonstrated
for a class of four conducting spheres using the previously explained time domain

database. These schemes can be outlined as

e An MLP network using the database directly without any preprocessing or

feature extraction stage. (see Simulation Problem 1)

e An MLP network using the selected feature matrix information which is
equivalent to time-localized energy matrix of the database obtained by com-

puting the WD of the database. (see Simulation Problem 2)

e The statistical PCA method with a minimum distance (or correlation) mea-
sure using the feature matrix information obtained by computing the WD

of the database. (see Simulation Problem 3)

e A SOM network using the feature matrix information obtained by comput-

ing the WD of the database. (see Simulation Problem 4)
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Now, the use of these schemes will be demonstrated by the following simulation

examples:

5.3.1 Simulation Problem 1

In this classification scheme, the input layer of the MLP accepts the sample values
(decimated to 512 discrete samples) of the impulse response data from the sphere
database. The class labels are provided at the output layer of the MLP, which is
composed of four neurons corresponding to each sphere in the class. The block

diagram of this classification scheme is shown in Figure 5.1.

Supervision

[P
Neural Network [———» Class

Input —> MLP

from the
Database >

——
» Labels

Figure 5.1: Block diagram of the classification scheme discussed in Simulation
problem 1

The impulse response data, which is normalized to unit total energy, for four

different spheres at 120° aspect angle are shown in Figures 5.2 and 5.3.
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The important parameters of the MLP trained with the backpropagation al-

gorithm can be listed as follows:

e MLP layer dimensions :
Number of neurons in the input layer = 512
Number of neurons in the first hidden layer = 250
Number of neurons in the second hidden layer = 75

Number of neurons in the output layer = 4

e Training phase parameters:

Learning rate (n(¢)) : no = 0.2 at t=0 (for t>0, n(¢) decreases inversely

with time)
Momentum constant (a) = 0.1

Maximum number of repetations in training = 30000

e Training and test data size :
Number of input data sets used for training = 13 (62%)
{7 inch dia. sphere at 45°, 100° and 150° aspect angles,
10 inch dia. sphere at 0°, 60°, 90°, 135° and 180° aspect angles,
15 inch dia. sphere at 0° and 120° aspect angles,
20 inch dia. sphere at 0°, 120° and 180° aspect angles}
Number of input data sets used for testing = 8 (38%)

{7 inch dia. sphere at 0° and 120° aspect angles,
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10 inch dia. sphere at 30°, 45° and 120° aspect angles,
15 inch dia. sphere at 30° and 150° aspect angles,

20 inch dia. sphere at 30° aspect angle}

After training the MLP by 62 percent of the available data, the system is tested
by using the whole sphere database. As shown in Table 5.1, the overall correct
classification rate is 66 percent. On the other hand, the correct classification rate

for the completely new test data is found to be very low as only 38 percent.

} Data set ] Size ratio ] Correct decision rate—l
Test only 38% (8/21) 37% (3/8)
Train only | 62% (13/21) 85% (11/13)
Train+Test | 100% (21/21) 67% (14/21)

Table 5.1: Classification results of the sphere class by using only MLP classifier

Therefore, these results imply that to achieve acceptable accuracy, further
signal processing for feature enhancement must be provided as to be demonstrated
in the next simulation problem.

For the classification scheme shown in Figure 5.1, the total cpu processing
time spent for a typical test cycle is measured approximately as 120 msec on a

Sun Sparc 4 machine.
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5.3.2 Simulation Problem 2

The block diagram of this classification scheme is shown in Figure 5.4.

Supervision

| E—

Preprocessor Feature Neual Network |——>- (1

Inpit ——pp - .,
fmffl the (Wigner TED Slection [ ™ MLP [ Labels

Database

>

Figure 5.4: Block diagram of the classification scheme discussed in Simulation
problem 2

In the first stage the time-frequency localized energy feature matrix is ex-
tracted from the impulse response type input data by use of the WD. Then, in
the feature selection stage, first a feature vector, suitable to serve the MLP, is
formed from the time-frequency energy matrix by placing the consecutive time
bands one after another to make a one-dimensional vector. Then, after careful
analysis, the dimension of the resulting feature vector can be reduced by con-
sidering only some of the time bands which carry more useful information for
clagsification purposes. Finally, the selected feature vectors are applied to the
MLP classifier with their class labels.

The WD output matrix for the time-domain signal of sphere class is computed
with 2048 sampling points in the time range [0, 20nsec] and 50 sampling points
in the frequency range [-2.5GHz, 2.5GHz|. A partially time-averaged WD output
is obtained by dividing the time span into ten bands and then averaging the WD
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values over each band at each sample frequency. Each band corresponds to 204
samples, i.e. to 2 nanoseconds.
The time-frequency localized energy matrices for 7, 10, 15 and 20 inch diam-

eter spheres at 120° aspect angle are shown in Figures 5.5 and 5.6.
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To gain additional insight about this classification system, the selected feature
vectors of the 10 inch diameter sphere at aspect angles 30°, 60°, 90° and 120° are
presented in Figures 5.7, 5.8, 5.9 and 5.10, respectively. These vectors are formed
by selecting the data in the time bands 5, 6 and 7 from the related energy feature

matrices as discussed in Section 2.3 previously.
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Figure 5.7: The selected feature vector for 10 inch dia. sphere at 30° aspect angle
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Figure 5.8: The selected feature vector for 10 inch dia. sphere at 60° aspect angle

69



6
....................................... -
_________ N
3
2
:g __________________________________ ]
]
(0] 50 100 150

Time index in bands 5, 6 and 7
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Figure 5.10: The selected feature vector for 10 inch dia. sphere at 120° aspect

angle

This feature selection process enables the neural networks with less input
neurons to be used and so reduces the overall computational complexity.
The algorithm of the Wigner TFD simulation program, written in C, is given

in Appendix A for further applications.

The important parameters of the MLP trained with the backpropagation al-

gorithm can be listed as follows:
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e MLP layer dimensions :
Number of neurons in the input layer = 150
Number of neurons in the first hidden layer = 75
Number of neurons in the second hidden layer = 25

Number of neurons in the output layer = 2 (binary output)

e Training phase parameters:

Learning rate (7(2)) : no = 0.3 at t=0 (for ¢t > 0, n(¢) decreases inversely

with time)
Momentum constant (a) = 0.1

Maximum number of repetations in training = 10000

e Training and test data size :
Number of input data sets used for training = 13 (62%)
{7 inch dia. sphere at 45°, 100° and 150° aspect angles,
10 inch dia. sphere at 0°, 60°, 90°, 135° and 180° aspect angles,
15 inch dia. sphere at 0° and 120° aspect angles,
20 inch dia. sphere at 0%, 120° and 180° aspect angles}
Number of input data sets used for testing = 8 (38%)
{7 inch dia. sphere at 0° and 120° aspect angles,
10 inch dia. sphere at 30°, 45° and 120° aspect angles,

15 inch dia. sphere at 30° and 150° aspect angles,
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20 inch dia. sphere at 30° aspect angle}

A sample run output of the MLP test simulation program is given below :

>> mlptst

>> Input the filename to load for testing > 0s1060mn.mex

>> Input first hidden layer weight filename > whllast.mex

>> Input second hidden layer weight filename > wh2last.mex

>> Input output weight filename > woplast.mex

>> Net.class—outs[1] = 0.216113 Net.class—outs[2] = 0.829882

>> *** (Classification Result — Target is 10 inch dia. sphere

The algorithms of the MLP simulation programs for training and testing,
written in C, are given in Appendix A for further applications.

The instantaneous squared error per output during the training phase of MLP
is shown in Figure 5.11. Note that the error drops to negligible levels after about

10000 iterations in the training phase.

After the MLP is trained by 62 percent of the available data, the system is
tested by using the whole sphere database. As shown in Table 5.2, the overall
correct classification rate is 86 percent. On the other hand, the correct classifi-
cation rate for the completely new test data is found to be 63 percent, which is
much better than as in Simulation problem 1.

It 1s confirmed by comparing the simulation results in Table 5.1 and Table 5.2
that the preprocessing stage in the classification systems, which benefits from
time-frequency analysis for feature extraction, plays a very important role to
increase the correct classification rate.
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A .6 0.8 1
Number of repetations

o

1.2 1.4 1.6

f Data set 1 Size ratio l Correct decision ratej
Test only | 38% (8/21) 62% (5/8)
Train only | 62% (13/21) 100% (13/13)
Train+Test | 100% (21/21) 86% (18/21)

Table 5.2: Classification results of the sphere class by using the WD+MLP clas-

sifier

For the classification scheme shown in Figure 5.4, the total cpu processing
time for the testing phase is measured approximately as 270 msec (190 msec for

feature extraction stage and 80 msec for MLP classification stage) on a Sun Sparc

4 machine.
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5.3.3 Simulation Problem 3

In this classification scheme, the popular statistical method PCA with its sim-

ple postprocessing classification measures based on minimum distance or cross-

correlation techniques is applied to a time-frequency localized energy matrix ex-

tracted by use of the WD.

The block diagram of this classification scheme is shown in Figure 5.12
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Figure 5.12: Block diagram of the classification scheme discussed in Simulation

problem 3

The PCA outputs (eigenvectors) corresponding to the major eigenvalue for 7

inch diameter sphere data at 0°, 45°, 120° and 150° aspect angles are shown in

Figures 5.13 and 5.14.
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Figure 5.13: PCA outputs for 7 inch dia. sphere at 0° and 45° aspect angles
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Figure 5.14: PCA outputs for 7 inch dia. sphere at 120° and 150° aspect angles
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After finding the PCA outputs of the input data, classification is achieved
by use of minimum Euclidian distance measure or cross-correlation measure. A

sample run output of the classification program is given below :

>> euclid

>> Input first data filename to load > f7bcks.mex

>> Input second data filename to load > {745s.mex

>> The euclidian distance measure between test inputs > 0.110054

>> The cross-correlation measure between test inputs > 0.993944

In this approach, for a given test input vector and a database consisting of
the known vectors, it is required to test the input vector with each vector in
the database by using the test program and finally determine to which member
of the database this vector is closest. From the simulation results, the correct
classification rate for the sphere class, where approximately half of the total

vectors is used for testing, is found to be nearly 90%.

For the classification scheme shown in Figure 5.12, the total cpu processing
time of this classification scheme is measured approximately as 550 msec (190
msec for feature extraction stage and 360 msec for PCA and minimum distance

classification stage) on a Sun Sparc 4 machine.
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5.83.4 Simulation Problem 4

The block diagram of this classification scheme is shown in Figure 5.15.

Supervision
{Forced winner)

—>

Postprocessor [—— (g

Class Decision Unil| . Labels

——

Neural Network

Preprocessor Feature
P ity [ Seaion > SOM [

Figure 5.15: Block diagram of the classification scheme discussed in Simulation
problem 4

The selected feature vectors are applied to the input of SOM network, which
is trained with the forced winner algorithm discussed in Chapter 3. During the
testing phase, after sufficient number of training and test inputs, the decision
boundaries of the forced clusters for each class can be formed in order to auto-
matically classify each input. This is the function of the specified decision unit

shown in the block diagram.

The specifications of the SOM trained by using the forced winner algorithm

can be listed as follows:

e SOM input dimensions :
pattern length = 50

number of patterns = 3
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e SOM output dimensions :
Number of neurons in a row of output map = 10

Number of neurons in a column of output map = 10

e The first phase of training :

Learning rate (n(2)) : no = 0.1 at t=0 (for ¢ > 0, n(¢) decreases inversely

with time)

Neighborhood function: bubble type, initial radius = 10, neigh. decreasing

rate = 10™! per weight adaptation

Maximum number of repetations in training = 1000

e The second phase of training :

Learning rate (n(t)) : no = 0.03 at t=0 (for ¢ > 0, n(¢) decreases inversely

with time)

Neighborhood function: bubble type, initial radius = 2, neigh. decreasing

rate = 107! per weight adaptation

Maximum number of repetations in training = 10000

e Training and test data size:
Number of input data sets used for training = 11 (52%)
{7 inch dia. sphere at 45°, 100° and 150° aspect angles,
10 inch dia. sphere at 0°, 60°, 135° and 180° aspect angles,
15 inch dia. sphere at 0° and 150° aspect angles,

20 inch dia. sphere at 0° and 180° aspect angles}
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Number of input data sets used for testing = 10 (48%)

{7 inch dia. sphere at 0° and 120° aspect angles,

10 inch dia. sphere at 30°, 45°, 90° and 120° aspect angles,
15 inch dia. sphere at 30° and 120° aspect angles,

20 inch dia. sphere at 30° and 120° aspect angles}

A sample run output of the SOM test simulation program is given below:
>>somtest

>>Input the feature matrix file name to load for testing > 0s10180mnx.mex
>>Input the SOM weight file name > somwsph3.mex

>>Winner-row-col — 44-5-4

>> *** (Classification Result — Target is 10 inch dia. sphere

The algorithms of the SOM simulation programs for training and testing

phases, which are written in C, are given in Appendix A for further applications.

After the SOM is trained by 52 percent of the available data, the system is
tested by using the whole sphere database. The final result of simulations, includ-
ing the training and testing phases, for the sphere class by using the classification
scheme in Figure 5.15 is shown in Figure 5.16. As seen from the figure, the overall
correct classification rate is 100 percent, that is all test inputs for the sphere class

are correctly classified.

79



From Figure 5.16, we see that it is possible to automatically differentiate four

classes of sphere data by determining cluster regions indicated by the dashed

lines after sufficient number of training and test data are used. Also note that in

case of new unknown test data, which is far enough from all known clusters, a

new cluster region corresponding to a new class can be constructed on the output

map.
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Figure 5.16: The final SOM output (10x10) of sphere class

For the classification scheme shown in Figure 5.15, the total cpu processing

time of this classification scheme is measured approximately as 230 msec, where

190 msec for feature extraction stage and 40 msec for SOM classification stage,

on a Sun Sparc 4 machine.
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5.3.5 Simulation Problem 5

After the class label of an input data is determined by the system as explained
in previous section, it is also feasible to estimate its aspect angle by using the
classification scheme shown in Figure 5.17.

In this system, the aspect estimation is accomplished by training an aspect

finder SOM for each sub-class using the multi-aspect data of the related target

only.
Supervision
(Forced winner)
Neural Network Postprocessor
SOM : Class Decison Unif] ____ _
P SOM  |— Aspect
| Information

Class
Labels

Parallel SOM
Databank

Figure 5.17: Block diagram of the classification scheme discussed in Simulation
problem 5

A secondary SOM classifier is trained by the forced winner algorithm for each
target type within the class to form subclusters with respect to aspect angle
information. For instance, if the main SOM identifies the test target as the
target ”# j”, then the j’th secondary SOM decides about the aspect angle range
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for the test data. This secondary SOM must be trained a priorily by the feature
enhanced data which belong to the target "# j” at various aspect angles such as
0°, 45°, 90°, 135° and 180°.

The simulation results for 7 and 10 inch diameter spheres in this respect are

shown in Figures 5.18 and 5.19.

We conclude, based upon all of the simulation results presented so far for
the sphere class, that the WD+SOM scheme shown in Figure 5.15 is the most
promising one considering the overall correct classification rates and the total cpu
processing times. In addition, the statistical PCA classification scheme of Figure
5.12 has turned out to be performing better than the most widely used MLP

classifier of Figure 5.4.

s7_100#

s7_120 *

s7 0% s7_45% s7 150 #

# -> Training data
* > Test data

Figure 5.18: The final SOM output (4x5) for aspect estimation of 7 inch dia.
sphere data
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# -> Training data
* > Test data

Figure 5.19: The final SOM output (4x5) for aspect estimation of 10 inch dia.
sphere data

5.4 Simulation Results for the Aircraft Class

After presenting the target classification simulations for the sphere class, we will
move onto a much more realistic class of model aircraft. The simulation results
to be presented in this section are especially important to give an idea about
the feasibility of the proposed classification schemes in real world radar system
applications. The classifier schemes to be used in the simulations of this section
have already been introduced in the sphere class applications. Therefore, the

details related to the schemes will not be repeated here again.

5.4.1 Simulation Problem 6

In this application, the database for the aircraft class, including the models B-707,
B-727, B-747, Concorde and DC-10, is applied to the input of the classification

scheme shown in Figure 5.4, which is basically a WD+MLP system.
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As an example, the time-domain impulse response data, which is normalized
to have unit total energy, for all models of planes at 45° aspect angle are shown

in Figures 5.20, 5.21, 5.22, 5.23 and 5.24.
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Figure 5.20: Normalized impulse response data for plane B-707
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Figure 5.21: Normalized impulse response data for plane B-727
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Figure 5.22: Normalized impulse response data for plane B-747
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Figure 5.23: Normalized impulse response data for plane Concorde

The WD output matrix for the time-domain signal of aircraft class is computed
with 1500 sampling points in the time range [0, 7.32nsec] and 50 sampling points
in the frequency range [-4 GHz, 4 GHz]. Similarly, a partially time-averaged WD
output is obtained by dividing the time span into ten bands and then averaging
the WD values over each band at each sample frequency. Each band corresponds

to 150 samples, i.e. to 0.73 nanoseconds.
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Figure 5.24: Normalized impulse response data for plane DC-10

Following the similar steps discussed in simulation problem 2, the selected
feature vectors over the time bands 6, 7 and 8 for each model aircraft at 45°

aspect angle are shown in Figures 5.25, 5.26, 5.27, 5.28 and 5.29 as an example.

The important parameters of the MLP trained with the backpropagation al-

gorithm can be listed as follows:

e MLP layer dimensions :
Number of neurons in the input layer = 150
Number of neurons in the first hidden layer = 100
Number of neurons in the second hidden layer = 30

Number of neurons in the output layer = 5

e Training phase parameters:
Learning rate (n(t)) : no = 0.35 at t=0 (for £ > 0, n(¢) decreases inversely
with time)
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Momentum constant (a) = 0.1

Maximum number of repetations in training = 20000

e Training and test data size :
Number of input data sets used for training = 17 (55%)
{B-707 model plane at 45°, 120° and 180° aspect angles,
B-727 model plane at 30°, 60°, 150° and 180° aspect angles,
B-747 model plane at 0° and 90° aspect angles,
Concorde model plane at 02, 30°, 90° and 180° aspect angles

DC-10 model plane at 0°, 30°, 90° and 180° aspect angles}

Number of input data sets used for testing = 14 (45%)
{B-707 model plane at 60°, 90° and 150° aspect angles,
B-727 model plane at 45°, 90°, and 120° aspect angles,
B-747 model plane at 45° aspect angle,

Concorde model plane at 45°, 60°, and 120° aspect angles

DC-10 model plane at 45°, 60°, 120° and 150° aspect angles}

The given parameters of the MLP are determined after making some simula-

tions until which the better classification performance is achieved.
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Figure 5.25: The selected feature vector for plane B-707 at 45° aspect angle
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Figure 5.26: The selected feature data for plane B-727 at 45° aspect angle
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Figure 5.27: The selected feature data for plane B-747 at 45° aspect angle
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Figure 5.28: The selected feature data for plane Concorde at 45° aspect angle
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Figure 5.29: The selected feature data for plane DC-10 at 45° aspect angle

After the MLP is trained by 55 percent of the available data, the system is
tested by using the whole aircraft database. As shown in Table 5.3, the overall
correct classification rate is 84 percent. On the other hand, the correct classifi-

cation rate for the completely new test data is found to be 64 percent.

By comparing the results in Table 5.2 and Table 5.3, we see that the per-
formance of the WD+MLP classifier is nearly same for the sphere class and the
aircraft class. Also the total cpu processing time for the testing phase of aircraft
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} Data set J Size ratio J Correct decision rate l

Test only | 45% (14/31) 64% (9/14)
Train only | 55% (17/31) 100% (17/17)
Train+ Test | 100% (31/31) 84% (26/31)

Table 5.3: Classification results of the aircraft class by using the WD+MLP

classifier

classification is measured approximately as 270 msec on a Sun Sparc 4 machine.

5.4.2 Simulation Problem 7

In this case, the extracted time-frequency localized energy matrix of an aircraft
impulse response data is applied to the statistical classifier using PCA with min-
imum distance measure (see Figure 5.12).

The PCA outputs corresponding to the major eigenvalue for each model air-

craft at 45° aspect angle are shown in Figures 5.30, 5.31, 5.32, 5.33 and 5.34.
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Figure 5.30: PCA output for plane B-707 at 45° aspect angle
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Figure 5.31: PCA output for plane B-727 at 45° aspect angle
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Figure 5.32: PCA output for plane B-747 at 45° aspect angle
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Figure 5.33: PCA output for plane Concorde at 45° aspect angle
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Figure 5.34: PCA output for plane DC-10 at 45° aspect angle

After obtaining the PCA outputs for the whole available aircraft database,
the classification is achieved by use of the minimum Euclidian distance measure
or cross-correlation measure as previously done for the sphere class.

From the simulation results, where 45 percent of all available plane data is used
for testing, the successful classification rate is found nearly 80%. In this case the
total cpu processing time of this classification scheme is measured approximately
as 620 msec (190 msec for feature extraction stage and 430 msec for PCA and

minimum distance classification stage) on a Sun Sparc 4 machine.

5.4.3 Simulation Problem 8

In this problem, the selected feature vectors which are obtained as discussed
previously in Simulation problem 4 for the sphere class, are the inputs of the
SOM network trained with the forced winner algorithm. The block diagram of

the classification scheme used in this problem is shown in Figure 5.15.
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In this case, the specifications of the SOM trained by using the forced winner

algorithm can be listed as follows:

e SOM input dimensions :
pattern length = 50

number of patterns = 3

e SOM output dimensions :
Number of neurons in a row of output map = 15

Number of neurons in a column of output map = 15

o The first phase of training :

Learning rate (n(¢)) : no = 0.2 at t=0 (for ¢ > 0, n(t) decreases inversely

with time)

Neighborhood function: bubble type, initial radius = 15, neigh. decreasing

rate = 107! per weight adaptation

Maximum number of repetations in training = 3000

e The second phase of training :

Learning rate (n(t)) : no = 0.05 at t=0 (for ¢ > 0, n(t) decreases inversely

with time)

Neighborhood function: bubble type, initial radius = 3, neigh. decreasing

rate = 107! per weight adaptation

Maximum number of repetations in training = 30000
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e Training and test data size:
Number of input data sets used for training = 17 (55%)
{B-707 model plane at 45°, 120° and 180° aspect angles,
B-727 model plane at 30°, 60°, 150° and 180° aspect angles,
B-747 model plane at 0° and 90° aspect angles,
Concorde model plane at 07, 30°, 90° and 180° aspect angles

DC-10 model plane at 0°, 30°; 90° and 180° aspect angles}

Number of input data sets used for testing = 14 (45%)
{B-707 model plane at 60°, 90° and 150° aspect angles,
B-727 model plane at 45°, 90°, and 120° aspect angles,
B-747 model plane at 45° aspect angle,

Concorde model plane at 45°, 60°, and 120° aspect angles

DC-10 model plane at 45°, 60°, 120° and 150° aspect angles}

After the SOM is trained by 55 percent of the available data, the system
is tested by using the whole aircraft database. The final result of simulations,
including the training and testing phases, for the aircraft class by using the clas-
sification scheme in Figure 5.15 is shown in Figure 5.35. As seen from the figure,
the overall correct classification rate is nearly 97 percent as there is only one case

of ambiguous decision (for Concorde data at 120°) out of the total of 31 cases.
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Figure 5.35: The final SOM output (15x15) of the aircraft class

From Figure 5.35, we see that it is again possible to automatically differentiate
five classes of aircraft data by determining cluster regions indicated by the dashed
lines after sufficient number of training and test data are used. Also note that in
case of new unknown test data, which is far enough from all known clusters, a
new cluster region corresponding to a new class can be constructed on the output

map.

The total cpu processing time of this classification scheme for the aircraft class
data inputs is measured approximately as 250 msec, where 190 msec for feature
extraction stage and 60 msec for SOM classification stage, on a Sun Sparc 4

machine.
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5.4.4 Simulation Problem 9

By using similar discussions made for Simulation problem 5, after the class label
of an input data is determined (as in Simulation problem 8), it is also feasible to
estimate its aspect angle by using the classification scheme shown in Figure 5.17.

The simulation results in this respect for model B-707, B-727 and DC-10

planes are given in Figures 5.36, 5.37 and 5.38.

pI07 454 pI07_90# pr07_120%

p707_60 * p707_150 *

p707_180#

# -> Training data
* > Test data

Figure 5.36: The final SOM output (4x5) for aspect estimation of B-707 plane
data

p727. 45 %
707 304 p727_120 *
pivi_
p727_60 * p727_150 *
pr27.90#  pI27_180%

# -> Training data
* > Test data

Figure 5.37: The final SOM output (4x5) for aspect estimation of B-727 plane
data
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Figure 5.38: The final SOM output (4x5) for aspect estimation of DC-10 plane
data

Based upon the simulation results for the aircraft class the WD+SOM scheme
of Figure 5.15 is again the most promising one considering the overall perfor-
mances of the alternative classifiers. As compared to the sphere class results, this
time for the same comparison criteria, the MLP classifier of Figure 5.4 is found
to be performing better than the statistical PCA classification scheme of Figure

5.12.

5.5 Noise Performance of the Proposed Classification

System

One of the most important criteria to judge a target classifier is its noise per-
formance. We have examined the noise behaviour only for that classification
scheme which uses WD and SOM combination as shown in Figure 5.15, since
this scheme has achieved the best classification performance otherwise, among

the other alternatives.
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As stated earlier, the database used for the sphere class simulations is com-
posed of synthetic data. The database for the aircraft class, on the other hand,
was measured on a compact RCS measurement range which can be assumed as an
almost noise-free environment. Then, the noisy data required to test the noise-
handling capacity of the proposed target classifier can be obtained by adding
specific amounts of uncorrelated random Gaussian noise to the real and imagi-
nary parts of the original frequency domain back-scattered data [36]. The details
of the noise addition process are given in Appendix B.

Note that the effect of SNR (signal-to-noise ratio) of the input signal is ex-
amined only for the testing phase in this section. Effects of training the SOM
network with noisy data could have been examined as well for a more detailed
noise analysis.

For demonstration purposes, the back-scattered impulse response of the 10
inches diameter sphere at 0° bistatic angle is contaminated with noise at the
SNR levels of 15 dB, 10 dB and 5 dB. Obviously, the original noise-free data
corresponds to SNR of infinity. The shift in the location of the winning neuron
(in the testing phase) for these data with respect to the level of added noise is
presented in Figure 5.39. We observe that for SNR = 15dB case the location of
related winning neuron deviates 1 unit below, for SNR = 10dB case its location
deviates 2 units below, and finally for SNR = 5 dB case (corresponds to limiting
excessive noise case) its location deviates 3 units right from the winning neuron
location of the noise-free case. So, for the noisy data at these SNR levels the
resulting winning neurons still stay in the cluster region for the 10 inch diameter
sphere making correct decision possible.
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Figure 5.39: Noise analysis for 10 inch sphere at 0° aspect angle with 15dB, 10dB
and 5dB SNR levels
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Figure 5.40: Noise analysis for B-707 aircraft at 60° aspect angle with 15dB and
11dB SNR levels

In aircraft class, the impulse response of B-707 aircraft at 60° aspect angle is
contaminated with noise at the SNR levels of 15 dB and 11dB. Again, the original
noise-free data corresponds to SNR of infinity. The shift in the location of the
winning neuron (in the testing phase) for these data with respect to the level of
added noise is presented in Figure 5.40. This time we observe that for the B-707
aircraft input data with SNR = 15 dB, the location of related winning neuron
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deviates 1 unit right and for the same input data with SNR = 11 dB its location
deviates 1 unit below and 1 unit right from the winning neuron location of the
noise-free case. Again, using these noisy aircraft data in the testing phase does

not affect the decision.

100



CHAPTER 6

CONCLUSIONS

In this thesis, we have designed mainly three target classification schemes by
using the Wigner distribution for feature extraction part and a multilayer per-
ceptron, self-organizing mapping network and principal component analysis for
classification part. All of the proposed classifiers utilize the information in the
time-frequency content of the signal to obtain the time-frequency localized energy
feature vectors from the impulse response type input data. Then, by selecting
mostly the features in the late-time bands, the resulting reduced feature vectors
are used as input data of the classification parts of systems. The aim of this fea-
ture selection process is to decrease the system complexity and the total training
time by preserving most of the useful information for classification. From the
comparison of simulation results for problems 1 and 2 in Chapter 5, we see that
to achieve acceptable classification accuracy, further signal processing for feature

enhancement such as using the time-averaged WD matrices must be provided.

We have used an MLP trained with the backpropagation algorithm, the sta-
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tistical PCA method with a minimum distance (or correlation) measure, and a
SOM network trained with the forced winning neuron algorithm in the classifica-
tion parts of the proposed classification systems. As presented in Chapter 5, we
have performed the simulations using the sphere class and the aircraft class time
domain data in these classification schemes.

The simulation results in Chapter 5 indicate that for both classes of avail-
able input data the WD+SOM classification scheme is the most promising one
according to the relative classification performance and the total cpu processing
time in testing phase of each classifier. For the sphere class, we have found the
statistical PCA classifier performing better than the mostly used MLP classi-
fier. However, for the realistic aircraft class, the performance of MLP is found
slightly better. Specifically, the cpu processing time for the testing phase of the
WD+SOM classifier is approximately 230 msec for sphere class and 250 msec for
aircraft class, while for the WD+MLP classifier it is approximately 270 msec for
both class inputs and for the WD+PCA classifier it is approximately 550 msec
for sphere class and 620 msec for aircraft class. Also, it is not difficult to see that
for the WD+SOM and WD+MLP classifiers the cpu processing time depends on
the input vector length, not on the size of the training database, on the other
hand, for the WD+PCA classifier it depends directly on the size of the training
database as the disadvantage of this scheme.

As an additional study, after determining the class label of an input data we
have shown the feasibility of estimating its aspect angle by training an aspect
finder SOM for each sub-class using the multi-aspect data of that target only.

Based on the results of simulation problems 5 and 9 in Chapter 5, it is certain
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that better performances can be achieved by using a larger training database with
additional aspect angles.

There are some advantages of the proposed classification schemes which are
especially important for practical applications such as radar target classification.
These systems can operate at reasonably high correct decision rates without large
database of priori knowledge requirements. Their response times in the decision
phase are short (fraction of a second) as expected and the software implemen-
tations of these classifiers are not complicated at all. Also, the robustness of
the most promising classification scheme with respect to noisy inputs must be
considered as another advantage.

The results of noise analysis, given in Chapter 5, for only the most promis-
ing classification scheme of WD+SOM, seem to be satisfactory but an extensive
noise analysis, including all proposed classification schemes, for more depend-
able results is left as a future work. Training with noisy data and its effects on
classifier performance is another topic for feature research. In addition, the fea-
sibility of aspect angle estimation can be improved by further research studies.
A similar study of the wavelet transform for feature extraction and the resulting
performances of the proposed classification schemes can be an interesting future
work. Also, the proposed target classification schemes must be tested by larger

databases to verify the results on the correct decision rates.
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APPENDIX A

ALGORITHMS OF THE SIMULATION

PROGRAMS

i- The Wigner distribution simulation program:
e Load input impulse response signal
e Normalize signal to unit total energy

e For time index n taking values from 0 to Ny, which is equal to signal

length

— for angular frequency 8, taking values from 0,,;, t0 8,4, with discrete

[ =8
t Zmazr T mn,
S epS Of PTQ

— set sum to zero
* for time shift index k taking values from — Ny, t0 Npas,
compute 2 * cos(2 * k x 0,) * f[n + k] * f[n — k] and add to sum,
where fis the sampled input signal.
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— put the resulting sum value into a 2-D array of W{n|[0indez], which

corresponds to the discrete Wigner distribution of input signal.

e Then compute the time-averaged WD by summing W{n|[6ine.] over pre-

specified time bands.

Note: By use of the fast Fourier transform (FFT), the WD computation time

can be effectively reduced.
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ii- Multilayer Perceptron Classifier simulation programs:

For training,

o Load all training examples of a training set, including the input vectors
and the desired output vectors which represent the corresponding classes of

input vectors

e Initialize all weights of MLP network to random numbers in [-0.1,0.1] and

thresholds to 1

e Set initial learning rate and momentum constant values

e For repetation index taking values from 1 to maximum iteration number

— randomly select an epoch of training example from the training set

— for each neuron in the first hidden layer, calculate the neuron output

using the Equations 3.2 and 3.3

— again for each neuron in the second hidden layer, calculate the neuron

output using the Equations 3.2 and 3.3

— similarly for each neuron in the output layer, calculate the neuron

output using the Equations 3.2 and 3.3

— first calculate the error at each output neuron using Equation 3.4, and

then find the sum of squared errors

— calculate the average of sum of squared errors at the output of network

up to iteration N by using Equation 3.5

— adjust the weights in the output layer by using Equations 3.6 and 3.8
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— adjust the weights in the second hidden layer by using Equations 3.7

and 3.8

— similarly adjust the weights in the first hidden layer by using Equations

3.7 and 3.8

— decrease the learning rate linearly with time as follows,

a(t) = a(0)[1 — t/(mazrep + 100)] (A.1)

e Finally, save all weights of MLP network.

For testing,

Load the test input vector

e Load all weights of the trained MLP network

e For each neuron in the first hidden layer, calculate the neuron output using

the Equations 3.2 and 3.3

e Similarly, for each neuron in the second hidden layer, calculate the neuron

output using the Equations 3.2 and 3.3

e Finally, for each neuron in the output layer, calculate the neuron output

using the Equations 3.2 and 3.3

e Determine the class of the input vector.
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i1i- Self-Organized Mapping Network Classifier simulation programs:

For training,

e Load all training examples of a training set, including the input vectors and

their corresponding assigned winning neurons
e Initialize all weights of SOM network to random numbers in [-0.1,0.1]

In the first phase (ordering phase),

e Set initial learning rate, initial neighborhood radius, maximum update time

and maximum repetation number accordingly,
e Tor repetation index taking values from 1 to maximum iteration number

— randomly select an epoch of training example from the training set

— update the weight of each neuron in the neighborhood of the specific

winning neuron by using Equation 3.10
— after maximum update time, decrease the size of neighborhood by one

— calculate the output neuron values from the Euclidian norm of the

input vector and the unit‘s weight vector as follows,

op = > (#; —wi)? (A.2)

J

In the second phase (fine-tuning phase),

e Set initial learning rate (much smaller than in the first phase), initial neigh-
borhood radius (smaller than in the first: phase), maximum update time and
maximum repetation number (much greater than in the first phase) accord-
ingly,
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e Do the same steps as in the first phase

o Finally, save all weights of SOM network.
For testing,

o Load the test input vector

o Load all weights of the trained SOM network

e Calculate the output neuron values from the Euclidian norm of the input

vector and the unit‘s weight vector as follows,

0; = [Y (x; — wi;)? (A.3)

7
e Determine the winning output neuron for the input vector by using Equa-

tion 3.9

e Then, determine the class of the input vector.
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iv- Principal component analysis based classifier simulation pro-
grams:

The eigenvalues and the corresponding eigenvectors of input data vector is
obtained by use of the Tooldiag simulation software package. By selecting only
the eigenvectors corresponding to dominant eigenvalues, first the feature vectors
are formed. Then by using the test simulation program, whose algorithm is given
below, classification is accomplished.

For classification,

Load the input feature vector to be tested

e Load the input feature vector whose class is known

Calculate the Euclidian distance between two vectors

Calculate the cross-correlation of two vectors

After calculating two measures with different feature vectors correspond-
ing to different classes in the second step, the class of input test vector is

determined.
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APPENDIX B

GENERATION OF NOISY DATA

In this thesis, the original sphere class and aircraft class data are used in sim-
ulations. The signal-to-noise ratio (SNR) of the sphere class data, which are
synthetically generated [36], equals infinity. The SNR of the aircraft class data,
which are measured on the OSU compact measurement range [36], is finite but
much larger than the SNR of a full scale radar measurement. The noisy data used
in Chapter 5 for noise performance testing is produced by adding uncorrelated
white Gaussian noise to the real and imaginary parts of the frequency spectra of

the original data. The SNR of the noisy data is defined as [36],

N
SNR in dB = 10logio[3_ |H;|2/2No?] (B.1)

i=1

where H; is the complex value of the original signal spectrum at sampling fre-
quency f;, N is the total number of used samples and o is the standard deviation

of random (Gaussian noise.
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